WO2010032518A1 - 排気ガス浄化装置及び排気ガス浄化方法 - Google Patents
排気ガス浄化装置及び排気ガス浄化方法 Download PDFInfo
- Publication number
- WO2010032518A1 WO2010032518A1 PCT/JP2009/060391 JP2009060391W WO2010032518A1 WO 2010032518 A1 WO2010032518 A1 WO 2010032518A1 JP 2009060391 W JP2009060391 W JP 2009060391W WO 2010032518 A1 WO2010032518 A1 WO 2010032518A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- flow
- filter unit
- nox
- filter
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2892—Exhaust flow directors or the like, e.g. upstream of catalytic device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/9454—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/011—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
- F01N13/017—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/20—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2470/00—Structure or shape of gas passages, pipes or tubes
- F01N2470/14—Plurality of outlet tubes, e.g. in parallel or with different length
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2470/00—Structure or shape of gas passages, pipes or tubes
- F01N2470/18—Structure or shape of gas passages, pipes or tubes the axis of inlet or outlet tubes being other than the longitudinal axis of apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2470/00—Structure or shape of gas passages, pipes or tubes
- F01N2470/22—Inlet and outlet tubes being positioned on the same side of the apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2470/00—Structure or shape of gas passages, pipes or tubes
- F01N2470/24—Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention is an exhaust gas purification system that separates PM in exhaust gas into particles having a large mass and particles having a small mass by using centrifugal force generated by a swirling flow of the exhaust gas, and efficiently collecting them with a filter suitable for each.
- the present invention relates to an apparatus and an exhaust gas purification method.
- One of the devices for purifying exhaust gas of an internal combustion engine is an exhaust gas purification device provided with a filter that collects PM (particulate matter) in the exhaust gas. Since this filter is used for removing PM in exhaust gas from a diesel engine, it is called a DPF (diesel particulate filter).
- a catalyst-equipped filter in which an oxidation catalyst or a PM oxidation catalyst is supported on a filter so that PM collected by the filter is burned and removed at a lower temperature using a catalytic action.
- NOx purification catalyst device for purifying NOx (nitrogen oxide) in exhaust gas.
- NOx purification catalyst devices an alkali metal or alkaline earth metal is supported together with a noble metal, NO (nitrogen monoxide) in exhaust gas containing excess oxygen is oxidized and adsorbed on the catalyst as a nitrate,
- NOx occlusion reduction type catalyst for purifying NOx. This NOx occlusion reduction type catalyst occludes NOx when the exhaust gas is in a lean air-fuel ratio state with excess oxygen, and releases the occluded NOx in a rich air-fuel ratio state where the oxygen concentration is low or the air-fuel ratio is less than 1.
- the released NOx is reduced in a reducing atmosphere to reduce NOx.
- the NOx occlusion reduction type catalyst due to sulfur components in the exhaust gas, the NOx occlusion reduction type catalyst has a NOx occlusion capability that is reduced by sulfur poisoning. NOx storage capacity has been recovered.
- the exhaust gas purification device cannot occlude NOx, but mainly carries precious metals and oxidizes and removes CO (carbon monoxide) and HC (hydrocarbon) by its oxidation action.
- the PM in the exhaust gas is also effective to separate by the swirl flow when separating the particles having a large particle diameter and the particles having a small particle diameter.
- the present invention has been made in view of the above situation, and an object of the present invention is to utilize a centrifugal force generated by a swirling flow of exhaust gas in an exhaust gas purification apparatus including a filter for purifying PM in exhaust gas.
- an exhaust gas purification apparatus of the present invention performs first and second filter units that purify PM in exhaust gas, and control that recovers the purification ability of these units.
- An exhaust gas purification device comprising an exhaust gas purification control device is provided with a swirl flow generating means for generating a swirl flow in the exhaust gas, on the outer peripheral side of the flow of exhaust gas to which the swirl flow is given by the swirl flow generation means The flow is guided to the first filter unit for collecting coarse particles, and the flow on the inner peripheral side of the exhaust gas flow to which the swirl flow is applied is guided to the second filter for collecting fine particles.
- the swirling flow generating means can be formed by, for example, one or a plurality of gas injection nozzles that inject high-pressure gas (air or exhaust gas) into the exhaust gas flow.
- a gas is injected from the gas injection nozzle so as to have a swirl direction component in a vertical section with respect to the main flow of the exhaust gas, thereby generating a swirl flow in the flow of the exhaust gas.
- the PM is separated according to mass by centrifugal force using the swirl flow imparted to the exhaust gas flow.
- the size of the particle corresponds to the size of the mass, so the PM is divided into the particle size.
- particles having a large particle diameter and mass are collected by a first filter unit for collecting coarse particles.
- This coarse particle collecting filter can be formed of DPF or the like having a low porosity and a small number of cells.
- particles having a small particle diameter and mass are collected by a second filter unit for collecting fine particles.
- This fine particle collecting filter can be formed of DPF or the like having a high porosity and a large number of cells.
- the second filter unit for collecting fine particles collects many particles having a small particle diameter. Therefore, it is possible to suppress the accumulation of particles having a large particle size and block the cells or pores, and to sufficiently exhibit the collection performance for the fine particles. At the same time, clogging of the filter introduction part due to particles having a large particle diameter, a rise in the differential pressure before and after the filter in a short time, shortening the time interval for forced regeneration of the filter PM, excessively frequent PM combustion Regeneration processing, extreme deterioration of fuel consumption, etc. can be avoided.
- an exhaust gas purification apparatus of the present invention for achieving the above object includes a NOx purification catalyst unit that purifies NOx in exhaust gas, a first filter unit that purifies PM in exhaust gas, and a second filter unit.
- the exhaust gas purification device comprising a filter unit and an exhaust gas purification control device that performs control to recover the purification capacity of these units, the exhaust gas purification device is formed in a double cylinder shape, The NOx purification catalyst unit is arranged, the first filter unit for collecting coarse particles is arranged on the outer periphery, and the second filter for collecting fine particles is arranged downstream of the NOx purification catalyst unit.
- a swirling flow generating means for generating a swirling flow in the exhaust gas is provided between the NOx purification catalyst unit and the second filter unit.
- the flow on the outer peripheral side of the exhaust gas flow given the swirl flow by the generating means is guided to the first filter unit, and the flow on the inner peripheral side given the swirl flow is led to the second filter.
- the flow on the outer peripheral side of the exhaust gas flow imparted with the swirl flow is guided to the first filter unit for collecting coarse particles provided on the outer peripheral side of the NOx purification catalyst unit.
- the flow on the inner peripheral side of the exhaust gas flow to which the swirl flow is applied is guided to a second filter unit for collecting fine particles provided on the downstream side (rear stage) of the NOx purification catalyst unit. Therefore, the same operational effects as described above can be achieved.
- the inner NOx purification catalyst unit can be kept warm by the first filter unit on the outer circumference, the NOx purification performance can be maintained in a high state. Therefore, it becomes easy to make the temperature distribution of the NOx purification catalyst unit uniform. As a result, the capacity of the NOx purification catalyst unit can be reduced.
- the heat generated during the forced regeneration of PM for burning and removing the PM collected by the first filter unit can be transmitted to the NOx purification catalyst unit for use. Therefore, this heat can be used in regeneration control for recovery of NOx purification capability of the NOx purification catalyst unit, desulfurization control for recovery from sulfur poisoning, and the like.
- first and second filter units are formed with a filter with a catalyst, in a low temperature range where the catalyst activity of the NOx purification catalyst unit in the exhaust gas purification device is insufficient immediately after the engine is started.
- This HC emission can be suppressed by utilizing the HC adsorption function of the filter with catalyst.
- the exhaust gas purification control device is configured to perform desulfurization control of the NOx purification catalyst unit after PM forced regeneration control of the first filter unit. According to this configuration, the amount of heat generated at the time of forced regeneration of PM for burning and removing the PM collected by the first filter unit is recovered and used for desulfurization control of the NOx purification catalyst unit that needs to be brought to a high temperature. can do. As a result, it is possible to shorten the heating time necessary for raising the temperature of the NOx purification catalyst unit to a temperature capable of desulfurization, and to reduce the combustion consumption necessary for this heating.
- the exhaust gas purification of the exhaust gas purification apparatus provided with the 1st filter unit and 2nd filter unit which purify
- the swirl flow is imparted to the exhaust gas
- the flow on the outer peripheral side of the exhaust gas flow imparted with the swirl flow is guided to the first filter unit for collecting coarse particles
- the swirl flow is imparted.
- the flow on the inner peripheral side of the flow of exhaust gas is guided to the second filter for collecting fine particles.
- the centrifugal force is used to separate PM according to particle size by the swirl flow imparted to the flow of exhaust gas, and particles having a large particle size and mass are collected as the first particles for collecting coarse particles.
- the particles are collected by a filter unit, and particles having a small particle diameter and mass are collected by a second filter unit for collecting fine particles.
- the second filter unit for collecting fine particles collects a large number of particles having a small particle size, it is possible to prevent the cells or pores from being blocked by the particles having a large particle size, and to collect fine particles.
- the performance can be fully demonstrated. Therefore, clogging of the filter introduction part due to particles having a large particle diameter, increase in the differential pressure before and after the filter in a short time, shortening of the time interval for forced PM regeneration of the filter, excessively frequent PM combustion regeneration Processing and extreme deterioration of fuel consumption can be avoided.
- the exhaust gas purification method of the present invention for achieving the above object includes a NOx purification catalyst unit that purifies NOx in exhaust gas, a first filter unit that purifies PM in exhaust gas, and a second filter unit.
- the swirl flows into the exhaust gas flowing out from the NOx purification catalyst unit disposed in the inner peripheral portion of the exhaust gas purification apparatus formed in a double cylinder shape
- the flow on the outer peripheral side of the flow of the exhaust gas to which the swirl flow is applied is guided to the first filter unit for collecting coarse particles disposed on the outer peripheral portion of the NOx purification catalyst unit
- the second filter unit for collecting fine particles in which the flow on the inner peripheral side of the flow of exhaust gas to which the swirl flow is applied is arranged on the downstream side of the NOx purification catalyst unit.
- the same operational effects as described above can be obtained. Further, since the exhaust gas purification device is configured in a double cylinder shape, the NOx purification catalyst in the inner peripheral portion is formed by the first filter unit in the outer peripheral portion. The unit can be kept warm, and the heat generated during the forced regeneration of PM for burning and removing the PM collected by the first filter unit can be used for the NOx purification catalyst unit.
- the desulfurization control of the NOx purification catalyst unit is performed after the PM forced regeneration control of the first filter unit.
- the amount of heat generated during the forced regeneration of PM for burning and removing the PM collected by the first filter unit can be recovered and used for desulfurization control of the NOx purification catalyst unit that needs to have a high temperature. can do.
- the exhaust gas purifying apparatus in the exhaust gas purifying apparatus having a filter for purifying PM in the exhaust gas, uses the centrifugal force due to the swirling flow of the exhaust gas.
- the PM inside can be separated into particles having a large mass and particles having a small mass, and can be efficiently collected with a filter suitable for the particle diameter of each PM.
- the second filter unit for collecting fine particles a large number of particles having a small particle size are collected, so that particles having a large particle size are not deposited and the cells or pores are not clogged.
- the collection performance can be fully demonstrated. Also, clogging of the filter introduction part due to particles having a large particle diameter, increase of the differential pressure before and after the filter in a short time, shortening of the time interval for forced regeneration of the filter PM, excessively frequent PM combustion regeneration Processing and extreme deterioration of fuel consumption can be avoided.
- FIG. 1 is a diagram showing a configuration of an exhaust gas purifying apparatus according to an embodiment of the present invention.
- FIG. 2 is a diagram showing the configuration of the exhaust gas inlet of the exhaust gas purification device.
- FIG. 3 is a cross-sectional view of the exhaust gas purification device.
- FIG. 4 is a partially enlarged view of a cross section of the exhaust gas purification device.
- FIG. 5 is a view of the configuration of the swirling flow generating means as viewed from the rear of the exhaust gas purification device.
- FIG. 1 to 5 show the configuration of an exhaust gas purification device 10 according to an embodiment of the present invention.
- the exhaust gas purification device 10 is provided in an exhaust passage 2 of an engine (internal combustion engine).
- the exhaust gas purification device 10 is formed in a double cylinder shape, and in relation to the flow of exhaust gas, the first oxidation catalyst unit 11 and the first NOx purification catalyst are sequentially arranged from the upstream side.
- the unit 12A and the second NOx purification catalyst unit 12B are disposed on the inner peripheral portion of the inner peripheral wall 13.
- the first filter unit 14 and the second oxidation catalyst unit 15 are arranged on the outer peripheral portion of the inner peripheral wall 13 and are wrapped by the outer peripheral wall 16.
- the second oxidation catalyst unit 15 is disposed on the outer periphery of the first oxidation catalyst unit 11, and the first filter unit 14 is disposed on the outer periphery of the first and second NOx purification catalyst units 12A and 12B. Deploy.
- the second filter unit 17 is disposed downstream of the second NOx purification catalyst unit 12B.
- the first filter unit 14 is formed in a hollow cylindrical shape, and the first and second NOx purification catalyst units 12A and 12B are disposed in the hollow portion.
- the second oxidation catalyst unit 15 is also formed in a hollow cylindrical shape, and the first oxidation catalyst unit 11 is disposed in this hollow portion.
- These exhaust gas purification units 11, 12A, 12B, 14, 15, and 17 are arranged so that the central axes of the respective cylindrical shapes coincide with each other.
- the exhaust gas purification device 20 is configured in a double cylinder shape, and the arrangement of the oxidation catalyst units 11 and 15, the NOx purification catalyst units 12A and 12B, and the filter units 14 and 17 is the above arrangement.
- the device 10 can be made compact.
- the inner peripheral wall 13 is a cylindrical shape that separates the exhaust gas purification units 11, 12A, 12B on the inner peripheral side from the exhaust gas purification units 14, 15 on the outer peripheral side so that the exhaust gas does not flow in this portion. It is made of a material such as copper, aluminum, aluminum alloy or the like having a high thermal conductivity.
- the outer peripheral wall 16 wraps the exhaust gas purification units 11, 12A, 12B, and also reduces the heat radiation between the outside and has a role of keeping the exhaust gas purification units 11, 12A, 12B warm. It is made of metal, ceramics or synthetic resin with relatively low thermal conductivity.
- the first oxidation catalyst unit 11 and the first and second NOx purification catalyst units 12A and 12B are arranged on the inner circumference of the first circumference of the first oxidation catalyst unit 11 and the first and second NOx purification catalyst units 12A and 12B. Since the temperature can be kept by the filter unit 14 and the second oxidation catalyst unit 15 and the temperature distribution of the catalyst in the inner peripheral portion can be easily made uniform, the first oxidation catalyst unit 11, the first and second NOx purification catalyst units. The capacity of 12A and 12B can be reduced.
- the first and second oxidation catalyst units 11 and 15 oxidize HC (hydrocarbon) in the exhaust gas to raise the exhaust gas temperature, or oxidize NO (nitrogen monoxide) in the exhaust gas to generate NO. 2 (Nitrogen dioxide) to make it easy to purify NOx (nitrogen oxides), formed by supporting an oxidation catalyst such as platinum on a porous ceramic honeycomb structure .
- the first and second NOx purification catalyst units 12A and 12B are for purifying NOx in the exhaust gas, and are formed of a monolith catalyst.
- a catalyst coat layer of aluminum oxide, titanium oxide or the like is provided on a carrier such as a cordierite honeycomb of the monolith catalyst.
- a NOx occlusion reduction catalyst comprising a catalyst metal such as platinum (Pt) or palladium (Pd) and a NOx occlusion material (NOx occlusion material) such as barium (Ba) is supported on the catalyst coat layer.
- This NOx occlusion reduction type catalyst purifies NOx in the exhaust gas by the NOx occlusion material storing NOx in the exhaust gas when the oxygen concentration is in a high exhaust gas state, that is, in an air-fuel ratio lean state, When the oxygen concentration is low, the air-fuel ratio is less than 1 or the air-fuel ratio is rich, or the air-fuel ratio is in the air-fuel ratio stoichiometric state, the stored NOx is released, and the released NOx is also catalyzed by the catalytic metal. By reducing with NO, the outflow of NOx to the atmosphere is prevented.
- the NOx occlusion reduction catalyst changes the NOx occlusion material to nitrate, and therefore performs regeneration control to make the exhaust gas rich in the air-fuel ratio before the NOx occlusion capacity is saturated. Then, the stored NOx is released and reduced to restore the NOx storage capacity. Further, the sulfur component in the exhaust gas causes the NOx storage material to change to sulfate, so-called sulfur poisoning that prevents the storage of NOx, and the NOx storage capacity decreases.
- desulfurization control for desorbing sulfur from the NOx occlusion material is performed by setting the NOx occlusion reduction type catalyst in a rich air-fuel ratio atmosphere and at a high temperature.
- the first and second filter units 14 and 17 are for purifying PM (particulate matter) in the exhaust gas, and are the inlets of the porous ceramic honeycomb channels (exhaust gas passages). And a monolith honeycomb wall flow type filter or the like in which the outlets are alternately sealed.
- This filter portion is loaded with a catalyst such as platinum or cerium oxide so as to promote the oxidation of PM or HC at a relatively high temperature and to adsorb HC at a relatively low temperature.
- PM in the exhaust gas is collected by the porous ceramic wall of the catalyst-equipped filter.
- this filter with a catalyst the activity of the first oxidation catalyst unit 11 and the first and second NOx purification catalyst units 12A and 12B in the exhaust gas purification device 10 immediately after the engine start is insufficiently low.
- the HC adsorption function by the first filter unit 14 and the second filter unit 17 can be used to suppress the discharge.
- the first filter unit 14 is further formed of a filter having a low porosity and a small number of cells for collecting coarse particles.
- the second filter unit 17 is formed of a filter having a high porosity and a large number of cells for collecting fine particles.
- the first and second filter units 14 and 17 are provided with a first differential pressure sensor 18 and a second differential pressure sensor 19 for detecting the respective differential pressures ⁇ P1 and ⁇ P2 before and after the detection values.
- ⁇ P1 and ⁇ P2 are input to an exhaust gas purification control device (not shown).
- This exhaust gas purification control device is provided by being incorporated in a control device called an ECU (Engine Control Unit) that performs overall control of the engine.
- This exhaust gas purification control device monitors the states of the exhaust gas purification units 11, 12A, 12B, 14, 15, and 17 of the exhaust gas purification device 10, and performs regeneration control and desulfurization control as necessary.
- first and second filter units 14 and 17 detected by the first and second differential pressure sensors 18 and 19 in order to prevent the amount of PM collected from increasing and the pressure loss from increasing.
- the front-rear differential pressures ⁇ P1 and ⁇ P2 exceed a predetermined first differential pressure threshold, the exhaust gas temperature is increased, and the first and second filter units 14 and 17 are heated to a temperature equal to or higher than the PM fuel temperature. Then, PM forced regeneration control for burning and removing the collected PM is performed.
- the exhaust passage 2 of the engine is connected to the front inner peripheral wall 13a having a truncated cone shape, and the exhaust gas G1 is connected to the first oxidation catalyst unit 11,
- the first NOx purification catalyst unit 12A and the second NOx purification catalyst unit 12B are configured to pass through.
- a swirl flow is applied to the rear inner peripheral wall 13b extending in the shape of a truncated cone behind the second NOx purification unit 12B.
- the generating means 20 is arranged.
- the swirling flow generating means 20 includes a gas pipe 21 for connecting a gas such as air A or a part of exhaust gas to a gas compression tank (not shown), a distribution pipe 22 connected to the gas pipe 21, and this distribution It comprises a plurality of branch pipes 23 branched from the service pipe 22, a gas injection control valve 24 provided at the end of the branch pipe 23, a gas injection nozzle 25 ahead thereof, and the like.
- the distribution pipe 22 is arranged in a ring shape outside the second filter unit 17, and the gas injection nozzles 25 are arranged in a single row or a plurality of rows in the longitudinal direction of the exhaust gas purification device 10 ( In the configuration of FIG. 1, they are arranged in two rows (front and rear). Further, with respect to the circumferential direction of the exhaust gas purification device 10, one or a plurality of (four in the case of FIG. 5 at equal intervals) gas injection nozzles 25 are arranged on the rear inner peripheral wall 13b.
- the gas injection nozzle 25 normally continuously injects the gas A to give a swirl flow to the flow of the exhaust gas G1.
- the high-speed gas injection rotates in the circumferential direction and swirls into the exhaust gas flow G1 so that the order of short-time injections goes around in the circumferential direction.
- the gas may be injected with a time delay so that a flow occurs.
- the high-pressure gas is not injected from the multistage nozzles at the same time, but is injected while shifting in the circumferential direction at regular time intervals so that a swirl flow is easily generated in the exhaust gas.
- the injection time interval is changed based on the engine load and the rotational speed.
- the exhaust gas G2 of the flow on the outer peripheral side of the flow of the exhaust gas G1 is guided to the outer peripheral side of the extended rear inner peripheral wall 13b, and It passes through the first filter unit 14 and the second oxidation catalyst unit 15, passes through the outer peripheral side of the front inner peripheral wall 13 a, and flows out to the third exhaust passage 4.
- the flow G3 on the inner peripheral side of the flow of the exhaust gas G1 passes through the second filter unit 17 on the downstream side as it is at the rear end of the extended rear inner peripheral wall 13b, and passes through the second exhaust passage.
- the swirl flow generating means 20 for generating a swirl flow in the exhaust gas G1 is provided, and the flow G2 on the outer peripheral side of the flow of the exhaust gas G1 to which the swirl flow is given by the swirl flow generating means 20 is changed into coarse particles. While being guided to the first filter unit 14 for collection, the flow G2 on the inner peripheral side of the flow of the exhaust gas G1 to which the swirl flow is applied is guided to the second filter 17 for collecting fine particles. .
- the exhaust gas purification device 10 is formed in a double cylinder shape, the first and second NOx purification catalyst units 12A and 12B are disposed on the inner peripheral portion, and the coarse particle trapping is disposed on the outer peripheral side.
- the first filter unit 14 for collecting is disposed, and the second filter unit 17 for collecting fine particles is disposed on the downstream side of the first and second NOx purification catalyst units 12A and 12B.
- a swirl flow generating means 20 that generates a swirl flow in the exhaust gas G1, and the exhaust to which the swirl flow is given by the swirl flow generating means 20
- the flow G2 on the outer peripheral side of the flow of the gas G1 is guided to the first filter unit 14, and the flow G3 on the inner peripheral side of the flow of the exhaust gas G1 to which the swirl flow is applied is guided to the second filter 17.
- the swirl flow generating means 20 injects the exhaust gas G1 that has passed through the first and second NOx purification catalyst units 14 and 17 to generate a swirl flow. it can. Therefore, the exhaust gas G1 flows out from the rear end portion of the elliptical cylindrical (or cylindrical) rear inner peripheral wall 13b while generating a swirling flow, and the longitudinal flow velocity of the exhaust gas purification device 10 is reduced. In this process, particles having a large particle size and heavy weight are blown to the outer peripheral side by high kinetic energy.
- the second filter unit 17 having a high porosity collects a large number of particles having a small particle diameter, thereby reducing the number of PM particles and preventing the combustion regeneration interval from being shortened.
- PM particles having a large particle size are prevented from accumulating at the inlet portion of the second filter unit 17 having a high porosity, thereby preventing the differential pressure ⁇ P2 from rising in a short time. Thereby, excessively frequent PM forced regeneration control can be avoided, and an extreme deterioration of fuel consumption can be prevented.
- the PM forced regeneration control (PM combustion processing control) of the first filter unit 14 having a low porosity is associated with the desulfurization processing of the first and second NOx purification catalyst units 12A and 12B.
- This PM regeneration control raises the temperature of the exhaust gas G1 flowing into the exhaust gas purification device 10 when the differential pressure ⁇ P1 detected by the first pressure sensor 18 exceeds a predetermined first differential pressure threshold. Then, the PM forced regeneration control which is the PM combustion process of the first filter unit 14 is performed.
- This PM forced regeneration control ends when the front-rear differential pressure ⁇ P1 becomes equal to or lower than a predetermined second differential pressure threshold. At the end of this time, it is determined whether or not the sulfur adsorption amounts of the first and second NOx purification catalyst units 12A, 12B exceed a predetermined first sulfur adsorption threshold value. The temperature of the gas G1 is raised, and the temperature of the first and second NOx purification catalyst units 12A and 12B is raised to a temperature capable of desulfurization to perform desulfurization control for desulfurization treatment. This desulfurization control ends when the sulfur adsorption amount falls below a predetermined second sulfur adsorption threshold or when a preset desulfurization time has elapsed.
- the first and second NOx purification catalyst units 12A need to have a high temperature during the forced regeneration of PM for burning and removing the PM collected by the first filter unit 14. , 12B can be used for desulfurization control. Therefore, it is necessary to recover the amount of heat generated by regeneration combustion of PM accumulated in the first filter unit 14 and raise the temperature of the first and second NOx purification catalyst units 12A and 12B to a temperature capable of desulfurization. The heating time required can be shortened and the combustion consumption necessary for this heating can be suppressed.
- the combustion heat generated when the PM particles collected by the first filter unit 14 are burned is given to the first and second NOx purification catalyst units 12A and 12B arranged on the inner peripheral side, This is used as a heat source for heating and heating necessary for the desulfurization processing of the L first and second NOx purification catalyst units 12A and 12B performed after PM regeneration.
- fuel injection into the exhaust passage 2 and post-injection into the engine cylinder are also performed as this heating assistance.
- the PM combustion process of the second filter unit 17 having a high porosity is performed independently.
- the front-rear differential pressure ⁇ P2 detected by the second pressure sensor 19 exceeds a predetermined third differential pressure threshold
- the temperature of the exhaust gas G1 flowing into the exhaust gas purification device 10 is increased.
- the PM forced regeneration control which is the PM combustion process of the second filter unit 17 is performed.
- This PM forced regeneration control ends when the front-rear differential pressure ⁇ P2 becomes equal to or lower than a predetermined fourth differential pressure threshold.
- the collected PM particles are burned and removed based on the differential pressures ⁇ P1 and ⁇ P2 according to the amount of PM accumulated in the filter units 14 and 17, and PM is repeatedly collected. PM purification performance can be maintained.
- the heat by PM combustion of the 2nd filter unit 17 cannot be utilized in the 1st and 2nd NOx purification catalyst units 12A and 12B.
- the forced PM regeneration control the exhaust gas needs to be heated to a high temperature. Therefore, the forced PM regeneration control of the second filter unit 17 is performed simultaneously or continuously with the forced PM regeneration control of the first filter unit 14. Do.
- the energy for raising the exhaust gas temperature can be shared by both filter units 14 and 17. Accordingly, it is preferable to perform the PM forced regeneration control of the second filter unit 17 so as to be simultaneous or continuous with the PM forced regeneration control of the first filter unit 14.
- the PM in the exhaust gas G is separated into particles having a large mass and particles having a small mass by utilizing the centrifugal force generated by the swirling flow of the exhaust gas G.
- the filter units 14 and 17 that match the particle diameter of each PM can efficiently collect the particles.
- the second filter unit 17 for collecting fine particles collects many particles having a small particle size, it is suppressed that particles having a large particle size are deposited and the cells or pores are blocked.
- the trapping performance for particles can be sufficiently exhibited. Also, clogging of the filter introduction part due to particles having a large particle diameter, increase in the differential pressure ⁇ P2 before and after the filter in a short time, shortening of the time interval for forced regeneration of the filter PM, excessively frequent PM combustion regeneration Processing and extreme deterioration of fuel consumption can be avoided.
- the exhaust gas purification device and the exhaust gas purification system of the present invention having the above-described excellent effects should be used extremely effectively for the exhaust gas purification device and the exhaust gas purification system provided in an internal combustion engine or the like mounted on a vehicle. Can do.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
排気ガス(G1)中のPMを浄化する第1のフィルタユニット(14)と第2のフィルタユニット(17)と、これらのユニット(14、17)の浄化能力を回復する制御を行う排気ガス浄化制御装置とを備えた排気ガス浄化装置(10)において、排気ガス(G1)に旋回流を発生する旋回流発生手段(20)を設け、該旋回流発生手段(20)により旋回流を付与された排気ガス(G1)の流れの外周側の流れ(G2)を粗い粒子捕集用の前記第1のフィルタユニット(14)に導くと共に、前記旋回流を付与された排気ガス(G1)の流れの内周側の流れ(G3)を細かい粒子捕集用の前記第2のフィルタ(17)に導くように構成する。これにより、排気ガス中のPMを浄化するフィルタを備えた排気ガス浄化装置(10)において、排気ガスの旋回流による遠心力を利用して、排気ガス中のPMを質量の大きい粒子と質量の小さい粒子に分離し、それぞれのPMの粒子径に合ったフィルタで、効率よく捕集する。
Description
本発明は、排気ガス中のPMを排気ガスの旋回流による遠心力を利用して、質量の大きい粒子と質量の小さい粒子に分離し、それぞれに適したフィルタで効率よく捕集する排気ガス浄化装置及び排気ガス浄化方法に関する。
内燃機関の排気ガスを浄化するための装置の一つに、排気ガス中のPM(微粒子状物質)を捕集するフィルタを備えた排気ガス浄化装置がある。このフィルタはディーゼルエンジンからの排気ガス中のPMの除去に使用されることから、DPF(ディーゼル・パティキュレート・フィルタ)と呼ばれている。また、フィルタに捕集したPMを、触媒作用を利用してより低温で燃焼して除去するためにして、酸化触媒やPM酸化触媒をフィルタに担持した触媒付きフィルタがある。
また、排気ガス中のNOx(窒素酸化物)の浄化のためには、NOx浄化触媒装置がある。このNOx浄化触媒装置の一つに、アルカリ金属又はアルカリ土類金属を貴金属と共に担持して、酸素過剰な排気ガス中のNO(一酸化窒素)を酸化して硝酸塩として触媒上に吸着させて、NOxを浄化するNOx吸蔵還元型触媒を担持した装置がある。このNOx吸蔵還元型触媒は、排気ガスが酸素過剰なリーン空燃比状態では、NOxを吸蔵し、酸素濃度が低いか、空燃比が1より小さいリッチ空燃比状態では、吸蔵したNOxを放出すると共に、この放出されたNOxを還元雰囲気中で還元して、NOxを低減する。また、排気ガス中の硫黄成分により、このNOx吸蔵還元型触媒は硫黄被毒によりNOx吸蔵能力が低下するので、触媒をリッチ空燃比雰囲気で、かつ、比較的高い温度に維持する脱硫処理を行ってNOx吸蔵能力を回復している。
また、排気ガス浄化装置の別の装置として、NOxを吸蔵することはできないが、貴金属を主に担持して、その酸化作用により、CO(一酸化炭素)やHC(炭化水素)を酸化除去する酸化触媒装置がある。これらの排気ガス浄化装置を使用して、内燃機関から排出される排気ガス中のNOx、CO、HC、PM等の有害成分を浄化して、これらの有害成分の大気中への放出量を減少し、排出基準以下にまで下げている。
これらの排気ガス浄化装置を使用して排気ガスの浄化を行っている。しかし、更に、PMの粒子数規制が導入され排気ガス規制が強化されると、より微小な粒子径のPMを捕集する必要が生じる。そのため、高気孔率のDPFを、NOx浄化触媒装置の下流側(後段)に装着する必要が生じるものと考えられる。
この高気孔率のDPFの場合では、気孔サイズが従来のDPFよりも小さくなるので、粒子径が相当小さい粒子を捕集できる反面、粒子径の大きい粒子が、このDPFの排気ガスの導入部付近に堆積し易くなる。この結果、DPFの導入部DPFで目詰まりが生じる。そのため、このDPFの前後の差圧が短い時間で上昇して、微小粒子に対する捕集性能を十分に発揮できないという問題が生じる。また、DPFのPM強制再生の時間間隔が短くなるという問題も生じる。
一方、例えば、日本国特開2006-116471号公報に記載されているように、石炭ガス化炉などの生成ガス処理に関係して、気体に含有される微粒子から粗粒子までの粒子分布を有する粒子群から、粗粒子を効率よく回収するために、大径側の粗粒子と中間径の中間粒子とを旋回流を利用して選択的に分離回収する旋回型サイクロンが提案されている。
また、例えば、日本の特開2005-61235号公報に記載されているように、ディーゼルエンジンの排気ガス浄化に関係して、筒状のフィルタの内面に案内羽根を設けて、フィルタの内面に排気ガスの旋回流を発生させて、遠心力により大径PMの濃度が高い排気ガスをフィルタの内部から筒状の外周部に設けたフィルタを通過させて、排気ガス中のPMを除去させた後に、大径PMの濃度の低い中心側のガスと合流させるディーゼルエンジンの排気ガス浄化装置が提案されている。
上記のように、排気ガス中のPMにおいても、粒子径の大きい粒子と粒子径の小さい粒子との分離に際して、旋回流によって分離することが有効であると考えられる。
本発明は、上記の状況を鑑みてなされたものであり、その目的は、排気ガス中のPMを浄化するフィルタを備えた排気ガス浄化装置において、排気ガスの旋回流による遠心力を利用して、排気ガス中のPMを質量の大きい粒子と質量の小さい粒子に分離し、それぞれのPMの粒子径に合ったフィルタで、効率よく捕集する排気ガス浄化装置及び排気ガス浄化方法を提供することにある。
上記の目的を達成するための本発明の排気ガス浄化装置は、排気ガス中のPMを浄化する第1のフィルタユニットと第2のフィルタユニットと、これらのユニットの浄化能力を回復する制御を行う排気ガス浄化制御装置とを備えた排気ガス浄化装置において、排気ガスに旋回流を発生する旋回流発生手段を設け、該旋回流発生手段により旋回流を付与された排気ガスの流れの外周側の流れを粗い粒子捕集用の前記第1のフィルタユニットに導くと共に、前記旋回流を付与された排気ガスの流れの内周側の流れを細かい粒子捕集用の前記第2のフィルタに導くように構成する。
この旋回流発生手段は、例えば、高圧のガス(空気や排気ガス)を排気ガスの流れに噴射する単数又は複数のガス噴射ノズルで形成することができる。このガス噴射ノズルからガスを排気ガスの主流に対して垂直断面内で旋回方向成分を持つように噴射して、排気ガスの流れに旋回流を発生させる。
この構成によれば、排気ガスの流れに付与された旋回流により遠心力を利用してPMを質量別に分離して、言い換えれば、質量の大小に粒子径の大小が対応するのでPMを粒子径別に分離して、粒子径及び質量の大きい粒子を、粗い粒子捕集用の第1のフィルタユニットで捕集する。この粗い粒子捕集用のフィルタは、低気孔率でセル数の少ないDPF等で形成できる。また、粒子径及び質量の小さい粒子を、細かい粒子捕集用の第2のフィルタユニットで捕集する。この細かい粒子捕集用のフィルタは、高気孔率でセル数の多いDPF等で形成できる。
従って、細かい粒子捕集用の第2のフィルタユニットでは、粒子径の小さな粒子を多数捕集する。そのため、粒子径の大きな粒子が堆積してセル又は気孔が閉塞されることが抑制され、微小粒子に対する捕集性能を十分に発揮できる。それと共に、粒子径の大きな粒子に起因する、フィルタ導入部の目詰まり、フィルタの前後の差圧の短い時間での上昇、フィルタのPM強制再生の時間間隔の短縮化、過度に頻繁なPM燃焼再生処理、及び、燃費の極端な悪化等を回避できる。
あるいは、上記の目的を達成するための本発明の排気ガス浄化装置は、排気ガス中のNOxを浄化するNOx浄化触媒ユニットと、排気ガス中のPMを浄化する第1のフィルタユニットと第2のフィルタユニットと、これらのユニットの浄化能力を回復する制御を行う排気ガス浄化制御装置とを備えた排気ガス浄化装置において、該排気ガス浄化装置を二重筒状に形成して、内周部に前記NOx浄化触媒ユニットを配置し、外周部に粗い粒子捕集用の前記第1のフィルタユニットを配置すると共に、前記NOx浄化触媒ユニットの下流側に、細かい粒子捕集用の前記第2のフィルタユニットを配置し、更に、前記NOx浄化触媒ユニットと前記第2のフィルタユニットとの間に、排気ガスに旋回流を発生する旋回流発生手段を設け、該旋回流発生手段により旋回流を付与された排気ガスの流れの外周側の流れを前記第1のフィルタユニットに導くと共に、前記旋回流を付与された内周側の流れを前記第2のフィルタに導くように構成する。
この構成によれば、旋回流を付与された排気ガスの流れの外周側の流れを、NOx浄化触媒ユニットの外周側に設けた、粗い粒子捕集用の第1のフィルタユニットに導く。それと共に、旋回流を付与された排気ガスの流れの内周側の流れを、NOx浄化触媒ユニットの下流側(後段)に設けた、細かい粒子捕集用の第2のフィルタユニットに導く。従って、上記と同様な作用効果を奏することができる。
また、外周側の第1のフィルタユニットで内周側のNOx浄化触媒ユニットを保温できるので、NOxの浄化性能を高い状態で維持できる。そのため、このNOx浄化触媒ユニットの温度分布を均一化し易くなる。その結果、NOx浄化触媒ユニットの容量を小さくできる。
しかも、第1のフィルタユニットに捕集されたPMを燃焼除去するためのPM強制再生時の発熱を、NOx浄化触媒ユニットに伝えて利用することができるようになる。そのため、NOx浄化触媒ユニットのNOx浄化能力の回復のための再生制御や硫黄被毒からの回復のための脱硫制御などで、この熱を利用できるようになる。
また、第1及び第2のフィルタユニットを触媒付きフィルタで形成した場合には、エンジン始動直後の、排気ガス浄化装置内のNOx浄化触媒ユニットの触媒の活性が不十分な低温度域では、この触媒付フィルタにおけるHC吸着機能を利用し、このHCの排出を抑制することができる。
上記の排気ガス浄化装置において、前記排気ガス浄化制御装置が、前記第1のフィルタユニットのPM強制再生制御の後に、前記NOx浄化触媒ユニットの脱硫制御を行うように構成する。この構成によれば、第1のフィルタユニットに捕集されたPMを燃焼除去するためのPM強制再生時の発熱量を回収して、高温にする必要があるNOx浄化触媒ユニットの脱硫制御に利用することができる。その結果、NOx浄化触媒ユニットの脱硫処理可能な温度までの昇温に必要な加熱時間を短くして、この加熱に必要な燃焼消費量を減少できる。
そして、上記の目的を達成するための本発明の排気ガス浄化方法は、排気ガス中のPMを浄化する第1のフィルタユニットと第2のフィルタユニットとを備えた排気ガス浄化装置の排気ガス浄化方法において、排気ガスに旋回流を付与し、この旋回流を付与された排気ガスの流れの外周側の流れを粗い粒子捕集用の前記第1のフィルタユニットに導くと共に、前記旋回流を付与された排気ガスの流れの内周側の流れを細かい粒子捕集用の前記第2のフィルタに導くことを特徴とする方法である。
この方法によれば、排気ガスの流れに付与された旋回流により遠心力を利用してPMを粒子径別に分離して、粒子径及び質量の大きい粒子を、粗い粒子捕集用の第1のフィルタユニットで捕集し、粒子径及び質量の小さい粒子を、細かい粒子捕集用の第2のフィルタユニットで捕集する。
従って、細かい粒子捕集用の第2のフィルタユニットでは、粒子径の小さな粒子を多数捕集するので、粒子径の大きな粒子でセル又は気孔が閉塞されることが抑制され、微小粒子に対する捕集性能を十分に発揮できる。そのため、粒子径の大きな粒子に起因する、フィルタ導入部の目詰まり、フィルタの前後の差圧の短い時間での上昇、フィルタのPM強制再生の時間間隔の短縮化、過度に頻繁なPM燃焼再生処理、及び、燃費の極端な悪化等を回避できる。
あるいは、上記の目的を達成するための本発明の排気ガス浄化方法は、排気ガス中のNOxを浄化するNOx浄化触媒ユニットと、排気ガス中のPMを浄化する第1のフィルタユニットと第2のフィルタユニットを備えた排気ガス浄化装置の排気ガス浄化方法において、二重筒状に形成された前記排気ガス浄化装置の内周部に配置された前記NOx浄化触媒ユニットから流出する排気ガスに旋回流を付与して、この旋回流を付与された排気ガスの流れの外周側の流れを、前記NOx浄化触媒ユニットの外周部に配置した粗い粒子捕集用の前記第1のフィルタユニットに導くと共に、前記旋回流を付与された排気ガスの流れの内周側の流れを、前記NOx浄化触媒ユニットの下流側に配置した細かい粒子捕集用の前記第2のフィルタユニットに導くことを特徴とする方法である。
この方法によれば、上記と同様な作用効果を奏することができ、更に、排気ガス浄化装置を二重筒状に構成したので、外周部の第1のフィルタユニットで内周部のNOx浄化触媒ユニットを保温でき、また、第1のフィルタユニットに捕集されたPMを燃焼除去するためのPM強制再生時の発熱をNOx浄化触媒ユニットに利用することができるようになる。
また、上記の排気ガス浄化方法において、前記第1のフィルタユニットのPM強制再生制御の後に、前記NOx浄化触媒ユニットの脱硫制御を行うようにする。この方法によれば、第1のフィルタユニットに捕集されたPMを燃焼除去するためのPM強制再生時の発熱量を回収して、高温にする必要があるNOx浄化触媒ユニットの脱硫制御に利用することができる。その結果、NOx浄化触媒ユニットの脱硫処理可能な温度までの昇温に必要な加熱時間を短くして、この加熱に必要な燃焼消費量を減少できる。
本発明に係る排気ガス浄化装置及び排気ガス浄化方法によれば、排気ガス中のPMを浄化するフィルタを備えた排気ガス浄化装置において、排気ガスの旋回流による遠心力を利用して、排気ガス中のPMを質量の大きい粒子と質量の小さい粒子に分離し、それぞれのPMの粒子径に合ったフィルタで、効率よく捕集することができる。
従って、細かい粒子捕集用の第2のフィルタユニットでは、粒子径の小さな粒子を数多く捕集するので、粒子径の大きな粒子が堆積してセル又は気孔が閉塞されることが無くなり、微小粒子に対する捕集性能を十分に発揮できる。また、粒子径の大きな粒子に起因する、フィルタ導入部の目詰まり、フィルタの前後の差圧の短い時間での上昇、フィルタのPM強制再生の時間間隔の短縮化、過度に頻繁なPM燃焼再生処理、及び、燃費の極端な悪化等を回避できる。
以下、本発明に係る実施の形態の排気ガス浄化装置及び排気ガス浄化方法について、図面を参照しながら説明する。図1~図5に、本発明の実施の形態の排気ガス浄化装置10の構成を示す。この排気ガス浄化装置10は、エンジン(内燃機関)の排気通路2に設けられる。
この排気ガス浄化装置10は、図1~図5に示すように、二重筒状に形成され、排気ガスの流れに関して、上流側から順に第1の酸化触媒ユニット11、第1のNOx浄化触媒ユニット12A、第2のNOx浄化触媒ユニット12Bを内周壁13の内周部に配置する。この内周壁13の外周部に、第1のフィルタユニット14と第2の酸化触媒ユニット15とを配置し、外周壁16で包みこむ。また、第2の酸化触媒ユニット15を、第1の酸化触媒ユニット11の外周部に配置し、第1のフィルタユニット14を、第1及び第2のNOx浄化触媒ユニット12A、12Bの外周部に配置する。更に、第2のNOx浄化触媒ユニット12Bの下流側に、第2のフィルタユニット17を配置する。
つまり、第1のフィルタユニット14を中空筒形状で形成し、この中空部内に第1及び第2のNOx浄化触媒ユニット12A、12Bを配置する。また、第2の酸化触媒ユニット15も中空筒形状で形成し、この中空部内に第1の酸化触媒ユニット11を配置する。これらの排気ガス浄化ユニット11、12A、12B、14、15、17は、それぞれの筒形状の中心軸を一致させた配置とする。
この排気ガス浄化装置20を二重筒状に構成し、酸化触媒ユニット11、15と、NOx浄化触媒ユニット12A、12Bと、フィルタユニット14、17の配置を上記の配置にしたので、排気ガス浄化装置10をコンパクトにすることができる。
内周壁13は、内周側の排気ガス浄化ユニット11、12A、12Bと外周側の排気ガス浄化ユニット14、15とを分離して、排気ガスのこの部分での流通が無いようにする筒状体であり、熱伝導率の高い銅、アルミニウム、アルミニウム合金等の材料で形成する。一方、外周壁16は、排気ガス浄化ユニット11、12A、12Bを包み込むと共に、外部との間の放熱を減少して、排気ガス浄化ユニット11、12A、12Bを保温する役割も持つものであり、比較的熱伝導率の少ない金属やセラミックスや合成樹脂等で形成する。
この二重筒状の構成によれば、第1の酸化触媒ユニット11、第1及び第2のNOx浄化触媒ユニット12A、12Bの内周部に配置した触媒に対して、外周部の第1のフィルタユニット14と第2の酸化触媒ユニット15による保温が可能となり、内周部の触媒の温度分布を均一化し易くできるので、第1の酸化触媒ユニット11、第1及び第2のNOx浄化触媒ユニット12A、12Bの容量を小さくできる。
第1及び第2の酸化触媒ユニット11、15は、排気ガス中のHC(炭化水素)を酸化して排気ガス温度を上昇させたり、排気ガス中のNO(一酸化窒素)を酸化してNO2 (二酸化窒素)にしてNOx(窒素酸化物)を浄化し易くしたりするためのものであり、多孔質のセラミックのハニカム構造等の担持体に、白金等の酸化触媒を担持させて形成する。
第1及び第2のNOx浄化触媒ユニット12A、12Bは、排気ガス中のNOxを浄化するためのものであり、モノリス触媒で形成する。このモノリス触媒のコージェライトハニカム等の担持体に酸化アルミニウム、酸化チタン等の触媒コート層を設ける。この触媒コート層に、白金(Pt)、パラジウム(Pd)等の触媒金属と、バリウム(Ba)等のNOx吸蔵材(NOx吸蔵物質)とからなるNOx吸蔵還元触媒を、担持させて構成する。
このNOx吸蔵還元型触媒は、酸素濃度が高い排気ガスの状態、即ち、空燃比リーン状態の時に、排気ガス中のNOxをNOx吸蔵材が吸蔵することにより、排気ガス中のNOxを浄化し、酸素濃度が低いか空燃比が1より小さい空燃比リッチ状態か、あるいは、空燃比が1の空燃比ストイキ状態の時に、吸蔵したNOxを放出すると共に、この放出されたNOxを触媒金属の触媒作用により還元することにより、大気中へのNOxの流出を防止する。
このNOx吸蔵還元型触媒は、空燃比リーン状態が継続すると、NOx吸蔵材が硝酸塩に変化してしまうため、NOx吸蔵能力が飽和する前に、排気ガスを空燃比リッチ状態にする再生制御を行って、吸蔵したNOxを放出及び還元して、NOx吸蔵能力を回復する。また、排気ガス中の硫黄成分により、NOx吸蔵材が硫酸塩に変化してNOxの吸蔵を妨げる、所謂硫黄被毒をして、NOx吸蔵能力が低下する。そのため、この硫黄被毒からNOx吸蔵還元型触媒を回復させるために、NOx吸蔵還元型触媒をリッチ空燃比雰囲気で、かつ、高温にして、硫黄をNOx吸蔵材から脱離する脱硫制御を行う。
また、第1及び第2のフィルタユニット14、17は、排気ガス中のPM(微粒子状物質)を浄化するためのものであり、多孔質のセラミックのハニカムのチャンネル(排気ガスの通路)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタ等で形成される。
このフィルタの部分に、比較的高温ではPMやHCの酸化を促進するように、また、比較的低温ではHCを吸着できるように、白金や酸化セリウム等の触媒を担持する。排気ガス中のPMは、この触媒付きフィルタの多孔質セラミックの壁で捕集される。この触媒付きフィルタとした場合には、エンジン始動直後の、排気ガス浄化装置10内の第1の酸化触媒ユニット11、第1及び第2のNOx浄化触媒ユニット12A、12Bの活性が不十分な低温度域では、第1のフィルタユニット14と第2のフィルタユニット17によるHC吸着機能を利用し、その排出を抑制することができる。
そして、本発明においては、更に、第1のフィルタユニット14を、粗い粒子捕集用の低気孔率でセル数の少ないフィルタで形成する。また、第2のフィルタユニット17を、細かい粒子捕集用の高気孔率でセル数の多いフィルタで形成する。
この第1及び第2のフィルタユニット14、17には、それぞれの前後差圧ΔP1、ΔP2を検出するための第1差圧センサ18と第2の差圧センサ19を設けて、これらの検出値ΔP1、ΔP2を排気ガス浄化制御装置(図示しない)に入力する。この排気ガス浄化制御装置は、エンジンの全般的な制御を行うECU(エンジンコントロールユニット)と呼ばれる制御装置に組み込んで設ける。この排気ガス浄化制御装置は、排気ガス浄化装置10の各排気ガス浄化ユニット11、12A、12B、14、15、17の状態を監視して、必要に応じて、再生制御や脱硫制御を行う。
第1及び第2のフィルタユニット14、17では、PMの捕集量が増加して圧力損失が増加するのを防止するために、第1及び第2の差圧センサ18、19で検出された前後差圧ΔP1、ΔP2が所定の第1差圧閾値を超えた場合に、排気ガス温度を上昇して、第1及び第2のフィルタユニット14、17をPMの燃料温度以上に昇温して、捕集されたPMを燃焼除去するPM強制再生制御を行う。
また、排気ガスG1の流れに関して、排気ガス浄化装置10の入口側では、エンジンの排気通路2を円錐台形状の前側内周壁13aに接続し、排気ガスG1を第1の酸化触媒ユニット11、第1のNOx浄化触媒ユニット12A、第2のNOx浄化触媒ユニット12Bを通過させるように構成する。
そして、本発明においては、この第2のNOx浄化ユニット12Bの出口近傍の下流側において、第2のNOx浄化ユニット12Bより後方に円錐台形状で延設された後側内周壁13bに、旋回流発生手段20を配置する。
この旋回流発生手段20は、空気Aや排気ガスの一部などのガスをガス圧縮タンク(図示しない)に接続するガス配管21と、このガス配管21に接続した分配用配管22と、この分配用配管22から分岐した複数本の分岐配管23と、この分岐配管23の先に設けられたガス噴射制御弁24とその先のガス噴射ノズル25等から構成する。
図5に示すように、分配用配管22を、第2のフィルタユニット17の外にリング状に配置し、ガス噴射ノズル25を、排気ガス浄化装置10の長手方向に関しては単列又は複数列(図1の構成では前段と後段の2列)に配置する。また、排気ガス浄化装置10の周方向に関しては、単数又は複数(図5の場合は等間隔で4個)のガス噴射ノズル25を、後側内周壁13bに配置する。このガス噴射ノズル25では、通常は継続してガスAを噴射して、排気ガスG1の流れに対して旋回流を付与する。
なお、ガス噴射制御弁24を断続的に噴射すると共に、短時間の噴射の順番を周方向に一周するように、即ち、高圧のガス噴射が周方向に回転して排気ガスの流れG1に旋回流が生じるように、時間的遅れを伴わせてガス噴射してもよい。この場合は、高圧ガスの噴射は同時に多段ノズルから行うのではなく、排気ガスに旋回流を生じさせ易いように、一定時間間隔で周方向にずらしながら噴射する。この噴射時間間隔についてはエンジン負荷と回転数を基に変更させる。これにより、高気孔率の第2のフィルタユニット17に粒子径が小さく、浮遊し易いPMを捕集させる際に、継続して噴射される空気流が分離を抑制するのを回避する。
この旋回流発生手段20のガス噴射ノズル25の下流側では、排気ガスG1の流れの外周側の流れの排気ガスG2は、延設された後側内周壁13bの外周側に導かれて、第1のフィルタユニット14と第2の酸化触媒ユニット15を通過して、前側内周壁13aの外周側を通り第3の排気通路4に流出する。一方、延設された後側内周壁13bの後部端で、排気ガスG1の流れの内周側の流れG3は、そのまま下流側の第2のフィルタユニット17を通過して、第2の排気通路3に流出する。
上記の構成により、排気ガスG1に旋回流を発生する旋回流発生手段20を設け、この旋回流発生手段20により旋回流を付与された排気ガスG1の流れの外周側の流れG2を、粗い粒子捕集用の第1のフィルタユニット14に導くと共に、旋回流を付与された排気ガスG1の流れの内周側の流れG2を、細かい粒子捕集用の第2のフィルタ17に導く構成となる。
また、上記の構成により、排気ガス浄化装置10を二重筒状に形成して、内周部に第1及び第2のNOx浄化触媒ユニット12A、12Bを配置し、外周側に、粗い粒子捕集用の第1のフィルタユニット14を配置すると共に、第1及び第2のNOx浄化触媒ユニット12A、12Bの下流側に、細かい粒子捕集用の第2のフィルタユニット17を配置し、更に、第2のNOx浄化触媒ユニット12Bと第2のフィルタユニット17との間に、排気ガスG1に旋回流を発生する旋回流発生手段20を設け、旋回流発生手段20により旋回流を付与された排気ガスG1の流れの外周側の流れG2を第1のフィルタユニット14に導くと共に、旋回流を付与された排気ガスG1の流れの内周側の流れG3を第2のフィルタ17に導く構成となる。
この構成の排気ガス浄化装置10によれば、第1及び第2のNOx浄化触媒ユニット14、17を通過した排気ガスG1に対して旋回流発生手段20によって噴射して旋回流を発生させることができる。そのため、排気ガスG1は旋回流を生じながら、楕円筒形状(又は円筒形状)の後側内周壁13bの後端部から流出し、排気ガス浄化装置10の長手方向の流速が低下する。この過程で粒子径が大きく重量の重い粒子は高い運動エネルギーにより外周側へ飛ばされる。
この外周側へ飛ばされた粒子は、ここで運動エネルギーを失って漂うが、後側内周壁13bの外周側に流れて、気孔率が低くセル数も少ない第1のフィルタユニット14に流入し、ここ捕集される。一方、粒子径が小さく重量の軽い粒子は排気ガスGの流れの中央付近を漂いながら、後段に配置した高気孔率の第2のフィルタユニット17に流入し、ここで捕集される。つまり、旋回流発生手段20で付与された旋回流によるPMに対する遠心分離効果により、粒子径は大きいがその粒子数の少ないPM粒子を、低気孔率の粗い粒子捕集用の第1のフィルタユニット14で捕集でき、また、粒子径は小さいがその数の多いPM粒子を、高気孔率の細かい粒子捕集用の第2のフィルタユニット17で捕集できる。
その結果、粒子径の異なるPM粒子はその重量に依存して分離・捕集される。高気孔率の第2のフィルタユニット17には粒子径の小さいものが数多く捕集されることになり、PM粒子数を低減でき、燃焼再生間隔が短くなることを防止できる。
また、高気孔率の第2のフィルタユニット17の入口部に粒径の大きいPM粒子が堆積することを抑制して、前後差圧ΔP2が短時間で上昇するのを防止する。これにより、過度に頻繁なPM強制再生制御を回避し、燃費の極端な悪化等を防止することができる。
次に、上記の排気ガス浄化装置10における排気ガス浄化方法について説明する。この排気ガス浄化装置10において、低気孔率の第1のフィルタユニット14のPM強制再生制御(PM燃焼処理制御)は、第1及び第2のNOx浄化触媒ユニット12A、12Bの脱硫処理と関連付けて行う。このPM再生制御は、第1の圧力センサ18で検出された前後差圧ΔP1が所定の第1差圧閾値を超えた場合に、排気ガス浄化装置10に流入する排気ガスG1の温度を昇温して、第1のフィルタユニット14のPM燃焼処理であるPM強制再生制御を行う。
このPM強制再生制御は、前後差圧ΔP1が所定の第2差圧閾値以下になったときに終了する。この終了時に、第1及び第2のNOx浄化触媒ユニット12A、12Bの硫黄吸着量が所定の第1硫黄吸着閾値を超えているか否かを判定し、超えている場合には、継続して排気ガスG1を昇温して、第1及び第2のNOx浄化触媒ユニット12A、12Bの温度を脱硫可能な温度以上に昇温して脱硫処理のための脱硫制御を行う。この脱硫制御は、硫黄吸着量が所定の第2硫黄吸着閾値以下になるか、予め設定した脱硫時間を経過すると終了する。
この制御方法によれば、第1のフィルタユニット14に捕集されたPMを燃焼除去するためのPM強制再生時の発熱を、高温にする必要がある第1及び第2のNOx浄化触媒ユニット12A、12Bの脱硫制御に利用することができる。そのため、第1のフィルタユニット14内に堆積したPMの再生燃焼に伴う発熱量を回収して、第1及び第2のNOx浄化触媒ユニット12A、12Bの脱硫処理可能な温度までの昇温に必要な加熱時間を短くして、この加熱に必要な燃焼消費を抑制できる。
つまり、第1のフィルタユニット14に捕集されたPM粒子を燃焼させるときに発生する燃焼熱を、その内周側に配置した第1及び第2のNOx浄化触媒ユニット12A、12Bに与えて、PM再生後に行うL第1及び第2のNOx浄化触媒ユニット12A、12Bの脱硫処理に必要な昇温・加熱用熱源として利用する。なお、この加熱補助として排気通路2内への燃料の噴射およびエンジン筒内へのポスト噴射も行う。
一方、高気孔率の第2のフィルタユニット17のPM燃焼処理は独立して行う。この処理では、第2の圧力センサ19で検出された前後差圧ΔP2が所定の第3差圧閾値を超えた場合に、排気ガス浄化装置10に流入する排気ガスG1の温度を昇温して、第2のフィルタユニット17のPM燃焼処理であるPM強制再生制御を行う。このPM強制再生制御は、前後差圧ΔP2が所定の第4差圧閾値以下のなったときに終了する。
これらのPM強制再生制御により、捕集したPM粒子を、各フィルタユニット14、17におけるPMの堆積量に応じた前後差圧ΔP1、ΔP2に基づいてPMの燃焼除去を行い、繰り返しPMを捕集させPM浄化性能を維持させることができる。
なお、第2のフィルタユニット17のPM燃焼による熱は、第1及び第2のNOx浄化触媒ユニット12A、12Bで利用できない。PM強制再生制御では、排気ガスを高温にする必要があるので、第1のフィルタユニット14のPM強制再生制御と同時又はこれと連続するように、第2のフィルタユニット17のPM強制再生制御を行う。これにより、この排気ガス昇温のためのエネルギーを両方のフィルタユニット14、17で共通に利用できるようになる。従って、第1のフィルタユニット14のPM強制再生制御と同時、又は、これと連続するように、第2のフィルタユニット17のPM強制再生制御を行うことが好ましい。
上記の排気ガス浄化装置10及び排気ガス浄化方法によれば、排気ガスGの旋回流による遠心力を利用して、排気ガスG中のPMを質量の大きい粒子と質量の小さい粒子に分離し、それぞれのPMの粒子径に合ったフィルタユニット14、17で、効率よく捕集することができる。
従って、細かい粒子捕集用の第2のフィルタユニット17では、粒子径の小さな粒子を数多く捕集するので、粒子径の大きな粒子が堆積してセル又は気孔が閉塞されることが抑制され、微小粒子に対する捕集性能を十分に発揮できる。また、粒子径の大きな粒子に起因する、フィルタ導入部の目詰まり、フィルタの前後差圧ΔP2の短い時間での上昇、フィルタのPM強制再生の時間間隔の短縮化、過度に頻繁なPM燃焼再生処理、及び、燃費の極端な悪化等を回避できる。
上述した優れた効果を有する本発明の排気ガス浄化装置及び排気ガス浄化システムは、車両に搭載した内燃機関等に設けられる排気ガス浄化装置及び排気ガス浄化システムに対して、極めて有効に利用することができる。
1 排気ガス浄化システム
2 排気通路
10 排気ガス浄化装置
11 第1の酸化触媒ユニット
12A 第1のNOx浄化触媒ユニット
12B 第2のNOx浄化触媒ユニット
13 内周壁
14 第1のフィルタユニット
15 第2の酸化触媒ユニット
17 第2のフィルタユニット
20 旋回流発生手段
A ガス(空気)
G1、G2、G3 排気ガス
ΔP1、ΔP2 前後差圧
2 排気通路
10 排気ガス浄化装置
11 第1の酸化触媒ユニット
12A 第1のNOx浄化触媒ユニット
12B 第2のNOx浄化触媒ユニット
13 内周壁
14 第1のフィルタユニット
15 第2の酸化触媒ユニット
17 第2のフィルタユニット
20 旋回流発生手段
A ガス(空気)
G1、G2、G3 排気ガス
ΔP1、ΔP2 前後差圧
Claims (6)
- 排気ガス中のPMを浄化する第1のフィルタユニットと第2のフィルタユニットと、これらのユニットの浄化能力を回復する制御を行う排気ガス浄化制御装置とを備えた排気ガス浄化装置において、
排気ガスに旋回流を発生する旋回流発生手段を設け、該旋回流発生手段により旋回流を付与された排気ガスの流れの外周側の流れを粗い粒子捕集用の前記第1のフィルタユニットに導くと共に、前記旋回流を付与された排気ガスの流れの内周側の流れを細かい粒子捕集用の前記第2のフィルタに導くように構成したことを特徴とする排気ガス浄化装置。 - 排気ガス中のNOxを浄化するNOx浄化触媒ユニットと、排気ガス中のPMを浄化する第1のフィルタユニットと第2のフィルタユニットと、これらのユニットの浄化能力を回復する制御を行う排気ガス浄化制御装置とを備えた排気ガス浄化装置において、
該排気ガス浄化装置を二重筒状に形成して、内周部に前記NOx浄化触媒ユニットを配置し、外周部に粗い粒子捕集用の前記第1のフィルタユニットを配置すると共に、前記NOx浄化触媒ユニットの下流側に、細かい粒子捕集用の前記第2のフィルタユニットを配置し、
更に、前記NOx浄化触媒ユニットと前記第2のフィルタユニットとの間に、排気ガスに旋回流を発生する旋回流発生手段を設け、
該旋回流発生手段により旋回流を付与された排気ガスの流れの外周側の流れを前記第1のフィルタユニットに導くと共に、前記旋回流を付与された内周側の流れを前記第2のフィルタに導くように構成したことを特徴とする排気ガス浄化装置。 - 前記排気ガス浄化制御装置が、前記第1のフィルタユニットのPM強制再生制御の後に、前記NOx浄化触媒ユニットの脱硫制御を行うことを特徴とする請求項2記載の排気ガス浄化装置。
- 排気ガス中のPMを浄化する第1のフィルタユニットと第2のフィルタユニットとを備えた排気ガス浄化装置の排気ガス浄化方法において、排気ガスに旋回流を付与し、この旋回流を付与された排気ガスの流れの外周側の流れを粗い粒子捕集用の前記第1のフィルタユニットに導くと共に、前記旋回流を付与された排気ガスの流れの内周側の流れを細かい粒子捕集用の前記第2のフィルタに導くことを特徴とする排気ガス浄化方法。
- 排気ガス中のNOxを浄化するNOx浄化触媒ユニットと、排気ガス中のPMを浄化する第1のフィルタユニットと第2のフィルタユニットを備えた排気ガス浄化装置の排気ガス浄化方法において、
二重筒状に形成された前記排気ガス浄化装置の内周部に配置された前記NOx浄化触媒ユニットから流出する排気ガスに旋回流を付与して、この旋回流を付与された排気ガスの流れの外周側の流れを、前記NOx浄化触媒ユニットの外周部に配置した粗い粒子捕集用の前記第1のフィルタユニットに導くと共に、前記旋回流を付与された排気ガスの流れの内周側の流れを、前記NOx浄化触媒ユニットの下流側に配置した細かい粒子捕集用の前記第2のフィルタユニットに導くことを特徴とする排気ガス浄化方法。 - 前記第1のフィルタユニットのPM強制再生制御の後に、前記NOx浄化触媒ユニットの脱硫制御を行うことを特徴とする請求項4記載の排気ガス浄化方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008239628A JP5555996B2 (ja) | 2008-09-18 | 2008-09-18 | 排気ガス浄化装置及び排気ガス浄化方法 |
JP2008-239628 | 2008-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010032518A1 true WO2010032518A1 (ja) | 2010-03-25 |
Family
ID=42039363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/060391 WO2010032518A1 (ja) | 2008-09-18 | 2009-06-05 | 排気ガス浄化装置及び排気ガス浄化方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5555996B2 (ja) |
WO (1) | WO2010032518A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014055009A1 (en) * | 2012-10-03 | 2014-04-10 | Scania Cv Ab | Exhaust gas aftertreatment system and motor vehicles comprising such an aftertreatment system |
CN107138045A (zh) * | 2017-06-12 | 2017-09-08 | 青岛双瑞海洋环境工程股份有限公司 | 用于同时去除硫氧化物和氮氧化物的船舶废气处理装置 |
WO2018095141A1 (zh) * | 2016-11-25 | 2018-05-31 | 天纳克(苏州)排放系统有限公司 | 排气后处理装置 |
WO2018095139A1 (zh) * | 2016-11-25 | 2018-05-31 | 天纳克(苏州)排放系统有限公司 | 排气后处理装置 |
US11220948B1 (en) * | 2020-07-02 | 2022-01-11 | David A Endrigo | Emissions reduction systems and methods |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5708806B2 (ja) * | 2011-07-28 | 2015-04-30 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
JP6620049B2 (ja) * | 2016-03-25 | 2019-12-11 | 日本碍子株式会社 | ハニカム構造体 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06294314A (ja) * | 1993-04-09 | 1994-10-21 | Isuzu Ceramics Kenkyusho:Kk | ディーゼルパティキュレートフィルタ |
WO2006057305A1 (ja) * | 2004-11-25 | 2006-06-01 | Komatsu Ltd. | 内燃機関の排気ガス浄化装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0718333B2 (ja) * | 1990-09-04 | 1995-03-01 | 株式会社クボタ | ディーゼルエンジンの排気の固形物回収装置 |
-
2008
- 2008-09-18 JP JP2008239628A patent/JP5555996B2/ja not_active Expired - Fee Related
-
2009
- 2009-06-05 WO PCT/JP2009/060391 patent/WO2010032518A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06294314A (ja) * | 1993-04-09 | 1994-10-21 | Isuzu Ceramics Kenkyusho:Kk | ディーゼルパティキュレートフィルタ |
WO2006057305A1 (ja) * | 2004-11-25 | 2006-06-01 | Komatsu Ltd. | 内燃機関の排気ガス浄化装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014055009A1 (en) * | 2012-10-03 | 2014-04-10 | Scania Cv Ab | Exhaust gas aftertreatment system and motor vehicles comprising such an aftertreatment system |
WO2018095141A1 (zh) * | 2016-11-25 | 2018-05-31 | 天纳克(苏州)排放系统有限公司 | 排气后处理装置 |
WO2018095139A1 (zh) * | 2016-11-25 | 2018-05-31 | 天纳克(苏州)排放系统有限公司 | 排气后处理装置 |
CN107138045A (zh) * | 2017-06-12 | 2017-09-08 | 青岛双瑞海洋环境工程股份有限公司 | 用于同时去除硫氧化物和氮氧化物的船舶废气处理装置 |
CN107138045B (zh) * | 2017-06-12 | 2023-08-01 | 青岛双瑞海洋环境工程股份有限公司 | 用于同时去除硫氧化物和氮氧化物的船舶废气处理装置 |
US11220948B1 (en) * | 2020-07-02 | 2022-01-11 | David A Endrigo | Emissions reduction systems and methods |
Also Published As
Publication number | Publication date |
---|---|
JP2010071189A (ja) | 2010-04-02 |
JP5555996B2 (ja) | 2014-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8844274B2 (en) | Compact diesel engine exhaust treatment system | |
RU2392456C2 (ru) | Способ и устройство для очистки выхлопного газа | |
JP5555996B2 (ja) | 排気ガス浄化装置及び排気ガス浄化方法 | |
JP4725177B2 (ja) | 排ガス浄化方法及び排ガス浄化装置 | |
JP3885813B2 (ja) | 排気ガス浄化装置の昇温方法及び排気ガス浄化システム | |
WO1999044725A1 (en) | Improvements in emissions control | |
EP1262641B1 (en) | Carbon particle reducing apparatus | |
JP2011214577A (ja) | ディーゼルエンジン排気ガスから煤粒子を取り除くためのプロセスおよびデバイス | |
JP2004084666A (ja) | ディーゼルエンジンの排気ガスからのスス微粒子の除去 | |
CN101300072A (zh) | 排气净化装置 | |
JP4736724B2 (ja) | 内燃機関の排気浄化装置 | |
JP4251764B2 (ja) | 排気ガス浄化装置及びこれを用いた排気ガス浄化方法 | |
JP4604374B2 (ja) | 内燃機関の排気浄化装置 | |
JP4561467B2 (ja) | 排気ガス浄化方法及び排気ガス浄化システム | |
JP3885814B2 (ja) | 排気ガス浄化装置の昇温方法及び排気ガス浄化システム | |
JP3566905B2 (ja) | 排気浄化装置 | |
JP2018145869A (ja) | 排気ガス浄化システム、及び排気ガス浄化システムの硫黄被毒抑制方法 | |
EP1251249B1 (en) | A process and device for removing soot particles from the exhaust gas from a diesel engine | |
JP6156228B2 (ja) | 排気ガス浄化装置 | |
JP3876905B2 (ja) | 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム | |
WO2017104668A1 (ja) | 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法 | |
JP4717269B2 (ja) | ディーゼル排気ガス後処理方法及び装置 | |
KR102029420B1 (ko) | 금속섬유담체를 이용한 통합 배기후처리장치 | |
JP2008075560A (ja) | 排気浄化装置 | |
KR20080001515U (ko) | 황산 흡착 모듈이 장착된 황산 형성 억제를 위한후처리장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09814363 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09814363 Country of ref document: EP Kind code of ref document: A1 |