WO2010032489A1 - 鉄キレート剤及びその製造方法、並びに鉄イオンの定量・捕捉方法 - Google Patents

鉄キレート剤及びその製造方法、並びに鉄イオンの定量・捕捉方法 Download PDF

Info

Publication number
WO2010032489A1
WO2010032489A1 PCT/JP2009/004765 JP2009004765W WO2010032489A1 WO 2010032489 A1 WO2010032489 A1 WO 2010032489A1 JP 2009004765 W JP2009004765 W JP 2009004765W WO 2010032489 A1 WO2010032489 A1 WO 2010032489A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
iron
chelating agent
formula
solution
Prior art date
Application number
PCT/JP2009/004765
Other languages
English (en)
French (fr)
Inventor
高後裕
生田克哉
佐々木勝則
西田雄三
Original Assignee
国立大学法人旭川医科大学
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人旭川医科大学, 国立大学法人山形大学 filed Critical 国立大学法人旭川医科大学
Priority to JP2010529655A priority Critical patent/JPWO2010032489A1/ja
Priority to EP09814334.0A priority patent/EP2340823B1/en
Priority to US13/120,126 priority patent/US8623661B2/en
Publication of WO2010032489A1 publication Critical patent/WO2010032489A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/4172Imidazole-alkanecarboxylic acids, e.g. histidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/04Chelating agents

Definitions

  • the present invention relates to an iron chelator, for example, an iron chelator capable of chelating to biologically unstable iron, a method for quantifying iron ions, and a method for capturing iron ions.
  • an iron chelator for example, an iron chelator capable of chelating to biologically unstable iron, a method for quantifying iron ions, and a method for capturing iron ions.
  • Chronic Kidney Disease Chronic Kidney Disease: CKD
  • This chronic kidney disease is treated by using an angiotensin II inhibitor, dietary management with low protein rice, management of various risk factors, etc .. Connected and new treatments are needed.
  • a treatment method for chronic kidney disease a treatment method that removes non-transferrin-bound iron (NTBI) and carbonyl compounds, which are the most upstream cause of chronic kidney disease, is effective.
  • NTBI non-transferrin-bound iron
  • hemoptysis therapy As treatment methods for removing iron in vivo (particularly, biologically unstable iron (NTBI)) from the body, (1) hemoptysis, (2) iron-restricted diet, (3) drug therapy with an iron chelator, (4 ) Extracorporeal blood circulation purification therapy.
  • hemoptysis therapy has good QOL (Quality of Life) for patients, it has side effects such as anemia and hypoproteinemia and can be applied only to patients without anemia.
  • the iron-restricted diet has side effects such as nutritional imbalance and can be applied only to some liver diseases.
  • extracorporeal blood circulation purification therapy is a method that removes iron (iron ions, etc.) by extracorporeal circulation of blood, and can be performed without causing unstable organs that are toxic to the living body without causing organ toxicity due to over-chelation. It has the characteristic.
  • the NTBI value in healthy human blood is often expressed as a negative value and lacks reliability. There was a problem. Therefore, by clarifying and improving the problems of the NTBI measurement system using HPLC, it is possible to construct a stable and highly sensitive NTBI measurement system. It was thought that it could be asked.
  • a phenolic chelating agent having a structure in which a specific amino acid is introduced can be selectively chelated to iron ions, It is possible to effectively quantitate and capture iron ions such as biologically unstable iron, and to remove iron from reagents and solvents used for sample pretreatment using chelating agents and ion exchange resins, etc. It has been found that a stable and highly sensitive NTBI measurement system can be provided by adopting the Subtraction method excluding the method, and the present invention has been completed.
  • an iron chelating agent having a chelating ability with respect to iron ions which is a compound represented by the following formula (1) or a salt thereof:
  • Ring Z represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • R 1 represents an alkylene group.
  • R 2 and R 3 each independently represent a hydrogen atom or a hydrocarbon group. Or a group having a chelating ability, and the total coordination number of the groups represented by R 2 and R 3 is 1 or 2.
  • the group having the chelating ability for R 3 in formula (1) is a hydroxymethyl group, a 1-hydroxyethyl group, a (p-hydroxyphenyl) methyl group, an indolylmethyl group, a carbamoylmethyl group, or a 2-carbamoylethyl group.
  • R 3 in the formula (1) is a hydroxymethyl group, a 1-hydroxyethyl group, a (p-hydroxyphenyl) methyl group, an indolylmethyl group, a carbamoylmethyl group, a 2-carbamoylethyl group, a carboxymethyl group, A 2-carboxyethyl group, a 4-aminobutyl group, a (1H-imidazo-4-yl) methyl group, or a 3-guanidinopropyl group, and R 2 in the formula (1) is a hydrogen atom,
  • the iron chelating agent according to [7] above, [9] R 3 in formula (1) is a methyl group, 1-methylethyl group, 2-methylpropyl group, 1-methylpropyl group or phenylmethyl group, and R2 in formula (1) has chelating ability.
  • an iron chelating agent comprising a step of reacting a heterocyclic compound with an amino acid corresponding to the amino acid residue in formula (1) or a salt thereof, [14]
  • the amino acid corresponding to the amino acid residue in formula (1) is serine, threonine, tyrosine, tryptophan, asparagine, glutamine, aspartic acid, glutamic acid, lysine, histidine or arginine.
  • the iron chelating agent of the present invention can be selectively chelated to iron ions, and particularly acts effectively on biologically unstable iron.
  • the iron chelating agent of the present invention is a compound represented by the formula (1).
  • a hydroxyl group (—OH group) and an amino acid residue-alkylene group (—R 1 —NR 2 —CHR 3 —COOH group) are attached to adjacent carbon atoms of the ring Z.
  • the iron chelating agent of the present invention has a structure (tripod type) in which a hydroxyl group and an amino acid residue-alkylene group are bonded to a carbon atom of ring Z in the ortho-positional relationship.
  • the chelating agent described in Patent Document 1 also has a tripod structure in that it has a predetermined structure at the position of the hydroxyl group and ortho of phenol.
  • the transferrin-bound iron is not captured by binding the substituent containing the predetermined amino acid residue-alkylene group at the position of the hydroxyl group and ortho. It has been found that a chelating agent capable of selectively capturing only biologically unstable iron can be obtained.
  • the substituent provided at the position of the hydroxyl group and ortho of the phenolic chelating agent has a structure of (—R 1 —NR 2 —CHR 3 —COOH), and Further, the number of coordination atoms capable of coordinating with iron ions is 3 to 4. This was discovered as a result of searching for a phenolic chelating agent that can selectively capture biolabile iron in the phenolic chelating agent, and is found in a substituent provided at the position of the hydroxyl group and ortho. By making the coordination number of 3 to 4 in the same manner, it is possible to increase selectivity when capturing biologically unstable iron in combination with a hydroxyl group to which iron ions can coordinate.
  • the iron chelator of the present invention is a tetradentate ligand having a total coordination number of 4 or a pentadentate ligand having a coordination number of 5.
  • N in the amino acid residue and O in the carboxyl group are coordinate atoms of the iron ion, and other one or two coordinate atoms are represented by R 2 and R 3 in the substituent.
  • R 2 and R 3 By appropriately providing it in the group, a chelating agent that selectively captures biolabile iron can be obtained.
  • the groups represented by R 2 and R 3 are appropriately selected from a hydrogen atom, a hydrocarbon, and a group having a chelating ability as long as the total coordination number is 1 to 2. Can be used.
  • N is a suitable coordination atom for the iron ion.
  • the amino acid residue corresponding to the amino acid constituting the protein of the living body it becomes possible to keep the toxicity shown when applied to the human body very low, and the safety to the human body is extremely high. It can be a high chelating agent.
  • R 1 an alkylene group having no coordination atom related to an iron ion is preferably used. At this time, if the alkylene group has about 1 to 10 carbon atoms, it is possible to selectively chelate biolabile iron.
  • the size of the alkylene group represented by R 1 is particularly revealed by study of it is present inventor nitrogen of amino acid residues connected to R 1 affects the strength of the coordination force shown with respect to iron ions
  • the number of carbon atoms is preferably about 1 to 4, and the selectivity of biologically unstable iron can be improved by using a methylene group.
  • an appropriate number of coordinating atoms are arranged at appropriate positions in the chelating agent for capturing biolabile iron.
  • the ring Z constituting the phenol part in the formula (1) is an aromatic hydrocarbon ring or the like, as long as the substituent and the hydroxyl group can be held at an appropriate position. Any of aromatic heterocyclic rings may be used, but an aromatic hydrocarbon ring is more preferable.
  • Ring Z is preferably a 5- or more-membered ring, more preferably a 5- to 8-membered ring, and particularly preferably a 6-membered ring. That is, the ring Z is optimally a 6-membered aromatic hydrocarbon ring (benzene ring).
  • the aromatic heterocyclic ring of ring Z is preferably one containing at least two atoms selected from a carbon atom, a nitrogen atom, and an oxygen atom as the atoms constituting the ring (ring-constituting atoms), Those containing only nitrogen atoms are particularly preferred.
  • aromatic heterocycle containing only a carbon atom and a nitrogen atom as ring constituent atoms include 6-membered aromatic heterocycles such as a pyridine ring, a pyridazine ring, a pyrimidine ring and a pyrazine ring.
  • the aromatic hydrocarbon ring and aromatic heterocycle of ring Z may have a substituent. That is, a substituent may be bonded to a ring atom other than the carbon atom to which the hydroxyl group or amino acid residue-alkylene group is bonded. Substituents are bonded to each other to form a ring [aromatic ring (aromatic hydrocarbon ring, aromatic heterocyclic ring, etc.), non-aromatic ring (non-aromatic hydrocarbon ring or non-aromatic heterocyclic ring). Etc.)] may be formed. Such a substituent is not particularly limited as long as it does not inhibit the chelating ability by a hydroxyl group or an amino acid residue-alkylene group.
  • substituent such as —OH can be preferably exemplified.
  • the substituent is preferably a group that does not have a chelating ability, and specific examples thereof include hydrocarbon groups such as alkyl groups.
  • Examples of the alkylene group for R 1 include an alkylene group having 1 to 10 carbon atoms such as a methylene group, an ethylene group, a trimethylene group, a propylene group, and a tetramethylene group, and an alkylene group having 1 to 4 carbon atoms. Is preferred. Specifically, a methylene group or an ethylene group is preferable, and a methylene group is particularly preferable.
  • R 2 and R 3 each independently represent a hydrogen atom, a hydrocarbon group or a group having chelating ability.
  • the hydrocarbon group of R 2 and R 3 is a group having no chelating ability, and examples thereof include an alkyl group, an aryl group, an aralkyl group, and a cycloalkyl group.
  • the alkyl group include straight chain such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group and octyl group.
  • branched alkyl groups As an aryl group, a phenyl group and a naphthyl group can be illustrated, for example.
  • a phenylmethyl group can be illustrated, for example.
  • the cycloalkyl group include a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • hydrocarbon group for R 3 examples include a methyl group (“—CH 3 ”), a 1-methylethyl group (“—CH (CH 3 ) CH 3 ”), 2-amino acids corresponding to amino acids constituting biological proteins.
  • Examples of the group having the chelating ability of R 2 include groups having functional groups such as a hydroxy group, a carboxy group, a carbamoyl group, an amino group, a guanidino group, an amidino group, and a nitrogen atom-containing heterocyclic group.
  • alkyl group examples include straight chain such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group and octyl group. And branched alkyl groups.
  • carboxyalkyl group hydroxyalkyl group, carbamoylalkyl group, pyridylalkyl group, pyrazinylalkyl group, pyrimidinylalkyl group, pyrrolylalkyl group, imidazolylalkyl group, benzoimidazolylalkyl group, pyrazolylalkyl group It can be illustrated.
  • nitrogen atom-containing heterocyclic ring examples include aromatic heterocyclic rings such as pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, benzimidazole ring, pyrazole ring, furan ring, oxazole ring and isoxazole ring. Etc. can be illustrated.
  • the group having the chelating ability of R 3 may be the same group as the group having the chelating ability of R 2 , but a hydroxymethyl group (“—CH 2 ” corresponding to an amino acid constituting a protein in a living body. OH) ”)), 1-hydroxyethyl group (“ -CH (OH) CH 3 ) "), (p-hydroxyphenyl) methyl group (“ group represented by the following formula (2b) "), indolylmethyl group (“A group represented by the following formula (2c)”), a carbamoylmethyl group (“—CH 2 CONH 2 ”), a 2-carbamoylethyl group (“—CH 2 CH 2 CONH 2 ”), a carboxymethyl group (“ -CH 2 COOH “), 2-carboxyethyl group (“ -CH 2 CH 2 COOH “), 4-aminobutyl group (“ -CH 2 CH 2 CH 2 NH 2 "), (1H-imidazo -4 Yl) methyl group "group represented by (formula
  • R 3 is a group having no chelating ability (hydrogen atom or a hydrocarbon group)
  • R 2 is a group having a chelating ability of coordination number is 1 or 2.
  • R 3 is a group having a chelating ability with a coordination number of 1
  • R 2 is a group having no chelating ability or a group having a chelating ability with a coordination number of 1.
  • R 3 is a group having a chelating ability with a coordination number of 2
  • R 2 is a group having no chelating ability.
  • R 2 when an amino acid constituting a biological protein is used as a raw material, when the group corresponding to R 3 has a chelating ability, R 2 does not need to be introduced as a hydrogen atom, and R 3 does not need to be introduced. Is a group having no chelating ability, it is necessary to introduce a group having a chelating ability as R 2 .
  • R 3 is a hydroxymethyl group, 1-hydroxyethyl group, (p-hydroxyphenyl) methyl group, indolylmethyl group, carbamoylmethyl group, 2-carbamoylethyl group, carboxymethyl group, 2-carboxyl group.
  • R 2 is a hydrogen atom having no chelating ability Or it is a hydrocarbon group and it is suitable that it is a hydrogen atom.
  • R 3 is a group having no chelating ability such as a hydrogen atom, a methyl group, a 1-methylethyl group, a 2-methylpropyl group, a 1-methylpropyl group, or a phenylmethyl group
  • R 2 is a chelating ability.
  • the ring Z and R 1 to R 3 do not contain a sulfur atom. Since the sulfur atom contained in the chelating agent has a high affinity for metal ions in addition to iron ions, the sulfur atom is included in a part of the chelating agent. This is because it occurs.
  • the iron chelating agent of the present invention is a compound represented by the formula (1) or a salt thereof, and examples of the salt form include alkalis such as sodium salt and potassium salt of the compound represented by the formula (1). Metal salts and ammonium salts.
  • the iron chelating agent of the present invention has a salt form, the phenolic hydroxyl group is usually in a salt form, but other sites may be in a salt form.
  • the iron chelating agent of the present invention may be in the form of a hydrate or a solvate. Furthermore, the iron chelating agent of the present invention may have stereoisomers such as optical isomers. When a stereoisomer exists in the iron chelator, the iron chelator may be any stereoisomer, and may be a mixture of any stereoisomer or a racemate.
  • various functional groups such as a hydroxyl group and a carboxyl group may be protected by a protecting group until use. However, it is important to remove such a protecting group and return it to various functional groups such as a free hydroxyl group and a carboxyl group when using an iron chelator.
  • the iron chelator of the present invention is a tetradentate ligand having a coordination number of 4 or a pentadentate ligand having a coordination number of 5.
  • the iron chelator of the present invention has a structure in which a hydroxyl group and an amino acid residue-alkylene group are bonded to adjacent carbon atoms in ring Z, respectively. That is, it has a structure in which an amino acid residue-alkylene group is bonded in the ortho position to the hydroxyl group bonded to the carbon atom of ring Z (“tripod type”).
  • the iron chelating agent of the present invention since the iron chelating agent is a tetradentate or pentadentate ligand and is a tripod type, one iron chelating agent can coordinate to one iron ion. That is, the iron chelating agent of the present invention can be coordinated to iron ions in the form of a mononuclear coordination (complex) in which one iron chelating agent is coordinated to one iron ion. For this reason, in the complex in which the iron chelating agent of the present invention is coordinated to the iron ion, the iron ion is taken into the inside and is not easily dissociated (cannot move).
  • the iron chelating agent of the present invention can be partly composed of amino acid residues constituting biological proteins such as serine, histidine, glutamine, etc., and has extremely low toxicity to the human body and safety for the human body. Is extremely high.
  • the iron ion that can be chelated by the iron chelate of the present invention may be any iron ion, and the valence of the iron ion may be either bivalent or trivalent. , Preferably trivalent. Further, the iron ion may be biologically unstable iron, and the biologically unstable iron is a trivalent iron ion.
  • biologically unstable iron means an iron ion that is not bound to transferrin and may have an adverse effect on the human body. Therefore, biologically unstable iron includes, for example, iron bound to transferrin (iron ion in transferrin iron complex; transferrin-bound iron), stored iron present in liver, spleen, and bone marrow as ferritin, and erythrocytes Hemoglobin consisting of 4 molecules of heme (porphyrin complex with iron) and 1 molecule of globin (4 polypeptide chains), a chromoprotein in the muscle that stores oxygen molecules until needed for metabolism, 1 heme Does not include myoglobin containing.
  • iron bound to transferrin iron ion in transferrin iron complex; transferrin-bound iron
  • stored iron present in liver, spleen, and bone marrow as ferritin and erythrocytes
  • Hemoglobin consisting of 4 molecules of heme (porphyrin complex with iron) and 1 molecule of globin (4 poly
  • Such iron ions which are biologically unstable irons, are usually not completely free in the living body, but are considered to have a form paired with anions.
  • examples of such anions include hydroxy ions (OH ⁇ ) and the like. That is, biologically unstable iron is considered to exist in the living body in the form of, for example, Fe 3 + ⁇ 3 (OH ⁇ ), a hydroxy-citrate- (Cit) complex (FeCitOH ⁇ ), and the like.
  • the iron chelator of the present invention can be used for medical purposes as described above.
  • it when administered to the human body, it can be administered orally or parenterally.
  • parenteral administration for example, intravenous, intramuscular, intradermal and subcutaneous administration can be exemplified.
  • it can also be used for industrial use.
  • any method for producing the iron chelating agent of the present invention can be adopted as long as it is a method capable of producing the iron chelating agent of the present invention represented by the above formula (1).
  • it corresponds to an aromatic hydrocarbon ring compound or aromatic heterocyclic compound having a structure in which a hydroxyl group and a formyl group or a formylalkyl group are bonded to adjacent carbon atoms, and an amino acid residue in the formula (1)
  • a production method comprising a step of reacting an amino acid or a salt thereof is preferable. According to such a production method, the iron chelating agent of the present invention can be produced efficiently, under mild conditions and at low cost.
  • a substrate a structure in which a hydroxyl group and a formyl group or a formylalkyl group are bonded to adjacent carbon atoms
  • salicylaldehyde can be used as the aromatic hydrocarbon ring compound or aromatic heterocyclic compound.
  • the amino acid corresponding to the amino acid residue in formula (1) includes, for example, glycine (Glycine), alanine (Aline), valine, leucine, and isoleucine, which are amino acids constituting biological proteins.
  • (Isolucine), Phenylalanine, Serine, Threonine, Tyrosine, Tryptophan, Asparagine, Glutamine, Aspartic acid, G ), Lysine (Lysine), histidine (Histidine), arginine (A Ginine), cysteine (Cysteine), can be used as the methionine (Methionine), among these, a group having a chelating ability at a position corresponding to R 3, serine, threonine, tyrosine, tryptophan, asparagine, Glutamine, aspartic acid, glutamic acid, lysine, histidine, arginine, cysteine, methionine can be preferably used, and in particular, se
  • Histidine and arginine can be preferably used. That is, by using these amino acids having a group having a chelating ability, it is not necessary to separately introduce a group having a chelating ability, and the iron chelating agent of the present invention can be produced very simply. Moreover, the iron chelator manufactured using the amino acid which comprises such a biological protein is very high with respect to a human body. It should be noted that these amino acids may be used with appropriate substitutions such as addition or deletion of a functional group corresponding to R 3 of the amino acid.
  • ring Z is a benzene ring
  • R 1 is a methylene group
  • R 2 is a hydrogen atom
  • R 3 is a hydroxymethyl group (the amino acid residue is serine).
  • the iron chelating agent can be produced by a production method comprising a step of reacting salicylaldehyde with serine or a salt thereof.
  • a sodium hydroxide aqueous solution (2N sodium hydroxide aqueous solution) is put into a beaker, and D, L-serine (powder) is added to the beaker at room temperature (about 10 to 30 ° C.) with stirring. ), The solution is put in a powder state little by little and stirred for about 30 minutes to dissolve serine in an aqueous sodium hydroxide solution, and then water is removed at a temperature of 40 to 50 ° C. using an evaporator. Thereafter, the white residue is dissolved in methanol by stirring in a beaker at room temperature (about 10 to 30 ° C.) in methanol and stirring for 30 minutes.
  • an aqueous hydrochloric acid solution (2N aqueous hydrochloric acid solution) is gradually added to the aqueous solution at room temperature (about 10 to 30 ° C.) with stirring. At this time, white crystals are precipitated as the pH of the solution is lowered (in this case, the pH is not lowered to 1 or less). Then, after allowing to stand at room temperature (about 10-30 ° C.) for 1 day (standing), the crystals are suction filtered, washed with methanol, and then dried for 24 hours using a desiccator.
  • the iron chelating agent of the present invention in which the ring Z is a benzene ring, R 1 is a methylene group, R 2 is a hydrogen atom, and R 3 is a hydroxymethyl group can be obtained. it can.
  • Other iron chelating agents can be produced according to this specific production method.
  • the reaction with the salt can be performed at room temperature (about 10 to 30 ° C.), and the reaction can be performed under very mild conditions.
  • the reaction time in each step is usually within one hour, and the reaction can be performed rapidly.
  • the reaction can proceed in an air environment, and replacement with an inert gas (such as nitrogen gas) is not necessary.
  • an aqueous solvent, a hydrophilic organic solvent, or the like can be used, and methanol or the like used as the hydrophilic organic solvent can be reused by recovery, and can be said to be favorable in terms of the environment. . Furthermore, it can be said that raw materials and the like can be used relatively inexpensively, which is advantageous from the viewpoint of cost. Moreover, according to such a manufacturing method, an iron chelator can be obtained with a yield of 50% or more, and an iron chelator with a purity of almost 100% can be obtained.
  • the introduction of a desired group into R 2 can be performed before or after reacting with the substrate on the ring Z side, and is preferably performed after reacting with the substrate on the ring Z side for synthesis. That is, the manufacturing method which comprises the following process A and process B is employable.
  • Step A An aromatic hydrocarbon ring compound or an aromatic heterocyclic compound having a structure in which a hydroxyl group and a formyl group or formylalkyl group are bonded to adjacent carbon atoms, and an amino acid corresponding to the amino acid residue in formula (1) or Step B: reacting the salt Step B: reacting the chelating agent obtained in Step A with a compound corresponding to R 2
  • the iron ion quantification method of the present invention is characterized in that iron ions are quantified using the iron chelating agent of the present invention.
  • the quantification method of the present invention can quantitate effectively even biologically unstable iron as iron ions. Therefore, for example, biologically unstable iron in blood collected from a living body can be quantified to evaluate the state of excess iron in the living body.
  • the complex (iron complex or iron chelate) in which the iron chelating agent of the present invention is coordinated to an iron ion has a characteristic absorption wavelength (absorption wavelength) different from the absorption wavelength of the iron ion or iron chelating agent. . Therefore, absorption analysis can be performed using light of a desired wavelength corresponding to the light absorption wavelength of the iron complex (for example, light having a wavelength of 466 nm (ultraviolet light)).
  • the absorbance of the iron complex depends on the concentration of the iron complex, and the intensity increases in proportion to the increase in the concentration of the iron complex. Therefore, the determination of iron ions is performed using absorptiometry (absorptiometry). be able to.
  • the solution of the iron chelating agent of the present invention is added to a solution containing iron ions, and after completion of the reaction (chelation reaction), a spectrophotometer is used. Then, by irradiating with light of a specific wavelength (for example, light with a wavelength of 466 nm), the amount of light absorbed when the irradiated light passes through the sample (that is, a solution containing an iron complex) is measured. (Ie, the amount of iron ions) can be quantified.
  • a specific wavelength for example, light with a wavelength of 466 nm
  • Examples of the solvent for the iron ion-containing solution and the iron chelating agent solution used for the determination of iron ions include Dulbecco-phosphate buffered saline (D-PBS), pure water (for example, Ultrapure manufactured by Millipore). Pure water produced by a pure water production apparatus “Milli-Q” (so-called “Milli-Q water”) can be used.
  • D-PBS Dulbecco-phosphate buffered saline
  • pure water for example, Ultrapure manufactured by Millipore
  • Pure water produced by a pure water production apparatus “Milli-Q” can be used.
  • a solvent can be used 1 type or in combination of 2 or more types.
  • the method for quantifying iron ions of the present invention can be used for medical use and industrial use.
  • the iron ion capturing method of the present invention is characterized by capturing iron ions using the iron chelating agent of the present invention.
  • the iron chelating agent of the present invention has a very high chelating ability for iron ions (particularly trivalent iron ions), and can selectively capture iron ions and effectively reduce the amount of iron ions in the system. it can.
  • biologically unstable iron as iron ions can be captured effectively, biologically unstable iron that is excess iron in the living body can be captured effectively, and adverse effects on the living body due to excess iron can be reduced. .
  • after capturing the excess iron in the living body it can be removed outside the living body.
  • Specific methods for capturing iron ions include, for example, a method of introducing the iron chelating agent (or inclusion) of the present invention into an iron ion-containing material, and an iron ion into the iron chelating agent (or inclusion) of the present invention. Any of the methods for introducing inclusions may be used.
  • an iron ion containing substance the liquid substance containing an iron ion can be mentioned, for example, An aqueous liquid substance is suitable.
  • the iron chelating agent-containing material is not particularly limited and can be appropriately set according to the form to be used.
  • a liquid material in which an iron chelating agent is dissolved or dispersed a water-soluble material in which an iron chelating agent is mixed
  • a water-decomposable solid substance, a water-soluble or water-decomposable capsule-like substance containing an iron chelating agent therein, a solid substance (such as a filter) to which the iron chelating agent is fixed, etc. can be exemplified.
  • the iron ions are temporarily removed from nitrilotriacetic acid (nitrilotriacetic acid; NTA), N- ( 2-Hydroxyethyl) ethylenediamine-N, N ′, N′-triacetic acid (HEDTA), ethylenediamine-N, N, N ′, N′-tetraacetic acid (EDTA) and other complexing agents (chelation) ),
  • NTA nitrilotriacetic acid
  • HEDTA 2-Hydroxyethyl
  • HEDTA 2-Hydroxyethyl
  • EDTA ethylenediamine-N, N, N ′, N′-tetraacetic acid
  • EDTA ethylenediamine-N, N, N ′, N′-tetraacetic acid
  • the iron ion in the complex can be captured by the iron chelating agent of the present invention to capture the iron ion.
  • the iron chelator of the present invention has a low chelating ability with respect to iron bound to transferrin (transferrin-bound iron) and hardly (or substitutes) iron ions from transferrin-bound iron. For this reason, in the present invention, when excess iron in a living body is captured, iron ions are hardly taken away from transferrin-bound iron necessary for the living body, and only biologically unstable iron unnecessary for the living body is effectively used. The excess iron in the living body can be effectively reduced.
  • acquisition method of this invention can be used for a medical use and an industrial use.
  • the present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
  • a 2N sodium hydroxide aqueous solution is put into a beaker, and D, L-serine (manufactured by Tokyo Chemical Industry Co., Ltd .; powder form) is gradually mixed in a powder state at room temperature (about 25 ° C.) with stirring. Serum was dissolved in an aqueous sodium hydroxide solution by stirring for about 30 minutes. Thereafter, water was removed at a temperature of 40 to 50 ° C. using an evaporator.
  • an iron chelator represented by the following formula (3b) (an iron chelator using histidine; o-[(1-carboxy-2- (1H-imidazo-4-yl) ethyl) ) -Amino-methyl] -phenol).
  • an iron chelator represented by the following formula (3c) (an iron chelator using glutamine; o-[(1-carboxy-2-carbamoylmethylethyl) -amino-methyl]- Phenol).
  • nitrilotriacetic acid (NTA) free salt (trade name “24501-42” (NTA)) and sodium salt (trade name “245-02” (NTA Disodium Salt: NTA2Na)) and “24503” ⁇ 22 ”(NTA Trisodium Salt: NTA3Na) manufactured by nacalai tesque) was used.
  • Citric acid (citrate) was used as the iron chelator.
  • an ammonium salt of an iron citrate complex in which citric acid is chelated to iron is commercially available.
  • a trade name “F5879-100G” manufactured by Sigma; Ammonium iron (III ) citrate.
  • H-EDA N- (2-hydroxyethyl) -ethylenediaminetriacetic acid
  • Iron chelating agent according to Example 1 (MW: 209.2): After weighing 335 mg into a 50 ml conical tube, 15 ml of Dulbecco-phosphate buffered saline (pH 7.2; 1 ⁇ D-PBS) Furthermore, 70 mg of crystals of sodium hydroxide (MW: 40.0) were added, and the mixture was vigorously stirred (shaked) for 10 minutes, and then centrifuged gently (1000 rpm, flashing) before opening the lid. Thereafter, 16.75 ml of 1 ⁇ D-PBS (pH 7.2) was added to make the total volume 31.75 ml to prepare an iron chelator solution.
  • This iron chelator solution (“Fe-Ser ⁇ Na (50 mM)”) had an iron chelator concentration of 50 mM (mmol / l) and a pH of 9.27.
  • Fe citrate complex ammonium salt solution 220 mg of iron citrate complex ammonium salt (trade name “F5879-100G” manufactured by Sigma; Ammononium iron (III) citrate) was taken and dissolved by adding 41.5 ml of 1 ⁇ D-PBS (pH 7.2). Thus, an iron citrate complex ammonium salt solution (brown) was prepared.
  • This iron citrate complex ammonium salt solution (“FAC solution (20 mM)”) has an iron ion concentration of 20 mM.
  • the iron chelating agent according to Example 1 has a chelating ability for iron.
  • iron ions can be taken from the iron citrate complex.
  • Fe-NTA solution (20 mM) a nitrilotriacetic acid iron complex solution having an iron ion concentration of 20 mM.
  • 1 ⁇ D-PBS (pH 7.2) is added to the Fe-NTA solution (20 mM), and the iron ion concentration is 2 mM nitrilotriacetic acid iron complex solution (“Fe-NTA solution (2 mM)”).
  • Fe-NTA solution (2 mM) was prepared.
  • the iron chelating agent according to Example 1 has chelating ability for iron.
  • iron ions can be taken from the iron nitrilotriacetate complex.
  • Milli-Q water 13.8 ml was dispensed into a 50 ml conical tube, and then an iron chelator solution (Fe-Ser ⁇ Na (50 mM), Fe-His ⁇ Na) with each iron chelator according to Examples 1 to 3 (50 mM) and Fe-Glu ⁇ Na (50 mM)) were added 1.2 ml respectively, then 1.0 ml of a 100 mM MOPS solution was added, and 4.0 ml of an acetonitrile solution was further added to use MOPS. Each iron chelator solution was prepared.
  • iron chelating agent solutions in which MOPS by each iron chelating agent according to Examples 1 to 3 was used were respectively “Fe-Ser ⁇ Na (MOPS solution)” (iron chelating agent according to Example 1), “ “Fe-His.Na (MOPS solution)” (iron chelating agent according to Example 2) and “Fe-Glu.Na (MOPS solution)” (iron chelating agent according to Example 3).
  • a nitrilotriacetic acid iron complex solution (Fe-NTA solution (20 mM)) having an iron ion concentration of 20 mM
  • a nitrilotriacetic acid iron complex solution (Fe-NTA solution (2 mM)) having a concentration of 2 mM was prepared.
  • the iron chelating agents according to Examples 1 to 3 have iron chelating ability, and are obtained from iron citrate complex ammonium salt (FAC) or nitrilotriacetic acid iron complex (Fe-NTA). It was confirmed that it was possible to sequester iron ions.
  • the iron chelating agent according to Example 1 was dissolved in 1 ⁇ D-PBS (pH 7.2) in the same manner as the preparation method of the iron chelating agent solution in Evaluation A of the iron chelating agent, and the concentration of the iron chelating agent was determined.
  • the iron chelating agent according to Example 2 was dissolved in 1 ⁇ D-PBS (pH 7.2), and the iron chelating agent solution (“Fe-His” having a concentration of 5 mM of iron chelating agent).
  • -Na (5 mM) was prepared.
  • HEDTA which is an iron chelator according to Comparative Example 3
  • Dispense 13.76 g of crystals into a 50 ml conical tube dissolve in 25 ml of milli-Q water, adjust to pH 7.0 using concentrated hydrochloric acid (35-37%), and adjust the total volume to 50 ml with milli-Q water.
  • HEDTA solution (800 mM) A HEDTA solution (“HEDTA solution (5 mM)”) having a HEDTA concentration of 5 mM was prepared using 1 ⁇ D-PBS (pH 7.2).
  • NTA2Na and NTA3Na which are iron chelating agents according to Comparative Example 1.
  • NTA2Na was dissolved in Milli-Q water to make a total volume of 50 ml (sometimes referred to as “NTA2Na solution (800 mM)”).
  • NTA3Na solution (800 mM) was dissolved in Milli-Q water to make a total volume of 50 ml (“NTA3Na solution (800 mM)”).
  • NTA2Na solution 800 mM (pH 6.3) and NTA3Na solution (800 mM) (pH 11.3) were mixed to prepare an 800 mM NTA solution having a pH of 7.0.
  • An NTA solution (“NTA solution (5 mM)”) having an NTA concentration of 5 mM was prepared using 1 ⁇ D-PBS (pH 7.2).
  • transferrin iron complex (Method for preparing transferrin iron complex) A commercially available transferrin iron complex (holo-Transferrin (hTf), human, Code T0665-50MG, Lot 095K1633, manufactured by Sigma) is dissolved in 1 ⁇ D-PBS (pH 7.2) to obtain an iron ion (transferrin). A transferrin iron complex solution having a concentration of iron ion (bound iron) of 50 ⁇ M was prepared.
  • NTA solution Various lots of NTA reagents were prepared, and mixed iron was compared in advance. On that basis, the lot with the least iron content was selected.
  • the NTA solution was prepared by mixing an NTA.2Na solution (pH 6.30) and an NTA.3Na solution (pH 11.30) and adjusting the mixing ratio so as to achieve the target pH. For example, when 0.1 ml of NTA ⁇ 3Na solution was added to 5.0 ml of NTA ⁇ 2Na solution, the pH of the NTA solution showed 7.21. However, when a strongly acidic cation exchange resin is used, it is difficult to adjust the pH of the solution.
  • NTA.3Na crystals (Wako Pure Chemical Industries, Ltd.) were dissolved in Chelex 100-treated distilled water to prepare an 800 mM solution (pH 11.42). 1 g of strongly acidic cation exchange resin (SK1BH, Mitsubishi Chemical) was added to 1 ml of this 800 mM NTA ⁇ 3Na solution, and the mixture was stirred for 1 hour, and then the supernatant was collected. Next, the solution was diluted 10-fold with Chelex 100 resin-treated 100 mM MOPS Buffer (Dojindo Laboratories) to obtain an 80 mM NTA.3Na solution (pH 7.08).
  • Microfiltration unit Suction filter unit used for preparing [Na 3 (Co (CO 3 ) 3 ] ⁇ 3H 2 O solution and HPLC mobile phase solution: Stericup-HV (Millipore) is prepared with 50 ml of Chelex 100 treated distilled water just before use. After washing twice, the iron mixed into the membrane was washed and removed.
  • Ultrafiltration filter unit Amicon® Ultra-4 / Ultracel-30K and Amicon® Ultra-0.5 / Ultracel-10K (Millipore) were washed twice with 0.5-1.0 ml of Chelex 100 treated distilled water just prior to use. Then, the iron mixed in the membrane was washed and removed.
  • Measuring apparatus 2796 BioSeparation Module using Nonmetallic PEEK (polyether-ethylketone) tube, 2998 Photodiode Array detector (Waters), OmniSpher5C18 glass column (G100'3 RemVp) Mixing of iron ions was evaluated by HPLC system or atomic absorption method.
  • Non-metal HPLC was used to evaluate the iron removal effect by Chelex 100. As a result, the iron ion concentration in distilled water after Chelex 100 treatment could be suppressed to below the detection limit.
  • Non-metal HPLC was used to evaluate the iron removal effect by Chelex 100. As a result, the iron ion concentration in PBS after Chelex 100 treatment could be suppressed to below the detection limit.
  • NTA Non-metal HPLC was used to compare the amount of iron mixed between various lots.
  • SK1BH resin was found to be effective. However, considering the pH of the NTA solution after the resin treatment, the above-mentioned NTA solution preparation method was adopted.
  • the cobalt concentration was measured by ICP mass spectrometry, and the iron concentration was measured by electric heating atomic absorption method.
  • the first preparation is the cobalt concentration and iron concentration of the [Na 3 (Co (CO 3 ) 3 ] ⁇ 3H 2 O solution prepared using a glass reagent bottle and qualitative filter paper, and 0 for 1 mM cobalt concentration.
  • a reagent bottle and a pipette which are plastic disposable instruments, were used, and a suction filtration filter pre-washed with Chelex 100 treated distilled water was used instead of filter paper.
  • the prepared [Na 3 (Co (CO 3 ) 3 ] ⁇ 3H 2 O solution was able to suppress the iron concentration to 0.014 ⁇ M with respect to the 1 mM cobalt concentration, between the first preparation and the second preparation. Then, the amount of mixed iron could be reduced by 58.5 times.
  • NTBI in healthy human blood was measured using the reagent and solution subjected to iron removal treatment.
  • the measurement method was improved from the conventional method and the “Subtraction method” was devised. Since it is possible to remove iron mixed in the NTA reagent that scavenges (bilates) biologically unstable iron in serum, it can be incorporated into [Na 3 (Co (CO 3 ) 3 ] ⁇ 3H 2 O solution. Divide the sample into two parts without completely removing the mixed iron, and use one as the total iron concentration measurement sample containing bakground and the other as the bakground iron concentration measurement sample to obtain the iron concentration.
  • the true iron concentration (NTBI) can be obtained by subtracting the iron concentration of Bacground from the total iron concentration.
  • Sample preparation A sample pretreatment method is shown in FIG. Cryopreserved samples (serum) were quickly thawed and stored refrigerated on ice until use. From the thawed sample, 450 ⁇ l was dispensed into a 1.5-mL sample tube, and 50 ⁇ l of 5 mM [Na 3 (Co (CO 3 ) 3 ] ⁇ 3H 2 O was added to the sample in a constant temperature bath at 37 ° C. Then, cobalt ions were introduced into the iron binding site of apotransferrin.After 1 hour, the sample was taken out of a 37 ° C. thermostat and treated with two newly prepared 1.5-mL sample tubes.
  • sample was dispensed in an amount of 225 ⁇ l, and 25 ⁇ l of 80 mM NTA ⁇ 3Na solution was added to one sample tube (sample A), and the solvent used when the 80 mM NTA ⁇ 3Na solution was prepared in the other sample tube. (Sample B), and left at room temperature for 30 minutes to give non-transferrin-bound iron (Non-transferrin-b).
  • uniron: NTBI was then scavenged as an Fe-NTA complex, and then the molecular weight limit of 10,000 was exceeded for the purpose of separating Fe-NTA from the iron-binding proteins transferrin and ferritin and the chromogenic protein billirubin.
  • the sample was added to the filtration unit, and centrifuged at 14,000 ⁇ g for 1 hour at 20 ° C. to collect the ultrafiltrate, and 20 ⁇ l of each of the ultrafiltrate of sample A and sample B was loaded into the non-metal HPLC. It was ejected.
  • Quantification As a standard curve for calculating the iron concentration, an Fe-NTA solution in which the iron concentration was determined by the electric heating atomic absorption method was used, and a standard curve in the range of 0-10 ⁇ M in iron concentration was obtained. 20 ⁇ l of each ultrafiltrate of sample A and sample B is injected and corresponds to the position where the Fe-NTA used for obtaining the standard curve is detected as Fe-CP22 (the detector wavelength is 450 nm) The iron concentration was determined from the peak, and the value obtained by subtracting the iron concentration of sample B (iron concentration as bakground) from the iron concentration of sample A (total iron concentration including bakground) was calculated as NTBI in the sample.
  • the subjects were healthy individuals who did not have a disease that required treatment at the time of blood collection.
  • the breakdown was 20 males (average age 33.4 years, average Hb value 15.6 g / dl) and 16 females (average age 33.8 years, average Hb value 13.2 g / dl).
  • the average value of each NTBI was 0.206 ⁇ 0.091 ⁇ M for males and 0.212 ⁇ 0.095 ⁇ M for females.
  • the problems in the conventional HPLC measurement method are considered to be due to the reagents used for pretreatment of the sample (serum) shown below and iron ions mixed in the solution.
  • Distilled water used as a solvent to dissolve the reagent
  • phosphate buffered saline (PBS) used to dilute the sample
  • nitrilotriacetic acid (NTA) to capture NTBI
  • tris carbonate that blocks the iron binding site of apotransferrin Iron ions are mixed in the cobalt solution ([Na 3 (Co (CO 3 ) 3 ] ⁇ 3H 2 O).
  • FIG. 2 shows a conventional measurement method.
  • the iron chelating agent of the present invention can be selectively chelated with respect to iron ions, and particularly effectively acts on biologically unstable iron, so that it is extremely useful industrially.

Abstract

本発明により、鉄イオンに対して選択的にキレート可能な鉄キレート剤が提供される。本発明の鉄キレート剤は、下記式(1)で表される化合物又はその塩であることを特徴とする。(式(1)中、環Zは、芳香族炭化水素環又は芳香族複素環を表す。Rは、アルキレン基を表す。R及びRは、それぞれ独立して水素原子、炭化水素基又はキレート能を有する基を表し、R及びRで表される基の配位数の合計は1又は2である。)

Description

鉄キレート剤及びその製造方法、並びに鉄イオンの定量・捕捉方法
 本発明は、鉄キレート剤、例えば、生体不安定鉄に対してキレート可能な鉄キレート剤、並びに鉄イオンの定量方法、鉄イオンの捕捉方法に関する。
 本願は、2008年9月22日に、日本に出願された特願2008-243095号に基づき優先権を主張し、その内容をここに援用する。
 近年、慢性腎臓病(Chronic Kidney Disease:CKD)という新しい病気の概念が指摘され、世界中で注目されている。この慢性腎臓病の治療は、アンジオテンシンII抑制剤の使用、低蛋白質米による食事管理、各種危険因子の管理などで行われるが、年間4万人にも及ぶ透析導入、心血管障害合併による死亡につながり、新しい治療法が求められている。慢性腎臓病の治療法として、慢性腎臓病の原因の最上流にある生体不安定鉄(NTBI;non-transferrin-bound iron)、カルボニル化合物を除去する治療法が有効である。
 生体内の鉄(特に、生体不安定鉄(NTBI))を体外に除去する治療法として、(1)瀉血療法、(2)鉄制限食法、(3)鉄キレート剤による薬物療法、(4)体外血液循環浄化療法などがある。瀉血療法は、患者のQOL(生活の質;Quality of Life)がよいが、貧血や低たんぱく血症などの副作用があり、貧血の無い患者に対してのみ適応可能である。鉄制限食法は、栄養のアンバランスなどの副作用があり、一部の肝疾患のみ適応可能である。鉄キレート剤による薬物療法は、鉄キレート剤の効果は顕著であり、輸血後鉄過剰症の患者に対して主に利用されているが、軽度の鉄過剰または鉄代謝異常による一部臓器での鉄関連障害では、オーバーキレートによる副作用の頻度が高いと言われている。また、体外血液循環浄化療法は、血液の体外循環により鉄(鉄イオンなど)を除去する方法であり、生体に毒性のある不安定鉄を、オーバーキレートによる臓器毒性を生じることなく施行可能であるという特性を有している。
 そのため、体外血液循環浄化療法により、生体不安定鉄を除去する方法が検討されており、生体不安定鉄を特異的に且つ有効に吸着するリガンド(鉄キレート剤)の開発が求められている。特に、生体に有用なトランスフェリン結合型鉄に対してキレート能を有しておらず(すなわち、トランスフェリン結合型鉄は捕捉せず)、生体不安定鉄のみを捕捉できる鉄キレート剤の開発が求められている。
 なお、慢性腎臓病では、ステージ4の段階にはいると荒廃したネフロンの増加により、残存ネフロンに負荷がかかり更に荒廃し、悪循環に陥り、透析導入が確実となる。一方、ステージ3の段階では、心血管系病変のリスクが飛躍的に増加する。透析治療は、週3回必要であり、しかも透析に要する時間は4時間にもなり、患者のQOLを損なうとともに、労働の機会を損失させている。そのため、ステージ3の段階で治療を行い、透析導入、心血管疾患合併を防ぐことができれば、多大な医療費(日本の透析医療費は1.2兆円超と言われている。)の削減にもつながる。
他方、鉄イオンをキレート可能な鉄キレート剤が種々提案されている(例えば、特許文献1~8参照)。
 また、生体不安定鉄、特に非トランスフェリン結合鉄の高速液体クロマトグラフィ(High-Performance Liquid Chlomatography)を用いた定量方法において、健常人血中のNTBI値がマイナス表記されることが多く、信頼性に欠けるという問題があった。そこで、このHPLCを用いたNTBI測定システムの問題点を明らかにし改善することで、安定かつ高感度なNTBI測定系を構築することが可能であり、その結果、健常人血中NTBI値を正確に求めることができるものと考えられた。
特表2007-532509号公報 特表2006-504748号公報 特表2005-509649号公報 特表2000-507601号公報 特表2008-520669号公報 特表2002-502816号公報 特表2000-506546号公報 特開2004-203820号公報
 本発明の目的は、鉄イオン、特に生体不安定鉄に対して選択的にキレート可能な鉄キレート剤、及びその製造方法を提供することにある。また、本発明の他の目的は、本発明の鉄キレート剤を用いた鉄イオンの定量方法、及び本発明の鉄キレート剤を用いた鉄イオンの捕捉方法を提供することにある。更に、本発明の目的は、安定かつ高感度なNTBI測定系を提供することにある。
 本発明者らは、前記目的を達成するために鋭意検討した結果、特定のアミノ酸が導入された構造のフェノール系キレート剤は、鉄イオンに対して選択的にキレート可能であることを見い出すと共に、生体不安定鉄などの鉄イオンを有効に定量・捕捉することができること、及びキレート剤やイオン交換樹脂などを用いて試料の前処理などに使用される試薬や溶媒の除鉄を行うか、Backgroundを除くSubstraction法を採用することで、安定かつ高感度NTBI測定系を提供することができることを見い出し、本発明を完成させるに至った。
 すなわち、本発明は、
[1] 鉄イオンに対してキレート能を有する鉄キレート剤であって、下記式(1)で表される化合物又はその塩であることを特徴とする鉄キレート剤
Figure JPOXMLDOC01-appb-C000001
(式(1)中、環Zは、芳香族炭化水素環又は芳香族複素環を表す。Rは、アルキレン基を表す。R及びRは、それぞれ独立して水素原子、炭化水素基又はキレート能を有する基を表し、R及びRで表される基の配位数の合計は1又は2である。)や、
[2]式(1)における環Zが、6員環の芳香族炭化水素環又は芳香族複素環であることを特徴とする上記[1]記載の鉄キレート剤や、
[3]式(1)における環Zが、ベンゼン環であることを特徴とする上記[2]記載の鉄キレート剤や、
[4]式(1)におけるRが、メチレン基であることを特徴とする上記[1]~[3]のいずれかに記載の鉄キレート剤や、
[5]式(1)におけるRのキレート能を有する基が、ヒドロキシル基、カルボキシル基、カルバモイル基、アミノ基、グアニジノ基、アミジノ基、及び窒素原子含有複素環基から選ばれる1又は2の官能基を有する基であることを特徴とする上記[1]~[4]のいずれかに記載の鉄キレート剤や、
[6]式(1)におけるRのキレート能を有する基が、カルボキシアルキル基、ヒドロキシアルキル基、カルバモイルアルキル基、ピリジルアルキル基、ピラジニルアルキル基、ピリミジニルアルキル基、ピロリルアルキル基、イミダゾリルアルキル基、ベンゾイミダゾリルアルキル基、又はピラゾリルアルキル基であることを特徴とする上記[5]記載の鉄キレート剤や、
[7]式(1)におけるRのキレート能を有する基が、ヒドロキシメチル基、1-ヒドロキシエチル基、(p-ヒドロキシフェニル)メチル基、インドリルメチル基、カルバモイルメチル基、2-カルバモイルエチル基、カルボキシメチル基、2-カルボキシエチル基、4-アミノブチル基、(1H-イミダゾ-4-イル)メチル基、3-グアニジノプロピル基、メルカプトメチル基又は2-メチルチオエチル基であり、R3の炭化水素基が、メチル基、1-メチルエチル基、2-メチルプロピル基、1-メチルプロピル基又はフェニルメチル基であることを特徴とする上記[1]~[6]記載の鉄キレート剤や、
[8]式(1)におけるRが、ヒドロキシメチル基、1-ヒドロキシエチル基、(p-ヒドロキシフェニル)メチル基、インドリルメチル基、カルバモイルメチル基、2-カルバモイルエチル基、カルボキシメチル基、2-カルボキシエチル基、4-アミノブチル基、(1H-イミダゾ-4-イル)メチル基、又は3-グアニジノプロピル基であり、かつ式(1)におけるRが水素原子であることを特徴とする上記[7]記載の鉄キレート剤や、
[9]式(1)におけるRが、メチル基、1-メチルエチル基、2-メチルプロピル基、1-メチルプロピル基又はフェニルメチル基であり、かつ式(1)におけるR2がキレート能を有する基であることを特徴とする上記[7]記載の鉄キレート剤や、
[10]式(1)における環Z及びR~Rが硫黄原子を含まないことを特徴とする上記[1]~[9]のいずれかに記載の鉄キレート剤や、
[11]4座又は5座配位子であることを特徴とする上記[1]~[10]のいずれかに記載の鉄キレート剤や、
[12]生体不安定鉄に対するキレート能を有することを特徴とする上記[1]~[11]のいずれかに記載の鉄キレート剤や、
[13]上記[1]~[12]のいずれかに記載の鉄キレート剤の製造方法であって、ヒドロキシル基とホルミル基又はホルミルアルキル基とが隣接した炭素原子に結合した構造の芳香族化合物又は複素環化合物と、式(1)におけるアミノ酸残基に対応するアミノ酸又はその塩とを反応させる工程を具備することを特徴とする鉄キレート剤の製造方法や、
[14]式(1)におけるアミノ酸残基に対応するアミノ酸が、セリン、スレオニン、チロシン、トリプトファン、アスパラギン、グルタミン、アルパラギン酸、グルタミン酸、リジン、ヒスチジン又はアルギニンであることを特徴とする上記[13]記載の鉄キレート剤の製造方法や、
[15]上記[1]~[12]のいずれかに記載の鉄キレート剤を用いて鉄イオンを定量することを特徴とする鉄イオンの定量方法や、
[16]吸光分析法により定量することを特徴とする上記[15]記載の鉄イオンの定量方法や、
[17]鉄イオンが生体不安定鉄である上記[15]又は[16]記載の鉄イオンの定量方法や、
[18]定量に使用される試薬、器具及び/または溶媒の除鉄を行う過程を更に含む、[15]~[17]のいずれか1項に記載の鉄イオンの定量方法や、
[19]除鉄がキレート剤により行われることを特徴とする、[18]記載の鉄イオンの定量方法や、
[20]定量の対象となる試料から2つの部分を分取し、一方を全鉄濃度測定用試料とし、他方を定量の対象となる試料以外の鉄濃度の測定用試料としてそれぞれ鉄濃度を求め、全鉄濃度より定量の対象となる試料以外の鉄濃度を差し引くことで真の鉄濃度を求めることを特徴とする、[15]~[19]のいずれかに記載の鉄イオンの定量方法や、
[21]上記[1]~[12]のいずれかに記載の鉄キレート剤を用いて鉄イオンを捕捉することを特徴とする鉄イオンの捕捉方法や、
[22]鉄イオンが生体不安定鉄である上記[21]記載の鉄イオンの捕捉方法に関する。
 本発明の鉄キレート剤は、鉄イオンに対して選択的にキレートが可能であり、特に生体不安定鉄に対して有効に作用する。
本発明の鉄濃度測定用試料の前処置方法を示した説明図である。 従来の鉄濃度の測定方法を示した説明図である。
[鉄キレート剤]
 本発明の鉄キレート剤は、前記式(1)で表される化合物である。前記式(1)で表される化合物は、環Zの隣接する炭素原子に、ヒドロキシル基(-OH基)と、アミノ酸残基-アルキレン基(-R-NR-CHR-COOH基)が結合している。すなわち、本発明の鉄キレート剤は、ヒドロキシル基と、アミノ酸残基-アルキレン基とがオルト位の位置関係で環Zの炭素原子に結合した構造(三脚型)を有している。
 例えば特許文献1等にも記載されるキレート剤においても、フェノールのヒドロキシル基とオルトの位置に所定の構造を有している点で三脚型構造をとっているのに対し、本願発明者が種々検討した結果、本願発明に係るキレート剤においては、当該ヒドロキシル基とオルトの位置に上記所定のアミノ酸残基-アルキレン基を含む置換基を結合させたことにより、トランスフェリン結合型鉄を捕捉せず、生体不安定鉄のみを選択的に捕捉できるキレート剤とできることを見出したものである。
 本願発明に係るキレート剤においては、フェノール系キレート剤のヒドロキシル基とオルトの位置に設けられる置換基が、(-R-NR-CHR-COOH)の構造を有すると共に、当該置換基内に鉄イオンと配位可能な配位原子の数が3~4であることが特徴である。これは、本願発明者がフェノール系キレート剤において、生体不安定鉄を選択的に捕捉可能であるものを探索した結果として見出したものであって、ヒドロキシル基とオルトの位置に設けられる置換基内の配位数を3~4とすることで、同様に鉄イオンが配位可能なヒドロキシル基と相まって、生体不安定鉄を捕捉する際の選択性を高めることが可能である。つまり、本発明の鉄キレート剤は、合計の配位数が4である4座配位子、又は配位数が5である5座配位子である。
 上記置換基においては、アミノ酸残基のNと、カルボキシル基中のOが鉄イオンの配位原子となり、その他の1~2箇所の配位原子を上記置換基内のRとRで示される基の中に適宜設けることで、生体不安定鉄を選択的に捕捉するキレート剤とすることができる。
 RとRで示される基は、上記のとおり、合計の配位数が1~2となる組み合わせであれば、適宜、水素原子、炭化水素、キレート能を有する基の中から選択して用いることができる。
 上記Rを含む基としてNを含むアミノ酸残基を用いることで、当該Nが鉄イオンに対して好適な配位原子となる点で好ましい。また、当該アミノ酸残基として、生体のタンパク質を構成するアミノ酸に対応するものを選択することで、人体に適用された場合に示す毒性を非常に低く抑えることが可能となり、人体に対する安全性が極めて高いキレート剤とすることができる。
また、Rで示される基は、鉄イオンに関する配位原子を有さないアルキレン基が好ましく用いられる。このとき、アルキレン基としては炭素数が1~10程度のものであれば、生体不安定鉄を選択的にキレートすることが可能である。Rで示されるアルキレン基の大きさは、特にRに連なるアミノ酸残基の窒素が鉄イオンに対して示す配位力の強弱に影響することが本発明者の検討により明らかになっており、特に生体不安定鉄の選択性を向上させるためには炭素数が1~4程度が好ましく、特にメチレン基を用いることで、生体不安定鉄の選択性を向上することができる。
以上のように構成される本発明のキレート剤によれば、生体不安定鉄の捕捉のために適切な数の配位原子がキレート剤中の適切な位置に配置されることで、生体不安定鉄を選択的に捕捉可能であると共に、当該キレート剤が鉄イオンを包み込むように配位するために、安定した錯体を形成して鉄イオンが再び解離されることを防止することができる。
 上記置換基が結合するフェノール系キレート剤においては、置換基とヒドロキシル基を適切な位置に保持可能なものであれば、前記式(1)においてフェノール部を成す環Zは芳香族炭化水素環又は芳香族複素環のいずれでもよいが、芳香族炭化水素環がより好適である。
 環Zは、5員以上の環であることが好ましく、5~8員環であることがより好ましく、6員環が特に好ましい。すなわち、環Zとしては、6員環の芳香族炭化水素環(ベンゼン環)が最適である。また、環Zの芳香族複素環としては、環を構成する原子(環構成原子)として、炭素原子、窒素原子、酸素原子から選択された少なくとも2種の原子を含むものが好ましく、炭素原子及び窒素原子のみを含むものが特に好ましい。環構成原子として炭素原子及び窒素原子のみを含む芳香族複素環としては、例えば、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環等の6員環の芳香族複素環などを例示することができる。
 環Zの芳香族炭化水素環及び芳香族複素環は置換基を有していてもよい。すなわち、ヒドロキシル基やアミノ酸残基-アルキレン基が結合している炭素原子以外の環構成原子に、置換基が結合していてもよい。置換基としては、置換基同士が互いに結合して環[芳香族環(芳香族炭化水素環や芳香族複素環など)、非芳香族性環(非芳香族炭化水素環や非芳香族複素環など)など]を形成していてもよい。このような置換基としては、ヒドロキシル基やアミノ酸残基-アルキレン基によるキレート能を阻害しない基であれば特に制限されるものではなく、例えば、環Zがベンゼン環の場合、5-Cl,3-OHなどの置換基を好適に例示することができる。また、置換基は、キレート能を有していない基が好適であり、具体的にアルキル基等の炭化水素基を例示することができる。
 Rのアルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基などの炭素数1~10のアルキレン基を例示することができ、炭素数1~4のアルキレン基が好適である。具体的には、メチレン基又はエチレン基が好ましく、メチレン基が特に好ましい。
 R及びRは、それぞれ独立して水素原子、炭化水素基又はキレート能を有する基を表す。
 R及びRの炭化水素基は、キレート能を有しない基であり、例えば、アルキル基、アリール基、アラルキル基、シクロアルキル基を例示することができる。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などの直鎖状・分岐鎖状のアルキル基を例示することができる。アリール基としては、例えば、フェニル基、ナフチル基を例示することができる。アラルキル基としては、例えば、フェニルメチル基を例示することができる。シクロアルキル基としては、例えば、シクロヘキシル基、シクロヘプチル基、シクロオクチル基を例示することができる。
 Rの炭化水素基としては、生体のタンパク質を構成するアミノ酸に対応する、メチル基(「-CH」)、1-メチルエチル基(「-CH(CH)CH」)、2-メチルプロピル基(「-CHCH(CH)CH」)、1-メチルプロピル基(「-CH(CH)CHCH」)又はフェニルメチル基(「下記式(2a)で表される基」)であることが好適である。
 Rのキレート能を有する基としては、例えば、ヒドロキシ基、カルボキシ基、カルバモイル基、アミノ基、グアニジノ基、アミジノ基、窒素原子含有複素環基等の官能基を有する基を例示することができ、ヒドロキシ基、カルボキシ基、カルバモイル基、及び窒素原子含有複素環基から選ばれる1又は2の官能基を有する基であることが好ましく、ヒドロキシ基、カルボキシ基、カルバモイル基、及び窒素原子含有複素環基から選ばれる1又は2の官能基を有するアルキル基であることがより好ましい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などの直鎖状・分岐鎖状のアルキル基を例示することができる。具体的には、例えば、カルボキシアルキル基、ヒドロキシアルキル基、カルバモイルアルキル基、ピリジルアルキル基、ピラジニルアルキル基、ピリミジニルアルキル基、ピロリルアルキル基、イミダゾリルアルキル基、ベンゾイミダゾリルアルキル基、ピラゾリルアルキル基を例示することができる。窒素原子含有複素環としては、例えば、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ベンゾイミダゾール環、ピラゾール環、フラン環、オキサゾール環、イソオキサゾール環等の芳香族複素環などを例示することができる。
 Rのキレート能を有する基としては、上記Rのキレート能を有する基と同様の基であってもよいが、生体のタンパク質を構成するアミノ酸に対応する、ヒドロキシメチル基(「-CHOH)」)、1-ヒドロキシエチル基(「-CH(OH)CH)」)、(p-ヒドロキシフェニル)メチル基(「下記式(2b)で表される基」)、インドリルメチル基(「下記式(2c)で表される基」)、カルバモイルメチル基(「-CHCONH」)、2-カルバモイルエチル基(「-CHCHCONH」)、カルボキシメチル基(「-CHCOOH」)、2-カルボキシエチル基(「-CHCHCOOH」)、4-アミノブチル基(「-CHCHCHCHNH」)、(1H-イミダゾ-4-イル)メチル基(「下記式(2d)で表される基」)、又は3-グアニジノプロピル基(「-CHCHCHNHC(=NH)NH」)、メルカプトメチル基(「-CHSH」)又は2-メチルチオエチル基(「-CHCHSCH」)であることが好適である。これにより、本発明の鉄キレート剤は、人体に対して無害なアミノ酸が導入された構造となり、人体に対する安全性が極めて高い。
Figure JPOXMLDOC01-appb-C000002
 本発明においては、R及びRで表される基の配位数(実際に鉄イオンに配位する配位数)の合計が1又は2であることが重要である。すなわち、Rを基準として説明すると、Rがキレート能を有しない基(水素原子又は炭化水素基)であるときには、Rは配位数が1又は2のキレート能を有する基である。Rが配位数が1のキレート能を有する基であるときには、Rはキレート能を有しない基であるか配位数が1のキレート能を有する基である。Rが配位数が2のキレート能を有する基であるときには、Rはキレート能を有しない基である。例えば、生体のタンパク質を構成するアミノ酸を原料として用いる場合、Rに相当する基がキレート能を有しているときには、Rは水素原子のまま他の基を導入する必要はなく、Rがキレート能を有しない基であるときには、Rとしてキレート能を有する基を導入することが必要となる。
 具体的には、Rが、ヒドロキシメチル基、1-ヒドロキシエチル基、(p-ヒドロキシフェニル)メチル基、インドリルメチル基、カルバモイルメチル基、2-カルバモイルエチル基、カルボキシメチル基、2-カルボキシエチル基、4-アミノブチル基、(1H-イミダゾ-4-イル)メチル基、3-グアニジノプロピル基等のキレート能を有している基である場合、Rはキレート能を有しない水素原子又は炭化水素基であり、水素原子であることが好適である。
 また、Rが、水素原子、メチル基、1-メチルエチル基、2-メチルプロピル基、1-メチルプロピル基、フェニルメチル基等のキレート能を有しない基である場合、Rはキレート能を有する基であり、具体的には、カルボキシアルキル基、ヒドロキシアルキル基、カルバモイルアルキル基、ピリジルアルキル基、ピラジニルアルキル基、ピリミジニルアルキル基、ピロリルアルキル基、イミダゾリルアルキル基、ベンゾイミダゾリルアルキル基、ピラゾリルアルキル基などの配位数(実際に配位する配位数)が1のキレート基であることが好適である。
 本発明の鉄キレート剤においては、環Z及びR~Rが硫黄原子を含まないことが好ましい。キレート剤に含まれる硫黄原子は、鉄イオン以外にも金属イオンに対する親和性が高いため、硫黄原子がキレート剤の一部に含まれることで、特に生体不安定鉄に対する選択性が低下するおそれを生じるためである。
 本発明の鉄キレート剤は、式(1)で表される化合物又はその塩であり、塩の形態としては、例えば、前記式(1)で表される化合物のナトリウム塩、カリウム塩などのアルカリ金属塩や、アンモニウム塩などである。また、本発明の鉄キレート剤が塩の形態を有している場合、通常、フェノール性ヒドロキシル基が塩の形態になっているが、他の部位が塩の形態になっていてもよい。
 また、本発明の鉄キレート剤は、水和物や溶媒和物の形態であってもよい。さらに、本発明の鉄キレート剤は、光学異性体などの立体異性体が存在する場合がある。鉄キレート剤に立体異性体が存在する場合、鉄キレート剤としては、いずれの立体異性体であってもよく、任意の立体異性体の混合物やラセミ体であってもよい。
 本発明の鉄キレート剤は、使用までの間、ヒドロキシル基やカルボキシル基等の各種官能基が、保護基により保護されていてもよい。しかし、このような保護基は、鉄キレート剤を使用する際には、取り除き、遊離のヒドロキシル基やカルボキシル基等の各種官能基に戻すことが重要である。
 本発明の鉄キレート剤は、配位数が4である4座配位子又は配位数が5である5座配位子である。また、本発明の鉄キレート剤は、環Zにおいて、隣接する炭素原子に、それぞれ、ヒドロキシル基と、アミノ酸残基-アルキレン基とが結合した構造である。すなわち、環Zの炭素原子に結合しているヒドロキシル基に対してオルト位に、アミノ酸残基-アルキレン基が結合した構造(「三脚型」)を有している。
 本発明の鉄キレート剤は、鉄キレート剤が4座又は5座配位子であり且つ三脚型であるため、1つの鉄イオンに対して、1つの鉄キレート剤が配位することができる。すなわち、本発明の鉄キレート剤は、鉄イオン1つに鉄キレート剤が1つ配位した形態の単核配位(錯体)の形態で、鉄イオンに対して配位することができる。このため、本発明の鉄キレート剤が鉄イオンに配位した錯体は、鉄イオンが内部に取り込まれ、容易に解離されない(移動できない)。したがって、人体に適用する場合、人体(特に腎臓)に対する毒性は非常に低く、人体に対する安全性が極めて高い。また、本発明の鉄キレート剤は、セリン、ヒスチジン、グルタミンなどの生体のタンパク質を構成するアミノ酸の残基によりその一部を構成することができ、人体に対する毒性が非常に低く、人体に対する安全性が極めて高い。
 なお、本発明の鉄キレートによりキレート可能な鉄イオンとしては、どのような鉄イオンであってもよく、また、鉄イオンの価数としては、2価、3価のいずれであってもよいが、好ましくは3価である。さらに、鉄イオンは、生体不安定鉄であってもよく、該生体不安定鉄は3価の鉄イオンである。
 本発明において、生体不安定鉄とは、トランスフェリンと結合しておらず、かつ人体にとって有害な作用を及ぼす可能性のある鉄イオンのことを意味する。したがって、生体不安定鉄には、例えば、トランスフェリンと結合している鉄(トランスフェリン鉄錯体中の鉄イオン;トランスフェリン結合型鉄)、フェリチンとして肝臓・脾臓・骨髄に存在する貯蔵鉄、赤血球に含まれるヘム(鉄を持つポルフィリン錯化合物)4分子とグロビン(4本のポリペプチド鎖)1分子からなるヘモグロビン、筋肉中にあって酸素分子を代謝に必要な時まで貯蔵する色素タンパク質で1個のヘムを含むミオグロビンなどは含まれない。このような生体不安定鉄である鉄イオンは、通常、生体中では、完全な遊離の状態ではなく、陰イオンと対になった形態を有していると思われる。このような陰イオンとしては、例えば、ヒドロキシイオン(OH)などを例示することができる。すなわち、生体不安定鉄は、例えば、Fe3+・3(OH)、a hydroxy-citrate- (Cit)complex(FeCitOH)、などの形態で生体中に存在していると考えられる。
 本発明の鉄キレート剤は、上記のように医療用途として使用することができる。例えば、人体に投与する場合、経口的又は非経口的に投与することができる。非経口投与としては、例えば、静脈内、筋肉内、皮内、皮下に注射投与することを例示することができる。また、医療用途の他、工業用途として使用することも可能である。
 [鉄キレート剤の製造方法]
 本発明の鉄キレート剤の製造方法としては、上記式(1)で表される本発明の鉄キレート剤を製造することが可能な方法であればいずれの製造方法でも採用することができる。例えば、ヒドロキシル基とホルミル基又はホルミルアルキル基とが隣接した炭素原子に結合した構成を有している芳香族炭化水素環化合物又は芳香族複素環化合物と、式(1)におけるアミノ酸残基に対応するアミノ酸又はその塩とを反応させる工程を具備する製造方法が好適である。このような製造方法によれば、効率よく、温和な条件下で、かつ低コストで本発明の鉄キレート剤を製造することができる。
 式(1)において、環Zがベンゼン環であり、Rがメチレン基である鉄キレート剤を製造する場合、基質(ヒドロキシル基とホルミル基又はホルミルアルキル基とが隣接した炭素原子に結合した構造の芳香族炭化水素環化合物又は芳香族複素環化合物)としては、サリチルアルデヒドを用いることができる。
 また、式(1)におけるアミノ酸残基に対応するアミノ酸としては、例えば、生体のタンパク質を構成するアミノ酸である、グリシン(Glycine)、アラニン(Alanine)、バリン(Valine)、ロイシン(Leucine)、イソロイシン(Isoleucine)、フェニルアラニン(Phenylalanine)、セリン(Serine)、スレオニン(Threonine)、チロシン(Tyrosine)、トリプトファン(Tryptophan)、アスパラギン(Asparagine)、グルタミン(Glutamine)、アスパラギン酸(Aspartic acid)、グルタミン酸(Glutamic acid)、リジン(Lysine)、ヒスチジン(Histidine)、アルギニン(Arginine)、システイン(Cysteine)、メチオニン(Methionine)などを用いることができ、これらの中でも、Rに相当する位置にキレート能を有する基を備えている、セリン、スレオニン、チロシン、トリプトファン、アスパラギン、グルタミン、アルパラギン酸、グルタミン酸、リジン、ヒスチジン、アルギニン、システイン、メチオニンを好適に用いることができ、特に、硫黄原子を含まない、セリン、スレオニン、チロシン、トリプトファン、アスパラギン、グルタミン、アルパラギン酸、グルタミン酸、リジン、ヒスチジン、アルギニンを好適に用いることができる。すなわち、キレート能を有する基を備えているこれらのアミノ酸を用いることにより、別途キレート能を有する基を導入する必要がなく、極めて簡便に本発明の鉄キレート剤を製造することができる。また、このような生体のタンパク質を構成するアミノ酸を用いて製造した鉄キレート剤は人体に対する安全性が極めて高い。なお、これらのアミノ酸のRに相当する基の官能基を追加・削除する等適宜置換して用いてもよい。
 具体的には、例えば、前記式(1)において、環Zがベンゼン環であり、Rがメチレン基であり、Rが水素原子であり、Rがヒドロキシメチル基(アミノ酸残基がセリンの残基となる)を製造する場合、サリチルアルデヒドと、セリン又はその塩とを反応させる工程を具備する製造方法により、鉄キレート剤を製造することができる。
 より具体的には、例えば、ビーカーに水酸化ナトリウム水溶液(2Nの水酸化ナトリウム水溶液)を入れ、その中に、D,L-セリン(粉末状)を、攪拌下、室温(10~30℃程度)で、少しずつ粉末状態のまま入れて約30分間攪拌することにより、セリンを水酸化ナトリウム水溶液に溶解させた後、エバポレータを用いて、40~50℃の温度で、水を除去させる。その後、白く残った残渣を、ビーカーを用いて、攪拌下、室温(10~30℃程度)で、メタノール中に入れて、30分間攪拌することにより、溶解させ、この溶液に、攪拌下、室温(10~30℃程度)で、D,L-セリンと同モル数のサリチルアルデヒドを直接加える。この際、溶液は直ちに黄色になる。その後、一度メタノールを、エバポレータを用いて、30~40℃の温度で完全に除去させ、残った黄色の固体を、ビーカーを用いて、攪拌下、室温(10~30℃程度)で、メタノールに溶解させる。このメタノール溶液に、水素化ホウ素ナトリウム(NaBH)を固体のまま、攪拌下、室温(10~30℃程度)で、少しずつ、加える。この際、溶液が白くなってくる。黄色の成分が全部消えた時点で(約60分)、水素化ホウ素ナトリウムの添加を止め、室温(10~30℃程度)で攪拌を1時間行った後、室温(10~30℃程度)で、少量の水を加え、その後、不溶のものを自然濾過により濾過して除去する。その後、濾液から溶媒を、エバポレータを用いて、40~50℃の温度で、除去し、残った白い残渣を、ビーカーを用いて、攪拌下、室温(10~30℃程度)で、少しずつ水に添加して、水に溶解させた後、この水溶液に、塩酸水溶液(2Nの塩酸水溶液)を攪拌下、室温(10~30℃程度)で徐々に添加する。この際、溶液のpHが低くなるにつれ、白い結晶が析出する(なお、この際、pHは1以下には下げないようにする)。その後、室温(10~30℃程度)で、1日放置(静置)させた後、結晶を吸引濾過し、メタノールで洗浄させた後、デシケータを利用して、24時間かけて乾燥させることにより、前記式(1)において、環Zがベンゼン環であり、Rがメチレン基であり、Rが水素原子であり、Rがヒドロキシメチル基である本発明の鉄キレート剤を得ることができる。他の鉄キレート剤に関しては、この具体的な製造方法に準じて製造することができる。
 このように、ヒドロキシル基とホルミル基又はホルミルアルキル基とが隣接した炭素原子に結合した構造の芳香族炭化水素環化合物又は芳香族複素環化合物と、式(1)におけるアミノ酸残基に対応するアミノ酸又はその塩との反応は、室温(10~30℃程度)で行うことができ、非常に温和な条件下で反応を行うことができる。また、各ステップでの反応時間も、通常、1時間以内であり、迅速に反応を行うことができる。さらに、空気環境下で反応を進行させることができ、不活性ガス(窒素ガスなど)による置換等は必要でない。さらにまた、溶媒も、水系溶媒や親水性有機溶媒などを用いることができ、しかも、親水性有機溶媒として用いられるメタノール等は回収により再利用することができ、環境の面でも良好であると言える。さらに、原材料などは、比較的安価なものを用いることができ、コスト面からも有利であると言える。また、このような製造方法によれば、鉄キレート剤は、収率50%以上で得ることができ、純度もほぼ100%の鉄キレート剤を得ることができる。
 なお、Rへの所望の基の導入は、環Z側の基質と反応させる前又は後に行うことができ、合成上、環Z側の基質と反応させた後に行うことが好ましい。すなわち、下記の工程A及び工程Bを具備する製造方法を採用することができる。
 工程A:ヒドロキシル基とホルミル基又はホルミルアルキル基とが隣接した炭素原子に結合した構造の芳香族炭化水素環化合物又は芳香族複素環化合物と、式(1)におけるアミノ酸残基に対応するアミノ酸又はその塩とを反応させる工程
 工程B:工程Aにより得られたキレート剤に、Rに対応する化合物を反応させる工程
 [鉄イオンの定量方法]
 本発明の鉄イオンの定量方法は、上記本発明の鉄キレート剤を用いて鉄イオンを定量することを特徴とする。本発明の定量方法は、鉄イオンとしての生体不安定鉄であっても、有効に定量することができる。したがって、例えば、生体から採取した血液の生体不安定鉄を定量し、生体の鉄過剰状態などを評価することができる。
 本発明の鉄キレート剤が鉄イオンに配位した錯体(鉄錯体又は鉄キレート体)は、鉄イオンや鉄キレート剤の吸光波長とは異なる特徴的な吸収波長(吸光波長)を有している。したがって、鉄錯体の光の吸収波長に応じた所望の波長の光(例えば、波長466nmの光(紫外線))を利用して吸光分析を行うことができる。しかも、鉄錯体の吸光度は、鉄錯体の濃度に依存し、鉄錯体の濃度増加に比例して強度が増加するので、鉄イオンの定量を吸光分析法(吸光光度分析法)を利用して行うことができる。
 具体的には、本発明の鉄イオンの定量方法は、例えば、鉄イオンを含む溶液に、本発明の鉄キレート剤の溶液を添加し、反応(キレート化反応)終了後、分光光度計を用いて、特定の波長の光(例えば、波長466nmの光)を照射し、照射した光が試料(すなわち、鉄錯体を含む溶液)を通過した際に吸光される量を測定することにより、鉄錯体の量(すなわち、鉄イオンの量)を定量することができる。なお、鉄イオンの定量に際しては、予め、鉄錯体の吸光度と鉄錯体の濃度との関係を把握し、検量線データなどを得ておく。
 鉄イオンの定量に際して用いられる鉄イオンを含む溶液や鉄キレート剤の溶液の溶媒としては、ダルベッコ-リン酸緩衝生理食塩水(D-PBS)、純水(例えば、ミリポア(MILLIPORE)社製の超純水製造装置「ミリQ(Milli-Q)」により作製された純水など;いわゆる「ミリQ水」)などを用いることができる。溶媒は1種又は2種以上を組み合わせて用いることができる。
 なお、鉄イオンの定量に際しては、鉄キレート剤を鉄イオンのモル数よりも過剰に添加して、すべての鉄イオンを確実にキレート化させることが鉄イオンを正確に定量する上で重要である。
 なお、本発明の鉄イオンの定量方法は、医療用途、工業用途として使用することができる。
 [鉄イオンの捕捉方法]
 本発明の鉄イオンの捕捉方法としては、上記本発明の鉄キレート剤を用いて鉄イオンを捕捉することを特徴とする。本発明の鉄キレート剤は、鉄イオン(特に3価の鉄イオン)に対するキレート能が非常に高く、鉄イオンを選択的に捕捉し、系内の鉄イオンの量を効果的に低減させることができる。また、鉄イオンとしての生体不安定鉄も有効に捕捉することができるため、生体内の過剰鉄である生体不安定鉄を有効に捕捉し、過剰鉄による生体への悪影響を低減させることができる。なお、生体内の過剰鉄を捕捉させた後、生体外に除去させることも可能である。
 具体的に鉄イオンを捕捉する方法は、例えば、鉄イオン含有物に、本発明の鉄キレート剤(又は含有物)を導入する方法、本発明の鉄キレート剤(又は含有物)に、鉄イオン含有物を導入する方法のいずれであってもよい。なお、鉄イオン含有物としては、例えば、鉄イオンを含む液状物を挙げることができ、水性液状物が好適である。また、鉄キレート剤含有物としては、特に制限されず、使用する形態に応じて適宜設定することができ、例えば、鉄キレート剤が溶解又は分散した液状物、鉄キレート剤が混合された水溶性又は水分解性の固状物、鉄キレート剤を内部に含む水溶性又は水分解性のカプセル状物、鉄キレート剤が固定された固状物(フィルター等)などを例示することができる。
 本発明の鉄イオンの捕捉方法では、鉄イオンを本発明の鉄キレート剤で直接に捕捉させることが最適であるが、鉄イオンを、一旦、ニトリロトリ酢酸(ニトリロ三酢酸;NTA)、N-(2-ヒドロキシエチル)エチレンジアミン-N,N´,N´-トリ酢酸(HEDTA)、エチレンジアミン-N,N,N´,N´-テトラ酢酸(EDTA)などの他のキレート剤により錯体化(キレート化)させた後、該錯体中(キレート体中)の鉄イオンを本発明の鉄キレート剤により奪取させることにより、鉄イオンを捕捉することも可能である。
 なお、本発明の鉄キレート剤は、トランスフェリンに結合している鉄(トランスフェリン結合型鉄)に対してキレート能が低く、トランスフェリン結合型鉄から殆ど又は全く鉄イオンを奪取(置換)しない。このため、本発明では、生体中の過剰鉄を捕捉させる場合、生体にとって必要なトランスフェリン結合型鉄から鉄イオンを殆ど又は全く奪取させずに、生体にとって不必要な生体不安定鉄のみを有効に捕捉させることができ、生体中の過剰鉄の低減を有効に図ることができる。
 なお、本発明の鉄イオンの捕捉方法は、医療用途、工業用途として使用することができる。
以下に実施例を示し、本発明をさらに詳しく説明するが、本発明はかかる実施例に何ら限定されるものではない。
 ビーカーに、2Nの水酸化ナトリウム水溶液を入れ、その中に、D,L-セリン(東京化成工業株式会社製;粉末状)を、攪拌下、室温(25℃程度)で、少しずつ粉末状態のまま入れて約30分間攪拌することにより、セリンを水酸化ナトリウム水溶液に溶解させた。その後、エバポレータを用いて、40~50℃の温度で、水を除去させた。さらにその後、白く残った残渣を、ビーカー用いて、攪拌下、室温(25℃程度)で、メタノール中に入れて、30分間攪拌することにより、溶解させ、この溶液に、攪拌下、室温(25℃程度)で、D,L-セリンと同モル数のサリチルアルデヒドを直接加えたところ、溶液が直ちに黄色になった。
 その後、一度メタノールを、エバポレータを用いて、30~40℃の温度で完全に除去させ、残った黄色の固体を、ビーカーを用いて、攪拌下、室温(25℃程度)で、メタノールに溶解させた。このメタノール溶液に、水素化ホウ素ナトリウム(NaBH)を固体のまま、攪拌下、室温(25℃程度)で、少しずつ、加えた。この際、溶液の色が白くなっていき、黄色の成分が全部消えた時点で(約60分)、水素化ホウ素ナトリウムの添加を止め、室温(25℃程度)で攪拌を1時間行った後、室温(25℃程度)で、少量の水を加え、その後、不溶のものを自然濾過により濾過して除去させた。
 その後、濾液から溶媒を、エバポレータを用いて、40~50℃の温度で、除去し、残った白い残渣を、ビーカーを用いて、攪拌下、室温(25℃程度)で、少しずつ水に添加して、水に溶解させた後、この水溶液に、2Nの塩酸水溶液を攪拌下、室温(25℃程度)で徐々に添加させた。この際、溶液のpHが低くなるにつれ、白い結晶が析出した。この際のpHは1以上であった。
 その後、室温(25℃程度)で、1日放置(静置)させた後、結晶を吸引濾過し、さらに、メタノールで洗浄させた後、デシケータを利用して、24時間かけて乾燥させることにより、下記式(3a)で表される鉄キレート剤(セリンが用いられた鉄キレート剤;o-[(1-カルボキシ-2-ヒドロキシエチル)-アミノ-メチル]-フェノール)を得た。
Figure JPOXMLDOC01-appb-C000003
 実施例1と同様にして、下記式(3b)で表される鉄キレート剤(ヒスチジンが用いられた鉄キレート剤;o-[(1-カルボキシ-2-(1H-イミダゾ-4-イル)エチル)-アミノ-メチル]-フェノール)を得た。
Figure JPOXMLDOC01-appb-C000004
 実施例1と同様にして、下記式(3c)で表される鉄キレート剤(グルタミンが用いられた鉄キレート剤;o-[(1-カルボキシ-2-カルバモイルメチルエチル)-アミノ-メチル]-フェノール)を得た。
Figure JPOXMLDOC01-appb-C000005
[比較例1]
 鉄キレート剤として、ニトリロ三酢酸(nitrilotriacetic acid ;NTA)のフリー塩(商品名「24501-42」(NTA))およびナトリウム塩(商品名「245-02」(NTA Disodium Salt:NTA2Na)および「24503-22」(NTA Trisodium Salt:NTA3Na)nacalai tesque社製)を用いた。
[比較例2]
 鉄キレート剤として、クエン酸(citrate)を用いた。なお、鉄キレート剤の評価では、クエン酸が鉄にキレートしたクエン酸鉄錯体のアンモニウム塩が市販されており、その市販品として、商品名「F5879-100G」(Sigma社製;Ammnonium iron(III) citrate)を用いた。
[比較例3]
 鉄キレート剤として、N-(2-ヒドロキシエチル)-エチレンジアミン三酢酸[N-(2-hydroxyethyl)-ethylenediaminetriacetic acid;HEDTA]のナトリウム塩(商品名「H2378-100G」Sigma社製;HEDTA trisodium salt hydrate)を用いた。
[鉄キレート剤の評価A]
 実施例1に係る鉄キレート剤に関して、鉄に対するキレート能の有無について、下記の評価方法Aにより評価を行った。
(鉄キレート剤溶液の調製方法)
 実施例1に係る鉄キレート剤(MW:209.2):335mgを、50mlのコニカルチューブに計り取った後、ダルベッコ-リン酸緩衝生理食塩水(pH7.2;1×D-PBS)を15ml添加し、さらに、水酸化ナトリウム(MW:40.0)の結晶を70mg添加し、10分間、激しく攪拌(シェイク)させ、蓋を開ける前に、かるく遠心分離させた(1000rpm、flashing)。その後、1×D-PBS(pH7.2)を16.75ml添加して、全量を31.75mlとし、鉄キレート剤溶液を調製した。この鉄キレート剤溶液(「Fe-Ser・Na(50mM)」)は、鉄キレート剤の濃度が50mM(mmol/l)であり、pHは9.27であった。
(クエン酸鉄錯体アンモニウム塩溶液の調製方法)
 クエン酸鉄錯体アンモニウム塩(商品名「F5879-100G」Sigma社製;Ammnonium iron(III) citrate)を220mg分取し、1×D-PBS(pH7.2)を41.5ml添加して溶解させて、クエン酸鉄錯体アンモニウム塩溶液(茶褐色)を調製した。このクエン酸鉄錯体アンモニウム塩溶液(「FAC溶液(20mM)」)は、鉄イオンの濃度が20mMである。
 さらに、FAC溶液(20mM)に、1×D-PBS(pH7.2)を添加して、鉄イオンの濃度が2mMのクエン酸鉄錯体アンモニウム塩溶液(「FAC溶液(2mM)」)を調製した。
(評価方法A)
 クエン酸鉄錯体アンモニウム塩溶液[FAC溶液(20mM)、FAC溶液(2mM)]と、1×D-PBS(pH7.2)とを表1~2で示される割合で混合して、分光光度計(商品名「NanoDrop ND-1000 Full-spectrum UV/Vis Spectrophotometer」SCRUM社製)を用いて、吸光度(波長470nm)を測定し(「UV-Vis Module、Measure」)、ブランクでの吸光度(表1~2中の[A])を求めた。その後、前記の混合液に、Fe-Ser・Na(50mM)を、158μl添加して、前記と同様にして、吸光度(波長470nm)を測定し、実施例に係る鉄キレート剤添加後の吸光度(表1~2中の[B])を求めた。測定結果を表1~2に示す。
 表1~2より、実施例1に係る鉄キレート剤は、鉄に対してキレート能を有していることが確認された。特に、クエン酸鉄錯体より鉄イオンを奪取することが可能であることが確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[鉄キレート剤の評価B]
 実施例1に係る鉄キレート剤に関して、鉄に対するキレート能の有無について、下記の評価方法Bにより評価を行った。
(鉄キレート剤溶液の調製方法)
 前記鉄キレート剤の評価Aにおける鉄キレート剤溶液の調製方法と同様にして、鉄キレート剤の濃度が50mMの鉄キレート剤溶液(Fe-Ser・Na(50mM))を調製した。
(ニトリロ三酢酸鉄錯体溶液の調製方法)
 塩化第二鉄六水和物FeCl・6HO(MW270.30)の結晶をミリQ水に溶解し80mM溶液を調製した(A液)。一方、ニトリロ三酢酸はフリー塩のNTA(191.14)結晶を6N塩酸に溶解して160mM溶液を調製した(B液)。A液10mlとB液10mlとをビーカーに分取し、ゆっくり攪拌しながら次に炭酸水素ナトリウムNaHCOの結晶を少量ずつ添加していった。ガスの発生がおさまり、溶液が暗緑色に変化した時点でNaHCOの添加を終了した。最後に40mlにメス・アップして鉄イオンの濃度が20mMのニトリロ三酢酸鉄錯体溶液(「Fe-NTA溶液(20mM)」)を調製した。
 さらに、Fe-NTA溶液(20mM)に、1×D-PBS(pH7.2)を添加して、鉄イオンの濃度が2mMのニトリロ三酢酸鉄錯体溶液(「Fe-NTA溶液(2mM)」)を調製した。
(評価方法B)
 ニトリロ三酢酸鉄錯体溶液[Fe-NTA溶液(20mM)、Fe-NTA溶液(2mM)]と、1×D-PBS(pH7.2)とを表3~4で示される割合で混合して、分光光度計(商品名「NanoDrop ND-1000 Full-spectrum UV/Vis Spectrophotometer」SCRUM社製)を用いて、吸光度(波長470nm)を測定し(「UV-Vis Module、Measure」)、ブランクでの吸光度(表3~4中の[A])を求めた。その後、前記の混合液に、Fe-Ser・Na(50mM)を、158μl添加して、前記と同様にして、吸光度(波長470nm)を測定し、実施例に係る鉄キレート剤添加後の吸光度(表3~4中の[B])を求めた。測定結果を表3~4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3~4より、実施例1に係る鉄キレート剤は、鉄に対してキレート能を有していることが確認された。特に、ニトリロ三酢酸鉄錯体より鉄イオンを奪取することが可能であることが確認された。
[鉄キレート剤の評価C]
 実施例1~3に係る鉄キレート剤に関して、高速液体クロマトグラフィー(High Performance Liquid Chromatography;HPLC)で用いられる溶媒としてのモルフォリンプロパンスルホン酸(3-Morpholinopropanesulfonic acid、C15NOS;MOPS)及びアセトニトリル溶液中における鉄に対するキレート能の有無について、下記の評価方法Cにより評価を行った。
(MOPS溶液の調製方法)
 100mlの三角フラスコに、モルフォリンプロパンスルホン酸(C15NOS、FW=209.26、Code 341-01801、Lot PX013、Dojindo/Wako社製)を2.09g量り取り、超純水(ミリポア社製の超純水製造装置(ミリQ)により作られた純水;「ミリQ水」):80mlを添加し、溶解させた[pH4.15(24.4℃)]。この溶液に、1Nの水酸化ナトリウム溶液(1mol/l Sodium Hydroxide Solution、Code 192-02175、Lot SEP7274、Wako社製)を100μlづつ加えていき、pHを7.0に調整し、さらに、メスシリンダーを用いて、ミリQ水で100mlにアジャストし、100mMのMOPS溶液(pH6.99)を調製した。
(鉄キレート剤溶液の調製方法)
 前記鉄キレート剤の評価Aにおける鉄キレート剤溶液の調製方法と同様にして、実施例1~3に係る各鉄キレート剤に関して、鉄キレート剤の濃度が50mMの鉄キレート剤溶液を調製した。
 また、前記MOPS溶液の調製方法により調製した100mMのMOPS溶液(pH6.99)を使用した。
 さらに、アセトニトリル(C2H3N、FW=41.05、Code 347-06641、Lot WPI96、Dojindo/Wako社製)は原液を使用した。
 ミリQ水:13.8mlを、50mlのコニカルチューブに分取した後、実施例1~3に係る各鉄キレート剤による鉄キレート剤溶液(Fe-Ser・Na(50mM)、Fe-His・Na(50mM)、Fe-Glu・Na(50mM))をそれぞれ1.2ml添加した後、100mMのMOPS溶液を1.0ml添加し、さらに、アセトニトリル溶液を4.0ml添加して、MOPSが用いられた鉄キレート剤溶液をそれぞれ調製した。なお、実施例1~3に係る各鉄キレート剤によるMOPSが用いられた鉄キレート剤溶液を、それぞれ、「Fe-Ser・Na(MOPS溶液)」(実施例1に係る鉄キレート剤)、「Fe-His・Na(MOPS溶液)」(実施例2に係る鉄キレート剤)、「Fe-Glu・Na(MOPS溶液)」(実施例3に係る鉄キレート剤)という。
(鉄錯体溶液の調製方法)
 前記鉄キレート剤の評価Aにおけるクエン酸鉄錯体アンモニウム塩溶液の調製方法と同様にして、鉄イオンの濃度が20mMのクエン酸鉄錯体アンモニウム塩溶液(FAC溶液(20mM))と、鉄イオンの濃度が2mMのクエン酸鉄錯体アンモニウム塩溶液(FAC溶液(2mM))とを調製した。
 また、前記鉄キレート剤の評価Bにおけるニトリロ三酢酸鉄錯体溶液の調製方法と同様にして、鉄イオンの濃度が20mMのニトリロ三酢酸鉄錯体溶液(Fe-NTA溶液(20mM))と、鉄イオンの濃度が2mMのニトリロ三酢酸鉄錯体溶液(Fe-NTA溶液(2mM))とを調製した。
(評価方法C)
 MOPSが用いられた鉄キレート剤溶液[Fe-Ser・Na(MOPS溶液)、Fe-His・Na(MOPS溶液)、Fe-Glu・Na(MOPS溶液)]に、それぞれ、FAC溶液(20mM)を添加し混合させたところ、茶褐色に発色した。また、同様にして、FAC溶液(2mM)を添加し混合させたところ、茶褐色に発色した。
 また、MOPSが用いられた鉄キレート剤溶液[Fe-Ser・Na(MOPS溶液)、Fe-His・Na(MOPS溶液)、Fe-Glu・Na(MOPS溶液)]に、それぞれ、Fe-NTA溶液(20mM)を添加し混合させたところ、茶褐色に発色した。
また、同様にして、Fe-NTA溶液(2mM)を添加し混合させたところ、茶褐色に発色した。
 従って、この溶媒系でも、実施例1~3に係る鉄キレート剤が、鉄キレート能を有しており、クエン酸鉄錯体アンモニウム塩(FAC)や、ニトリロ三酢酸鉄錯体(Fe-NTA)から、鉄イオンを奪取することが可能であることが確認された。
 (鉄キレート剤の評価D)
 実施例1~2に係る鉄キレート剤に関して、トランスフェリン鉄錯体(トランスフェリンが鉄イオンにキレートしたトランスフェリン鉄錯体)から鉄イオンを奪取する特性について、下記の評価方法Dにより評価を行った。
 (鉄キレート剤溶液の調製方法)
 実施例1に係る鉄キレート剤を、前記鉄キレート剤の評価Aにおける鉄キレート剤溶液の調製方法と同様にして、1×D-PBS(pH7.2)に溶解させて、鉄キレート剤の濃度が5mMの鉄キレート剤溶液(「Fe-Ser・Na(5mM)」)を調製した。
 また、前記と同様にして、実施例2に係る鉄キレート剤を、1×D-PBS(pH7.2)に溶解させて、鉄キレート剤の濃度が5mMの鉄キレート剤溶液(「Fe-His・Na(5mM)」)を調製した。
 さらに、前記と同様にして、比較例3に係る鉄キレート剤であるHEDTAの800mM溶液を調製した。結晶13.76gを50mlのコニカルチューブに分取し、ミリQ水25mlを加え溶解した後、濃塩酸(35~37%)を用いてpH7.0に調整し、ミリQ水で全量を50mlとした(「HEDTA溶液(800mM)」)。1×D-PBS(pH7.2)を用いて、HEDTAの濃度が5mMのHEDTA溶液(「HEDTA溶液(5mM)」)を調製した。
(ニトリロ三酢酸溶液の調製方法) 
 さらに、前記と同様にして、比較例1に係る鉄キレート剤であるNTA2NaおよびNTA3Naを用いて800mM溶液(pH7.0)を調製した。NTA2Na9.4g をミリQ水に溶解し全量を50mlとした(「NTA2Na溶液(800mM)」と称する場合がある)。一方、NTA3Na11.0g をミリQ水に溶解し全量を50mlとした(「NTA3Na溶液(800mM)」)。NTA2Na溶液(800mM)(pH6.3)とNTA3Na溶液(800mM)(pH11.3)とを混合しpH7.0の800mMNTA溶液を調製した。1×D-PBS(pH7.2)を用いて、NTAの濃度が5mMのNTA溶液(「NTA溶液(5mM)」)を調製した。
 (トランスフェリン鉄錯体の調製方法)
 市販されているトランスフェリン鉄錯体(holo-Transferrin(hTf)、human、Code T0665-50MG、Lot 095K1633、Sigma社製)を、1×D-PBS(pH7.2)に溶解させて、鉄イオン(トランスフェリン結合型鉄である鉄イオン)の濃度が50μMのトランスフェリン鉄錯体溶液を調製した。
 (評価方法D)
 50μMのトランスフェリン鉄錯体溶液を1.5mlのサンプル・チューブに50μl分取し、これに、各鉄キレート剤溶液(Fe-Ser・Na(5mM)、Fe-His・Na(5mM)、NTA溶液(5mM)、HEDTA溶液(5mM))を、それぞれ、50μl添加し、室温、遮光下で24時間静置した。各種反応液50μlを遠心式の限外ろ過ユニット(商品名「Amicon Ultra-4 Ultracel-30k」 UFC8030 Millipore社製)に分取し、そこに1×D-PBS(pH7.2)450μlを添加し、3,500rpm、30分間、20℃で遠心を行い、トランスフェリンと低分子の各鉄キレート剤とを分離した(1回目)。遠心後、ろ過液は廃棄した。ユニットに濃縮されたトランスフェリンを含む溶液(約50μl残る)に再度1×D-PBS(pH7.2)450μlを添加し同一条件で遠心分離を行った(2回目)。2回目の遠心処理後にユニット内に濃縮されたトランスフェリンを含む溶液を回収し、分光光度計(商品名「Spectrophotometer DU 640」Beckman Coulter社製)を用いて、波長466nmの吸光度を測定した。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5より、実施例に係る鉄キレート剤は、トランスフェリン鉄錯体溶液に添加しても、吸光度(波長466nm)の変化が少なく、トランスフェリン鉄錯体より鉄イオンをほとんど又は全く奪取しないことが確認された。なお、実施例1に係る鉄キレート剤の場合、トランスフェリン鉄錯体溶液に添加後の吸光度(波長466nm)が上昇している。これは、実施例1に係る鉄キレート剤が、トランスフェリン鉄錯体の鉄イオンではなく、系中に存在するバックグランドの鉄イオンを取り去ることによるものと思われる。
キレート剤ならびにイオン交換樹脂を用いて試料(血清)の前処理に使用される試薬ならびに溶媒の除鉄を試みた。一方、限外ろ過ユニットは除鉄済蒸留水を用いて洗浄した。
蒸留水、PBS:
蒸留水(和光純薬)ならびにPBS(Gibco)は、各溶液3literに対してChelex(登録商標)100 Resin(Analytical Grade、100-200Mesh、Bio-Rad Labo.)(以下。Chelex100と略す)100gを直接試薬瓶に添加し、全体を攪拌した後、静置しその上清を用いた(バッチ法)。 
NTA溶液:
各種ロットのNTA試薬を用意し、あらかじめ鉄の混在を比較検討した。その上で、鉄の混在が最も少ないロットを選択した。本来、NTA溶液の調製方法は、NTA・2Na溶液(pH6.30)とNTA・3Na溶液(pH11.30)とを混合し、目的のpHになるようその混合比を調製した。例えば、NTA・2Na溶液5.0mlにNTA・3Na溶液0.1mlを添加した場合、そのNTA溶液のpHは7.21を示した。しかし、強酸性陽イオン交換樹脂を用いると、溶液のpHを調整することは難しい。そこで、NTA・3Na単独でNTA溶液を調製し、除鉄処理後、MOPS Bufferで希釈することでNTA溶液のpHを中性域に調整することが可能となった。そこで、NTA・3Na結晶(和光純薬)をChelex100 処理済み蒸留水で溶解し800mM溶液を調製した(pH11.42)。この800mM NTA・3Na溶液1mlに対して強酸性陽イオン交換樹脂(SK1BH、三菱化学)1gを添加し、1時間攪拌した後、上清を回収した。次にChelex100樹脂処理済100mM MOPS Buffer(同仁化学)で10倍希釈し、80mM NTA・3Na溶液(pH7.08)とした。
[Na(Co(CO]・3HO:
この溶液はコバルト・イオンを中心とする錯体試薬であり、この溶液中に混在する鉄イオンのみを取り除くことは出来ない。そこで、この溶液を調製する際に、鉄イオンの混入を最小限に抑えるため、試薬瓶、ピペットはすべてプラスチック製使い捨て器具を用いた。試薬溶解のための蒸留水はあらかじめChelex100処理を施した。
精密ろ過ユニット:
[Na(Co(CO]・3HO溶液調製ならびにHPLC移動相溶液調製時に使用する吸引式フィルターユニット:ステリカップ-HV(Millipore)は、使用直前にChelex100処理済み蒸留水50mlで2回洗浄し、メンブレンに混入する鉄を洗浄除去処理した。
限外ろ過フィルター・ユニット:
Amicon(登録商標) Ultra-4/Ultracel-30KおよびAmicon(登録商標) Ultra-0.5/Ultracel-10K(Millipore)は使用直前にChelex100処理済み蒸留水0.5~1.0mlで2回洗浄し、メンブレンに混入する鉄を洗浄除去処理した。
評価方法:
測定装置:Nonmetallic PEEK(polyether-ethylketone) チューブを用いた2796BioSeparation Module、2998Photodiode Array検出器(Waters)に、OmniSpher5C18ガラス・カラム(G100 ´ 3 Repl)、ChromSepガード・カラム(Varian)を装着した Non-metal HPLCシステム、あるいは原子吸光法にて鉄イオンの混在を評価した。
蒸留水:
Non-metal HPLCを用い、Chelex100による除鉄効果を評価した。その結果、Chelex100処理後の蒸留水中の鉄イオン濃度は検出限界以下にまで抑えることができた。
Figure JPOXMLDOC01-appb-T000006
PBS:
Non-metal HPLCを用い、Chelex100による除鉄効果を評価した。その結果、Chelex100処理後のPBS中の鉄イオン濃度は検出限界以下にまで抑えることができた。
Figure JPOXMLDOC01-appb-T000007
NTA:
Non-metal HPLCを用い、各種ロット間による鉄の混在量を比較検討した。
Figure JPOXMLDOC01-appb-T000008
その結果、試薬の製造元によりその品質に差があることが判明した。
次に、各種キレート剤ないしはイオン交換樹脂を用いて除鉄効果を比較検討した。
Figure JPOXMLDOC01-appb-T000009
4種類の樹脂のうち、SK1BH樹脂が有効であることが明らかとなった。ただし、樹脂処理後のNTA溶液のpHを考慮し、上記のNTA溶液調製方法を採用した。
[Na(Co(CO]・3HO:
コバルト濃度はICP質量分析法、および鉄濃度は電気加熱原子吸光法にてそれぞれ測定した。1回目の調製はガラス製試薬瓶や定性用濾紙を用いて調製した[Na(Co(CO]・3HO溶液のコバルト濃度および鉄濃度である。1mMコバルト濃度に対して0.820μM 鉄が混在していた。一方、2回目の調製ではプラスチック製使い捨て器具である試薬瓶、ピペットを用い、濾紙の代わりにChelex 100 処理済み蒸留水であらかじめ洗浄した吸引式ろ過フィルターを用いて調製した[Na(Co(CO]・3HO溶液は1mMコバルト濃度に対して鉄濃度0.014μMまで抑制することができた。1回目の調製と2回目の調製との間では、混入する鉄の量を58.5倍軽減することができた。
Figure JPOXMLDOC01-appb-T000010
除鉄処理した試薬、溶液を用いて健常人血中NTBIを測定した。測定方法は従来の方法を改良し「Subtraction法」を考案した。血清中の生体不安定鉄をスカベンジ(キレート)するNTA試薬中に混入する鉄を除去することが可能となったことで、[Na(Co(CO]・3HO溶液中に混在する鉄を完全に除去することなく、試料を2つに分けることで、一方をBackgroundを含んだ全鉄濃度測定用試料とし、もう片方をBackgroundの鉄濃度測定用試料としてそれぞれ鉄濃度を求め、全鉄濃度よりBackgroundの鉄濃度を差し引くことで真の鉄濃度(NTBI)を求めることができる。以下に従来の測定方法を示す。
試料の前処置:
試料の前処置方法を図1に示した。凍結保存の試料(血清)を速やかに解凍し、使用時まで氷中で冷蔵保存した。解凍した試料より450μlを1.5-mLサンプル・チューブに分取し、そこに5mM[Na(Co(CO]・3HOを50μl添加した。37℃の恒温槽にて静置し、apotransferrinの鉄結合サイトにコバルト・イオンを導入した。1時間後、試料を37℃の恒温槽より取り出し、新たに用意した1.5-mLサンプル・チューブ2本にコバルト・イオン処理した試料をそれぞれ225μlずつ分注した。一本のサンプル・チューブに80mM NTA・3Na溶液25μlを添加し(試料A)、もう一本のサンプル・チューブには80mM NTA・3Na溶液を調製した際の溶媒を25μl添加した(試料B)。室温下で30分間静置し、非トランスフェリン結合鉄(Non-transferrin-bound iron:NTBI)をFe-NTA錯体としてスカベンジした。次に試料中の鉄結合蛋白質であるtransferrin、ferritinや発色蛋白質のbillirubinからFe-NTAを分離する目的で分画分子量10,000の限外ろ過ユニットに試料を添加し、14,000xg、1時間、20℃で遠心分離し、限外ろ過液を回収した。試料Aおよび試料Bのそれぞれの限外ろ過液20μlをnon-metal HPLCにインジェクトした。
HPLCによるNTBIの定量:
装置:Nonmetallic PEEK(polyether-ethylketone) チューブを用いた2796BioSeparation Module、2998Photodiode Array検出器(Waters)に、OmniSpher5C18ガラス・カラム(G100 ´ 3 Repl)、ChromSepガード・カラム(Varian)を装着した Non-metal HPLCを構築した。
移動相:5mM MOPS(同仁化学)、3mM CP-22(Biochemical Pharmacology 57:1305-1310, 1999に掲載されている発色性キレート剤、依頼合成)、20% acetonitrile(和光純薬)溶液を調製し、濾過フィルター・ユニットにてろ過と脱気処理を行った。
定量:鉄濃度を算出するための標準曲線には電気加熱原子吸光法にて鉄濃度を決定したFe-NTA溶液を用い、鉄濃度で0-10μMの範囲の標準曲線を得た。試料Aおよび試料Bの各限外ろ過液20μlをインジェクトし、標準曲線を求める際に用いたFe-NTAがFe-CP22として検出される位置(検出器の波長を450nmとする)に相当するピークより鉄濃度を求め、試料Aの鉄濃度(backgroundを含んだ全鉄濃度)より試料Bの鉄濃度(backgroundとしての鉄濃度)を差し引いた値を試料中のNTBIとして算出した。
結果:
対象として、採血時点で特に治療を必要とする疾患を抱えていない健常人を選んだ。内訳は男性20名(平均年齢33.4歳、平均Hb値15.6g/dl)、女性16名(平均年齢33.8歳、平均Hb値13.2g/dl)であった。それぞれのNTBIの平均値は、男性で0.206±0.091μM、女性で0.212±0.095μMであった。
Figure JPOXMLDOC01-appb-T000011
従来報告されていたHPLCを用いた測定系に対し、各段階で混入する鉄のContaminationを様々なキレート剤などを使用して低減させ、かつ、検体を測定過程で2つにわけてBackgroundを最終的にSubtractionすることで、非常に低濃度のNTBI測定まで可能となった。今回確立した方法によって、健常人における血清NTBIの存在も確認でき、さらに測定値も安定して得られるようなった。
[比較例4]
従来のHPLC測定方法における問題点は、以下に示す試料(血清)の前処置に使用されてきた試薬ならびに溶液中に混在する鉄イオンによるものと考えられる。試薬を溶解するための溶媒として用いる蒸留水、試料の希釈に用いるリン酸緩衝生理食塩水(PBS)、NTBIを捕捉するためのニトリロ三酢酸(NTA)、apotransferrinの鉄結合サイトをブロックするトリス炭酸コバルト溶液([Na(Co(CO]・3HO)に鉄イオンが混入している。図2に従来の測定方法を示す。
図2の方法により測定した血中NTBI値の結果を示す。
Figure JPOXMLDOC01-appb-T000012
検体2ならびに検体3ではBackground値を差し引くとマイナス表示になってしまった。
 本発明の鉄キレート剤は、鉄イオンに対して選択的にキレートが可能であり、特に生体不安定鉄に対して有効に作用するため、産業上極めて有用である。

Claims (22)

  1.  鉄イオンに対してキレート能を有する鉄キレート剤であって、下記式(1)で表される化合物又はその塩であることを特徴とする鉄キレート剤。
      [化1]
    Figure JPOXMLDOC01-appb-I000001
    (式(1)中、環Zは、芳香族炭化水素環又は芳香族複素環を表す。Rは、アルキレン基を表す。R及びRは、それぞれ独立して水素原子、炭化水素基又はキレート能を有する基を表し、R及びRで表される基の配位数の合計は1又は2である。)
  2.  式(1)における環Zが、6員環の芳香族炭化水素環又は芳香族複素環であることを特徴とする請求項1記載の鉄キレート剤。
  3.  式(1)における環Zが、ベンゼン環であることを特徴とする請求項2記載の鉄キレート剤。
  4.  式(1)におけるRが、メチレン基であることを特徴とする請求項1~3のいずれか1項に記載の鉄キレート剤。
  5.  式(1)におけるRのキレート能を有する基が、ヒドロキシル基、カルボキシル基、カルバモイル基、アミノ基、グアニジノ基、アミジノ基、及び窒素原子含有複素環基から選ばれる1又は2の官能基を有する基であることを特徴とする請求項1~4のいずれか1項に記載の鉄キレート剤。
  6.  式(1)におけるRのキレート能を有する基が、カルボキシアルキル基、ヒドロキシアルキル基、カルバモイルアルキル基、ピリジルアルキル基、ピラジニルアルキル基、ピリミジニルアルキル基、ピロリルアルキル基、イミダゾリルアルキル基、ベンゾイミダゾリルアルキル基、又はピラゾリルアルキル基であることを特徴とする請求項5記載の鉄キレート剤。
  7.  式(1)におけるRのキレート能を有する基が、ヒドロキシメチル基、1-ヒドロキシエチル基、(p-ヒドロキシフェニル)メチル基、インドリルメチル基、カルバモイルメチル基、2-カルバモイルエチル基、カルボキシメチル基、2-カルボキシエチル基、4-アミノブチル基、(1H-イミダゾ-4-イル)メチル基、3-グアニジノプロピル基、メルカプトメチル基又は2-メチルチオエチル基であり、R3の炭化水素基が、メチル基、1-メチルエチル基、2-メチルプロピル基、1-メチルプロピル基又はフェニルメチル基であることを特徴とする請求項1~6記載の鉄キレート剤。
  8.  式(1)におけるRが、ヒドロキシメチル基、1-ヒドロキシエチル基、(p-ヒドロキシフェニル)メチル基、インドリルメチル基、カルバモイルメチル基、2-カルバモイルエチル基、カルボキシメチル基、2-カルボキシエチル基、4-アミノブチル基、(1H-イミダゾ-4-イル)メチル基、又は3-グアニジノプロピル基であり、かつ式(1)におけるRが水素原子であることを特徴とする請求項7記載の鉄キレート剤。
  9.  式(1)におけるRが、メチル基、1-メチルエチル基、2-メチルプロピル基、1-メチルプロピル基又はフェニルメチル基であり、かつ式(1)におけるR2がキレート能を有する基であることを特徴とする請求項7記載の鉄キレート剤。
  10.  式(1)における環Z及びR~Rが硫黄原子を含まないことを特徴とする請求項1~9のいずれか1項に記載の鉄キレート剤。
  11.  4座又は5座配位子であることを特徴とする請求項1~10のいずれか1項に記載の鉄キレート剤。
  12.  生体不安定鉄に対するキレート能を有することを特徴とする請求項1~11のいずれか1項に記載の鉄キレート剤。
  13.  請求項1~12のいずれか1項に記載の鉄キレート剤の製造方法であって、
     ヒドロキシル基とホルミル基又はホルミルアルキル基とが隣接した炭素原子に結合した構造の芳香族化合物又は複素環化合物と、式(1)におけるアミノ酸残基に対応するアミノ酸又はその塩とを反応させる工程を具備することを特徴とする鉄キレート剤の製造方法。
  14.  式(1)におけるアミノ酸残基に対応するアミノ酸が、セリン、スレオニン、チロシン、トリプトファン、アスパラギン、グルタミン、アルパラギン酸、グルタミン酸、リジン、ヒスチジン又はアルギニンであることを特徴とする請求項13記載の鉄キレート剤の製造方法。
  15.  請求項1~12のいずれか1項に記載の鉄キレート剤を用いて鉄イオンを定量することを特徴とする鉄イオンの定量方法。
  16.  吸光分析法により定量することを特徴とする請求項15記載の鉄イオンの定量方法。
  17.  鉄イオンが生体不安定鉄である請求項15又は16記載の鉄イオンの定量方法。
  18.  定量に使用される試薬、器具及び/または溶媒の除鉄を行う過程を更に含む、請求項15~17のいずれか1項に記載の鉄イオンの定量方法。
  19.  除鉄がキレート剤により行われることを特徴とする、請求項18記載の鉄イオンの定量方法。
  20.  定量の対象となる試料から2つの部分を分取し、一方を全鉄濃度測定用試料とし、他方を定量の対象となる試料以外の鉄濃度の測定用試料としてそれぞれ鉄濃度を求め、全鉄濃度より定量の対象となる試料以外の鉄濃度を差し引くことで真の鉄濃度を求めることを特徴とする、請求項15~19のいずれか1項に記載の鉄イオンの定量方法。
  21.  請求項1~12のいずれか1項に記載の鉄キレート剤を用いて鉄イオンを捕捉することを特徴とする鉄イオンの捕捉方法。
  22.  鉄イオンが生体不安定鉄である請求項21記載の鉄イオンの捕捉方法。
PCT/JP2009/004765 2008-09-22 2009-09-18 鉄キレート剤及びその製造方法、並びに鉄イオンの定量・捕捉方法 WO2010032489A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010529655A JPWO2010032489A1 (ja) 2008-09-22 2009-09-18 鉄キレート剤及びその製造方法、並びに鉄イオンの定量・捕捉方法
EP09814334.0A EP2340823B1 (en) 2008-09-22 2009-09-18 Iron chelating agent, method for producing the same, method for determining amount of iron ions and method for trapping iron ions
US13/120,126 US8623661B2 (en) 2008-09-22 2009-09-18 Iron chelating agent, method for producing same, method for determining amount of iron ions and method for trapping iron ions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008243095 2008-09-22
JP2008-243095 2008-09-22

Publications (1)

Publication Number Publication Date
WO2010032489A1 true WO2010032489A1 (ja) 2010-03-25

Family

ID=42039336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004765 WO2010032489A1 (ja) 2008-09-22 2009-09-18 鉄キレート剤及びその製造方法、並びに鉄イオンの定量・捕捉方法

Country Status (5)

Country Link
US (1) US8623661B2 (ja)
EP (1) EP2340823B1 (ja)
JP (1) JPWO2010032489A1 (ja)
TW (1) TWI488624B (ja)
WO (1) WO2010032489A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096183A1 (ja) 2011-01-14 2012-07-19 株式会社ダステック 高分子鉄キレート剤

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202008344WA (en) * 2018-03-01 2020-09-29 Ecolab Usa Inc Method of measuring benzimidazole-based compounds in water
CN113075146B (zh) * 2020-01-03 2023-03-31 国家烟草质量监督检验中心 一种有机显色剂、基于其的有机络合物探针及其制备方法和用途
CN114094282A (zh) * 2021-11-15 2022-02-25 珠海冠宇电池股份有限公司 一种隔膜及包括该隔膜的锂离子电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506546A (ja) 1997-09-09 2000-05-30 ロレアル アルキレンジアミン二酢酸又はアルキレンジアミン三酢酸から誘導された新規化合物とその製造方法並びに化粧料及び製薬組成物におけるその用途と該化合物を含む組成物
JP2000507601A (ja) 1996-06-25 2000-06-20 ノバルティス アクチエンゲゼルシャフト 置換3,5―ジフェニル―1,2,4―トリアゾールおよび製薬的金属キレート化剤としてのその使用
JP2002502816A (ja) 1998-02-04 2002-01-29 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイティド 鉄キレート化療法のためのn,n’−ビス(2−ヒドロキシベンジル)エチレンジアミン−n,n’−二酢酸を含む薬剤
JP2002173473A (ja) * 1992-12-21 2002-06-21 Ajinomoto Co Inc アミノ酸誘導体及び抗活性酸素剤
JP2004203820A (ja) 2002-12-26 2004-07-22 Mitsubishi Pharma Corp 鉄キレート剤
JP2005509649A (ja) 2001-11-06 2005-04-14 ノバルティス アクチエンゲゼルシャフト 体内の金属の過剰の処置のための4−[3,5−ビス−(2−ヒドロキシ−フェニル)−[1,2,4]トリアゾール−1−イル]−安息香酸誘導体
JP2006504748A (ja) 2002-10-15 2006-02-09 ノバルティス アクチエンゲゼルシャフト デフェラシロックス分散性錠剤
JP2007532509A (ja) 2004-04-08 2007-11-15 ノバルティス アクチエンゲゼルシャフト デフェラシロックスの分散可能な錠剤
JP2008520669A (ja) 2004-11-19 2008-06-19 シバ バイオメディカル,エルエルシー エリスロポエチン抵抗性を治療する方法
JP2008243095A (ja) 2007-03-29 2008-10-09 Toshiba Corp 顔検出システム、および顔検出方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224034A (en) * 1978-09-07 1980-09-23 American Monitor Corporation Assay of iron and iron binding protein reagents and methods
WO1994014755A1 (en) 1992-12-21 1994-07-07 Ajinomoto Co., Inc. Amino acid derivative and anti-active-oxygen agent

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173473A (ja) * 1992-12-21 2002-06-21 Ajinomoto Co Inc アミノ酸誘導体及び抗活性酸素剤
JP2000507601A (ja) 1996-06-25 2000-06-20 ノバルティス アクチエンゲゼルシャフト 置換3,5―ジフェニル―1,2,4―トリアゾールおよび製薬的金属キレート化剤としてのその使用
JP2000506546A (ja) 1997-09-09 2000-05-30 ロレアル アルキレンジアミン二酢酸又はアルキレンジアミン三酢酸から誘導された新規化合物とその製造方法並びに化粧料及び製薬組成物におけるその用途と該化合物を含む組成物
JP2002502816A (ja) 1998-02-04 2002-01-29 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイティド 鉄キレート化療法のためのn,n’−ビス(2−ヒドロキシベンジル)エチレンジアミン−n,n’−二酢酸を含む薬剤
JP2005509649A (ja) 2001-11-06 2005-04-14 ノバルティス アクチエンゲゼルシャフト 体内の金属の過剰の処置のための4−[3,5−ビス−(2−ヒドロキシ−フェニル)−[1,2,4]トリアゾール−1−イル]−安息香酸誘導体
JP2006504748A (ja) 2002-10-15 2006-02-09 ノバルティス アクチエンゲゼルシャフト デフェラシロックス分散性錠剤
JP2004203820A (ja) 2002-12-26 2004-07-22 Mitsubishi Pharma Corp 鉄キレート剤
JP2007532509A (ja) 2004-04-08 2007-11-15 ノバルティス アクチエンゲゼルシャフト デフェラシロックスの分散可能な錠剤
JP2008520669A (ja) 2004-11-19 2008-06-19 シバ バイオメディカル,エルエルシー エリスロポエチン抵抗性を治療する方法
JP2008243095A (ja) 2007-03-29 2008-10-09 Toshiba Corp 顔検出システム、および顔検出方法

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BIOCHEMICAL PHARMACOLOGY, vol. 57, 1999, pages 1305 - 1310
CHUA, A. C. G. ET AL., EUR. J. BIOCHEM., vol. 270, 2003, pages 1689 - 1698, XP008136111 *
FALLER, B. ET AL., J. MED. CHEM., vol. 43, 2000, pages 1467 - 1475, XP008136106 *
KITAZAWA, M. ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1473, 1999, pages 400 - 408, XP004276529 *
MA, X. ET AL., INORGANIC CHEMISTRY COMMUNICATIONS, vol. 11, 4 December 2007 (2007-12-04), pages 256 - 259, XP022499507 *
MARTELL, A. E. ET AL., INORGANICA CHIMICA ACTA, vol. 291, 1999, pages 238 - 246, XP027217524 *
OZAWA, T. ET AL., POLYHEDRON, vol. 13, no. 15, 1994, pages 2343 - 2351, XP008136103 *
PAKHOMOVA, S. ET AL., COLLECT. CZECH. CHEM. COMMUN., vol. 62, 1997, pages 1205 - 1213, XP008136637 *
See also references of EP2340823A4
SHONGWE, M. S. ET AL., J. CHEM. SOC., DALTON TRANS., 2002, pages 4064 - 4069, XP008136113 *
TYRRELL, R. M. ET AL., FREE RADICAL BIOLOGY & MEDICINE, vol. 33, no. 3, 2002, pages 356 - 363, XP008136105 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096183A1 (ja) 2011-01-14 2012-07-19 株式会社ダステック 高分子鉄キレート剤
JP5900968B2 (ja) * 2011-01-14 2016-04-06 株式会社ダステック 高分子鉄キレート剤
US9796605B2 (en) 2011-01-14 2017-10-24 Disease Adsorption System Technologies Co., Ltd. Polymeric iron chelating agent

Also Published As

Publication number Publication date
TWI488624B (zh) 2015-06-21
US20110189779A1 (en) 2011-08-04
EP2340823A1 (en) 2011-07-06
JPWO2010032489A1 (ja) 2012-02-09
US8623661B2 (en) 2014-01-07
TW201029650A (en) 2010-08-16
EP2340823B1 (en) 2016-02-10
EP2340823A4 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
Sadler et al. Bismuth (III) Complexes of the Tripeptide Glutathione (γ‐L‐Glu–L‐Cys–Gly)
WO2010032489A1 (ja) 鉄キレート剤及びその製造方法、並びに鉄イオンの定量・捕捉方法
US11357873B2 (en) Chiral cyclen compounds and their uses
Van Landeghem et al. Al and Si: their speciation, distribution, and toxicity
Rigas Post-column labeling techniques in amino acid analysis by liquid chromatography
WO2019169953A1 (zh) 一种靶向cd24单克隆抗体与二乙胺偶氮鎓二醇盐的偶联物及其应用
EP2402017A1 (en) Carbon monoxide removal agent
RU2605090C2 (ru) СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСОВ 68Ga
EP2664333B1 (en) Polymeric iron chelating agent
EP3567047B1 (en) Chemical method for preparing heme iron not derived from porcine blood
Del Olmo et al. Cyclopentadienyl ruthenium (II) carbosilane metallodendrimers as a promising treatment against advanced prostate cancer
Grange et al. Design of a water-soluble chitosan-based polymer with antioxidant and chelating properties for labile iron extraction
Griffith et al. Monohydroxamic acids and bridging dihydroxamic acids as chelators to ruthenium (III) and as nitric oxide donors: syntheses, speciation studies and nitric oxide releasing investigation
Möller et al. Biochemistry and detection of S-nitrosothiols
Nishida Role of zinc (II) ion for the formation of iron deposition in human body and its significance
EP1466915A1 (en) Porphyrin compound, albumin inclusion compound thereof and artificial oxygen carrier
Gateau et al. Rational Design of Copper and Iron Chelators to Treat Wilson's Disease and Hemochromatosis
DK2391610T3 (en) LUMINESCING LANTHANIDE COMPLEXS
RU2779132C2 (ru) СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСОВ 68Ga
JP2022106935A (ja) 輸送蛋白質含有マルチプルパス透析流体を再生するための新規組成物および方法
ZUBERBUHLER et al. AN ESR STUDY OF CU (II)
Mel’nikova et al. Doxorubicin complexes with copper ions of the active center of ceruloplasmin
Gonzalez-Vergara Synthesis, Characterization, and metabolic studies of chromium-nicotinic acid complexes
JPS59193824A (ja) 尿結石溶解剤
Al NMR Subject Index of Volume 88

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814334

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010529655

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009814334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13120126

Country of ref document: US