WO2010031322A1 - 一种适用于电动车的自动变速器 - Google Patents

一种适用于电动车的自动变速器 Download PDF

Info

Publication number
WO2010031322A1
WO2010031322A1 PCT/CN2009/073926 CN2009073926W WO2010031322A1 WO 2010031322 A1 WO2010031322 A1 WO 2010031322A1 CN 2009073926 W CN2009073926 W CN 2009073926W WO 2010031322 A1 WO2010031322 A1 WO 2010031322A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
gear
continuously variable
automatic transmission
speed
Prior art date
Application number
PCT/CN2009/073926
Other languages
English (en)
French (fr)
Inventor
孟良吉
Original Assignee
Meng Liangji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meng Liangji filed Critical Meng Liangji
Priority to DE112009002196T priority Critical patent/DE112009002196T5/de
Publication of WO2010031322A1 publication Critical patent/WO2010031322A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/74Complexes, not using actuable speedchanging or regulating members, e.g. with gear ratio determined by free play of frictional or other forces

Definitions

  • the present invention relates to the field of mechanical manufacturing, and the present invention generally relates to an automatic transmission suitable for an electric vehicle, and more particularly to a full gear which is composed of a sub-mechanism having a stepless shifting function and automatically changes in response to a change in output speed with load.
  • the mechanical shifting mechanism of course, can of course constitute a full gear speed adaptive continuously variable transmission. Background technique
  • the output of the power machine needs to be adjusted and then transmitted to the working machine to adapt to various different and even dynamically changing load conditions of the working machine. Therefore, the transmission becomes an important part of the power system, and its efficiency, adaptability, cost, etc. have a greater impact on the whole machine.
  • the actual use of the transmission can be divided into two categories: graded and stepless.
  • the stepwise shifting can be achieved by a combination of various wheel diameters, paired direct meshing drives, or by chain, belt, ring, etc.
  • the essence is to provide a step-by-step summary of the range of load changes, and to solve the stepless load requirements with a step-by-step ratio scheme. It can be seen that there is no full utilization of the power of the power machine.
  • the structure is various, but except for the hydraulic coupler and the torque converter,
  • the change of the contact radius realizes the shifting, and in addition to the "engagement" feature of the toothed chain type having the friction-based portion, almost all of the frictional or dragging oil film is used to transmit the load, so that the transmission efficiency, the service life,
  • AT's core components are torque converters, complex in structure, high in manufacturing process requirements, small in torque variation range, low in efficiency and high in loss, and in some driving conditions, the reaction is delayed (this book) 76th to 88th Page);
  • the core component of the CVT is the friction pair, which creates a contradiction that requires friction to achieve the transmission and does not want friction to cause wear and power loss.
  • the automatic transmission suitable for an electric vehicle of the present invention proposes an idea that is no longer limited to the change of the transmission ratio by the change of the contact radius (number of teeth, sprocket radius or friction radius), and designs the torque composed of the epicyclic gear train.
  • / speed distribution mechanism and a torque/speed synthesizing mechanism also composed of an epicyclic gear train constitute a full-gear continuously variable transmission mechanism with overload protection function as a core original (referred to as a sub-mechanism in the present invention);
  • the encountered load is segmented in relative size.
  • An automatic transmission suitable for an electric vehicle includes an input shaft and an output shaft, and a gear mechanism between the input shaft and the output shaft.
  • the gear mechanism is docked by two torque distribution mechanisms and a torque synthesizing mechanism respectively using the epicyclic gear train.
  • a continuously variable transmission mechanism is constructed.
  • power is input from the planetary gear holder, distributed from the two center wheels to the torque synthesizing mechanism, and torque synthesis in the continuously variable transmission mechanism
  • power is input from the planetary gear holder and a center wheel, and is output from the other center wheel.
  • the directions of the two input torques are opposite.
  • the continuously variable shifting mechanism may be provided in plurality at the same time, or only one may be provided.
  • the load change described in the present invention is a change in load with respect to power.
  • the load is relatively small.
  • the technical solution of the present invention is simple in structure and reliable in operation.
  • the present invention has a constant power characteristic.
  • the automatic trend tends to work at the maximum output speed according to the change of the load; that is, when the load is relatively large (such as a vehicle climbing or bit).
  • the input power is unable to maintain the previous speed, it is forced to reduce the speed to achieve the transmission, that is, the shifting process can achieve the maximum possible speed in an adaptive manner; when the resistance torque is relatively small, the speed will automatically rise, thus directly expressing For high power utilization.
  • the present invention when the resistance torque exceeds the design load range, that is, the overload, the present invention has an overload protection function, and at this time, a maximum limit output torque is designed on the output shaft, but due to the overload, the output shaft stops rotating, and the power is inside thereof.
  • the cycle does not cause the internal combustion engine as a power machine to stall or the motor to stall.
  • the rigidity of the output speed can be determined by the distribution ratio of the distribution mechanism, the synthesis ratio of the synthesis mechanism, and the whole Different gear ratios of other parts of the gear system are adjusted to adjust.
  • drawings of the present invention are schematic diagrams, all of which omits all bearings, keys and keyways, lubrication methods, bodies, seals, oil drains, etc., which the inventors believe are irrelevant to the description of the technical solutions.
  • Structural details the web of each gear is simplified to a line segment, the teeth are simplified to short lines at both ends of the web (the oblique short line represents the bevel gear); when the gear is idle on the shaft, the line segment representing the shaft passes through two Parallel short line segments are indicated.
  • Figure 1 is a schematic diagram of the common structure of the epicyclic gear train.
  • the specification will introduce its two functions of distribution and synthesis.
  • Figure 2 shows a variant structure commonly used in existing automatic transmissions. It is often used in existing automatic transmissions.
  • the series control system is added to the auxiliary system to assist the core components to use together.
  • Figure 3 shows the use of the distribution and synthesis functions of the epicyclic gear train to form a full-gear stepless shifting that realizes stepless speed change within a limited speed ratio range.
  • Schematic diagram of the structure of the mechanism referred to as a sub-institution in the present invention).
  • Fig. 1 wherein 11 is an input gear and its shaft, 12 is a cage gear, and its web is used as a cage to mount planetary gears 14 and 16, 13 and 15 as two center wheels and their shafts.
  • This is a typical epicyclic gear train used as a differential in a car.
  • the parts 13 and 15 are transmitted in accordance with the rule of equal torque.
  • the parts 13 and 15 are respectively connected to the left and right driving wheels. It can be seen that this train has the function of distributing power.
  • the epicyclic gear train has its inherent torque relationship. It is this torque relationship that requires an appropriate gear speed ratio to be designed according to the specific structure; and, when the output shaft 43 is subjected to a gradually large resistance torque, it is gradually large enough. At the same time, its speed gradually drops to a stop. Due to the existence of excessive resistance torque, although the maximum dynamic torque is present on the output shaft 43, the output shaft 43 only has a tendency to rotate, and the power is operated inside the mechanism, and the entire mechanism exhibits overload protection. At this time, the input power on the part 11 is gradually increased, and the output shaft 43 can gradually overcome the resistance and resume the rotation until the design maximum speed. This is a complete gear-type continuously variable transmission, and the output changes automatically as the load changes. In automotive technology, the mechanism can be used alone to replace the fluid coupling or to replace the clutch.
  • the rectangular frames 501 and 506 are the sub-mechanisms shown in FIG. 3 (represented by rectangular boxes for simplifying the drawing); the part 504 is an input shaft, the part 503 is an input gear; and the part 509 is an output shaft.
  • Parts 510 are output gears; parts 502, 505, 507, and 512 are transmission gears; parts 508 and 511 are transition gears that achieve different speed ratios by varying the number of teeth of the transition gear and the gears that mesh with it, thereby enabling the sub-mechanism 501 and 506 provide drive and overload protection for loads of different sizes. Therefore, when the load is varied with respect to the power, the power can be outputted separately from the sub-mechanisms 501 or 506 or simultaneously from 501 and 506, constituting the full-gear speed adaptive automatic transmission of the present invention applicable to the electric vehicle.
  • the sub-organizations 501 and 506 can use multiple at the same time to subdivide the load by size, which is beneficial to the utilization of the input power, thereby improving the mechanical efficiency of the technical solution.
  • the electric motor as a power source has its own constant power characteristics, which is equivalent to a continuously variable transmission with a speed increase and a reduced torque.
  • its power source side is opposite to the engine's output characteristics, so in terms of vehicle dynamic performance, it is difficult for the motor to take into account different indicators, such as acceleration performance and maximum speed.
  • acceleration performance and maximum speed For example, an electric car produced in China currently has an acceleration time of 0 to 100 Km/h of 17 seconds, which is more than twice the acceleration time of a conventional car. This is partly the result of sacrificing the maximum speed. Therefore, the technology provides a simple and efficient automatic transmission for the comprehensive improvement of the electric vehicle's power performance.
  • the inventor additionally proposes an application technology scheme that is simpler and more efficient than the above two-stage scheme structure.
  • the sub-mechanism defined by a Figure 3 is connected with a deceleration reversing gear.
  • Parts 13 and 15 as long as this excess torque is decelerated and twisted (while shifting the steering) to a level sufficient to overcome the torque received on the part 15, the part 15 will gradually rotate in the opposite direction, the speed of which is superimposed on the part 13, and the part 13
  • the increase in speed causes the part 15 to accelerate, which is superimposed on the part 13 itself, i.e., produces self-excitation within the train, until the speed relationship of the part of the train is balanced. This is the self-exciting function of the epicyclic gear train, which constitutes the second gear.
  • the one-way rotating mechanism has a variety of structures, such as freewheel clutches (such as in the starting gears used in some engine starters) and ratchet mechanisms (such as used in bicycle rear chains), which are common in mechanics.
  • freewheel clutches such as in the starting gears used in some engine starters
  • ratchet mechanisms such as used in bicycle rear chains

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Transmission Devices (AREA)
  • Control Of Transmission Device (AREA)

Description

一种适用于电动车的自动变速器 技术领域
本发明属于机械制造领域, 本发明总地涉及一种适用于电动车的自动变速器, 尤其涉及一种由具有无级变速功能的子机构构成的、输出转速随负载变化而自动相 应变化的全齿轮机械变速机构,确切地, 当然可以构成一种全齿轮速度自适应无级 变速器。 背景技术
在生产与生活的许多场合, 都需要对动力机的输出进行调整后再传动到工作 机, 以适应工作机的各种不同的甚至动态变化的负载状况。 因此, 变速器就成为动 力系统的一个重要组成部分, 其效率、 适应性、 成本等对整机产生较大的影响。
现实使用的变速器, 可以分为有级与无级两大类。
通过各种不同轮径的组合变化, 配对直接啮合传动, 或借由链、 带、 环等传 动, 可实现有级变速。其本质是对负载的变化范围作分段的概括, 以有级的传动比 方案解决无级的负载要求。 可见没有对动力机的功率充分利用。
而现实使用的无级变速器 (请参见 《机械无级变速器》 ISBN 7-111-08743-7 , 周有强主编, 机械工业出版社 2001年 6月第一版。 作为已知技术, 专业技术人员 熟知或容易理解这些机构, 为简化说明书,本发明说明书不再一一例举解释书中所 载各种结构的原理), 结构形式多样, 但除了液力耦合器及液力变矩器外, 都通过 接触半径的变化实现变速,并且,其中除了齿链式具有以摩擦为主的部分的"啮合" 特点外,几乎都是依靠摩擦或拖动油膜来传递载荷的,因而其传动效率、使用寿命、 承载能力等方面存在问题;有些无级变速器如齿链式的输入轴转速不允许太高, 否 则会损坏机件或降低寿命。
其中应用于车用无级变速器的具有代表性的结构形式有(请参见《汽车构造》 吉林大学汽车工程系编著 陈家瑞主编 人民交通出版社 2006年 5月第五版 ISBN 978-7-114-05710-6, 第 74页至 112页): 自动变速器(AT, 液力变矩, 分段无级, 该书第 74页至 106页); 无级变速器 (CVT, 该书第 106页至 112页) 等。 这些无 级变速器中, AT 的核心元件为液力变矩器, 结构复杂, 制造工艺要求高, 扭矩变 化范围小, 效率较低损耗较高, 在某些行驶工况下, 反应迟滞 (该书第 76 至 88 页); CVT 的核心元件为摩擦副, 造成既需要摩擦来实现传动、 又不希望摩擦导致 机件磨损和功率损耗的矛盾。 这些技术特征成为这一类变速器的结构共生的不足。
同时, 这些无级变速机构, 一般都不能独立适应于负载变化范围较大的现实 使用要求, 而往往作为核心元件, 须配合一组周转轮系作为必要的辅助机构, 借由 辅助机构内部通过制动、 离合等达成的速度有级变化 (该书第 75至 76页, 第 88 页至 93页), 再配合复杂的液压控制系统、 传感器、 微电脑等 (该书第 93至 106 页) 构成的对辅助机构实施控制的控制系统, 才能实现其现实应用。
由此可见, 现实使用的无级变速器, 其产生速度无级变化的核心元件、 协助 核心元件实现使用价值的辅助机构和对辅助机构的控制系统, 都存在一定的局限 性。 发明内容
本发明的适用于电动车的自动变速器, 提出了一种不再局限于通过接触半径 (齿数、链轮半径或摩擦半径)的变化实现传动比变化的思路, 设计了由周转轮系 构成的扭矩 /速度分配机构与同样由周转轮系构成的扭矩 /速度合成机构,构成具有 过载保护功能的全齿轮无级变速机构作为核心原件 (在本发明中称其为子机构); 进而对使用中可能遇到的负载作相对大小的分段, 通过同时采用几个这样的子机 构,经过不同的简单变速后,使每个子机构可以对不同大小的负载中对应的一种负 载大小情况产生传动和过载保护,从而整体而言构成一个完整的新技术方案, 实现 输出速度对负载的自动变化适应。
本发明的适用于电动车的自动变速器包括输入轴与输出轴, 以及输入轴与输 出轴之间的齿轮机构,齿轮机构是由两个分别运用周转轮系的扭矩分配机构和扭矩 合成机构对接而构成的无级变速机构。
在一个较佳实施例中, 在无级变速机构的扭矩分配机构中, 动力从行星齿轮 保持架输入, 分配后从两个中心轮向扭矩合成机构传动, 并且, 在无级变速机构的 扭矩合成机构中,动力从行星齿轮保持架及一个中心轮输入,由另一个中心轮输出。
更佳地是, 在无级变速机构的扭矩合成机构中, 两路输入扭矩的方向相反。 此外, 无级变速机构可以同时设置有多个, 也可以仅设置有一个。
需要明确的是, 本发明述及的负载变化是负载相对于动力的变化, 当负载本 身未变而动力变大时, 即为负载相对的变小。
较好的是, 本发明的技术方案构造简单, 工作可靠。 较好的是, 本发明具有恒功率特征, 在动力功率大于阻力功率的必要前提下, 根据负载的变化, 自动趋向于以最大输出速度工作; 即当负载相对变大(比如车辆 爬坡或钻头推进过快), 输入动力无法维持此前转速时, 被迫降速以实现传动, 即 变速过程可以以自适应的方式实现最大的可能速度; 当阻力矩相对变小,转速将自 动上升, 因而直接表现为动力利用率高。
较好的是, 当阻力矩超出设计承载范围即过载时, 本发明具有过载保护功能, 此时在其输出轴上有设计最大极限输出扭矩, 但是由于过载, 输出轴停止转动, 动 力在其内部循环, 而不会导致作为动力机的内燃机熄火或电机堵转烧毁。
较好的是, 既然输出速度对负载自动适应, 必然有输出速度刚性这一性能参 数, 本技术方案构成的变速器, 输出速度的刚性可以由分配机构的分配比、合成机 构的合成比, 以及整个齿轮系统其他部分的传动比的不同设计来调整。 附图说明
首先说明, 本发明的说明书附图均为结构简图, 这些图中都省略了所有轴承、 键与键槽、 润滑方式、 机体、 密封件、 放油口等等发明人认为于说明技术方案无关 的结构细节; 每个齿轮的辐板简化为线段、 轮齿简化为辐板两端的短线段(斜的短 线段表示伞齿轮); 当齿轮空套在轴上时, 以代表轴的线段穿过两平行短线段表示。
图 1为周转轮系的常见结构示意图, 说明书将介绍其分配、 合成 2种功能; 图 2 为周转轮系在现有自动变速器中常用的一种变型结构; 在现有自动变速 器中往往采用几个串联成组再增加对它的控制系统来辅助核心元件共同使用; 图 3 为利用周转轮系的分配与合成功能, 构成一种在有限速比范围内实现无 级变速的全齿轮无级变速机构的结构示意图 (在本发明中称其为子机构);
图 4为本发明的自动变速器的原理示意图。 具体实施方式
为进一步说明本发明的适用于电动车的自动变速器的结构、 效果及其优点, 下面将结合附图在具体实施方式中对本发明加以详细说明。
首先介绍周转轮系的分配、 合成 2种功能, 以及周转轮系的变型:
如图 1所示, 其中, 11为输入齿轮及其轴, 12为保持架齿轮, 其辐板作为保 持架装配着行星齿轮 14和 16, 13和 15为两个中心轮及其轴。 这是一个典型的周 转轮系, 在汽车中作为差速器使用。 第一种情况, 当动力矩经零件 11、 12传到零件 14和 16, 将按扭矩相等的规 则向零件 13和 15传递, 在汽车中, 零件 13和 15分别连着左右驱动轮。可见这个 轮系具有分配动力的功能。
第二种情况, 当有两个独立的动力矩, 从零件 11和 15分别传入, 只要与零 件 13上的阻力矩一起符合简单的大小和方向关系,动力矩将从零件 13输出。可见 这个轮系具有合成动力的功能。 (零件 13和 15是完全对称的结构, 说明时可以对 调, 后续叙述中对这类同等地位的情况, 不再说明)
如图 2所示, 其中, 零件 21、 23是中心轮 (分别是外齿、 内齿), 零件 26、 22分别是它们的轴, 零件 24、 29是同样的行星齿轮, 零件 25是保持架齿轮, 零 件 28、 27是输入齿轮及其轴。 这是图 1所示周转轮系的变型结构, 这种结构方便 于串联成结构紧凑的轮系组,作为对核心元件的辅助机构, 再加上辅助机构的控制 机构, 在现有自动变速器中使用广泛。
以上介绍了周转轮系的分配、 合成 2种功能, 以及周转轮系的变型结构。 接 着,针对现有的实现转速无级变化的核心元件的不足,提出一种全新思路的齿轮式 无级变速机构:
如图 3所示, 借用图 1的基本结构 (零件名称和编号也全部借用), 增加了分 配节前 /后输出齿轮 41/47, 合成节前 /后输入齿轮 42/45, 输出轴及其中心轮 43, 中心轮 49, 行星齿轮 44和 48, 换向齿轮 46。 合成节前输入齿轮 42的辐板作为保 持架装配着行星齿轮 44和 48。
当动力从零件 11输入, 经零件 12, 14、 16, 13、 15分配到零件 41和 47, 传 递到零件 42和 45 (其中一路经零件 46转换方向), 再传递到零件 44、 48和 49, 最后合成到零件 43输出。 这就是一个完整的齿轮式无级变速机构。
必须重点指出的是, 周转轮系有其内在的力矩关系, 正是这一力矩关系, 要 求根据具体结构设计适当的齿轮速度比; 并且, 当输出轴 43所承受的阻力矩逐渐 变化到足够大时, 其转速就逐渐下降到停止。 由于过大阻力矩的存在, 此时虽然输 出轴 43上有最大动力矩, 输出轴 43也只有转动的趋势, 动力在机构内部运转, 整 个机构表现为过载保护。此时逐渐加大零件 11上的输入动力,输出轴 43才能逐渐 自行克服阻力而恢复转动直至设计最高转速。这就是一个完整的齿轮式无级变速机 构, 并且输出随负载的变化而自动变化。在汽车技术中, 该机构可以单独用来取代 液力耦合器, 也可以取代离合器。
最后, 采用上述齿轮式无级变速机构 (在本发明中称其为子机构), 进一步如 下提出一种完全由齿轮构成的速度自适应自动变速器:
如图 4所示, 其中, 矩形框 501和 506即为图 3所示的子机构 (为简化附图 以矩形框表示); 零件 504为输入轴, 零件 503为输入齿轮; 零件 509为输出轴, 零件 510是输出齿轮; 零件 502、 505、 507和 512是传动齿轮; 零件 508和 511 为过渡齿轮, 通过过渡齿轮和与它啮合的齿轮的齿数变化, 实现不同的速比, 从而 使子机构 501和 506对不同大小的负载产生传动和过载保护。因此, 当负载相对于 动力变化时,动力可以单独从子机构 501或 506或同时从 501和 506输出,构成了 本发明的适用于电动车的全齿轮速度自适应自动变速器。
实际上, 根据实际需要, 子机构 501和 506可以同时运用多个, 以将负载按 大小细分, 有利于对输入功率的利用率, 从而提高本技术方案的机械效率。
值得指出的是, 首先, 实际使用时采用图 2所示的变形结构, 可以使整个变 速器结构紧凑; 另外, 我们所称的图 3所示的齿轮式无级变速子机构的过载保护, 是指输入端正常转动时,输出端速度降低或停止, 当假设无级变速子机构 501使输 出齿轮 510进入相对高速状态,会导致齿轮 507相对超速,此时子机构 506表现为 超越离合器的功能状态; 最后, 齿轮机构的倒挡和空挡设置太过简单, 本说明书不 再述及。
实例
事实上, 单纯应用本发明设计一个多档自动变速器, 比如 5 档自动变速器, 不计齿轮机构本身固有的效率问题, 其各档效率除第 5档为 100%外, 其它各档随 档位降低,效率依次降低。虽然可以设法改变输入扭矩在各档的分配来改善效率问 题, 但由于采用周转轮系较多, 抵消了本技术省略了液力变矩器、 传感、 计算、 控 制、执行等结构形成的优势。所以, 本技术只有在档位数较少的应用场合才表现出 优势, 比如作为一个两档自动变速器。 这样的自动变速器, 在电动车中有比较适当 的运用前景。
在电动车技术中, 电动机作为动力源, 本身具有恒功率特征, 相当于自身带 有一个增速减扭的无级变速器。但是, 它作为动力源的一面, 却与发动机的输出特 性相反, 所以就整车动力性能而言, 电动机很难兼顾不同的指标, 比如加速性能和 最高车速。 例如目前国内所产某电动汽车, 其 0到 100Km/h的加速时间为 17秒, 是传统汽车加速时间的两倍有余,这还是部分牺牲了最高车速的结果。因此本技术 为电动车动力性能的综合改善提供了一种简单高效的自动变速器。同时,发明人另 外提出一种比上述两档方案结构更简单、 效率更高的应用技术方案。 首先介绍周转轮系的自激励功能:
如图 1所示, 当动力矩经零件 11、 12传到零件 14和 16, 如果采用单向转动 机构控制零件 15不跟随 12同向转动, 则动力自零件 13输出。 这是第一档。
进一步, 当零件 13的输出扭矩克服自身受到的阻力矩仍有某种程度的多余, 并达到可以支持第二个速度档位时,以一个图 3所定义的子机构和一个减速换向齿 轮连接零件 13和 15, 只要这个多余扭矩被减速增扭(同时变换转向)达到足以克 服零件 15上所受到的扭矩, 零件 15将逐渐反向转动起来, 其速度被叠加到零件 13, 而零件 13的速度增加又使零件 15加速转动, 这个转速又被叠加到零件 13 自 身, 即产生轮系内部的自我激励, 直到这个轮系的零件转速关系达到平衡。这就是 周转轮系的自激励功能, 它构成第二档。
其中, 单向转动机构有很多种结构, 机械学中常见的具有专有名称的结构比 如自由轮离合器 (如运用于某些发动机起动机的起动齿轮中)、 棘轮机构 (如运用 于自行车后链轮中)等, 这些结构熟知于专业技术人员, 都可以为本发明的这一技 术方案借用。 为简化说明书, 在此不再一一图示例举说明。
如果要构成第三档, 只需将上述第二档方案重复一次, 并且适当调整其减速 换向齿轮与零件 15的速比即可, 不再详述。
经过前后 5年多的理论探讨和 3轮模型试验后, 本发明人通过以上论述, 对 本发明的目的、 结构和效果作了详细说明, 本技术领域中的技术人员应当认识到, 上述图例仅仅是用来说明的, 而不能作为对本发明的限制。 因此, 产品设计时可以 在本发明的实质精神范围内进行变型和参数调整,这些改变都将落在本发明的权利 要求书所要求的范围之内。

Claims

权利要求
1. 一种适用于电动车的自动变速器, 包括输入轴与输出轴, 以及所述输入轴 与所述输出轴之间的齿轮机构,
其特征在于,
所述齿轮机构是由两个分别运用周转轮系的扭矩分配机构和扭矩合成机构对 接而构成的无级变速机构。
2. 如权利要求 1所述的自动变速器, 其特征在于,
在所述无级变速机构的所述扭矩分配机构中, 动力从行星齿轮保持架输入, 分配后从两个中心轮向所述扭矩合成机构传动, 并且,
在所述无级变速机构的所述扭矩合成机构中, 动力从行星齿轮保持架及一个 中心轮输入, 由另一个中心轮输出。
3. 如权利要求 2所述的自动变速器, 其特征在于,
在所述无级变速机构的所述扭矩合成机构中, 两路输入扭矩的方向相反。
4. 如权利要求 2所述的自动变速器, 其特征在于:
所述无级变速机构同时设置有多个。
5. 如权利要求 2所述的自动变速器, 其特征在于:
所述无级变速机构仅设置有一个。
PCT/CN2009/073926 2008-09-18 2009-09-15 一种适用于电动车的自动变速器 WO2010031322A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112009002196T DE112009002196T5 (de) 2008-09-18 2009-09-15 Ein automatisches Getriebe für Elektrofahrzeuge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810160976.X 2008-09-18
CN200810160976 2008-09-18

Publications (1)

Publication Number Publication Date
WO2010031322A1 true WO2010031322A1 (zh) 2010-03-25

Family

ID=40890538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073926 WO2010031322A1 (zh) 2008-09-18 2009-09-15 一种适用于电动车的自动变速器

Country Status (3)

Country Link
CN (3) CN201434055Y (zh)
DE (1) DE112009002196T5 (zh)
WO (1) WO2010031322A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201434055Y (zh) * 2008-09-18 2010-03-31 孟良吉 全齿轮速度自适应无级变速器
CA2768918C (en) * 2011-02-24 2019-03-19 Tai-Her Yang Clutch device structured with controllable epicycle gear set and applied power train thereof
CN102518761A (zh) * 2011-12-20 2012-06-27 南丁毅 一种无级变速机构
CN104100682B (zh) * 2013-04-11 2019-05-14 孟良吉 扭矩匹配自锁错位对接的齿轮式耦合器
CN104088973B (zh) * 2014-06-27 2016-08-17 姚长水 一种齿轮传动液压调速的无级变速器
DE102015003750A1 (de) * 2015-03-25 2016-09-29 Sultan Kama Freilaufmechanik
DE102019205599A1 (de) * 2019-04-17 2020-10-22 Zf Friedrichshafen Ag Zahnrad für Elektrofahrzeuggetriebe
DE102019205600A1 (de) * 2019-04-17 2020-10-22 Zf Friedrichshafen Ag Zahnrad für Elektrofahrzeuggetriebe
CN110030342B (zh) * 2019-04-18 2022-06-03 西南大学 行星系输出的机械式双超越离合自适应自动变速器
CN112747090B (zh) * 2021-01-25 2023-04-14 重庆胜特佳机械有限公司 双动力多模无级变速耦合输出机构
CN116464742A (zh) * 2023-01-13 2023-07-21 王彦 自适应无级变速机构及其工况确定方法、电机及钻井装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042976A (zh) * 1988-12-04 1990-06-13 陈坤 行星齿轮无级变速器和自动变速器
US6085606A (en) * 1998-11-03 2000-07-11 Eaton Corporation Mechanical transmission with reduced ratio steps in upper transmission ratios
CN100354551C (zh) * 2004-08-31 2007-12-12 叶建峰 一种齿轮无级变速器
US20080119321A1 (en) * 2006-11-17 2008-05-22 Heap Anthony H Control architecture and method for two-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
CN100390439C (zh) * 2004-04-08 2008-05-28 薛忠和 高效节能机电混合无级变速器
CN101487519A (zh) * 2008-09-18 2009-07-22 孟良吉 全齿轮速度自适应无级变速器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256060A (ja) * 1985-05-09 1986-11-13 Takahisa Hanibuchi 連続無段変速装置
CN101235878A (zh) * 2007-01-31 2008-08-06 龙宏元 行星齿轮多路传动无级变速器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1042976A (zh) * 1988-12-04 1990-06-13 陈坤 行星齿轮无级变速器和自动变速器
US6085606A (en) * 1998-11-03 2000-07-11 Eaton Corporation Mechanical transmission with reduced ratio steps in upper transmission ratios
CN100390439C (zh) * 2004-04-08 2008-05-28 薛忠和 高效节能机电混合无级变速器
CN100354551C (zh) * 2004-08-31 2007-12-12 叶建峰 一种齿轮无级变速器
US20080119321A1 (en) * 2006-11-17 2008-05-22 Heap Anthony H Control architecture and method for two-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
CN101487519A (zh) * 2008-09-18 2009-07-22 孟良吉 全齿轮速度自适应无级变速器

Also Published As

Publication number Publication date
CN201434055Y (zh) 2010-03-31
CN101487519A (zh) 2009-07-22
CN101487519B (zh) 2015-03-25
DE112009002196T5 (de) 2012-01-19
CN201666360U (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
WO2010031322A1 (zh) 一种适用于电动车的自动变速器
US4976670A (en) Power transmission
US20110053720A1 (en) Dual mode continuously variable transmission
CN102221076B (zh) 一种多档位行星式液力变速器传动机构
WO2013175582A1 (ja) 車両用動力伝達装置
US10295031B2 (en) Planetary gear train of automatic transmission for vehicle
JPH03539B2 (zh)
JP2016070479A (ja) 車両用無段変速機
CN101793315B (zh) 机械和液压组合式动力传动机构
CN109723769A (zh) 纯电动车减速器的二级减速机构
EP0676562A1 (en) Gear train of an automatic five-speed transmission for a vehicle
JP2009036231A (ja) 変速装置
CN211975806U (zh) 一种超越式无级变速系统
CN209638337U (zh) 行星与定轴复合变速机构
CN203627690U (zh) 自动变速箱
JP6255586B2 (ja) 車両用無段変速装置
CN201714940U (zh) 一种使用液压马达的汽车变速动力传动机构
CN101886689B (zh) 一种使用液压马达的汽车变速动力传动机构
KR20210047136A (ko) 자동차용 동력전달장치
CN111055670B (zh) 一种多档位汽车混合动力驱动装置及汽车
CN201714942U (zh) 机械和液压组合式动力传动机构
CN215444948U (zh) 六挡行星变速机构
WO2017005185A1 (zh) 一种复合型恒充式液力偶合器以及起动器
KR100897106B1 (ko) 전륜구동형 3축 8속 수동변속기의 기어 트레인
JPH0874966A (ja) 無段変速装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814042

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09814042

Country of ref document: EP

Kind code of ref document: A1