WO2017005185A1 - 一种复合型恒充式液力偶合器以及起动器 - Google Patents

一种复合型恒充式液力偶合器以及起动器 Download PDF

Info

Publication number
WO2017005185A1
WO2017005185A1 PCT/CN2016/088749 CN2016088749W WO2017005185A1 WO 2017005185 A1 WO2017005185 A1 WO 2017005185A1 CN 2016088749 W CN2016088749 W CN 2016088749W WO 2017005185 A1 WO2017005185 A1 WO 2017005185A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
input
output
carrier
coupled
Prior art date
Application number
PCT/CN2016/088749
Other languages
English (en)
French (fr)
Inventor
吴志强
Original Assignee
吴志强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴志强 filed Critical 吴志强
Priority to CN201680039170.8A priority Critical patent/CN108351009A/zh
Publication of WO2017005185A1 publication Critical patent/WO2017005185A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H41/00Rotary fluid gearing of the hydrokinetic type
    • F16H41/24Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/08Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion

Definitions

  • the present invention is in the field of fluid couplings and starting, and more particularly, it is a composite constant-fill fluid coupling and starter for various ground vehicles, ships, railway locomotives, and machine tools.
  • the fluid coupling is designed according to the principles of hydrostatics, etc. It can transmit little power and is not efficient; in addition, the cost is high.
  • the invention overcomes the deficiencies of the prior art and provides a composite constant-fill type fluid coupling and a starter which prolong the service life of the engine, has a simple structure, is convenient to operate, has low cost, and is energy-saving and high-efficiency.
  • a composite constant-fill fluid coupling and starter comprising an input shaft (1), a fixed one-way clutch (3), a constant-fill fluid coupling (4), an electromagnetic clutch (5), and an output shaft ( 6), the empty gear mechanism (7), the input gear (8), the output gear (9), the starter gear pair (10), the overrunning clutch (11), the input shaft (1) and the output shaft (6)
  • the input shaft (1) and the output end (52) of the electromagnetic clutch (5) and the input end of the overrunning clutch (11) ( 111) coupled, the output end (112) of the overrunning clutch (11) is coupled to the input gear (23) and the output gear (102) of the starter gear pair (10), and the output gear (102) of the starter gear pair (10)
  • the output ring gear (28) is coupled to the coupling input carrier (24), and the planetary gear (20) through which the input carrier (24) is coupled
  • the output gear (25) is coupled to the input end (41) of the constant-fill fluid coupling (4)
  • the input planet carrier (21) and the fixed order The output end (32) of the clutch (3) and the output end (42) of the constant-fill fluid coupling (4) are coupled to fix the input end (31) of the one-way clutch (3) and the fixed ring gear (26).
  • the fixed planet carrier (27) is coupled to the stationary element.
  • a composite constant-filling fluid coupling comprising an input shaft (1), a constant-fill fluid coupling (3), a one-way clutch (4), an output shaft (5), an input gear pair (6), a coupling shaft (7), an output gear pair (8), an overrunning clutch (9), a planetary gear (20) and an output planet carrier (21) are disposed between the input shaft (1) and the output shaft (5).
  • the output end (42) is coupled to the output gear (62) of the input gear pair (6) and the input end (31) of the constant-fill fluid coupling (3), and the constant-fill fluid coupling (3)
  • the output end (32) is coupled to the input ring gear (23), and the input ring gear (23) cooperates with the output planet carrier (21) and the input gear (22) through the planetary gears (20) on the output carrier (21).
  • the output carrier (21) is coupled to the input coupling gear (26) and the input bull gear (27), and the input coupling gear (26) passes through the planetary gear (20) on the fixed carrier (24) and the fixed carrier (24)
  • the output gears (25) cooperate with each other, the fixed carrier (24) is fixed with the fixed component, the output gear (25) is coupled with the input end (41) of the one-way clutch (4), and the input large gear (27) is outputted.
  • the planetary gear (20) on the axle carrier (29) cooperates with the input pinion (28) and the output shaft carrier (29), and the output shaft carrier (29) is coupled to the output shaft (5).
  • the elements that need to be coupled, and the elements that are separated by several other elements, can be connected to or through several other elements by means of a hollow or a coupling frame; when the coupled elements are gears or ring gears, Then, meshing or coupling; the gear ratio of each gear pair and the shifting mechanism is designed according to actual needs.
  • the constant-fill fluid coupling can be replaced by a twin-turbo torque converter.
  • the air-locking mechanism can select a clutch instead.
  • the present invention When the present invention is applied to a vehicle, it is possible to automatically change the output torque and the speed change depending on the magnitude of the resistance that the vehicle is subjected to while traveling.
  • the invention enables the engine and the starter to operate in the region of the tempering speed, that is, the engine operates in a range of very small pollution discharge speeds, thereby avoiding the engine discharging a large amount of exhaust gas during idle speed and high speed operation, thereby reducing the number of exhaust gases.
  • the emission of exhaust gas is conducive to protecting the environment;
  • the invention can utilize the effect of internal speed difference to buffer and overload protection, which is beneficial to prolonging the service life of the engine and the drive train and the starter.
  • speed up which is beneficial to improve the driving performance of the vehicle;
  • the invention makes the input power uninterrupted, can ensure the vehicle has good acceleration and high average vehicle speed, reduces the wear of the engine, prolongs the overhaul interval mileage, and is beneficial to improving productivity;
  • the invention reduces the transmission mechanism of the current starter machine and reduces the manufacturing cost. After the engine is started, only the braking and separating measures of the starting motor are required to stop the transmission.
  • the present invention is a composite constant-fill type fluid coupling and starter for various ground vehicles, ships, railway locomotives, and machine tools.
  • FIG. 1 is a structural view of a first embodiment of the present invention
  • FIG. 2 is a structural diagram of a second embodiment of the present invention.
  • connection between the two elements is indicated by a thick solid line, and the thin solid line indicates that the two elements can be rotated relative to each other.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a composite constant-fill fluid coupling and a starter include an input shaft 1 , a fixed one-way clutch 3 , a constant-fill fluid coupling 4 , an electromagnetic clutch 5 , an output shaft 6 ,
  • the air-gear mechanism 7, the input gear 8, the output gear 9, the starter gear pair 10, the overrunning clutch 11, the planetary gear 20, the input carrier 21, and the output ring gear are disposed between the input shaft 1 and the output shaft 6. 22.
  • the input end 111 of the overrunning clutch 11 is coupled to the input gear 23 and the output gear 102 of the starter gear pair 10, and the output gear 102 of the starter gear set 10 and the input gear 101 of the starter gear set 10 are mutually coupled.
  • the input gear 23 cooperates with the input carrier 21 and the output ring gear 22 through the planetary gear 20 on the input carrier 21, and the output ring gear 22 meshes with the output gear 9, and the input end 71 of the idle gear mechanism 7 is Input gear 8 and lose
  • the gear 9 is coupled, the output 72 of the neutral gear mechanism 7 is coupled to the output shaft 6, the input gear 8 is meshed with the input ring gear 29, the input ring gear 29 is coupled to the input end 51 of the electromagnetic clutch 5, and is fixed to the carrier 27
  • the planetary gear 20 cooperates with the fixed carrier 27 and the output ring gear 28, and the output ring gear 28 is coupled with the coupling input carrier 24, and the planetary gear 20 and the output gear 25 are coupled to the input carrier 24, and the fixed ring gear is fixed.
  • the output gear 25 is coupled to the input end 41 of the constant-fill fluid coupling 4, the input end 32 of the input carrier 21 and the fixed one-way clutch 3, and the output 42 of the constant-fill fluid coupling 4
  • the coupling, the input end 31 of the fixed one-way clutch 3, the fixed ring gear 26 and the fixed planet carrier 27 are coupled to the fixed element.
  • the neutral shifting mechanism 6 is disengaged and the electromagnetic clutch 5 is engaged.
  • the input power of the starter is transmitted to the input gear 23 via the starter gear pair 10, and the input gear 23 is transmitted to the output gear through the planetary gear 20 on the input carrier 21.
  • the ring 22, the output ring gear 22 is transmitted to the input shaft 1 through the output gear 9, the input end 71 of the neutral gear mechanism 7, the input gear 8, the input ring gear 29 and the electromagnetic clutch 5, and then transmitted to the crankshaft of the engine, resulting in The engine is started when the power is sufficient to overcome the engine starting resistance.
  • the idle gear mechanism 6 After the engine is started, the idle gear mechanism 6 is engaged, the electromagnetic clutch 5 is disengaged, and the input gear 23 transmits the power transmitted from the engine through the input shaft 1 and the overrunning clutch 11 to the output teeth through the planetary gears 20 on the input carrier 21.
  • the ring 22, the output ring gear 22 is then transmitted through the output gear 9 to the input end 71 of the neutral gear mechanism 7, and the input 71 of the neutral gear mechanism 7 diverts the power transmitted thereto into two paths, one way to the present invention.
  • the frame 24 is further transmitted to the output gear 25 through the planetary gears 20 thereon, and the output gear 25 is transmitted to the input carrier 21 through the constant-fill fluid coupling 4, the power transmitted to the input carrier 21, and the engine passing through the input shaft.
  • the torques on the input carrier 21, the output ring gear 22, and the output shaft 6 vary with the change of the rotational speed thereof, and the lower the rotational speed, the transmission to the input carrier 21 and the output teeth.
  • the torque on the ring 22 and the output shaft 6 is larger, and conversely, the smaller, thereby realizing the composite constant-fill fluid coupling and the starter which can change the torque and speed according to the difference in the running resistance of the present invention.
  • the idle gear mechanism 6 is disengaged, the electromagnetic clutch 5 is engaged, and the engine speed is zero.
  • the starter is started, the input power of the starter is transmitted to the input gear 23 through the starter gear pair 10, wherein Since no power flows into the input carrier 21 at this time, and the input end 31 of the fixed one-way clutch 3 is coupled to the fixed component, the steering is restricted to make the input carrier 21 unable to rotate opposite to the engine, and the rotational speed is zero.
  • the power transmitted to the input gear 23 is transmitted to the output ring gear 22 through the planetary gear 20 on the input carrier 21, and the output ring gear 22 is passed through the output gear 9, the input end 71 of the neutral gear mechanism 7.
  • the input gear 8, the input ring gear 29, and the electromagnetic clutch 5 are transmitted to the input shaft 1 and then transmitted to the crankshaft of the engine.
  • the torque transmitted to the crankshaft of the engine is generated to generate sufficient starting torque to overcome the starting resistance of the engine, the engine is Start and start to accelerate.
  • the input power, input speed and load of the engine are unchanged, that is, the speed and torque of the input shaft 1 are constant.
  • the idle gear mechanism 6 is engaged, the electromagnetic clutch 5 is separated, and the output shaft 6 is rotated.
  • the input power of the engine is transmitted to the input gear 23 via the input shaft 1 and the overrunning clutch 11 , wherein since no power flows into the input carrier 21 at this time, and the input end 31 of the fixed one-way clutch 3 is coupled to the fixed element,
  • the function of restricting the steering is to make the input carrier 21 not to rotate opposite to the engine, and the rotation speed is zero.
  • the power transmitted to the input carrier 21 is transmitted to the output teeth through the planetary gears 20 thereon.
  • the ring 22, the output ring gear 22 is then transmitted through the output gear 9 to the input end 71 of the neutral gear mechanism 7, and the input 71 of the neutral gear mechanism 7 diverts the power transmitted thereto into two paths, one way to the present invention.
  • the output shaft 6 is passed through the input gear 8 to the input ring gear 29, and the input ring gear 29 is transmitted to the output ring gear 28 through the planetary gear 20 on the fixed carrier 27, and then transmitted.
  • the coupling input carrier 24 is transmitted to the output gear 25 through the planetary gear 20 thereon, and the output gear 25 is transmitted to the input carrier 21 through the constant-fill fluid coupling 4, and transmitted to the input planet.
  • the power of the frame 21 and the power transmitted from the engine through the input shaft 1 and the overrunning clutch 11 to the input gear 23 are transmitted to the output ring gear 22 through the planetary gear 20 on the input carrier 21, and the output ring gear 22 is again in each element.
  • the repeated cycle of the shifting is continuously performed, wherein the output rotational speed of the constant-fill fluid coupling 4 continuously shifts steplessly with the change of the running resistance, so that the output rotational speed of the input ring gear 22 also constantly changes. And it is transmitted to the output shaft 6 of the present invention through the output gear 9 and the neutral gear mechanism 7, so that the torque of the output shaft 6 decreases as the number of revolutions increases.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a composite constant-filling fluid coupling includes an input shaft 1, a constant-fill fluid coupling 3, a one-way clutch 4, an output shaft 5, an input gear pair 6, and a coupling shaft 7
  • the output gear pair 8 and the overrunning clutch 9 are provided with a planetary gear 20, an output carrier 21, an input gear 22, an input ring gear 23, a fixed carrier 24, and an output gear 25 between the input shaft 1 and the output shaft 5.
  • the input coupling gear 26, the input large gear 27, the input pinion 28, the output shaft carrier 29, the input shaft 1 is coupled with the input gear 22, the coupling shaft 7 and the input end 91 of the overrunning clutch 9, the coupling shaft 7 and the input pinion 28 is coupled, the output end 92 of the overrunning clutch 9 is coupled with the input gear 81 of the output gear pair 8, and the output gear pair
  • the output gear 82 of the 8 is coupled to the input gear 61 of the input gear pair 6.
  • the output 42 of the one-way clutch 4 is coupled to the output gear 62 of the input gear pair 6 and the input end 31 of the constant-fill fluid coupling 3, and the constant charge is applied.
  • the output end 32 of the fluid coupling 3 is coupled to the input ring gear 23.
  • the input ring gear 23 cooperates with the output carrier 21 and the input gear 22 through the planetary gear 20 on the output carrier 21, and outputs the carrier 21 and the input.
  • the coupling gear 26 and the input large gear 27 are coupled, and the input coupling gear 26 cooperates with the fixed carrier 24 and the output gear 25 through the planetary gear 20 on the fixed carrier 24, and the fixed carrier 24 is fixed to the fixed component, and the output gear 25 is fixed.
  • Coupling with the input end 41 of the one-way clutch 4, the input bull gear 27 cooperates with the input pinion 28 and the output shaft carrier 29 through the planetary gear 20 on the output shaft carrier 29, and the output shaft carrier 29 and the output shaft 5 Join.
  • the input gear 22 and the input ring gear 23 merge the power transmitted to the respective planets 20 on the output carrier 21 to the output carrier 21, and since the constant-fill fluid coupling 3 is coupled to the input ring gear 23, the input teeth are input.
  • the rotational speed of the ring 23 can be constantly varied as the rotational speed of the constant-fill fluid coupling 3 changes, so that the rotational speed of the output carrier 21 also changes.
  • the input power is split into three paths through the input shaft 1, the first path is transmitted to the input pinion 28, the second path is transmitted to the input gear 22 via the coupling shaft 7, and the third path is passed through the overrunning clutch 9, the output gear pair 8, and the input gear pair. 6 and the constant charge type fluid coupling 3 is transmitted to the input ring gear 23,
  • the input gear 22 and the input ring gear 23 converge the planetary gears 20 transmitted to the respective powers through the output carrier 21 to the output carrier 21, and the output carrier 21 is divided into two paths, one way to the input large gear 27, At this time, the input bull gear 27 and the input pinion 28 converge the planetary gears 20 transmitted to the respective powers through the output shaft carrier 29 to the output shaft carrier 29, and the output shaft carrier 29 is transmitted to the output shaft 5 of the present invention. Thereby, the external output of the engine power through the output shaft 5 is achieved.
  • the power transmitted to the input coupling gear 26 is increased, and the input coupling gear 26 transmits power through the planetary gear 20 on the fixed carrier 24.
  • the output gear 25 is transmitted to the input ring gear 23 through the one-way clutch 4 and the constant-fill fluid coupling 3, that is, the input power of the input ring gear 23 is increased, and the input gear 22 and the input tooth are increased.
  • the ring 23 converges the respective powers through the planetary gears 20 on the output carrier 21 to the output carrier 21, and the output carrier 21 repeats the above process, so that the rotational speed transmitted to the input bull gear 27 is constantly changed, and the input gear is input.
  • the rotational speed input to the large gear 27 changes with the input power or running resistance of the vehicle, and the lower the resistance, the higher the rotational speed transmitted to the input bull gear 27 The higher, conversely, the lower, thereby realizing the composite constant-fill fluid coupling that can change the speed according to the input power or the running resistance of the vehicle.
  • the input power, the input rotational speed and the load of the engine are constant, that is, the rotational speed and torque of the input shaft 1 are constant, and before the vehicle starts, the rotational speed of the output shaft 5 is zero, and the input power of the engine passes through the input shaft 1
  • the split is three paths, the first path is transmitted to the input pinion 28, the second path is transmitted to the input gear 22 via the coupling shaft 7, and the third path is passed through the overrunning clutch 9, the output gear pair 8, the input gear pair 6, and the constant filling liquid.
  • the force coupling 3 is transmitted to the input ring gear 23, the input gear 22, the input ring gear 23 converges the respective powers through the planetary gears 20 on the output carrier 21 to the output carrier 21, and the output carrier 21 is split into two.
  • the road is transmitted all the way to the input bull gear 27, at which time the input bull gear 27 and the input pinion 28 converge the planetary gear 20 that is transmitted to the respective power through the output shaft carrier 29.
  • the output shaft carrier 29 and the output shaft carrier 29 are transmitted to the output shaft 5 of the present invention, thereby realizing the external output of the engine power through the output shaft 5.
  • the vehicle starts to accelerate.
  • the resistance of the output shaft 5 decreases, the other is transmitted to the input.
  • the power of the coupling gear 26 is increased accordingly, and the input coupling gear 26 transmits power to the output gear 25 through the planetary gears 20 on the fixed carrier 24, and the output gear 25 passes through the one-way clutch 4 and the constant-fill hydraulic coupling.
  • the input 3 is transmitted to the input ring gear 23, that is, the input power of the input ring gear 23 is increased, and the input gear 22 and the input ring gear 23 merge the power transmitted to the respective power through the planetary gear 20 on the output carrier 21 to the output.
  • the carrier 21, the output carrier 21 repeats the above process so that the rotational speed transmitted to the input bull gear 27 is constantly changing, and the input bull gear 27 and the input pinion 28 transmit the power to the respective planets passing through the output shaft carrier 29.
  • the gear 20 merges with the output shaft carrier 29, and the output shaft carrier 29 is transmitted to the output shaft 5 of the present invention, and the torque transmitted to the output shaft 5 is transmitted to the drive through the transmission system.
  • the traction force generated is sufficient to further overcome the resistance of the vehicle, the car starts to accelerate, and the rotational speed of the output end 32 of the constant-fill fluid coupling 3 is gradually increased, and the rotational speed of the input ring gear 23 associated therewith is also followed. Gradually, the rotational speeds on the input ring gear 23, the input bull gear 27, and the output shaft 5 are continuously increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Structure Of Transmissions (AREA)

Abstract

一种具有复合型恒充式液力偶合器的起动器,其中输入轴(1)与电磁离合器(5)以及超越离合器(11)联接,超越离合器(11)与输入齿轮(23)以及起动机齿轮副(10)联接,输出齿圈(22)与输出齿轮(9)啮合,空挂档机构(7)与输入齿轮(8)以及输出齿轮(9)联接,空挂档机构(7)与输出轴(6)联接,输入齿轮(8)与输入齿圈(29)啮合,输入齿圈(29)与电磁离合器(5)联接,输出齿圈(28)与联接输入行星架(24)联接,输出齿轮(25)与恒充式液力偶合器(4)联接,输入行星架(21)与固定单向离合器(3)以及恒充式液力偶合器(4)联接。

Description

一种复合型恒充式液力偶合器以及起动器 技术领域
本发明属于液力偶合器以及起动领域,更具体地说,它是一种用于各种地面车辆、船舶、铁道机车以及机床的复合型恒充式液力偶合器以及起动器。
背景技术
目前,液力偶合器都是根据流体静力学等原理来设计的,它所能传递的功率不大,并且效率不高;另外,成本高。
发明内容
本发明克服了现有技术的不足,提供了一种延长发动机的使用寿命,结构简单,操控方便,低成本,节能高效的复合型恒充式液力偶合器以及起动器。
为了实现本发明的目的,本发明采用的技术方案以下:
一种复合型恒充式液力偶合器以及起动器,包括输入轴(1)、固定单向离合器(3)、恒充式液力偶合器(4)、电磁离合器(5)、输出轴(6)、空挂档机构(7)、输入齿轮(8)、输出齿轮(9)、起动机齿轮副(10)、超越离合器(11),所述的输入轴(1)与输出轴(6)之间设有行星齿轮(20)、输入行星架(21)、输出齿圈(22)、输入齿轮(23)、联接输入行星架(24)、输出齿轮(25)、固定齿圈(26)、固定行星架(27)、输出齿圈(28)、输入齿圈(29),输入轴(1)与电磁离合器(5)的输出端(52)以及超越离合器(11)的输入端(111)联接,超越离合器(11)的输出端(112)与输入齿轮(23)以及起动机齿轮副(10)的输出齿轮(102)联接,起动机齿轮副(10)的输出齿轮(102)与起动机齿轮副(10)的输入齿轮(101)相互配合工作,输入齿轮(23)通过输入行星架(21)上的行星齿轮(20)与输入行星架(21)、输出齿圈(22)相互配合工作,输出齿圈(22)与输出齿轮(9)啮合,空挂档机构(7)的输入端(71)与输入齿轮(8)以及输出齿轮(9)联接,空挂档机构(7)的输出端(72)与输出轴(6)联接,输入齿轮(8)与输入齿圈(29)啮合,输入齿圈(29)与电磁离合器(5)的输入端(51)联接,并且通过固定行星架(27)上的行星齿轮(20)与固定行星架(27)、输出齿圈(28)相互配合工作,输出齿圈(28)与联接输入行星架(24)联接,联接输入行星架(24)通过其上的行星齿轮(20)与输出齿轮(25)、固定齿圈(26)相互配合工作,输出齿轮(25)与恒充式液力偶合器(4)的输入端(41)联接,输入行星架(21)与固定单向离合器(3)的输出端(32)以及恒充式液力偶合器(4)的输出端(42)联接,固定单向离合器(3)的输入端(31)、固定齿圈(26)以及固定行星架(27)与固定元件联接。
一种复合型恒充式液力偶合器,包括输入轴(1)、恒充式液力偶合器(3)、单向离合器(4)、输出轴(5)、输入齿轮副(6)、联接轴(7)、输出齿轮副(8)、超越离合器(9),所述的输入轴(1)与输出轴(5)之间设有行星齿轮(20)、输出行星架(21)、输入齿轮(22)、输入齿圈(23)、固定行星架(24)、输出齿轮(25)、输入联接齿轮(26)、输入大齿轮(27)、输入小齿轮(28)、输出轴行星架(29),输入轴(1)与输入齿轮(22)、联接轴(7)以及超越离合器(9)的输入端(91)联接,联接轴(7)与输入小齿轮(28)联接,超越离合器(9)的输出端 (92)与输出齿轮副(8)的输入齿轮(81)联接,输出齿轮副(8)的输出齿轮(82)与输入齿轮副(6)的输入齿轮(61)联接,单向离合器(4)的输出端(42)与输入齿轮副(6)的输出齿轮(62)以及恒充式液力偶合器(3)的输入端(31)联接,恒充式液力偶合器(3)的输出端(32)与输入齿圈(23)联接,输入齿圈(23)通过输出行星架(21)上的行星齿轮(20)与输出行星架(21)、输入齿轮(22)相互配合工作,输出行星架(21)与输入联接齿轮(26)以及输入大齿轮(27)联接,输入联接齿轮(26)通过固定行星架(24)上的行星齿轮(20)与固定行星架(24)、输出齿轮(25)相互配合工作,固定行星架(24)与固定元件固接,输出齿轮(25)与单向离合器(4)的输入端(41)联接,输入大齿轮(27)通过输出轴行星架(29)上的行星齿轮(20)与输入小齿轮(28)、输出轴行星架(29)相互配合工作,输出轴行星架(29)与输出轴(5)联接。
所述各个需要联接的元件,而被其它若干元件分隔的元件,可采用中空或联接架的方法,穿过或跨过其它若干元件,与之连接;当联接的元件是齿轮或齿圈时,则相互啮合或联接;所述各个齿轮副以及变速机构的传动比,按实际需要设计。
所述恒充式液力偶合器可以选择双涡轮液力变矩器代替。
所述空挂档机构可以选择离合器代替。
本发明应用于车辆时,能够根据车辆行驶时受到阻力的大小,自动地改变输出扭矩以及速度的变化。
本发明具有以下的优点:
(1)本发明大部份功率由齿圈、行星齿轮、行星架、齿轮传递,因而传动功率和传动效率都极大地提高,而且结构简单,更易于维修;
(2)本发明的变矩和变速是自动完成的,能实现高效率的传动,并且除了起步以外,都能使发动机和起动机在最佳范围内工作,与其它变速器相比,在发动机和起动机等效的前提下,它降低了发动机和起动机的制造成本;
(3)本发明使发动机和起动机处于经过济转速区域内运转,也就是使发动机在非常小污染排放的转速范围内工作,避免了发动机在怠速和高速运行时,排放大量废气,从而减少了废气的排放,有利于保护环境;
(4)本发明能利用内部转速差起缓冲和过载保护的作用,有利于延长发动机和传动系以及起动机的使用寿命,另外,当行驶阻力增大,则能使车辆自动降速,反之则升速,有利于提高车辆的行驶性能;
(5)本发明使输入功率不间断,可保证车辆有良好的加速性和较高的平均车速,使发动机的磨损减少,延长了大修间隔里程,有利于提高生产率;
(6)本发明起动时,具有自动变矩和变速的性能,输入功率不间断,不会发生冲击现象,可保证发动机起动平稳、减少噪音,使发动机的起动磨损减少,并延长了起动电机以及蓄电池的使用寿命;
(7)本发明减少了现今起动机的传动机构,降低了制造成本,发动机起动后,只需对起动电机采取制动以及分离的措施,使其停止传动。
另外,本发明是是一种用于各种地面车辆、船舶、铁道机车以及机床的复合型恒充式液力偶合器以及起动器。
附图说明
说明书附图1为本发明实施例一的结构图;
说明书附图2为本发明实施例二的结构图;
附图中两个元件之间的连接处,运用粗实线表示固定连接,细实线表示两个元件可以相对转动。
具体实施方式
下面结合说明书附图与具体实施方式对本发明作进一步的详细说明:
实施例一:
如图1中所示,一种复合型恒充式液力偶合器以及起动器,包括输入轴1、固定单向离合器3、恒充式液力偶合器4、电磁离合器5、输出轴6、空挂档机构7、输入齿轮8、输出齿轮9、起动机齿轮副10、超越离合器11,所述的输入轴1与输出轴6之间设有行星齿轮20、输入行星架21、输出齿圈22、输入齿轮23、联接输入行星架24、输出齿轮25、固定齿圈26、固定行星架27、输出齿圈28、输入齿圈29,输入轴1与电磁离合器5的输出端52以及超越离合器11的输入端111联接,超越离合器11的输出端112与输入齿轮23以及起动机齿轮副10的输出齿轮102联接,起动机齿轮副10的输出齿轮102与起动机齿轮副10的输入齿轮101相互配合工作,输入齿轮23通过输入行星架21上的行星齿轮20与输入行星架21、输出齿圈22相互配合工作,输出齿圈22与输出齿轮9啮合,空挂档机构7的输入端71与输入齿轮8以及输出齿轮9联接,空挂档机构7的输出端72与输出轴6联接,输入齿轮8与输入齿圈29啮合,输入齿圈29与电磁离合器5的输入端51联接,并且通过固定行星架27上的行星齿轮20与固定行星架27、输出齿圈28相互配合工作,输出齿圈28与联接输入行星架24联接,联接输入行星架24通过其上的行星齿轮20与输出齿轮25、固定齿圈26相互配合工作,输出齿轮25与恒充式液力偶合器4的输入端41联接,输入行星架21与固定单向离合器3的输出端32以及恒充式液力偶合器4的输出端42联接,固定单向离合器3的输入端31、固定齿圈26以及固定行星架27与固定元件联接。
发动机起动前,分离空挂档机构6,接合电磁离合器5,起动机的输入功率经过起动机齿轮副10传递到输入齿轮23,输入齿轮23通过输入行星架21上的行星齿轮20传递到输出齿圈22,输出齿圈22再通过输出齿轮9、空挂档机构7的输入端71、输入齿轮8、输入齿圈29以及电磁离合器5传递到输入轴1,再传递到发动机曲轴上,产生的起动力足以克服发动机起动阻力时,发动机起动。
发动机起动后,接合空挂档机构6,分离电磁离合器5,输入齿轮23通过输入行星架21上的行星齿轮20把由发动机经过输入轴1以及超越离合器11传递到此的功率,传递到输出齿圈22,输出齿圈22再通过输出齿轮9传递到空挂档机构7的输入端71,空挂档机构7的输入端71把传递到此的功率分流为两路,一路传递到本发明的输出轴6;另一路通过输入齿轮8传递到输入齿圈29,输入齿圈29再通过固定行星架27上的行星齿轮20传递到输出齿圈28,再传递到联接输入行星架24联接输入行星架24再通过其上的行星齿轮20传递到输出齿轮25,输出齿轮25再通过恒充式液力偶合器4传递到输入行星架21,传递到输入行星架21的功率以及由发动机经过输入轴1以及超越离合器11传递到输入齿轮23的功率,则通过输入行星架21上的行星齿轮20传递到输出齿圈22,输出齿圈22再在各个 元件之间不断地进行变速的反复循环,其中,恒充式液力偶合器4的输出转速不断地随着输入功率、行驶阻力的变化而无级地变速,从而使输出齿圈22的输出转速也不断地变化,并且通过输出齿轮9以及空挂档机构7传递至本发明的输出轴6,从而实现了把发动机的功率通过输出轴6对外输出。
对于本发明,当输入轴1的转速不变,输入行星架21、输出齿圈22以及输出轴6上的扭矩随其转速的变化而变化,转速越低,传递到输入行星架21、输出齿圈22以及输出轴6上的扭矩就越大,反之,则越小,从而实现本发明能随车辆行驶阻力的不同,改变力矩以及速度的复合型恒充式液力偶合器以及起动器。
本发明使用时,发动机起动前,分离空挂档机构6,接合电磁离合器5,发动机的转速为零,当起动机启动,起动机的输入功率经过起动机齿轮副10传递到输入齿轮23,其中,由于此时没有功率流入输入行星架21,并且固定单向离合器3的输入端31与固定元件联接,起限制转向的作用,使输入行星架21不能与发动机相反的转向转动,转速为零,此时,传递到输入齿轮23的功率,则通过输入行星架21上的行星齿轮20把功率传递到输出齿圈22,输出齿圈22再通过输出齿轮9、空挂档机构7的输入端71、输入齿轮8、输入齿圈29以及电磁离合器5传递到输入轴1,再传递到发动机曲轴上,当传递到发动机的曲轴上的扭矩,产生的起动力足以克服发动机的起动阻力时,发动机则起动并开始加速。
发动机起动后,设发动机的输入功率、输入转速及其负荷不变,即输入轴1的转速与扭矩为常数,汽车起步前,接合空挂档机构6,分离电磁离合器5,输出轴6的转速为零,发动机的输入功率经过输入轴1以及超越离合器11,传递到输入齿轮23,其中,由于此时没有功率流入输入行星架21,并且固定单向离合器3的输入端31与固定元件联接,起限制转向的作用,使输入行星架21,不能与发动机相反的转向转动,转速为零,此时,传递到输入行星架21的功率,则通过其上的行星齿轮20把功率传递到输出齿圈22,输出齿圈22再通过输出齿轮9传递到空挂档机构7的输入端71,空挂档机构7的输入端71把传递到此的功率分流为两路,一路传递到本发明的输出轴6;另一路通过输入齿轮8传递到输入齿圈29,输入齿圈29再通过固定行星架27上的行星齿轮20传递到输出齿圈28,再传递到联接输入行星架24,联接输入行星架24再通过其上的行星齿轮20传递到输出齿轮25,输出齿轮25再通过恒充式液力偶合器4传递到输入行星架21,传递到输入行星架21的功率以及由发动机经过输入轴1以及超越离合器11传递到输入齿轮23的功率,则通过输入行星架21上的行星齿轮20传递到输出齿圈22,输出齿圈22再在各个元件之间不断地进行变速的反复循环,其中,恒充式液力偶合器4的输出转速不断地随着行驶阻力的变化而无级地变速,从而使输入齿圈22的输出转速也不断地变化,并且通过输出齿轮9以及空挂档机构7传递至本发明的输出轴6,从而使输出轴6的扭矩随着转速的增加而减少。
实施例二:
如图2中所示,一种复合型恒充式液力偶合器,包括输入轴1、恒充式液力偶合器3、单向离合器4、输出轴5、输入齿轮副6、联接轴7、输出齿轮副8、超越离合器9,所述的输入轴1与输出轴5之间设有行星齿轮20、输出行星架21、输入齿轮22、输入齿圈23、固定行星架24、输出齿轮25、输入联接齿轮26、输入大齿轮27、输入小齿轮28、输出轴行星架29,输入轴1与输入齿轮22、联接轴7以及超越离合器9的输入端91联接,联接轴7与输入小齿轮28联接,超越离合器9的输出端92与输出齿轮副8的输入齿轮81联接,输出齿轮副 8的输出齿轮82与输入齿轮副6的输入齿轮61联接,单向离合器4的输出端42与输入齿轮副6的输出齿轮62以及恒充式液力偶合器3的输入端31联接,恒充式液力偶合器3的输出端32与输入齿圈23联接,输入齿圈23通过输出行星架21上的行星齿轮20与输出行星架21、输入齿轮22相互配合工作,输出行星架21与输入联接齿轮26以及输入大齿轮27联接,输入联接齿轮26通过固定行星架24上的行星齿轮20与固定行星架24、输出齿轮25相互配合工作,固定行星架24与固定元件固接,输出齿轮25与单向离合器4的输入端41联接,输入大齿轮27通过输出轴行星架29上的行星齿轮20与输入小齿轮28、输出轴行星架29相互配合工作,输出轴行星架29与输出轴5联接。
输入齿轮22、输入齿圈23把传递到各自的功率通过输出行星架21上的行星齿轮20汇流于输出行星架21,由于恒充式液力偶合器3与输入齿圈23联接,所以输入齿圈23的转速可以不断地随着恒充式液力偶合器3转速的变化而变化,从而使输出行星架21的转速也随之变化。
输入功率经过输入轴1分流为三路,第一路传递到输入小齿轮28,第二路经过联接轴7传递到输入齿轮22,第三路经过超越离合器9、输出齿轮副8、输入齿轮副6以及恒充式液力偶合器3传递到输入齿圈23,
输入齿轮22、输入齿圈23把传递到各自的功率通过输出行星架21上的行星齿轮20汇流于输出行星架21,输出行星架21再分流为两路,一路传递到输入大齿轮27,此时,输入大齿轮27与输入小齿轮28把传递到各自的功率通过输出轴行星架29上的行星齿轮20汇流于输出轴行星架29,输出轴行星架29则传递至本发明的输出轴5,从而实现了把发动机的功率通过输出轴5对外输出。
当发动机的输入功率增大或者输出轴5的阻力减少时,另一路传递到输入联接齿轮26的功率随之而增大,输入联接齿轮26则通过固定行星架24上的行星齿轮20把功率传递到输出齿轮25,输出齿轮25再通过单向离合器4以及恒充式液力偶合器3传递到输入齿圈23,即输入齿圈23的输入功率随之而增大,输入齿轮22、输入齿圈23把传递到各自的功率通过输出行星架21上的行星齿轮20汇流于输出行星架21,输出行星架21再重复上述过程,使传递到输入大齿轮27上的转速不断变化,输入大齿轮27与输入小齿轮28把传递到各自的功率通过输出轴行星架29上的行星齿轮20汇流于输出轴行星架29,输出轴行星架29则传递到本发明的输出轴5,从而实现了把发动机的功率通过输出轴5对外输出。
对于本发明,当输入轴1的转速不变,输入大齿轮27上的转速,则随着车辆输入功率或者行驶阻力的不同而变化,阻力越低,传递到输入大齿轮27上的转速就越高,反之,则越低,从而实现本发明能随着车辆输入功率或者行驶阻力的不同而改变速度的复合型恒充式液力偶合器。
本发明使用时,设发动机的输入功率、输入转速及其负荷不变,即输入轴1的转速与扭矩为常数,汽车起步前,输出轴5的转速为零,发动机的输入功率经过输入轴1分流为三路,第一路传递到输入小齿轮28,第二路经过联接轴7传递到输入齿轮22,第三路经过超越离合器9、输出齿轮副8、输入齿轮副6以及恒充式液力偶合器3传递到输入齿圈23,输入齿轮22、输入齿圈23把传递到各自的功率通过输出行星架21上的行星齿轮20汇流于输出行星架21,输出行星架21再分流为两路,一路传递到输入大齿轮27,此时,输入大齿轮27与输入小齿轮28把传递到各自的功率通过输出轴行星架29上的行星齿轮20汇流于输 出轴行星架29,输出轴行星架29则传递至本发明的输出轴5,从而实现了把发动机的功率通过输出轴5对外输出。
当传递到输出轴5上的扭矩,经过传动系统传动到驱动轮上产生的牵引力足以克服汽车行阻力时,汽车则开始加速,此时,当输出轴5的阻力减少时,另一路传递到输入联接齿轮26的功率随之而增大,输入联接齿轮26则通过固定行星架24上的行星齿轮20把功率传递到输出齿轮25,输出齿轮25再通过单向离合器4以及恒充式液力偶合器3传递到输入齿圈23,即输入齿圈23的输入功率随之而增大,输入齿轮22、输入齿圈23把传递到各自的功率通过输出行星架21上的行星齿轮20汇流于输出行星架21,输出行星架21再重复上述过程,使传递到输入大齿轮27上的转速不断变化,输入大齿轮27与输入小齿轮28把传递到各自的功率通过输出轴行星架29上的行星齿轮20汇流于输出轴行星架29,输出轴行星架29则传递到本发明的输出轴5,当传递到输出轴5上的扭矩,经过传动系统传动到驱动轮上产生的牵引力足以进一步克服汽车行阻力时,汽车则开始加速,恒充式液力偶合器3的输出端32的转速也逐渐升高,与之相联的输入齿圈23的转速也随之逐渐升高,从而使输入齿圈23、输入大齿轮27以及输出轴5上的转速随之增加而不断地升高。

Claims (2)

  1. 一种复合型恒充式液力偶合器以及起动器,包括输入轴(1)、固定单向离合器(3)、恒充式液力偶合器(4)、电磁离合器(5)、输出轴(6)、空挂档机构(7)、输入齿轮(8)、输出齿轮(9)、起动机齿轮副(10)、超越离合器(11),其特征在于:所述的输入轴(1)与输出轴(6)之间设有行星齿轮(20)、输入行星架(21)、输出齿圈(22)、输入齿轮(23)、联接输入行星架(24)、输出齿轮(25)、固定齿圈(26)、固定行星架(27)、输出齿圈(28)、输入齿圈(29),输入轴(1)与电磁离合器(5)的输出端(52)以及超越离合器(11)的输入端(111)联接,超越离合器(11)的输出端(112)与输入齿轮(23)以及起动机齿轮副(10)的输出齿轮(102)联接,起动机齿轮副(10)的输出齿轮(102)与起动机齿轮副(10)的输入齿轮(101)相互配合工作,输入齿轮(23)通过输入行星架(21)上的行星齿轮(20)与输入行星架(21)、输出齿圈(22)相互配合工作,输出齿圈(22)与输出齿轮(9)啮合,空挂档机构(7)的输入端(71)与输入齿轮(8)以及输出齿轮(9)联接,空挂档机构(7)的输出端(72)与输出轴(6)联接,输入齿轮(8)与输入齿圈(29)啮合,输入齿圈(29)与电磁离合器(5)的输入端(51)联接,并且通过固定行星架(27)上的行星齿轮(20)与固定行星架(27)、输出齿圈(28)相互配合工作,输出齿圈(28)与联接输入行星架(24)联接,联接输入行星架(24)通过其上的行星齿轮(20)与输出齿轮(25)、固定齿圈(26)相互配合工作,输出齿轮(25)与恒充式液力偶合器(4)的输入端(41)联接,输入行星架(21)与固定单向离合器(3)的输出端(32)以及恒充式液力偶合器(4)的输出端(42)联接,固定单向离合器(3)的输入端(31)、固定齿圈(26)以及固定行星架(27)与固定元件联接。
  2. 一种复合型恒充式液力偶合器,包括输入轴(1)、恒充式液力偶合器(3)、单向离合器(4)、输出轴(5)、输入齿轮副(6)、联接轴(7)、输出齿轮副(8)、超越离合器(9),其特征在于:所述的输入轴(1)与输出轴(5)之间设有行星齿轮(20)、输出行星架(21)、输入齿轮(22)、输入齿圈(23)、固定行星架(24)、输出齿轮(25)、输入联接齿轮(26)、输入大齿轮(27)、输入小齿轮(28)、输出轴行星架(29),输入轴(1)与输入齿轮(22)、联接轴(7)以及超越离合器(9)的输入端(91)联接,联接轴(7)与输入小齿轮(28)联接,超越离合器(9)的输出端(92)与输出齿轮副(8)的输入齿轮(81)联接,输出齿轮副(8)的输出齿轮(82)与输入齿轮副(6)的输入齿轮(61)联接,单向离合器(4)的输出端(42)与输入齿轮副(6)的输出齿轮(62)以及恒充式液力偶合器(3)的输入端(31)联接,恒充式液力偶合器(3)的输出端(32)与输入齿圈(23)联接,输入齿圈(23)通过输出行星架(21)上的行星齿轮(20)与输出行星架(21)、输入齿轮(22)相互配合工作,输出行星架(21)与输入联接齿轮(26)以及输入大齿轮(27)联接,输入联接齿轮(26)通过固定行星架(24)上的行星齿轮(20)与固定行星架(24)、输出齿轮(25)相互配合工作,固定行星架(24)与固定元件固接,输出齿轮(25)与单向离合器(4)的输入端(41)联接,输入大齿轮(27)通过输出轴行星架(29)上的行星齿轮(20)与输入小齿轮(28)、输出轴行星架(29)相互配合工作,输出轴行星架(29)与输出轴(5)联接。
PCT/CN2016/088749 2015-07-07 2016-07-06 一种复合型恒充式液力偶合器以及起动器 WO2017005185A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680039170.8A CN108351009A (zh) 2015-07-07 2016-07-06 一种复合型恒充式液力偶合器以及起动器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510389862.2 2015-07-07
CN201510389862.2A CN105090430A (zh) 2015-07-07 2015-07-07 一种复合型恒充式液力偶合器以及起动器

Publications (1)

Publication Number Publication Date
WO2017005185A1 true WO2017005185A1 (zh) 2017-01-12

Family

ID=54571490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088749 WO2017005185A1 (zh) 2015-07-07 2016-07-06 一种复合型恒充式液力偶合器以及起动器

Country Status (3)

Country Link
CN (2) CN105090430A (zh)
HK (1) HK1216331A1 (zh)
WO (1) WO2017005185A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090430A (zh) * 2015-07-07 2015-11-25 吴志强 一种复合型恒充式液力偶合器以及起动器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770879A (en) * 1970-12-03 1973-11-06 T Watson Rotary mechanical translating device
JP3570553B2 (ja) * 2001-11-20 2004-09-29 株式会社エクセディ トルク伝達装置
CN1991211A (zh) * 2005-12-28 2007-07-04 丰田自动车株式会社 车辆用变矩器以及检查其止推轴承的装配的方法
CN102312976A (zh) * 2010-07-07 2012-01-11 吴志强 一种复合型恒充式液力偶合器
CN104295692A (zh) * 2014-09-26 2015-01-21 贵州大学 一种带行星轮系液力变矩器
CN104455299A (zh) * 2014-12-12 2015-03-25 吴志强 一种复合型恒充式液力偶合器以及起动器
CN104455297A (zh) * 2014-12-12 2015-03-25 吴志强 一种复合行星齿轮传动的液力偶合器以及起动器
CN105090430A (zh) * 2015-07-07 2015-11-25 吴志强 一种复合型恒充式液力偶合器以及起动器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200242B1 (en) * 1999-12-10 2001-03-13 General Motors Corporation Powertrain with a multi-speed transmission
CN101235877B (zh) * 2007-02-02 2012-12-19 吴志强 一种无级变速器
CN101012870A (zh) * 2007-02-02 2007-08-08 吴志强 一种变矩器
ATE524341T1 (de) * 2007-03-05 2011-09-15 Kubota Kk Übertragungseinrichtung
JP2009113519A (ja) * 2007-11-01 2009-05-28 Toyota Motor Corp 車両の動力伝達装置
CN101598203B (zh) * 2008-06-06 2013-06-12 吴志强 一种复合型钢球外锥轮式无级变速器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770879A (en) * 1970-12-03 1973-11-06 T Watson Rotary mechanical translating device
JP3570553B2 (ja) * 2001-11-20 2004-09-29 株式会社エクセディ トルク伝達装置
CN1991211A (zh) * 2005-12-28 2007-07-04 丰田自动车株式会社 车辆用变矩器以及检查其止推轴承的装配的方法
CN102312976A (zh) * 2010-07-07 2012-01-11 吴志强 一种复合型恒充式液力偶合器
CN104295692A (zh) * 2014-09-26 2015-01-21 贵州大学 一种带行星轮系液力变矩器
CN104455299A (zh) * 2014-12-12 2015-03-25 吴志强 一种复合型恒充式液力偶合器以及起动器
CN104455297A (zh) * 2014-12-12 2015-03-25 吴志强 一种复合行星齿轮传动的液力偶合器以及起动器
CN105090430A (zh) * 2015-07-07 2015-11-25 吴志强 一种复合型恒充式液力偶合器以及起动器

Also Published As

Publication number Publication date
CN108351009A (zh) 2018-07-31
HK1216331A1 (zh) 2016-11-04
CN105090430A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2017005177A1 (zh) 一种复合型箱体式液力偶合器以及起动器
WO2017005184A1 (zh) 一种复合式限矩型水介质液力偶合器以及起动器
CN101761630B (zh) 一种复合型封闭行星锥式无级变速兼起动器
WO2017005181A1 (zh) 一种复合谐波齿轮传动的液力偶合器以及起动器
WO2017005185A1 (zh) 一种复合型恒充式液力偶合器以及起动器
WO2016112800A1 (zh) 一种复合型综合式液力变矩器以及无级变速器
WO2017005180A1 (zh) 一种复合型后置齿轮箱体式液力偶合器以及起动器
WO2017005186A1 (zh) 一种复合型阀控充液式液力偶合器以及起动器
WO2017005183A1 (zh) 一种复合型后辅室延长式限矩型液力偶合器以及起动器
WO2017005176A1 (zh) 一种复合型箱磨式液力偶合器以及起动器
WO2017005179A1 (zh) 一种复合型双腔液力偶合器以及起动器
WO2017005178A1 (zh) 一种复合型外壳带侧辅室的液力偶合器以及起动器
WO2016112804A1 (zh) 一种复合型轴流式液力变矩器以及无级变速器
WO2017005187A1 (zh) 一种复合式调速型液力偶合器以及起动器
WO2017005182A1 (zh) 一种复合式液力异型偶合器以及起动器
WO2016112810A1 (zh) 一种复合型叶轮式液力变矩器以及无级变速器
WO2017004782A1 (zh) 一种复合型液力传动器
WO2016112805A1 (zh) 一种复合型双涡轮液力变矩器以及无级变速器
WO2016112802A1 (zh) 一种复合型可调液力变矩器以及无级变速器
WO2016112811A1 (zh) 一种复合型双导轮式液力变矩器以及无级变速器
WO2016112809A1 (zh) 一种复合型双泵轮液力变矩器以及无级变速器
WO2016112808A1 (zh) 一种复合型向心式液力变矩器以及无级变速器
WO2016112806A1 (zh) 一种复合型溢流阀外置式液力变矩器以及无级变速器
WO2016112803A1 (zh) 一种复合型导叶可调式液力变矩器以及无级变速器
WO2016112801A1 (zh) 一种复合型多元件工作轮液力变矩器以及无级变速器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16820836

Country of ref document: EP

Kind code of ref document: A1