WO2016112811A1 - 一种复合型双导轮式液力变矩器以及无级变速器 - Google Patents

一种复合型双导轮式液力变矩器以及无级变速器 Download PDF

Info

Publication number
WO2016112811A1
WO2016112811A1 PCT/CN2016/070220 CN2016070220W WO2016112811A1 WO 2016112811 A1 WO2016112811 A1 WO 2016112811A1 CN 2016070220 W CN2016070220 W CN 2016070220W WO 2016112811 A1 WO2016112811 A1 WO 2016112811A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
gear
output
carrier
coupled
Prior art date
Application number
PCT/CN2016/070220
Other languages
English (en)
French (fr)
Inventor
吴志强
Original Assignee
吴志强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴志强 filed Critical 吴志强
Priority to CN201680004315.0A priority Critical patent/CN107429811A/zh
Publication of WO2016112811A1 publication Critical patent/WO2016112811A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/08Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion

Definitions

  • the invention belongs to the field of torque converter and shifting, and more particularly to a composite double-guide wheel type torque converter and a continuously variable transmission for various ground vehicles, ships, railway locomotives and machine tools. .
  • the torque converter is designed according to the principles of hydrostatics, etc. It can transmit little power and is not efficient; in addition, the cost is high.
  • the invention overcomes the deficiencies of the prior art, and provides a composite double-guide wheel type hydraulic torque converter and a continuously variable transmission which are prolonged in service life, simple in structure, convenient in operation, low in cost, energy-saving and high-efficiency.
  • a compound double guide wheel type torque converter includes an input shaft (1), an output shaft (3), a double guide wheel type torque converter (4), an overrunning clutch (5), and a coupling gear pair ( 6) Input gear pair (7), between the input shaft (1) and the output shaft (3), a planetary gear (20), an output carrier (21), an input ring gear (22), a fixed gear (23), input planet carrier (24), input small ring gear (25), output large ring gear (26), input pinion (27), output planet carrier (28), input large gear (29), input teeth
  • the ring (22) is coupled with the input shaft (1), and the input ring gear (22) cooperates with the output carrier (21) and the fixed gear (23) through the planetary gear (20) on the output carrier (21) to fix the gear.
  • the input gear (71) is coupled, the output gear (72) of the input gear pair (7) is coupled to the input small ring gear (25), and the output end of the double guide wheel type torque converter (4) (42) Connected to the output end (52) of the overrunning clutch (5) and the input gear (61) of the coupling gear pair (6), input to the planet (24)
  • the planetary gear (20) thereon cooperates with the input small ring gear (25) and the output large ring gear (26), and the output large ring gear (26) is coupled with the input pinion (27), and the input pinion gear is input.
  • a continuously variable transmission of a composite double-guide wheel type torque converter comprising an input shaft (1), an output shaft (3), a double-guide wheel type hydraulic torque converter (4), an overrunning clutch (5), Input gear (6), coupling input gear (7), coupling output gear (8), input gear pair (9), output gear (10), output gear pair (11), said input shaft (1) and output Planetary gear (20), fixed planet carrier (21), input pinion (22), output large ring gear (23), output planet carrier (24), input small ring gear (25) between the shafts (3) Input large ring gear (26), coupling input small ring gear (27), coupling input planet carrier (28), coupling output large ring gear (29), input gear (30), input planet carrier (31), output gear (32)
  • the input pinion (22) cooperates with the fixed carrier (21) and the output large gear (23) through the planetary gear (20) on the fixed carrier (21) to fix the carrier (21) and the overrunning clutch.
  • the input end (51) of (5) is coupled to the fixed component, and the output large ring gear (23) is coupled to the input small ring gear (25) through the input gear (6), and the input small ring gear (25) is passed through the output carrier (24).
  • the ring (26) works in conjunction with the output planet carrier (24) by coupling the input gear (7) coupled to the coupling input small ring gear (27), the input large ring gear (26) is coupled to the coupling input carrier (28) through the output gear (10), and coupled to the planetary gear passing through the input carrier (28) (20)
  • Cooperating with the coupling input small ring gear (27) and the coupling output large ring gear (29), the coupling output large ring gear (29) is coupled with the input gear (30) through the coupling output gear (8), and the input gear ( 30) Working with the input carrier (31) and the output gear (32) through the planetary gear (20) on the input carrier (31), the output gear (32) is coupled with the output shaft (3)
  • the components that need to be coupled may be directly connected.
  • the method of coupling a shaft, a hollow or a coupling frame may be adopted, and may be connected through or across several other components; when the coupled component is When the gears or ring gears are engaged or coupled with each other, the components that do not need to be coupled can be rotated relative to each other.
  • the gear ratios of the gear pairs and the shifting mechanism are designed according to actual needs.
  • the torque converter can be selected from a fluid coupling, a pressure motor and a hydraulic pump, and an electromagnetic clutch.
  • the present invention When the present invention is applied to a vehicle, it is possible to automatically change the output torque and the speed change depending on the magnitude of the resistance that the vehicle is subjected to while traveling.
  • the invention makes the engine and the starter operate in the economic speed region, that is, the engine works in the range of the very small pollution discharge speed, and avoids the engine discharging a large amount of exhaust gas during the idle speed and high speed operation, thereby reducing the exhaust gas. Emissions are conducive to protecting the environment;
  • the invention can utilize the effect of internal speed difference to buffer and overload protection, which is beneficial to prolonging the service life of the engine and the transmission system and the starter.
  • speed up which is beneficial to improve the driving performance of the vehicle;
  • the invention makes the input power uninterrupted, can ensure the vehicle has good acceleration and high average speed, reduces the wear of the engine, prolongs the overhaul interval mileage, and is beneficial to improving productivity.
  • the present invention is a composite double-guide wheel type hydraulic torque converter and a continuously variable transmission for various ground vehicles, ships, railway locomotives, and machine tools.
  • FIG. 1 is a structural view of a first embodiment of the present invention
  • FIG. 2 is a structural view of a second embodiment of the present invention
  • the connection between two components in the drawing uses a thick solid line to indicate a fixed connection, and a thin solid line indicates The two elements can be rotated relative to each other.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a composite double guide wheel type torque converter includes an input shaft 1 , an output shaft 3 , a double guide wheel type torque converter 4 , an overrunning clutch 5 , a coupling gear pair 6 ,
  • the input gear pair 7 is provided with a planetary gear 20, an output carrier 21, an input ring gear 22, a fixed gear 23, an input carrier 24, an input small ring gear 25, and an output between the input shaft 1 and the output shaft 3.
  • the ring gear 26, the input pinion 27, the output carrier 28, the input bull gear 29, the input ring gear 22 is coupled to the input shaft 1, and the input ring gear 22 is passed through the planetary gear 20 on the output carrier 21 and the output carrier 21, and fixed.
  • the gear 23 cooperates, the fixed gear 23 and the input end 51 of the overrunning clutch 5 are coupled to the fixed element, and the output carrier 21 is coupled to the input end 41 of the double guide wheel torque converter 4 and the input gear 71 of the input gear set 7.
  • the output gear 72 of the input gear pair 7 is coupled to the input small ring gear 25, and the output end 42 of the double guide wheel torque converter 4 is coupled to the output end 52 of the overrunning clutch 5 and the input gear 61 of the coupling gear pair 6.
  • the input planet carrier 24 passes through the planetary gear 20 and the input small ring gear 25, and the output is large.
  • the ring 26 cooperates, the output large ring gear 26 is coupled to the input pinion 27, the input pinion 27 cooperates with the output planet carrier 28 and the input bull gear 29 through the planetary gear 20 on the output carrier 28, and the input large gear 29 is
  • the output gear 62 of the coupling gear pair 6 is coupled to the input carrier 24, and the output carrier 28 is coupled to the output shaft 3.
  • the input carrier 24 and the input small ring gear 25 pass the power transmitted thereto through the planetary gears 20 on the input carrier 24 to the output large ring gear 26, and the output large ring gear 26 is transmitted to the input pinion 27, and the input pinion gear is input. 27.
  • the input bull gear 29 then converges the power delivered thereto through the planet gears 20 on the output carrier 28 to the output carrier 28.
  • the two power flows will change according to the change of the rotational speed distribution between the two.
  • the rotational speed of the input carrier 24 and the input large gear 29 is zero, the small ring gear 25 is input.
  • the input pinion 27 reduces the speed and increases the torque.
  • the rotational speed of the output large ring gear 26 and the output carrier 28 also increases, that is, when When the rotational speeds of the input carrier 24 and the input bull gear 29 change, the rotational speeds of the output large ring gear 26, the output carrier 28, and the output shaft 3 also change.
  • the input power is transmitted to the input ring gear 22 via the input shaft 1, and the input ring gear 22 transmits power to the output carrier 21 through the planetary gears 20 on the output carrier 21, and the output carrier 21 splits the power into two paths, first The passage is transmitted to the input small ring gear 25 via the input gear pair 7; the second path is transmitted to the input carrier 24 and the input bull gear 29 via the double guide wheel torque converter 4 and the coupling gear pair 6, and the input carrier 24, The input small ring gear 25 merges the power transmitted thereto through the planetary gears 20 on the input carrier 24 to the output large ring gear 26, and the output large ring gear 26 is transmitted to the input pinion 27, the input pinion 27, and the input large gear.
  • the power transmitted thereto is again transmitted to the output carrier 28 through the planetary gears 20 on the output carrier 28, and the output carrier 28 is transmitted to the output shaft 3, thereby realizing the external output of the engine power through the output shaft 3.
  • the torque on the output large ring gear 26, the output carrier 28, and the output shaft 3 varies with the change of the rotational speed thereof, and the lower the rotational speed is transmitted to the output large ring gear 26,
  • a composite double-guide wheel type torque converter that changes torque and speed with different running resistance.
  • the input power, the input rotational speed and the load of the engine are constant, that is, the rotational speed and torque of the input shaft 1 are constant, and before the vehicle starts, the rotational speed of the output shaft 3 is zero, and the input power of the engine passes through the input shaft 1 Pass to lose Into the ring gear 22, and then through the planetary gear 20 on the output planet carrier 21 to transfer power to the output planet carrier 21, the output carrier 21 to split the power into two, one way through the input gear pair 7 is transmitted to the input small ring gear 25; Wherein, since no or relatively little power flows into the input carrier 24 and the input bull gear 29 at this time, and the input end 51 of the overrunning clutch 5 is coupled to the fixed member, the steering is restricted to make the input carrier 24 and the input gear The steering of 29 cannot be reversed from the input steering, and the rotational speed is zero.
  • the power transmitted to the input small ring gear 25, the power transmitted thereto is converged to the output large ring gear through the planetary gear 20 on the input carrier 24.
  • the output large ring gear 26 is transferred to the input pinion 27, and the input pinion 27 is then passed through the planetary gear 20 on the output carrier 28 to transfer the power transmitted thereto to the output carrier 28, and the output carrier 28 is transmitted to
  • the output shaft 3 when the torque transmitted to the output shaft 3 is transmitted through the transmission system to the driving wheel, the traction force generated by the transmission system is sufficient to overcome the starting resistance of the vehicle, the vehicle starts and accelerates, and the double-guide wheel hydraulic force changes.
  • the rotational speed of the output end 42 of the device 4 is also gradually increased, and the rotational speeds of the input planetary carrier 24 and the input large gear 29 are also gradually increased, so that the output large ring gear 26, the output carrier 28 and the output shaft 3 are outputted.
  • the torque decreases as the speed increases.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a continuously variable transmission of a composite double-guide wheel type torque converter includes an input shaft 1, an output shaft 3, a double-guide wheel type torque converter 4, an overrunning clutch 5, and an input.
  • the input carrier 31 and the output gear 32 are input.
  • the input pinion 22 cooperates with the fixed carrier 21 and the output bull gear 23 through the planetary gear 20 on the fixed carrier 21 to fix the input end 51 of the carrier 21 and the overrunning clutch 5 .
  • the output large ring gear 23 is coupled to the input small ring gear 25 through the input gear 6, and the input small ring gear 25 cooperates with the output carrier 24 and the input large ring gear 26 through the planetary gear 20 on the output carrier 24.
  • the output planet carrier 24 is coupled to the input gear 7 is coupled with the coupling input small ring gear 27, and the input large ring gear 26 is coupled to the coupling input carrier 28 through the output gear 10, and the planetary gear 20 coupled to the input carrier 28 is coupled to the input input small ring gear 27, and the output is large.
  • the ring gear 29 cooperates, the coupling output large ring gear 29 is coupled to the input gear 30 through the coupling output gear 8, and the input gear 30 cooperates with the input carrier 31 and the output gear 32 through the planetary gear 20 on the input carrier 31, and the output gear 32 is coupled to the output shaft 3, the input carrier 31 is coupled to the output gear 92 of the input gear pair 9, the input gear 91 of the input gear pair 9, the input pinion 22, and the input gear 111 of the output gear pair 11 are coupled to the input shaft 1,
  • the output gear 112 of the output gear pair 11 is coupled to the input end 41 of the double guide wheel torque converter 4, the output 42 of the double guide wheel torque converter 4 and the input large ring gear 26 and the overrunning clutch 5
  • the output terminal 52 is coupled.
  • the input small ring gear 25 and the input large ring gear 26 converge the power transmitted thereto through the planetary gears 20 on the output carrier 24 to the output carrier 24, and the output carrier 24 is coupled to the input input teeth through the input input gear 7.
  • the ring 27, coupled to the input small ring gear 27, couples the input planet carrier 28 to the coupled output large ring gear 29 by coupling the power transmitted thereto through the planet gears 20 coupled to the input carrier 28.
  • the two power flows will change according to the change of the rotational speed distribution between the two.
  • the input large ring gear 26 and the rotational speed of the input input carrier 28 are zero, the input small ring gear 25.
  • the input input small ring gear 27 is used to reduce the speed and increase the torque
  • the output carrier 24 and the output output large ring gear 29 are also increased in speed. High, that is, when the input large ring gear 26 and the rotational speed of the input input carrier 28 are changed, the rotational speeds of the output carrier 24, the coupled output large ring gear 29, and the output shaft 3 are also Change.
  • the input power is divided into three paths through the input shaft 1, and the first path is output to the input large ring gear 26 via the output gear pair 11 and the torque converter 4, and the input large ring gear 26 is passed through the output gear 10 to be transmitted to
  • the input input carrier 28 is coupled; the second path is transmitted to the input pinion 22, and the input pinion 22 transmits power to the output large ring gear 23 through the planetary gear 20 on the fixed carrier 21, and the output ring gear 23 is passed through the input gear.
  • 6 is transmitted to the input small ring gear 25, the input small ring gear 25, the input large ring gear 26 is passed through the planetary gears 20 on the output carrier 24 to transfer the power transmitted thereto to the output carrier 24, and the output carrier 24 is coupled.
  • the input gear 7 is transmitted to the coupling input small ring gear 27, the coupling input small ring gear 27, and the coupling input carrier 28 are coupled to the power output to the coupling output large ring gear 29 by the planetary gears 20 coupled to the input carrier 28.
  • the coupling output large ring gear 29 is transmitted to the input gear 30 through the coupling output gear 8, and the third path is transmitted to the input carrier 31 via the input gear pair 9, the input gear 30, the input carrier 31 and the input carrier 31.
  • Planet gear 20, the power transmitted thereto is merged with the output gear 32, and the output gear 32 is transmitted to the output shaft 3, thereby realizing the external output of the engine power through the output shaft 3.
  • the double guide wheel type torque converter 4 when the rotational speed of the input shaft 1 is constant, the torque on the output carrier 24, the coupled output large ring gear 29, and the output shaft 3 varies with the change of the rotational speed thereof, and the lower the rotational speed is transmitted to the output carrier 24,
  • the torque on the output output ring gear 29 and the output shaft 3 is larger, and conversely, the smaller, in the process, the double guide wheel type torque converter 4 also functions as a torque converter, thereby realizing the present invention.
  • a continuously variable transmission of a composite double-guide wheel type torque converter that changes torque and speed depending on the running resistance of the vehicle.
  • the input power, the input rotational speed and the load of the engine are constant, that is, the rotational speed and torque of the input shaft 1 are constant, and before the vehicle starts, the rotational speed of the output shaft 3 is zero, and the input power of the engine passes through the input shaft 1 , is transmitted to the input pinion 22, and then transmits power to the output large ring gear 23 through the planetary gears 20 on the fixed carrier 21, and the output large ring gear 23 is transmitted to the input small ring gear 25 through the input gear 6, wherein At this time, no or relatively little power flows into the input large ring gear 26, the input input carrier 28, and the input end 51 of the overrunning clutch 5 is coupled with the fixed element to restrict the steering, so that the input large ring gear 26 and the coupled input planet The steering of the frame 28 cannot be reversed from the input steering, and the rotational speed is zero.
  • the power transmitted to the input small ring gear 25, the power transmitted thereto is converged to the output carrier through the planetary gears 20 on the output carrier 24.
  • the output carrier 24 is coupled to the input input small ring gear 27 by coupling the input gear 7, and the coupling input small ring gear 27 is transmitted thereto by the planetary gear 20 coupled to the input carrier 28.
  • the ratio flows to the coupled output large ring gear 29, and the coupled output large ring gear 29 is transmitted to the input gear 30 through the coupled output gear 8, and the input gear 30, the input carrier 31 is transmitted to the planetary gear 20 of the input carrier 31 to The power is converged to the output gear 32, and the output gear 32 is transmitted to the output shaft 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • General Details Of Gearings (AREA)

Abstract

一种复合型双导轮式液力变矩器,其中,输入齿圈(22)与输入轴(1)联接,输出行星架(21)与双导轮式液力变矩器(4)以及输入齿轮副(7)联接,输入齿轮副(7)与输入小齿圈(25)联接,双导轮式液力变矩器(4)与超越离合器(5)以及联接齿轮副(6)联接,输出大齿圈(26)与输入小齿轮(27)联接,输入大齿轮(29)以及联接齿轮副(6)与输入行星架(24)联接,输出行星架(28)与输出轴(3)联接。此外,还提供了一种复合型双导轮式液力变矩器的无级变速器。

Description

一种复合型双导轮式液力变矩器以及无级变速器 技术领域
本发明属于液力变矩器以及变速领域,更具体地说,它是一种用于各种地面车辆、船舶、铁道机车以及机床的复合型双导轮式液力变矩器以及无级变速器。
背景技术
目前,液力变矩器都是根据流体静力学等原理来设计的,它所能传递的功率不大,并且效率不高;另外,成本高。
发明内容
本发明克服了现有技术的不足,提供了一种延长发动机的使用寿命,结构简单,操控方便,低成本,节能高效的复合型双导轮式液力变矩器以及无级变速器。
为了实现本发明的目的,本发明采用的技术方案以下:
一种复合型双导轮式液力变矩器,包括输入轴(1)、输出轴(3)、双导轮式液力变矩器(4)、超越离合器(5)、联接齿轮副(6)、输入齿轮副(7),所述的输入轴(1)与输出轴(3)之间设有行星齿轮(20)、输出行星架(21)、输入齿圈(22)、固定齿轮(23)、输入行星架(24)、输入小齿圈(25)、输出大齿圈(26)、输入小齿轮(27)、输出行星架(28)、输入大齿轮(29),输入齿圈(22)与输入轴(1)联接,输入齿圈(22)通过输出行星架(21)上的行星齿轮(20)与输出行星架(21)、固定齿轮(23)配合工作,固定齿轮(23)以及超越离合器(5)的输入端(51)与固定元件联接,输出行星架(21)与双导轮式液力变矩器(4)的输入端(41)以及输入齿轮副(7)的输入齿轮(71)联接,输入齿轮副(7)的输出齿轮(72)与输入小齿圈(25)联接,双导轮式液力变矩器(4)的输出端(42)与超越离合器(5)的输出端(52)以及联接齿轮副(6)的输入齿轮(61)联接,输入行星架(24)通过其上的行星齿轮(20)与输入小齿圈(25)、输出大齿圈(26)配合工作,输出大齿圈(26)与输入小齿轮(27)联接,输入小齿轮(27)与通过输出行星架(28)上的行星齿轮(20)与输出行星架(28)、输入大齿轮(29)配合工作,输入大齿轮(29)以及联接齿轮副(6)的输出齿轮(62)与输入行星架(24)联接,输出行星架(28)与输出轴(3)联接。
一种复合型双导轮式液力变矩器的无级变速器,包括输入轴(1)、输出轴(3)、双导轮式液力变矩器(4)、超越离合器(5)、输入齿轮(6)、联接输入齿轮(7)、联接输出齿轮(8)、输入齿轮副(9)、输出齿轮(10)、输出齿轮副(11),所述的输入轴(1)与输出轴(3)之间设有行星齿轮(20)、固定行星架(21)、输入小齿轮(22)、输出大齿圈(23)、输出行星架(24)、输入小齿圈(25)、输入大齿圈(26)、联接输入小齿圈(27)、联接输入行星架(28)、联接输出大齿圈(29)、输入齿轮(30)、输入行星架(31)、输出齿轮(32),输入小齿轮(22)通过固定行星架(21)上的行星齿轮(20)与固定行星架(21)、输出大齿轮(23)配合工作,固定行星架(21)以及超越离合器(5)的输入端(51)与固定元件联接,输出大齿圈(23)通过输入齿轮(6)与输入小齿圈(25)联接,输入小齿圈(25)通过输出行星架(24)上的行星齿轮(20)与输出行星架(24)、输入大齿圈(26)配合工作,输出行星架(24)通过联接输入齿轮 (7)与联接输入小齿圈(27)联接,输入大齿圈(26)通过输出齿轮(10)与联接输入行星架(28)联接,联接输入行星架(28)通过其上的行星齿轮(20)与联接输入小齿圈(27)、联接输出大齿圈(29)配合工作,联接输出大齿圈(29)通过联接输出齿轮(8)与输入齿轮(30)联接,输入齿轮(30)通过输入行星架(31)上的行星齿轮(20)与输入行星架(31)、输出齿轮(32)配合工作,输出齿轮(32)与输出轴(3)联接,输入行星架(31)与输入齿轮副(9)的输出齿轮(92)联接,输入齿轮副(9)的输入齿轮(91)、输入小齿轮(22)以及输出齿轮副(11)的输入齿轮(111)与输入轴(1)联接,输出齿轮副(11)的输出齿轮(112)与双导轮式液力变矩器(4)的输入端(41)联接,双导轮式液力变矩器(4)的输出端(42)与输入大齿圈(26)以及超越离合器(5)的输出端(52)联接。
所述各个需要联接的元件,可直接连接,当被其它若干元件分隔时,可采用联接轴、中空或联接架的方法,穿过或跨过其它若干元件,与之连接;当联接的元件是齿轮或齿圈时,则相互啮合或联接;各个不需要联接的元件,可以相对转动。
所述各个齿轮副以及变速机构的传动比,按实际需要设计。
所述液力变矩器可选用液力偶合器、压马达和液压泵以及电磁离合器。
本发明应用于车辆时,能够根据车辆行驶时受到阻力的大小,自动地改变输出扭矩以及速度的变化。
本发明具有以下的优点:
(1)本发明大部份功率由齿圈、行星齿轮、行星架、齿轮传递,因而传动功率和传动效率都极大地提高,而且结构简单,更易于维修;
(2)本发明的变矩和变速是自动完成的,能实现高效率的传动,并且除了起步以外,都能使发动机和起动机在最佳范围内工作,与其它变速器相比,在发动机和起动机等效的前提下,它降低了发动机和起动机的制造成本;
(3)本发明使发动机和起动机处于经济转速区域内运转,也就是使发动机在非常小污染排放的转速范围内工作,避免了发动机在怠速和高速运行时,排放大量废气,从而减少了废气的排放,有利于保护环境;
(4)本发明能利用内部转速差起缓冲和过载保护的作用,有利于延长发动机和传动系统以及起动机的使用寿命,另外,当行驶阻力增大,则能使车辆自动降速,反之则升速,有利于提高车辆的行驶性能;
(5)本发明使输入功率不间断,可保证车辆有良好的加速性和较高的平均车速,使发动机的磨损减少,延长了大修间隔里程,有利于提高生产率。
另外,本发明是是一种用于各种地面车辆、船舶、铁道机车以及机床的复合型双导轮式液力变矩器以及无级变速器。
附图说明
说明书图1为本发明实施例一的结构图;说明书图2为本发明实施例二的结构图;附图中两个元件之间的连接处,运用粗实线表示固定连接,细实线表示两个元件可以相对转动。
具体实施方式
下面结合说明书附图与具体实施方式对本发明作进一步的详细说明:
实施例一:
如图1中所示,一种复合型双导轮式液力变矩器,包括输入轴1、输出轴3、双导轮式液力变矩器4、超越离合器5、联接齿轮副6、输入齿轮副7,所述的输入轴1与输出轴3之间设有行星齿轮20、输出行星架21、输入齿圈22、固定齿轮23、输入行星架24、输入小齿圈25、输出大齿圈26、输入小齿轮27、输出行星架28、输入大齿轮29,输入齿圈22与输入轴1联接,输入齿圈22通过输出行星架21上的行星齿轮20与输出行星架21、固定齿轮23配合工作,固定齿轮23以及超越离合器5的输入端51与固定元件联接,输出行星架21与双导轮式液力变矩器4的输入端41以及输入齿轮副7的输入齿轮71联接,输入齿轮副7的输出齿轮72与输入小齿圈25联接,双导轮式液力变矩器4的输出端42与超越离合器5的输出端52以及联接齿轮副6的输入齿轮61联接,输入行星架24通过其上的行星齿轮20与输入小齿圈25、输出大齿圈26配合工作,输出大齿圈26与输入小齿轮27联接,输入小齿轮27与通过输出行星架28上的行星齿轮20与输出行星架28、输入大齿轮29配合工作,输入大齿轮29以及联接齿轮副6的输出齿轮62与输入行星架24联接,输出行星架28与输出轴3联接。
输入行星架24、输入小齿圈25通过输入行星架24上的行星齿轮20把传递到此的功率汇流于输出大齿圈26,输出大齿圈26再传递到输入小齿轮27,输入小齿轮27、输入大齿轮29再通过输出行星架28上的行星齿轮20把传递到此的功率汇流于输出行星架28。
由于上述各个元件的转速分配关系可以改变,两路功率流将根据两者之间转速分配的变化而变化,当输入行星架24、输入大齿轮29的转速为零时,输入小齿圈25、输入小齿轮27则降速增矩,当输入行星架24、输入大齿轮29的转速不断升高时,输出大齿圈26、输出行星架28的转速也随之升高,也就是说,当输入行星架24、输入大齿轮29的转速发生变化时,输出大齿圈26、输出行星架28以及输出轴3的转速也随之变化。
输入功率经输入轴1传递到输入齿圈22,输入齿圈22再通过输出行星架21上的行星齿轮20把功率传递到输出行星架21,输出行星架21把功率分流为两路,第一路经输入齿轮副7传递到输入小齿圈25;第二路经双导轮式液力变矩器4以及联接齿轮副6传递到输入行星架24以及输入大齿轮29,输入行星架24、输入小齿圈25通过输入行星架24上的行星齿轮20把传递到此的功率汇流于输出大齿圈26,输出大齿圈26再传递到输入小齿轮27,输入小齿轮27、输入大齿轮29再通过输出行星架28上的行星齿轮20把传递到此的功率汇流于输出行星架28,输出行星架28再传递到输出轴3,从而实现了把发动机的功率通过输出轴3对外输出。
对于本发明,当输入轴1的转速不变,输出大齿圈26、输出行星架28以及输出轴3上的扭矩随其转速的变化而变化,转速越低,传递到输出大齿圈26、输出行星架28以及输出轴3上的扭矩就越大,反之,则越小,在此过程中,双导轮式液力变矩器4也起变矩的作用,从而实现本发明能随车辆行驶阻力的不同而改变力矩以及速度的复合型双导轮式液力变矩器。
本发明使用时,设发动机的输入功率、输入转速及其负荷不变,即输入轴1的转速与扭矩为常数,汽车起步前,输出轴3的转速为零,发动机的输入功率经输入轴1,传递到输 入齿圈22,再通过输出行星架21上的行星齿轮20把功率传递到输出行星架21,输出行星架21把功率分流为两路,一路经输入齿轮副7传递到输入小齿圈25;其中,由于此时没有或比较少的功率流入输入行星架24、输入大齿轮29,并且超越离合器5的输入端51与固定元件联接,起限制转向的作用,使输入行星架24、输入大齿轮29的转向不能与输入的转向相反,转速为零,此时,传递到输入小齿圈25的功率,则通过输入行星架24上的行星齿轮20把传递到此的功率汇流于输出大齿圈26,输出大齿圈26再传递到输入小齿轮27,输入小齿轮27再通过输出行星架28上的行星齿轮20把传递到此的功率汇流于输出行星架28,输出行星架28再传递到输出轴3,当传递到输出轴3上的扭矩,经传动系统传动到驱动轮上产生的牵引力足以克服汽车起步阻力时,汽车则起步并开始加速,双导轮式液力变矩器4的输出端42的转速也逐渐增加,与之相联的输入行星架24、输入大齿轮29的转速也随之逐渐增加,从而使输出大齿圈26、输出行星架28以及输出轴3的扭矩随着转速的增加而减少。
实施例二:
如图2中所示,一种复合型双导轮式液力变矩器的无级变速器,包括输入轴1、输出轴3、双导轮式液力变矩器4、超越离合器5、输入齿轮6、联接输入齿轮7、联接输出齿轮8、输入齿轮副9、输出齿轮10、输出齿轮副11,所述的输入轴1与输出轴3之间设有行星齿轮20、固定行星架21、输入小齿轮22、输出大齿圈23、输出行星架24、输入小齿圈25、输入大齿圈26、联接输入小齿圈27、联接输入行星架28、联接输出大齿圈29、输入齿轮30、输入行星架31、输出齿轮32,输入小齿轮22通过固定行星架21上的行星齿轮20与固定行星架21、输出大齿轮23配合工作,固定行星架21以及超越离合器5的输入端51与固定元件联接,输出大齿圈23通过输入齿轮6与输入小齿圈25联接,输入小齿圈25通过输出行星架24上的行星齿轮20与输出行星架24、输入大齿圈26配合工作,输出行星架24通过联接输入齿轮7与联接输入小齿圈27联接,输入大齿圈26通过输出齿轮10与联接输入行星架28联接,联接输入行星架28通过其上的行星齿轮20与联接输入小齿圈27、联接输出大齿圈29配合工作,联接输出大齿圈29通过联接输出齿轮8与输入齿轮30联接,输入齿轮30通过输入行星架31上的行星齿轮20与输入行星架31、输出齿轮32配合工作,输出齿轮32与输出轴3联接,输入行星架31与输入齿轮副9的输出齿轮92联接,输入齿轮副9的输入齿轮91、输入小齿轮22以及输出齿轮副11的输入齿轮111与输入轴1联接,输出齿轮副11的输出齿轮112与双导轮式液力变矩器4的输入端41联接,双导轮式液力变矩器4的输出端42与输入大齿圈26以及超越离合器5的输出端52联接。
输入小齿圈25、输入大齿圈26通过输出行星架24上的行星齿轮20把传递到此的功率汇流于输出行星架24,输出行星架24通过联接输入齿轮7,传递到联接输入小齿圈27,联接输入小齿圈27、联接输入行星架28通过联接输入行星架28上的行星齿轮20把传递到此的功率汇流于联接输出大齿圈29。
由于上述各个元件的转速分配关系可以改变,两路功率流将根据两者之间转速分配的变化而变化,当输入大齿圈26、联接输入行星架28的转速为零时,输入小齿圈25、联接输入小齿圈27则降速增矩,当输入大齿圈26、联接输入行星架28的转速不断升高时,输出行星架24、联接输出大齿圈29的转速也随之升高,也就是说,当输入大齿圈26、联接输入行星架28的转速发生变化时,输出行星架24、联接输出大齿圈29以及输出轴3的转速也随 之变化。
输入功率经输入轴1把功率分流为三路,第一路经输出齿轮副11以及液力变矩器4,传递到输入大齿圈26,输入大齿圈26再通过输出齿轮10,传递到联接输入行星架28;第二路传递到输入小齿轮22,输入小齿轮22再通过固定行星架21上的行星齿轮20把功率传递到输出大齿圈23,输出大齿圈23再通过输入齿轮6传递到输入小齿圈25,输入小齿圈25、输入大齿圈26通过输出行星架24上的行星齿轮20把传递到此的功率汇流于输出行星架24,输出行星架24再通过联接输入齿轮7,传递到联接输入小齿圈27,联接输入小齿圈27、联接输入行星架28通过联接输入行星架28上的行星齿轮20把传递到此的功率汇流于联接输出大齿圈29,联接输出大齿圈29再通过联接输出齿轮8,传递到输入齿轮30;第三路经输入齿轮副9传递到输入行星架31,输入齿轮30、输入行星架31再通过输入行星架31上的行星齿轮20把传递到此的功率汇流于输出齿轮32,输出齿轮32再传递到输出轴3,从而实现了把发动机的功率通过输出轴3对外输出。
对于本发明,当输入轴1的转速不变,输出行星架24、联接输出大齿圈29以及输出轴3上的扭矩随其转速的变化而变化,转速越低,传递到输出行星架24、联接输出大齿圈29以及输出轴3上的扭矩就越大,反之,则越小,在此过程中,双导轮式液力变矩器4也起变矩的作用,从而实现本发明能随车辆行驶阻力的不同而改变力矩以及速度的复合型双导轮式液力变矩器的无级变速器。
本发明使用时,设发动机的输入功率、输入转速及其负荷不变,即输入轴1的转速与扭矩为常数,汽车起步前,输出轴3的转速为零,发动机的输入功率经输入轴1,传递到输入小齿轮22,再通过固定行星架21上的行星齿轮20把功率传递到输出大齿圈23,输出大齿圈23再通过输入齿轮6传递到输入小齿圈25,其中,由于此时没有或比较少的功率流入输入大齿圈26、联接输入行星架28,并且超越离合器5的输入端51与固定元件联接,起限制转向的作用,使输入大齿圈26、联接输入行星架28的转向不能与输入的转向相反,转速为零,此时,传递到输入小齿圈25的功率,则通过输出行星架24上的行星齿轮20把传递到此的功率汇流于输出行星架24,输出行星架24再通过联接输入齿轮7,传递到联接输入小齿圈27,联接输入小齿圈27则通过联接输入行星架28上的行星齿轮20把传递到此的功率汇流于联接输出大齿圈29,联接输出大齿圈29再通过联接输出齿轮8,传递到输入齿轮30,输入齿轮30、输入行星架31再通过输入行星架31的行星齿轮20把传递到此的功率汇流于输出齿轮32,输出齿轮32再传递到输出轴3,当传递到输出轴3上的扭矩,经传动系统传动到驱动轮上产生的牵引力足以克服汽车起步阻力时,汽车则起步并开始加速,双导轮式液力变矩器4输出端42的转速也逐渐增加,与之相联的输入大齿圈26、联接输入行星架28的转速也随之逐渐增加,从而使输出行星架24、联接输出大齿圈29以及输出轴3的扭矩随着转速的增加而减少。

Claims (2)

  1. 一种复合型双导轮式液力变矩器,包括输入轴(1)、输出轴(3)、双导轮式液力变矩器(4)、超越离合器(5)、联接齿轮副(6)、输入齿轮副(7),其特征在于:所述的输入轴(1)与输出轴(3)之间设有行星齿轮(20)、输出行星架(21)、输入齿圈(22)、固定齿轮(23)、输入行星架(24)、输入小齿圈(25)、输出大齿圈(26)、输入小齿轮(27)、输出行星架(28)、输入大齿轮(29),输入齿圈(22)与输入轴(1)联接,输入齿圈(22)通过输出行星架(21)上的行星齿轮(20)与输出行星架(21)、固定齿轮(23)配合工作,固定齿轮(23)以及超越离合器(5)的输入端(51)与固定元件联接,输出行星架(21)与双导轮式液力变矩器(4)的输入端(41)以及输入齿轮副(7)的输入齿轮(71)联接,输入齿轮副(7)的输出齿轮(72)与输入小齿圈(25)联接,双导轮式液力变矩器(4)的输出端(42)与超越离合器(5)的输出端(52)以及联接齿轮副(6)的输入齿轮(61)联接,输入行星架(24)通过其上的行星齿轮(20)与输入小齿圈(25)、输出大齿圈(26)配合工作,输出大齿圈(26)与输入小齿轮(27)联接,输入小齿轮(27)与通过输出行星架(28)上的行星齿轮(20)与输出行星架(28)、输入大齿轮(29)配合工作,输入大齿轮(29)以及联接齿轮副(6)的输出齿轮(62)与输入行星架(24)联接,输出行星架(28)与输出轴(3)联接。
  2. 一种复合型双导轮式液力变矩器的无级变速器,包括输入轴(1)、输出轴(3)、双导轮式液力变矩器(4)、超越离合器(5)、输入齿轮(6)、联接输入齿轮(7)、联接输出齿轮(8)、输入齿轮副(9)、输出齿轮(10)、输出齿轮副(11),其特征在于:所述的输入轴(1)与输出轴(3)之间设有行星齿轮(20)、固定行星架(21)、输入小齿轮(22)、输出大齿圈(23)、输出行星架(24)、输入小齿圈(25)、输入大齿圈(26)、联接输入小齿圈(27)、联接输入行星架(28)、联接输出大齿圈(29)、输入齿轮(30)、输入行星架(31)、输出齿轮(32),输入小齿轮(22)通过固定行星架(21)上的行星齿轮(20)与固定行星架(21)、输出大齿轮(23)配合工作,固定行星架(21)以及超越离合器(5)的输入端(51)与固定元件联接,输出大齿圈(23)通过输入齿轮(6)与输入小齿圈(25)联接,输入小齿圈(25)通过输出行星架(24)上的行星齿轮(20)与输出行星架(24)、输入大齿圈(26)配合工作,输出行星架(24)通过联接输入齿轮(7)与联接输入小齿圈(27)联接,输入大齿圈(26)通过输出齿轮(10)与联接输入行星架(28)联接,联接输入行星架(28)通过其上的行星齿轮(20)与联接输入小齿圈(27)、联接输出大齿圈(29)配合工作,联接输出大齿圈(29)通过联接输出齿轮(8)与输入齿轮(30)联接,输入齿轮(30)通过输入行星架(31)上的行星齿轮(20)与输入行星架(31)、输出齿轮(32)配合工作,输出齿轮(32)与输出轴(3)联接,输入行星架(31)与输入齿轮副(9)的输出齿轮(92)联接,输入齿轮副(9)的输入齿轮(91)、输入小齿轮(22)以及输出齿轮副(11)的输入齿轮(111)与输入轴(1)联接,输出齿轮副(11)的输出齿轮(112)与双导轮式液力变矩器(4)的输入端(41)联接,双导轮式液力变矩器(4)的输出端(42)与输入大齿圈(26)以及超越离合器(5)的输出端(52)联接。
PCT/CN2016/070220 2015-01-16 2016-01-06 一种复合型双导轮式液力变矩器以及无级变速器 WO2016112811A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680004315.0A CN107429811A (zh) 2015-01-16 2016-01-06 一种复合型双导轮式液力变矩器以及无级变速器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510021426.XA CN104696477A (zh) 2015-01-16 2015-01-16 一种复合型双导轮式液力变矩器以及无级变速器
CN201510021426X 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016112811A1 true WO2016112811A1 (zh) 2016-07-21

Family

ID=53343895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070220 WO2016112811A1 (zh) 2015-01-16 2016-01-06 一种复合型双导轮式液力变矩器以及无级变速器

Country Status (3)

Country Link
CN (2) CN104696477A (zh)
HK (1) HK1211664A1 (zh)
WO (1) WO2016112811A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104696477A (zh) * 2015-01-16 2015-06-10 吴志强 一种复合型双导轮式液力变矩器以及无级变速器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263906A (ja) * 1990-12-13 1993-10-12 Fuji Heavy Ind Ltd 車両用無段変速機の圧力制御装置
KR20060009190A (ko) * 2004-07-21 2006-01-31 이종완 범위가 확장된 무단변속장치
CN102022505A (zh) * 2009-09-09 2011-04-20 吴志强 一种复合型双导轮式液力变矩器
WO2011093425A1 (ja) * 2010-01-28 2011-08-04 株式会社ユニバンス 動力伝達装置
CN102287498A (zh) * 2011-08-05 2011-12-21 南京工程学院 一种行星齿轮无级变速器
CN102297255A (zh) * 2011-08-04 2011-12-28 湖南江麓容大车辆传动股份有限公司 自动变速器总成及自动变速型汽车
CN103939566A (zh) * 2014-05-07 2014-07-23 吴志强 一种复合型双导轮式液力变矩器以及无级变速器
CN104696477A (zh) * 2015-01-16 2015-06-10 吴志强 一种复合型双导轮式液力变矩器以及无级变速器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200242B1 (en) * 1999-12-10 2001-03-13 General Motors Corporation Powertrain with a multi-speed transmission
CN101012870A (zh) * 2007-02-02 2007-08-08 吴志强 一种变矩器
CN101235877B (zh) * 2007-02-02 2012-12-19 吴志强 一种无级变速器
WO2008108017A1 (ja) * 2007-03-05 2008-09-12 Kubota Corporation 変速伝動装置
JP2009113519A (ja) * 2007-11-01 2009-05-28 Toyota Motor Corp 車両の動力伝達装置
CN101598203B (zh) * 2008-06-06 2013-06-12 吴志强 一种复合型钢球外锥轮式无级变速器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263906A (ja) * 1990-12-13 1993-10-12 Fuji Heavy Ind Ltd 車両用無段変速機の圧力制御装置
KR20060009190A (ko) * 2004-07-21 2006-01-31 이종완 범위가 확장된 무단변속장치
CN102022505A (zh) * 2009-09-09 2011-04-20 吴志强 一种复合型双导轮式液力变矩器
WO2011093425A1 (ja) * 2010-01-28 2011-08-04 株式会社ユニバンス 動力伝達装置
CN102297255A (zh) * 2011-08-04 2011-12-28 湖南江麓容大车辆传动股份有限公司 自动变速器总成及自动变速型汽车
CN102287498A (zh) * 2011-08-05 2011-12-21 南京工程学院 一种行星齿轮无级变速器
CN103939566A (zh) * 2014-05-07 2014-07-23 吴志强 一种复合型双导轮式液力变矩器以及无级变速器
CN104696477A (zh) * 2015-01-16 2015-06-10 吴志强 一种复合型双导轮式液力变矩器以及无级变速器

Also Published As

Publication number Publication date
HK1211664A1 (zh) 2016-05-27
CN107429811A (zh) 2017-12-01
CN104696477A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2017005177A1 (zh) 一种复合型箱体式液力偶合器以及起动器
WO2017005184A1 (zh) 一种复合式限矩型水介质液力偶合器以及起动器
WO2017005181A1 (zh) 一种复合谐波齿轮传动的液力偶合器以及起动器
WO2016112800A1 (zh) 一种复合型综合式液力变矩器以及无级变速器
WO2016112804A1 (zh) 一种复合型轴流式液力变矩器以及无级变速器
WO2016112810A1 (zh) 一种复合型叶轮式液力变矩器以及无级变速器
WO2016112811A1 (zh) 一种复合型双导轮式液力变矩器以及无级变速器
WO2016112809A1 (zh) 一种复合型双泵轮液力变矩器以及无级变速器
WO2016112805A1 (zh) 一种复合型双涡轮液力变矩器以及无级变速器
WO2016112807A1 (zh) 一种复合型向心涡轮式液力变矩器以及无级变速器
WO2016112801A1 (zh) 一种复合型多元件工作轮液力变矩器以及无级变速器
WO2016112803A1 (zh) 一种复合型导叶可调式液力变矩器以及无级变速器
WO2016112806A1 (zh) 一种复合型溢流阀外置式液力变矩器以及无级变速器
WO2016112808A1 (zh) 一种复合型向心式液力变矩器以及无级变速器
WO2016112802A1 (zh) 一种复合型可调液力变矩器以及无级变速器
WO2017005187A1 (zh) 一种复合式调速型液力偶合器以及起动器
WO2017005182A1 (zh) 一种复合式液力异型偶合器以及起动器
WO2017005186A1 (zh) 一种复合型阀控充液式液力偶合器以及起动器
WO2017005180A1 (zh) 一种复合型后置齿轮箱体式液力偶合器以及起动器
WO2017005185A1 (zh) 一种复合型恒充式液力偶合器以及起动器
WO2017005179A1 (zh) 一种复合型双腔液力偶合器以及起动器
WO2017005176A1 (zh) 一种复合型箱磨式液力偶合器以及起动器
WO2017005183A1 (zh) 一种复合型后辅室延长式限矩型液力偶合器以及起动器
WO2017004782A1 (zh) 一种复合型液力传动器
WO2017005178A1 (zh) 一种复合型外壳带侧辅室的液力偶合器以及起动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/12/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 16737037

Country of ref document: EP

Kind code of ref document: A1