WO2017005180A1 - 一种复合型后置齿轮箱体式液力偶合器以及起动器 - Google Patents

一种复合型后置齿轮箱体式液力偶合器以及起动器 Download PDF

Info

Publication number
WO2017005180A1
WO2017005180A1 PCT/CN2016/088744 CN2016088744W WO2017005180A1 WO 2017005180 A1 WO2017005180 A1 WO 2017005180A1 CN 2016088744 W CN2016088744 W CN 2016088744W WO 2017005180 A1 WO2017005180 A1 WO 2017005180A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
input
output
coupled
carrier
Prior art date
Application number
PCT/CN2016/088744
Other languages
English (en)
French (fr)
Inventor
吴志强
Original Assignee
吴志强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴志强 filed Critical 吴志强
Priority to CN201680039163.8A priority Critical patent/CN108027034A/zh
Publication of WO2017005180A1 publication Critical patent/WO2017005180A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
    • F16H47/08Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion

Definitions

  • the invention belongs to the field of fluid coupling and starting, and more particularly to a composite rear gear box type fluid coupling and starter for various ground vehicles, ships, railway locomotives and machine tools.
  • the fluid coupling is designed according to the principles of hydrostatics, etc. It can transmit little power and is not efficient; in addition, the cost is high.
  • the invention overcomes the deficiencies of the prior art, and provides a composite rear gear box type fluid coupling and a starter which prolong the service life of the engine, has a simple structure, is convenient to operate, has low cost, and is energy-saving and high-efficiency.
  • Composite rear gear box type fluid coupling and starter including input shaft (1), fixed one-way clutch (3), rear gear box type fluid coupling (4), empty gear Mechanism (5), output shaft (6), output gear pair (7), coupling shaft (8), coupling frame (9), electromagnetic clutch (10), starter gear pair (11), input gear pair (12)
  • the overrunning clutch (13) is provided with a planetary gear (20), an input carrier (21), an input ring gear (22), and an output ring gear (23) between the input shaft (1) and the output shaft (6).
  • the shaft (8) is coupled to the output gear (72) of the output gear pair (7) and the input end (101) of the electromagnetic clutch (10), the output end (102) of the electromagnetic clutch (10) and the input gear pair (12)
  • the input gear (121) is coupled
  • the output end (52) of the neutral gear mechanism (5) is coupled to the output shaft (6)
  • the input planetary gear (20) and the output gear (27) are coupled to the carrier (28).
  • the fixed gears (29) cooperate with each other, and the input end (31) of the fixed one-way clutch (3), the fixed carrier (26) and the fixed gear (29) are coupled with the fixed component, and the output gear (27) and the rear gear
  • the input end (41) of the tank type fluid coupling (4) is coupled, and the output end (42) of the rear gear box type fluid coupling (4) is coupled with the input ring gear (24), and the input ring gear ( 24) by the planetary gear (20) on the fixed planet carrier (26) and the output pinion (25), the fixed planet carrier (26) work together, the output pinion (25) and the input ring gear (22) and the coupling (9) Connection, input ring gear (22 ) is coupled to the output (32) of the fixed one-way clutch (3).
  • a composite rear gear box type fluid coupling comprising an input shaft (1), a rear gear box type fluid coupling (3), a one-way clutch (4), an output shaft (5), and a coupling Gear (6), input gear pair (7), coupled output gear pair (8), overrunning clutch (9), output gear pair (10), between the input shaft (1) and the output shaft (5) Planetary gear (20), output carrier (21), input small ring gear (22), input large ring gear (23), fixed planet carrier (24), output pinion (25) Input gear (26), output carrier (27), input ring gear (28), input gear (29), input shaft (1) and input small ring gear (22), overrunning clutch (9)
  • the input end (91) and the input gear (101) of the output gear pair (10) are coupled, the transmission gear (102) of the output gear pair (10) is coupled to the coupling gear (6), and the input small ring gear (22) is passed
  • the planetary gear (20) on the output carrier (21) cooperates with the output carrier (21) and the input large ring gear (23), and outputs the
  • the elements that need to be coupled, and the elements that are separated by several other elements, can be connected to or through several other elements by means of a hollow or a coupling frame; when the coupled elements are gears or ring gears, Then, meshing or coupling; the gear ratio of each gear pair and the shifting mechanism is designed according to actual needs.
  • the rear gear box type fluid coupling can be replaced by an integrated hydraulic torque converter.
  • the air-locking mechanism can select a clutch instead.
  • the present invention When the present invention is applied to a vehicle, it is possible to automatically change the output torque and the speed change depending on the magnitude of the resistance that the vehicle is subjected to while traveling.
  • the invention enables the engine and the starter to operate in the region of the tempering speed, that is, the engine operates in a range of very small pollution discharge speeds, thereby avoiding the engine discharging a large amount of exhaust gas during idle speed and high speed operation, thereby reducing the number of exhaust gases.
  • the emission of exhaust gas is conducive to protecting the environment;
  • the invention can utilize the effect of internal speed difference to buffer and overload protection, which is beneficial to prolonging the service life of the engine and the drive train and the starter.
  • speed up which is beneficial to improve the driving performance of the vehicle;
  • the invention makes the input power uninterrupted, can ensure the vehicle has good acceleration and high average vehicle speed, reduces the wear of the engine, prolongs the overhaul interval mileage, and is beneficial to improving productivity;
  • the invention reduces the transmission mechanism of the current starter machine and reduces the manufacturing cost. After the engine is started, only the braking and separating measures of the starting motor are required to stop the transmission.
  • the present invention is a composite rear gear box type fluid coupling and starter for various ground vehicles, ships, railway locomotives, and machine tools.
  • FIG. 1 is a structural view of a first embodiment of the present invention
  • FIG. 2 is a structural diagram of a second embodiment of the present invention.
  • connection between the two elements is indicated by a thick solid line, and the thin solid line indicates that the two elements can be rotated relative to each other.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a composite rear gear box type fluid coupling and starter including input shaft 1, fixed one-way clutch 3, rear gear box type fluid coupling 4, and hanging Gear mechanism 5, output shaft 6, output gear pair 7, coupling shaft 8, coupling frame 9, electromagnetic clutch 10, starter gear pair 11, input gear pair 12, overrunning clutch 13, said input shaft 1 and output shaft 6
  • the input shaft 1 is coupled to the output gear 122 of the input gear pair 12 and the input end 131 of the overrunning clutch 13, the output end 132 of the overrunning clutch 13 and the input carrier 21 and the starter
  • the output gear 112 of the gear pair 11 is coupled, and the output gear 112 of the starter gear pair 11 cooperates with the input gear 111 of the starter gear pair 11 to input the planetary gear 20 and the input ring gear 22 and the output of the carrier 21 thereon.
  • the ring gear 23 cooperates with each other, and the input end 51 of the neutral gear mechanism 5 is coupled to the output ring gear 23, the input coupling carrier 28, and the input gear 71 of the output gear pair 7, and the output shaft 72 of the coupling shaft 8 and the output gear pair 7
  • electromagnetic clutch 10 The input end 101 is coupled, the output end 102 of the electromagnetic clutch 10 is coupled to the input gear 121 of the input gear set 12, and the output end 52 of the neutral gear mechanism 5 is coupled to the output shaft 6 for inputting the planet gear 20 through which the planet carrier 28 passes.
  • the fixed carrier 26 and the fixed gear 29 are coupled with the fixed element, and the output gear 27 and the rear gear box type fluid coupling 4
  • the input end 41 of the rear gearbox type fluid coupling 4 is coupled to the input ring gear 24, and the input ring gear 24 passes through the planetary gear 20 and the output pinion 25 on the fixed planet carrier 26, and the fixed planet
  • the brackets 26 cooperate with each other, the output pinion 25 and the input ring gear 22 are coupled to the coupling frame 9, and the input ring gear 22 is coupled to the output end 32 of the fixed one-way clutch 3.
  • the idle gear mechanism 5 Before the engine is started, the idle gear mechanism 5 is disengaged, and the electromagnetic clutch 10 is engaged.
  • the input power of the starter is transmitted to the input carrier 21 through the starter gear pair 11, and the input carrier 21 is transmitted to the output ring gear through the planetary gear 20 thereon.
  • the output ring gear 23 is transmitted to the input shaft 1 through the input end 51 of the idle gear mechanism 5, the output gear pair 7, the coupling shaft 8, the electromagnetic clutch 10, and the input gear pair 12, and then transmitted to the crankshaft of the engine, resulting in
  • the engine is started when the power is sufficient to overcome the engine starting resistance.
  • the air-gear mechanism 5 After the engine is started, the air-gear mechanism 5 is engaged, the electromagnetic clutch 10 is disengaged, and the input carrier 21 transmits the power transmitted thereto through the input shaft 1 and the overrunning clutch 13 through the planetary gear 20 thereon, and is transmitted to the output ring gear 23 .
  • the output ring gear 23 shunts the power transmitted thereto through the input end 51 of the air-gear mechanism 5 into two paths, one way to the output shaft 6 of the present invention; the other path is transmitted to the input-connecting planet carrier 28, and the planet carrier 28 is coupled. It is transmitted to the output gear 27 through the planetary gear 20 thereon, and then transmitted to the input ring gear 24 through the rear gear box type fluid coupling 4, and the input is input.
  • the ring gear 24 is again transmitted to the output pinion 25 through the planet gears 20 on the fixed planet carrier 26, and then transmitted to the input ring gear 22 through the coupling frame 9, the power transmitted to the input ring gear 22, and the engine passing through the input shaft 1 and beyond.
  • the power transmitted from the clutch 13 to the input carrier 21 is transmitted to the output ring gear 23 through the planetary gear 20 on the input carrier 21, and the output ring gear 23 is repeatedly subjected to repeated cycles of shifting between the respective elements, wherein
  • the output rotation speed of the gearbox type fluid coupling 4 is continuously steplessly changed in accordance with the change of the input power and the running resistance, so that the output rotation speed of the output ring gear 23 is also constantly changed, and the idle gear mechanism is passed. 5 is transmitted to the output shaft 6 of the present invention, thereby achieving external output of the engine power through the output shaft 6.
  • the torque on the input shaft 1 when the rotational speed of the input shaft 1 is constant, the torque on the input ring gear 22, the output gear 23, and the output shaft 6 varies with the change of the rotational speed thereof, and the lower the rotational speed, the transmission to the input ring gear 22 and the output gear 23 And the torque on the output shaft 6 is larger, and conversely, the smaller, thereby realizing the composite rear gear box type fluid coupling and the starter which can change the torque and speed according to the driving resistance of the present invention.
  • the idle gear mechanism 5 When the invention is used, before the engine is started, the idle gear mechanism 5 is disengaged, the electromagnetic clutch 10 is engaged, and the engine speed is zero.
  • the starter When the starter is started, the input power of the starter is transmitted to the input carrier 21 through the starter gear pair 11 Wherein, since no power flows into the input ring gear 22 at this time, and the input end 31 of the fixed one-way clutch 3 is coupled with the fixed element, the steering is restricted to make the input ring gear 22 unable to rotate opposite to the engine, and the rotation speed is zero.
  • the power transmitted to the input carrier 21 transmits power to the output ring gear 23 through the planetary gear 20 thereon, and the output ring gear 23 passes through the input end 51 of the idle gear mechanism 5 and the output gear pair 7
  • the coupling shaft 8, the electromagnetic clutch 10, and the input gear pair 12 are transmitted to the input shaft 1 and then transmitted to the crankshaft of the engine.
  • the input power, input speed and load of the engine are unchanged, that is, the speed and torque of the input shaft 1 are constant.
  • the idle gear mechanism 5 is engaged, the electromagnetic clutch 10 is separated, and the output shaft 6 is rotated.
  • the input power of the engine is transmitted to the input carrier 21 via the input shaft 1 and the overrunning clutch 13, wherein no power flows into the input ring gear 22 at this time, and the input end 31 of the fixed one-way clutch 3 is coupled to the fixed element.
  • the function of restricting the steering is such that the input ring gear 22 cannot rotate opposite to the engine, and the rotation speed is zero.
  • the power transmitted to the input carrier 21 is transmitted to the output teeth through the planetary gears 20 thereon.
  • the output ring gear 23 splits the power transmitted thereto into two paths, one way is transmitted to the output shaft 6 of the present invention through the air-gear mechanism 5; the other path is transmitted to the input-connecting planet carrier 28, and the planetary carrier 28 is coupled.
  • the planetary gear 20 thereon is transmitted to the output gear 27, and then transmitted to the input ring gear 24 through the rear gear box type fluid coupling 4, and the input ring gear 24 is passed through the fixed planet.
  • the planet gears 20 on the frame 26 are transmitted to the output pinion 25, which is transmitted through the coupling frame 9 to the input ring gear 22, the power transmitted to the input ring gear 22, and transmitted by the engine through the input shaft 1 and the overrunning clutch 13 to the input carrier.
  • the power of 21 is transmitted to the output ring gear 23 through the planetary gears 20 input to the carrier 21, and the output ring gear 23 is continuously cyclically shifted between the respective components, wherein the rear gear box type hydraulic force
  • the output rotational speed of the coupling 4 continuously shifts steplessly as the running resistance changes, so that the output rotational speed of the output ring gear 23 also constantly changes, and is transmitted to the output shaft 6 of the present invention through the neutral gear mechanism 5, Thereby the torque of the output shaft 6 is reduced as the number of revolutions increases.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a composite rear gear box type fluid coupling includes an input shaft 1, a rear gear box type fluid coupling 3, a one-way clutch 4, an output shaft 5, and a coupling gear. 6.
  • Input gear pair 7, coupling output gear pair 8, overrunning clutch 9, output gear pair 10, between the input shaft 1 and the output shaft 5, a planetary gear 20, an output carrier 21, and an input small ring gear 22 are provided.
  • the output gear 82 of the output output gear pair 8 is coupled to the input gear 71 of the input gear pair 7, and the output gear 72 of the input gear pair 7 is coupled to the input end 41 of the one-way clutch 4 and the input gear 29, and the rear gear case
  • the input end 31 of the fluid coupling 3 is coupled to the output 42 of the one-way clutch 4 and the output 92 of the overrunning clutch 9, and the output 32 of the rear gearbox fluid coupling 3 is coupled to the input bull gear 26,
  • the input bull gear 26 cooperates with the fixed planet carrier 24 and the output pinion 25 through the planetary gear 20 on the fixed planet carrier 24, the fixed planet carrier 24 is fixedly connected with the fixing member, and the output pinion 25 is coupled with the input large ring gear 23.
  • Input gear 29 Output on the planet gear carrier 20 and the output 27 the carrier 27, the input ring gear 28 cooperate with each other, coupled to the input ring gear 28 meshes with the gear 6, the output of the carrier 27 and the output shaft 5 is coupled.
  • the input small ring gear 22 and the input large ring gear 23 converge the respective powers through the planetary gears 20 on the output carrier 21 to the output carrier 21, because the input large ring gear 23 and the rear gear box are hydraulically coupled.
  • the actuators 3 are associated with each other, so that the rotational speed of the input large ring gear 23 can be constantly changed, so that the rotational speed of the output carrier 21 also changes.
  • the input power is split into three paths through the input shaft 1, the first path is transmitted to the input small ring gear 22, the second path is transmitted to the input ring gear 28 via the output gear pair 10 and the coupling gear 6, and the third path is transmitted to the input ring gear 28 through the overrunning clutch 9
  • the rear gearbox type fluid coupling 3 is transmitted to the input bull gear 26, and the input bull gear 26 transmits power to the output pinion 25 through the planetary gear 20 on the fixed carrier 24, and the output pinion 25 is transmitted.
  • To the input large ring gear 23, the input small ring gear 22, the input large ring gear 23, and the planetary gears 20 that are transmitted to the respective powers through the output carrier 21 are merged to the output carrier 21, and the output carrier 21 is coupled to the output gears.
  • the secondary 8 is transmitted to the input gear pair 7 and splits into two paths, one way to the input gear 29, at which time the input ring gear 28 and the input gear 29 converge the respective power transmitted through the planet gears 20 on the output carrier 27.
  • the output carrier 27 is transmitted to the output shaft 5 of the present invention, thereby realizing the external output of the engine power through the output shaft 5.
  • the power of the other passage transmitted to the input/output large gear 26 through the one-way clutch 4 and the rear gear box type fluid coupling 3 increases accordingly.
  • the input bull gear 26 transmits power to the output pinion 25 through the planetary gears 20 on the fixed carrier 24, and the output pinion 25 is transmitted to the input large ring gear 23, that is, the input power of the input large ring gear 23 increases accordingly.
  • Large, the input small ring gear 22, the input large ring gear 23, and the planetary gears 20 that are transmitted to the respective powers through the output carrier 21 are merged to the output carrier 21, and the output carrier 21 repeats the above process to be transmitted to the input gears.
  • the rotational speed on 29 is constantly changing, the input ring gear 28 and the input gear 29 converge the respective power transmitted through the planetary gear 20 on the output carrier 27 to the output carrier 27, and the output carrier 27 is transmitted to the output shaft of the present invention. 5, thereby achieving external output of the engine power through the output shaft 5.
  • the rotational speed of the input shaft 1 when the rotational speed of the input shaft 1 is constant, the rotational speed of the input gear 29 varies with the input power or running resistance of the vehicle, and the lower the resistance, the higher the rotational speed transmitted to the input gear 29 is. On the contrary, the lower the speed, the composite rear gear box type fluid coupling which can change the speed according to the input power or the running resistance of the vehicle.
  • the input power, the input rotational speed and the load of the engine are unchanged, that is, the rotational speed of the input shaft 1
  • the torque is constant.
  • the output shaft 5 Before the car starts, the output shaft 5 has zero speed.
  • the input power of the engine passes through the input shaft 1, and is divided into three paths. The first path is transmitted to the input small ring gear 22, and the second path passes through the output gear pair 10.
  • the coupling gear 6 is transmitted to the input ring gear 28, and the third path is transmitted to the rear gear box type fluid coupling 3 through the overrunning clutch 9, and then transmitted to the input bull gear 26, and the input large gear 26 passes through the fixed carrier 24
  • the upper planetary gear 20 transmits power to the output pinion 25, the output pinion 25 is transmitted to the input large ring gear 23, the input small ring gear 22, the input large ring gear 23 is transmitted to the respective power through the output carrier 21.
  • the planetary gear 20 merges with the output carrier 21, and the output carrier 21 is coupled to the output gear pair 8 and transmitted to the input gear pair 7 and then split into two paths, one way to the input gear 29, at this time, the input ring gear 28 is The input gear 29 converges the respective powers through the planetary gears 20 on the output carrier 27 to the output carrier 27, and the output carrier 27 is transmitted to the output shaft 5 of the present invention, thereby realizing the power transmission of the engine.
  • the output shaft 5 is output to the outside.
  • the planetary gears 20 on the carrier 21 converge on the output carrier 21, and the output carrier 21 repeats the above process, so that the rotational speed transmitted to the input gear 29 is constantly changed, and the input ring gear 28 and the input gear 29 are transmitted to the respective powers.
  • the planetary carrier 20 on the output carrier 27 merges with the output carrier 27, and the output carrier 27 is transmitted to the output shaft 5 of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Retarders (AREA)

Abstract

一种复合型后置齿轮箱体式液力偶合器及具有该复合型后置齿轮箱体式液力偶合器的起动器,其中输入轴(1)与输入齿轮副(12)以及超越离合器(13)联接,超越离合器(13)与输入行星架(21)以及起动机齿轮副(11)联接,空挂档机构(5)与输出齿圈(23)、输入联接行星架(28)以及输出齿轮副(7)联接,联接轴(8)与输出齿轮副(7)以及电磁离合器(10)联接,电磁离合器(10)与输入齿轮副(12)的输入齿轮(121)联接,空挂档机构(5)与输出轴(6)联接,输出齿轮(27)与后置齿轮箱体式液力偶合器(4)联接,后置齿轮箱体式液力偶合器(4)与输入齿圈(24)联接,输出小齿轮(25)以及输入齿圈(22)与联接架(9)联接,输入齿圈(22)与固定单向离合器(3)联接。

Description

一种复合型后置齿轮箱体式液力偶合器以及起动器 技术领域
本发明属于液力偶合器以及起动领域,更具体地说,它是一种用于各种地面车辆、船舶、铁道机车以及机床的复合型后置齿轮箱体式液力偶合器以及起动器。
背景技术
目前,液力偶合器都是根据流体静力学等原理来设计的,它所能传递的功率不大,并且效率不高;另外,成本高。
发明内容
本发明克服了现有技术的不足,提供了一种延长发动机的使用寿命,结构简单,操控方便,低成本,节能高效的复合型后置齿轮箱体式液力偶合器以及起动器。
为了实现本发明的目的,本发明采用的技术方案以下:
一种复合型后置齿轮箱体式液力偶合器以及起动器,包括输入轴(1)、固定单向离合器(3)、后置齿轮箱体式液力偶合器(4)、空挂档机构(5)、输出轴(6)、输出齿轮副(7)、联接轴(8)、联接架(9)、电磁离合器(10)、起动机齿轮副(11)、输入齿轮副(12)、超越离合器(13),所述的输入轴(1)与输出轴(6)之间设有行星齿轮(20)、输入行星架(21)、输入齿圈(22)、输出齿圈(23)、输入齿圈(24)、输出小齿轮(25)、固定行星架(26)、输出齿轮(27)、输入联接行星架(28)、固定齿轮(29),输入轴(1)与输入齿轮副(12)的输出齿轮(122)以及超越离合器(13)的输入端(131)联接,超越离合器(13)的输出端(132)与输入行星架(21)以及起动机齿轮副(11)的输出齿轮(112)联接,起动机齿轮副(11)的输出齿轮(112)与起动机齿轮副(11)的输入齿轮(111)相互配合工作,输入行星架(21)通过其上的行星齿轮(20)与输入齿圈(22)、输出齿圈(23)相互配合工作,空挂档机构(5)的输入端(51)与输出齿圈(23)、输入联接行星架(28)以及输出齿轮副(7)的输入齿轮(71)联接,联接轴(8)与输出齿轮副(7)的输出齿轮(72)以及电磁离合器(10)的输入端(101)联接,电磁离合器(10)的输出端(102)与输入齿轮副(12)的输入齿轮(121)联接,空挂档机构(5)的输出端(52)与输出轴(6)联接,输入联接行星架(28)通过其上的行星齿轮(20)与输出齿轮(27)、固定齿轮(29)相互配合工作,固定单向离合器(3)的输入端(31)、固定行星架(26)以及固定齿轮(29)与固定元件联接,输出齿轮(27)与后置齿轮箱体式液力偶合器(4)的输入端(41)联接,后置齿轮箱体式液力偶合器(4)的输出端(42)与输入齿圈(24)联接,输入齿圈(24)通过固定行星架(26)上的行星齿轮(20)与输出小齿轮(25)、固定行星架(26)相互配合工作,输出小齿轮(25)以及输入齿圈(22)与联接架(9)联接,输入齿圈(22)与固定单向离合器(3)的输出端(32)联接。
一种复合型后置齿轮箱体式液力偶合器,包括输入轴(1)、后置齿轮箱体式液力偶合器(3)、单向离合器(4)、输出轴(5)、联接齿轮(6)、输入齿轮副(7)、联接输出齿轮副(8)、超越离合器(9)、输出齿轮副(10),所述的输入轴(1)与输出轴(5)之间设有行星齿轮(20)、输出行星架(21)、输入小齿圈(22)、输入大齿圈(23)、固定行星架(24)、输出小齿轮 (25)、输入大齿轮(26)、输出行星架(27)、输入齿圈(28)、输入齿轮(29),输入轴(1)与输入小齿圈(22)、超越离合器(9)的输入端(91)以及输出齿轮副(10)的输入齿轮(101)联接,输出齿轮副(10)的输输齿轮(102)与联接齿轮(6)联接,输入小齿圈(22)通过输出行星架(21)上的行星齿轮(20)与输出行星架(21)、输入大齿圈(23)相互配合工作,输出行星架(21)与联接输出齿轮副(8)的输入齿轮(81)联接,联接输出齿轮副(8)的输出齿轮(82)与输入齿轮副(7)的输入齿轮(71)联接,输入齿轮副(7)的输出齿轮(72)与单向离合器(4)的输入端(41)以及输入齿轮(29)联接,后置齿轮箱体式液力偶合器(3)的输入端(31)与单向离合器(4)的输出端(42)以及超越离合器(9)的输出端(92)联接,后置齿轮箱体式液力偶合器(3)的输出端(32)与输入大齿轮(26)联接,输入大齿轮(26)通过固定行星架(24)上的行星齿轮(20)与固定行星架(24)、输出小齿轮(25)相互配合工作,固定行星架(24)与固定件固接,输出小齿轮(25)与输入大齿圈(23)联接,输入齿轮(29)通过输出行星架(27)上的行星齿轮(20)与输出行星架(27)、输入齿圈(28)相互配合工作,输入齿圈(28)与联接齿轮(6)啮合,输出行星架(27)与输出轴(5)联接。
所述各个需要联接的元件,而被其它若干元件分隔的元件,可采用中空或联接架的方法,穿过或跨过其它若干元件,与之连接;当联接的元件是齿轮或齿圈时,则相互啮合或联接;所述各个齿轮副以及变速机构的传动比,按实际需要设计。
所述后置齿轮箱体式液力偶合器可以选择综合式液力变矩器代替。
所述空挂档机构可以选择离合器代替。
本发明应用于车辆时,能够根据车辆行驶时受到阻力的大小,自动地改变输出扭矩以及速度的变化。
本发明具有以下的优点:
(1)本发明大部份功率由齿圈、行星齿轮、行星架、齿轮传递,因而传动功率和传动效率都极大地提高,而且结构简单,更易于维修;
(2)本发明的变矩和变速是自动完成的,能实现高效率的传动,并且除了起步以外,都能使发动机和起动机在最佳范围内工作,与其它变速器相比,在发动机和起动机等效的前提下,它降低了发动机和起动机的制造成本;
(3)本发明使发动机和起动机处于经过济转速区域内运转,也就是使发动机在非常小污染排放的转速范围内工作,避免了发动机在怠速和高速运行时,排放大量废气,从而减少了废气的排放,有利于保护环境;
(4)本发明能利用内部转速差起缓冲和过载保护的作用,有利于延长发动机和传动系以及起动机的使用寿命,另外,当行驶阻力增大,则能使车辆自动降速,反之则升速,有利于提高车辆的行驶性能;
(5)本发明使输入功率不间断,可保证车辆有良好的加速性和较高的平均车速,使发动机的磨损减少,延长了大修间隔里程,有利于提高生产率;
(6)本发明起动时,具有自动变矩和变速的性能,输入功率不间断,不会发生冲击现象,可保证发动机起动平稳、减少噪音,使发动机的起动磨损减少,并延长了起动电机以及蓄电池的使用寿命;
(7)本发明减少了现今起动机的传动机构,降低了制造成本,发动机起动后,只需对起动电机采取制动以及分离的措施,使其停止传动。
另外,本发明是是一种用于各种地面车辆、船舶、铁道机车以及机床的复合型后置齿轮箱体式液力偶合器以及起动器。
附图说明
说明书附图1为本发明实施例一的结构图;
说明书附图2为本发明实施例二的结构图;
附图中两个元件之间的连接处,运用粗实线表示固定连接,细实线表示两个元件可以相对转动。
具体实施方式
下面结合说明书附图与具体实施方式对本发明作进一步的详细说明:
实施例一:
如图1中所示,一种复合型后置齿轮箱体式液力偶合器以及起动器,包括输入轴1、固定单向离合器3、后置齿轮箱体式液力偶合器4、空挂档机构5、输出轴6、输出齿轮副7、联接轴8、联接架9、电磁离合器10、起动机齿轮副11、输入齿轮副12、超越离合器13,所述的输入轴1与输出轴6之间设有行星齿轮20、、固定齿轮29,输入轴1与输入齿轮副12的输出齿轮122以及超越离合器13的输入端131联接,超越离合器13的输出端132与输入行星架21以及起动机齿轮副11的输出齿轮112联接,起动机齿轮副11的输出齿轮112与起动机齿轮副11的输入齿轮111相互配合工作,输入行星架21通过其上的行星齿轮20与输入齿圈22、输出齿圈23相互配合工作,空挂档机构5的输入端51与输出齿圈23、输入联接行星架28以及输出齿轮副7的输入齿轮71联接,联接轴8与输出齿轮副7的输出齿轮72以及电磁离合器10的输入端101联接,电磁离合器10的输出端102与输入齿轮副12的输入齿轮121联接,空挂档机构5的输出端52与输出轴6联接,输入联接行星架28通过其上的行星齿轮20与输出齿轮27、固定齿轮29相互配合工作,固定单向离合器3的输入端31、固定行星架26以及固定齿轮29与固定元件联接,输出齿轮27与后置齿轮箱体式液力偶合器4的输入端41联接,后置齿轮箱体式液力偶合器4的输出端42与输入齿圈24联接,输入齿圈24通过固定行星架26上的行星齿轮20与输出小齿轮25、固定行星架26相互配合工作,输出小齿轮25以及输入齿圈22与联接架9联接,输入齿圈22与固定单向离合器3的输出端32联接。
发动机起动前,分离空挂档机构5,接合电磁离合器10,起动机的输入功率经过起动机齿轮副11传递到输入行星架21,输入行星架21通过其上的行星齿轮20传递到输出齿圈23,输出齿圈23再通过空挂档机构5的输入端51、输出齿轮副7、联接轴8、电磁离合器10以及输入齿轮副12传递到输入轴1,再传递到发动机曲轴上,产生的起动力足以克服发动机起动阻力时,发动机起动。
发动机起动后,接合空挂档机构5,分离电磁离合器10,输入行星架21通过其上的行星齿轮20把由发动机经过输入轴1以及超越离合器13传递到此的功率,传递到输出齿圈23,输出齿圈23通过空挂档机构5的输入端51把传递到此的功率分流为两路,一路传递到本发明的输出轴6;另一路传递到输入联接行星架28,联接行星架28再通过其上的行星齿轮20传递到输出齿轮27,再通过后置齿轮箱体式液力偶合器4传递到输入齿圈24,输入 齿圈24再通过固定行星架26上的行星齿轮20传递到输出小齿轮25,再通过联接架9传递到输入齿圈22,传递到输入齿圈22的功率以及由发动机经过输入轴1以及超越离合器13传递到输入行星架21的功率,则通过输入行星架21上的行星齿轮20传递到输出齿圈23,输出齿圈23再在各个元件之间不断地进行变速的反复循环,其中,后置齿轮箱体式液力偶合器4的输出转速不断地随着输入功率、行驶阻力的变化而无级地变速,从而使输出齿圈23的输出转速也不断地变化,并且通过空挂档机构5传递至本发明的输出轴6,从而实现了把发动机的功率通过输出轴6对外输出。
对于本发明,当输入轴1的转速不变,输入齿圈22、输出齿轮23以及输出轴6上的扭矩随其转速的变化而变化,转速越低,传递到输入齿圈22、输出齿轮23以及输出轴6上的扭矩就越大,反之,则越小,从而实现本发明能随车辆行驶阻力的不同,改变力矩以及速度的复合型后置齿轮箱体式液力偶合器以及起动器。
本发明使用时,发动机起动前,分离空挂档机构5,接合电磁离合器10,发动机的转速为零,当起动机启动,起动机的输入功率经过起动机齿轮副11传递到输入行星架21,其中,由于此时没有功率流入输入齿圈22,并且固定单向离合器3的输入端31与固定元件联接,起限制转向的作用,使输入齿圈22不能与发动机相反的转向转动,转速为零,此时,传递到输入行星架21的功率,则通过其上的行星齿轮20把功率传递到输出齿圈23,输出齿圈23再通过空挂档机构5的输入端51、输出齿轮副7、联接轴8、电磁离合器10以及输入齿轮副12传递到输入轴1,再传递到发动机曲轴上,当传递到发动机的曲轴上的扭矩,产生的起动力足以克服发动机的起动阻力时,发动机则起动并开始加速。
发动机起动后,设发动机的输入功率、输入转速及其负荷不变,即输入轴1的转速与扭矩为常数,汽车起步前,接合空挂档机构5,分离电磁离合器10,输出轴6的转速为零,发动机的输入功率经过输入轴1以及超越离合器13,传递到输入行星架21,其中,由于此时没有功率流入输入齿圈22,并且固定单向离合器3的输入端31与固定元件联接,起限制转向的作用,使输入齿圈22不能与发动机相反的转向转动,转速为零,此时,传递到输入行星架21的功率,则通过其上的行星齿轮20把功率传递到输出齿圈23,输出齿圈23把传递到此的功率分流为两路,一路通过空挂档机构5传递到本发明的输出轴6;另一路传递到输入联接行星架28,联接行星架28再通过其上的行星齿轮20传递到输出齿轮27,再通过后置齿轮箱体式液力偶合器4传递到输入齿圈24,输入齿圈24再通过固定行星架26上的行星齿轮20传递到输出小齿轮25,再通过联接架9传递到输入齿圈22,传递到输入齿圈22的功率以及由发动机经过输入轴1以及超越离合器13传递到输入行星架21的功率,则通过输入行星架21上的行星齿轮20传递到输出齿圈23,输出齿圈23再在各个元件之间不断地进行变速的反复循环,其中,后置齿轮箱体式液力偶合器4的输出转速不断地随着行驶阻力的变化而无级地变速,从而使输出齿圈23的输出转速也不断地变化,并且通过空挂档机构5传递至本发明的输出轴6,从而使输出轴6的扭矩随着转速的增加而减少。
实施例二:
如图2中所示,一种复合型后置齿轮箱体式液力偶合器,包括输入轴1、后置齿轮箱体式液力偶合器3、单向离合器4、输出轴5、联接齿轮6、输入齿轮副7、联接输出齿轮副8、超越离合器9、输出齿轮副10,所述的输入轴1与输出轴5之间设有行星齿轮20、输出行星架21、输入小齿圈22、输入大齿圈23、固定行星架24、输出小齿轮25、输入大齿轮26、输出行星 架27、输入齿圈28、输入齿轮29,输入轴1与输入小齿圈22、超越离合器9的输入端91以及输出齿轮副10的输入齿轮101联接,输出齿轮副10的输输齿轮102与联接齿轮6联接,输入小齿圈22通过输出行星架21上的行星齿轮20与输出行星架21、输入大齿圈23相互配合工作,输出行星架21与联接输出齿轮副8的输入齿轮81联接,联接输出齿轮副8的输出齿轮82与输入齿轮副7的输入齿轮71联接,输入齿轮副7的输出齿轮72与单向离合器4的输入端41以及输入齿轮29联接,后置齿轮箱体式液力偶合器3的输入端31与单向离合器4的输出端42以及超越离合器9的输出端92联接,后置齿轮箱体式液力偶合器3的输出端32与输入大齿轮26联接,输入大齿轮26通过固定行星架24上的行星齿轮20与固定行星架24、输出小齿轮25相互配合工作,固定行星架24与固定件固接,输出小齿轮25与输入大齿圈23联接,输入齿轮29通过输出行星架27上的行星齿轮20与输出行星架27、输入齿圈28相互配合工作,输入齿圈28与联接齿轮6啮合,输出行星架27与输出轴5联接。
输入小齿圈22、输入大齿圈23把传递到各自的功率通过输出行星架21上的行星齿轮20汇流于输出行星架21,由于输入大齿圈23与后置齿轮箱体式液力偶合器3相互关联,所以输入大齿圈23的转速可以不断地改变,从而使输出行星架21的转速也随之变化。
输入功率经过输入轴1分流为三路,第一路传递到输入小齿圈22,第二路经过输出齿轮副10以及联接齿轮6传递到输入齿圈28,第三路通过超越离合器9传递到后置齿轮箱体式液力偶合器3,再传递到输入大齿轮26,输入大齿轮26再通过固定行星架24上的行星齿轮20把功率传递到输出小齿轮25,输出小齿轮25再传递到输入大齿圈23,输入小齿圈22、输入大齿圈23把传递到各自的功率通过输出行星架21上的行星齿轮20汇流于输出行星架21,输出行星架21则通过联接输出齿轮副8,传递到输入齿轮副7再分流为两路,一路传递到输入齿轮29,此时,输入齿圈28与输入齿轮29把传递到各自的功率通过输出行星架27上的行星齿轮20汇流于输出行星架27,输出行星架27则传递至本发明的输出轴5,从而实现了把发动机的功率通过输出轴5对外输出。
当发动机的输入功率增大或者输出轴5的阻力减少时,另一路通过单向离合器4以及后置齿轮箱体式液力偶合器3传递到输入输入大齿轮26的功率随之而增大,输入大齿轮26则通过固定行星架24上的行星齿轮20把功率传递到输出小齿轮25,输出小齿轮25再传递到输入大齿圈23,即输入大齿圈23的输入功率随之而增大,输入小齿圈22、输入大齿圈23把传递到各自的功率通过输出行星架21上的行星齿轮20汇流于输出行星架21,输出行星架21再重复上述过程,使传递到输入齿轮29上的转速不断变化,输入齿圈28与输入齿轮29把传递到各自的功率通过输出行星架27上的行星齿轮20汇流于输出行星架27,输出行星架27则传递至本发明的输出轴5,从而实现了把发动机的功率通过输出轴5对外输出。
对于本发明,当输入轴1的转速不变,输入齿轮29上的转速,则随着车辆输入功率或者行驶阻力的不同而变化,阻力越低,传递到输入齿轮29上的转速就越高,反之,则越低,从而实现本发明能随着车辆输入功率或者行驶阻力的不同而改变速度的复合型后置齿轮箱体式液力偶合器。
本发明使用时,设发动机的输入功率、输入转速及其负荷不变,即输入轴1的转速 与扭矩为常数,汽车起步前,输出轴5的转速为零,发动机的输入功率经过输入轴1,分流为三路,第一路传递到输入小齿圈22,第二路经过输出齿轮副10以及联接齿轮6传递到输入齿圈28,第三路通过超越离合器9传递到后置齿轮箱体式液力偶合器3,再传递到输入大齿轮26,输入大齿轮26再通过固定行星架24上的行星齿轮20把功率传递到输出小齿轮25,输出小齿轮25再传递到输入大齿圈23,输入小齿圈22、输入大齿圈23把传递到各自的功率通过输出行星架21上的行星齿轮20汇流于输出行星架21,输出行星架21则通过联接输出齿轮副8,传递到输入齿轮副7再分流为两路,一路传递到输入齿轮29,此时,输入齿圈28与输入齿轮29把传递到各自的功率通过输出行星架27上的行星齿轮20汇流于输出行星架27,输出行星架27则传递至本发明的输出轴5,从而实现了把发动机的功率通过输出轴5对外输出。
当传递到输出轴5上的扭矩,经过传动系统传动到驱动轮上产生的牵引力足以克服汽车行阻力时,汽车则开始加速,此时,当输出轴5的阻力减少时,另一路通过单向离合器4以及后置齿轮箱体式液力偶合器3传递到输入输入大齿轮26的功率随之而增大,输入大齿轮26则通过固定行星架24上的行星齿轮20把功率传递到输出小齿轮25,输出小齿轮25再传递到输入大齿圈23,即输入大齿圈23的输入功率随之而增大,输入小齿圈22、输入大齿圈23把传递到各自的功率通过输出行星架21上的行星齿轮20汇流于输出行星架21,输出行星架21再重复上述过程,使传递到输入齿轮29上的转速不断变化,输入齿圈28与输入齿轮29把传递到各自的功率通过输出行星架27上的行星齿轮20汇流于输出行星架27,输出行星架27则传递至本发明的输出轴5,当传递到输出轴5上的扭矩,经过传动系统传动到驱动轮上产生的牵引力足以进一步克服汽车起步阻力时,汽车则起步并开始加速,后置齿轮箱体式液力偶合器3的输出端32的转速也逐渐升高,与之相互关联的输入大齿圈23的转速也随之逐渐升高,从而使输出行星架21、输入齿轮29以及输出轴5上的转速随之增加而升高。

Claims (2)

  1. 一种复合型后置齿轮箱体式液力偶合器以及起动器,包括输入轴(1)、固定单向离合器(3)、后置齿轮箱体式液力偶合器(4)、空挂档机构(5)、输出轴(6)、输出齿轮副(7)、联接轴(8)、联接架(9)、电磁离合器(10)、起动机齿轮副(11)、输入齿轮副(12)、超越离合器(13),其特征在于:所述的输入轴(1)与输出轴(6)之间设有行星齿轮(20)、输入行星架(21)、输入齿圈(22)、输出齿圈(23)、输入齿圈(24)、输出小齿轮(25)、固定行星架(26)、输出齿轮(27)、输入联接行星架(28)、固定齿轮(29),输入轴(1)与输入齿轮副(12)的输出齿轮(122)以及超越离合器(13)的输入端(131)联接,超越离合器(13)的输出端(132)与输入行星架(21)以及起动机齿轮副(11)的输出齿轮(112)联接,起动机齿轮副(11)的输出齿轮(112)与起动机齿轮副(11)的输入齿轮(111)相互配合工作,输入行星架(21)通过其上的行星齿轮(20)与输入齿圈(22)、输出齿圈(23)相互配合工作,空挂档机构(5)的输入端(51)与输出齿圈(23)、输入联接行星架(28)以及输出齿轮副(7)的输入齿轮(71)联接,联接轴(8)与输出齿轮副(7)的输出齿轮(72)以及电磁离合器(10)的输入端(101)联接,电磁离合器(10)的输出端(102)与输入齿轮副(12)的输入齿轮(121)联接,空挂档机构(5)的输出端(52)与输出轴(6)联接,输入联接行星架(28)通过其上的行星齿轮(20)与输出齿轮(27)、固定齿轮(29)相互配合工作,固定单向离合器(3)的输入端(31)、固定行星架(26)以及固定齿轮(29)与固定元件联接,输出齿轮(27)与后置齿轮箱体式液力偶合器(4)的输入端(41)联接,后置齿轮箱体式液力偶合器(4)的输出端(42)与输入齿圈(24)联接,输入齿圈(24)通过固定行星架(26)上的行星齿轮(20)与输出小齿轮(25)、固定行星架(26)相互配合工作,输出小齿轮(25)以及输入齿圈(22)与联接架(9)联接,输入齿圈(22)与固定单向离合器(3)的输出端(32)联接。
  2. 一种复合型后置齿轮箱体式液力偶合器,包括输入轴(1)、后置齿轮箱体式液力偶合器(3)、单向离合器(4)、输出轴(5)、联接齿轮(6)、输入齿轮副(7)、联接输出齿轮副(8)、超越离合器(9)、输出齿轮副(10),其特征在于:所述的输入轴(1)与输出轴(5)之间设有行星齿轮(20)、输出行星架(21)、输入小齿圈(22)、输入大齿圈(23)、固定行星架(24)、输出小齿轮(25)、输入大齿轮(26)、输出行星架(27)、输入齿圈(28)、输入齿轮(29),输入轴(1)与输入小齿圈(22)、超越离合器(9)的输入端(91)以及输出齿轮副(10)的输入齿轮(101)联接,输出齿轮副(10)的输输齿轮(102)与联接齿轮(6)联接,输入小齿圈(22)通过输出行星架(21)上的行星齿轮(20)与输出行星架(21)、输入大齿圈(23)相互配合工作,输出行星架(21)与联接输出齿轮副(8)的输入齿轮(81)联接,联接输出齿轮副(8)的输出齿轮(82)与输入齿轮副(7)的输入齿轮(71)联接,输入齿轮副(7)的输出齿轮(72)与单向离合器(4)的输入端(41)以及输入齿轮(29)联接,后置齿轮箱体式液力偶合器(3)的输入端(31)与单向离合器(4)的输出端(42)以及超越离合器(9)的输出端(92)联接,后置齿轮箱体式液力偶合器(3)的输出端(32)与输入大齿轮(26)联接,输入大齿轮(26)通过固定行星架(24)上的行星齿轮(20)与固定行星架(24)、输出小齿轮(25)相互配合工作,固定行星架(24)与固定件固接,输出小齿轮(25)与输入大齿圈(23)联接,输入齿轮(29)通过输出行星架(27)上的行星齿轮(20)与输出行星架(27)、输入齿圈(28)相互配合工作,输入齿圈(28)与联接齿轮(6)啮合,输出行星架(27)与输出轴(5)联接。
PCT/CN2016/088744 2015-07-07 2016-07-06 一种复合型后置齿轮箱体式液力偶合器以及起动器 WO2017005180A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680039163.8A CN108027034A (zh) 2015-07-07 2016-07-06 一种复合型后置齿轮箱体式液力偶合器以及起动器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510389856.7A CN105090429A (zh) 2015-07-07 2015-07-07 一种复合型后置齿轮箱体式液力偶合器以及起动器
CN201510389856.7 2015-07-07

Publications (1)

Publication Number Publication Date
WO2017005180A1 true WO2017005180A1 (zh) 2017-01-12

Family

ID=54571489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088744 WO2017005180A1 (zh) 2015-07-07 2016-07-06 一种复合型后置齿轮箱体式液力偶合器以及起动器

Country Status (3)

Country Link
CN (2) CN105090429A (zh)
HK (1) HK1216329A1 (zh)
WO (1) WO2017005180A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105090429A (zh) * 2015-07-07 2015-11-25 吴志强 一种复合型后置齿轮箱体式液力偶合器以及起动器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB624858A (en) * 1942-01-09 1949-06-17 Borg Warner Improvements in or relating to variable-speed transmissions and control mechanisms therefor
DE19809464A1 (de) * 1998-03-06 1999-09-16 Voith Turbo Kg Anfahrvarianten für 6-Gang-Wandlerautomatgetriebe
WO2003016751A1 (fr) * 2001-08-17 2003-02-27 Korotkov Eduard Konstantinovic Transmission holonome universelle a variation infinie de couple
CN102358159A (zh) * 2011-08-05 2012-02-22 上海中科深江电动车辆有限公司 具有液力变矩器的混合驱动系统
CN104500682A (zh) * 2014-12-12 2015-04-08 吴志强 一种复合型后置齿轮箱体式液力偶合器以及起动器
CN104534053A (zh) * 2014-12-12 2015-04-22 吴志强 一种复合型液力传动器以及起动器
CN105090429A (zh) * 2015-07-07 2015-11-25 吴志强 一种复合型后置齿轮箱体式液力偶合器以及起动器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB624858A (en) * 1942-01-09 1949-06-17 Borg Warner Improvements in or relating to variable-speed transmissions and control mechanisms therefor
DE19809464A1 (de) * 1998-03-06 1999-09-16 Voith Turbo Kg Anfahrvarianten für 6-Gang-Wandlerautomatgetriebe
WO2003016751A1 (fr) * 2001-08-17 2003-02-27 Korotkov Eduard Konstantinovic Transmission holonome universelle a variation infinie de couple
CN102358159A (zh) * 2011-08-05 2012-02-22 上海中科深江电动车辆有限公司 具有液力变矩器的混合驱动系统
CN104500682A (zh) * 2014-12-12 2015-04-08 吴志强 一种复合型后置齿轮箱体式液力偶合器以及起动器
CN104534053A (zh) * 2014-12-12 2015-04-22 吴志强 一种复合型液力传动器以及起动器
CN105090429A (zh) * 2015-07-07 2015-11-25 吴志强 一种复合型后置齿轮箱体式液力偶合器以及起动器

Also Published As

Publication number Publication date
CN108027034A (zh) 2018-05-11
CN105090429A (zh) 2015-11-25
HK1216329A1 (zh) 2016-11-04

Similar Documents

Publication Publication Date Title
WO2017005177A1 (zh) 一种复合型箱体式液力偶合器以及起动器
WO2017005184A1 (zh) 一种复合式限矩型水介质液力偶合器以及起动器
WO2017005181A1 (zh) 一种复合谐波齿轮传动的液力偶合器以及起动器
CN101761630A (zh) 一种复合型封闭行星锥式无级变速兼起动器
WO2017005180A1 (zh) 一种复合型后置齿轮箱体式液力偶合器以及起动器
WO2016112800A1 (zh) 一种复合型综合式液力变矩器以及无级变速器
WO2016112804A1 (zh) 一种复合型轴流式液力变矩器以及无级变速器
WO2017005176A1 (zh) 一种复合型箱磨式液力偶合器以及起动器
WO2016112810A1 (zh) 一种复合型叶轮式液力变矩器以及无级变速器
WO2017005185A1 (zh) 一种复合型恒充式液力偶合器以及起动器
WO2017005187A1 (zh) 一种复合式调速型液力偶合器以及起动器
WO2017005182A1 (zh) 一种复合式液力异型偶合器以及起动器
WO2017005186A1 (zh) 一种复合型阀控充液式液力偶合器以及起动器
WO2017005178A1 (zh) 一种复合型外壳带侧辅室的液力偶合器以及起动器
WO2017005183A1 (zh) 一种复合型后辅室延长式限矩型液力偶合器以及起动器
WO2017005179A1 (zh) 一种复合型双腔液力偶合器以及起动器
WO2016112809A1 (zh) 一种复合型双泵轮液力变矩器以及无级变速器
WO2016112806A1 (zh) 一种复合型溢流阀外置式液力变矩器以及无级变速器
WO2017004782A1 (zh) 一种复合型液力传动器
WO2016112805A1 (zh) 一种复合型双涡轮液力变矩器以及无级变速器
WO2016112811A1 (zh) 一种复合型双导轮式液力变矩器以及无级变速器
WO2016112802A1 (zh) 一种复合型可调液力变矩器以及无级变速器
WO2016112808A1 (zh) 一种复合型向心式液力变矩器以及无级变速器
WO2016112803A1 (zh) 一种复合型导叶可调式液力变矩器以及无级变速器
WO2016112807A1 (zh) 一种复合型向心涡轮式液力变矩器以及无级变速器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16820831

Country of ref document: EP

Kind code of ref document: A1