WO2010029754A1 - 成形体及びその製造方法 - Google Patents

成形体及びその製造方法 Download PDF

Info

Publication number
WO2010029754A1
WO2010029754A1 PCT/JP2009/004509 JP2009004509W WO2010029754A1 WO 2010029754 A1 WO2010029754 A1 WO 2010029754A1 JP 2009004509 W JP2009004509 W JP 2009004509W WO 2010029754 A1 WO2010029754 A1 WO 2010029754A1
Authority
WO
WIPO (PCT)
Prior art keywords
mug
foam layer
resin composition
injection
range
Prior art date
Application number
PCT/JP2009/004509
Other languages
English (en)
French (fr)
Inventor
道男 小松
Original Assignee
Komatsu Michio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Michio filed Critical Komatsu Michio
Priority to US13/063,378 priority Critical patent/US20110171406A1/en
Priority to EP09812903.4A priority patent/EP2332711B1/en
Priority to JP2010528651A priority patent/JP4923281B2/ja
Publication of WO2010029754A1 publication Critical patent/WO2010029754A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/04Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities
    • B29C44/0407Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles consisting of at least two parts of chemically or physically different materials, e.g. having different densities by regulating the temperature of the mould or parts thereof, e.g. cold mould walls inhibiting foaming of an outer layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • B29C44/348Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/34Chemical features in the manufacture of articles consisting of a foamed macromolecular core and a macromolecular surface layer having a higher density than the core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • B29C2045/1722Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles injecting fluids containing plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/043Skinned foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7132Bowls, Cups, Glasses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1376Foam or porous material containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/233Foamed or expanded material encased

Definitions

  • the present invention relates to a molded body made of an injection molded product of polylactic acid resin and a method for producing the molded body.
  • polylactic acid resins that are decomposed by the action of microorganisms such as bacteria in the soil after disposal, have been proposed in order to reduce the burden on the environment caused by wastes made of synthetic resins.
  • the polylactic acid resin can be formed into a molded body having various shapes by, for example, extrusion molding or pressure molding.
  • the molded product made of the polylactic acid resin is considered to be used as a food container made of a hollow molded product such as a cup, a tray, a bowl, and a bowl to accommodate cooked foods and drinks, for example.
  • the food container Since the cooked food and drink is at a temperature of, for example, about 90 to 120 ° C., the food container is required to have a heat retaining property capable of maintaining a temperature in the above range, that is, a heat insulating property. The Furthermore, the food container is required to have light weight and strength enough to withstand use as a food container.
  • a food container made of a resin composition containing a polylactic acid resin and a powder made of layered silicate is known (see, for example, Patent Document 1).
  • the food container is formed, for example, by deep drawing a sheet formed by extruding the resin composition.
  • the food container made of the resin composition has a disadvantage that it is thermally deformed at a temperature of 96 ° C. or higher.
  • the thickness must be increased in order to obtain sufficient heat retention, and there is an inconvenience that if the thickness is increased, the lightness is impaired. .
  • the layered silicate is mixed with polylactic acid resin, and further supercritical carbon dioxide is impregnated in an autoclave to form a resin composition. Thereafter, the resin composition is taken out of the autoclave and the carbon dioxide is desorbed in an oil bath at 160 ° C., whereby a food container made entirely of foam can be obtained.
  • the food container made entirely of foam cannot obtain strength enough to withstand use, so it is necessary to affix a film or sheet on the surface to form a non-foam layer to ensure strength.
  • the food container has a disadvantage that biodegradability is impaired when a film or sheet of another resin is stuck on the surface.
  • An object of the present invention is to eliminate such inconveniences, and to provide a molded article that has lightness, heat insulation, and strength and that does not impair the biodegradability of a polylactic acid resin, and a method for producing the same. . Furthermore, an object of the present invention is to provide a molded article that has heat resistance that can withstand relatively high temperatures and that does not impair the biodegradability of the polylactic acid resin, and a method for producing the same.
  • the present invention provides a molded article comprising an injection-molded article of polylactic acid resin, wherein the injection-molded article comprises polylactic acid resin and a powder having an average particle size in the range of 1 to 150 nm. And a resin composition impregnated in a range of 0.05 to 0.3% by weight of nitrogen in a supercritical state with respect to the total amount by injection molding, and has a foam layer of closed foam inside, and a surface And a non-foamed layer formed integrally with the foamed layer.
  • the molded article of the present invention is an injection molded article obtained by injection molding a resin composition impregnated with nitrogen in a supercritical state, containing a polylactic acid resin and a powder having an average particle diameter in the range of 1 to 150 nm.
  • the powder may be an organic substance having biodegradability such as a dry powder of a plant such as kenaf, or may be an inorganic substance.
  • the inorganic powder having an average particle diameter in the above range include layered silicates having an average layer thickness in the range of 1 to 100 nm and a long diameter of 150 nm or less.
  • the “supercritical state” means a state having both gas diffusibility and liquid solubility exceeding a temperature and pressure (critical point) determined by the type of gas.
  • the molded body of the present invention is formed by injection-molding a resin composition impregnated in the above range with respect to the total amount of nitrogen in a supercritical state.
  • the surface can be provided with a non-foam layer.
  • the molded body of the present invention can be provided with light weight and heat insulating properties by including a foam layer of independent foam inside.
  • the molded object of this invention can be equipped with required intensity
  • the impregnation amount of nitrogen in the supercritical state when the impregnation amount of nitrogen in the supercritical state is less than 0.05% by weight with respect to the total amount, the pore diameter of the independent foam cannot be sufficiently increased in the foam, and the required heat insulating property is obtained. Can't get.
  • the amount of nitrogen impregnated in the supercritical state exceeds 0.3% by weight with respect to the total amount, the pore diameter of the foam becomes too large in the foam layer, and the required strength cannot be obtained.
  • both the foam layer and the non-foam layer are formed of polylactic acid resin. Therefore, the molded product of the present invention is easily decomposed by the action of microorganisms such as bacteria in the soil after disposal.
  • the foam layer is preferably made of closed foam having an average pore diameter in the range of 0.5 to 50 ⁇ m, and thereby can have required heat insulation properties.
  • the average pore diameter of the independent foam is less than 0.5 ⁇ m, the required heat insulation may not be obtained.
  • the average pore diameter of the independent foam exceeds 50 ⁇ m, the heat insulation is improved, but the required strength may not be obtained.
  • the range of the average pore diameter of the independent foam can be selected according to the application, for example, a range of 0.55 to 10 ⁇ m, a range of 9 to 15 ⁇ m, or a range of 12 to 48 ⁇ m.
  • the amount of nitrogen impregnation may be varied. As a result, depending on the application, the amount of nitrogen impregnation can be reduced within the above range to reduce the cost.
  • the molded body of the present invention preferably has heat resistance.
  • the non-foamed layer of the molded article of the present invention has a crystallinity in the range of 15% or more.
  • the non-foamed layer has a crystallinity in the range of 15 to 28%. If the non-foamed layer is less than 15%, required heat resistance and strength cannot be imparted to the molded body. On the other hand, even if the crystallinity of the non-foamed layer exceeds 28%, no further effect can be obtained. In order for the crystallinity of the non-foamed layer to exceed 28%, it is necessary to increase the surface temperature of the mold cavity at the time of injection molding, which increases the manufacturing cost and lengthens the molding cycle. End up.
  • the molded product of the present invention can be suitably used as a food container, for example.
  • the molded object of this invention can also be used for the other use as which heat resistance and heat retention (heat insulation) are requested
  • molded objects such as a motor vehicle part or an electrical component, can be mentioned, for example.
  • the molded body of the present invention When the molded body of the present invention is used as the food container, it is preferable to have a specific gravity that can sink in water. If it does in this way, since the said food container will settle in water when washing with water after use, washing
  • the specific gravity can be made slightly higher than 1 by adjusting the ratio of the foam layer and the non-foam layer.
  • the specific gravity is not particularly limited as long as it can sink in water. If the specific gravity is excessive, the lightness of the molded article of the present invention may be impaired.
  • the molded article of the present invention can be provided with cosmetic properties by providing a coating film on the surface.
  • a coating film a biodegradable coating film is preferably provided.
  • cosmetics can be provided, without impairing the biodegradability of the molded object of this invention.
  • the biodegradable coating film may contain a biodegradable pigment such as a pigment (soy ink) made from soybeans, and is a plant-derived coating such as urushi that is itself biodegradable. It may be a membrane.
  • a biodegradable pigment such as a pigment (soy ink) made from soybeans
  • urushi a plant-derived coating
  • the molded product of the present invention can be given an appearance as if it is a lacquer ware, which is particularly advantageous when the molded product is used as a food container.
  • the obtained injection-molded product exhibits a milky white color, so there is no need to perform base coating when forming the coating film. It is advantageous.
  • a polylactic acid resin is mixed with a powder having an average particle diameter in the range of 1 to 150 nm, and nitrogen in a supercritical state is 0.05 to 0.3% by weight based on the total amount.
  • the resin composition can be advantageously produced by a production method comprising a step of forming a resin composition by impregnating in the above range and a step of injection molding the resin composition by injection into a cavity of a mold.
  • a resin composition was formed by injecting and impregnating supercritical carbon dioxide into a polylactic acid resin mixed with powder from a cylinder of an injection molding machine.
  • the plurality of bubbles generated in the resin composition thus formed tend to be integrated to generate large bubbles having an average diameter of 0.1 to 10 mm. For this reason, the required strength cannot be obtained with the injection molded article of the resin composition.
  • the powder is mixed with the polylactic acid resin, and further impregnated with nitrogen in a supercritical state in a range of 0.05 to 0.3% by weight with respect to the total amount.
  • the resin composition is injected into the mold cavity.
  • the impregnation amount of nitrogen in the supercritical state when the impregnation amount of nitrogen in the supercritical state is less than 0.05% by weight with respect to the total amount, the pore diameter of the independent foam cannot be sufficiently increased in the foam, and the required heat insulating property is obtained. Can't get.
  • the amount of nitrogen impregnated in the supercritical state exceeds 0.3% by weight with respect to the total amount, the pore diameter of the foam becomes too large in the foam layer, and the required strength cannot be obtained.
  • the powder When the powder has an average particle diameter in the above range, the powder can act as a foam nucleus in the foam and also act as a crystal nucleus when the polylactic acid resin is crystallized. It is technically difficult to make the powder smaller than 1 nm, and when it exceeds 150 nm, the powder cannot act as a nucleus for crystallization or foaming.
  • the mold is preferably heated to a temperature in the range of 75 to 110 ° C. of the cavity surface.
  • Polylactic acid resin is a crystalline resin, and is known to have a glass transition temperature of 57 ° C. and a crystallization temperature of 110 ° C. However, in the production method of the present invention, the polylactic acid resin can be crystallized even in a temperature range lower than the crystallization temperature.
  • the resin composition injected into the cavity is rapidly cooled and solidified to make it difficult to foam, and to obtain an injection-molded product having a predetermined shape. I can't.
  • the surface temperature of the cavity exceeds 110 ° C., it exceeds the crystallization temperature of the polylactic acid resin, so that the polylactic acid resin can be crystallized even in a temperature range lower than the crystallization temperature. The effect cannot be obtained.
  • the mold is heated to a temperature in which the surface temperature of the cavity is less than 90 ° C. By doing so, the molding cycle can be shortened.
  • FIG. 2 is an explanatory partial cross-sectional view of the molded body shown in FIG. 1.
  • Explanatory sectional drawing of the injection molding apparatus used for manufacture of the molded object shown in FIG. The graph which shows the crystallinity degree of each part of the molded object of this embodiment.
  • the molded body made of the polylactic acid resin injection-molded product of the present embodiment is, for example, a food container such as the mug 1 shown in FIG.
  • the mug 1 contains drinks such as heated coffee, cocoa, soup, milk, various teas, hot water, etc., and is used for drinking.
  • the mug 1 is an injection-molded product formed by injection-molding a resin composition impregnated with nitrogen in a supercritical state, including a polylactic acid resin and a powder having an average particle diameter in the range of 1 to 150 nm.
  • a foam layer 4 is provided inside, and a non-foam layer 5 is provided on the surface. Both the foam layer 4 and the non-foam layer 5 are made of polylactic acid resin, and the non-foam layer 5 is formed integrally with the foam layer 4.
  • the foam layer 4 is made of independent foam.
  • the independent foaming has an average pore diameter of 0.5 to 50 ⁇ m as measured from a scanning electron micrograph of the cross section of the mug 1.
  • the non-foamed layer 5 has a crystallinity in the range of 15 to 28% as measured by differential scanning calorimetry.
  • the mug 1 has heat resistance to temperatures in the range of 90 to 120 ° C., and contains beverages such as coffee, cocoa, soup, milk, various teas, and hot water heated to the temperature in the above range. Can be used for drinking. Moreover, the mug 1 is provided with the heat retaining property which suppresses the fall of the temperature and keeps it at the temperature suitable for the taste while the beverage is used for drinking.
  • the mug 1 can be manufactured by, for example, an injection molding apparatus 11 shown in FIG.
  • the injection molding apparatus 11 includes a cylinder 13 that conveys the resin composition toward the mold 12, a rotating shaft portion 14 disposed in the cylinder 13, and a motor 15 that rotationally drives the rotating shaft portion 14. Yes.
  • the cylinder 13 includes a hopper 16 that supplies a resin composition into the cylinder 13 in the vicinity of the end opposite to the mold 12.
  • the cylinder 13 includes a supercritical nitrogen supply unit 17 near the center of the cylinder 13 on the downstream side of the hopper 16.
  • the supercritical nitrogen supply unit 17 supplies supercritical nitrogen into the cylinder 13.
  • the supercritical nitrogen supply unit 17 includes a supercritical nitrogen generator 18 that generates supercritical nitrogen, and a nitrogen conduit 19 that conveys the supercritical nitrogen generated by the supercritical nitrogen generator 18 toward the cylinder 13. And a metering device 20 interposed in the middle of the nitrogen conduit 19.
  • the nitrogen conduit 19 is connected to the cylinder 13 via a shutoff valve 21.
  • the cylinder 13 is provided with a nozzle 22 at the tip on the mold 12 side.
  • the cylinder 13 includes a plurality of heating devices 23a on the outer peripheral surface, and the nozzle 22 includes a heating device 23b on the outer peripheral surface. Further, the nozzle 22 is connected to the mold 12 via a shutoff valve 24.
  • the rotary shaft 14 is connected to the motor 15 at the end opposite to the mold 12.
  • the rotating shaft 14 includes a spiral screw 25 provided on the outer peripheral surface and a screw head 26 provided at the most distal end on the mold 12 side.
  • the screw 25 includes a proximal-side continuous screw 25a, a discontinuous screw 25b, and a distal-side continuous screw 25c provided between the screw head 26 and the discontinuous screw 25b.
  • the blades of the continuous screws 25a and 25c are continuous in the circumferential direction.
  • the discontinuous screw 25b has a blade shape intermittently formed in the circumferential direction.
  • the proximal-side continuous screw 25 a is provided in a portion from the end portion on the motor 15 side through the lower portion of the hopper 16 to the front of the lower portion of the supercritical nitrogen supply portion 17.
  • the discontinuous screw 25 b is provided in a lower portion of the supercritical nitrogen supply unit 17 and includes a plurality of discontinuous portions along the circumferential direction of the rotating shaft 14.
  • the mold 12 includes a fixed mold 12 a having a concave portion 27 having a shape along the outer shape of the mug 1 and a movable mold 12 b having a convex portion 28 having a shape along the inner shape of the mug 1.
  • a cavity portion 29 is formed between the concave portion 27 and the convex portion 28.
  • the cavity part 29 is connected to the nozzle 22 of the injection molding apparatus 11 through a sprue 30 provided in the fixed mold 12a.
  • a resin composition is charged into the cylinder 13 from the hopper 16.
  • a resin mixture comprising a thermoplastic resin containing 50% by mass or more of a polylactic acid resin is provided with an average layer thickness in the range of 1 to 100 nm and a major axis of 150 nm or less as powder.
  • a mixture of 0.1 to 50 parts by mass of layered silicate having an average particle diameter in the range of 150 nm can be suitably used.
  • Examples of such a resin composition include Terramac (registered trademark) manufactured by Unitika Ltd.
  • the resin composition is melted by being stirred by the continuous screw 25a while being heated by the heating device 23a in the cylinder 13, and the formed molten resin is conveyed in the direction of the mold 12.
  • the resin composition impregnated with nitrogen in a supercritical state is injected from the nozzle 22 into the cavity portion 29 of the mold 12 through the sprue 30.
  • the inside of the nozzle 22 is a region where the pressure drops as compared with the inside of the cylinder 13, and a nucleus for foaming is formed in the resin composition while passing through this region. It is considered that the layered silicate is used for the core for foaming.
  • the injection conditions of the resin composition may be, for example, a cylinder temperature of 190 to 210 ° C., an injection pressure of 175 MPa, an injection speed of 50 mm / second, and a filling time for the cavity 29 of 1.44 seconds.
  • the surface temperature of the cavity portion 29 of the mold 12 is 75 ° C. or higher and lower than 90 ° C.
  • the resin composition injected into the cavity 29 is filled into the cavity 29 up to the tip.
  • foaming starts at a portion of the resin composition that is on the inner side of the injection molded product, and the foam layer 4 is formed.
  • the resin composition is cooled and solidified, it is possible to obtain an injection-molded product including the foam layer 4 of independent foam inside and the non-foam layer 5 on the surface.
  • the injection molded product can be taken out as a product by opening the mold 12 and removing the mold.
  • the polylactic acid resin contracts with the cooling, so that it may be difficult to demold from the convex mold 28. Therefore, in the mold 12, by providing a means for introducing compressed air between the injection molded product and the convex mold 28, a gap can be formed between the injection molded product and the convex mold 28.
  • the demolding can be easily performed.
  • means for introducing compressed air between the injection molded product and the convex mold 28 has been proposed by the present applicants (see, for example, Patent Document 3).
  • the mug 1 shown in FIG. 1 can be obtained.
  • the mug 1 includes a non-foam layer 5 formed integrally with the foam layer 4, and both the foam layer 4 and the non-foam layer 5 are formed of a resin composition containing a polylactic acid resin. . Therefore, the mug 1 can be easily biodegraded by the action of microorganisms such as bacteria in the soil after disposal. Moreover, the mug 1 can accelerate
  • the mug 1 As a result, according to the mug 1, it is not easily decomposed at the time of use, and can be easily biodegraded after disposal.
  • the mug 1 has a specific gravity of 1 or more due to the addition of the layered silicate to a resin mixture made of a thermoplastic resin containing a polylactic acid resin, and settles in water. Therefore, washing with water can be easily performed.
  • the mug 1 is milky white as a whole by adding the layered silicate, but a coating layer may be formed on the surface in order to further impart cosmetics. If the coating layer is not biodegradable, the biodegradability is impaired when the mug 1 is discarded. Therefore, the coating film layer is a coating film containing a biodegradable pigment such as a pigment (soy ink) made from soybean, or a coating film derived from a plant such as urushi and having biodegradability itself. It is preferable. When the coating layer is formed, the entire mug 1 is milky white as described above, and therefore, a sharp coating layer can be obtained without providing a base layer, which is convenient.
  • a biodegradable pigment such as a pigment (soy ink) made from soybean
  • a coating film derived from a plant such as urushi and having biodegradability itself. It is preferable.
  • the mug 1 obtained by the manufacturing method of the present embodiment has a surface roughness in the range of 1 to 30 ⁇ m. Thereby, when the coating layer made of urushi is formed, an anchor effect can be obtained, and the coating layer made of urushi can obtain good adhesion to the mug 1.
  • the mag mug cup 1 having the shape shown in FIG. 1 was manufactured using the injection molding apparatus 11 shown in FIG.
  • the mug mug 1 manufactured in this example has a size of an outer diameter of 80 mm at the top (mouth portion), an outer diameter of 50 mm at the bottom, and a height of 80 mm, and the weight is 50.25 g.
  • a resin composition containing a polylactic acid resin and a layered silicate as a powder having an average particle size of 40 nm (Terramac (registered trademark) TE-8210, manufactured by Unitika Ltd.) was added to the resin composition. It was impregnated with 15% by weight of nitrogen in a supercritical state and injected into the cavity 29. The injection was performed under the conditions of a cylinder temperature of 195 ° C., an injection pressure of 175 MPa, an injection speed of 50 mm / second, and a filling time for the cavity 29 of 1.44 seconds. The surface temperature in the cavity 29 of the mold 12 at the time of injection was 89 ° C., and the back pressure was 20 MPa.
  • the mug 1 obtained in this example was cut and the cross-sectional shape was observed with a scanning electron microscope. As shown in FIG. It was confirmed that the foam layer 5 was provided.
  • the average pore diameter of the independent foaming of the foam layer 4 was 9 to 15 ⁇ m.
  • the crystallinity of the non-foamed layer 5 in each part of the mug 1 obtained in this example was measured by differential scanning calorimetry.
  • FIG. 1 there are six measurement locations: bottom outer surface A (near the gate), bottom inner surface B, peripheral wall outer surface C, handle portion 3 front side portion D, handle portion 3 rear side portion E, and mouth portion outer surface F. did.
  • the thickness (wall thickness) of each part was 2.5 mm for the bottom outer surface A and bottom inner surface B, 1.9 mm for the peripheral wall outer surface C, 2.5 mm for the handle 3, and 2.9 mm for the mouth outer surface F. .
  • the measurement result of the crystallinity is shown in FIG.
  • the non-foamed layer 5 in each part of the mug 1 obtained in this example has a crystallinity of 20.5 to 23.5%.
  • the upper part of the mug 1 is filled with 50 ° C. hot water and covered with a 5 mm thick plate made of the same material as the mug, It was left in a room at 20 ° C. for 60 minutes. Then, when the hot water temperature in the mug 1 was measured using the thermometer in the center part of the mug 1, it was 33.2 degreeC.
  • the mug 1 was maintained at a temperature of 120 ° C. for 2 minutes, and the presence or absence of deformation was visually observed.
  • Table 1 shows the amount of impregnation of nitrogen in the supercritical state in the resin composition, the average pore diameter of the independent foaming of the foam layer 4 of the mug 1, and the hot water temperature after filling the hot water inside and leaving it for 60 minutes. Show. Further, the surface temperature of the cavity portion 29 of the mold 12 during injection molding, the crystallinity of the non-foamed layer 5 of the mug 1, the presence or absence of deformation when maintained at a temperature of 120 ° C. for 2 minutes, and the molding cycle Time is shown in Table 2.
  • Example 2 exactly the same as Example 1 except that a polylactic acid resin composition containing a layered silicate having an average particle size of 145 nm (Termac (registered trademark) TE-8210, manufactured by Unitika Ltd.) was used as the powder.
  • a mug 1 having the shape shown in FIG. 1 was produced.
  • the grade of Terramac TE-8210 containing layered silicate having an average particle diameter of 145 nm used in this example is different from the grade of Terramac TE-8210 containing layered silicate having an average particle diameter of 40 nm used in Example 1.
  • the cross-sectional shape was observed in exactly the same way as in Example 1, and as shown in FIG. It was confirmed that the non-foamed layer 5 was provided.
  • the average pore diameter of the independent foaming of the foam layer 4 was 9 to 15 ⁇ m.
  • the degree of crystallinity of the non-foam layer 5 in each part of the mug 1 was measured in exactly the same way as in Example 1. It had a crystallinity of 23%.
  • Example 2 the temperature of the hot water after being left for 60 minutes was measured in exactly the same way as in Example 1.
  • Table 1 shows the amount of impregnation of nitrogen in the supercritical state in the resin composition, the average pore diameter of the independent foaming of the foam layer 4 of the mug 1, and the hot water temperature after filling the hot water inside and leaving it for 60 minutes. Show. Further, the surface temperature of the cavity portion 29 of the mold 12 during injection molding, the crystallinity of the non-foamed layer 5 of the mug 1, the presence or absence of deformation when maintained at a temperature of 120 ° C. for 2 minutes, and the molding cycle Time is shown in Table 2.
  • a mug 1 having the shape shown in FIG. 1 was manufactured in exactly the same manner as in Example 1 except that the surface temperature of the cavity portion 29 of the mold 12 was 76 ° C.
  • the cross-sectional shape was observed in exactly the same way as in Example 1, and as shown in FIG. It was confirmed that the non-foamed layer 5 was provided.
  • the average pore diameter of the independent foaming of the foam layer 4 was 9 to 13 ⁇ m.
  • the degree of crystallinity of the non-foam layer 5 in each part of the mug 1 was measured in exactly the same way as in Example 1. It had a crystallinity of 23%.
  • Example 2 the temperature of the hot water after being left for 60 minutes was measured in exactly the same way as in Example 1.
  • Table 1 shows the amount of impregnation of nitrogen in the supercritical state in the resin composition, the average pore diameter of the independent foaming of the foam layer 4 of the mug 1, and the hot water temperature after filling the hot water inside and leaving it for 60 minutes. Show. Further, the surface temperature of the cavity portion 29 of the mold 12 during injection molding, the crystallinity of the non-foamed layer 5 of the mug 1, the presence or absence of deformation when maintained at a temperature of 120 ° C. for 2 minutes, and the molding cycle Time is shown in Table 2.
  • a mug having the shape shown in FIG. 1 was used in exactly the same manner as in Example 1, except that the resin composition was impregnated with 0.05% by weight of nitrogen in the supercritical state of the resin composition. 1 was produced.
  • the cross-sectional shape was observed in exactly the same way as in Example 1, and as shown in FIG. It was confirmed that the non-foamed layer 5 was provided.
  • the average pore diameter of the independent foam of the foam layer 4 was 0.55 to 10 ⁇ m.
  • the degree of crystallinity of the non-foam layer 5 in each part of the mug 1 was measured in exactly the same manner as in Example 1. It had a crystallinity of 5-23.5%.
  • Example 2 the temperature of the hot water after being left for 60 minutes was measured in exactly the same way as in Example 1.
  • Table 1 shows the amount of impregnation of nitrogen in the supercritical state in the resin composition, the average pore diameter of the independent foaming of the foam layer 4 of the mug 1, and the hot water temperature after filling the hot water inside and leaving it for 60 minutes. Show. Further, the surface temperature of the cavity portion 29 of the mold 12 during injection molding, the crystallinity of the non-foamed layer 5 of the mug 1, the presence or absence of deformation when maintained at a temperature of 120 ° C. for 2 minutes, and the molding cycle Time is shown in Table 2.
  • a mug having the shape shown in FIG. 1 was used in exactly the same manner as in Example 1 except that the resin composition was impregnated with 0.3% by weight of nitrogen in the supercritical state of the resin composition. 1 was produced.
  • the cross-sectional shape was observed in exactly the same way as in Example 1, and as shown in FIG. It was confirmed that the non-foamed layer 5 was provided.
  • the average pore diameter of the independent foaming of the foam layer 4 was 12 to 48 ⁇ m.
  • the degree of crystallinity of the non-foam layer 5 in each part of the mug 1 was measured in exactly the same way as in Example 1. It had a crystallinity of 23.5%.
  • Example 2 the temperature of the hot water after being left for 60 minutes was measured in exactly the same way as in Example 1.
  • Table 1 shows the amount of impregnation of nitrogen in the supercritical state in the resin composition, the average pore diameter of the independent foaming of the foam layer 4 of the mug 1, and the hot water temperature after filling the hot water inside and leaving it for 60 minutes. Show. Further, the surface temperature of the cavity portion 29 of the mold 12 during injection molding, the crystallinity of the non-foamed layer 5 of the mug 1, the presence or absence of deformation when maintained at a temperature of 120 ° C. for 2 minutes, and the molding cycle Time is shown in Table 2.
  • a mug having the shape shown in FIG. 1 is used in exactly the same manner as in the first embodiment except that the cylinder temperature at the time of injection is 200 ° C. and the surface temperature in the cavity portion 29 of the mold 12 is 110 ° C. 1 was produced.
  • the cross-sectional shape was observed in exactly the same way as in Example 1, and as shown in FIG. It was confirmed that the non-foamed layer 5 was provided.
  • the average pore diameter of the independent foaming of the foam layer 4 was 9 to 15 ⁇ m.
  • the degree of crystallinity of the non-foam layer 5 in each part of the mug 1 was measured in exactly the same way as in Example 1. It had a crystallinity of 35%.
  • Example 2 the temperature of the hot water after being left for 60 minutes was measured in exactly the same way as in Example 1.
  • Table 1 shows the amount of impregnation of nitrogen in the supercritical state in the resin composition, the average pore diameter of the independent foaming of the foam layer 4 of the mug 1, and the hot water temperature after filling the hot water inside and leaving it for 60 minutes. Show. Further, the surface temperature of the cavity portion 29 of the mold 12 during injection molding, the crystallinity of the non-foamed layer 5 of the mug 1, the presence or absence of deformation when maintained at a temperature of 120 ° C. for 2 minutes, and the molding cycle Time is shown in Table 2.
  • a mug 1 having the shape shown in FIG. 1 was manufactured in exactly the same manner as in Example 1 except that the surface temperature in the cavity 29 of the mold 12 was set to 70 ° C.
  • the cross-sectional shape was observed in exactly the same way as in Example 1, and as shown in FIG. It was confirmed that the non-foamed layer 5 was provided.
  • the average pore diameter of the independent foaming of the foam layer 4 was 9 to 15 ⁇ m.
  • the degree of crystallinity of the non-foam layer 5 in each part of the mug 1 was measured in exactly the same way as in Example 1. It had a crystallinity of 5 to 2.0%.
  • Example 2 the temperature of the hot water after being left for 60 minutes was measured in exactly the same way as in Example 1.
  • Table 1 shows the amount of impregnation of nitrogen in the supercritical state in the resin composition, the average pore diameter of the independent foaming of the foam layer 4 of the mug 1, and the hot water temperature after filling the hot water inside and leaving it for 60 minutes. Show. Further, the surface temperature of the cavity portion 29 of the mold 12 during injection molding, the crystallinity of the non-foamed layer 5 of the mug 1, the presence or absence of deformation when maintained at a temperature of 120 ° C. for 2 minutes, and the molding cycle Time is shown in Table 2.
  • Comparative Example 1 In this comparative example, a mug having the shape shown in FIG. 1 was used in exactly the same manner as in Example 1 except that the resin composition was impregnated with 0.01% by weight of nitrogen in the supercritical state of the resin composition. 1 was produced.
  • the cross-sectional shape was observed in exactly the same way as in Example 1, and as shown in FIG. It was confirmed that the non-foamed layer 5 was provided. Further, the average pore diameter of the independent foaming of the foam layer 4 was 0.1 to 0.4 ⁇ m.
  • the degree of crystallinity of the non-foam layer 5 in each part of the mug 1 was measured in exactly the same way as in Example 1. It had a crystallinity of 5-2%.
  • Table 1 shows the amount of impregnation of nitrogen in the supercritical state in the resin composition, the average pore diameter of the independent foaming of the foam layer 4 of the mug 1, and the hot water temperature after filling the hot water inside and leaving it for 60 minutes. Show. Further, the surface temperature of the cavity portion 29 of the mold 12 during injection molding, the crystallinity of the non-foamed layer 5 of the mug 1, the presence or absence of deformation when maintained at a temperature of 120 ° C. for 2 minutes, and the molding cycle Time is shown in Table 2.
  • Comparative Example 2 In this comparative example, a mug having the shape shown in FIG. 1 was used in exactly the same manner as in Example 1 except that the resin composition was impregnated with 0.4% by weight of nitrogen in the supercritical state of the resin composition. 1 was produced.
  • the cross-sectional shape was observed in exactly the same way as in Example 1, and as shown in FIG. It was confirmed that the non-foamed layer 5 was provided. Further, the average pore diameter of the independent foaming of the foam layer 4 was 70 to 300 ⁇ m. Since the average pore diameter is large, it is clear that the mug 1 of this comparative example does not have sufficient strength.
  • Table 1 shows the amount of impregnation of nitrogen in the supercritical state in the resin composition, the average pore diameter of the independent foaming of the foam layer 4 of the mug 1, and the hot water temperature after filling the hot water inside and leaving it for 60 minutes. Show.
  • the degree of crystallinity of the non-foam layer 5 in each part of the mug 1 was measured in exactly the same way as in Example 1. It had a crystallinity of 9-24.9%.
  • Table 1 shows the amount of impregnation of nitrogen in the supercritical state in the resin composition, the average pore diameter of the independent foaming of the foam layer 4 of the mug 1, and the hot water temperature after filling the hot water inside and leaving it for 60 minutes. Show. Further, the surface temperature of the cavity portion 29 of the mold 12 during injection molding, the crystallinity of the non-foamed layer 5 of the mug 1, the presence or absence of deformation when maintained at a temperature of 120 ° C. for 2 minutes, and the molding cycle Time is shown in Table 2.
  • the mugs 1 of Examples 1 to 7 were formed by injection molding a resin composition impregnated with nitrogen in a supercritical state in a range of 0.05 to 0.3% by weight with respect to the total amount.
  • the foam layer 4 having a closed foam pore size in the range of 0.55 to 48 ⁇ m is provided inside, and the non-foam layer 5 is provided on the surface.
  • the mug 1 of Comparative Example 1 is formed by injection-molding a resin composition impregnated with 0.01% by weight of nitrogen in a supercritical state with respect to the total amount. And a non-foam layer 5 on the surface.
  • the mug 1 of the reference example is formed by injection molding a resin composition that is not impregnated with nitrogen in a supercritical state.
  • the hot water temperature was maintained at 32.6 ° C. or higher after filling the hot water inside and leaving it for 60 minutes.
  • the hot water temperature after filling the hot water inside and leaving it for 60 minutes has dropped to 30.5 ° C.
  • the hot water temperature after being filled with hot water and left for 60 minutes has dropped to 30 ° C. Therefore, it is clear that the mugs 1 of Examples 1 to 7 have superior heat retention compared to the mugs 1 of the comparative example 1 and the reference example.
  • the mugs 1 of Examples 1 to 7 have the required strength, with the pore diameter of the independent foam of the foam layer 4 being in the range of 0.55 to 48 ⁇ m.
  • the mug 1 of Comparative Example 2 is formed by injection molding a resin composition impregnated with 0.05 to 0.3% by weight of nitrogen in a supercritical state with respect to the total amount.
  • the mug 1 of the comparative example 2 has a large pore diameter of the independent foam of the foam layer 4 in the range of 70 to 300 ⁇ m and does not have the required strength.
  • the mugs 1 of Examples 1 to 6 include the foam layer 4 inside, and the non-foam layer 5 having a crystallinity in the range of 15 to 35% on the surface.
  • the mug 1 of Example 7 and Comparative Example 1 includes the foam layer 4 inside, and the non-foam layer 5 having a crystallinity in the range of 0.5 to 2.0% on the surface.
  • the mug of the reference example is not provided with the foam layer 4 inside, and the whole is composed of the non-foam layer 5 having a crystallinity of 20.9 to 24.9%.
  • the mugs 1 of Examples 1 to 6 and the mug 1 of the reference example are not deformed even when maintained at a temperature of 120 ° C. for 2 minutes.
  • the mug 1 of Example 7 and Comparative Example 1 is maintained at a temperature of 120 ° C. for 2 minutes, it is deformed until the original shape is not retained. Therefore, it is apparent that the mugs 1 of Examples 1 to 6 are superior to the mugs 1 of Example 7 and Comparative Example 1 and have the same heat resistance as the mug 1 of the reference example.
  • Example 1 to 5 in which the surface temperature of the cavity portion 29 of the mold 12 at the time of injection molding is in the range of 70 to 89 ° C.
  • the mug 1 has a molding cycle time of 65 seconds or less.
  • the mug 1 of Example 6 in which the surface temperature of the cavity 29 is 110 ° C. has a molding cycle time of 120 seconds. Therefore, it is apparent that the production efficiency of the mugs of Examples 1 to 5 and 7 is superior to that of the mug 1 of Example 6.
  • the mug 1 of Examples 1 to 7 includes the foam layer 4 inside, if the foam layer 4 is crushed to expose the foam layer 4 and discarded, the foam layer 4 is easily biodegraded. Compared with the mug 1 of the reference example that does not include the foam layer 4, the biodegradability is also excellent.
  • the molded body made of an injection molded product of polylactic acid resin is a food container (mug 1) is described as an example.
  • the molded body is a molded body such as an automobile part or an electrical part. May be.
  • the molded body of the automobile part or electrical part is manufactured in the same manner as the mug 1 except that a cavity having a shape corresponding to the automobile part or electrical part is used instead of the mold 12 shown in FIG. It has the same heat resistance and heat retention (heat insulation) as the mug 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

耐熱性及び保温性と、生分解性とを備える成形体及びその製造方法を提供する。 成形体としてのマグカップ1は、ポリ乳酸樹脂と1~150nmの平均粒子径を備える粉体とを含み、超臨界状態の窒素を含浸させた全量に対して0.05~0.3重量%の範囲で樹脂組成物を射出成形してなる射出成形品であり、内部に独立発泡の発泡体層4を備え、表面に発泡体層4と一体に形成された非発泡体層5を備える。発泡体層4は0.5~50μmの平均孔径を備える独立発泡からなる。非発泡体層5は15~28%の結晶化度を備える。

Description

成形体及びその製造方法
 本発明は、ポリ乳酸樹脂の射出成形品からなる成形体及びその製造方法に関する。
 近年、合成樹脂からなる廃棄物による環境に対する負荷を軽減するために、ポリ乳酸樹脂等のように廃棄後、土中等で細菌等の微生物の働きにより分解される生分解性樹脂が提案されている。前記ポリ乳酸樹脂は、例えば押出成形、圧空成形等により各種形状を備える成形体とすることができる。
 前記ポリ乳酸樹脂からなる成形品は、例えば、調理された飲食物を収容するためカップ、トレー、椀、丼等の中空の成形体からなる食品容器として用いることが検討されている。
 前記調理された飲食物は、例えば90~120℃程度の温度であるので、前記食品容器は前記範囲の温度を維持することが可能な保温性、すなわち断熱性を備えていることが必要とされる。さらに、前記食品容器は、軽量性と、食品容器としての使用に耐え得る強度とを備えていることが必要とされる。
 従来、ポリ乳酸樹脂と層状珪酸塩からなる粉体とを含有する樹脂組成物からなる食品容器が知られている(例えば特許文献1参照)。前記食品容器は、例えば、前記樹脂組成物を押出成形してなるシートを深絞り成形することにより形成される。しかしながら、前記樹脂組成物からなる食品容器は、96℃以上の温度では熱変形するという不都合がある。また、前記樹脂組成物からなる食品容器は、中実成形体であるので、十分な保温性を得るためには厚みを大きくしなければならず、厚みを大きくすると軽量性を損ねるという不都合がある。
 ところで、食品容器において前記保温性を確保するために、該食品容器を発泡体とすることが考えられる。従来、ポリ乳酸樹脂に層状珪酸塩からなる粉体を混合し、さらに超臨界状態の二酸化炭素を含浸させた樹脂組成物を成形してなり、全体が発泡体からなる食品容器が提案されている(例えば特許文献2参照)。
 前記食品容器を得るには、まず、ポリ乳酸樹脂に前記層状珪酸塩を混合し、さらにオートクレーブ中で超臨界状態の二酸化炭素を含浸させて樹脂組成物を形成する。その後、前記樹脂組成物をオートクレーブから取り出し、160℃のオイルバス中で前記二酸化炭素を脱離させることにより、全体が発泡体からなる食品容器を得ることができる。
 全体が発泡体からなる前記食品容器は、使用に耐え得る強度を得ることができないので、表面にフィルムまたはシートを貼付して、非発泡体層を形成して強度を確保する必要がある。しかしながら、前記食品容器は、表面に他の樹脂のフィルムまたはシートを貼付した場合、生分解性が損なわれるという不都合がある。
特開2004-204143号公報 特開2004-292499号公報 特開2006-137063号公報
 本発明は、かかる不都合を解消して、軽量性と断熱性と強度とを備えると共に、ポリ乳酸樹脂の生分解性が損なわれることのない成形体及びその製造方法を提供することを目的とする。さらに、本発明は、比較的高温に耐えることができる耐熱性を備えるとともに、ポリ乳酸樹脂の生分解性が損なわれることのない成形体及びその製造方法を提供することを目的とする。
 かかる目的を達成するために、本発明は、ポリ乳酸樹脂の射出成形品からなる成形体において、該射出成形品は、ポリ乳酸樹脂と1~150nmの範囲の平均粒子径を備える粉体とを含み、超臨界状態の窒素を全量に対して0.05~0.3重量%の範囲で含浸させた樹脂組成物を射出成形してなり、内部に独立発泡の発泡体層を備えると共に、表面に該発泡体層と一体に形成された非発泡体層を備えることを特徴とする。
 本発明の成形体は、ポリ乳酸樹脂と1~150nmの範囲の平均粒子径を備える粉体とを含み、超臨界状態の窒素を含浸させた樹脂組成物を射出成形してなる射出成形品からなる。前記粉体は、ケナフ等の植物の乾燥粉末等の生分解性を備える有機物であってもよく、無機物であってもよい。前記範囲の平均粒子径を備える無機物の粉体としては、例えば、1~100nmの範囲の平均層厚みと、150nm以下の長径とを備える層状珪酸塩を挙げることができる。尚、前記「超臨界状態」とは、ガスの種類により定まる温度及び圧力(臨界点)を超えて、気体の拡散性と液体の溶解性とを併せ持つ状態をいう。
 本発明の成形体は、超臨界状態の窒素を全量に対して前記範囲で含浸させた樹脂組成物を射出成形してなることにより、前記のように内部に独立発泡の発泡体層を備えると共に、表面に非発泡体層を備えることができる。本発明の成形体は、内部に独立発泡の発泡体層を備えることにより、軽量性と断熱性とを備えることができる。また、本発明の成形体は、表面に非発泡体層を備えることにより、所要の強度を備えることができる。
 前記樹脂組成物において、超臨界状態の窒素の含浸量が全量に対して0.05重量%未満では、前記発泡体において独立発泡の孔径を十分に大きくすることができず、所要の断熱性を得ることができない。一方、超臨界状態の窒素の含浸量が全量に対して0.3重量%を超えると、前記発泡体層において発泡の孔径が大きくなりすぎて、所要の強度を得ることができない。
 また、本発明の成形体は、前記発泡体層と前記非発泡体層とのいずれもがポリ乳酸樹脂により形成されている。従って、本発明の成形体は、廃棄後、土中等で細菌等の微生物の働きにより容易に分解される。
 また、本発明の成形体は、前記発泡体層が、0.5~50μmの範囲の平均孔径を備える独立発泡からなることが好ましく、これにより、所要の断熱性を備えることができる。前記独立発泡の平均孔径が0.5μm未満であるときには、所要の断熱性を得ることができないことがある。また、前記独立発泡の平均孔径が50μmを超えると、前記断熱性は良好になるものの、所要の強度を得ることができないことがある。
 前記独立発泡の平均孔径は、用途に応じて、例えば、0.55~10μmの範囲、9~15μmの範囲、12~48μmの範囲のように、範囲を選択することができる。前記独立発泡の平均孔径を選択するには、窒素の含浸量を変量すればよく、この結果、用途によっては、窒素の含浸量を前記範囲内で減量して、コストを低減することができる。
 また、本発明の成形体は、耐熱性を備えることが好ましい。この場合、本発明の成形体の前記非発泡体層は、15%以上の範囲の結晶化度を備えることを特徴とする。前記構成により、本発明の成形体は、所要の耐熱性を得ることができる。
 本発明の成形体において、前記非発泡体層は15~28%の範囲の結晶化度を備えることがさらに好ましい。前記非発泡体層が15%未満では、前記成形体に所要の耐熱性と強度とを付与することができない。一方、前記非発泡体層の結晶化度が28%を超えても、それ以上の効果を得ることはできない。前記非発泡体層の結晶化度が28%を超えるようにするには、射出成形時に金型のキャビティの表面温度を高くする必要があり、製造コストが高くなる上に、成形サイクルが長くなってしまう。
 本発明の成形体は例えば食品容器として好適に用いることができる。また、本発明の成形体は、耐熱性及び保温性(断熱性)が要求される他の用途に用いることもできる。前記他の用途として、例えば、自動車部品または電気部品等の成形体を挙げることができる。
 本発明の成形体は、前記食品容器として用いられる場合、水中に沈み得る比重を備えることが好ましい。このようにすると、前記食品容器は、使用後に水洗する際に水中に沈降するので、洗浄が容易になる。本発明の成形体においては、前記発泡体層と前記非発泡体層との割合を調整することにより、1より僅かに大きい比重とすることができる。前記比重は、水中に沈み得るものであればよく、過大にする必要はない。比重が過大になると、本発明の成形体の軽量性が損なわれることがある。
 また、本発明の成形体は、表面に塗膜を備えることにより美粧性を付与することができる。前記塗膜としては、生分解性塗膜を備えることが好ましい。前記塗膜を生分解性塗膜とすることにより、本発明の成形体の生分解性を損なうことなく美粧性を付与することができる。
 前記生分解性塗膜は、大豆を原料とする顔料(ソイインク)等の生分解性顔料を含むものであってもよく、ウルシ等のように植物由来であってそれ自体生分解性を備える塗膜であってもよい。前記生分解性塗膜がウルシであるときには、本発明の成形体に恰も漆器であるかのような外観を付与することができるので、該成形体を食品容器として用いる場合に特に有利である。
 また、本発明の成形体において、前記粉体として前記層状珪酸塩を用いる場合には、得られた射出成形品が乳白色を呈するので、前記塗膜を形成する際に下地塗装を行う必要が無く有利である。
 本発明の成形体は、ポリ乳酸樹脂に、1~150nmの範囲の平均粒子径を備える粉体を混合し、さらに、超臨界状態の窒素を全量に対して0.05~0.3重量%の範囲で含浸させて樹脂組成物を形成する工程と、該樹脂組成物を、金型のキャビティに射出することにより射出成形する工程とを備える製造方法により、有利に製造することができる。
 本発明者らの検討によれば、射出成形機のシリンダーから、粉体が混合されたポリ乳酸樹脂に超臨界状態の二酸化炭素を注入して含浸させて樹脂組成物を形成したのでは、射出された該樹脂組成物中で生じた複数の気泡が一体化して、平均直径0.1~10mmの大きな気泡が生じる傾向がある。このため、前記樹脂組成物の射出成形体では、所要の強度が得られない。
 そこで、本発明の成形体の製造方法は、前記ポリ乳酸樹脂に前記粉体を混合し、さらに超臨界状態の窒素を全量に対して0.05~0.3重量%の範囲で含浸させた樹脂組成物を、金型のキャビティに射出する。このようにすることにより、本発明の成形体の製造方法によれば、内部に独立発泡の発泡体層を備えると共に、表面に該発泡体層と一体に形成された非発泡体層を備え、所要の強度を備える前記射出成形品を得ることができる。
 前記樹脂組成物において、超臨界状態の窒素の含浸量が全量に対して0.05重量%未満では、前記発泡体において独立発泡の孔径を十分に大きくすることができず、所要の断熱性を得ることができない。一方、超臨界状態の窒素の含浸量が全量に対して0.3重量%を超えると、前記発泡体層において発泡の孔径が大きくなりすぎて、所要の強度を得ることができない。
 前記粉体は、前記範囲の平均粒子径を備えることにより、前記発泡体における発泡の核として作用すると共に、前記ポリ乳酸樹脂が結晶化する際の結晶核としても作用することができる。前記粉体は、1nmより小さくすることは技術的に困難であり、150nmを超えると前記結晶化または発泡の核として作用することができない。
 また、本発明の製造方法において、前記金型は、前記キャビティの表面温度が75~110℃の範囲の温度に加熱されていることが好ましい。このようにすることにより、15%以上の結晶化度を有する非発泡体層を備える成形体を得ることができる。
 ポリ乳酸樹脂は結晶性樹脂であり、ガラス転移温度57℃、結晶化温度110℃であることが知られている。ところが、本発明の製造方法では、前記結晶化温度よりも低温である温度範囲においても、ポリ乳酸樹脂を結晶化させることができる。
 前記キャビティの表面温度が75℃未満では、該キャビティ内に射出された前記樹脂組成物が急激に冷却されて固化し、発泡が困難であるばかりか、所定の形状の前記射出成形品を得ることができない。一方、前記キャビティの表面温度が110℃を超えると、ポリ乳酸樹脂の結晶化温度を超えるため、前記結晶化温度よりも低温である温度範囲においてもポリ乳酸樹脂を結晶化させることができるとの前記効果を得ることができない。
 また、本発明の製造方法において、前記金型は、前記キャビティの表面温度が90℃未満の範囲の温度に加熱されていることが好ましい。このようにすることにより、成形サイクルを短くすることができる。
本実施形態の成形体の構成を示す斜視図。 図1に示す成形体の説明的部分断面図。 図1に示す成形体の製造に用いられる射出成形装置の説明的断面図。 本実施形態の成形体の各部の結晶化度を示すグラフ。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。本実施形態のポリ乳酸樹脂の射出成形品からなる成形体は、例えば、図1に示すマグカップ1等の食品容器である。マグカップ1は、加熱されたコーヒー、ココア、スープ、牛乳、各種の茶、湯等の飲料を収容して飲用に供するものであり、前記飲料を収容する有底筒状の本体2と、本体2の上部外周から鍵の手状に突出する取手部3とからなる。
 マグカップ1は、ポリ乳酸樹脂と1~150nmの範囲の平均粒子径を備える粉体とを含み、超臨界状態の窒素を含浸させた樹脂組成物を射出成形してなる射出成形品であり、図2に示すように、内部に発泡体層4を備え、表面に非発泡体層5を備えている。発泡体層4及び非発泡体層5はいずれもポリ乳酸樹脂からなり、非発泡体層5は、発泡体層4と一体に形成されている。
 マグカップ1において、発泡体層4は独立発泡からなる。前記独立発泡は、マグカップ1の断面の走査型電子顕微鏡写真から測定したところ、0.5~50μmの平均孔径を備えている。また、非発泡体層5は、示差走査熱量測定により測定したところ、15~28%の範囲の結晶化度を備えている。
 この結果、マグカップ1は90~120℃の範囲の温度に対する耐熱性を備えており、前記範囲の温度に加熱されたコーヒー、ココア、スープ、牛乳、各種の茶、湯等の飲料を収容して飲用に供することができる。また、マグカップ1は、前記飲料が飲用に供される間、その温度の低下を抑制し、賞味に適した温度に維持する保温性を備えている。
 マグカップ1は、例えば、図3に示す射出成形装置11により製造することができる。射出成形装置11は、樹脂組成物を金型12に向けて搬送するシリンダー13と、シリンダー13内に配設された回転軸部14と、回転軸部14を回転駆動するモータ15とを備えている。シリンダー13は、金型12と反対側の端部付近に樹脂組成物をシリンダー13内に供給するホッパー16を備えている。また、シリンダー13は、ホッパー16の下流側でシリンダー13の中央部付近に超臨界窒素供給部17を備えている。
 超臨界窒素供給部17は、超臨界状態の窒素をシリンダー13内に供給する。超臨界窒素供給部17は、超臨界状態の窒素を発生させる超臨界窒素発生装置18と、超臨界窒素発生装置18で発生された超臨界状態の窒素をシリンダー13に向けて搬送する窒素導管19と、窒素導管19の途中に介装された計量装置20とを備える。窒素導管19は遮断弁21を介してシリンダー13に接続されている。
 また、シリンダー13は金型12側の先端にノズル22を備える。シリンダー13は、外周面に複数の加熱装置23aを備え、ノズル22は、外周面に加熱装置23bを備える。また、ノズル22は、遮断弁24を介して金型12に接続されている。
 回転軸14は、金型12と反対側の端部でモータ15に接続される。また、回転軸14は、外周面に設けられた螺旋状のスクリュー25と、金型12側の最先端部に設けられたスクリューヘッド26とを備えている。スクリュー25は、基端側連続スクリュー25aと、不連続スクリュー25bと、スクリューヘッド26と不連続スクリュー25bとの間に設けられた先端側連続スクリュー25cとからなる。
 連続スクリュー25a,25cは、羽根形状が周方向に連続している。一方、不連続スクリュー25bは、羽根形状が周方向に断続的に形成されている。基端側連続スクリュー25aは、モータ15側の端部から、ホッパー16の下部を通って超臨界窒素供給部17の下部の手前までの部分に設けられている。不連続スクリュー25bは、超臨界窒素供給部17の下方部分に設けられていて、回転軸14の周方向に沿って複数の不連続部を備えている。
 金型12は、マグカップ1の外側形状に沿う形状の凹部27を備える固定型12aと、マグカップ1の内側形状に沿う形状の凸部28を備える可動型12bとからなる。凹部27と凸部28との間に、キャビティ部29が形成される。キャビティ部29は、固定型12aに設けられたスプルー30を介して射出成形装置11のノズル22に接続されている。
 次に、射出成形装置11を用いてマグカップ1を製造する方法について説明する。射出成形装置11では、まず、ホッパー16からシリンダー13内に樹脂組成物を投入する。前記樹脂組成物としては、ポリ乳酸樹脂を50質量%以上含有する熱可塑性樹脂からなる樹脂混合物に、粉体として1~100nmの範囲の平均層厚みと150nm以下の長径とを備えると共に、1~150nmの範囲の平均粒子径を備える層状珪酸塩0.1~50質量部を混合したものを好適に用いることができる。このような樹脂組成物として、例えば、ユニチカ株式会社製のテラマック(登録商標)を挙げることができる。
 前記樹脂組成物は、シリンダー13内で加熱装置23aの加熱下に連続スクリュー25aで攪拌されることにより溶融し、形成された溶融樹脂が金型12方向に搬送される。
 次に、超臨界窒素供給部17から、前記溶融樹脂に、超臨界状態の窒素が供給される。このとき、超臨界窒素供給部17の下方部分には不連続スクリュー25bが設けられているので、前記超臨界状態の窒素は不連続スクリュー25bにより攪拌され、前記溶融樹脂と十分に混合される。この結果、スクリューヘッド26とノズル22との間のシリンダー13内に、前記溶融樹脂に前記超臨界状態の窒素が含浸された液相のみからなる溶液としての樹脂組成物が形成される。このとき、前記樹脂組成物は、発泡のための核がまだ形成されていない。
 次に、超臨界状態の窒素が含浸された樹脂組成物が、ノズル22からスプルー30を介して、金型12のキャビティ部29に射出される。このとき、ノズル22内はシリンダー13内に比較して圧力が降下する領域となっており、この領域を通過する間に該樹脂組成物中に発泡のための核が形成される。前記発泡のための核には、前記層状珪酸塩が用いられるものと考えられる。
 前記樹脂組成物の射出条件は、例えば、シリンダー温度190~210℃、射出圧力175MPa、射出速度50mm/秒、キャビティ部29に対する充填時間は1.44秒とすることができる。また、金型12のキャビティ部29における表面温度は75℃以上かつ90℃未満とする。
 次に、キャビティ部29に射出された前記樹脂組成物は、キャビティ部29に先端部まで充填される。次いで、前記樹脂組成物の射出成形品の内部側となる部分で発泡が始まり、発泡体層4が形成される。前記樹脂組成物が冷却、固化すると、内部に独立発泡の発泡体層4を備え、表面に非発泡体層5を備える射出成形品を得ることができる。
 前記射出成形品は、金型12を開き、脱型することにより、製品として取り出すことができる。前記脱型に際し、前記ポリ乳酸樹脂は前記冷却に伴って収縮するので、凸型28から脱型することが難しくなることがある。そこで、金型12では、前記射出成形品と凸型28との間に圧縮空気を導入する手段を設けることにより、該射出成形品と凸型28との間に間隙を形成することができ、前記脱型を容易に行うことができる。金型12において、前記射出成形品と凸型28との間に圧縮空気を導入する手段については、本出願人らによって提案されている(例えば特許文献3参照)。
 以上により、図1に示すマグカップ1を得ることができる。マグカップ1は、発泡体層4と一体に形成された非発泡体層5を備えており、発泡体層4及び非発泡体層5はいずれもポリ乳酸樹脂を含む樹脂組成物により形成されている。従って、マグカップ1は、廃棄後、土中等で細菌等の微生物の働きにより容易に生分解することができる。また、マグカップ1は、廃棄の際に破砕して、内部の発泡体層4を露出させることにより、前記生分解を促進することができる。
 この結果、マグカップ1によれば、使用時には容易に分解されず、廃棄後には容易に生分解されるという効果を奏することができる。
 また、マグカップ1は、ポリ乳酸樹脂を含有する熱可塑性樹脂からなる樹脂混合物に前記層状珪酸塩を添加したことにより、比重が1以上になっており、水中に沈降する。従って、水による洗浄を容易に行うことができる。
 また、マグカップ1は、前記層状珪酸塩を添加したことにより全体が乳白色を呈しているが、さらに美粧性を付与するために、表面に塗膜層を形成してもよい。前記塗膜層は、生分解性が無いとマグカップ1を廃棄したときに生分解性が損なわれる結果となる。そこで、前記塗膜層は、大豆を原料とする顔料(ソイインク)等の生分解性顔料を含む塗膜、またはウルシ等のように植物由来であってそれ自体生分解性を備える塗膜とすることが好ましい。前記塗膜層を形成する場合、マグカップ1は前記のように全体が乳白色を呈しているので、下地層を設けることなく鮮鋭な塗膜層を得ることができ、好都合である。
 また、本実施形態の製造方法で得られたマグカップ1は、表面が1~30μmの範囲の表面粗さを備えている。これにより、前記ウルシからなる塗膜層を形成したときに、アンカー効果を得ることができ、該ウルシからなる塗膜層がマグカップ1に対して良好な接着性を得ることができる。
 次に、本発明の実施例及び比較例を示す。
 本実施例では、図3に示す射出成形装置11を用い、図1に示す形状のマグマグカップ1を製造した。本実施例で製造したマグマグカップ1は、最上部(口元部)の外径80mm、底部の外径50mm、高さ80mmの大きさを備え、重量は50.25gである。
 本実施例では、ポリ乳酸樹脂と平均粒子径40nmの粉体としての層状珪酸塩とを含む樹脂組成物(ユニチカ株式会社製、テラマック(登録商標)TE-8210)に、該樹脂組成物の0.15重量%の超臨界状態の窒素を含浸させて、キャビティ部29に射出した。前記射出は、シリンダー温度195℃、射出圧力175MPa、射出速度50mm/秒、キャビティ部29に対する充填時間は1.44秒の条件で行った。射出時の金型12のキャビティ部29における表面温度を89℃とし、背圧を20MPaとした。
 次に、本実施例で得られたマグカップ1を裁断し、断面形状を走査型電子顕微鏡で観察したところ、図2に示すように、内部に独立発泡の発泡体層4を備え、表面に非発泡体層5を備えていることが確認された。また、発泡体層4の独立発泡の平均孔径は、9~15μmであった。
 次に、本実施例で得られたマグカップ1の各部における非発泡体層5の結晶化度を、示差走査熱量測定により測定した。測定個所は、図1に示すように、底面外面A(ゲート付近)、底部内面B、周壁部外面C、取手部3表側部D、取手部3裏側部E、口元部外面Fの6個所とした。各部の厚さ(肉厚)は、底面外面A及び底部内面Bが2.5mm、周壁部外面Cが1.9mm、取手部3が2.5mm、口元部外面Fが2.9mmであった。結晶化度の測定結果を図4に示す。図4に示すように、本実施例で得られたマグカップ1の各部において非発泡体層5は、20.5~23.5%の結晶化度を備えている。
 次に、本実施例で得られたマグカップ1の保温性を評価するために、マグカップ1に50℃の湯を上部まで満たしてマグカップと同一素材からなる厚さ5mmの板材で該上部を覆い、20℃の室内に60分間放置した。その後、マグカップ1の中心部で、マグカップ1内の湯温を温度計を用いて測定したところ、33.2℃であった。
 次に、本実施例で得られたマグカップ1の耐熱性を評価するために、マグカップ1を120℃の温度に2分間維持して、変形の有無を目視で観察した。
 前記樹脂組成物における超臨界状態の窒素の含浸量と、マグカップ1の発泡体層4の独立発泡の平均孔径と、内部に湯を満たして60分間放置した後の湯温とを、表1に示す。また、射出成形時の金型12のキャビティ部29の表面温度と、マグカップ1の非発泡体層5の結晶化度と、120℃の温度に2分間維持した際の変形の有無と、成形サイクル時間とを、表2に示す。
 本実施例では、粉体として平均粒子径145nmの層状珪酸塩を含むポリ乳酸樹脂組成物(ユニチカ株式会社製、テラマック(登録商標)TE-8210)を用いた以外は、実施例1と全く同一にして、図1に示す形状のマグカップ1を製造した。尚、本実施例で用いた平均粒子径145nmの層状珪酸塩を含むテラマックTE-8210は、実施例1で用いた平均粒子径40nmの層状珪酸塩を含むテラマックTE-8210とはグレードが異なる。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、断面形状を観察したところ、図2に示すように、内部に独立発泡の発泡体層4を備え、表面に非発泡体層5を備えていることが確認された。また、発泡体層4の独立発泡の平均孔径は、9~15μmであった。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、マグカップ1の各部における非発泡体層5の結晶化度を測定したところ、非発泡体層5は21~23%の結晶化度を備えていた。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、60分間放置した後の湯温を測定した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、変形の有無を観察した。
 前記樹脂組成物における超臨界状態の窒素の含浸量と、マグカップ1の発泡体層4の独立発泡の平均孔径と、内部に湯を満たして60分間放置した後の湯温とを、表1に示す。また、射出成形時の金型12のキャビティ部29の表面温度と、マグカップ1の非発泡体層5の結晶化度と、120℃の温度に2分間維持した際の変形の有無と、成形サイクル時間とを、表2に示す。
 本実施例では、金型12のキャビティ部29における表面温度を76℃とした以外は、実施例1と全く同一にして、図1に示す形状のマグカップ1を製造した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、断面形状を観察したところ、図2に示すように、内部に独立発泡の発泡体層4を備え、表面に非発泡体層5を備えていることが確認された。また、発泡体層4の独立発泡の平均孔径は、9~13μmであった。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、マグカップ1の各部における非発泡体層5の結晶化度を測定したところ、非発泡体層5は15~23%の結晶化度を備えていた。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、60分間放置した後の湯温を測定した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、変形の有無を観察した。
 前記樹脂組成物における超臨界状態の窒素の含浸量と、マグカップ1の発泡体層4の独立発泡の平均孔径と、内部に湯を満たして60分間放置した後の湯温とを、表1に示す。また、射出成形時の金型12のキャビティ部29の表面温度と、マグカップ1の非発泡体層5の結晶化度と、120℃の温度に2分間維持した際の変形の有無と、成形サイクル時間とを、表2に示す。
 本実施例では、前記樹脂組成物に、該樹脂組成物の0.05重量%の超臨界状態の窒素を含浸させた以外は、実施例1と全く同一にして、図1に示す形状のマグカップ1を製造した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、断面形状を観察したところ、図2に示すように、内部に独立発泡の発泡体層4を備え、表面に非発泡体層5を備えていることが確認された。また、発泡体層4の独立発泡の平均孔径は、0.55~10μmであった。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、マグカップ1の各部における非発泡体層5の結晶化度を測定したところ、非発泡体層5は20.5~23.5%の結晶化度を備えていた。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、60分間放置した後の湯温を測定した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、変形の有無を観察した。
 前記樹脂組成物における超臨界状態の窒素の含浸量と、マグカップ1の発泡体層4の独立発泡の平均孔径と、内部に湯を満たして60分間放置した後の湯温とを、表1に示す。また、射出成形時の金型12のキャビティ部29の表面温度と、マグカップ1の非発泡体層5の結晶化度と、120℃の温度に2分間維持した際の変形の有無と、成形サイクル時間とを、表2に示す。
 本実施例では、前記樹脂組成物に、該樹脂組成物の0.3重量%の超臨界状態の窒素を含浸させた以外は、実施例1と全く同一にして、図1に示す形状のマグカップ1を製造した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、断面形状を観察したところ、図2に示すように、内部に独立発泡の発泡体層4を備え、表面に非発泡体層5を備えていることが確認された。また、発泡体層4の独立発泡の平均孔径は、12~48μmであった。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、マグカップ1の各部における非発泡体層5の結晶化度を測定したところ、非発泡体層5は21~23.5%の結晶化度を備えていた。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、60分間放置した後の湯温を測定した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、変形の有無を観察した。
 前記樹脂組成物における超臨界状態の窒素の含浸量と、マグカップ1の発泡体層4の独立発泡の平均孔径と、内部に湯を満たして60分間放置した後の湯温とを、表1に示す。また、射出成形時の金型12のキャビティ部29の表面温度と、マグカップ1の非発泡体層5の結晶化度と、120℃の温度に2分間維持した際の変形の有無と、成形サイクル時間とを、表2に示す。
 本実施例では、射出時のシリンダー温度を200℃とし、金型12のキャビティ部29における表面温度を110℃としたこと以外は、実施例1と全く同一にして、図1に示す形状のマグカップ1を製造した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、断面形状を観察したところ、図2に示すように、内部に独立発泡の発泡体層4を備え、表面に非発泡体層5を備えていることが確認された。また、発泡体層4の独立発泡の平均孔径は、9~15μmであった。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、マグカップ1の各部における非発泡体層5の結晶化度を測定したところ、非発泡体層5は29~35%の結晶化度を備えていた。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、60分間放置した後の湯温を測定した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、変形の有無を観察した。
 前記樹脂組成物における超臨界状態の窒素の含浸量と、マグカップ1の発泡体層4の独立発泡の平均孔径と、内部に湯を満たして60分間放置した後の湯温とを、表1に示す。また、射出成形時の金型12のキャビティ部29の表面温度と、マグカップ1の非発泡体層5の結晶化度と、120℃の温度に2分間維持した際の変形の有無と、成形サイクル時間とを、表2に示す。
 本実施例では、金型12のキャビティ部29における表面温度を70℃とした以外は、実施例1と全く同一にして、図1に示す形状のマグカップ1を製造した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、断面形状を観察したところ、図2に示すように、内部に独立発泡の発泡体層4を備え、表面に非発泡体層5を備えていることが確認された。また、発泡体層4の独立発泡の平均孔径は、9~15μmであった。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、マグカップ1の各部における非発泡体層5の結晶化度を測定したところ、非発泡体層5は0.5~2.0%の結晶化度を備えていた。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、60分間放置した後の湯温を測定した。
 次に、本実施例で得られたマグカップ1について、実施例1と全く同一にして、変形の有無を観察した。
 前記樹脂組成物における超臨界状態の窒素の含浸量と、マグカップ1の発泡体層4の独立発泡の平均孔径と、内部に湯を満たして60分間放置した後の湯温とを、表1に示す。また、射出成形時の金型12のキャビティ部29の表面温度と、マグカップ1の非発泡体層5の結晶化度と、120℃の温度に2分間維持した際の変形の有無と、成形サイクル時間とを、表2に示す。
 〔比較例1〕
 本比較例では、前記樹脂組成物に、該樹脂組成物の0.01重量%の超臨界状態の窒素を含浸させた以外は、実施例1と全く同一にして、図1に示す形状のマグカップ1を製造した。
 次に、本比較例で得られたマグカップ1について、実施例1と全く同一にして、断面形状を観察したところ、図2に示すように、内部に独立発泡の発泡体層4を備え、表面に非発泡体層5を備えていることが確認された。また、発泡体層4の独立発泡の平均孔径は、0.1~0.4μmであった。
 次に、本比較例で得られたマグカップ1について、実施例1と全く同一にして、マグカップ1の各部における非発泡体層5の結晶化度を測定したところ、非発泡体層5は0.5~2%の結晶化度を備えていた。
 次に、本比較例で得られたマグカップ1について、実施例1と全く同一にして、60分間放置した後の湯温を測定した。
 次に、本比較例で得られたマグカップ1について、実施例1と全く同一にして、変形の有無を観察した。
 前記樹脂組成物における超臨界状態の窒素の含浸量と、マグカップ1の発泡体層4の独立発泡の平均孔径と、内部に湯を満たして60分間放置した後の湯温とを、表1に示す。また、射出成形時の金型12のキャビティ部29の表面温度と、マグカップ1の非発泡体層5の結晶化度と、120℃の温度に2分間維持した際の変形の有無と、成形サイクル時間とを、表2に示す。
 〔比較例2〕
 本比較例では、前記樹脂組成物に、該樹脂組成物の0.4重量%の超臨界状態の窒素を含浸させた以外は、実施例1と全く同一にして、図1に示す形状のマグカップ1を製造した。
 次に、本比較例で得られたマグカップ1について、実施例1と全く同一にして、断面形状を観察したところ、図2に示すように、内部に独立発泡の発泡体層4を備え、表面に非発泡体層5を備えていることが確認された。また、発泡体層4の独立発泡の平均孔径は、70~300μmであった。前記平均孔径が大きいことから、本比較例のマグカップ1は十分な強度を備えていないことが明らかである。
 次に、本比較例で得られたマグカップ1について、実施例1と全く同一にして、60分間放置した後の湯温を測定した。
 次に、本比較例で得られたマグカップ1について、実施例1と全く同一にして、変形の有無を観察した。
 前記樹脂組成物における超臨界状態の窒素の含浸量と、マグカップ1の発泡体層4の独立発泡の平均孔径と、内部に湯を満たして60分間放置した後の湯温とを、表1に示す。
 〔参考例〕
 本参考例では、前記樹脂組成物に超臨界状態の窒素を全く含浸させず、金型12のキャビティ部29における表面温度を110℃とした以外は、実施例1と全く同一にして、図1に示す形状のマグカップ1を製造した。
 次に、本参考例で得られたマグカップ1について、実施例1と全く同一にして、断面形状を観察したところ、図2に示すように、内部に発泡体層4を備えておらず、全体が非発泡体層5により構成されていることが確認された。
 次に、本参考例で得られたマグカップ1について、実施例1と全く同一にして、マグカップ1の各部における非発泡体層5の結晶化度を測定したところ、非発泡体層5は20.9~24.9%の結晶化度を備えていた。
 次に、本参考例で得られたマグカップ1について、実施例1と全く同一にして、60分間放置した後の湯温を測定した。
 次に、本参考例で得られたマグカップ1について、実施例1と全く同一にして、変形の有無を観察した。
 前記樹脂組成物における超臨界状態の窒素の含浸量と、マグカップ1の発泡体層4の独立発泡の平均孔径と、内部に湯を満たして60分間放置した後の湯温とを、表1に示す。また、射出成形時の金型12のキャビティ部29の表面温度と、マグカップ1の非発泡体層5の結晶化度と、120℃の温度に2分間維持した際の変形の有無と、成形サイクル時間とを、表2に示す。
 次に、表1を参照して、樹脂組成物に対する超臨界量体の窒素の含浸量と、マグカップ1の保温性との関係について説明する。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~7のマグカップ1は、超臨界状態の窒素を全量に対して0.05~0.3重量%の範囲で含浸させた樹脂組成物を射出成形してなり、独立発泡の孔径が0.55~48μmの範囲である発泡体層4を内部に備えると共に、表面に非発泡体層5を備える。比較例1のマグカップ1は、超臨界状態の窒素を全量に対して0.01重量%含浸させた樹脂組成物を射出成形してなり、独立発泡の孔径が0.1~0.4μmの範囲である発泡体層4を内部に備えると共に、表面に非発泡体層5を備える。参考例のマグカップ1は、超臨界状態の窒素を全く含浸させない樹脂組成物を射出成形してなり、内部に発泡体層4を備えず、全体が非発泡体層5からなる。
 この結果、実施例1~7のマグカップ1は、内部に湯を満たして60分間放置した後の湯温が32.6℃以上に保たれている。比較例1のマグカップ1は、内部に湯を満たして60分間放置した後の湯温が30.5℃にまで低下している。参考例のマグカップ1は、内部に湯を満たして60分間放置した後の湯温が30℃にまで低下している。従って、実施例1~7のマグカップ1は、比較例1及び参考例のマグカップ1と比較して、優れた保温性を備えることが明らかである。
 また、表1に示すように、実施例1~7のマグカップ1は、発泡体層4の独立発泡の孔径が0.55~48μmの範囲であり、所要の強度を備えることが明らかである。
 一方、比較例2のマグカップ1は、超臨界状態の窒素を全量に対して0.05~0.3重量%の範囲で含浸させた樹脂組成物を射出成形してなる。この結果、比較例2のマグカップ1は、発泡体層4の独立発泡の孔径が70~300μmの範囲と大きく、所要の強度を備えていないことが明らかである。
 次に、表2を参照して、マグカップ1の非発泡体層5の結晶化度と、耐熱性及び成形サイクル時間との関係について説明する。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~6のマグカップ1は、発泡体層4を内部に備えると共に、結晶化度が15~35%の範囲である非発泡体層5を表面に備える。実施例7及び比較例1のマグカップ1は、発泡体層4を内部に備えると共に、結晶化度が0.5~2.0%の範囲である非発泡体層5を表面に備える。参考例のマグカップは、内部に発泡体層4を備えず、全体が、結晶化度が20.9~24.9%の範囲である非発泡体層5からなる。
 この結果、実施例1~6のマグカップ1及び参考例のマグカップ1は、120℃の温度に2分間維持しても変形しない。一方、実施例7及び比較例1のマグカップ1は、120℃の温度に2分間維持すると、原形を留めないまでに変形する。従って、実施例1~6のマグカップ1は、実施例7及び比較例1のマグカップ1よりも優れ、且つ参考例のマグカップ1と同等の耐熱性を備えていることが明らかである。
 また、表2に示すように、実施例1~7のマグカップ1のうち、射出成形時の金型12のキャビティ部29の表面温度が70~89℃の範囲である実施例1~5,7のマグカップ1は、成形サイクル時間が65秒以内である。一方、前記キャビティ部29の表面温度が110℃である実施例6のマグカップ1は、成形サイクル時間が120秒である。従って、実施例1~5,7のマグカップは、実施例6のマグカップ1と比較して、製造効率が優れていることが明らかである。
 また、実施例1~7のマグカップ1は、内部に発泡体層4を備えるので、破砕して発泡体層4を露出させて廃棄すれば発泡体層4から容易に生分解されることになり、発泡体層4を備えていない参考例のマグカップ1に比較して、生分解性の点でも優れている。
 本実施形態では、ポリ乳酸樹脂の射出成形品からなる成形体が食品容器(マグカップ1)である場合を例として説明しているが、該成形体は自動車部品または電気部品等の成形体であってもよい。前記自動車部品または電気部品等の成形体は、図3に示す金型12に代えて該自動車部品または電気部品等に対応する形状のキャビティを用いる以外は、マグカップ1と全く同一にして製造することができ、マグカップ1と同一の耐熱性及び保温性(断熱性)を備えている。
 1…マグカップ(成形体)、 4…発泡体層、 5…非発泡体層。

Claims (9)

  1.  ポリ乳酸樹脂の射出成形品からなる成形体において、
     該射出成形品は、ポリ乳酸樹脂と1~150nmの範囲の平均粒子径を備える粉体とを含み、超臨界状態の窒素を全量に対して0.05~0.3重量%の範囲で含浸させた樹脂組成物を射出成形してなり、
     内部に独立発泡の発泡体層を備えると共に、表面に該発泡体層と一体に形成された非発泡体層を備えることを特徴とする成形体。
  2.  前記発泡体層は、0.5~50μmの範囲の平均孔径を備える独立発泡からなることを特徴とする請求項1記載の成形体。
  3.  前記非発泡体層は、15%以上の範囲の結晶化度を備えることを特徴とする請求項1記載の成形体。
  4.  前記非発泡体層は、15~28%の範囲の結晶化度を備えることを特徴とする請求項3記載の成形体。
  5.  前記射出成形品は、食品容器であることを特徴とする請求項1記載の成形体。
  6.  前記食品容器は、水中に沈み得る比重を備えることを特徴とする請求項5記載の成形体。
  7.  ポリ乳酸樹脂の射出成形品からなる成形体の製造方法において、
     ポリ乳酸樹脂に、1~150nmの範囲の平均粒子径を備える粉体を混合し、さらに、超臨界状態の窒素を全量に対して0.05~0.3重量%の範囲で含浸させて樹脂組成物を形成する工程と、
     該樹脂組成物を、金型のキャビティに射出することにより射出成形する工程とを備えることを特徴とする成形体の製造方法。
  8.  前記金型は、前記キャビティの表面温度が75~110℃の範囲の温度に加熱されていることを特徴とする請求項7記載の成形体の製造方法。
  9.  前記金型は、前記キャビティの表面温度が90℃未満の範囲の温度に加熱されていることを特徴とする請求項8記載の成形体の製造方法。
PCT/JP2009/004509 2008-09-10 2009-09-10 成形体及びその製造方法 WO2010029754A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/063,378 US20110171406A1 (en) 2008-09-10 2009-09-10 Molded article and method for production thereof
EP09812903.4A EP2332711B1 (en) 2008-09-10 2009-09-10 Method for producing a molded article
JP2010528651A JP4923281B2 (ja) 2008-09-10 2009-09-10 成形体及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008231942 2008-09-10
JP2008-231942 2008-09-10

Publications (1)

Publication Number Publication Date
WO2010029754A1 true WO2010029754A1 (ja) 2010-03-18

Family

ID=42005018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004509 WO2010029754A1 (ja) 2008-09-10 2009-09-10 成形体及びその製造方法

Country Status (4)

Country Link
US (1) US20110171406A1 (ja)
EP (1) EP2332711B1 (ja)
JP (1) JP4923281B2 (ja)
WO (1) WO2010029754A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193358A (ja) * 2012-03-21 2013-09-30 Iwamoto Kinzoku Seisakusho:Kk プラスチック成形品のサンドイッチ成形方法
JP2015224266A (ja) * 2014-05-26 2015-12-14 三菱レイヨン株式会社 樹脂発泡体及びその製造方法
WO2019139130A1 (ja) * 2018-01-12 2019-07-18 バンドー化学株式会社 発泡成形品、及び、発泡成形品の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014010139A1 (de) * 2014-07-09 2016-01-14 Weidenhammer Packaging Group Gmbh Verfahren zur Herstellung dünnwandiger Behälter mittels Spritzgießen und solchermaßen hergestellte dünnwandige Behälter
EP2995448A1 (en) * 2014-09-10 2016-03-16 Clariant International Ltd. Snap ability modifier for biodegradable polyesters

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169122B1 (en) 1997-12-19 2001-01-02 Trexel, Inc. Microcellular articles and methods of their production
JP2004204143A (ja) * 2002-12-26 2004-07-22 Unitika Ltd 透明性を有する生分解性樹脂組成物、およびその製造方法
JP2004292499A (ja) * 2003-03-25 2004-10-21 Unitika Ltd 微細な気泡を有する熱可塑性樹脂発泡体およびその製造方法
JP2006069215A (ja) * 1996-04-04 2006-03-16 Mitsui Chemicals Inc 熱可塑性樹脂発泡射出成形体
JP2006137063A (ja) * 2004-11-11 2006-06-01 Michio Komatsu 耐熱性食品容器の製造方法
JP2007191549A (ja) * 2006-01-18 2007-08-02 Teijin Chem Ltd Oa機器外装部品
JP2007246693A (ja) * 2006-03-16 2007-09-27 Riken Technos Corp ポリ乳酸系樹脂組成物、これを用いた成形品および製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670102A (en) * 1993-02-11 1997-09-23 Minnesota Mining And Manufacturing Company Method of making thermoplastic foamed articles using supercritical fluid
US5618486A (en) * 1995-05-16 1997-04-08 Sekisui Plastics Co., Ltd. Process for manufacturing a heat-resistant molded foam product
EP0765722A1 (en) * 1995-09-28 1997-04-02 Siebolt Hettinga Method for controlling skin thickness of plastic article made with controlled density
US6942913B2 (en) * 2001-09-24 2005-09-13 Habasit Ag Module for a modular conveyor belt having a microcellular structure
US7652085B2 (en) * 2004-05-11 2010-01-26 Kao Corporation Biodegradable resin composition
MX2007003151A (es) * 2004-09-17 2007-06-05 Pactiv Corp Espumas polimericas con materiales de relleno tratados, metodo de fabricacion y productos utilizando los mismos.
JP4645971B2 (ja) * 2004-10-06 2011-03-09 ユニチカ株式会社 ポリ乳酸樹脂組成物の成形方法およびその成形体
US7727606B2 (en) * 2004-11-02 2010-06-01 Jsp Corporation Polylactic acid resin foamed molding and process for manufacturing the same
US20060141183A1 (en) * 2004-12-22 2006-06-29 Williamson David T Polyester clay nanocomposites for barrier applications
EP2160290B1 (en) * 2007-01-17 2011-12-14 Microgreen Polymers, Inc. Multi-layer foamed polymeric object

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069215A (ja) * 1996-04-04 2006-03-16 Mitsui Chemicals Inc 熱可塑性樹脂発泡射出成形体
US6169122B1 (en) 1997-12-19 2001-01-02 Trexel, Inc. Microcellular articles and methods of their production
JP2004204143A (ja) * 2002-12-26 2004-07-22 Unitika Ltd 透明性を有する生分解性樹脂組成物、およびその製造方法
JP2004292499A (ja) * 2003-03-25 2004-10-21 Unitika Ltd 微細な気泡を有する熱可塑性樹脂発泡体およびその製造方法
JP2006137063A (ja) * 2004-11-11 2006-06-01 Michio Komatsu 耐熱性食品容器の製造方法
JP2007191549A (ja) * 2006-01-18 2007-08-02 Teijin Chem Ltd Oa機器外装部品
JP2007246693A (ja) * 2006-03-16 2007-09-27 Riken Technos Corp ポリ乳酸系樹脂組成物、これを用いた成形品および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2332711A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193358A (ja) * 2012-03-21 2013-09-30 Iwamoto Kinzoku Seisakusho:Kk プラスチック成形品のサンドイッチ成形方法
JP2015224266A (ja) * 2014-05-26 2015-12-14 三菱レイヨン株式会社 樹脂発泡体及びその製造方法
WO2019139130A1 (ja) * 2018-01-12 2019-07-18 バンドー化学株式会社 発泡成形品、及び、発泡成形品の製造方法

Also Published As

Publication number Publication date
EP2332711A4 (en) 2012-04-25
EP2332711A1 (en) 2011-06-15
US20110171406A1 (en) 2011-07-14
JP4923281B2 (ja) 2012-04-25
JPWO2010029754A1 (ja) 2012-02-02
EP2332711B1 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP4923281B2 (ja) 成形体及びその製造方法
JP5530150B2 (ja) 容器
CN102971128B (zh) 含纸微粉体树脂成型体及其制造方法
CA2479080C (en) Method and mold for manufacturing biodegradable molded articles
KR20120001723A (ko) 개인 및 소비자 케어 제품 및 포장재를 위한 마이크로셀 사출 성형 공정
WO2011001791A1 (ja) 木粉含有樹脂成形体及びその製造方法
JP5533515B2 (ja) ポリエステル製延伸発泡容器
JP4699568B2 (ja) 肉薄容器の製造方法
CN107471530A (zh) 用于化学发泡和模内装饰复合注塑成型的二次开模装置及方法
JP6872856B2 (ja) 発泡樹脂成形品の製造方法および発泡樹脂成形品
JP6872857B2 (ja) 発泡樹脂成形品の製造方法および発泡樹脂成形品
CN106490280A (zh) 一种新型巧克力模具
US20070231518A1 (en) Seat production method
JP5424736B2 (ja) 肉薄容器及びその製造方法
JP5929101B2 (ja) 発泡樹脂成形品
CN115210056A (zh) 形成制品的方法
CN101153088B (zh) 聚乳酸树脂发泡片成型体及其制备方法
TWI408048B (zh) 具隔熱且可自然分解之容器
JP7505837B2 (ja) 発泡性飲料用容器および発泡性飲料用容器の製造方法
WO2023054097A1 (ja) 射出成形体の製造方法
JP4685990B2 (ja) 木粉含有樹脂成形体及びその製造方法
CN101797994A (zh) 环保杯盖
TW200946315A (en) Foaming container injection and method of making the same
JP2004018846A (ja) 発泡射出成形品
TWI364362B (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812903

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528651

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13063378

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009812903

Country of ref document: EP