WO2010029739A1 - 蛍光分子を含有するポリマー粒子およびその製造方法 - Google Patents
蛍光分子を含有するポリマー粒子およびその製造方法 Download PDFInfo
- Publication number
- WO2010029739A1 WO2010029739A1 PCT/JP2009/004476 JP2009004476W WO2010029739A1 WO 2010029739 A1 WO2010029739 A1 WO 2010029739A1 JP 2009004476 W JP2009004476 W JP 2009004476W WO 2010029739 A1 WO2010029739 A1 WO 2010029739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluorescent
- polymer
- magnetic particles
- fluorescent molecule
- particles
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/582—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/128—Polymer particles coated by inorganic and non-macromolecular organic compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/531—Production of immunochemical test materials
- G01N33/532—Production of labelled immunochemicals
- G01N33/533—Production of labelled immunochemicals with fluorescent label
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
- G01N33/54326—Magnetic particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/09—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2458/00—Labels used in chemical analysis of biological material
- G01N2458/40—Rare earth chelates
Definitions
- the present invention relates to polymer particles containing fluorescent molecules, and more particularly, to polymer particles having excellent dispersibility and including fluorescent molecules with a high content in the polymer layer, and a method for producing the same.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2006-88131
- Patent Document 2 Japanese Patent Application Laid-Open No. 2008-127454
- Patent Document 3 previously filed by the present applicant has a function as a fluorescent label by including a fluorescent molecule in a polymer layer covering magnetic particles.
- Patent Document 2 previously filed by the present applicant has a function as a fluorescent label by including a fluorescent molecule in a polymer layer covering magnetic particles.
- a multifunctional polymer magnetic particle having both magnetic properties and magnetic responsiveness.
- the fluorescent polymer-containing polymer magnetic particles are required to introduce more fluorescent molecules into the coating polymer layer in order to realize fluorescence brightness that can be detected by an existing fluorescence detector.
- This invention is made
- Patent Document 2 Japanese Patent Application Laid-Open No. 2008-127454
- polymer magnetic particles are dispersed in a non-aqueous solvent in which fluorescent molecules are dissolved to swell the coated polymer layer, and the swollen coated polymer layer absorbs the fluorescent molecules;
- a method for producing fluorescent molecule-containing polymer magnetic particles comprising a step of adding water to the non-aqueous solvent in which the absorbed polymer magnetic particles are dispersed and a step of evaporating and removing the non-aqueous solvent.
- the non-aqueous solvent can be an organic solvent having an affinity for water and having a lower boiling point and higher vapor pressure than water.
- the fluorescent molecule-containing polymer magnetic particles in which fluorescent molecules are introduced into the coating polymer layer, wherein at least 100 nmol of fluorescent molecules are contained per 1 mg of the fluorescent molecule-containing polymer magnetic particles.
- Fluorescent molecule-containing polymer magnetic particles are provided.
- the coating polymer layer can be formed of a polymer composed of a monomer component containing styrene.
- the fluorescent molecule can be a rare earth metal chelate complex, and the rare earth metal constituting the rare earth metal chelate complex is selected from the group consisting of europium, samarium, terbium, and dysprosium. can do.
- polymer particles are dispersed in a non-aqueous solvent in which fluorescent molecules are dissolved to swell the polymer layer, and the swollen polymer layer absorbs the fluorescent molecules, and the fluorescent molecules are absorbed.
- a method for producing fluorescent molecule-containing polymer particles comprising a step of adding water to the non-aqueous solvent in which polymer particles are dispersed and a step of evaporating and removing the non-aqueous solvent.
- a fluorescent molecule-containing polymer magnetic particle wherein the fluorescent molecule-containing polymer magnetic particle contains at least 100 nmol of fluorescent molecule per 1 mg of the fluorescent molecule-containing polymer particle.
- polymer particles that are excellent in dispersibility and contain fluorescent molecules with a high content in the polymer layer, and a method for producing the same.
- the flowchart which showed the manufacturing process of the fluorescent molecule containing polymer magnetic particle of this embodiment The figure which shows the measurement result of the weight conversion distribution of the particle size of the fluorescent molecule containing polymer magnetic particle of Example 1.
- FIG. The figure which shows the measurement result of the weight conversion distribution of the particle size of the fluorescent molecule containing polymer magnetic particle of the comparative example 1.
- FIG. 1 The figure which shows the relationship of each fluorescence intensity and the ethylenediaminetetraacetic acid (EDTA) density
- FIG. 1 is a flowchart showing the manufacturing process of the fluorescent molecule-containing polymer magnetic particles of the present embodiment shown in FIG.
- Step 100 an aqueous suspension of polymer magnetic particles is prepared.
- Step 100 can be performed, for example, by the following method disclosed in Japanese Patent Application Laid-Open No. 2006-88131 (Patent Document 1) filed earlier by the present applicant.
- a hydrophilic substance such as ferrite is made hydrophobic by adsorbing a surface active substance, and then the ferromagnetic particle has a monomer liquid capable of radical addition polymerization such as styrene and glycidyl methacrylate and a nonionic hydrophilic group.
- a surfactant is added, and an appropriate amount of water is added and mixed, followed by sonication and emulsification.
- the emulsion thus prepared is heated to 60 to 80 ° C., and then a hydrophilic initiator is added to polymerize the monomer by emulsion polymerization.
- the surfactant is washed and removed from the emulsified particles that have been polymerized to obtain an aqueous suspension of polymer magnetic particles obtained by coating the magnetic particles with a polymer.
- Step 101 the solvent (that is, water) of the aqueous suspension of polymer magnetic particles obtained in step 100 is replaced with a non-aqueous solvent, and then solid phase separation is performed.
- Step 101 can be performed, for example, by the following procedure. First, the liquid suspension of polymer magnetic particles is subjected to solid-liquid separation using a centrifuge to remove water, alcohol such as methanol is added to the remaining pellets, and solid-liquid separation is repeated several times. Can be done. By this alcohol washing, the hydrophilic substance adhering to the coating polymer layer is removed, and the swelling of the coating polymer layer is promoted.
- step 102 a solution obtained by dissolving fluorescent molecules in a non-aqueous solvent (hereinafter referred to as fluorescent molecule solution) is added to the polymer magnetic particle pellet obtained by solid-liquid separation in step 101 and shaken.
- fluorescent molecule solution a solution obtained by dissolving fluorescent molecules in a non-aqueous solvent
- the coated polymer layer of the polymer magnetic particles is swollen by the non-aqueous solvent of the fluorescent molecule solution, and the fluorescent molecules are absorbed into the swollen polymer together with the non-aqueous solvent.
- a rare earth metal chelate complex can be used as the fluorescent molecule introduced into the coating polymer layer.
- the rare earth metal constituting the rare earth metal chelate complex include samarium, terbium, and dysprosium in addition to europium.
- the solvent of the fluorescent molecule solution and the non-aqueous solvent functioning as a solvent for swelling the coating polymer layer have an affinity for water and have a lower boiling point than water and a vapor pressure. It is preferable to use a high organic solvent. For example, in this embodiment, acetone having a hydrophilic group and a boiling point of 56.5 ° C. can be used as the non-aqueous solvent.
- step 102 preferably, after the migration of fluorescent molecules to the coating polymer layer is saturated, in step 103, water is added to the reaction system.
- the water to be added is preferably pure water, and distilled water or milliQ water can be used.
- the amount of water to be added is preferably about the same amount as the non-aqueous solvent in the reaction system.
- the non-aqueous solvent is removed by evaporation from the reaction system in step 103.
- This non-aqueous solvent can be removed by evaporation under a condition where only the non-aqueous solvent having a boiling point lower than that of water is vaporized, for example, by a method such as a reduced pressure treatment, a heat treatment, or a treatment with heating under reduced pressure.
- a method such as a reduced pressure treatment, a heat treatment, or a treatment with heating under reduced pressure.
- Step 103 since the water added in Step 103 remains in the reaction system, drying of the polymer magnetic particles into which the fluorescent molecules are introduced is prevented, and as a result, high dispersibility of the polymer magnetic particles is suitably maintained.
- step 105 an aqueous suspension of polymer magnetic particles containing fluorescent molecules with a high content is obtained.
- At least 100 nmol, preferably 150 nmol or more, more preferably 200 nmol or more, and desirably 250 nmol or more of fluorescent molecules can be introduced per 1 mg of the fluorescent molecule-containing polymer magnetic particles.
- the fluorescent molecule-containing polymer magnetic particles can be provided in a state where high dispersibility is maintained. This guarantees excellent quantitativeness. Further, according to the production method of the present invention, more fluorescent molecules can be introduced in a form that is completely sealed inside the polymer. In various environments, high-intensity fluorescence can be stably supplied without being affected by the external environment.
- the polymer magnetic particles of the present embodiment have ethylene glycol diglycidyl ether (EGDE), butylene glycol diglycidyl ether, polyethylene glycol (PEG), etc. on the surface of the coated polymer layer in order to improve the binding to a physiologically active substance.
- EGDE ethylene glycol diglycidyl ether
- PEG polyethylene glycol
- the present invention has been described with the embodiment in which fluorescent molecules are introduced into the coating polymer layer of polymer magnetic particles formed with hydrophilic magnetic particles such as ferrite as nuclei. It should be noted that the present invention relates to a general-purpose method for introducing a fluorescent molecule into the material, and should not be construed as limiting the introduction target of the fluorescent molecule to polymer magnetic particles. That is, according to the present invention, the procedure after Step 102 described above is applied to an aqueous suspension of known polymer particles that do not contain magnetic particles, which are prepared through known methods such as emulsion polymerization and suspension polymerization. In addition, fluorescent molecules can be included in the polymer particles with the same high content as described above, and this will be easily understood by those skilled in the art.
- this nonionic surfactant By adding an aqueous solution in which 0.3 g of a nonionic surfactant Emulgen 1150S-70 (manufactured by Kao Corporation) having a PEO chain is added to the hydrophobic ferromagnetic particles and sonicating, this nonionic surfactant is obtained.
- the agent was adsorbed on the surface of the hydrophobic ferromagnetic particles to re-hydrophilize the particles and disperse in water.
- the polymer magnetic particles prepared by the above-described procedure were modified to bind ethylene glycol diglycidyl ether (EGDE) as a spacer.
- EGDE ethylene glycol diglycidyl ether
- NH 4 OH aqueous solution is added to the slurry of the particles, and this is reacted by adjusting the pH with an aqueous HCl solution, thereby opening the GMA epoxy group and opening the amino groups. A group was introduced.
- an excess amount of EGDE is added to the ring-opened amino group of the polymer magnetic particle, and the pH is adjusted with an aqueous NaOH solution and stirred to bond the amino group of the polymer-coated ferrite particle and the epoxy group of EGDE. I let you. After the reaction, water washing was performed using a magnetic separation operation to obtain an aqueous suspension of polymer magnetic particles modified with EGDE.
- Example 1 1.08 for the polymer magnetic particle pellets obtained by the procedure described above.
- An acetone solution containing ⁇ mol of fluorescent molecules was added to disperse the polymer magnetic particles in the acetone solution.
- milliQ water was added to this acetone solution.
- milliQ water was added in the same amount as the acetone solution.
- vacuum heating was performed at 60 ° C. to evaporate and remove acetone to obtain an aqueous suspension of polymer magnetic particles.
- FIG. 2 shows the measurement result of the weight-converted distribution of the particle diameter of the fluorescent molecule-containing polymer magnetic particles of Example 1
- FIG. 3 shows the measurement of the weight-converted distribution of the particle diameter of the fluorescent molecule-containing polymer magnetic particles of Comparative Example 1. Results are shown.
- FIG. 4 shows the measurement result of the weight conversion distribution of the particle size of the polymer magnetic particle before introducing the fluorescent molecule.
- the polymer magnetic particles before the introduction of the fluorescent molecules showed a unimodal distribution as shown in FIG. 4, but Example 1 and Comparative Example 1 were also as shown in FIG. 2 and FIG.
- a single-peak distribution similar to that shown in FIG. 4 was obtained, and the average particle size was around 220 nm.
- the single particle dispersion was maintained after the introduction of the fluorescent molecules.
- the polymer magnetic particles of the sample were significantly aggregated, and thus could not be dispersed in water, and the measurement itself was impossible. From the results of the above-described examples, it was shown that the fluorescent molecule-containing polymer magnetic particles of the present invention have suitable dispersibility. This guarantees excellent quantitativeness in the application of the sensing marker.
- Example 1 ⁇ Verification of the amount of fluorescent molecules introduced>
- the introduction amount of Eu (TTA) 3 (TOPO) 2 complex was measured for each of Example 1 and Comparative Example 1. Specifically, a europium complex is eluted from a polymer magnetic particle into which a fluorescent molecule is introduced using acetone, and the eluted europium is analyzed by atomic emission spectrometry (ICP-OES, Leeman Labs, INC USA). Device name: Prodigy ICP). Table 1 below shows the quantitative results.
- the specific gravity of the magnetite (5.3 g / cm 3 ) and the specific gravity of the polymer (1.0 g / cm 3 )
- the specific gravity of the polymer magnetic particles of this example was 1.45 g / cm 3 .
- the particle diameter of the polymer magnetic particles of this example was about 200 nm from the TEM image, the weight per polymer magnetic particle of this example was estimated to be 6.07 ⁇ 10 ⁇ 15 g.
- Example 1 On the other hand, in Example 1, 386 per 1 mg of polymer magnetic particles. It was found that nmol of europium was introduced. This means that 1.41 ⁇ 10 6 europium complexes were introduced into one polymer magnetic particle, and it was found that the amount of fluorescent molecules introduced was increased nearly seven times compared to Comparative Example 1.
- the fluorescent polymer magnetic particles produced in Example 1 are dispersed in each pH solution of four types of buffers (acetic acid buffer, boric acid + potassium chloride-sodium hydroxide buffer, phosphate buffer, Hepes-NaOH buffer). (Hereinafter referred to as a fluorescent polymer magnetic particle dispersion) was prepared. Each fluorescent polymer magnetic particle dispersion was prepared such that the particle concentration was 20 ⁇ g / ml.
- Eu (TTA) 3 (TOPO) 2 complex was micellized and dispersed in each pH solution of the same four types of buffers as described above (hereinafter referred to as a europium simple substance dispersion). Prepared. Each europium single dispersion was adjusted to 1 nmol / ml.
- Fluorescence intensity was measured using a fluorescence spectrophotometer LS-55 (PerkinElmer) for each of the fluorescent polymer magnetic particle dispersion and the europium simple substance dispersion prepared by the above-described procedure.
- the excitation was measured at 340 nm
- the emission was measured at 550-700 nm
- the value of 618 nm was defined as the fluorescence intensity.
- the slit was set to 10.0 nm for both Excitation and Emission.
- FIG. 5 shows the results of measuring the fluorescence intensity of the europium single dispersion. As shown in FIG. 5, for the europium single dispersion, strong fluorescence intensity was measured in the vicinity of neutrality in all buffers, but the fluorescence intensity dropped sharply in other pH ranges, and Eu (TTA) It was shown that the fluorescence intensity of 3 (TOPO) 2 complex is greatly affected by the pH of the external environment.
- FIG. 6 shows the result of measuring the fluorescence intensity of the fluorescent polymer magnetic particle dispersion. As shown in FIG. 6, it was found that the fluorescent polymer magnetic particle dispersion maintained strong fluorescence intensity in all pH regions, and the fluorescence intensity was not affected by the pH of the external environment.
- FIG. 7 shows the relationship between the fluorescence intensity and the EDTA concentration of each of the fluorescent polymer magnetic particle dispersion and the europium simple substance dispersion.
- the fluorescence intensity started to decrease when the EDTA concentration reached 1 ⁇ mM, and the fluorescence intensity decreased to 50% when the EDTA concentration reached 3 ⁇ mM.
- the fluorescent polymer magnetic particle dispersion liquid no decrease in fluorescence intensity with an increase in EDTA concentration was observed.
- Dispersion of anti-EGFR antibody-immobilized fluorescent molecule-containing polymer magnetic particles (dispersion solvent: 10 mM Hepes-NaOH (pH 7.9), 50 mM KCl, 1 mM EDTA, 0.1% (w / v) After dropping Tween 20), a neodymium magnet was placed for 10 min on the back side of the slide glass. Thereafter, the sample was washed with TBS and encapsulated with a hydrophilic encapsulant.
- tissue section of the same mammary gland CNB specimen that was immunostained by the immunoperoxidase method was prepared.
- FIG. 8 (a) shows a fluorescence micrograph of a sample immunostained using the fluorescent molecule-containing polymer magnetic particles of Example 1, and FIG. 8 (b) was immunostained by the immunoperoxidase method. A micrograph of a control sample is shown. As shown in FIG. 8, according to the immunostaining using the fluorescent molecule-containing polymer magnetic particles of the present invention, it was confirmed that the cancerous part can be fluorescently stained with the same contrast as the control sample.
- polymer particles containing more fluorescent molecules in the polymer layer and a method for producing the same.
- the fluorescent molecule-containing polymer particles of the present invention can stably function as a high-intensity fluorescent label, and further application development is expected as a useful marker material in the biosensing field.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Power Engineering (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Luminescent Compositions (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
NaOH水溶液(1M)にFeCl2水溶液を添加し、NaNO3により酸化処理を行った。定温保持し、平均粒径が40nmのフェライト粒子を析出させた。このフェライト粒子150mgの懸濁液に、10-ウンデセン酸のNaOHの水溶液を添加することにより、強磁性粒子にウンデセン酸を飽和吸着させ、残った10-ウンデセン酸のNaOHの水溶液を洗浄除去することにより、疎水化強磁性粒子を得た。
(蛍光分子溶液の調製)
蛍光分子として、Eu(TTA)3(TOPO)2錯体(テノイルトリフルオロアセトンを配位したEu錯体)1.1mgをアセトン0.22gに添加し、蛍光分子のアセトン溶液を調製した。
ポリマー磁性粒子の高分子層の膨潤を促進するために、高分子層に付着している親水性物質を除くべく、ポリマー磁性粒子のアルコール洗浄を行なった。具体的は、上述した手順で調製したポリマー磁性粒子の水懸濁液1mgを、遠心分離機を用いて固液分離して水を除去し、残ったペレットにメタノールを加えて分散させた後、再び同様の手順で固液分離するという操作を数回繰り返した。最後の固液分離でメタノールを除いた後に残ったペレットを使用して、下記の実施例および比較例に係る実験を行った。
上述した手順で得られたポリマー磁性粒子のペレットに対して、1.08
μmolの蛍光分子を含むアセトン溶液を添加して、ポリマー磁性粒子をアセトン溶液に分散させた。このアセトン溶液を室温で1時間振とう後、このアセトン溶液に対し、milliQ水を添加した。なお、milliQ水は、アセトン溶液と等量を添加した。その後、60℃で真空加熱を行ってアセトンを蒸発除去し、ポリマー磁性粒子の水懸濁液を得た。
上述した手順で得られたポリマー磁性粒子のペレットに対して、milliQ水を添加してポリマー磁性粒子を水に分散させた。次に、この水懸濁液に対し、1.08μmolの蛍光分子を含むアセトン溶液を添加して混合した。なお、蛍光分子のアセトン溶液は、上記milliQ水と等量を加えた。最後に、この混合溶液を室温で1時間振とう後、60℃で真空加熱を行ってアセトンを蒸発除去し、ポリマー磁性粒子の水懸濁液を得た。
上述した手順で得られたポリマー磁性粒子のペレットに対して、1.08
μmolの蛍光分子を含むアセトン溶液を添加して、ポリマー磁性粒子を分散させた。このアセトン溶液を室温で1時間振とう後、60℃で真空加熱を行い、アセトンを蒸発除去し、ポリマー磁性粒子の粉末を得た。
上記実施例1ならびに比較例1で得られたポリマー磁性粒子の水懸濁液のそれぞれについて、遠心分離機を用いて固液分離し、得られたペレットを0.1%NP40 (界面活性剤ノニデットP-40、販売元ナカライテスク)の溶液に分散させて洗浄した後に、再度、水に懸濁して分散性の評価を行った。また、比較例2で得られたポリマー磁性粒子の粉末についても同様に、0.1%NP40 の溶液を添加し、水への分散を試みた。なお、分散性の評価は、動的光散乱法を用いた粒径の重量換算分布の測定結果に基づいて行った。粒径の重量換算分布の測定にはFPAR-1000(大塚電子株式会社)を使用した。
次に、実施例1および比較例1のそれぞれについて、Eu(TTA)3(TOPO)2錯体の導入量を測定した。具体的には、蛍光分子が導入されたポリマー磁性粒子から、アセトンを用いてユーロピウム錯体を溶出させ、この溶出されたユーロピウムを原子発光分析(ICP-OES, Leeman Labs, INC U.S.A. 装置名:Prodigy ICP)で定量した。下記表1は、その定量結果を示す。
nmolのユーロピウムが導入されていることが分かった。これは、ポリマー磁性粒子1個にユーロピウム錯体が1.41×106個が導入されたことを意味し、比較例1に比べて蛍光分子の導入量が7倍近く増大したことが分かった。
さらに、実施例1で作製した蛍光ポリマー磁性粒子について、蛍光分子(Eu(TTA)3(TOPO)2錯体)が、ポリマーの表面に単に付着しているのではなく、その内部に密封される形で導入されていることを以下の手順で検証した。
実施例1で作製した蛍光ポリマー磁性粒子を、4種類のバッファー(酢酸バッファー、ホウ酸+塩化カリウム-水酸化ナトリウムバッファー、リン酸バッファー、Hepes-NaOHバッファー)の各pH溶液中に分散させたもの(以下、蛍光ポリマー磁性粒子分散液として参照する)を用意した。なお、各蛍光ポリマー磁性粒子分散液は、粒子濃度が20μg/mlとなるように調製した。
上述した手順で調製した蛍光ポリマー磁性粒子分散液(pH 7.95)およびユーロピウム単体分散液(pH 7.95)に対して、ユーロピウム錯体の消光剤として知られるEDTAを添加した後、上述したのと同様の条件で蛍光強度を測定した。なお、EDTA濃度については、5条件(0 mM、0.1 mM、0.3 mM、1 mM、3 mM)を設定した。
実施例1において調製したEGDE修飾ポリマー磁性粒子に対して、3.0M NH4OHで24時間70℃で反応を行うことによりEGDE末端のエポキシ基にアミノ基を導入した後、0.5M無水コハク酸DMF溶液中で12時間(室温)反応させることによって、ポリマー磁性粒子の表面にカルボキシル基を導入した。このポリマー磁性粒子に対して、実施例1と同様の方法でユーロピウム錯体を導入し、カルボキシル化蛍光分子含有ポリマー磁性粒子を作製した。
乳腺CNB検体のパラフィン切片をスライドグラスに貼付した後、キシレンによる脱パラフィン処理、メタノールによる親水処理、流水水洗(15min)を行なった。さらにこれについて、DAKO Proteinase K(0.4mg/ml/0.05M TBS pH7.5~7.7)を使用して抗原賦活化処理(室温30min)を行なったのち、さらに、流水水洗(15min)を経て、5%BSAによるブロッキング処理(20min)を実施した。
Claims (11)
- ポリマー磁性粒子を蛍光分子が溶解した非水系溶媒に分散させて被覆ポリマー層を膨潤し、該膨潤した被覆ポリマー層に蛍光分子を吸収させる工程と、
前記蛍光分子を吸収した前記ポリマー磁性粒子が分散した前記非水系溶媒に水を添加する工程と、
前記非水系溶媒を蒸発除去する工程とを含む、
蛍光分子含有ポリマー磁性粒子の製造方法。 - 前記非水系溶媒が、水との親和性を有し、水よりも沸点が低く蒸気圧の高い有機溶媒である、請求項1に記載の製造方法。
- 被覆ポリマー層の内部に蛍光分子が導入された蛍光分子含有ポリマー磁性粒子であって、
前記蛍光分子含有ポリマー磁性粒子1mgあたりに少なくとも100nmolの蛍光分子を含有することを特徴とする、蛍光分子含有ポリマー磁性粒子。 - 前記被覆ポリマー層がスチレンを含むモノマー成分からなる重合体によって形成される、請求項3に記載の蛍光分子含有ポリマー磁性粒子。
- 前記蛍光分子が希土類金属キレート錯体である、請求項3または4に記載の蛍光分子含有ポリマー磁性粒子。
- 前記希土類金属キレート錯体を構成する希土類金属が、ユーロピウム、サマリウム、テルビウム、およびジスプロシウムからなる群より選択される、請求項5に記載の蛍光分子含有ポリマー磁性粒子。
- ポリマー磁性粒子の水懸濁液を非水系溶媒で溶媒置換することによって水を除去した後、該ポリマー磁性粒子を蛍光分子が溶解した非水系溶媒に分散させて被覆ポリマー層を膨潤し、該膨潤した被覆ポリマー層の内部に蛍光分子を吸収させる工程と、
前記蛍光分子を吸収した前記ポリマー磁性粒子が分散した前記非水系溶媒に水を添加する工程と、
前記非水系溶媒を蒸発除去して、前記蛍光分子を吸収した前記ポリマー磁性粒子の水懸濁液を得る工程とを含む、
蛍光分子含有ポリマー磁性粒子の製造方法。 - ポリマー粒子を蛍光分子が溶解した非水系溶媒に分散させてポリマー層を膨潤し、該膨潤したポリマー層に蛍光分子を吸収させる工程と、
前記蛍光分子を吸収した前記ポリマー粒子が分散した前記非水系溶媒に水を添加する工程と、
前記非水系溶媒を蒸発除去する工程とを含む、
蛍光分子含有ポリマー粒子の製造方法。 - ポリマー層に蛍光分子が導入された蛍光分子含有ポリマー粒子であって、
前記蛍光分子含有ポリマー粒子1mgあたりに少なくとも100nmolの蛍光分子を含有することを特徴とする、蛍光分子含有ポリマー粒子。 - 蛍光抗体法によって免疫染色する方法であって、
基板に貼付した組織切片に対して、抗体を固定化した請求項3~6のいずれか1項に記載の前記蛍光分子含有ポリマー磁性粒子を付与し、該蛍光分子含有ポリマー磁性微粒子を前記組織切片に向けて強制的に磁気誘導することを特徴とする、蛍光免疫染色方法。 - 前記磁気誘導は、前記基板の裏側に磁石を配置することによって行なう、請求項10に記載の蛍光免疫染色方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010528640A JP5574492B2 (ja) | 2008-09-11 | 2009-09-10 | 蛍光分子を含有するポリマー粒子およびその製造方法 |
EP09812888.7A EP2333007B1 (en) | 2008-09-11 | 2009-09-10 | Polymer particles containing fluorescent molecule and process for producing same |
US13/060,882 US9494580B2 (en) | 2008-09-11 | 2009-09-10 | Polymer particle containing fluorescent molecule and method for producing the same |
CN2009801356862A CN102149753B (zh) | 2008-09-11 | 2009-09-10 | 含有荧光分子的聚合物颗粒及其制造方法 |
US14/705,244 US20150233935A1 (en) | 2008-09-11 | 2015-05-06 | Polymer particle containing fluorescent molecule and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-232832 | 2008-09-11 | ||
JP2008232832 | 2008-09-11 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/060,882 A-371-Of-International US9494580B2 (en) | 2008-09-11 | 2009-09-10 | Polymer particle containing fluorescent molecule and method for producing the same |
US14/705,244 Division US20150233935A1 (en) | 2008-09-11 | 2015-05-06 | Polymer particle containing fluorescent molecule and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010029739A1 true WO2010029739A1 (ja) | 2010-03-18 |
Family
ID=42005003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/004476 WO2010029739A1 (ja) | 2008-09-11 | 2009-09-10 | 蛍光分子を含有するポリマー粒子およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US9494580B2 (ja) |
EP (1) | EP2333007B1 (ja) |
JP (1) | JP5574492B2 (ja) |
CN (1) | CN102149753B (ja) |
WO (1) | WO2010029739A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007248A1 (ja) | 2012-07-06 | 2014-01-09 | 凸版印刷株式会社 | 被検物質の検出システム |
WO2019132045A1 (ja) | 2017-12-28 | 2019-07-04 | 積水化学工業株式会社 | 金属錯体粒子及びそれを用いた免疫測定用試薬 |
WO2023095865A1 (ja) * | 2021-11-26 | 2023-06-01 | キヤノン株式会社 | 検体検査用粒子 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9327024B2 (en) | 2009-10-30 | 2016-05-03 | Tokyo Institute Of Technology | Polymer coated ferrite fine particles and method for preparing polymer coated ferrite fine particles |
US20160011179A1 (en) * | 2013-03-08 | 2016-01-14 | Konica Minolta, Inc. | Resin particles for fluorescent labels |
EP3004882B1 (en) * | 2013-06-06 | 2018-03-21 | Koninklijke Philips N.V. | Reagents, methods and devices to prevent aggregation in particle based tests for the detection of multimeric target molecules |
CN110244044B (zh) * | 2019-06-13 | 2023-04-11 | 苏州百源基因技术有限公司 | 一种稀土染色磁珠及其制备和应用 |
CN110961071B (zh) * | 2019-12-20 | 2022-05-27 | 湖北海汇化工科技有限公司 | 一种废水处理剂、制备方法、应用及废水处理方法 |
CN112812764A (zh) * | 2021-01-07 | 2021-05-18 | 中国人民解放军陆军防化学院 | 一种用于芥子气荧光检测与标记的水基可喷射聚合物及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01103631A (ja) * | 1987-10-15 | 1989-04-20 | Soken Kagaku Kk | 有用物質を含有する複合粒子およびその製造方法 |
JP2001126909A (ja) * | 1999-10-29 | 2001-05-11 | Tokushu Paper Mfg Co Ltd | 磁性粒子及び該粒子を利用した偽造防止用紙 |
JP2006088131A (ja) | 2004-09-27 | 2006-04-06 | Rikogaku Shinkokai | ポリマー被覆強磁性粒子の製造方法及びポリマー被覆強磁性粒子 |
JP2007308548A (ja) * | 2006-05-17 | 2007-11-29 | Yamaguchi Univ | 樹脂粒子およびその製造方法 |
JP2008127454A (ja) | 2006-11-20 | 2008-06-05 | Tokyo Institute Of Technology | 蛍光機能具備磁性ポリマー粒子とその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6399397B1 (en) * | 1992-09-14 | 2002-06-04 | Sri International | Up-converting reporters for biological and other assays using laser excitation techniques |
HUP0003986A3 (en) * | 1997-10-14 | 2001-04-28 | Luminex Corp Austin | Precision fluorescently dyed particles and methods of making and using same |
AU1717600A (en) * | 1998-11-10 | 2000-05-29 | Biocrystal Limited | Methods for identification and verification |
GB0228914D0 (en) * | 2002-12-11 | 2003-01-15 | Dynal Biotech Asa | Particles |
DE602006015908D1 (de) * | 2005-01-20 | 2010-09-16 | Luminex Corp | Mikrokugeln mit fluoreszente und magnetische eigenschaften |
AU2006288048A1 (en) * | 2005-09-08 | 2007-03-15 | Biterials Co., Ltd. | Magnetic nanoparticle having fluorescent and preparation method thereof and use thereof |
CN101066988B (zh) * | 2007-05-10 | 2010-05-19 | 复旦大学 | 一种具有核壳结构的磁性金属氧化物微球及其制备方法 |
JP5401724B2 (ja) | 2007-12-03 | 2014-01-29 | 多摩川精機株式会社 | 被覆磁性微粒子を用いたバイオセンシング方法及び該方法に用いるバイオセンシング装置 |
WO2009081700A1 (ja) | 2007-12-04 | 2009-07-02 | Hiroshi Handa | ポリマー被覆無機物微粒子とその製造方法 |
-
2009
- 2009-09-10 WO PCT/JP2009/004476 patent/WO2010029739A1/ja active Application Filing
- 2009-09-10 EP EP09812888.7A patent/EP2333007B1/en active Active
- 2009-09-10 CN CN2009801356862A patent/CN102149753B/zh active Active
- 2009-09-10 US US13/060,882 patent/US9494580B2/en active Active
- 2009-09-10 JP JP2010528640A patent/JP5574492B2/ja active Active
-
2015
- 2015-05-06 US US14/705,244 patent/US20150233935A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01103631A (ja) * | 1987-10-15 | 1989-04-20 | Soken Kagaku Kk | 有用物質を含有する複合粒子およびその製造方法 |
JP2001126909A (ja) * | 1999-10-29 | 2001-05-11 | Tokushu Paper Mfg Co Ltd | 磁性粒子及び該粒子を利用した偽造防止用紙 |
JP2006088131A (ja) | 2004-09-27 | 2006-04-06 | Rikogaku Shinkokai | ポリマー被覆強磁性粒子の製造方法及びポリマー被覆強磁性粒子 |
JP2007308548A (ja) * | 2006-05-17 | 2007-11-29 | Yamaguchi Univ | 樹脂粒子およびその製造方法 |
JP2008127454A (ja) | 2006-11-20 | 2008-06-05 | Tokyo Institute Of Technology | 蛍光機能具備磁性ポリマー粒子とその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2333007A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014007248A1 (ja) | 2012-07-06 | 2014-01-09 | 凸版印刷株式会社 | 被検物質の検出システム |
US9632077B2 (en) | 2012-07-06 | 2017-04-25 | Toppan Printing Co., Ltd. | Detection system of test substance |
WO2019132045A1 (ja) | 2017-12-28 | 2019-07-04 | 積水化学工業株式会社 | 金属錯体粒子及びそれを用いた免疫測定用試薬 |
WO2023095865A1 (ja) * | 2021-11-26 | 2023-06-01 | キヤノン株式会社 | 検体検査用粒子 |
Also Published As
Publication number | Publication date |
---|---|
CN102149753B (zh) | 2013-09-25 |
EP2333007B1 (en) | 2014-11-05 |
JPWO2010029739A1 (ja) | 2012-02-02 |
JP5574492B2 (ja) | 2014-08-20 |
EP2333007A4 (en) | 2012-08-01 |
CN102149753A (zh) | 2011-08-10 |
US20150233935A1 (en) | 2015-08-20 |
EP2333007A1 (en) | 2011-06-15 |
US20110183355A1 (en) | 2011-07-28 |
US9494580B2 (en) | 2016-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5574492B2 (ja) | 蛍光分子を含有するポリマー粒子およびその製造方法 | |
JP5156944B2 (ja) | 蛍光機能具備磁性ポリマー粒子とその製造方法 | |
CN108620048B (zh) | 聚乙烯亚胺修饰的磁性微球制备方法及应用 | |
Xu et al. | Preparation and evaluation of superparamagnetic surface molecularly imprinted polymer nanoparticles for selective extraction of bisphenol A in packed food | |
Xu et al. | Preparation of magnetic molecularly imprinted polymers based on a deep eutectic solvent as the functional monomer for specific recognition of lysozyme | |
Dai et al. | Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium | |
Rahman et al. | Multi-stimuli responsive magnetic core–shell particles: synthesis, characterization and specific RNA recognition | |
Zengin et al. | Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol | |
Cao et al. | Facile synthesis of a Ni (ii)-immobilized core–shell magnetic nanocomposite as an efficient affinity adsorbent for the depletion of abundant proteins from bovine blood | |
Lu et al. | Bifunctional superparamagnetic surface molecularly imprinted polymer core-shell nanoparticles | |
Wei et al. | Ionic liquid modified magnetic microspheres for isolation of heme protein with high binding capacity | |
Tolmacheva et al. | A polymeric magnetic adsorbent based on Fe 3 O 4 nanoparticles and hypercrosslinked polystyrene for the preconcentration of tetracycline antibiotics | |
Azodi-Deilami et al. | Synthesis and characterization of the magnetic molecularly imprinted polymer nanoparticles using N, N-bis methacryloyl ethylenediamine as a new cross-linking agent for controlled release of meloxicam | |
Zhang et al. | Fabrication of uniform “smart” magnetic microcapsules and their controlled release of sodium salicylate | |
Phutthawong et al. | Facile synthesis of magnetic molecularly imprinted polymers for caffeine via ultrasound-assisted precipitation polymerization | |
Wang et al. | Synthesis of hierarchical nickel anchored on Fe 3 O 4@ SiO 2 and its successful utilization to remove the abundant proteins (BHb) in bovine blood | |
Huang et al. | Enantioselective absorption of enantiomers with maleic anhydride-β-cyclodextrin modified magnetic microspheres | |
CN113559828B (zh) | 一种聚丙烯酸磁性纳米复合材料、制备方法及应用 | |
Hosseinzadeh et al. | Synthesis of multiresponsive β‐cyclodextrin nanocomposite through surface RAFT polymerization for controlled drug delivery | |
CN105435753A (zh) | 一种介孔磁性高分子复合球及其制备方法与应用 | |
Liu et al. | Protein imprinting over magnetic nanospheres via a surface grafted polymer for specific capture of hemoglobin | |
Johnson et al. | Highly hydrated poly (allylamine)/silica magnetic resin | |
CN109265601B (zh) | 识别和荧光定量农药的纳米印迹微球及其制备方法 | |
Xie et al. | Double-sided coordination assembly: superparamagnetic composite microspheres with layer-by-layer structure for protein separation | |
CN113332964B (zh) | 磁性接枝微粒Fe3O4@SiO2-PAM的制备方法及其在氨氯地平吸附分离中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980135686.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09812888 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 396/MUMNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010528640 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009812888 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13060882 Country of ref document: US |