WO2010029027A1 - Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique - Google Patents

Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique Download PDF

Info

Publication number
WO2010029027A1
WO2010029027A1 PCT/EP2009/061496 EP2009061496W WO2010029027A1 WO 2010029027 A1 WO2010029027 A1 WO 2010029027A1 EP 2009061496 W EP2009061496 W EP 2009061496W WO 2010029027 A1 WO2010029027 A1 WO 2010029027A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
pump
liquid piston
piston compressor
Prior art date
Application number
PCT/EP2009/061496
Other languages
German (de)
English (en)
Inventor
Klaus Ramming
Michael Deichsel
Original Assignee
Ago Ag Energie + Anlagen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ago Ag Energie + Anlagen filed Critical Ago Ag Energie + Anlagen
Priority to AT09782642T priority Critical patent/ATE539304T1/de
Priority to EP09782642A priority patent/EP2321592B1/fr
Publication of WO2010029027A1 publication Critical patent/WO2010029027A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Definitions

  • the invention relates to a method for operating a heat pump or chiller, in which a refrigerant is compressed by means of a liquid piston compressor, then cooled and then expanded and vaporized in a next step and finally fed back to the liquid piston compressor.
  • the invention relates in terms of device technology, a heat pump or chiller.
  • Heat pump or chiller processes have been part of the well-known state of the art for quite some time.
  • the use of liquid piston compressors attempts to realize an isothermal compression of the refrigerant in the closed loop process.
  • the compression space can be given generously sized and structurally very free surfaces to optimize heat transfer since there is no sealing problem when using a fluid as a "piston".
  • liquid-piston compressors can achieve a nearly isothermal compression.
  • Another advantage of a liquid piston compressor is the fact that a phase transition in the compression from the vapor to the liquid state for such devices is unproblematic, since the liquid piston can take no "mechanical” damage even in so-called "liquid shocks".
  • a prerequisite for the functioning of a liquid piston compressor is the use of immiscible fluids.
  • the invention has for its object to develop a method for operating a heat pump or chiller so that the efficiency of the process is further increased.
  • the same object is the present invention in device-technical terms with respect to a heat pump and chiller based.
  • the aforementioned object starting from a method of the type described above, achieved in that heat of the cooled after compression refrigerant is transferred to the refrigerant, before this again fed to the liquid piston compressor and thus the
  • Circuit is closed and that the refrigerant is expanded in an engine having an operative connection to a hydraulic pump (31) by means of which a hydraulic fluid of the liquid piston compressor (2) is pumpable.
  • This advantage has an effect, in particular, on heat pumps or refrigerating machines which are operated in the transcritical range, for example with CO 2 as refrigerant.
  • the critical temperature of CO 2 is 31 ° C. Above this temperature is no
  • the refrigerant is compressed alternately by two liquid piston compressors, each having a working space whose common Schwarzfiuid is reciprocated alternately from the working space of a liquid piston compressor in the working space of the other liquid piston compressor. In this way, a homogenization of the mass flow in the remaining process steps can be achieved.
  • a further increase in continuity can be achieved by temporarily storing the refrigerant in a high-pressure accumulator after it has cooled and transferred further heat to the vaporized refrigerant.
  • the same effect of equalizing the process with respect to the refrigerant flow is obtained when the refrigerant is stored in a low-pressure accumulator after expansion before it is subsequently vaporized.
  • the refrigerant may already partially cool during the compression and / or subsequent transfer of heat to the vaporized refrigerant and / or subsequent cooling - condense.
  • a further significant increase in efficiency can be achieved in the process in question by the fact that the refrigerant after cooling and the heat transfer to the reheated refrigerant under work in an engine, in particular an expansion pump or an expansion turbine, is relaxed before it evaporates again or is heated.
  • the previously unexploited expansion work can be used with the help of a relaxation machine.
  • the expansion work gained by the expansion machine can be advantageously used to pump the liquid used as working fluid into the liquid piston.
  • the pumping work to be applied during the refrigerant compression is hereby reduced and the power requirement of the hydraulic pump or the hydraulic work to be performed by it is reduced.
  • the heat should be removed from the refrigerant during the compression in the liquid piston compressor so that the compression is isothermal.
  • the heat dissipated from the compressor by means of a separate heat transfer medium from the heat of a heat sink, i. for example, to a consumer in the form of underfloor heating, or otherwise provided as process heat at a low temperature level, wherein the heat transfer medium is further heated after heating in the liquid piston compressor in the gas cooler for the refrigerant.
  • the object of the invention is achieved by a heat exchanger, by means of which heat from the transcritical, the cooler leaving the refrigerant to the heater leaving the refrigerant is transferable.
  • the drain lowering device is an engine, in particular, an expansion pump or expansion turbine disposed between the radiator and the heater.
  • the expenditure on equipment is particularly low when
  • Expansion pump a free-piston pump with self-switching valves is used.
  • Fig. 1 shows a heat pump / chillers process according to the prior art in a Ts diagram with the refrigerant R 134 a and isothermal compression by means of a liquid piston compressor, Fig. 2 as Figure 1, but with the refrigerant CO 2 , Fig. 3 is an inventive Process in a Ts diagram with the refrigerant
  • FIG. 5 is a schematic system diagram of a heat pump / chiller with internal heat exchanger and with expansion pump. A schematically shown in the plant diagram of Figure 5
  • Heat pump / chiller 1 has in the cycle of the refrigerant (here: CO 2 ) a liquid piston compressor 2, a gas cooler 3 / condenser, an internal heat exchanger 4, a high-pressure accumulator 5, an expansion pump 42, a Low-pressure accumulator 7, an evaporator 8 and check valves 9 to 12 on.
  • the refrigerant here: CO 2
  • a liquid piston compressor 2 a liquid piston compressor 2
  • gas cooler 3 / condenser a high-pressure accumulator 5
  • expansion pump 42 a Low-pressure accumulator 7
  • evaporator 8 Low-pressure accumulator 7
  • check valves 9 to 12 The following process takes place in the form of a cycle through the aforementioned components and the interconnecting lines:
  • the isothermally compressed CO 2 in the liquid piston compressor is fed via a line 13 to the gas cooler 3, in which condensation may occur depending on the compression end temperature of the refrigerant. Due to the comparatively low critical temperature of the CO 2 (31 ° C.), however, condensation typically does not take place either during the compression or in the downstream gas cooler 3 / "condenser", that is to say the wet steam area is not reached in these process steps.
  • the refrigerant passes from the inner heat exchanger into a high-pressure accumulator 5, from which it passes through a line 16 to the expansion pump 42, in which an ideal isentropic expansion of the refrigerant takes place, which occurs during the expansion in the wet steam area.
  • the expanded refrigerant enters the low-pressure accumulator 7, from where it passes through a line 18 into the evaporator and evaporates there under heat absorption. Subsequently, the refrigerant is conducted via a line 18 to the already mentioned inner heat exchanger 4 and heated there before it flows back via the line 19 back to the liquid piston compressor 2.
  • the liquid piston compressor 2 has two cylinders 20, 21 each defining a working space, which are connected in parallel to each other. From the line 19 branches off the inflow line 22 of the cylinder 20, in which the check valve 10 is arranged, which allows only an influx into the cylinder 20. Via the line 23, in which there is only one outflow permitting check valve 9, the refrigerant passes from the cylinder 20 into the conduit 13 and thus back into the gas cooler 3 / condenser.
  • Cylinder 21 is connected via a conduit 24 serving for the inflow to the conduit 19 and via the conduit 25 serving for the outflow to the conduit 13
  • the check valves 11 and 12 allow only an inflow or outflow of the refrigerant.
  • hydraulic lines 24 and 25 are connected, which open into a respective working chamber 26, 27 formed by the interior of the cylinders 20, 21.
  • a respective working chamber 26, 27 formed by the interior of the cylinders 20, 21.
  • the hydraulic fluid is selected so that it is neither miscible nor dissolved in the refrigerant.
  • the hydraulic lines 24 and 25 lead to a four-way hydraulic valve 28, from which in turn depart two hydraulic lines 29, 30 which are connected to the suction or pressure side of a hydraulic pump 31.
  • a four-way hydraulic valve 28 From which in turn depart two hydraulic lines 29, 30 which are connected to the suction or pressure side of a hydraulic pump 31.
  • now hydraulic fluid pressure is removed from one of the two cylinders 20, 21 and pumped under pressure into the other of the two cylinders 20, 21, whereby in the latter cylinder a compression stroke is performed, whereas in the other cylinder, the vaporized and preheated refrigerant is sucked.
  • Both cylinders 20, 21 are surrounded on their outer side by a double jacket 32 to 33 and provided in their interior with a heat exchanger bundle 34, 35.
  • the double jackets 32 to 33 or heat exchanger bundles 34, 35 are connected to discharge lines 36, 37 and supply lines 38, 39.
  • the heated during the compression process heat transfer medium is passed after passing a located in the respective switching position three-way valve 39 from a circulation pump 40 to a consumer 41, which may be, for example, a floor heating or a consumer of process heat at low temperature level. From the consumer passes the cooled
  • the heat transfer medium is depending on the switching position of the three-way valve 39 each only by those cylinders 20 and 21st in which the isothermal compression of the refrigerant is taking place. Alternatively, both cylinders are constantly flowed through.
  • the heat pump / chiller 1 has an expansion pump 42.
  • the refrigerant taken from the high-pressure accumulator 5 is expanded by means of the expansion pump 42 designed as a free-piston pump before the expanded refrigerant is returned to the low-pressure accumulator and the process via evaporation, preheating to condensation temperature, isothermal compression and cooling is identical to that in FIG. 5.
  • FIG. 3 which illustrates the process in the heat pump / chiller 1 according to FIG. 5, shows how the refrigerant is compressed isomerically from point A to point B.
  • the idealized, horizontally extending line AB intersects the wet-steam line 43, whose section on the right of the maximum 44 is referred to as a dew-line 45 and whose section 46 on the left of the maximum 44 is referred to as a boiling line. From the intersection point 47 between tau line 45 and line AB, the refrigerant is thus in the post-vaporized area.
  • the refrigerant in the internal heat exchanger 4 is isobarically cooled along boiling line 46 until point C is reached.
  • the expansion pump 42 the refrigerant is now polytropically expanded and thus reaches point D with a correspondingly reduced temperature.
  • That is what throttling via an expansion valve ( Figure 5) is dashed along the reached point D 1 , which is characterized by a greater entropy - due to the isenthalp relaxation.
  • FIGS. 1 and 3 show the cycle processes with R 134 A as the refrigerant
  • FIGS. 2 and 4 form a comparison of the processes when using CO 2 as

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

L’invention concerne un procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique (1) et selon lequel un fluide frigorigène est comprimé de façon isotherme au moyen d’un compresseur de liquide à piston (2), puis refroidi, éventuellement condensé à cette occasion puis dilaté. Au cours d’une étape suivante, le fluide frigorigène est évaporé et enfin ramené au compresseur de liquide à piston (2). L’objet de l’invention est d’améliorer le rendement du processus. A cet effet, la chaleur du fluide frigorigène refroidi après la compression est transférée au fluide frigorigène réchauffé, avant que celui-ci ne soit ramené au compresseur de liquide à piston (2) et que le circuit ne soit donc fermé, et le fluide frigorigène est dilaté dans un moteur primaire en liaison fonctionnelle avec une pompe hydraulique (31) au moyen de laquelle un fluide hydraulique du compresseur de liquide à piston (2) peut être pompé. L’invention concerne en outre, en ce qui concerne la technique du dispositif, une pompe à chaleur/machine frigorifique destinée à exécuter ledit procédé.
PCT/EP2009/061496 2008-09-10 2009-09-04 Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique WO2010029027A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT09782642T ATE539304T1 (de) 2008-09-10 2009-09-04 Wärmepumpe oder kältemaschine und verfahren zum betreiben einer wärmepumpe oder kältemaschine
EP09782642A EP2321592B1 (fr) 2008-09-10 2009-09-04 Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008041939A DE102008041939A1 (de) 2008-09-10 2008-09-10 Verfahren zum Betreiben einer Wärmepumpe oder Kältemaschine bzw. einer Kraftmaschine sowie Wärmepumpe oder Kältemaschine und Kraftmaschine
DE102008041939.7 2008-09-10

Publications (1)

Publication Number Publication Date
WO2010029027A1 true WO2010029027A1 (fr) 2010-03-18

Family

ID=41137004

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2009/061463 WO2010029020A1 (fr) 2008-09-10 2009-09-04 Machine motrice et procédé de fonctionnement d'une machine motrice
PCT/EP2009/061496 WO2010029027A1 (fr) 2008-09-10 2009-09-04 Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/061463 WO2010029020A1 (fr) 2008-09-10 2009-09-04 Machine motrice et procédé de fonctionnement d'une machine motrice

Country Status (4)

Country Link
EP (1) EP2321592B1 (fr)
AT (1) ATE539304T1 (fr)
DE (1) DE102008041939A1 (fr)
WO (2) WO2010029020A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063817A2 (fr) * 2008-12-05 2010-06-10 Thermea. Energiesysteme Gmbh Dispositif et procédé de compression d'un gaz

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005801B (zh) * 2013-02-25 2015-12-09 宝山钢铁股份有限公司 一种低压蒸汽差压发电系统及其回用蒸汽背压控制方法
DE102016202336A1 (de) * 2016-02-16 2017-08-17 Robert Bosch Gmbh Zusatzwärmespeicher und Wärmepumpenkreislauf
CN106801863B (zh) * 2017-02-06 2018-10-19 国家电网公司 一种火电机组给水旁路切主路过程中的旁路阀控制方法
DE102019129495B3 (de) * 2019-10-31 2021-04-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verdichteranordnung, Wärmepumpenanordnung und Verfahren zum Betreiben der Verdichteranordnung
EP4296478A1 (fr) * 2022-06-21 2023-12-27 Noditech AB Procédé de fonctionnement d'un système à cycle thermique, système à cycle thermique et procédé de modification d'un système à cycle thermique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410330A2 (fr) * 1989-07-28 1991-01-30 York International GmbH Procédé et dispositif de fonctionnement d'une installation frigorifique
EP1215452A1 (fr) * 2000-12-16 2002-06-19 Eaton Fluid Power GmbH Appareil frigorifique avec régulation de la température de surchauffe à l'avant du compresseur
US6591618B1 (en) * 2002-08-12 2003-07-15 Praxair Technology, Inc. Supercritical refrigeration system
US20030221434A1 (en) * 2002-05-29 2003-12-04 Neiter Jeff J. Expander driven motor for auxiliary machinery
US20070271956A1 (en) * 2006-05-23 2007-11-29 Johnson Controls Technology Company System and method for reducing windage losses in compressor motors

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1766998A (en) 1928-09-07 1930-06-24 Heat Transfer Products Inc Apparatus for compressing substances
US2772543A (en) 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
CA956470A (en) * 1970-07-24 1974-10-22 John G. Davoud External combustion power producing system
FR2261412A1 (en) * 1974-02-19 1975-09-12 Dubreuil Marc Heriard Thermal engine operating on mixed cycle - uses fluid with low critical temperature and high latent heat
DE2610063A1 (de) * 1976-03-11 1977-09-15 Schmidt Hans Guenter Ing Grad Verfahren und einrichtung zur waermegewinnung aus abwaermemedien oder umgebungsluft
US5073090A (en) * 1990-02-12 1991-12-17 Cassidy Joseph C Fluid piston compressor
GB0004007D0 (en) * 2000-02-22 2000-04-12 Dearman Peter T Engines driven by liquified gas
DE10159892B4 (de) * 2001-12-06 2006-08-24 Stiebel Eltron Gmbh & Co. Kg Kältemaschine mit einem Rekuperator
DE102004023834A1 (de) * 2004-05-14 2005-12-08 Robert Bosch Gmbh Expansionseinrichtung für ein Kältemittel
DE102005025255B3 (de) * 2005-06-02 2006-12-07 Lutz Giechau Verfahren und Vorrichtung zur Erzeugung mechanischer Energie
CN101454542A (zh) * 2006-04-04 2009-06-10 法国电力公司 具有工质的内部闪蒸的活塞式蒸汽机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410330A2 (fr) * 1989-07-28 1991-01-30 York International GmbH Procédé et dispositif de fonctionnement d'une installation frigorifique
EP1215452A1 (fr) * 2000-12-16 2002-06-19 Eaton Fluid Power GmbH Appareil frigorifique avec régulation de la température de surchauffe à l'avant du compresseur
US20030221434A1 (en) * 2002-05-29 2003-12-04 Neiter Jeff J. Expander driven motor for auxiliary machinery
US6591618B1 (en) * 2002-08-12 2003-07-15 Praxair Technology, Inc. Supercritical refrigeration system
US20070271956A1 (en) * 2006-05-23 2007-11-29 Johnson Controls Technology Company System and method for reducing windage losses in compressor motors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010063817A2 (fr) * 2008-12-05 2010-06-10 Thermea. Energiesysteme Gmbh Dispositif et procédé de compression d'un gaz
WO2010063817A3 (fr) * 2008-12-05 2011-01-06 Thermea. Energiesysteme Gmbh Dispositif et procédé de compression d'un gaz

Also Published As

Publication number Publication date
EP2321592B1 (fr) 2011-12-28
WO2010029020A1 (fr) 2010-03-18
DE102008041939A1 (de) 2010-03-11
EP2321592A1 (fr) 2011-05-18
ATE539304T1 (de) 2012-01-15

Similar Documents

Publication Publication Date Title
DE60128244T2 (de) Verfahren und anordnung zum abtauen einer dampfverdichtungsanlage
DE102011118162C5 (de) Kombinierte Kälteanlage und Wärmepumpe und Verfahren zum Betreiben der Anlage mit funktionsabhängiger Kältemittelverlagerung innerhalb des Kältemittelkreislaufes
EP1789732B1 (fr) Circuit frigorifique et procede de fonctionnement d'un circuit frigorifique
EP2321592B1 (fr) Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique
DE102008048509A1 (de) Kühlsystem mit einer Wärmepumpe und verschiedenen Betriebsmoden
EP3702181B1 (fr) Pompe à chaleur à régulation partielle de la charge
DE60022251T2 (de) Kälteanlage mit einem einen optimierten Verbrauch bietenden Kältekreislauf
DE10159892A1 (de) Kältemaschine mit einem Rekuperator
EP1925475A2 (fr) Combinaison d'un circuit frigorifique destinée à la climatisation de l'espace intérieur d'un véhicule et d'un circuit Rankine
DE102007047642B4 (de) Kältemaschine
DE112017005948T5 (de) Klimatisierungsvorrichtung
WO2014131606A1 (fr) Machine frigorifique et procédé de fonctionnement d'une machine frigorifique
WO2018029371A1 (fr) Échangeur de chaleur destiné à être utilisé dans une partie chaude d'une centrale de stockage d'énergie par air liquide, partie chaude et procédé permettant de faire fonctionner ledit échangeur de chaleur dans ladite partie chaude
EP2336680A2 (fr) Dispositif de climatisation doté d'un dispositif de transmission de pression et procédé de fonctionnement d'un dispositif de climatisation
DE10344698B4 (de) Wärmepumpe oder Kältemaschine mit Verdrängungsverflüssiger
DE10338388B3 (de) Verfahren zur Regelung einer Klimaanlage
WO2014117924A2 (fr) Procédé permettant de faire fonctionner une centrale basse température et centrale basse température
DE102012004801A1 (de) Anordnung für eine Wärmepumpe mit Schraubenverdichter
DE102007055608A1 (de) Kombination eines Kälte-Kreislaufs zur Klimatisierung eines Fahrzeuginnenraums mit einem Rankine-Kreislauf
EP2674698A1 (fr) Installation de pompes à chaleur
WO2023011997A1 (fr) Moteur thermique
DE102004014591B4 (de) Verfahren zum Betrieb einer Verdichtungskältemaschine mit einem inneren Wärmetauscher sowie Verwendung einer Verdichtungskältemaschine zur Ausübung des Verfahrens
DE4432559A1 (de) Vorrichtung und Verfahren zur Umwandlung von Wärmeenergie in mechanische Energie
DE2344269C3 (de) Wärmepumpe zur gleichzeitigen Kühlung und Erzeugung von erheblich über Umgebungstemperatur liegender Nutzwärme
DE112021007291T5 (de) Wärmequellenmaschine einer Kühlvorrichtung und Kühlvorrichtung einschließlich derselben

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09782642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009782642

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE