EP2321592B1 - Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique - Google Patents

Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique Download PDF

Info

Publication number
EP2321592B1
EP2321592B1 EP09782642A EP09782642A EP2321592B1 EP 2321592 B1 EP2321592 B1 EP 2321592B1 EP 09782642 A EP09782642 A EP 09782642A EP 09782642 A EP09782642 A EP 09782642A EP 2321592 B1 EP2321592 B1 EP 2321592B1
Authority
EP
European Patent Office
Prior art keywords
coolant
heat
pump
displacement compressor
fluid displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09782642A
Other languages
German (de)
English (en)
Other versions
EP2321592A1 (fr
Inventor
Klaus Ramming
Michael Deichsel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGO GmbH Energie und Anlagen
Original Assignee
AGO GmbH Energie und Anlagen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGO GmbH Energie und Anlagen filed Critical AGO GmbH Energie und Anlagen
Publication of EP2321592A1 publication Critical patent/EP2321592A1/fr
Application granted granted Critical
Publication of EP2321592B1 publication Critical patent/EP2321592B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Definitions

  • the invention relates to a method for operating a heat pump or chiller, in which a refrigerant is compressed by means of a liquid piston compressor, then cooled and then expanded and vaporized in a next step and finally fed back to the liquid piston compressor.
  • the invention relates in terms of device technology, a heat pump or chiller.
  • Heat pump or chiller processes have been part of the well-known state of the art for quite some time.
  • the use of liquid piston compressors attempts to realize an isothermal compression of the refrigerant in the closed loop process.
  • the compression space can be given generously sized and structurally very free surfaces to optimize heat transfer since there is no sealing problem when using a fluid as a "piston".
  • liquid-piston compressors can achieve a nearly isothermal compression.
  • Another advantage of a liquid piston compressor is the fact that a phase transition in the compression from the vapor to the liquid state for such devices is unproblematic, since the liquid piston can take no "mechanical” damage even in so-called "liquid shocks".
  • a prerequisite for the functioning of a liquid piston compressor is the use of immiscible fluids.
  • the invention has for its object to develop a method for operating a heat pump or chiller so that the efficiency of the process is further increased.
  • the same object is the present invention in device-technical terms with respect to a heat pump and chiller based.
  • the above object starting from a method of the type described above, achieved in that heat of the cooled after compression refrigerant is transferred to the refrigerant before it is fed back to the liquid piston compressor and thus the cycle is closed and that the refrigerant is expanded in an engine having an operative connection to a hydraulic pump (31) by means of which a hydraulic fluid of the liquid piston compressor (2) is pumpable.
  • This advantage has an effect, in particular, on heat pumps or refrigerating machines which are operated in the transcritical range, for example with CO 2 as refrigerant.
  • the critical temperature of CO 2 is 31 ° C. Above this temperature, no phase change to the liquid phase out is more possible, so that there is no ability of the refrigerant to release heat at the same temperature alone due to the phase change.
  • CO 2 is at a very high level End temperature must be compressed, so that in the further course of the cycle, the waste heat can be delivered to a heat source with a specified temperature. The heat to be released in this case comes solely from the cooling of the hot gas and not from a phase change.
  • the refrigerant is alternately compressed by two liquid piston compressors, each having a working space whose common working fluid is reciprocated alternately from the working space of one liquid piston compressor into the working space of the other liquid piston compressor. In this way, a homogenization of the mass flow in the remaining process steps can be achieved.
  • a further increase in continuity can be achieved by temporarily storing the refrigerant in a high pressure accumulator after it has cooled and transferred further heat to the vaporized refrigerant.
  • the refrigerant may already be present during cooling during the compression and / or subsequent transfer of heat to the vaporized refrigerant and / or during the subsequent cooling partially - condense.
  • a further significant increase in efficiency can be achieved in the process in question by the fact that the refrigerant after cooling and the heat transfer to the reheated refrigerant under work in an engine, in particular an expansion pump or an expansion turbine, is relaxed before it evaporates again or is heated.
  • the previously unexploited expansion work can be used with the help of a relaxation machine.
  • the expansion work gained by the expansion machine can be advantageously used to pump the liquid used as working fluid into the liquid piston.
  • the pumping work to be applied during the refrigerant compression is hereby reduced and the power requirement of the hydraulic pump or the hydraulic work to be performed by it is reduced.
  • the heat should be removed from the refrigerant during the compression in the liquid piston compressor so that the compression takes place isothermally.
  • the heat dissipated from the compressor by means of a separate heat transfer medium from the heat of a heat sink, i. for example, to a consumer in the form of underfloor heating, or otherwise provided as process heat at a low temperature level, wherein the heat transfer medium is further heated after heating in the liquid piston compressor in the gas cooler for the refrigerant.
  • the object of the invention is achieved by a heat exchanger, by means of which heat from the transcritical, the cooler leaving the refrigerant to the heater leaving the refrigerant is transferable.
  • the pressure reducing means is an engine, in particular, an expansion pump or expansion turbine, which is arranged between the radiator and the heater.
  • the expenditure on equipment is particularly low when a free-piston pump with self-switching valves is used as the expansion pump.
  • FIG. 5 schematically illustrated heat pump / chiller 1 has in the cycle of the refrigerant (here: CO 2 ) a liquid piston compressor 2, a gas cooler 3 / condenser an internal heat exchanger 4, a high-pressure accumulator 5, an expansion pump 42, a Low-pressure accumulator 7, an evaporator 8 and check valves 9 to 12 on.
  • the refrigerant here: CO 2
  • a liquid piston compressor 2 a liquid piston compressor 2
  • gas cooler 3 / condenser an internal heat exchanger 4
  • a high-pressure accumulator 5 an expansion pump 42
  • a Low-pressure accumulator 7 an evaporator 8 and check valves 9 to 12
  • the following process takes place in the form of a cycle through the aforementioned components and the interconnecting lines:
  • the isothermally compressed CO 2 in the liquid piston compressor is fed via a line 13 to the gas cooler 3, in which condensation may occur depending on the compression end temperature of the refrigerant. Due to the comparatively low critical temperature of CO 2 (31 ° C.), however, condensation typically does not take place either during the compression or in the downstream gas cooler 3 / "condenser", that is to say the wet steam area is not reached in these process steps.
  • the refrigerant passes from the inner heat exchanger into a high-pressure accumulator 5, from which it passes through a line 16 to the expansion pump 42, in which an ideal isentropic expansion of the refrigerant takes place, which occurs during the expansion in the wet steam area.
  • the expanded refrigerant enters the low-pressure accumulator 7, from where it passes through a line 18 into the evaporator and evaporates there under heat absorption. Subsequently, the refrigerant is conducted via a line 18 to the already mentioned inner heat exchanger 4 and heated there before it flows back via the line 19 back to the liquid piston compressor 2.
  • the liquid piston compressor 2 has two cylinders 20, 21 each defining a working space, which are connected in parallel to each other. From the line 19 branches off the inflow line 22 of the cylinder 20, in which the check valve 10 is arranged, which allows only an influx into the cylinder 20. Via the line 23, in which there is only one outflow permitting check valve 9, the refrigerant passes from the cylinder 20 into the conduit 13 and thus back into the gas cooler 3 / condenser.
  • Cylinder 21 is connected via a conduit 24 serving for the inflow to the conduit 19 and via the conduit 25 serving for the outflow to the conduit 13
  • the check valves 11 and 12 allow only an inflow or outflow of the refrigerant.
  • hydraulic lines 24 and 25 are connected, which open into a respective working chamber 26, 27 formed by the interior of the cylinders 20, 21.
  • a respective working chamber 26, 27 formed by the interior of the cylinders 20, 21.
  • the hydraulic fluid is selected so that it is neither miscible nor dissolved in the refrigerant.
  • the hydraulic lines 24 and 25 lead to a four-way hydraulic valve 28, from which in turn depart two hydraulic lines 29, 30 which are connected to the suction or pressure side of a hydraulic pump 31.
  • a four-way hydraulic valve 28 From which in turn depart two hydraulic lines 29, 30 which are connected to the suction or pressure side of a hydraulic pump 31.
  • now hydraulic fluid pressure is removed from one of the two cylinders 20, 21 and pumped under pressure into the other of the two cylinders 20, 21, whereby in the latter cylinder a compression stroke is performed, whereas in the other cylinder, the vaporized and preheated refrigerant is sucked.
  • Both cylinders 20, 21 are surrounded on their outer side by a double jacket 32 to 33 and provided in their interior with a heat exchanger bundle 34, 35.
  • the double shells 32 to 33 or heat exchanger bundles 34, 35 are connected to discharge lines 36, 37 and supply lines 38, 39.
  • the heated during the compression process heat transfer medium is passed after passing a located in the respective switching position three-way valve 39 from a circulation pump 40 to a consumer 41, which may be, for example, a floor heating or a consumer of process heat at low temperature level. From the consumer, the cooled heat transfer medium reaches the gas cooler 3, from which it is already preheated, in order subsequently to be returned to the liquid piston compressor 2, where it is reheated in the course of the isothermal compression of the refrigerant and its circuit thus closes.
  • the heat transfer medium is depending on the switching position of the three-way valve 39 each only by those cylinders 20 and 21st in which the isothermal compression of the refrigerant is taking place. Alternatively, both cylinders are constantly flowed through.
  • the heat pump / chiller 1 has an expansion pump 42.
  • the refrigerant taken from the high-pressure accumulator 5 is expanded by means of the expansion pump 42 designed as a free-piston pump before the expanded refrigerant is returned to the low-pressure accumulator and the process via the evaporation, preheating to condensation temperature, isothermal compression and cooling runs identically as in FIG. 5 ,
  • FIG. 3 illustrates how the refrigerant from point A is isothermally compressed to point B.
  • the idealized, horizontally extending line AB intersects the wet-steam line 43, whose section on the right of the maximum 44 is referred to as a dew-line 45 and whose section 46 on the left of the maximum 44 is referred to as a boiling line. From the intersection point 47 between tau line 45 and line AB, the refrigerant is thus in the post-vaporized area.
  • the refrigerant in the internal heat exchanger 4 is isobarically cooled along boiling line 46 until point C is reached.
  • the expansion pump 42 the refrigerant is now polytropically expanded and thus reaches point D with a correspondingly reduced temperature.
  • throttling via an expansion valve FIG. 5
  • FIG. 5 Without expansion pump, that is, throttling via an expansion valve ( FIG. 5 ) is dashed along the the point D 'reached, which is characterized by a greater entropy - due to the isenthalic relaxation.
  • FIGS. 1 and 3 show the cycles with R 134 A as the refrigerant form the Figures 2 and 4 a comparison of the processes when using CO 2 as a refrigerant. It is clear that by the internal heat exchanger 4, the relaxation of a lower temperature level (point C ') starts, as is the case in b' without internal heat exchanger.
  • point C ' For CO 2 as a refrigerant, neither the in FIG. 2 illustrated process according to the prior art still in the in FIG. 4 process according to the invention during the isothermal compression reaches the wet steam area.
  • the line A'-B 'and the line a'-b' are located above the wet steam line of CO 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Claims (10)

  1. Procédé d'exploitation d'une pompe à chaleur ou d'une machine frigorifique (1), lors duquel un agent réfrigérant est comprimé au moyen d'un compresseur de liquide à pistons (2) puis refroidi et éventuellement condensé et ensuite expansé et dans une étape suivante, il est évaporé et finalement reconduit dans le compresseur de liquide à pistons (2), caractérisé en ce que de la chaleur de l'agent réfrigérant pré-refroidi après la compression est transférée sur l'agent réfrigérant évaporé avant que ce dernier ne soit reconduit vers le compresseur de liquide à pistons (2), ce qui achève le circuit du processus et en ce que l'agent réfrigérant est détendu dans une machine motrice, qui est en liaison active avec une pompe hydraulique (31), au moyen de laquelle un fluide hydraulique du compresseur de liquide à pistons (2) peut être pompé.
  2. Procédé selon la revendication 1, caractérisé en ce que le compresseur de liquide à pistons (2) comporte deux espaces de travail séparés et en ce que l'agent réfrigérant est compressé alternativement dans l'un des deux espaces de travail, dont le fluide hydraulique commun est pompé en va-et-vient alternativement de l'un des espaces de travail (26, 27) dans l'autre espace de travail (26, 27).
  3. Procédé selon l'une quelconque des revendications précédemment citées, caractérisé en ce que l'agent réfrigérant est temporairement stocké dans un accumulateur haute pression (5) après avoir été refroidi et avoir transféré de la chaleur supplémentaire sur l'agent réfrigérant évaporé.
  4. Procédé selon l'une quelconque des revendications précédemment citées, caractérisé en ce qu'après l'expansion, l'agent réfrigérant est stocké temporairement dans un accumulateur basse pression (7) avant d'être évaporé consécutivement.
  5. Procédé selon l'une quelconque des revendications précédemment citées, caractérisé en ce que lors du refroidissement et/ou du transfert de chaleur sur l'agent réfrigérant évaporé et/ou pendant la compression, l'agent réfrigérant se condense.
  6. Procédé selon l'une quelconque des revendications précédemment citées, caractérisé en ce qu'après le refroidissement et le transfert de chaleur sur l'agent réfrigérant évaporé, l'agent réfrigérant est détendu sous rendement effectif dans une machine motrice, notamment une pompe d'expansion (42) ou une turbine d'expansion, avant d'être évaporé ou réchauffé.
  7. Procédé selon l'une quelconque des revendications précédemment citées, caractérisé en ce que pendant la compression dans le compresseur de liquide à pistons (2), de la chaleur est retirée de l'agent réfrigérant, de telle sorte que la compression s'effectue de manière isotherme et en ce que la chaleur évacuée de l'agent réfrigérant au moyen d'un milieu caloporteur séparé est conduite vers un dissipateur thermique, après l'échauffement dans le compresseur de liquide à pistons (2), le milieu caloporteur étant encore échauffé dans le radiateur (3) pour l'agent réfrigérant.
  8. Pompe à chaleur ou machine frigorifique (1) avec un compresseur de liquide à pistons (2) pour la compression d'un agent réfrigérant sous restitution de chaleur à un milieu caloporteur matériellement séparé de l'agent réfrigérant, un radiateur (3) pour baisser la température de l'agent réfrigérant compressé, un évaporateur (8) pour l'évaporation de l'agent réfrigérant détendu, ainsi que des conduits reliant les composants précédemment cités, de telle sorte que l'agent réfrigérant puisse être conduit dans le circuit et transféré sur l'agent réfrigérant quittant l'évaporateur avec un agent caloporteur au moyen duquel de la chaleur de l'agent réfrigérant quittant le radiateur peut être transférée sur l'agent réfrigérant quittant l'évaporateur, caractérisée en ce que le dispositif d'abaissement de la pression est une machine motrice, notamment une pompe d'expansion (42) ou une turbine d'expansion qui est placée entre le radiateur (3) et l'évaporateur (8) et qui est en liaison active avec une pompe (31) au moyen de laquelle un fluide hydraulique peut être pompé dans compresseur de liquide à pistons (2).
  9. Pompe à chaleur ou machine frigorifique (1) selon la revendication précédemment citée, caractérisée en ce que la pompe d'expansion (4) est une pompe à pistons libres avec des soupapes à déclenchement automatique.
  10. Pompe à chaleur ou machine frigorifique (1) selon l'une quelconque des revendications 8 et 9, caractérisée par une liaison active, notamment un couplage mécanique entre la machine motrice active pendant la détention de l'agent réfrigérant et une pompe hydraulique (31), à l'aide de laquelle un fluide hydraulique peut être pompé dans un espace de travail du compresseur de liquide à pistons (2).
EP09782642A 2008-09-10 2009-09-04 Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique Active EP2321592B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008041939A DE102008041939A1 (de) 2008-09-10 2008-09-10 Verfahren zum Betreiben einer Wärmepumpe oder Kältemaschine bzw. einer Kraftmaschine sowie Wärmepumpe oder Kältemaschine und Kraftmaschine
PCT/EP2009/061496 WO2010029027A1 (fr) 2008-09-10 2009-09-04 Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique

Publications (2)

Publication Number Publication Date
EP2321592A1 EP2321592A1 (fr) 2011-05-18
EP2321592B1 true EP2321592B1 (fr) 2011-12-28

Family

ID=41137004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782642A Active EP2321592B1 (fr) 2008-09-10 2009-09-04 Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique

Country Status (4)

Country Link
EP (1) EP2321592B1 (fr)
AT (1) ATE539304T1 (fr)
DE (1) DE102008041939A1 (fr)
WO (2) WO2010029027A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005801A (zh) * 2013-02-25 2014-08-27 宝山钢铁股份有限公司 一种低压蒸汽差压发电系统及其回用蒸汽背压控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060598A1 (de) * 2008-12-05 2010-06-10 Thermea. Energiesysteme Gmbh Vorrichtung und Verfahren zur Verdichtung oder Kompression eines Gases
DE102016202336A1 (de) * 2016-02-16 2017-08-17 Robert Bosch Gmbh Zusatzwärmespeicher und Wärmepumpenkreislauf
CN106801863B (zh) * 2017-02-06 2018-10-19 国家电网公司 一种火电机组给水旁路切主路过程中的旁路阀控制方法
DE102019129495B3 (de) * 2019-10-31 2021-04-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verdichteranordnung, Wärmepumpenanordnung und Verfahren zum Betreiben der Verdichteranordnung
EP4296478A1 (fr) * 2022-06-21 2023-12-27 Noditech AB Procédé de fonctionnement d'un système à cycle thermique, système à cycle thermique et procédé de modification d'un système à cycle thermique

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1766998A (en) 1928-09-07 1930-06-24 Heat Transfer Products Inc Apparatus for compressing substances
US2772543A (en) 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
CA956470A (en) * 1970-07-24 1974-10-22 John G. Davoud External combustion power producing system
FR2261412A1 (en) * 1974-02-19 1975-09-12 Dubreuil Marc Heriard Thermal engine operating on mixed cycle - uses fluid with low critical temperature and high latent heat
DE2610063A1 (de) * 1976-03-11 1977-09-15 Schmidt Hans Guenter Ing Grad Verfahren und einrichtung zur waermegewinnung aus abwaermemedien oder umgebungsluft
DE3925090A1 (de) * 1989-07-28 1991-02-07 Bbc York Kaelte Klima Verfahren zum betrieb einer kaelteanlage
US5073090A (en) * 1990-02-12 1991-12-17 Cassidy Joseph C Fluid piston compressor
GB0004007D0 (en) * 2000-02-22 2000-04-12 Dearman Peter T Engines driven by liquified gas
DE10062948C2 (de) * 2000-12-16 2002-11-14 Eaton Fluid Power Gmbh Kältemaschine mit kontrollierter Kältemittelphase vor dem Verdichter
DE10159892B4 (de) * 2001-12-06 2006-08-24 Stiebel Eltron Gmbh & Co. Kg Kältemaschine mit einem Rekuperator
US6647742B1 (en) * 2002-05-29 2003-11-18 Carrier Corporation Expander driven motor for auxiliary machinery
US6591618B1 (en) * 2002-08-12 2003-07-15 Praxair Technology, Inc. Supercritical refrigeration system
DE102004023834A1 (de) * 2004-05-14 2005-12-08 Robert Bosch Gmbh Expansionseinrichtung für ein Kältemittel
DE102005025255B3 (de) * 2005-06-02 2006-12-07 Lutz Giechau Verfahren und Vorrichtung zur Erzeugung mechanischer Energie
CN101454542A (zh) * 2006-04-04 2009-06-10 法国电力公司 具有工质的内部闪蒸的活塞式蒸汽机
US20070271956A1 (en) * 2006-05-23 2007-11-29 Johnson Controls Technology Company System and method for reducing windage losses in compressor motors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005801A (zh) * 2013-02-25 2014-08-27 宝山钢铁股份有限公司 一种低压蒸汽差压发电系统及其回用蒸汽背压控制方法
CN104005801B (zh) * 2013-02-25 2015-12-09 宝山钢铁股份有限公司 一种低压蒸汽差压发电系统及其回用蒸汽背压控制方法

Also Published As

Publication number Publication date
WO2010029027A1 (fr) 2010-03-18
EP2321592A1 (fr) 2011-05-18
DE102008041939A1 (de) 2010-03-11
ATE539304T1 (de) 2012-01-15
WO2010029020A1 (fr) 2010-03-18

Similar Documents

Publication Publication Date Title
DE60128244T2 (de) Verfahren und anordnung zum abtauen einer dampfverdichtungsanlage
EP2321592B1 (fr) Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique
EP1789732B1 (fr) Circuit frigorifique et procede de fonctionnement d'un circuit frigorifique
DE102011118162C5 (de) Kombinierte Kälteanlage und Wärmepumpe und Verfahren zum Betreiben der Anlage mit funktionsabhängiger Kältemittelverlagerung innerhalb des Kältemittelkreislaufes
DE112011100912B4 (de) Kryogenische Expansionsmaschine mit Gasausgleich
DE60022251T2 (de) Kälteanlage mit einem einen optimierten Verbrauch bietenden Kältekreislauf
DE10159892A1 (de) Kältemaschine mit einem Rekuperator
DE102018001279A1 (de) Vorrichtung und Verfahren als Blockheizkraftwerk mit regenerativer CO2-Zirkulation und Wärmepumpenprozess
DE102007047642B4 (de) Kältemaschine
DE112017005948T5 (de) Klimatisierungsvorrichtung
DE10344698B4 (de) Wärmepumpe oder Kältemaschine mit Verdrängungsverflüssiger
WO2018029371A1 (fr) Échangeur de chaleur destiné à être utilisé dans une partie chaude d'une centrale de stockage d'énergie par air liquide, partie chaude et procédé permettant de faire fonctionner ledit échangeur de chaleur dans ladite partie chaude
EP2336680A2 (fr) Dispositif de climatisation doté d'un dispositif de transmission de pression et procédé de fonctionnement d'un dispositif de climatisation
DE102013114210B3 (de) Vorrichtung zur Verdichtung eines gasförmigen Fluids und Verfahren zum Betreiben der Vorrichtung
DE112016002485B4 (de) Expansionsmaschine und verfahren zum produzieren von kühlung
WO2014117924A2 (fr) Procédé permettant de faire fonctionner une centrale basse température et centrale basse température
DE102013016462A1 (de) Ein kühlsystem mit flüssigkeitskompression
DE102012004801A1 (de) Anordnung für eine Wärmepumpe mit Schraubenverdichter
EP2674698A1 (fr) Installation de pompes à chaleur
DE102007055608A1 (de) Kombination eines Kälte-Kreislaufs zur Klimatisierung eines Fahrzeuginnenraums mit einem Rankine-Kreislauf
WO2023011997A1 (fr) Moteur thermique
DE2344269C3 (de) Wärmepumpe zur gleichzeitigen Kühlung und Erzeugung von erheblich über Umgebungstemperatur liegender Nutzwärme
DE4432559A1 (de) Vorrichtung und Verfahren zur Umwandlung von Wärmeenergie in mechanische Energie
WO2005022051A1 (fr) Procede de reglage d'une installation de climatisation
DE102020211929A1 (de) Kühlkreislauf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEICHSEL, MICHAEL

Inventor name: RAMMING, KLAUS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEICHSEL, MICHAEL

Inventor name: RAMMING, KLAUS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 539304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002339

Country of ref document: DE

Effective date: 20120308

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120329

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

26N No opposition filed

Effective date: 20121001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002339

Country of ref document: DE

Effective date: 20121001

BERE Be: lapsed

Owner name: AGO AG ENERGIE + ANLAGEN

Effective date: 20120930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002339

Country of ref document: DE

Representative=s name: BAUER WAGNER PRIESMEYER, PATENT- UND RECHTSANW, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002339

Country of ref document: DE

Representative=s name: BAUER WAGNER PRIESMEYER, PATENT- UND RECHTSANW, DE

Effective date: 20130416

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009002339

Country of ref document: DE

Owner name: DEICHSEL, MICHAEL, DR., DE

Free format text: FORMER OWNER: AGO AG ENERGIE + ANLAGEN, 95326 KULMBACH, DE

Effective date: 20130416

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002339

Country of ref document: DE

Representative=s name: PATENT- & RECHTSANWAELTE BAUER WAGNER PRIESMEY, DE

Effective date: 20130416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120904

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130904

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 539304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002339

Country of ref document: DE

Representative=s name: BAUER WAGNER PELLENGAHR SROKA PATENT- & RECHTS, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230930

Year of fee payment: 15