EP2321592B1 - Heat pump or refrigeration device and method for operating a heat pump or refrigeration device - Google Patents

Heat pump or refrigeration device and method for operating a heat pump or refrigeration device Download PDF

Info

Publication number
EP2321592B1
EP2321592B1 EP09782642A EP09782642A EP2321592B1 EP 2321592 B1 EP2321592 B1 EP 2321592B1 EP 09782642 A EP09782642 A EP 09782642A EP 09782642 A EP09782642 A EP 09782642A EP 2321592 B1 EP2321592 B1 EP 2321592B1
Authority
EP
European Patent Office
Prior art keywords
coolant
heat
pump
displacement compressor
fluid displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09782642A
Other languages
German (de)
French (fr)
Other versions
EP2321592A1 (en
Inventor
Klaus Ramming
Michael Deichsel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGO GmbH Energie und Anlagen
Original Assignee
AGO GmbH Energie und Anlagen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGO GmbH Energie und Anlagen filed Critical AGO GmbH Energie und Anlagen
Publication of EP2321592A1 publication Critical patent/EP2321592A1/en
Application granted granted Critical
Publication of EP2321592B1 publication Critical patent/EP2321592B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/023Compressor arrangements of motor-compressor units with compressor of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Definitions

  • the invention relates to a method for operating a heat pump or chiller, in which a refrigerant is compressed by means of a liquid piston compressor, then cooled and then expanded and vaporized in a next step and finally fed back to the liquid piston compressor.
  • the invention relates in terms of device technology, a heat pump or chiller.
  • Heat pump or chiller processes have been part of the well-known state of the art for quite some time.
  • the use of liquid piston compressors attempts to realize an isothermal compression of the refrigerant in the closed loop process.
  • the compression space can be given generously sized and structurally very free surfaces to optimize heat transfer since there is no sealing problem when using a fluid as a "piston".
  • liquid-piston compressors can achieve a nearly isothermal compression.
  • Another advantage of a liquid piston compressor is the fact that a phase transition in the compression from the vapor to the liquid state for such devices is unproblematic, since the liquid piston can take no "mechanical” damage even in so-called "liquid shocks".
  • a prerequisite for the functioning of a liquid piston compressor is the use of immiscible fluids.
  • the invention has for its object to develop a method for operating a heat pump or chiller so that the efficiency of the process is further increased.
  • the same object is the present invention in device-technical terms with respect to a heat pump and chiller based.
  • the above object starting from a method of the type described above, achieved in that heat of the cooled after compression refrigerant is transferred to the refrigerant before it is fed back to the liquid piston compressor and thus the cycle is closed and that the refrigerant is expanded in an engine having an operative connection to a hydraulic pump (31) by means of which a hydraulic fluid of the liquid piston compressor (2) is pumpable.
  • This advantage has an effect, in particular, on heat pumps or refrigerating machines which are operated in the transcritical range, for example with CO 2 as refrigerant.
  • the critical temperature of CO 2 is 31 ° C. Above this temperature, no phase change to the liquid phase out is more possible, so that there is no ability of the refrigerant to release heat at the same temperature alone due to the phase change.
  • CO 2 is at a very high level End temperature must be compressed, so that in the further course of the cycle, the waste heat can be delivered to a heat source with a specified temperature. The heat to be released in this case comes solely from the cooling of the hot gas and not from a phase change.
  • the refrigerant is alternately compressed by two liquid piston compressors, each having a working space whose common working fluid is reciprocated alternately from the working space of one liquid piston compressor into the working space of the other liquid piston compressor. In this way, a homogenization of the mass flow in the remaining process steps can be achieved.
  • a further increase in continuity can be achieved by temporarily storing the refrigerant in a high pressure accumulator after it has cooled and transferred further heat to the vaporized refrigerant.
  • the refrigerant may already be present during cooling during the compression and / or subsequent transfer of heat to the vaporized refrigerant and / or during the subsequent cooling partially - condense.
  • a further significant increase in efficiency can be achieved in the process in question by the fact that the refrigerant after cooling and the heat transfer to the reheated refrigerant under work in an engine, in particular an expansion pump or an expansion turbine, is relaxed before it evaporates again or is heated.
  • the previously unexploited expansion work can be used with the help of a relaxation machine.
  • the expansion work gained by the expansion machine can be advantageously used to pump the liquid used as working fluid into the liquid piston.
  • the pumping work to be applied during the refrigerant compression is hereby reduced and the power requirement of the hydraulic pump or the hydraulic work to be performed by it is reduced.
  • the heat should be removed from the refrigerant during the compression in the liquid piston compressor so that the compression takes place isothermally.
  • the heat dissipated from the compressor by means of a separate heat transfer medium from the heat of a heat sink, i. for example, to a consumer in the form of underfloor heating, or otherwise provided as process heat at a low temperature level, wherein the heat transfer medium is further heated after heating in the liquid piston compressor in the gas cooler for the refrigerant.
  • the object of the invention is achieved by a heat exchanger, by means of which heat from the transcritical, the cooler leaving the refrigerant to the heater leaving the refrigerant is transferable.
  • the pressure reducing means is an engine, in particular, an expansion pump or expansion turbine, which is arranged between the radiator and the heater.
  • the expenditure on equipment is particularly low when a free-piston pump with self-switching valves is used as the expansion pump.
  • FIG. 5 schematically illustrated heat pump / chiller 1 has in the cycle of the refrigerant (here: CO 2 ) a liquid piston compressor 2, a gas cooler 3 / condenser an internal heat exchanger 4, a high-pressure accumulator 5, an expansion pump 42, a Low-pressure accumulator 7, an evaporator 8 and check valves 9 to 12 on.
  • the refrigerant here: CO 2
  • a liquid piston compressor 2 a liquid piston compressor 2
  • gas cooler 3 / condenser an internal heat exchanger 4
  • a high-pressure accumulator 5 an expansion pump 42
  • a Low-pressure accumulator 7 an evaporator 8 and check valves 9 to 12
  • the following process takes place in the form of a cycle through the aforementioned components and the interconnecting lines:
  • the isothermally compressed CO 2 in the liquid piston compressor is fed via a line 13 to the gas cooler 3, in which condensation may occur depending on the compression end temperature of the refrigerant. Due to the comparatively low critical temperature of CO 2 (31 ° C.), however, condensation typically does not take place either during the compression or in the downstream gas cooler 3 / "condenser", that is to say the wet steam area is not reached in these process steps.
  • the refrigerant passes from the inner heat exchanger into a high-pressure accumulator 5, from which it passes through a line 16 to the expansion pump 42, in which an ideal isentropic expansion of the refrigerant takes place, which occurs during the expansion in the wet steam area.
  • the expanded refrigerant enters the low-pressure accumulator 7, from where it passes through a line 18 into the evaporator and evaporates there under heat absorption. Subsequently, the refrigerant is conducted via a line 18 to the already mentioned inner heat exchanger 4 and heated there before it flows back via the line 19 back to the liquid piston compressor 2.
  • the liquid piston compressor 2 has two cylinders 20, 21 each defining a working space, which are connected in parallel to each other. From the line 19 branches off the inflow line 22 of the cylinder 20, in which the check valve 10 is arranged, which allows only an influx into the cylinder 20. Via the line 23, in which there is only one outflow permitting check valve 9, the refrigerant passes from the cylinder 20 into the conduit 13 and thus back into the gas cooler 3 / condenser.
  • Cylinder 21 is connected via a conduit 24 serving for the inflow to the conduit 19 and via the conduit 25 serving for the outflow to the conduit 13
  • the check valves 11 and 12 allow only an inflow or outflow of the refrigerant.
  • hydraulic lines 24 and 25 are connected, which open into a respective working chamber 26, 27 formed by the interior of the cylinders 20, 21.
  • a respective working chamber 26, 27 formed by the interior of the cylinders 20, 21.
  • the hydraulic fluid is selected so that it is neither miscible nor dissolved in the refrigerant.
  • the hydraulic lines 24 and 25 lead to a four-way hydraulic valve 28, from which in turn depart two hydraulic lines 29, 30 which are connected to the suction or pressure side of a hydraulic pump 31.
  • a four-way hydraulic valve 28 From which in turn depart two hydraulic lines 29, 30 which are connected to the suction or pressure side of a hydraulic pump 31.
  • now hydraulic fluid pressure is removed from one of the two cylinders 20, 21 and pumped under pressure into the other of the two cylinders 20, 21, whereby in the latter cylinder a compression stroke is performed, whereas in the other cylinder, the vaporized and preheated refrigerant is sucked.
  • Both cylinders 20, 21 are surrounded on their outer side by a double jacket 32 to 33 and provided in their interior with a heat exchanger bundle 34, 35.
  • the double shells 32 to 33 or heat exchanger bundles 34, 35 are connected to discharge lines 36, 37 and supply lines 38, 39.
  • the heated during the compression process heat transfer medium is passed after passing a located in the respective switching position three-way valve 39 from a circulation pump 40 to a consumer 41, which may be, for example, a floor heating or a consumer of process heat at low temperature level. From the consumer, the cooled heat transfer medium reaches the gas cooler 3, from which it is already preheated, in order subsequently to be returned to the liquid piston compressor 2, where it is reheated in the course of the isothermal compression of the refrigerant and its circuit thus closes.
  • the heat transfer medium is depending on the switching position of the three-way valve 39 each only by those cylinders 20 and 21st in which the isothermal compression of the refrigerant is taking place. Alternatively, both cylinders are constantly flowed through.
  • the heat pump / chiller 1 has an expansion pump 42.
  • the refrigerant taken from the high-pressure accumulator 5 is expanded by means of the expansion pump 42 designed as a free-piston pump before the expanded refrigerant is returned to the low-pressure accumulator and the process via the evaporation, preheating to condensation temperature, isothermal compression and cooling runs identically as in FIG. 5 ,
  • FIG. 3 illustrates how the refrigerant from point A is isothermally compressed to point B.
  • the idealized, horizontally extending line AB intersects the wet-steam line 43, whose section on the right of the maximum 44 is referred to as a dew-line 45 and whose section 46 on the left of the maximum 44 is referred to as a boiling line. From the intersection point 47 between tau line 45 and line AB, the refrigerant is thus in the post-vaporized area.
  • the refrigerant in the internal heat exchanger 4 is isobarically cooled along boiling line 46 until point C is reached.
  • the expansion pump 42 the refrigerant is now polytropically expanded and thus reaches point D with a correspondingly reduced temperature.
  • throttling via an expansion valve FIG. 5
  • FIG. 5 Without expansion pump, that is, throttling via an expansion valve ( FIG. 5 ) is dashed along the the point D 'reached, which is characterized by a greater entropy - due to the isenthalic relaxation.
  • FIGS. 1 and 3 show the cycles with R 134 A as the refrigerant form the Figures 2 and 4 a comparison of the processes when using CO 2 as a refrigerant. It is clear that by the internal heat exchanger 4, the relaxation of a lower temperature level (point C ') starts, as is the case in b' without internal heat exchanger.
  • point C ' For CO 2 as a refrigerant, neither the in FIG. 2 illustrated process according to the prior art still in the in FIG. 4 process according to the invention during the isothermal compression reaches the wet steam area.
  • the line A'-B 'and the line a'-b' are located above the wet steam line of CO 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

In a method for operating a heat pump or refrigeration device (1), a coolant is isothermally compressed using a fluid displacement compressor (2), then cooled, optionally condensed in the process, and then expanded. In a next step, the coolant is evaporated and finally fed back to the fluid displacement compressor (2). In order to improve the efficiency of the process, it is proposed that heat from the cooled coolant following compression is transferred to the heated coolant before the coolant is returned to the fluid displacement compressor (2), and thus the cycle is closed, and that the coolant is expanded in an engine comprising an operative connection to a hydraulic pump (31) for pumping a hydraulic fluid of the fluid displacement compressor (2). Further proposed as an apparatus is a heat pump/refrigeration device for carrying out the above method.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Wärmepumpe oder Kältemaschine, bei dem ein Kältemittel mittels eines Flüssigkeitskolbenverdichters verdichtet, anschließend gekühlt und danach expandiert wird und in einem nächsten Schritt verdampft und schließlich wieder dem Flüssigkeitskolbenverdichter zugeführt wird. Darüber hinaus betrifft die Erfindung in vorrichtungstechnischer Hinsicht eine Wärmepumpe oder Kältemaschine.The invention relates to a method for operating a heat pump or chiller, in which a refrigerant is compressed by means of a liquid piston compressor, then cooled and then expanded and vaporized in a next step and finally fed back to the liquid piston compressor. In addition, the invention relates in terms of device technology, a heat pump or chiller.

Wärmepumpen- oder Kältemaschinenprozesse zählen bereits seit geraumer Zeit zum allgemein bekannten Stand der Technik. Im Gegensatz zu den weit verbreiteten mechanisch arbeitenden Kolbenverdichtern wird durch die Verwendung von Flüssigkeitskolbenverdichtern versucht, eine isotherme Verdichtung des Kältemittels in dem geschlossenen Kreisprozess zu realisieren. Durch die Verwendung eines Flüssigkeitskolbens können dem Verdichtungsraum großzügig dimensionierte und in der Gestaltung sehr freie Oberflächen zur Optimierung der Wärmeübertragung gegeben werden, da es bei der Verwendung eines Fluids als "Kolben" kein Abdichtungsproblem gibt. Aus diesem Grunde lässt sich mit Flüssigkeitskolbenverdichtern eine nahezu isotherme Verdichtung erreichen. Ein weiterer Vorteil eines Flüssigkeitskolbenverdichters ist darin zu sehen, dass ein Phasenübergang bei der Verdichtung vom dampfförmigen zum flüssigen Zustand für derartige Vorrichtungen unproblematisch ist, da der Flüssigkeitskolben auch bei sogenannten "Flüssigkeitsschlägen" keinen "mechanischen" Schaden nehmen kann. Vorraussetzung für das Funktionieren eines Flüssigkeitskolbenverdichters ist jedoch die Verwendung nicht mischbarer Fluide.Heat pump or chiller processes have been part of the well-known state of the art for quite some time. In contrast to the widely used mechanical piston compressors, the use of liquid piston compressors attempts to realize an isothermal compression of the refrigerant in the closed loop process. By using a liquid piston, the compression space can be given generously sized and structurally very free surfaces to optimize heat transfer since there is no sealing problem when using a fluid as a "piston". For this reason, liquid-piston compressors can achieve a nearly isothermal compression. Another advantage of a liquid piston compressor is the fact that a phase transition in the compression from the vapor to the liquid state for such devices is unproblematic, since the liquid piston can take no "mechanical" damage even in so-called "liquid shocks". However, a prerequisite for the functioning of a liquid piston compressor is the use of immiscible fluids.

Die US 2,772,543 sowie die US 1,766,998 beschreiben Kältemaschinenprozesse unter Verwendung von Flüssigkeitskolbenverdichtern und somit Verfahren der eingangs beschriebenen Art. Auch wenn mit diesen Flüssigkeitskolbenverdichtern grundsätzlich eine Annäherung an eine isotherme Verdichtung möglich wäre, fehlt es den Zylindern der vorbekannten Verdichter jedoch an einer besonderen Wärmetauschergeometrie, so dass die Verdichtung bei den bekannten Verfahren in der Praxis mehr oder weniger polytrop verlaufen dürfte.The US 2,772,543 as well as the US 1,766,998 Although chilling with these liquid piston compressors in principle an approximation of an isothermal compression would be possible, the cylinders of the prior art compressors, however, lack a special heat exchanger geometry, so that the compression in the known methods should be more or less polytopic in practice.

Im weiteren Umfeld der Erfindung offenbaren DE 26 10 063 A1 eine Wärmepumpe mit Alkohol als Kältemittel, Flüssigkeitskolbenverdichter und mit einem "inneren Wärmetauscher", in dem der Kältemitteldampf beim Austritt aus dem Verdampfer mit warmem Kondensat überhitzt wird.Disclosed in the broader field of the invention DE 26 10 063 A1 a heat pump with alcohol as refrigerant, liquid piston compressor and with an "internal heat exchanger" in which the refrigerant vapor is overheated on exiting the evaporator with warm condensate.

Aufgabetask

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer Wärmepumpe oder Kältemaschine so weiter zu entwickeln, dass die Effizienz des Prozesses weiter erhöht wird. Dieselbe Aufgabe liegt der vorliegenden Erfindung in vorrichtungstechnischer Hinsicht mit Bezug auf eine Wärmepumpe und Kältemaschine zugrunde.The invention has for its object to develop a method for operating a heat pump or chiller so that the efficiency of the process is further increased. The same object is the present invention in device-technical terms with respect to a heat pump and chiller based.

Lösungsolution

Im Hinblick auf eine Wärmepumpe oder Kältemaschine wird die vorgenannte Aufgabe, ausgehend von einem Verfahren der eingangs beschriebenen Art, dadurch gelöst, dass Wärme des nach der Verdichtung gekühlten Kältemittels auf das Kältemittel übertragen wird, bevor dieses wieder dem Flüssigkeitskolbenverdichter zugeführt und somit der Kreisprozess geschlossen wird und dass das Kältemittel in einer Kraftmaschine expandiert wird, die eine Wirkverbindung zu einer Hydraulikpumpe (31) aufweist, mittels derer ein Hydraulikfluid des Flüssigkeitskolbenverdichters (2) pumpbar ist.With regard to a heat pump or chiller, the above object, starting from a method of the type described above, achieved in that heat of the cooled after compression refrigerant is transferred to the refrigerant before it is fed back to the liquid piston compressor and thus the cycle is closed and that the refrigerant is expanded in an engine having an operative connection to a hydraulic pump (31) by means of which a hydraulic fluid of the liquid piston compressor (2) is pumpable.

Bei dem erfindungsgemäßen Verfahren wird Wärme, die nach dem Kühlen des verdichteten Kältemittels noch zur Verfügung steht, auf das nach der Entspannung wieder verdampfte Kältemittel übertragen. Durch einen derartigen Vorgang der inneren Wärmeübertragung wird ansonsten ungenutzte Energie nutzbar gemacht.In the method according to the invention, heat that is still available after the cooling of the compressed refrigerant is transferred to the refrigerant that has evaporated again after the expansion. By such a process of internal heat transfer otherwise unused energy is used.

Dieser Vorteil wirkt sich insbesondere bei Wärmepumpen bzw. Kältemaschinen aus, die im transkritischen Bereich, beispielsweise mit CO2 als Kältemittel betrieben werden. Die kritische Temperatur von CO2 liegt bei 31°C. Oberhalb dieser Temperatur ist kein Phasenwechsel zur flüssigen Phase hin mehr möglich, so dass auch keine Fähigkeit des Kältemittels vorliegt, bei gleichbleibender Temperatur allein bedingt durch den Phasenwechsel Wärme abzugeben. Dies hat zur Folge, dass CO2 auf eine sehr hohe Endtemperatur verdichtet werden muss, damit im weiteren Verlauf des Kreisprozesses die Abwärme an eine Wärmequelle mit festgelegter Temperatur abgegeben werden kann. Die abzugebende Wärme stammt in diesem Fall allein von der Abkühlung des heißen Gases und nicht von einem Phasenwechsel.This advantage has an effect, in particular, on heat pumps or refrigerating machines which are operated in the transcritical range, for example with CO 2 as refrigerant. The critical temperature of CO 2 is 31 ° C. Above this temperature, no phase change to the liquid phase out is more possible, so that there is no ability of the refrigerant to release heat at the same temperature alone due to the phase change. As a result, CO 2 is at a very high level End temperature must be compressed, so that in the further course of the cycle, the waste heat can be delivered to a heat source with a specified temperature. The heat to be released in this case comes solely from the cooling of the hot gas and not from a phase change.

Aufgrund dieser thermodynamischen Eigenschaft des CO2 ist die für die Verdichtung erforderliche Energie wesentlich höher als bei konventionellen, jedoch teils umweltschädlicheren Kältemitteln, die während des Kreisprozesses zweimal einen Phasenwechsel durchlaufen. Dieser prinzipielle Nachteil des CO2 als Kältemittel wird durch die Erfindung nunmehr deutlich abgemindert, da durch den Vorgang des inneren Übergangs von Wärme und der isothermen Verdichtung der Prozess thermodynamisch verbessert und somit die Leistungsziffer der betreffenden Kältemaschine oder Wärmepumpe vergrößert wird.Due to this thermodynamic property of CO 2 , the energy required for the compression is much higher than in conventional, but sometimes more environmentally harmful refrigerants, which undergo a phase change twice during the cycle. This fundamental disadvantage of CO 2 as a refrigerant is now significantly reduced by the invention, since the process thermodynamically improved by the process of the internal transition of heat and the isothermal compression and thus the coefficient of performance of the relevant refrigerator or heat pump is increased.

Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass das Kältemittel abwechselnd von zwei Flüssigkeitskolbenverdichtern mit jeweils einem Arbeitsraum verdichtet wird, deren gemeinsames Arbeitsfluid alternierend von dem Arbeitsraum des einen Flüssigkeitskolbenverdichters in den Arbeitsraum des anderen Flüssigkeitskolbenverdichters hin- und hergepumpt wird. Auf diese Weise kann eine Vergleichmäßigung des Massenstroms in den übrigen Verfahrensschritten erreicht werden.According to one embodiment of the method according to the invention, it is provided that the refrigerant is alternately compressed by two liquid piston compressors, each having a working space whose common working fluid is reciprocated alternately from the working space of one liquid piston compressor into the working space of the other liquid piston compressor. In this way, a homogenization of the mass flow in the remaining process steps can be achieved.

Eine weitere Steigerung der Kontinuität lässt sich dadurch erzielen, dass das Kältemittel in einem Hochdruckspeicher zwischengespeichert wird, nachdem es gekühlt wurde und weitere Wärme an das verdampfte Kältemittel übertragen hat.A further increase in continuity can be achieved by temporarily storing the refrigerant in a high pressure accumulator after it has cooled and transferred further heat to the vaporized refrigerant.

Derselbe Effekt einer Vergleichmäßigung des Prozesses im Hinblick auf den Kältemittelstrom wird erzielt, wenn das Kältemittel nach der Expansion in einem Niederdruckspeicher zwischengespeichert wird, bevor es anschließend verdampft wird.The same effect of equalizing the process with respect to the refrigerant flow is obtained when the refrigerant is stored in a low-pressure accumulator after expansion before it is subsequently vaporized.

Wenn das erfindungsgemäße Verfahren bei Kältemitteln zur Anwendung kommt, die während des Kreisprozesses einen Phasenwechsel durchlaufen, so kann das Kältemittel bereits beim Kühlen während der Verdichtung und/oder beim darauf folgenden Übertragen von Wärme auf das verdampfte Kältemittel und/oder beim anschließenden Kühlen - jeweils eventuell teilweise - kondensieren.When the method according to the invention is used for refrigerants which undergo a phase change during the cycle, the refrigerant may already be present during cooling during the compression and / or subsequent transfer of heat to the vaporized refrigerant and / or during the subsequent cooling partially - condense.

Eine weitere signifikante Effizienzsteigerung lässt sich bei dem in Rede stehenden Verfahren dadurch erzielen, dass das Kältemittel nach der Kühlung und der Wärmeübertragung auf das wieder erwärmte Kältemittel unter Arbeitsleistung in einer Kraftmaschine, insbesondere einer Expansionspumpe oder einer Expansionsturbine, entspannt wird bevor es danach wieder verdampft oder erwärmt wird.A further significant increase in efficiency can be achieved in the process in question by the fact that the refrigerant after cooling and the heat transfer to the reheated refrigerant under work in an engine, in particular an expansion pump or an expansion turbine, is relaxed before it evaporates again or is heated.

Während bei der nach dem Stand der Technik isenthalp mit Hilfe einer Drossel erfolgenden Entspannung des Kältemittels Energie verloren geht, kann mit Hilfe einer Entspannungsmaschine die vormals ungenutzte Expansionsarbeit genutzt werden. In Verbindung mit der Verdichtung des Kältemittels in einem Flüssigkeitskolbenverdichter lässt sich die von der Expansionsmaschine gewonnene Expansionsarbeit vorteilhafterweise dazu verwenden, die als Arbeitsmedium verwendete Flüssigkeit in den Flüssigkeitskolben zu pumpen. Die aufzubringende Pumparbeit bei der Kältemittelverdichtung wird hiermit reduziert und der Leistungsbedarf der Hydraulikpumpe bzw. die von dieser zu erbringende Hydraulikarbeit vermindert.While in the state of the art isenthalp with the help of a throttle relaxation of the refrigerant energy is lost, the previously unexploited expansion work can be used with the help of a relaxation machine. In conjunction with the compression of the refrigerant in a liquid piston compressor, the expansion work gained by the expansion machine can be advantageously used to pump the liquid used as working fluid into the liquid piston. The pumping work to be applied during the refrigerant compression is hereby reduced and the power requirement of the hydraulic pump or the hydraulic work to be performed by it is reduced.

Durch entsprechende Gestaltung der Oberflächen des Flüssigkeitskolbenverdichters sowie durch entsprechende Steuerung des Verdichtungsvorgangs (Kompressionsgeschwindigkeit) sollte dem Kältemittel während des Verdichtens in dem Flüssigkeitskolbenverdichter die Wärme derart entzogen werden, dass die Verdichtung isotherm erfolgt. Dabei kann die mittels eines separaten Wärmeträgermediums von dem Kältemittel aus dem Verdichter abgeführte Wärme einer Wärmesenke, d.h. beispielsweise einem Verbraucher in Form einer Fußbodenheizung, zugeführt werden oder anderweitig als Prozesswärme mit niedrigem Temperaturniveau bereitgestellt werden, wobei das Wärmeträgermedium nach der Erwärmung im Flüssigkeitskolbenverdichter in dem Gaskühler für das Kältemittel weiter erwärmt wird.By appropriate design of the surfaces of the liquid piston compressor and by appropriate control of the compression process (compression speed), the heat should be removed from the refrigerant during the compression in the liquid piston compressor so that the compression takes place isothermally. In this case, the heat dissipated from the compressor by means of a separate heat transfer medium from the heat of a heat sink, i. for example, to a consumer in the form of underfloor heating, or otherwise provided as process heat at a low temperature level, wherein the heat transfer medium is further heated after heating in the liquid piston compressor in the gas cooler for the refrigerant.

Ausgehend von einer bekannten Wärmepumpe oder Kältemaschine wird die erfindungsgemäße Aufgabe durch einen Wärmeübertrager gelöst, mittels dessen Wärme von dem transkritischen, den Kühler verlassenden Kältemittel auf das den Erwärmer verlassende Kältemittel übertragbar ist.Starting from a known heat pump or chiller, the object of the invention is achieved by a heat exchanger, by means of which heat from the transcritical, the cooler leaving the refrigerant to the heater leaving the refrigerant is transferable.

Mit Hilfe eines derartigen sogenannten "inneren Wärmeübertragers" lässt sich die Effizienz des Kreisprozesses steigern, da ansonsten ungenutzte Energie nutzbringend verwendet wird. Dies gilt insbesondere für die Verwendung von CO2 als Kältemittel entsprechend den bereits weiter oben geschilderten Vorteilen.With the help of such a so-called "internal heat exchanger" can increase the efficiency of the cycle, otherwise useful energy unused is used. This applies in particular to the use of CO 2 as a refrigerant in accordance with the advantages already described above.

Die Druckerniedrigungseinrichtung ist eine Kraftmaschine, insbesondere eine Expansionspumpe oder Expansionsturbine, die zwischen dem Kühler und dem Erwärmer angeordnet ist. Der apparative Aufwand ist dabei besonders niedrig, wenn als Expansionspumpe eine Freikolbenpumpe mit selbstschaltenden Ventilen verwendet wird.The pressure reducing means is an engine, in particular, an expansion pump or expansion turbine, which is arranged between the radiator and the heater. The expenditure on equipment is particularly low when a free-piston pump with self-switching valves is used as the expansion pump.

Um die von der Expansionsmaschine gewonnene Leistung unmittelbar zur Durchführung des Kreisprozesses zu verwenden, besteht eine Wirkverbindung, insbesondere eine mechanische Kopplung beispielsweise über eine Welle, zwischen der Kraftmaschine beim Entspannen des Kältemittels und einer Hydraulikpumpe, mit der ein Hydraulikfluid in einen Arbeitsraum des Flüssigkolbenverdichters pumpbar ist.In order to use the power gained by the expansion machine directly to carry out the cyclic process, there is an operative connection, in particular a mechanical coupling, for example via a shaft, between the engine during expansion of the refrigerant and a hydraulic pump with which a hydraulic fluid is pumpable into a working space of the liquid piston compressor ,

Ausführungsbeispielembodiment

Die Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele, anhand derer der Wärmepumpenprozess gemäß der Erfindung dargestellt ist, näher erläutert.The invention will be explained in more detail below with reference to several exemplary embodiments, by means of which the heat pump process according to the invention is illustrated.

Es zeigt:

Fig. 1
einen Wärmepumpen-/Kältemaschinenprozess nach dem Stand der Technik in einem T-s-Diagramm mit dem Kältemittel R 134 a und isothermer Verdichtung mittels eines Flüssigkolbenverdichters,
Fig. 2
wie Figur 1, jedoch mit dem Kältemittel CO2,
Fig. 3
einen erfindungsgemäßen Prozess in einem T-s-Diagramm mit dem Kältemittel R 134 a mit innerem Wärmeübertrager und arbeitsleistender Expansion,
Fig. 4
wie Figur 3, jedoch mit dem Kältemittel CO2,
Fig. 5
eine schematische Anlagendarstellung einer Wärmepumpe/Kältemaschine mit innerem Wärmeübertrager und mit Expansionspumpe.
It shows:
Fig. 1
a heat pump / refrigerator process according to the prior art in a Ts diagram with the refrigerant R 134 a and isothermal compression by means of a liquid piston compressor,
Fig. 2
as FIG. 1 but with the refrigerant CO 2 ,
Fig. 3
a process according to the invention in a Ts diagram with the refrigerant R 134 a with internal heat exchanger and work expansion,
Fig. 4
as FIG. 3 but with the refrigerant CO 2 ,
Fig. 5
a schematic system representation of a heat pump / chiller with internal heat exchanger and with expansion pump.

Eine in dem Anlagenschaubild gemäß Figur 5 schematisch dargestellte Wärmepumpe/Kältemaschine 1 weist in dem Kreislauf des Kältemittels (hier: CO2) einen Flüssigkeitskolbenverdichter 2, einen Gaskühler 3/Kondensator einen inneren Wärmeübertrager 4, einen Hochdruckspeicher 5, ein Expansionspumpe 42, einen Niederdruckspeicher 7, einen Verdampfer 8 sowie Rückschlagventile 9 bis 12 auf. Folgender Prozess läuft dabei in Form eines Kreislaufs durch die vorgenannten Komponenten und die sie miteinander verbindenden Leitungen ab:One in the plant diagram according to FIG. 5 schematically illustrated heat pump / chiller 1 has in the cycle of the refrigerant (here: CO 2 ) a liquid piston compressor 2, a gas cooler 3 / condenser an internal heat exchanger 4, a high-pressure accumulator 5, an expansion pump 42, a Low-pressure accumulator 7, an evaporator 8 and check valves 9 to 12 on. The following process takes place in the form of a cycle through the aforementioned components and the interconnecting lines:

Das in dem Flüssigkeitskolbenverdichter isotherm verdichtete CO2, wird über eine Leitung 13 dem Gaskühler 3 zugeführt, in dem es je nach Verdichtungsendtemperatur des Kältemittels zu einer Kondensation kommen kann. Aufgrund der vergleichsweise niedrigen kritischen Temperatur des CO2 (31°C) findet jedoch typischerweise weder bei der Verdichtung noch in dem nachgeschalteten Gaskühler 3/"Kondensator" eine Kondensation statt, das heißt das Nassdampfgebiet wird in diesen Prozessschritten nicht erreicht.The isothermally compressed CO 2 in the liquid piston compressor is fed via a line 13 to the gas cooler 3, in which condensation may occur depending on the compression end temperature of the refrigerant. Due to the comparatively low critical temperature of CO 2 (31 ° C.), however, condensation typically does not take place either during the compression or in the downstream gas cooler 3 / "condenser", that is to say the wet steam area is not reached in these process steps.

Nachdem also das gekühlte CO2 über eine Leitung 1 den inneren Wärmeübertrager 4 erreicht hat, wird dort Wärme auf das Kältemittel übertragen, nachdem es den Verdampfer 8 verlassen hat. Über eine weitere Leitung 15 gelangt das Kältemittel von dem inneren Wärmeübertrager in einen Hochdruckspeicher 5, von dem es durch eine Leitung 16 zu der Expansionspumpe 42 gelangt, in der eine idealer Weise isentrope Entspannung des Kältemittels stattfindet, das während der Entspannung in das Nassdampfgebiet eintritt. Über eine Leitung 17 gelangt das entspannte Kältemittel in den Niederdruckspeicher 7, von wo aus es über eine Leitung 18 in den Verdampfer gelangt und dort unter Wärmeaufnahme verdampft. Anschließend wird das Kältemittel über ein Leitung 18 zu dem bereits zuvor erwähnten inneren Wärmeübertrager 4 geführt und dort erwärmt, bevor es über die Leitung 19 wieder zu dem Flüssigkeitskolbenverdichter 2 zurückströmt.Thus, after the cooled CO 2 has reached the inner heat exchanger 4 via a line 1, heat is transferred there to the refrigerant after it has left the evaporator 8. Via a further line 15, the refrigerant passes from the inner heat exchanger into a high-pressure accumulator 5, from which it passes through a line 16 to the expansion pump 42, in which an ideal isentropic expansion of the refrigerant takes place, which occurs during the expansion in the wet steam area. Via a line 17, the expanded refrigerant enters the low-pressure accumulator 7, from where it passes through a line 18 into the evaporator and evaporates there under heat absorption. Subsequently, the refrigerant is conducted via a line 18 to the already mentioned inner heat exchanger 4 and heated there before it flows back via the line 19 back to the liquid piston compressor 2.

Der Flüssigkeitskolbenverdichter 2 besitzt zwei jeweils einen Arbeitsraum definierenden Zylinder 20, 21 die parallel zueinander geschaltet sind. Von der Leitung 19 zweigt die Zuströmleitung 22 des Zylinders 20 ab, in der das Rückschlagventil 10 angeordnet ist, das lediglich einen Zustrom in den Zylinder 20 erlaubt. Über die Leitung 23, in der sich das lediglich ein Abströmen erlaubende Rückschlagventil 9 befindet, gelangt das Kältemittel aus dem Zylinder 20 in die Leitung 13 und somit wieder in den Gaskühler 3/Kondensator.The liquid piston compressor 2 has two cylinders 20, 21 each defining a working space, which are connected in parallel to each other. From the line 19 branches off the inflow line 22 of the cylinder 20, in which the check valve 10 is arranged, which allows only an influx into the cylinder 20. Via the line 23, in which there is only one outflow permitting check valve 9, the refrigerant passes from the cylinder 20 into the conduit 13 and thus back into the gas cooler 3 / condenser.

Zylinder 21 ist über eine dem Zuströmen dienende Leitung 24 an die Leitung 19 angeschlossen und über die dem Abströmen dienende Leitung 25 an die Leitung 13. Auch hier erlauben die Rückschlagventile 11 und 12 lediglich ein Zuströmen bzw. Abströmen des Kältemittels.Cylinder 21 is connected via a conduit 24 serving for the inflow to the conduit 19 and via the conduit 25 serving for the outflow to the conduit 13 Here, the check valves 11 and 12 allow only an inflow or outflow of the refrigerant.

An der Unterseite der Zylinder 21 und 22 sind jeweils Hydraulikleitungen 24 und 25 angeschlossen, die in jeweils einen durch das Innere der Zylinder 20, 21 gebildeten Arbeitsraum 26, 27 münden. Im Inneren der Arbeitsräume 26, 27 befindet sich unten jeweils das Hydraulikfluid, über dessen Spiegel S sich das mehr oder weniger stark komprimierte Kältemittel befindet. Das Hydraulikfluid ist so ausgewählt, dass es mit dem Kältemittel weder mischbar ist noch sich darin löst.On the underside of the cylinders 21 and 22, respectively, hydraulic lines 24 and 25 are connected, which open into a respective working chamber 26, 27 formed by the interior of the cylinders 20, 21. In the interior of the work spaces 26, 27 is located below the hydraulic fluid, on the mirror S, the more or less strongly compressed refrigerant is. The hydraulic fluid is selected so that it is neither miscible nor dissolved in the refrigerant.

Die Hydraulikleitungen 24 und 25 führen zu einem Vier-Wege-Hydraulikventil 28, von dem wiederum zwei Hydraulikleitungen 29, 30 abgehen, die auf der Saug- bzw. Druckseite einer Hydraulikpumpe 31 angeschlossen sind. Je nach Schaltstellung des Vier-Wege-Hydraulikventils 28, wird nunmehr Hydraulikfluid drucklos aus einem der beiden Zylinder 20, 21 entnommen und unter Druck in den jeweils anderen der beiden Zylinder 20, 21 gepumpt, wodurch in letzterem Zylinder ein Verdichtungshub ausgeführt wird, wohingegen in dem anderen Zylinder das verdampfte und vorerwärmte Kältemittel angesaugt wird.The hydraulic lines 24 and 25 lead to a four-way hydraulic valve 28, from which in turn depart two hydraulic lines 29, 30 which are connected to the suction or pressure side of a hydraulic pump 31. Depending on the switching position of the four-way hydraulic valve 28, now hydraulic fluid pressure is removed from one of the two cylinders 20, 21 and pumped under pressure into the other of the two cylinders 20, 21, whereby in the latter cylinder a compression stroke is performed, whereas in the other cylinder, the vaporized and preheated refrigerant is sucked.

Beide Zylinder 20, 21 sind an Ihrer Außenseite von einem Doppelmantel 32 bis 33 umgeben und in ihrem Innern mit einem Wärmetauscherbündel 34, 35 versehen. Die Doppelmäntel 32 bis 33 bzw. Wärmetauscherbündel 34, 35 sind an Abführleitungen 36, 37 sowie Zufuhrleitungen 38, 39 angeschlossen.Both cylinders 20, 21 are surrounded on their outer side by a double jacket 32 to 33 and provided in their interior with a heat exchanger bundle 34, 35. The double shells 32 to 33 or heat exchanger bundles 34, 35 are connected to discharge lines 36, 37 and supply lines 38, 39.

Das beim Verdichtungsvorgang erwärmte Wärmeträgermedium wird nach Passieren eines in der jeweiligen Schaltstellung befindlichen Drei-Wege-Ventils 39 von einer Umwälzpumpe 40 zu einem Verbraucher 41 geführt, bei dem es sich beispielsweise um eine Fußbodenheizung oder um einen Verbraucher von Prozesswärme auf niedrigem Temperaturniveau handeln kann. Vom Verbraucher gelangt das abgekühlte Wärmeträgermedium zu dem Gaskühler 3 von dem es bereits vorgewärmt wird, um anschließend wieder dem Flüssigkeitskolbenverdichter 2 zugeführt zu werden, wo es im Zuge der isothermen Verdichtung des Kältemittels wieder erwärmt wird und sich sein Kreislauf somit schließt. Das Wärmeträgermedium wird in Abhängigkeit von der Schaltstellung des Drei-Wege-Ventils 39 jeweils nur durch denjenigen Zylinder 20 bzw. 21 geleitet, in dem gerade die isotherme Verdichtung des Kältemittels stattfindet. Alternativ können auch beide Zylinder ständig durchströmt werden.The heated during the compression process heat transfer medium is passed after passing a located in the respective switching position three-way valve 39 from a circulation pump 40 to a consumer 41, which may be, for example, a floor heating or a consumer of process heat at low temperature level. From the consumer, the cooled heat transfer medium reaches the gas cooler 3, from which it is already preheated, in order subsequently to be returned to the liquid piston compressor 2, where it is reheated in the course of the isothermal compression of the refrigerant and its circuit thus closes. The heat transfer medium is depending on the switching position of the three-way valve 39 each only by those cylinders 20 and 21st in which the isothermal compression of the refrigerant is taking place. Alternatively, both cylinders are constantly flowed through.

Die Wärmepumpe/Kältemaschine 1 verfügt über eine Expansionspumpe 42. Das aus dem Hochdruckspeicher 5 entnommene Kältemittel wird mithilfe der als Freikolbenpumpe ausgeführten Expansionspumpe 42 entspannt, bevor das entspannte Kältemittel wieder dem Niederdruckspeicher zugeführt wird und der Prozess über die Verdampfung, Vorerwärmung auf Kondensationstemperatur, isotherme Verdichtung und Kühlung identisch abläuft wie in Figur 5.The heat pump / chiller 1 has an expansion pump 42. The refrigerant taken from the high-pressure accumulator 5 is expanded by means of the expansion pump 42 designed as a free-piston pump before the expanded refrigerant is returned to the low-pressure accumulator and the process via the evaporation, preheating to condensation temperature, isothermal compression and cooling runs identically as in FIG. 5 ,

Im Gegensatz zum Expansionsventil, in dem eine isenthalpe Entspannung stattfindet, wird bei der Entspannung in der Expansionspumpe Arbeit frei, die beispielsweise dadurch genutzt werden kann, dass eine Wirkverbindung zwischen der Expansionspumpe 42 und der Hydraulikpumpe 31 hergestellt wird, um deren Leistungsbedarf beim Pumpen des Hydraulikfluids zum Verdichten des Kältemittels zu reduzieren oder direkt ein Teilvolumenstrom selbst zu pumpen. Insgesamt kann somit mithilfe der Expansionspumpe 42 die Leistungszahl der Wärmepumpe/Kältemaschine 1 nochmals verbessert werden.In contrast to the expansion valve in which an isenthalp relaxation takes place, when expansion in the expansion pump work is released, which can be used, for example, that an operative connection between the expansion pump 42 and the hydraulic pump 31 is made to their power requirements when pumping the hydraulic fluid to reduce the compression of the refrigerant or directly to pump a partial flow itself. Overall, therefore, the coefficient of performance of the heat pump / chiller 1 can be further improved by means of the expansion pump 42.

Der Effekt des inneren Wärmetauschers 4 im Kältemittelkreislauf soll anhand einer Gegenüberstellung der Kreisprozesse jeweils in einem T-s-Diagramm veranschaulicht werden. Figur 3, die den Prozess in der Wärmepumpe/Kältemaschine 1 gemäß Figur 5 veranschaulicht, zeigt wie das Kältemittel ausgehend von Punkt A isotherm bis zu Punkt B verdichtet wird. Dabei schneidet die idealisiert, horizontal verlaufende Linie A-B die Nassdampflinie 43, deren rechts des Maximums 44 gelegener Abschnitt als Taulinie 45 und deren links des Maximums 44 gelegener Abschnitt 46 als Siedelinie bezeichnet wird. Ab dem Schnittpunkt 47 zwischen Taulinie 45 und Linie A-B befindet sich das Kältemittel somit im Nachdampfgebiet. Ausgehend von Punkt B wird das Kältemittel in dem inneren Wärmeübertrager 4 isobar entlang Siedelinie 46 abgekühlt bis Punkt C erreicht wird. In der Expansionspumpe 42 wird das Kältemittel nunmehr polytrop entspannt und gelangt somit zu Punkt D mit entsprechend erniedrigter Temperatur. Ohne Expansionspumpe, das heißt was Drosselung über ein Expansionsventil (Figur 5) wird entlang der gestrichelt dargestellten Linie der Punkt D' erreicht, der sich durch eine größere Entropie - bedingt durch die isenthalpe Entspannung - auszeichnet.The effect of the inner heat exchanger 4 in the refrigerant circuit is to be illustrated by a comparison of the cycle processes in each case in a Ts diagram. FIG. 3 according to the process in the heat pump / chiller 1 according to FIG. 5 illustrates how the refrigerant from point A is isothermally compressed to point B. In this case, the idealized, horizontally extending line AB intersects the wet-steam line 43, whose section on the right of the maximum 44 is referred to as a dew-line 45 and whose section 46 on the left of the maximum 44 is referred to as a boiling line. From the intersection point 47 between tau line 45 and line AB, the refrigerant is thus in the post-vaporized area. Starting from point B, the refrigerant in the internal heat exchanger 4 is isobarically cooled along boiling line 46 until point C is reached. In the expansion pump 42, the refrigerant is now polytropically expanded and thus reaches point D with a correspondingly reduced temperature. Without expansion pump, that is, throttling via an expansion valve ( FIG. 5 ) is dashed along the the point D 'reached, which is characterized by a greater entropy - due to the isenthalic relaxation.

Von Punkt D oder D' findet eine Verdampfung des Kältemittels (bei gleichbleibender Temperatur) statt, bis auf der Taulinie 45 der Punkt E erreicht wird. Von diesem Punkt ausgehend wird das Kältemittel im inneren Wärmetauscher 4 wiederum isobar erwärmt, um schließlich wieder den Zustandspunkt A zu erreichen, womit der Kreisprozess geschlossen ist.From point D or D 'an evaporation of the refrigerant takes place (at the same temperature), until on the dew line 45 the point E is reached. Starting from this point, the refrigerant is again isobarically heated in the inner heat exchanger 4, in order finally to reach the state point A again, whereby the cycle is closed.

Demgegenüber wird bei einem konventionellen Kältemaschinen-/Wärmepumpenprozess mit isothermer Verdichtung, jedoch ohne inneren Wärmeübertrager, das verdichtete Kältemittel, ausgehend von dem auf der Siedelinie 46 liegenden Punkt b isenthalp entspannt. Anschließend wird Punkt d auf derselben Isotherme erreicht, wie sie auch beim Verdampfen vorliegt, wenn das Medium zuvor in einem inneren Wärmeübertrager abgekühlt wurde. Darüber hinaus verläuft der Prozess ohne inneren Wärmeübertrager ausgehend von Punkt e auf der Taulinie steiler nach oben auf die "obere Isotherme" entlang der auch bei Existenz eines inneren Wärmeübertragers bis zu Punkt b bzw. B verdichtet würde. Um die beiden Prozesse besser vergleichbar zu machen, sind auch in dem Diagramm gemäß Figur 3 die Zustandspunkte a, b, d, e eingetragen und gestrichelt, auch die Linien b-d sowie e-a.In contrast, in a conventional chiller / heat pump process with isothermal compression, but without an internal heat exchanger, the compressed refrigerant is expanded isenthalp from the point b lying on the boiling line 46. Subsequently, point d is achieved on the same isotherm as it is also present during evaporation, when the medium has previously been cooled in an internal heat exchanger. In addition, the process without internal heat exchanger from point e on the tau line runs steeper upward on the "upper isotherm" along which even in the presence of an internal heat exchanger to point b or B would be compressed. To make the two processes better comparable, are also in the diagram according to FIG. 3 the state points a, b, d, e registered and dashed, also the lines bd and ea.

Während die Figuren 1 und 3 die Kreisprozesse mit R 134 A als Kältemittel zeigen, bilden die Figuren 2 und 4 eine Gegenüberstellung der Prozesse bei Verwendung von CO2 als Kältemittel. Es wird deutlich, dass durch den inneren Wärmeübertrager 4 die Entspannung von einem niedrigeren Temperaturniveau (Punkt C') aus startet, als dies in b' ohne inneren Wärmetauscher der Fall ist. Bei CO2 als Kältemittel wird weder bei dem in Figur 2 dargestellten Prozess gemäß dem Stand der Technik noch bei dem in Figur 4 dargestellten erfindungsgemäßen Prozess während der isothermen Verdichtung das Nassdampfgebiet erreicht. Die Linie A'-B' sowie die Linie a'-b' befinden sich oberhalb der Nassdampflinie des CO2. Das Nassdampfgebiet wird erst bei der Entspannung erreicht, wobei ohne Nutzung der Expansionsarbeit bei einer isenthalpen Entspannung der Punkt D'* erreicht wird, wohingegen bei Verwendung einer Expansionspumpe eine polytrope Entspannung erzielt wird, die steiler verläuft als die Linie C'-D'* und zu Punkt D' auf derselben Isothermen führt. Der besseren Vergleichbarkeit halber sind in Figur 4 auch die Punkte a', b', d', e' aus Figur 2 eingetragen und in Figur 3 auch die Punkte a, b, d, e.While the FIGS. 1 and 3 show the cycles with R 134 A as the refrigerant form the Figures 2 and 4 a comparison of the processes when using CO 2 as a refrigerant. It is clear that by the internal heat exchanger 4, the relaxation of a lower temperature level (point C ') starts, as is the case in b' without internal heat exchanger. For CO 2 as a refrigerant, neither the in FIG. 2 illustrated process according to the prior art still in the in FIG. 4 process according to the invention during the isothermal compression reaches the wet steam area. The line A'-B 'and the line a'-b' are located above the wet steam line of CO 2 . The wet steam area is reached only during the relaxation, the point D '* is achieved without exploiting the expansion work in an isenthalp relaxation, whereas when using an expansion pump a polytropic relaxation is achieved, which is steeper than the line C'-D' * and to point D 'on the same Isotherms leads. For better comparability are in FIG. 4 also the points a ', b', d ', e' off FIG. 2 registered and in FIG. 3 also the points a, b, d, e.

In den Figuren sind

1
Wärmepumpe/Kältemaschine
2
Flüssigkeitskolbenverdichter
3
Gaskühler/Kondensator
4
Innerer Wärmeübertrager
5
Hochdruckspeicher
7
Niederdruckspeicher
8
Verdampfer
9
Rückschlagventil
10
Rückschlagventil
11
Rückschlagventil
12
Rückschlagventil
13
Leitung
14
Leitung
15
Leitung
16
Leitung
17
Leitung
18
Leitung
19
Leitung
20
Zylinder
21
Zylinder
22
Leitung
23
Leitung
24
Hydraulikleitung
25
Hydraulikleitung
26
Arbeitsraum
27
Arbeitsraum
28
Vier-Wege-Hydraulikventil
29
Hydraulikleitung
30
Leitung
31
Hydraulikpumpe
32
Doppelmantel
33
Doppelmantel
34
Wärmetauscherbündel
35
Wärmetauscherbündel
36
Abfuhrleitung
37
Abfuhrleitung
38
Zufuhrleitung
39
Drei-Wege-Ventil
40
Umwälzpumpe
41
Verbraucher
42
Expansionspumpe
43
Nassdampflinie
44
Maximum
45
Taulinie
46
Siedelinie
47
Schnittpunkt
In the figures are
1
Heat pump / chiller
2
Liquid piston compressor
3
Gas cooler / condenser
4
Internal heat exchanger
5
High-pressure accumulator
7
Low-pressure accumulator
8th
Evaporator
9
check valve
10
check valve
11
check valve
12
check valve
13
management
14
management
15
management
16
management
17
management
18
management
19
management
20
cylinder
21
cylinder
22
management
23
management
24
hydraulic line
25
hydraulic line
26
working space
27
working space
28
Four-way hydraulic valve
29
hydraulic line
30
management
31
hydraulic pump
32
jacketed
33
jacketed
34
heat exchanger bundle
35
heat exchanger bundle
36
discharge line
37
discharge line
38
supply line
39
Three-way valve
40
circulating pump
41
consumer
42
expansion pump
43
Wet steam line
44
maximum
45
dew line
46
boiling
47
intersection

Claims (10)

  1. A method for operating a heat pump or refrigeration device (1) wherein a coolant is compressed by means of a fluid displacement compressor (2), is subsequently cooled and optionally condensed and then expanded and, in a next step, is evaporated and finally fed back to the fluid displacement compressor (2), characterized in that heat from the coolant, which is pre-cooled after the compression, is transferred to the evaporated coolant before said coolant is fed again to the fluid displacement compressor (2), and thus the cycle is closed, and that the coolant is expanded in an engine comprising an operative connection to a hydraulic pump (31) by means of which a hydraulic fluid of the fluid displacement compressor (2) can be pumped.
  2. The method according to claim 1, characterized in that the fluid displacement compressor (2) has two operating chambers which are separated from each other, and that the coolant is alternatingly compressed in one of the two operating chambers, the common hydraulic fluid of which is alternatingly pumped back and forth from the one operating chamber (26, 27) into the other operating chamber (26, 27).
  3. The method according to any one of the preceding claims, characterized in that the coolant is stored temporarily in a high pressure storage (5) after it has been cooled and has transferred further heat to the evaporated coolant.
  4. The method according to any one of the preceding claims, characterized in that after expansion, the coolant is stored temporarily in a low pressure storage (7) before it is subsequently evaporated.
  5. The method according to any one of the preceding claims, characterized in that the coolant condensates during cooling and/or during transferring heat to the evaporated coolant and/or during the compression.
  6. The method according to any one of the preceding claims, characterized in that the coolant after the cooling and the heat transfer to the evaporated coolant is expanded under the performance of work in an engine, in particular an expansion pump (42) or an expansion turbine, before it is evaporated or heated.
  7. The method according to any one of the preceding claims, characterized in that heat is extracted from the coolant during the compression in the fluid displacement compressor (2) in such a manner that the compression takes place isothermally and that the heat dissipated from the coolant by means of a separate heat transfer medium is fed to a heat sink, wherein the heat transfer medium, after heating in the fluid displacement compressor (2), is further heated in the cooler (3) for the coolant.
  8. A heat pump or refrigeration device (1) with a fluid displacement compressor (2) for compressing a coolant while dissipating heat to a heat transfer medium materially separated from the coolant, a cooler (3) for reducing the temperature of the compressed coolant, a pressure reduction device for expanding the cooled coolant, an evaporator (8) for evaporating the expanded coolant, and lines connecting the aforementioned components so that the coolant can be conveyed in the cycle, and with a heat exchanger by means of which heat can be transferred from the coolant leaving the cooler to the coolant leaving the evaporator, characterized in that the pressure reduction device is an engine, in particular an expansion pump (42) or an expansion turbine which is arranged between the cooler (3) and the evaporator (8) and comprises an operative connection to a hydraulic pump (31) by means of which a hydraulic fluid of the fluid displacement compressor (2) can be pumped.
  9. The heat pump or refrigeration device (1) according to the preceding claim, characterized in that the expansion pump (4) is a free piston pump with self-switching valves.
  10. The heat pump or refrigeration device (1) according to any one of the claims 8 and 9, characterized by an operative connection, in particular a mechanical coupling, between the engine, which acts during the expansion of the coolant, and a hydraulic pump (31) by means of which a hydraulic fluid can be pumped into an operating chamber of the fluid displacement compressor (2).
EP09782642A 2008-09-10 2009-09-04 Heat pump or refrigeration device and method for operating a heat pump or refrigeration device Active EP2321592B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008041939A DE102008041939A1 (en) 2008-09-10 2008-09-10 A method of operating a heat pump or chiller or engine and heat pump or chiller and engine
PCT/EP2009/061496 WO2010029027A1 (en) 2008-09-10 2009-09-04 Heat pump or refrigeration device and method for operating a heat pump or refrigeration device

Publications (2)

Publication Number Publication Date
EP2321592A1 EP2321592A1 (en) 2011-05-18
EP2321592B1 true EP2321592B1 (en) 2011-12-28

Family

ID=41137004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782642A Active EP2321592B1 (en) 2008-09-10 2009-09-04 Heat pump or refrigeration device and method for operating a heat pump or refrigeration device

Country Status (4)

Country Link
EP (1) EP2321592B1 (en)
AT (1) ATE539304T1 (en)
DE (1) DE102008041939A1 (en)
WO (2) WO2010029020A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005801A (en) * 2013-02-25 2014-08-27 宝山钢铁股份有限公司 Low-pressure steam differential pressure power generation system and reuse steam backpressure control method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060598A1 (en) * 2008-12-05 2010-06-10 Thermea. Energiesysteme Gmbh Apparatus and method for compressing or compressing a gas
DE102016202336A1 (en) * 2016-02-16 2017-08-17 Robert Bosch Gmbh Additional heat storage and heat pump cycle
CN106801863B (en) * 2017-02-06 2018-10-19 国家电网公司 A kind of fired power generating unit feed water by-pass cuts the bypass valve control method during main road
DE102019129495B3 (en) * 2019-10-31 2021-04-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Compressor arrangement, heat pump arrangement and method for operating the compressor arrangement
EP4296478A1 (en) * 2022-06-21 2023-12-27 Noditech AB Method of operating a heat cycle system, heat cycle system and method of modifying a heat cycle system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1766998A (en) 1928-09-07 1930-06-24 Heat Transfer Products Inc Apparatus for compressing substances
US2772543A (en) 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
CA956470A (en) * 1970-07-24 1974-10-22 John G. Davoud External combustion power producing system
FR2261412A1 (en) * 1974-02-19 1975-09-12 Dubreuil Marc Heriard Thermal engine operating on mixed cycle - uses fluid with low critical temperature and high latent heat
DE2610063A1 (en) * 1976-03-11 1977-09-15 Schmidt Hans Guenter Ing Grad Waste or ambient heat recovery - using solar energy collector, heat pump, vortex tube divider and compressor
DE3925090A1 (en) * 1989-07-28 1991-02-07 Bbc York Kaelte Klima METHOD FOR OPERATING A REFRIGERATION SYSTEM
US5073090A (en) * 1990-02-12 1991-12-17 Cassidy Joseph C Fluid piston compressor
GB0004007D0 (en) * 2000-02-22 2000-04-12 Dearman Peter T Engines driven by liquified gas
DE10062948C2 (en) * 2000-12-16 2002-11-14 Eaton Fluid Power Gmbh Chiller with controlled refrigerant phase in front of the compressor
DE10159892B4 (en) * 2001-12-06 2006-08-24 Stiebel Eltron Gmbh & Co. Kg Chiller with a recuperator
US6647742B1 (en) * 2002-05-29 2003-11-18 Carrier Corporation Expander driven motor for auxiliary machinery
US6591618B1 (en) * 2002-08-12 2003-07-15 Praxair Technology, Inc. Supercritical refrigeration system
DE102004023834A1 (en) * 2004-05-14 2005-12-08 Robert Bosch Gmbh Expansion device for a refrigerant
DE102005025255B3 (en) * 2005-06-02 2006-12-07 Lutz Giechau Energy producing process for mechanical energy involves supply thermal energy to first fluid, passing into working chamber, supplying second working fluid and mixing
CN101454542A (en) * 2006-04-04 2009-06-10 法国电力公司 Piston steam engine having internal flash vapourisation of a working medium
US20070271956A1 (en) * 2006-05-23 2007-11-29 Johnson Controls Technology Company System and method for reducing windage losses in compressor motors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005801A (en) * 2013-02-25 2014-08-27 宝山钢铁股份有限公司 Low-pressure steam differential pressure power generation system and reuse steam backpressure control method thereof
CN104005801B (en) * 2013-02-25 2015-12-09 宝山钢铁股份有限公司 A kind of low pressure steam Differential pressure power generation system and reuse steam back pressure control method thereof

Also Published As

Publication number Publication date
WO2010029020A1 (en) 2010-03-18
DE102008041939A1 (en) 2010-03-11
WO2010029027A1 (en) 2010-03-18
ATE539304T1 (en) 2012-01-15
EP2321592A1 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
DE60128244T2 (en) METHOD AND ARRANGEMENT FOR DEFROSTING A STEAM COMPACTER
EP2321592B1 (en) Heat pump or refrigeration device and method for operating a heat pump or refrigeration device
EP1789732B1 (en) Refrigeration circuit and method for operating a refrigeration circuit
DE102011118162C5 (en) Combined refrigeration system and heat pump and method for operating the system with function-dependent refrigerant transfer within the refrigerant circuit
DE60022251T2 (en) Refrigeration system with a cooling circuit offering optimized consumption
DE10159892A1 (en) A heat pump circuit has a compressor temperture control system which automatically reduces the operating temperature when the outside temperature reaches abnormally low values.
EP1925475A2 (en) Combination of a cold air circuit for automotive interior climate control with a Rankine cycle
DE2923621A1 (en) THERMAL DRIVE
DE102018001279A1 (en) Apparatus and process as combined heat and power plant with regenerative CO2 circulation and heat pump process
DE102007047642B4 (en) refrigeration machine
DE112017005948T5 (en) Air conditioning device
DE10344698B4 (en) Heat pump or chiller with displacement condenser
DE102014213542A1 (en) Method for operating a heat pump with at least two evaporators
WO2018029371A1 (en) Heat exchanger for use in a heating part of a liquid-air energy storage power plant, heating part, and method for operating such a heat exchanger in such a heating part
EP2336680A2 (en) Air conditioning device with pressure transmitter and method for operating an air conditioning device
DE102013114210B3 (en) Apparatus for compressing a gaseous fluid and method for operating the apparatus
DE112016002485B4 (en) EXPANSION MACHINE AND METHOD FOR PRODUCING COOLING
WO2014117924A2 (en) Method for operating a low-temperature power plant, and low-temperature power plant itself
DE102013016462A1 (en) Fluid compression-cooling system for use in air-conditioning system of vehicle, has evaporator containing vapor in inner side, condenser for condensing vapor, and pump for circulating fluid, where fluid is stored in containers
DE102012004801A1 (en) Arrangement for heat pump for heating heat transfer fluid, has condenser and sub-cooler to heat a heat transfer fluid flowing against working fluid flow direction, after fluid flows through flow path formed by de-heater and oil cooler
DE10338388B3 (en) Method for controlling an air conditioning system
DE102007055608A1 (en) Combined air-conditioning installation and refrigerating circuit for air-conditioning a vehicle's interior has a first refrigerant with a Rankine circuit and a second refrigerant
WO2023011997A1 (en) Heat engine
DE2344269C3 (en) Heat pump for simultaneous cooling and generation of useful heat that is significantly higher than the ambient temperature
DE4432559A1 (en) System generating mechanical energy from thermal energy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEICHSEL, MICHAEL

Inventor name: RAMMING, KLAUS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEICHSEL, MICHAEL

Inventor name: RAMMING, KLAUS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 539304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009002339

Country of ref document: DE

Effective date: 20120308

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120329

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

26N No opposition filed

Effective date: 20121001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009002339

Country of ref document: DE

Effective date: 20121001

BERE Be: lapsed

Owner name: AGO AG ENERGIE + ANLAGEN

Effective date: 20120930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002339

Country of ref document: DE

Representative=s name: BAUER WAGNER PRIESMEYER, PATENT- UND RECHTSANW, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002339

Country of ref document: DE

Representative=s name: BAUER WAGNER PRIESMEYER, PATENT- UND RECHTSANW, DE

Effective date: 20130416

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009002339

Country of ref document: DE

Owner name: DEICHSEL, MICHAEL, DR., DE

Free format text: FORMER OWNER: AGO AG ENERGIE + ANLAGEN, 95326 KULMBACH, DE

Effective date: 20130416

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002339

Country of ref document: DE

Representative=s name: PATENT- & RECHTSANWAELTE BAUER WAGNER PRIESMEY, DE

Effective date: 20130416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120904

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130904

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 539304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009002339

Country of ref document: DE

Representative=s name: BAUER WAGNER PELLENGAHR SROKA PATENT- & RECHTS, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230930

Year of fee payment: 15