WO2010063817A2 - Dispositif et procédé de compression d'un gaz - Google Patents

Dispositif et procédé de compression d'un gaz Download PDF

Info

Publication number
WO2010063817A2
WO2010063817A2 PCT/EP2009/066385 EP2009066385W WO2010063817A2 WO 2010063817 A2 WO2010063817 A2 WO 2010063817A2 EP 2009066385 W EP2009066385 W EP 2009066385W WO 2010063817 A2 WO2010063817 A2 WO 2010063817A2
Authority
WO
WIPO (PCT)
Prior art keywords
adiabatic cylinder
cylinder
gaseous working
working fluid
adiabatic
Prior art date
Application number
PCT/EP2009/066385
Other languages
German (de)
English (en)
Other versions
WO2010063817A3 (fr
Inventor
Andreas Guderat
Original Assignee
Thermea. Energiesysteme Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermea. Energiesysteme Gmbh filed Critical Thermea. Energiesysteme Gmbh
Publication of WO2010063817A2 publication Critical patent/WO2010063817A2/fr
Publication of WO2010063817A3 publication Critical patent/WO2010063817A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • F04B39/0011Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons liquid pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/033Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows having fluid drive
    • F04B45/0336Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows having fluid drive the actuating fluid being controlled by one or more valves

Definitions

  • the compression of gases is used in heat pumps.
  • working means with high compression end pressures and / or high pressure ratios are used.
  • working agents are in particular carbon dioxide or ammonia.
  • the compression of gases in a compressor unit is used for energy storage, as is the case for example in compressed air reservoirs.
  • Another application of gas compression is isothermal compression, which requires separation or removal of the heat of compression.
  • gases are compressed which pose a risk of explosion.
  • the invention is based on the expansion or compression of gases by volume displacement with the aid of a hydraulic fluid, which undergoes an energy supply due to a pressure increase in the case of compression by a hydraulic pump or in the case of expansion by a hydraulic motor energy removal due to a pressure drop.
  • An adiabatic cylinder is here understood to mean a cylinder which has no or the lowest possible heat exchange with the environment. This can be achieved by insulating the cylinders. In the cylinders, the working gas temperature can be limited by introducing heat exchangers.
  • any pressure conditions can be selected taking into account the operating points of the hydraulic pump or hydraulic motor. Very good machine efficiencies of 90 to 95% are achieved.
  • the invention is directed to a device for compressing the gaseous working fluid, in which
  • the control of the first, second, third and fourth valves and the three-way valves can be effected via a control unit.
  • the second conduit in which relaxed gaseous working fluid flows, is connected via a hydraulic pump to the first conduit, in which the expanded gaseous working fluid is compressed, so that the gaseous working fluid is recirculated.
  • the inventive method is preferably carried out with the device according to the invention.
  • the first step in which the hydraulic fluid from the second adiabatic cylinder is fed into the first adiabatic cylinder, i) the gaseous working fluid in the first adiabatic cylinder is compressed to a predetermined pressure, as soon as the gaseous working fluid has reached the predetermined pressure, the first valve opens, so that the compressed gaseous working fluid isobarically flows into the first conduit; and (ii) the pressure in the second adiabatic cylinder decreases to a predetermined value, and as soon as the predetermined pressure in the second adiabatic cylinder is reached, the fourth valve opens so that expanded gaseous working fluid flows into the second adiabatic cylinder; and
  • the first line in which compressed gaseous working fluid flows
  • the second line (2) in which the compressed gaseous working fluid is expanded, so that the working fluid is recirculated.
  • the first adiabatic cylinder is connected via a second valve and a second three-way valve to a second line, can flow into the relaxed gaseous working fluid from the first adiabatic cylinder;
  • the second adiabatic cylinder is connected via a fourth valve and the second three-way valve is connected to the second line, into which relaxed gaseous working fluid can flow into the second adiabatic cylinder;
  • the means for dissipating energy is a hydraulic motor which reduces the pressure of the hydraulic fluid passing through the hydraulic motor;
  • FIG. 3 shows a third embodiment of an arrangement according to the invention for the isothermal compression of a gas
  • Example 1 The arrangement for compressing a gas shown in Fig. 1 is a compressor of a heat pump with the refrigerant carbon dioxide (R744, CO 2 ) and a hydraulic axial piston pump (manufactured by Danfoss, DE), which as hydraulic fluid (Hf) water used.
  • the first cylinder and the second cylinder have the same internal volume. Open or close the check valves if there is a pressure difference between the components between which they are installed. When changing the flow, due to the two 3-way valves, close the check valves, since the pressure difference collapses.
  • Step 2b At the same time as step 2a falls in the first cylinder 8, however, the pressure. As soon as the pressure in the second cylinder has reached 37.7 bar, the fourth check valve 5 opens and allows CO 2 to flow from the suction line 2 into the cylinder 8. As soon as the second cylinder 7 is completely filled with CO 2 , the two 3-way valves 9 and 10 change the flow direction of the hydraulic fluid, so that now the water flows from the second cylinder 7 via the hydraulic pump 11 to the first cylinder 8.
  • Step 1a In a first cylinder 8, which is completely filled with air, cooled hydraulic fluid flows via nozzle 27 via heat exchanger 25 (see step Ib) compresses the air there until a first predetermined pressure builds up.
  • the heat of compression is absorbed by the sprayed by means of nozzle 27 hydraulic fluid.
  • the hydraulic fluid heats up slightly, while the air only absorbs and stores the proportion of pressure energy and absorbs only a very small part of the heat of compression.
  • the pressure in the second cylinder 7 decreases to the second predetermined pressure, which is lower than the first predetermined pressure.
  • the second check valve 4 opens and allows air from the suction line (Sl) 2 to flow into the first cylinder 7.
  • valve 203 closes and an isothermal expansion continues by supplying heat from the heat source 213.
  • container 208 is completely filled with hydraulic fluid, the valves 209 to 212 are switched over, the valve 205 is closed and the valve 206 is opened.
  • step 1 The continuous mechanical work is converted by the generator 216 into electrical energy.
  • the containers 301 and 303 are filled with a carbon dioxide mass of 64 kg, while the containers 302 and 4 are filled with only 13 kg.
  • the inner volumes of all containers 301 to 304 are the same size and are at 0.1 m 3 .
  • the pressure and temperature of all containers are the same size, the pressure is adjusted depending on the temperature. Since the containers have a temperature of 15 0 C, prevails in all a pressure of 50 bar.
  • the valves 309 to 312 are all in position A-> B, so that the container initially have no connection with each other and have a self-contained volume.
  • the valves 316 and 317 are open in position C- A, thus waste heat at a temperature of 60 0 C from the waste heat source 324 passes through the heat exchanger 305 in the container 301. It comes to heating of the carbon dioxide and increase the tank pressure to 160 bar, by isochoric state change (Z ⁇ ). At the same time, the valves 322 and 323 in position A-> B and let flow from the heat sink 325 water at a temperature of 10 0 C through the heat exchanger 308. Due to the cooling of the heat exchanger 308, condensation occurs in container 304, whereby a vapor pressure in the container of 45 bar occurs. This pressure difference between containers 301 and 304 is now released by switching valves 309 and 312.
  • the carbon dioxide flows from container 301 through the heat exchanger 315, where it is optionally supercooled, in the hydraulic motor 313. In it comes to relax on the condensation pressure which prevails in the container 304.
  • the expanded carbon dioxide is then passed into the container 304 and fills it. By continuous intake while relaxing In the container 301 by heat, this is maintained at a temperature of 60 0 C, thereby resulting in isothermal relaxation.
  • the container 304 is also continuously cooled with the heat sink 325.
  • valves 310 and 311 go to position A-> B and close the tanks again, while valves 309 and 312 go to positions C- ⁇ A and C- B, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

L'invention concerne un procédé de compression ou de détente d'un fluide de travail gazeux au moyen d'un liquide hydraulique, comportant un premier cylindre adiabatique (8, 108) et un deuxième cylindre adiabatique (7, 107) relié hydrauliquement au premier (8, 108) au moyen d'un appareil d'amenée (11) ou d'évacuation (11) d'énergie. (a) Dans un premier état, le fluide de travail gazeux se trouve dans le premier cylindre adiabatique (8, 108) et le liquide hydraulique se trouve dans le deuxième cylindre adiabatique (7, 107); (b) dans une première étape, le liquide hydraulique contenu dans le deuxième cylindre adiabatique (7, 107) est transporté vers le premier cylindre adiabatique (8, 108), le liquide hydraulique traversant l'appareil d'amenée (11) ou d'évacuation (11) d'énergie; (c) dans un deuxième état, le fluide de travail gazeux se trouve dans le deuxième cylindre adiabatique (7, 107) et le liquide hydraulique se trouve dans le premier cylindre adiabatique (8, 108); (d) dans une deuxième étape, le liquide hydraulique contenu dans le premier cylindre adiabatique (8, 108) est transporté vers le deuxième cylindre adiabatique (7, 107), le liquide hydraulique traversant l'appareil d'amenée (11) ou d'évacuation (11) d'énergie; et (e) la première étape (b) est effectuée de façon répétée jusqu'à atteinte du deuxième état, et la deuxième étape (d) est effectuée de façon répétée jusqu'à atteinte du premier état.
PCT/EP2009/066385 2008-12-05 2009-12-03 Dispositif et procédé de compression d'un gaz WO2010063817A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008060598.0 2008-12-05
DE200810060598 DE102008060598A1 (de) 2008-12-05 2008-12-05 Vorrichtung und Verfahren zur Verdichtung oder Kompression eines Gases

Publications (2)

Publication Number Publication Date
WO2010063817A2 true WO2010063817A2 (fr) 2010-06-10
WO2010063817A3 WO2010063817A3 (fr) 2011-01-06

Family

ID=42145558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/066385 WO2010063817A2 (fr) 2008-12-05 2009-12-03 Dispositif et procédé de compression d'un gaz

Country Status (2)

Country Link
DE (1) DE102008060598A1 (fr)
WO (1) WO2010063817A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170175729A1 (en) * 2014-09-08 2017-06-22 Pressure Wave Systems Gmbh Cooling Device Equipped with a Compressor Device
WO2024083478A1 (fr) * 2022-10-19 2024-04-25 ISSOP, Abdoul, Azeez Compresseur thermique

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2489840A1 (fr) * 2010-12-08 2012-08-22 Ago Ag Energie + Anlagen Accumulateur d'énergie et son procédé de fonctionnement
GB2504724A (en) * 2012-08-07 2014-02-12 Amitava Roy Gas compressor and cleaner with liquid piston
US20160069359A1 (en) * 2013-04-12 2016-03-10 Edward John Hummelt Pressure vessel having plurality of tubes for heat exchange
US20160305413A1 (en) * 2013-04-12 2016-10-20 Eaton Corporation Pressure vessel graded media for heat exchange in a compression system
WO2015006761A1 (fr) 2013-07-12 2015-01-15 Eaton Corporation Système hydraulique permettant la mise sous pression d'un gaz avec une réduction du volume mort
RU2717186C1 (ru) * 2019-08-08 2020-03-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" Источник теплоты
DE102019129495B3 (de) * 2019-10-31 2021-04-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verdichteranordnung, Wärmepumpenanordnung und Verfahren zum Betreiben der Verdichteranordnung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1766998A (en) * 1928-09-07 1930-06-24 Heat Transfer Products Inc Apparatus for compressing substances
US2772543A (en) * 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
US5073090A (en) * 1990-02-12 1991-12-17 Cassidy Joseph C Fluid piston compressor
WO2010029027A1 (fr) * 2008-09-10 2010-03-18 Ago Ag Energie + Anlagen Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1766998A (en) * 1928-09-07 1930-06-24 Heat Transfer Products Inc Apparatus for compressing substances
US2772543A (en) * 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
US5073090A (en) * 1990-02-12 1991-12-17 Cassidy Joseph C Fluid piston compressor
WO2010029027A1 (fr) * 2008-09-10 2010-03-18 Ago Ag Energie + Anlagen Pompe à chaleur ou machine frigorifique et procédé permettant de faire fonctionner une pompe à chaleur ou une machine frigorifique
WO2010029020A1 (fr) * 2008-09-10 2010-03-18 Ago Ag Energie + Anlagen Machine motrice et procédé de fonctionnement d'une machine motrice

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170175729A1 (en) * 2014-09-08 2017-06-22 Pressure Wave Systems Gmbh Cooling Device Equipped with a Compressor Device
US11028841B2 (en) * 2014-09-08 2021-06-08 Pressure Wave Systems Gmbh Cooling device equipped with a compressor device
WO2024083478A1 (fr) * 2022-10-19 2024-04-25 ISSOP, Abdoul, Azeez Compresseur thermique
FR3141218A1 (fr) * 2022-10-19 2024-04-26 Pierre Bignon Compresseur thermique

Also Published As

Publication number Publication date
DE102008060598A1 (de) 2010-06-10
WO2010063817A3 (fr) 2011-01-06

Similar Documents

Publication Publication Date Title
WO2010063817A2 (fr) Dispositif et procédé de compression d'un gaz
EP2136040A2 (fr) Centrale à basse température et procédé de fonctionnement d'un cycle thermodynamique
DE102013009351B3 (de) Anlage und Verfahren zur Rückgewinnung von Energie aus Wärme in einem thermodynamischen Kreisprozess
EP2634383A1 (fr) Procédé et agencement pour l'accumulation d'énergie
EP3186506B1 (fr) Dispositif et procédé de stockage d'énergie
EP2334923A1 (fr) Procédé et dispositif permettant de faire fonctionner un cycle de stirling
EP2653668A1 (fr) Procédé de chargement et de déchargement d'un accumulateur thermique et installation pour le stockage et le dépôt d'énergie thermique appropriée à ce procédé
DE202005003611U1 (de) Wärmekraftwerk mit Druckluftspeichervorrichtung zum Ausgleich fluktuierender Energieeinspeisung aus regenerativen Energiequellen
DE102014118466B4 (de) Vorrichtung und Verfahren zum vorübergehenden Speichern von Gas und Wärme
EP1892457B1 (fr) Procédé et dispositif destinés à l'enregistrement de gaz combustible, en particulier de gaz naturel
DE102018001279A1 (de) Vorrichtung und Verfahren als Blockheizkraftwerk mit regenerativer CO2-Zirkulation und Wärmepumpenprozess
WO2008017470A1 (fr) Procédé et installation pour la vaporisation de gaz naturel liquéfié et pour la détente du gaz naturel
AT518299B1 (de) Verfahren zum Regasifizieren von tiefkalt verflüssigtem Gas
EP3559564A1 (fr) Procédé et dispositif de production de froid de processus et de vapeur de processus
DE102019006695A1 (de) Hydraulische Kolbeneinrichtung, welche mindestens zum Zwecke einer Gasverdichtung verwendbar ist, Druckgasenergiewandlungseinrichtung, Druckgasenergiewandlungs-Wärmetauscher-Einrichtung, Druckgasenergiewandlungs-Wärmetauscher-Einrichtungs-Vorstufeneinrichtung und Druckgasenergiewandlungsvorrichtung
WO2014117924A2 (fr) Procédé permettant de faire fonctionner une centrale basse température et centrale basse température
DE10245694A1 (de) Verfahren und Vorrichtung zur Realisierung einer Wärmepumpe oder einer Kältemaschine mittels kombinierter Verdichtung und Verflüssigung durch eine Verdrängungsblase
DE102018001064A1 (de) Vorrichtung und Verfahren als Thermo-Antriebsturbine mit regenerativer CO2-Zirkulation und Wärmepumpenprozess
DE10160593B4 (de) Wärmekraftanlage
DE10247387A1 (de) Kraftstation und Verfahren zu ihrem Betrieb
DE102018007888A1 (de) Verfahren zum Antrieb einer Entsalzungsanlage mit Vakuumpumpe mit CO2-Antriebsmotoren in Kombination mit einer Wärmepumpe und einer Solaranlage
AT520662A1 (de) Verfahren zum Regasifizieren von tiefkalt verflüssigtem Gas
AT519851B1 (de) Hochdruck Energie Erzeuger
DE4432559A1 (de) Vorrichtung und Verfahren zur Umwandlung von Wärmeenergie in mechanische Energie
DE102022125604A1 (de) System und Verfahren zur Energiewandlung und Energiespeicherung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768024

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09768024

Country of ref document: EP

Kind code of ref document: A2