WO2010026683A1 - 液晶表示パネル - Google Patents

液晶表示パネル Download PDF

Info

Publication number
WO2010026683A1
WO2010026683A1 PCT/JP2009/002836 JP2009002836W WO2010026683A1 WO 2010026683 A1 WO2010026683 A1 WO 2010026683A1 JP 2009002836 W JP2009002836 W JP 2009002836W WO 2010026683 A1 WO2010026683 A1 WO 2010026683A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display panel
substrate
active matrix
Prior art date
Application number
PCT/JP2009/002836
Other languages
English (en)
French (fr)
Inventor
坂井健彦
千葉大
片岡義晴
藤田哲生
森本一典
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/058,896 priority Critical patent/US20110141413A1/en
Publication of WO2010026683A1 publication Critical patent/WO2010026683A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/03Function characteristic scattering

Definitions

  • the present invention relates to a liquid crystal display panel.
  • the liquid crystal display panel includes, for example, an active matrix substrate, a counter substrate disposed to face the active matrix substrate, and a liquid crystal layer provided between the two substrates.
  • the active matrix substrate includes, for example, a plurality of pixel electrodes provided in a matrix, a plurality of gate lines provided so as to extend in parallel with each other along one side of each pixel electrode, and a direction orthogonal to each gate line. And a plurality of source lines provided so as to extend in parallel to each other along the other side of each pixel electrode.
  • the counter substrate is, for example, between a plurality of colored layers provided in a matrix so as to overlap each pixel electrode of the active matrix substrate, and between each colored layer, that is, between each gate line and each source line of the active matrix substrate. And a black matrix provided in a frame shape so as to overlap and in a lattice shape within the frame.
  • the black matrix provided on the counter substrate has a light shielding property, for example, the light of the backlight provided on the back side of the liquid crystal display panel is in the vicinity of each gate line and each source line of the active matrix substrate. It is configured not to leak.
  • Patent Document 1 discloses a color filter for a liquid crystal display device in which at least a black matrix, colored pixels corresponding to the colored layer, and alignment control protrusions for controlling the alignment of the liquid crystal layer are formed on a glass substrate.
  • the alignment control protrusion is constituted by an alignment control protrusion base and an insulating layer formed thereon via a transparent conductive film.
  • Patent Document 2 in a color filter for a liquid crystal display device similar to Patent Document 1, alignment control protrusions are formed of a stack of two or more colors formed using a plurality of colors of materials that form colored pixels, and It is disclosed that it is constituted by an insulating layer formed thereon via a transparent conductive film.
  • Patent Documents 1 and 2 according to each color filter for a liquid crystal display device, alignment failure of liquid crystal molecules can be suppressed, and even if light leakage occurs, a decrease in contrast can be prevented. Each is listed.
  • the line width of the display wiring such as the gate line and the source line is designed to be thin.
  • the line width of the display wiring such as the gate line and the source line is designed to be thin.
  • FIG. 10 is a cross-sectional view of a conventional transflective liquid crystal display panel 150a.
  • the liquid crystal display panel 150a includes a TFT (Thin Film Transistor) substrate 120a provided as an active matrix substrate, a CF (Color Filter) substrate 130a provided as a counter substrate, and both the substrates 120a. And a liquid crystal layer 140 provided between 130a and 130a.
  • TFT Thin Film Transistor
  • CF Color Filter
  • the TFT substrate 120a includes a display wiring 114a such as a gate line and a source line provided on the glass substrate 110a, an organic insulating film 116 provided so as to cover the display wiring 114a, and an organic Pixel electrodes 119a provided in a matrix on the insulating film 116 are provided.
  • the pixel electrode 119a includes a transparent electrode 117 and a reflective electrode 118 laminated thereon.
  • the reflective region is defined by the reflective electrode 118
  • the transmissive region is defined by the transparent electrode 117 exposed from the reflective electrode 118.
  • the CF substrate 130a includes a black matrix 121a provided on the glass substrate 110b, and a colored layer 122 provided between the lattices of the black matrix 121a.
  • the display wiring 114a, the reflective electrode 118, and the black matrix 121a are formed of a highly reflective metal material such as an aluminum film
  • the light L incident from the backlight is As shown in FIG. 10, multiple reflections by the surfaces of the reflective electrode 118, the display wiring 114a, and the black matrix 121a may cause light leakage in the vicinity of the black matrix 121a, thereby reducing display quality.
  • FIG. 11 is a cross-sectional view of a conventional transmissive liquid crystal display panel 150b.
  • the liquid crystal display panel 150b includes a TFT substrate 120b, a CF substrate 130b, and a liquid crystal layer 140 provided between the two substrates 120b and 130b.
  • the TFT substrate 120b includes a display wiring 114b such as a gate line and a source line provided on the glass substrate 110a, an inorganic insulating film 112 provided in order so as to cover the display wiring 114b, and an organic An insulating film 115 and pixel electrodes 119b provided in a matrix on the organic insulating film 115 are provided.
  • a display wiring 114b such as a gate line and a source line provided on the glass substrate 110a
  • an inorganic insulating film 112 provided in order so as to cover the display wiring 114b
  • an organic An insulating film 115 and pixel electrodes 119b provided in a matrix on the organic insulating film 115 are provided.
  • the CF substrate 130b includes a black matrix 121b provided on the glass substrate 110b and a colored layer 122 provided between the lattices of the black matrix 121b.
  • the black matrix 121b is formed thicker than the display wiring 114b by a metal material having high reflectance such as an aluminum film
  • the light L incident from the backlight is As shown in FIG. 11, due to multiple reflections by the respective surfaces of the black matrix 121b and the display wiring 114b, the alignment of the liquid crystal molecules in the liquid crystal layer 40 is disturbed in the step portion S where the step is formed on the substrate surface. Due to this, light leakage may occur in the vicinity of the black matrix 121b, and the display quality may be deteriorated.
  • the present invention has been made in view of such a point, and an object of the present invention is to suppress the occurrence of light leakage and suppress deterioration of display quality.
  • At least one surface of the black matrix and each wiring has an uneven portion formed in an uneven shape.
  • a liquid crystal display panel is provided so as to extend in parallel with each other, a plurality of wirings each having light reflectivity, an insulating film provided so as to cover each wiring, and a matrix on the insulating film
  • An active matrix substrate including a plurality of pixel electrodes provided in a matrix, a plurality of colored layers disposed in a matrix so as to be opposed to the active matrix substrate and overlapping each of the pixel electrodes, and
  • a liquid crystal display panel comprising a counter substrate including a black matrix provided between colored layers, and a liquid crystal layer provided between the active matrix substrate and the counter substrate, wherein at least the black matrix and each wiring One is characterized in that the surface has an uneven portion formed in an uneven shape.
  • the backlight light incident from the active matrix substrate side of the liquid crystal display panel is incident on the surface of the black matrix on the counter substrate. Even so, it is scattered or absorbed by the irregularities formed on the surface of the black matrix. Further, when the surface of each wiring has an uneven portion, the backlight light incident from the active matrix substrate side of the liquid crystal display panel is reflected by the surface of the black matrix on the counter substrate, and the active matrix Even if the light is incident on the surface of each wiring on the substrate, it is scattered or absorbed by the uneven portions formed on the surface of each wiring.
  • the backlight light incident from the active matrix substrate side of the liquid crystal display panel is uneven on the surface of the black matrix on the counter substrate. Even if the light is incident on the surface, the light is scattered or absorbed by the uneven portion formed on the surface of the black matrix. Even if a part of the scattered light is incident on the surface of each wiring on the active matrix substrate, it is scattered or absorbed by the concavo-convex portion formed on the surface of each wiring. As described above, the light of the backlight incident from the active matrix substrate side of the liquid crystal display panel is scattered or absorbed by the uneven portion formed on at least one surface of the black matrix and each wiring, thereby causing light leakage. Therefore, it is possible to suppress the occurrence of light leakage and suppress deterioration of display quality.
  • the concavo-convex portion may include a reflective film on the surface for scattering light incident on the surface.
  • the concavo-convex portion since the concavo-convex portion has the reflective film on the surface thereof, the backlight light incident from the active matrix substrate side of the liquid crystal display panel is formed on at least one surface of the black matrix and each wiring. Specifically, the light is scattered by the uneven portions.
  • the uneven portion may have a light absorptivity so as to absorb light incident on the surface.
  • grooved part contains a black pigment and has light absorptivity
  • substrate side of a liquid crystal display panel is black matrix and each each It is specifically absorbed by the uneven portion having a relatively large surface area formed on at least one surface of the wiring.
  • the convex portions of the concave and convex portions may be formed in a hemispherical shape.
  • the convex portions of the concave and convex portions are formed in a hemispherical shape, the backlight light incident from the active matrix substrate side of the liquid crystal display panel is incident on at least one surface of the black matrix and each wiring. Specifically, it is scattered or absorbed by the spherical surface of the convex part of the formed uneven part.
  • Each pixel electrode may have a reflective electrode.
  • each pixel electrode has a reflective electrode
  • the backlight light incident from the active matrix substrate side of the liquid crystal display panel is reflected on the surface (back surface) of the reflective electrode and the active matrix substrate. After being sequentially reflected on the surface of each wiring, it enters the counter substrate, and the effects of the present invention are specifically demonstrated.
  • the insulating film may be made of resin.
  • the insulating film is made of resin, the insulating film is easily formed as thick as about several ⁇ m. As a result, the multiple reflection of the light of the backlight incident from the active matrix substrate side of the liquid crystal display panel is likely to occur in the active matrix substrate, so that the effect of the present invention is effectively achieved.
  • Each pixel electrode may have a reflective area defined by the reflective electrode and a transmissive area other than the reflective area.
  • each pixel electrode has a reflection region and a transmission region, a transflective liquid crystal display panel is specifically configured.
  • the present invention since at least one surface of the black matrix and each wiring has a concavo-convex portion formed in a concavo-convex shape, the occurrence of light leakage is suppressed and the deterioration of display quality is suppressed. Can do.
  • FIG. 1 is a cross-sectional view of the display unit of the liquid crystal display panel 50a according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the TFT portion of the active matrix substrate 20a constituting the liquid crystal display panel 50a.
  • FIG. 3 is a cross-sectional view schematically showing the reflection of the light L in the liquid crystal display panel 50a.
  • FIG. 4 is a cross-sectional view of the liquid crystal display panel 50b according to the second embodiment.
  • FIG. 5 is a cross-sectional view of the liquid crystal display panel 50c according to the third embodiment.
  • FIG. 6 is a cross-sectional view of a liquid crystal display panel 50d according to the fourth embodiment.
  • FIG. 1 is a cross-sectional view of the display unit of the liquid crystal display panel 50a according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the TFT portion of the active matrix substrate 20a constituting the liquid crystal display panel 50a.
  • FIG. 3 is a cross-section
  • FIG. 7 is a cross-sectional view of a liquid crystal display panel 50e according to the fifth embodiment.
  • FIG. 8 is a cross-sectional view of a liquid crystal display panel 50f according to the sixth embodiment.
  • FIG. 9 is a cross-sectional view of a liquid crystal display panel 50g according to the seventh embodiment.
  • FIG. 10 is a cross-sectional view of a conventional transflective liquid crystal display panel 150a.
  • FIG. 11 is a cross-sectional view of a conventional transmissive liquid crystal display panel 150b.
  • Embodiment 1 of the Invention 1 to 3 show Embodiment 1 of a liquid crystal display panel according to the present invention.
  • FIG. 1 is a cross-sectional view of the display portion of the liquid crystal display panel 50a of the present embodiment
  • FIG. 2 is a cross-sectional view of the TFT portion of the active matrix substrate 20a constituting the liquid crystal display panel 50a
  • FIG. 3 is a cross-sectional view schematically showing the reflection of the light L in the liquid crystal display panel 50a.
  • the liquid crystal display panel 50a includes an active matrix substrate 20a and a counter substrate 30a arranged to face each other, and a liquid crystal layer 40 provided between the active matrix substrate 20a and the counter substrate 30a. And a sealing material (not shown) provided in a frame shape for adhering the active matrix substrate 20a and the counter substrate 30a to each other and enclosing the liquid crystal layer 40 between the active matrix substrate 20a and the counter substrate 30a. Yes.
  • the active matrix substrate 20a is provided so as to cover a plurality of gate lines 11 provided so as to extend in parallel to each other on an insulating substrate 10a such as a glass substrate.
  • the gate insulating film 12 formed on the gate insulating film 12, a plurality of source lines 14a provided on the gate insulating film 12 so as to extend in parallel with each other in a direction orthogonal to the gate lines 11, and the intersections of the gate lines 11 and the source lines 14a A plurality of TFTs 5 provided for each part, a first interlayer insulating film 15 made of an inorganic insulating film provided in order so as to cover each source line 14a and each TFT 5, and a resin-made second made of an organic insulating film
  • An interlayer insulating film 16 and a plurality of pixel electrodes 19 provided in a matrix on the second interlayer insulating film 16 and connected to each TFT 5 are provided.
  • the TFT 5 includes a gate electrode 11a in which each gate line 11 protrudes to the side, a gate insulating film 12 provided so as to cover the gate electrode 11a, and a gate electrode 11a on the gate insulating film 12.
  • the semiconductor layer 13 provided in an island shape at a position overlapping with the semiconductor layer 13, and the source electrode 14 a and the drain electrode 14 b provided so as to face each other on the semiconductor layer 13.
  • the source electrode (14a) is a portion protruding to the side of each source line 14a. Further, as shown in FIG.
  • the drain electrode 14b is connected to the transparent electrode 17 constituting the pixel electrode 19 through a contact hole formed in the laminated film of the first interlayer insulating film 15 and the second interlayer insulating film 16.
  • the semiconductor layer 13 includes a lower intrinsic amorphous silicon layer 13a and an upper layer n + amorphous silicon layer 13b doped with phosphorus, and includes a source electrode (14a) and a drain electrode 14b.
  • Intrinsic amorphous silicon layer 13a exposed from constitutes a channel region.
  • the pixel electrode 19 is composed of a transparent electrode 17 provided on the second interlayer insulating film 16 and a reflective electrode 18 laminated on the transparent electrode 17.
  • the surface of the second interlayer insulating film 16 under the pixel electrode 19 is formed in an uneven shape as shown in FIG. 1, the surface of the second interlayer insulating film 16 is interposed via the transparent electrode 17.
  • the surface of the provided reflective electrode 18 is also formed in an uneven shape.
  • the reflection region R is defined by the reflection electrode 18 and the transmission region is formed by the transparent electrode 17 exposed from the reflection electrode 18, as shown in FIG. T is specified.
  • the counter substrate 30a includes, for example, a black matrix 21a provided in a frame shape on an insulating substrate 10b such as a glass substrate and a lattice shape in the frame, and each of the black matrix 21a.
  • a color filter 22 including a red layer, a green layer, and a blue layer respectively provided between the lattices, and a transparent region provided to compensate for an optical path difference in the reflective region R and the transmissive region T in the reflective region R of the color filter 22
  • a common electrode 24 provided to cover the black matrix 21a, the transmission region T of the color filter 22 and the transparent layer 23 (reflection region R).
  • the common electrode 24 on the black matrix 21a and the color filter 22 is omitted.
  • the black matrix 21a has an uneven portion C whose surface is formed in an uneven shape.
  • the convex part of the uneven part C is formed in a hemispherical shape.
  • the black matrix 21a is comprised, for example by the organic insulating film in which the black pigment was disperse
  • the light-absorbing irregularities C are provided on the surface of the black matrix 21a, the backlight light L incident from the active matrix substrate 20a side of the liquid crystal display panel 50a is shown in FIG. As described above, even if the light is sequentially reflected on the surface of the reflective electrode 18 and the surface of the gate line 11 and is incident on the surface of the black matrix 21a, it is absorbed by the uneven portion C on the surface of the black matrix 21a.
  • the liquid crystal layer 40 is made of a nematic liquid crystal material having electro-optical characteristics.
  • the transflective liquid crystal display panel 50a configured as described above reflects light incident from the counter substrate 30a side in the reflective region R by the reflective electrode 18 and from the backlight incident from the active matrix substrate 20a side in the transmissive region T. It is configured to transmit light.
  • the liquid crystal display panel 50a in each pixel, when the gate signal is sent from the gate line 11 to the gate electrode 11a and the TFT 5 is turned on, the source signal from the source line 14a to the source electrode (14a). Then, a predetermined charge is written into the pixel electrode 19 including the transparent electrode 17 and the reflective electrode 18 through the semiconductor layer 13 and the drain electrode 14b.
  • liquid crystal display panel 50a a potential difference is generated between each pixel electrode 19 of the active matrix substrate 20a and the common electrode 24 of the counter substrate 30a, and a predetermined voltage is applied to the liquid crystal layer 40.
  • a predetermined voltage is applied to the liquid crystal layer 40.
  • an image is displayed by adjusting the light transmittance of the liquid crystal layer 40 by changing the alignment state of the liquid crystal layer 40 according to the magnitude of the voltage applied to the liquid crystal layer 40.
  • the manufacturing method of this embodiment includes an active matrix substrate manufacturing process, a counter substrate manufacturing process, and a substrate bonding process.
  • a titanium film, an aluminum film, a titanium film, and the like are sequentially formed on the entire substrate of the insulating substrate 10a such as a glass substrate by a sputtering method, and then patterned by photolithography to form the gate line 11 and the gate electrode.
  • 11a is formed to a thickness of about 4000 mm.
  • a silicon nitride film or the like is formed on the entire substrate on which the gate line 11 and the gate electrode 11a are formed by a plasma CVD (Chemical Vapor Deposition) method, and the gate insulating film 12 is formed to a thickness of about 4000 mm. To do.
  • a plasma CVD Chemical Vapor Deposition
  • an intrinsic amorphous silicon film (thickness of about 2000 mm) and phosphorus-doped n + amorphous silicon film (thickness of about 500 mm) are formed on the entire substrate on which the gate insulating film 12 is formed by plasma CVD, for example. Films are continuously formed, and then patterned into island shapes on the gate electrode 11a by photolithography to form a semiconductor formation layer in which an intrinsic amorphous silicon layer and an n + amorphous silicon layer are stacked.
  • an aluminum film and a titanium film are sequentially formed on the entire substrate on which the semiconductor formation layer has been formed by sputtering, and then patterned by photolithography to form a source line 14a and a source electrode (14a).
  • the drain electrode 14b is formed to a thickness of about 2000 mm.
  • the n + amorphous silicon layer of the semiconductor formation layer is etched by using the source electrode (14a) and the drain electrode 14b as a mask, thereby patterning the channel region to form the semiconductor layer 13 and the TFT 5 including the same. .
  • a silicon nitride film is formed on the entire substrate on which the TFT 5 is formed by a plasma CVD method, and the first interlayer insulating film 15 is formed to a thickness of about 4000 mm.
  • a positive photosensitive resin is applied to a thickness of about 3 ⁇ m by spin coating on the entire substrate on which the first interlayer insulating film 15 is formed, and the applied photosensitive resin is applied to a plurality of circles.
  • a first photomask that is randomly formed and spaced apart from each other, the shape of the light shielding portion is exposed uniformly and at a relatively low illuminance, and subsequently opened at a position corresponding to the contact hole on the drain electrode 14b. Development is performed after exposure at a relatively high illuminance uniformly and through a second photomask having a portion formed thereon.
  • the photosensitive resin in the exposed portion with the high illuminance is completely removed, and the photosensitive resin in the exposed portion with the low illuminance remains about 40% of the coating thickness, and the photosensitive resin in the unexposed portion. Will leave about 80% of the coating thickness.
  • the substrate on which the photosensitive resin is developed is heated to about 200 ° C., and the photosensitive resin is heated to form the second interlayer insulating film 16 in which the surface of the reflective region R has a smooth uneven shape. To do. Thereafter, the first interlayer insulating film 15 exposed from the second interlayer insulating film 16 is etched to form contact holes.
  • a transparent conductive film made of an ITO (Indium Tin Oxide) film or the like is formed on the entire substrate on the second interlayer insulating film 16 by a sputtering method, and then patterned by photolithography to form the transparent electrode 17 with a thickness.
  • the thickness is about 1000 mm.
  • a molybdenum film (thickness of about 750 mm) and an aluminum film (thickness of about 1000 mm) are sequentially formed on the entire substrate on which the transparent electrode 17 is formed by sputtering, and then patterned by photolithography to obtain a reflective electrode. 18 is formed, and a pixel electrode 19 including the transparent electrode 17 and the reflective electrode 18 is formed.
  • a polyimide resin is applied to the entire substrate on which the pixel electrode 19 is formed by a printing method, and then a rubbing process is performed to form an alignment film with a thickness of about 1000 mm.
  • the active matrix substrate 20a can be manufactured.
  • a positive photosensitive resin in which black pigments such as carbon fine particles are dispersed is applied to the entire substrate of the insulating substrate 10b such as a glass substrate by a spin coating method, and the applied photosensitive resin is described above.
  • the black matrix 21a having the concavo-convex portion C on the surface is formed to a thickness of about 2.0 ⁇ m by performing development and heating after exposure through a photomask in the same manner as the method for forming the second interlayer insulating film 16.
  • an acrylic photosensitive resin colored in red, green, or blue is applied onto the substrate on which the black matrix 21a is formed, and the applied photosensitive resin is exposed through a photomask.
  • patterning is performed by developing to form a colored layer (for example, a red layer) of a selected color with a thickness of about 2.0 ⁇ m.
  • the same process is repeated for the other two colors to form other two colored layers (for example, a green layer and a blue layer) with a thickness of about 2.0 ⁇ m, thereby forming the color filter 22.
  • an acrylic photosensitive resin is applied onto the substrate on which the color filter 22 is formed by spin coating, and the applied photosensitive resin is exposed through a photomask and then developed.
  • a transparent layer 23 is formed in the reflective region R to a thickness of about 2 ⁇ m.
  • an ITO film is formed on the entire substrate on which the transparent layer 23 is formed by a sputtering method, and the common electrode 24 is formed to a thickness of about 1500 mm.
  • a polyimide resin is applied to the entire substrate on which the common electrode 24 is formed by a printing method, and then a rubbing process is performed to form an alignment film with a thickness of about 1000 mm.
  • the counter substrate 30a can be manufactured.
  • a seal material made of ultraviolet curing and thermosetting resin is drawn in a frame shape on the counter substrate 30a manufactured in the counter substrate manufacturing step.
  • a liquid crystal material is dropped onto a region inside the sealing material in the counter substrate 30a on which the sealing material is drawn.
  • the bonded body is released to atmospheric pressure. By doing, the surface and the back surface of the bonded body are pressurized.
  • the sealing material is cured by heating the bonded body.
  • the liquid crystal display panel 50a can be manufactured as described above.
  • the surface of the black matrix 21a has the concavo-convex portion C formed in the concavo-convex shape, the backlight incident from the active matrix substrate 20a side. Even if the light L is reflected on the surface (back surface) of the reflective electrode 18 and the surface of the gate line 11 in order and is incident on the surface of the black matrix 21a, it has the light absorption property formed on the surface of the black matrix 21a. However, it is absorbed by the uneven portion C having a relatively large surface area.
  • FIG. 4 is a cross-sectional view of the liquid crystal display panel 50b of the present embodiment.
  • the same portions as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the black matrix 21a on the counter substrate 30a has light absorption, but in the liquid crystal display panel 50b of the present embodiment, the black matrix 21b on the counter substrate 30b A reflective film 21bb is provided on the surface.
  • the liquid crystal display panel 50b is provided between the active matrix 20a of the first embodiment, the counter substrate 30b arranged to face the active matrix 20a, and the active matrix substrate 20a and the counter substrate 30b.
  • a sealing material (not shown) provided in a frame shape for adhering the liquid crystal layer 40, the active matrix substrate 20a and the counter substrate 30b to each other and enclosing the liquid crystal layer 40 between the active matrix substrate 20a and the counter substrate 30b. ).
  • the counter substrate 30b includes, for example, a black matrix 21b provided in a frame shape on an insulating substrate 10b such as a glass substrate and a lattice shape in the frame, and between the lattices of the black matrix 21b.
  • a black matrix 21b provided in a frame shape on an insulating substrate 10b such as a glass substrate and a lattice shape in the frame, and between the lattices of the black matrix 21b.
  • a common electrode (24) provided so as to cover the black matrix 21b, the transmission region T of the color filter 22 and the transparent layer (23, reflection region R).
  • the black matrix 21b is provided on the insulating substrate 10b so as to cover the base layer 21ba whose surface is uneven and the base layer 21ba, and is reflected by the reflective electrode 18 on the active matrix substrate. And a reflective film 21bb for scattering the reflected light.
  • the counter substrate 30b uses a positive photosensitive resin in which the black pigment is not dispersed instead of the positive photosensitive resin in which the black pigment is dispersed.
  • a positive photosensitive resin in which the black pigment is not dispersed instead of the positive photosensitive resin in which the black pigment is dispersed.
  • the surface of the black matrix 21b has the uneven portion C formed in an uneven shape
  • the backlight light L incident from the active matrix substrate 20a side is reflected.
  • the reflection film 21bb constituting the uneven portion C formed on the surface of the black matrix 21b Scattered.
  • the light L incident on the surface of the black matrix 21b of the liquid crystal display panel 50b from reaching the surface of the gate line 11 and reflecting again on the surface, so that in the liquid crystal display panel 50b
  • the occurrence of light leakage can be suppressed. Therefore, in the transflective liquid crystal display panel 50b, it is possible to suppress the occurrence of light leakage and suppress the deterioration of display quality.
  • FIG. 5 is a cross-sectional view of the liquid crystal display panel 50c of this embodiment.
  • the uneven portions C are provided on the surfaces of the black matrices 21a and 21b, respectively.
  • the liquid crystal display panel 50c of the present embodiment Further, not only on the surface of the black matrix 21b, but also on the surface of each gate line 11c, an uneven portion C is provided.
  • the liquid crystal display panel 50c is provided between the active matrix 20c, the counter substrate 30b according to the second embodiment, which is disposed to face the active matrix 20c, and the active matrix substrate 20c and the counter substrate 30b.
  • a sealing material (not shown) provided in a frame shape for adhering the liquid crystal layer 40, the active matrix substrate 20c and the counter substrate 30b to each other and enclosing the liquid crystal layer 40 between the active matrix substrate 20c and the counter substrate 30b. ).
  • the active matrix substrate 20c has an uneven resin layer 9a between the insulating substrate 10a and each gate line 11c, so that the surface of each gate line 11c is uneven. It has the formed concavo-convex portion C, and the other configuration is substantially the same as the active matrix substrate 20a of the first embodiment.
  • the active matrix substrate 20c has an uneven surface of the resin layer 9a in the same manner as the method for forming the second interlayer insulating film 16 before the gate lines 11 are formed. And then forming the gate line 11c.
  • the surface of both the black matrix 21b and each gate line 11c has the concavo-convex portion C formed in the concavo-convex shape, the back incident from the active matrix substrate 20c side. Even if light of light is reflected by the front surface (back surface) of the reflective electrode 18 and is incident on the surface of the gate line 11c, it is scattered by the surface of the concavo-convex portion C of the gate line 11c. And even if a part of the scattered light is incident on the surface of the black matrix 21b, it is scattered by the reflective film 21bb constituting the concavo-convex portion C formed on the surface of the black matrix 21b.
  • the backlight light incident from the active matrix substrate 20c side of the liquid crystal display panel 50c is scattered by the uneven portion C on the surface of each gate line 11c and the uneven portion C on the surface of the black matrix 21b.
  • the occurrence of light leakage in the liquid crystal display panel 50c can be suppressed. Therefore, in the transflective liquid crystal display panel 50c, it is possible to suppress the occurrence of light leakage and suppress the deterioration of display quality.
  • FIG. 6 is a cross-sectional view of the liquid crystal display panel 50d of this embodiment.
  • the uneven portions C are provided on the surfaces of the black matrices 21a and 21b, respectively.
  • the concavo-convex portion C is provided on the surface of each gate line 11c.
  • the liquid crystal display panel 50d is provided between the active matrix 20c of Embodiment 3 described above, the counter substrate 30d disposed to face the active matrix 20c, and the active matrix substrate 20c and the counter substrate 30d.
  • the liquid crystal layer 40, the active matrix substrate 20c and the counter substrate 30d are bonded to each other, and a sealing material (not shown) provided in a frame shape to enclose the liquid crystal layer 40 between the active matrix substrate 20c and the counter substrate 30d. ) And.
  • the counter substrate 30 d includes, for example, a black matrix 21 d provided in a frame shape on an insulating substrate 10 b such as a glass substrate and a lattice shape in the frame, and between the lattices of the black matrix 21 d.
  • a black matrix 21 d provided in a frame shape on an insulating substrate 10 b such as a glass substrate and a lattice shape in the frame, and between the lattices of the black matrix 21 d.
  • a common electrode (24) provided so as to cover the black matrix 21d, the transmission region (T) of the color filter 22 and the transparent layer (23, reflection region R).
  • the black matrix 21d is made of, for example, an aluminum film, and the surface thereof is formed flat.
  • the counter substrate 30d may be formed, for example, by an aluminum film instead of forming the black matrix 21a by applying a positive photosensitive resin in which a black pigment is dispersed in the counter substrate manufacturing step of the first embodiment.
  • the backlight light incident from the active matrix substrate 20c side is reflected. Even if the light is reflected by the front surface (back surface) of the electrode 18 and is incident on the surface of the gate line 11c, it is scattered by the surface of the uneven portion C of the gate line 11c. Thereby, the light of the backlight incident from the active matrix substrate 20c side of the liquid crystal display panel 50d is scattered by the uneven portions C on the surface of each gate line 11c, so that the occurrence of light leakage in the liquid crystal display panel 50d is suppressed. can do. Therefore, in the transflective liquid crystal display panel 50d, it is possible to suppress the occurrence of light leakage and suppress deterioration in display quality.
  • FIG. 7 is a cross-sectional view of the liquid crystal display panel 50e of this embodiment.
  • transflective liquid crystal display panels 50a to 50d are illustrated, but in the present embodiment, a transmissive liquid crystal display panel 50e is illustrated.
  • the liquid crystal display panel 50e includes an active matrix substrate 20e and a counter substrate 30e arranged opposite to each other, a liquid crystal layer 40 provided between the active matrix substrate 20e and the counter substrate 30e, and an active matrix substrate 20e.
  • a sealing material (not shown) provided in a frame shape is provided for adhering the matrix substrate 20e and the counter substrate 30e to each other and enclosing the liquid crystal layer 40 between the active matrix substrate 20e and the counter substrate 30e.
  • the active matrix substrate 20e includes a plurality of gate lines 11 provided so as to extend in parallel to each other on an insulating substrate 10a such as a glass substrate, and gates provided so as to cover the gate lines 11.
  • a plurality of pixel electrodes 19e made of a transparent conductive film and the like are provided on the film 15e in a matrix and connected to the respective TFTs (5).
  • the active matrix substrate 20e can be manufactured by omitting the formation of the second interlayer insulating film 16 and the reflective electrode 18 in the active matrix substrate manufacturing process of the first embodiment.
  • the counter substrate 30 e includes, for example, a black matrix 21 e provided in a frame shape on the insulating substrate 10 b such as a glass substrate and a lattice shape in the frame, and between the lattices of the black matrix 21 e.
  • a color filter 22 including a red layer, a green layer, and a blue layer, each provided, and a common electrode (24) provided so as to cover the black matrix 21e and the color filter 22 are provided.
  • the black matrix 21e has a concavo-convex portion C whose surface is formed in a concavo-convex shape. Moreover, since the black matrix 21e is comprised by the organic insulating film in which the black pigment was disperse
  • the counter substrate 30e can be manufactured by omitting the formation of the transparent layer 23 in the counter substrate manufacturing step of the first embodiment.
  • the backlight light incident from the active matrix substrate 20e side is converted into the black matrix. Even if it is incident on the surface of 21e, it is absorbed by the surface of the uneven portion C of the black matrix 21e. Thereby, the light of the backlight incident from the active matrix substrate 20e side of the liquid crystal display panel 50e is absorbed by the uneven portion C on the surface of the black matrix 21e, and thus the occurrence of light leakage in the liquid crystal display panel 50e is suppressed. be able to. Therefore, in the transmissive liquid crystal display panel 50e, it is possible to suppress the occurrence of light leakage and suppress the deterioration of display quality.
  • the surface of the concavo-convex portion C of the black matrix 21e is exemplified as having a light absorptivity, but the surface has a reflective film, and the reflective film allows the surface from the backlight.
  • the structure which scatters light may be sufficient.
  • FIG. 8 is a cross-sectional view of the liquid crystal display panel 50f of the present embodiment.
  • the uneven portion C is provided on the surface of the black matrix 21e.
  • the surface of each gate line 11f is provided.
  • An uneven portion C is provided.
  • the liquid crystal display panel 50f includes an active matrix substrate 20f and a counter substrate 30f arranged opposite to each other, a liquid crystal layer 40 provided between the active matrix substrate 20f and the counter substrate 30f, and an active matrix substrate 20f.
  • a sealing material (not shown) provided in a frame shape is provided for adhering the matrix substrate 20f and the counter substrate 30f to each other and enclosing the liquid crystal layer 40 between the active matrix substrate 20f and the counter substrate 30f.
  • the active matrix substrate 20f includes a plurality of gate lines 11f provided so as to extend in parallel to each other on an insulating substrate 10a such as a glass substrate, and gates provided so as to cover the gate lines 11f.
  • a plurality of pixel electrodes 19e made of a transparent conductive film and the like are provided on the film 15e in a matrix and connected to the respective TFTs (5).
  • the formation of the second interlayer insulating film 16 and the reflective electrode 18 is omitted in the active matrix substrate manufacturing process of the first embodiment, and the gate line 11f is formed as in the third embodiment.
  • a resin layer 9b having an uneven surface can be formed.
  • the counter substrate 30f includes, for example, a black matrix 21f provided in a frame shape on the insulating substrate 10b such as a glass substrate and a lattice shape in the frame, and between the lattices of the black matrix 21f.
  • a color filter 22 including a red layer, a green layer, and a blue layer, each provided, and a common electrode (24) provided so as to cover the black matrix 21f and the color filter 22 are provided.
  • the black matrix 21f is made of, for example, an aluminum film and has a flat surface. Further, as shown in FIG. 8, the black matrix 21f is formed thicker than the width of each gate line 11f.
  • the counter substrate 30f is formed by sputtering an aluminum film, for example.
  • the film can be formed by the method and patterned by photolithography to form the black matrix 21f and omit the formation of the transparent layer 23.
  • the backlight light incident from the active matrix substrate 20f side is black. Even if the light is reflected from the surface of the matrix 21f and incident on the surface of the gate line 11f, it is scattered by the surface of the concavo-convex portion C of the gate line 11f. As a result, the light of the backlight incident from the active matrix substrate 20f side of the liquid crystal display panel 50f is scattered by the uneven portions C on the surface of each gate line 11f, thereby suppressing the occurrence of light leakage in the liquid crystal display panel 50f. can do. Therefore, in the transmissive liquid crystal display panel 50f, it is possible to suppress the occurrence of light leakage and suppress the deterioration of display quality.
  • FIG. 9 is a cross-sectional view of the liquid crystal display panel 50g of the present embodiment.
  • the uneven portion C is provided on the surface of the black matrix 21e.
  • the uneven portion is formed on the surface of each gate line 11f. C is provided, but in the transmissive liquid crystal display panel 50g of the present embodiment, the concavo-convex portions C are provided on the surfaces of both the black matrix 21e and each gate line 11f.
  • the liquid crystal display panel 50g includes an active matrix substrate 20f according to the sixth embodiment, a counter substrate 30e according to the fifth embodiment disposed opposite to the active matrix substrate 20f, the active matrix substrate 20f, The liquid crystal layer 40 provided between the counter substrate 30e, the active matrix substrate 20f and the counter substrate 30e are adhered to each other, and the liquid crystal layer 40 is provided between the active matrix substrate 20f and the counter substrate 30e in a frame shape. Sealing material (not shown).
  • the black matrix 21e constituting the counter substrate 30e is configured such that the surface of the concavo-convex portion C has a reflective film, and the light from the backlight is diffused by the reflective film.
  • the surface of both the black matrix 21e and each gate line 11f has the concavo-convex portion C formed in the concavo-convex shape, the back incident from the active matrix substrate 20f side. Even if light of light enters the surface of the black matrix 21e, it is scattered by the surface of the concavo-convex portion C of the black matrix 21e. And even if a part of the scattered light is incident on the surface of the gate line 11f, it is scattered by the surface of the concavo-convex portion C of each gate line 11f.
  • the backlight light incident from the active matrix substrate 20f side of the liquid crystal display panel 50g is scattered by the uneven portion C on the surface of the black matrix 21e and the uneven portion C on the surface of each gate line 11f.
  • the occurrence of light leakage in the liquid crystal display panel 50f can be suppressed. Therefore, in the transmissive liquid crystal display panel 50g, it is possible to suppress the occurrence of light leakage and suppress the deterioration of display quality.
  • transflective and transmissive liquid crystal display panels are exemplified, but the present invention can also be applied to a reflective liquid crystal display panel.
  • the gate line is exemplified as the light-reflective wiring.
  • the present invention can also be applied to the source line.
  • the present invention can suppress light leakage and suppress deterioration of display quality, and thus is useful for all transmissive, transflective, and reflective liquid crystal display panels.

Abstract

 光反射性をそれぞれ有する複数の配線(11)、各配線(11)を覆うように設けられた絶縁膜(16)、及び絶縁膜(16)にマトリクス状に設けられた複数の画素電極(19)を含むアクティブマトリクス基板(20a)と、アクティブマトリクス基板(20a)に対向して配置され、各画素電極(19)にそれぞれ重なるようにマトリクス状に設けられた複数の着色層(22)、及び各着色層(22)の間に設けられたブラックマトリクス(21a)を含む対向基板(30a)と、アクティブマトリクス基板(20a)及び対向基板(30a)の間に設けられた液晶層(40)とを備えた液晶表示パネル(50a)であって、ブラックマトリクス(21a)及び各配線(11)の少なくとも一方は、表面が凹凸状に形成された凹凸部(C)を有している。

Description

液晶表示パネル
 本発明は、液晶表示パネルに関するものである。
 液晶表示パネルは、例えば、アクティブマトリクス基板と、そのアクティブマトリクス基板に対向して配置された対向基板と、それらの両基板の間に設けられた液晶層とを備えている。
 アクティブマトリクス基板は、例えば、マトリクス状に設けられた複数の画素電極と、各画素電極の一辺に沿って互いに平行に延びるように設けられた複数のゲート線と、各ゲート線に直交する方向の各画素電極の他の一辺に沿って互いに平行に延びるように設けられた複数のソース線とを備えている。
 対向基板は、例えば、アクティブマトリクス基板の各画素電極にそれぞれ重なるようにマトリクス状に設けられた複数の着色層と、各着色層の間、すなわち、アクティブマトリクス基板の各ゲート線及び各ソース線に重なるように枠状且つその枠内に格子状に設けられたブラックマトリクスとを備えている。
 ここで、対向基板に設けられたブラックマトリクスは、遮光性を有し、例えば、液晶表示パネルの背面側に設けられたバックライトの光がアクティブマトリクス基板の各ゲート線及び各ソース線の近傍で漏れないように構成されている。
 例えば、特許文献1には、ガラス基板上に、少なくともブラックマトリクス、上記着色層に相当する着色画素、液晶層の配向を制御するための配向制御用突起が形成された液晶表示装置用カラーフィルターにおいて、配向制御用突起が、配向制御用突起土台と、その上に透明導電膜を介して形成された絶縁層とにより構成されていることが開示されている。また、特許文献2には、特許文献1と同様な液晶表示装置用カラーフィルターにおいて、配向制御用突起が、着色画素を形成する複数色の材料を用いて形成した2色以上の積層と、その上に透明導電膜を介して形成した絶縁層とにより構成されていることが開示されている。そして、特許文献1及び2には、各液晶表示装置用カラーフィルターによれば、液晶分子の配向不良を抑制し、また、光漏れが発生しても、コントラストの低下を防ぐことができる、とそれぞれ記載されている。
特開2008-51856号公報 特開2008-52169号公報
 ところで、液晶表示パネルでは、近年の高精細化に伴って、上記ゲート線やソース線などの表示用配線の線幅が細く設計されているので、光漏れが発生しないように設計しても、例えば、画素電極に反射電極を備えた半透過型の液晶表示パネルでは、パネル内に入射したバックライトからの光が、後述するように、多重反射することにより、光漏れが発生することがある。
 図10は、従来の半透過型の液晶表示パネル150aの断面図である。
 液晶表示パネル150aは、図10に示すように、アクティブマトリクス基板として設けられたTFT(Thin Film Transistor)基板120aと、対向基板として設けられたCF(Color Filter)基板130aと、それらの両基板120a及び130aの間に設けられた液晶層140とを備えている。
 TFT基板120aは、図10に示すように、ガラス基板110aに設けられたゲート線やソース線などの表示用配線114aと、表示用配線114aを覆うように設けられた有機絶縁膜116と、有機絶縁膜116上にマトリクス状に設けられた画素電極119aとを備えている。ここで、画素電極119aは、図10に示すように、透明電極117と、その上に積層された反射電極118とにより構成されている。そして、TFT基板120aでは、反射電極118により反射領域が規定され、反射電極118から露出する透明電極117により透過領域が規定されている。
 CF基板130aは、図10に示すように、ガラス基板110bに設けられたブラックマトリクス121aと、ブラックマトリクス121aの各格子間にそれぞれ設けられた着色層122とを備えている。
 ここで、液晶表示パネル150aにおいて、表示用配線114a、反射電極118及びブラックマトリクス121aがアルミニウム膜などの高反射率の金属材料により形成されている場合には、バックライトから入射する光Lが、図10に示すように、反射電極118、表示用配線114a及びブラックマトリクス121aの各表面によって多重反射することにより、ブラックマトリクス121aの近傍で光漏れが発生して、表示品位が低下するおそれがある。
 また、図11は、従来の透過型の液晶表示パネル150bの断面図である。
 液晶表示パネル150bは、図11に示すように、TFT基板120bと、CF基板130bと、それらの両基板120b及び130bの間に設けられた液晶層140とを備えている。
 TFT基板120bは、図11に示すように、ガラス基板110aに設けられたゲート線やソース線などの表示用配線114bと、表示用配線114bを覆うように順に設けられた無機絶縁膜112及び有機絶縁膜115と、有機絶縁膜115上にマトリクス状に設けられた画素電極119bとを備えている。
 CF基板130bは、図11に示すように、ガラス基板110bに設けられたブラックマトリクス121bと、ブラックマトリクス121bの各格子間にそれぞれ設けられた着色層122とを備えている。
 ここで、液晶表示パネル150bにおいて、特に、ブラックマトリクス121bがアルミニウム膜などの高反射率の金属材料により表示用配線114bよりも太く形成されている場合には、バックライトから入射する光Lが、図11に示すように、ブラックマトリクス121b及び表示用配線114bの各表面によって多重反射することにより、また、基板表面に段差が形成された段差部Sでは、液晶層40の液晶分子の配向が乱れ易いことにより、ブラックマトリクス121bの近傍で光漏れが発生して、表示品位が低下するおそれがある。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、光漏れの発生を抑制して、表示品位の低下を抑制することにある。
 上記目的を達成するために、本発明は、ブラックマトリクス及び各配線の少なくとも一方の表面が凹凸状に形成された凹凸部を有するようにしたものである。
 具体的に本発明に係る液晶表示パネルは、互いに平行に延びるように設けられ、光反射性をそれぞれ有する複数の配線、該各配線を覆うように設けられた絶縁膜、及び該絶縁膜にマトリクス状に設けられた複数の画素電極を含むアクティブマトリクス基板と、上記アクティブマトリクス基板に対向して配置され、上記各画素電極にそれぞれ重なるようにマトリクス状に設けられた複数の着色層、及び該各着色層の間に設けられたブラックマトリクスを含む対向基板と、上記アクティブマトリクス基板及び対向基板の間に設けられた液晶層とを備えた液晶表示パネルであって、上記ブラックマトリクス及び各配線の少なくとも一方は、表面が凹凸状に形成された凹凸部を有していることを特徴とする。
 上記の構成によれば、ブラックマトリクスの表面が凹凸部を有している場合には、液晶表示パネルのアクティブマトリクス基板側から入射したバックライトの光が、対向基板上のブラックマトリクスの表面に入射しても、ブラックマトリクスの表面に形成された凹凸部により、散乱又は吸収される。また、各配線の表面が凹凸部を有している場合には、液晶表示パネルのアクティブマトリクス基板側から入射したバックライトの光が、対向基板上のブラックマトリクスの表面で反射して、アクティブマトリクス基板上の各配線の表面に入射しても、各配線の表面に形成された凹凸部により、散乱又は吸収される。さらに、ブラックマトリクス及び各配線の双方の表面が凹凸部を有している場合には、液晶表示パネルのアクティブマトリクス基板側から入射したバックライトの光が、対向基板上のブラックマトリクスの表面の凹凸部に入射しても、ブラックマトリクスの表面に形成された凹凸部により、散乱又は吸収される。そして、散乱された光の一部がアクティブマトリクス基板上の各配線の表面に入射しても、各配線の表面に形成された凹凸部により、散乱又は吸収される。このように、液晶表示パネルのアクティブマトリクス基板側から入射したバックライトの光が、ブラックマトリクス及び各配線の少なくとも一方の表面に形成された凹凸部により、散乱又は吸収されることにより、光漏れが抑制されるので、光漏れの発生を抑制して、表示品位の低下を抑制することが可能になる。
 上記凹凸部は、表面に入射した光を散乱させるための反射膜を表面に備えていてもよい。
 上記の構成によれば、凹凸部がその表面に反射膜を備えているので、液晶表示パネルのアクティブマトリクス基板側から入射したバックライトの光が、ブラックマトリクス及び各配線の少なくとも一方の表面に形成された凹凸部により具体的に散乱される。
 上記凹凸部は、表面に入射した光を吸収するように光吸収性を有していてもよい。
 上記の構成によれば、凹凸部が、例えば、黒色顔料を含んで、光吸収性を有しているので、液晶表示パネルのアクティブマトリクス基板側から入射したバックライトの光が、ブラックマトリクス及び各配線の少なくとも一方の表面に形成された表面積が比較的大きい凹凸部により具体的に吸収される。
 上記凹凸部の凸部は、半球状に形成されていてもよい。
 上記の構成によれば、凹凸部の凸部が半球状に形成されているので、液晶表示パネルのアクティブマトリクス基板側から入射したバックライトの光が、ブラックマトリクス及び各配線の少なくとも一方の表面に形成された凹凸部の凸部の球面により具体的に散乱又は吸収される。
 上記各画素電極は、反射電極を有していてもよい。
 上記の構成によれば、各画素電極が反射電極を有しているので、液晶表示パネルのアクティブマトリクス基板側から入射したバックライトの光が、アクティブマトリクス基板において、反射電極の表面(裏面)及び各配線の表面で順に反射した後に、対向基板に入射することになり、本発明の作用効果が具体的に奏される。
 上記絶縁膜は、樹脂製であってもよい。
 上記の構成によれば、絶縁膜が樹脂製であるので、絶縁膜が数μm程度に厚く形成され易くなる。これにより、液晶表示パネルのアクティブマトリクス基板側から入射したバックライトの光の多重反射が、アクティブマトリクス基板内で起こり易くなるので、本発明の作用効果が有効に奏される。
 上記各画素電極は、上記反射電極により規定された反射領域と、該反射領域以外の透過領域とを有していてもよい。
 上記の構成によれば、各画素電極が反射領域及び透過領域を有しているので、半透過型の液晶表示パネルが具体的に構成される。
 本発明によれば、ブラックマトリクス及び各配線の少なくとも一方の表面が、凹凸状に形成された凹凸部を有しているので、光漏れの発生を抑制して、表示品位の低下を抑制することができる。
図1は、実施形態1に係る液晶表示パネル50aの表示部の断面図である。 図2は、液晶表示パネル50aを構成するアクティブマトリクス基板20aのTFT部の断面図である。 図3は、液晶表示パネル50aにおける光Lの反射を模式的に示す断面図である。 図4は、実施形態2に係る液晶表示パネル50bの断面図である。 図5は、実施形態3に係る液晶表示パネル50cの断面図である。 図6は、実施形態4に係る液晶表示パネル50dの断面図である。 図7は、実施形態5に係る液晶表示パネル50eの断面図である。 図8は、実施形態6に係る液晶表示パネル50fの断面図である。 図9は、実施形態7に係る液晶表示パネル50gの断面図である。 図10は、従来の半透過型の液晶表示パネル150aの断面図である。 図11は、従来の透過型の液晶表示パネル150bの断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
 《発明の実施形態1》
 図1~図3は、本発明に係る液晶表示パネルの実施形態1を示している。具体的に、図1は、本実施形態の液晶表示パネル50aの表示部の断面図であり、図2は、液晶表示パネル50aを構成するアクティブマトリクス基板20aのTFT部の断面図である。また、図3は、液晶表示パネル50aにおける光Lの反射を模式的に示す断面図である。
 液晶表示パネル50aは、図1及び図3に示すように、互いに対向して配置されたアクティブマトリクス基板20a及び対向基板30aと、アクティブマトリクス基板20a及び対向基板30aの間に設けられた液晶層40と、アクティブマトリクス基板20a及び対向基板30aを互いに接着すると共にアクティブマトリクス基板20a及び対向基板30aの間に液晶層40を封入するために枠状に設けられたシール材(不図示)とを備えている。
 アクティブマトリクス基板20aは、図1~図3に示すように、ガラス基板などの絶縁基板10a上に互いに平行に延びるように設けられた複数のゲート線11と、各ゲート線11を覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上に各ゲート線11と直交する方向に互いに平行に延びるように設けられた複数のソース線14aと、各ゲート線11及び各ソース線14aの交差部分毎にそれぞれ設けられた複数のTFT5と、各ソース線14a及び各TFT5を覆うように順に設けられた無機絶縁膜からなる第1層間絶縁膜15、及び有機絶縁膜からなる樹脂製の第2層間絶縁膜16と、第2層間絶縁膜16上にマトリクス状に設けられ、各TFT5にそれぞれ接続された複数の画素電極19とを備えている。
 TFT5は、図2に示すように、各ゲート線11が側方に突出したゲート電極11aと、ゲート電極11aを覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上でゲート電極11aに重なる位置に島状に設けられた半導体層13と、半導体層13上で互いに対峙するように設けられたソース電極(14a)及びドレイン電極14bとを備えている。ここで、ソース電極(14a)は、各ソース線14aの側方に突出した部分である。また、ドレイン電極14bは、図2に示すように、第1層間絶縁膜15及び第2層間絶縁膜16の積層膜に形成されたコンタクトホールを介して画素電極19を構成する透明電極17に接続されている。さらに、半導体層13は、図2に示すように、下層の真性アモルファスシリコン層13aと、その上層のリンがドープされたnアモルファスシリコン層13bとを備え、ソース電極(14a)及びドレイン電極14bから露出する真性アモルファスシリコン層13aがチャネル領域を構成している。
 画素電極19は、図1に示すように、第2層間絶縁膜16上に設けられた透明電極17と、透明電極17上に積層された反射電極18とにより構成されている。ここで、画素電極19の下層の第2層間絶縁膜16の表面は、図1に示すように、凹凸状に形成されているので、第2層間絶縁膜16の表面に透明電極17を介して設けられた反射電極18の表面も凹凸状に形成されている。
 そして、アクティブマトリクス基板20a及びそれを備えた液晶表示パネル50aの表示部では、図1に示すように、反射電極18により反射領域Rが規定され、反射電極18から露出する透明電極17により透過領域Tが規定されている。
 対向基板30aは、図1及び図3に示すように、例えば、ガラス基板などの絶縁基板10b上に枠状に且つその枠内に格子状に設けられたブラックマトリクス21aと、ブラックマトリクス21aの各格子間にそれぞれ設けられた赤色層、緑色層及び青色層を含むカラーフィルター22と、カラーフィルター22の反射領域Rにおいて、反射領域R及び透過領域Tにおける光路差を補償するために設けられた透明層23と、ブラックマトリクス21a、カラーフィルター22の透過領域T及び透明層23(反射領域R)を覆うように設けられた共通電極24とを備えている。なお、図3では、ブラックマトリクス21a及びカラーフィルター22上の共通電極24が省略されている。
 ブラックマトリクス21aは、図3に示すように、表面が凹凸状に形成された凹凸部Cを有している。ここで、凹凸部Cの凸部は、半球状に形成されている。また、ブラックマトリクス21aは、例えば、黒色顔料が分散された有機絶縁膜により構成されているので、凹凸部Cは、光吸収性を有している。これにより、ブラックマトリクス21aの表面には、光吸収性を有する凹凸部Cが設けられているので、液晶表示パネル50aのアクティブマトリクス基板20a側から入射したバックライトの光Lが、図3に示すように、反射電極18の表面及びゲート線11の表面で順に反射して、ブラックマトリクス21aの表面に入射しても、ブラックマトリクス21aの表面の凹凸部Cにより、吸収される。
 液晶層40は、電気光学特性を有するネマチックの液晶材料などにより構成されている。
 上記構成の半透過型の液晶表示パネル50aは、反射領域Rにおいて対向基板30a側から入射する光を反射電極18で反射すると共に、透過領域Tにおいてアクティブマトリクス基板20a側から入射するバックライトからの光を透過するように構成されている。そして、液晶表示パネル50aでは、各画素において、ゲート線11からゲート信号がゲート電極11aに送られて、TFT5がオン状態になったときに、ソース線14aからソース信号がソース電極(14a)に送られて、半導体層13及びドレイン電極14bを介して、透明電極17及び反射電極18からなる画素電極19に所定の電荷が書き込まれる。このとき、液晶表示パネル50aでは、アクティブマトリクス基板20aの各画素電極19と対向基板30aの共通電極24との間において電位差が生じ、液晶層40に所定の電圧が印加される。そして、液晶表示パネル50aでは、液晶層40に印加された電圧の大きさによって液晶層40の配向状態を変えることにより、液晶層40の光透過率を調整して画像が表示される。
 次に、本実施形態の液晶表示パネル50aの製造方法について一例を挙げて説明する。本実施形態の製造方法は、アクティブマトリクス基板作製工程、対向基板作製工程及び基板貼り合わせ工程を備える。
 <アクティブマトリクス基板作製工程>
 まず、ガラス基板などの絶縁基板10aの基板全体に、スパッタリング法により、例えば、チタン膜、アルミニウム膜及びチタン膜などを順に成膜し、その後、フォトリソグラフィによりパターニングして、ゲート線11及びゲート電極11aを厚さ4000Å程度に形成する。
 続いて、ゲート線11及びゲート電極11aが形成された基板全体に、プラズマCVD(Chemical Vapor Deposition)法により、例えば、窒化シリコン膜などを成膜し、ゲート絶縁膜12を厚さ4000Å程度に形成する。
 さらに、ゲート絶縁膜12が形成された基板全体に、プラズマCVD法により、例えば、真性アモルファスシリコン膜(厚さ2000Å程度)、及びリンがドープされたnアモルファスシリコン膜(厚さ500Å程度)を連続して成膜し、その後、フォトリソグラフィによりゲート電極11a上に島状にパターニングして、真性アモルファスシリコン層及びnアモルファスシリコン層が積層された半導体形成層を形成する。
 そして、上記半導体形成層が形成された基板全体に、スパッタリング法により、例えば、アルミニウム膜及びチタン膜などを順に成膜し、その後、フォトリソグラフィによりパターニングして、ソース線14a、ソース電極(14a)及びドレイン電極14bを厚さ2000Å程度に形成する。
 続いて、ソース電極(14a)及びドレイン電極14bをマスクとして上記半導体形成層のnアモルファスシリコン層をエッチングすることにより、チャネル領域をパターニングして、半導体層13及びそれを備えたTFT5を形成する。
 さらに、TFT5が形成された基板全体に、プラズマCVD法により、例えば、窒化シリコン膜などを成膜し、第1層間絶縁膜15を厚さ4000Å程度に形成する。
 そして、第1層間絶縁膜15が形成された基板全体に、スピンコート法により、例えば、ポジ型の感光性樹脂を厚さ3μm程度に塗布し、その塗布された感光性樹脂を、複数の円形状の遮光部が互いに離間してランダムに形成された第1のフォトマスクを介して均一に且つ相対的に低照度で露光し、続いて、ドレイン電極14b上のコンタクトホールに対応する位置に開口部が形成された第2のフォトマスクを介して均一に且つ相対的に高照度で露光した後に、現像する。これにより、上述した高照度の露光部分の感光性樹脂は、完全に除去され、同低照度の露光部分の感光性樹脂は、塗布厚の40%程度残膜し、未露光部分の感光性樹脂は、塗布厚の80%程度残膜することになる。さらに、感光性樹脂が現像された基板を200℃程度に加熱して、感光性樹脂を熱だれさせることにより、反射領域Rの表面がなめらかな凹凸形状になった第2層間絶縁膜16を形成する。その後、第2層間絶縁膜16から露出する第1層間絶縁膜15をエッチングして、コンタクトホールを形成する。
 続いて、第2層間絶縁膜16上の基板全体に、ITO(Indium Tin Oxide)膜などからなる透明導電膜をスパッタリング法により成膜し、その後、フォトリソグラフィによりパターニングして、透明電極17を厚さ1000Å程度に形成する。
 さらに、透明電極17が形成された基板全体に、モリブデン膜(厚さ750Å程度)及びアルミニウム膜(厚さ1000Å程度)をスパッタリング法により順に成膜し、その後、フォトリソグラフィによりパターニングして、反射電極18を形成して、透明電極17及び反射電極18からなる画素電極19を形成する。
 最後に、画素電極19が形成された基板全体に、印刷法によりポリイミド樹脂を塗布し、その後、ラビング処理を行って、配向膜を厚さ1000Å程度に形成する。
 以上のようにして、アクティブマトリクス基板20aを作製することができる。
 <対向基板作製工程>
 まず、ガラス基板などの絶縁基板10bの基板全体に、スピンコート法により、例えば、カーボン微粒子などの黒色顔料が分散されたポジ型の感光性樹脂を塗布し、その塗布された感光性樹脂を上述した第2層間絶縁膜16の形成方法と同様にフォトマスクを介して露光した後に、現像及び加熱することにより、表面に凹凸部Cを有するブラックマトリクス21aを厚さ2.0μm程度に形成する。
 続いて、ブラックマトリクス21aが形成された基板上に、例えば、赤、緑又は青に着色されたアクリル系の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光した後に、現像することによりパターニングして、選択した色の着色層(例えば、赤色層)を厚さ2.0μm程度に形成する。さらに、他の2色についても同様な工程を繰り返して、他の2色の着色層(例えば、緑色層及び青色層)を厚さ2.0μm程度に形成して、カラーフィルター22を形成する。
 さらに、カラーフィルター22が形成された基板上に、スピンコート法により、アクリル系の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光した後に、現像することにより、反射領域Rに透明層23を厚さ2μm程度に形成する。
 その後、透明層23が形成された基板全体に、スパッタリング法により、例えば、ITO膜を成膜して、共通電極24を厚さ1500Å程度に形成する。
 最後に、共通電極24が形成された基板全体に、印刷法によりポリイミド系樹脂を塗布し、その後、ラビング処理を行って、配向膜を厚さ1000Å程度に形成する。
 以上のようにして、対向基板30aを作製することができる。
 <貼り合わせ工程>
 まず、例えば、ディスペンサを用いて、上記対向基板作製工程で作製された対向基板30aに、紫外線硬化及び熱硬化併用型樹脂などにより構成されたシール材を枠状に描画する。
 続いて、上記シール材が描画された対向基板30aにおけるシール材の内側の領域に液晶材料を滴下する。
 さらに、上記液晶材料が滴下された対向基板30aと、上記アクティブマトリクス基板作製工程で作製されたアクティブマトリクス基板20aとを、減圧下で貼り合わせた後に、その貼り合わせた貼合体を大気圧に開放することにより、その貼合体の表面及び裏面を加圧する。
 最後に、上記貼合体に挟持されたシール材にUV光を照射した後に、その貼合体を加熱することによりシール材を硬化させる。
 以上のようにして、液晶表示パネル50aを作製することができる。
 以上説明したように、本実施形態の液晶表示パネル50aによれば、ブラックマトリクス21aの表面が凹凸状に形成された凹凸部Cを有しているので、アクティブマトリクス基板20a側から入射したバックライトの光Lが、反射電極18の表面(裏面)及びゲート線11の表面で順に反射して、ブラックマトリクス21aの表面に入射しても、ブラックマトリクス21aの表面に形成された光吸収性を有し、表面積が比較的大きい凹凸部Cにより吸収される。これにより、液晶表示パネル50aのブラックマトリクス21aの表面に入射した光Lが、ゲート線11の表面に到達して、その表面で再び反射することを抑制することができるので、液晶表示パネル50aにおける光漏れの発生を抑制することができる。したがって、半透過型の液晶表示パネル50aにおいて、光漏れの発生を抑制して、表示品位の低下を抑制することができる。
 《発明の実施形態2》
 図4は、本実施形態の液晶表示パネル50bの断面図である。なお、以下の各実施形態において、図1~図3と同じ部分については同じ符号を付して、その詳細な説明を省略する。
 上記実施形態1の液晶表示パネル50aでは、対向基板30a上のブラックマトリクス21aが光吸収性を有していたが、本実施形態の液晶表示パネル50bでは、対向基板30b上のブラックマトリクス21bがその表面に反射膜21bbを有している。
 液晶表示パネル50bは、図4に示すように、上記実施形態1のアクティブマトリクス20aと、アクティブマトリクス20aに対向して配置された対向基板30bと、アクティブマトリクス基板20a及び対向基板30bの間に設けられた液晶層40と、アクティブマトリクス基板20a及び対向基板30bを互いに接着すると共にアクティブマトリクス基板20a及び対向基板30bの間に液晶層40を封入するために枠状に設けられたシール材(不図示)とを備えている。
 対向基板30bは、図4に示すように、例えば、ガラス基板などの絶縁基板10b上に枠状に且つその枠内に格子状に設けられたブラックマトリクス21bと、ブラックマトリクス21bの各格子間にそれぞれ設けられた赤色層、緑色層及び青色層を含むカラーフィルター22と、カラーフィルター22の反射領域(R)において、反射領域(R)及び透過領域(T)における光路差を補償するために設けられた透明層(23)と、ブラックマトリクス21b、カラーフィルター22の透過領域T及び透明層(23、反射領域R)を覆うように設けられた共通電極(24)とを備えている。
 ブラックマトリクス21bは、図4に示すように、絶縁基板10b上に表面が凹凸状に形成された下地層21baと、下地層21baを覆うように設けられ、アクティブマトリクス基板上の反射電極18で反射された反射光を散乱させるための反射膜21bbとを備えている。
 また、対向基板30bは、上記実施形態1の対向基板作製工程において、黒色顔料が分散されたポジ型の感光性樹脂の代わりに、黒色顔料が分散されていないポジ型の感光性樹脂を用いて、露光、現像及び加熱することにより、表面が凹凸状の下地層21baを形成した後に、アルミニウム膜(厚さ1000Å程度)をスパッタリング法により成膜し、フォトリソグラフィによりパターニングして、反射膜21bbを形成することにより、作製することができる。
 本実施形態の液晶表示パネル50bによれば、ブラックマトリクス21bの表面が凹凸状に形成された凹凸部Cを有しているので、アクティブマトリクス基板20a側から入射したバックライトの光Lが、反射電極18の表面(裏面)及びゲート線11の表面で順に反射して、ブラックマトリクス21bの表面に入射しても、ブラックマトリクス21bの表面に形成された凹凸部Cを構成する反射膜21bbにより、散乱される。これにより、液晶表示パネル50bのブラックマトリクス21bの表面に入射した光Lが、ゲート線11の表面に到達して、その表面で再び反射することを抑制することができるので、液晶表示パネル50bにおける光漏れの発生を抑制することができる。したがって、半透過型の液晶表示パネル50bにおいて、光漏れの発生を抑制して、表示品位の低下を抑制することができる。
 《発明の実施形態3》
 図5は、本実施形態の液晶表示パネル50cの断面図である。
 上記実施形態1の液晶表示パネル50a、及び上記実施形態2の液晶表示パネル50bでは、ブラックマトリクス21a及び21bの表面に凹凸部Cがそれぞれ設けられていたが、本実施形態の液晶表示パネル50cでは、ブラックマトリクス21bの表面にだけでなく、各ゲート線11cの表面にも凹凸部Cが設けられている。
 液晶表示パネル50cは、図5に示すように、アクティブマトリクス20cと、アクティブマトリクス20cに対向して配置された上記実施形態2の対向基板30bと、アクティブマトリクス基板20c及び対向基板30bの間に設けられた液晶層40と、アクティブマトリクス基板20c及び対向基板30bを互いに接着すると共にアクティブマトリクス基板20c及び対向基板30bの間に液晶層40を封入するために枠状に設けられたシール材(不図示)とを備えている。
 アクティブマトリクス基板20cは、図5に示すように、絶縁基板10aと各ゲート線11cとの間に表面が凹凸状の樹脂層9aを有しているので、各ゲート線11cの表面が凹凸状に形成された凹凸部Cを有しており、それ以外の構成が上記実施形態1のアクティブマトリクス基板20aと実質的に同じである。
 また、アクティブマトリクス基板20cは、上記実施形態1のアクティブマトリクス基板作製工程において、ゲート線11を形成する前に、第2層間絶縁膜16の形成方法と同様に、表面が凹凸状の樹脂層9aを形成して、その後、ゲート線11cを形成することにより、作製することができる。
 本実施形態の液晶表示パネル50cによれば、ブラックマトリクス21b及び各ゲート線11cの双方の表面が凹凸状に形成された凹凸部Cを有しているので、アクティブマトリクス基板20c側から入射したバックライトの光が、反射電極18の表面(裏面)で反射して、ゲート線11cの表面に入射しても、ゲート線11cの凹凸部Cの表面により、散乱される。そして、その散乱光の一部が、ブラックマトリクス21bの表面に入射しても、ブラックマトリクス21bの表面に形成された凹凸部Cを構成する反射膜21bbにより、散乱される。これにより、液晶表示パネル50cのアクティブマトリクス基板20c側から入射したバックライトの光が、各ゲート線11cの表面の凹凸部C、及びブラックマトリクス21bの表面の凹凸部Cにより、それぞれ散乱されるので、液晶表示パネル50cにおける光漏れの発生を抑制することができる。したがって、半透過型の液晶表示パネル50cにおいて、光漏れの発生を抑制して、表示品位の低下を抑制することができる。
 《発明の実施形態4》
 図6は、本実施形態の液晶表示パネル50dの断面図である。
 上記実施形態1の液晶表示パネル50a、及び上記実施形態2の液晶表示パネル50bでは、ブラックマトリクス21a及び21bの表面に凹凸部Cがそれぞれ設けられていたが、本実施形態の液晶表示パネル50dでは、各ゲート線11cの表面に凹凸部Cが設けられている。
 液晶表示パネル50dは、図6に示すように、上記実施形態3のアクティブマトリクス20cと、アクティブマトリクス20cに対向して配置された対向基板30dと、アクティブマトリクス基板20c及び対向基板30dの間に設けられた液晶層40と、アクティブマトリクス基板20c及び対向基板30dを互いに接着すると共にアクティブマトリクス基板20c及び対向基板30dの間に液晶層40を封入するために枠状に設けられたシール材(不図示)とを備えている。
 対向基板30dは、図6に示すように、例えば、ガラス基板などの絶縁基板10b上に枠状に且つその枠内に格子状に設けられたブラックマトリクス21dと、ブラックマトリクス21dの各格子間にそれぞれ設けられた赤色層、緑色層及び青色層を含むカラーフィルター22と、カラーフィルター22の反射領域(R)において、反射領域(R)及び透過領域(T)における光路差を補償するために設けられた透明層(23)と、ブラックマトリクス21d、カラーフィルター22の透過領域(T)及び透明層(23、反射領域R)を覆うように設けられた共通電極(24)とを備えている。ここで、ブラックマトリクス21dは、例えば、アルミニウム膜などにより構成され、その表面がフラットに形成されている。
 また、対向基板30dは、上記実施形態1の対向基板作製工程において、黒色顔料が分散されたポジ型の感光性樹脂を塗布するなどして、ブラックマトリクス21aを形成する代わりに、例えば、アルミニウム膜をスパッタリング法により成膜し、フォトリソグラフィによりパターニングして、ブラックマトリクス21dを形成することにより、作製することができる。
 本実施形態の液晶表示パネル50dによれば、各ゲート線11cの表面が凹凸状に形成された凹凸部Cを有しているので、アクティブマトリクス基板20c側から入射したバックライトの光が、反射電極18の表面(裏面)で反射して、ゲート線11cの表面に入射しても、ゲート線11cの凹凸部Cの表面により、散乱される。これにより、液晶表示パネル50dのアクティブマトリクス基板20c側から入射したバックライトの光が、各ゲート線11cの表面の凹凸部Cにより、散乱されるので、液晶表示パネル50dにおける光漏れの発生を抑制することができる。したがって、半透過型の液晶表示パネル50dにおいて、光漏れの発生を抑制して、表示品位の低下を抑制することができる。
 《発明の実施形態5》
 図7は、本実施形態の液晶表示パネル50eの断面図である。
 上記各実施形態では、半透過型の液晶表示パネル50a~50dを例示したが、本実施形態では、透過型の液晶表示パネル50eを例示する。
 液晶表示パネル50eは、図7に示すように、互いに対向して配置されたアクティブマトリクス基板20e及び対向基板30eと、アクティブマトリクス基板20e及び対向基板30eの間に設けられた液晶層40と、アクティブマトリクス基板20e及び対向基板30eを互いに接着すると共にアクティブマトリクス基板20e及び対向基板30eの間に液晶層40を封入するために枠状に設けられたシール材(不図示)とを備えている。
 アクティブマトリクス基板20eは、図7に示すように、ガラス基板などの絶縁基板10a上に互いに平行に延びるように設けられた複数のゲート線11と、各ゲート線11を覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上に各ゲート線11と直交する方向に互いに平行に延びるように設けられた複数のソース線(14a)と、各ゲート線11及び各ソース線(14a)の交差部分毎にそれぞれ設けられた複数のTFT(5)と、各ソース線(14a)及び各TFT(5)を覆うように順に設けられた無機絶縁膜などからなる層間絶縁膜15eと、層間絶縁膜15e上にマトリクス状に設けられ、各TFT(5)にそれぞれ接続された透明導電膜などからなる複数の画素電極19eとを備えている。
 また、アクティブマトリクス基板20eは、上記実施形態1のアクティブマトリクス基板作製工程において、第2層間絶縁膜16及び反射電極18の形成を省略することにより、作製することができる。
 対向基板30eは、図7に示すように、例えば、ガラス基板などの絶縁基板10b上に枠状に且つその枠内に格子状に設けられたブラックマトリクス21eと、ブラックマトリクス21eの各格子間にそれぞれ設けられた赤色層、緑色層及び青色層を含むカラーフィルター22と、ブラックマトリクス21e及びカラーフィルター22を覆うように設けられた共通電極(24)とを備えている。
 ブラックマトリクス21eは、図7に示すように、表面が凹凸状に形成された凹凸部Cを有している。また、ブラックマトリクス21eは、例えば、黒色顔料が分散された有機絶縁膜により構成されているので、凹凸部Cは、光吸収性を有している。さらに、ブラックマトリクス21eは、図7に示すように、各ゲート線11の幅よりも太く形成されている。
 対向基板30eは、上記実施形態1の対向基板作製工程において、透明層23の形成を省略することなどにより、作製することができる。
 本実施形態の液晶表示パネル50eによれば、ブラックマトリクス21eの表面が凹凸状に形成された凹凸部Cを有しているので、アクティブマトリクス基板20e側から入射したバックライトの光が、ブラックマトリクス21eの表面に入射しても、ブラックマトリクス21eの凹凸部Cの表面により、吸収される。これにより、液晶表示パネル50eのアクティブマトリクス基板20e側から入射したバックライトの光が、ブラックマトリクス21eの表面の凹凸部Cにより、吸収されるので、液晶表示パネル50eにおける光漏れの発生を抑制することができる。したがって、透過型の液晶表示パネル50eにおいて、光漏れの発生を抑制して、表示品位の低下を抑制することができる。
 なお、本実施形態では、ブラックマトリクス21eの凹凸部Cの表面が、光吸収性を有している構成を例示したが、その表面が反射膜を有し、その反射膜により、バックライトからの光を散乱させる構成であってもよい。
 《発明の実施形態6》
 図8は、本実施形態の液晶表示パネル50fの断面図である。
 上記実施形態5の透過型の液晶表示パネル50eでは、ブラックマトリクス21eの表面に凹凸部Cが設けられていたが、本実施形態の透過型の液晶表示パネル50fでは、各ゲート線11fの表面に凹凸部Cが設けられている。
 液晶表示パネル50fは、図8に示すように、互いに対向して配置されたアクティブマトリクス基板20f及び対向基板30fと、アクティブマトリクス基板20f及び対向基板30fの間に設けられた液晶層40と、アクティブマトリクス基板20f及び対向基板30fを互いに接着すると共にアクティブマトリクス基板20f及び対向基板30fの間に液晶層40を封入するために枠状に設けられたシール材(不図示)とを備えている。
 アクティブマトリクス基板20fは、図8に示すように、ガラス基板などの絶縁基板10a上に互いに平行に延びるように設けられた複数のゲート線11fと、各ゲート線11fを覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上に各ゲート線11と直交する方向に互いに平行に延びるように設けられた複数のソース線(14a)と、各ゲート線11及び各ソース線(14a)の交差部分毎にそれぞれ設けられた複数のTFT(5)と、各ソース線(14a)及び各TFT(5)を覆うように順に設けられた無機絶縁膜などからなる層間絶縁膜15eと、層間絶縁膜15e上にマトリクス状に設けられ、各TFT(5)にそれぞれ接続された透明導電膜などからなる複数の画素電極19eとを備えている。ここで、絶縁基板10aと各ゲート線11fとの間には、表面が凹凸状の樹脂層9bを有しているので、各ゲート線11fの表面が凹凸状に形成された凹凸部Cを有している。
 また、アクティブマトリクス基板20fは、上記実施形態1のアクティブマトリクス基板作製工程において、第2層間絶縁膜16及び反射電極18の形成を省略すると共に、上記実施形態3と同様に、ゲート線11fを形成する前に、表面が凹凸状の樹脂層9bを形成することにより、作製することができる。
 対向基板30fは、図8に示すように、例えば、ガラス基板などの絶縁基板10b上に枠状に且つその枠内に格子状に設けられたブラックマトリクス21fと、ブラックマトリクス21fの各格子間にそれぞれ設けられた赤色層、緑色層及び青色層を含むカラーフィルター22と、ブラックマトリクス21f及びカラーフィルター22を覆うように設けられた共通電極(24)とを備えている。
 ブラックマトリクス21fは、図8に示すように、例えば、アルミニウム膜などにより構成され、その表面がフラットに形成されている。また、ブラックマトリクス21fは、図8に示すように、各ゲート線11fの幅よりも太く形成されている。
 対向基板30fは、上記実施形態1の対向基板作製工程において、黒色顔料が分散されたポジ型の感光性樹脂を塗布するなどして、ブラックマトリクス21aを形成する代わりに、例えば、アルミニウム膜をスパッタリング法により成膜し、フォトリソグラフィによりパターニングして、ブラックマトリクス21fを形成すると共に、透明層23の形成を省略することにより、作製することができる。
 本実施形態の液晶表示パネル50fによれば、各ゲート線11fの表面が凹凸状に形成された凹凸部Cを有しているので、アクティブマトリクス基板20f側から入射したバックライトの光が、ブラックマトリクス21fの表面で反射して、ゲート線11fの表面に入射しても、ゲート線11fの凹凸部Cの表面により、散乱される。これにより、液晶表示パネル50fのアクティブマトリクス基板20f側から入射したバックライトの光が、各ゲート線11fの表面の凹凸部Cにより、散乱されるので、液晶表示パネル50fにおける光漏れの発生を抑制することができる。したがって、透過型の液晶表示パネル50fにおいて、光漏れの発生を抑制して、表示品位の低下を抑制することができる。
 《発明の実施形態7》
 図9は、本実施形態の液晶表示パネル50gの断面図である。
 上記実施形態5の透過型の液晶表示パネル50eでは、ブラックマトリクス21eの表面に凹凸部Cが設けられ、上記実施形態6の透過型の液晶表示パネル50fでは、各ゲート線11fの表面に凹凸部Cが設けられていたが、本実施形態の透過型の液晶表示パネル50gでは、ブラックマトリクス21e及び各ゲート線11fの双方の表面に凹凸部Cが設けられている。
 液晶表示パネル50gは、図9に示すように、上記実施形態6のアクティブマトリクス基板20fと、アクティブマトリクス基板20fに対向して配置された上記実施形態5の対向基板30eと、アクティブマトリクス基板20f及び対向基板30eの間に設けられた液晶層40と、アクティブマトリクス基板20f及び対向基板30eを互いに接着すると共にアクティブマトリクス基板20f及び対向基板30eの間に液晶層40を封入するために枠状に設けられたシール材(不図示)とを備えている。ここで、対向基板30eを構成するブラックマトリクス21eは、凹凸部Cの表面が反射膜を有し、その反射膜により、バックライトからの光を拡散させるように構成されている。
 本実施形態の液晶表示パネル50gによれば、ブラックマトリクス21e及び各ゲート線11fの双方の表面が凹凸状に形成された凹凸部Cを有しているので、アクティブマトリクス基板20f側から入射したバックライトの光が、ブラックマトリクス21eの表面に入射しても、ブラックマトリクス21eの凹凸部Cの表面により、散乱される。そして、その散乱光の一部が、ゲート線11fの表面に入射しても、各ゲート線11fの凹凸部Cの表面により、散乱される。これにより、液晶表示パネル50gのアクティブマトリクス基板20f側から入射したバックライトの光が、ブラックマトリクス21eの表面の凹凸部C、及び各ゲート線11fの表面の凹凸部Cにより、それぞれ散乱されるので、液晶表示パネル50fにおける光漏れの発生を抑制することができる。したがって、透過型の液晶表示パネル50gにおいて、光漏れの発生を抑制して、表示品位の低下を抑制することができる。
 上記各実施形態では、半透過型及び透過型の液晶表示パネルを例示したが、本発明は、反射型の液晶表示パネルにも適用することができる。
 また、上記各実施形態では、光反射性を有する配線として、ゲート線を例示したが、本発明は、ソース線にも適用することができる。
 以上説明したように、本発明は、光漏れを抑制して、表示品位の低下を抑制することができるので、透過型、半透過型及び反射型の液晶表示パネル全般について有用である。
C     凹凸部
R     反射領域
T     透過領域
11,11c,11f  ゲート線(配線)
15e   層間絶縁膜
16    第2層間絶縁膜
17    透明電極
18    反射電極
19,19e   画素電極
20a,20c,20e,20f  アクティブマトリクス基板
21a,21b,21d,21e,21f  ブラックマトリクス
21bb  反射膜
22    着色層
30a,30b,30d,30e,30f  対向基板
40    液晶層
50a~50g  液晶表示パネル

Claims (7)

  1.  互いに平行に延びるように設けられ、光反射性をそれぞれ有する複数の配線、該各配線を覆うように設けられた絶縁膜、及び該絶縁膜にマトリクス状に設けられた複数の画素電極を含むアクティブマトリクス基板と、
     上記アクティブマトリクス基板に対向して配置され、上記各画素電極にそれぞれ重なるようにマトリクス状に設けられた複数の着色層、及び該各着色層の間に設けられたブラックマトリクスを含む対向基板と、
     上記アクティブマトリクス基板及び対向基板の間に設けられた液晶層とを備えた液晶表示パネルであって、
     上記ブラックマトリクス及び各配線の少なくとも一方は、表面が凹凸状に形成された凹凸部を有していることを特徴とする液晶表示パネル。
  2.  請求項1に記載された液晶表示パネルにおいて、
     上記凹凸部は、表面に入射した光を散乱させるための反射膜を表面に備えていることを特徴とする液晶表示パネル。
  3.  請求項1に記載された液晶表示パネルにおいて、
     上記凹凸部は、表面に入射した光を吸収するように光吸収性を有していることを特徴とする液晶表示パネル。
  4.  請求項1乃至3の何れか1つに記載された液晶表示パネルにおいて、
     上記凹凸部の凸部は、半球状に形成されていることを特徴とする液晶表示パネル。
  5.  請求項1乃至4の何れか1つに記載された液晶表示パネルにおいて、
     上記各画素電極は、反射電極を有していることを特徴とする液晶表示パネル。
  6.  請求項5に記載された液晶表示パネルにおいて、
     上記絶縁膜は、樹脂製であることを特徴とする液晶表示パネル。
  7.  請求項5又は6に記載された液晶表示パネルにおいて、
     上記各画素電極は、上記反射電極により規定された反射領域と、該反射領域以外の透過領域とを有していることを特徴とする液晶表示パネル。
PCT/JP2009/002836 2008-09-08 2009-06-22 液晶表示パネル WO2010026683A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/058,896 US20110141413A1 (en) 2008-09-08 2009-06-22 Liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-229753 2008-09-08
JP2008229753 2008-09-08

Publications (1)

Publication Number Publication Date
WO2010026683A1 true WO2010026683A1 (ja) 2010-03-11

Family

ID=41796869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002836 WO2010026683A1 (ja) 2008-09-08 2009-06-22 液晶表示パネル

Country Status (2)

Country Link
US (1) US20110141413A1 (ja)
WO (1) WO2010026683A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150362776A1 (en) 2014-06-13 2015-12-17 Semiconductor Energy Laboratory Co., Ltd. Display Device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244772B1 (ko) * 2005-12-30 2013-03-18 엘지디스플레이 주식회사 반사투과형 액정표시장치 및 그 제조방법
TWI612689B (zh) * 2013-04-15 2018-01-21 半導體能源研究所股份有限公司 發光裝置
US9817271B2 (en) 2014-01-15 2017-11-14 Innolux Corporation Display panel
US9841629B2 (en) 2014-01-15 2017-12-12 Innolux Corporation Display panel and display device
TWI530742B (zh) * 2014-01-15 2016-04-21 群創光電股份有限公司 顯示面板
CN108897161B (zh) * 2014-06-04 2023-10-03 群创光电股份有限公司 显示面板
CN104076549A (zh) * 2014-06-13 2014-10-01 京东方科技集团股份有限公司 彩色滤光片、显示面板及显示装置
CN104536194A (zh) * 2015-01-04 2015-04-22 京东方科技集团股份有限公司 一种阵列基板、其制作方法及显示装置
CN106647001B (zh) * 2016-12-29 2019-05-10 惠科股份有限公司 液晶面板和液晶显示器
US10394071B2 (en) * 2017-09-20 2019-08-27 Shenzhen China Star Optoelectronics Technology Co., Ltd. Display panel and display device
KR20200100910A (ko) * 2019-02-18 2020-08-27 삼성디스플레이 주식회사 표시 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306222A (ja) * 1989-05-20 1990-12-19 Sharp Corp 液晶表示装置
JPH10161151A (ja) * 1996-11-29 1998-06-19 Sharp Corp アクティブマトリクス型液晶表示装置およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858297B1 (ko) * 2001-11-02 2008-09-11 삼성전자주식회사 반사-투과형 액정표시장치 및 그 제조 방법
US7057697B2 (en) * 2003-12-12 2006-06-06 M-Display Optronics Corp. In-plane switching liquid crystal display having nanometer scale roughness
US7623205B2 (en) * 2005-12-29 2009-11-24 Lg Display Co., Ltd. Transflective liquid crystal display device and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306222A (ja) * 1989-05-20 1990-12-19 Sharp Corp 液晶表示装置
JPH10161151A (ja) * 1996-11-29 1998-06-19 Sharp Corp アクティブマトリクス型液晶表示装置およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150362776A1 (en) 2014-06-13 2015-12-17 Semiconductor Energy Laboratory Co., Ltd. Display Device
JP2016027374A (ja) * 2014-06-13 2016-02-18 株式会社半導体エネルギー研究所 表示装置
US10342124B2 (en) 2014-06-13 2019-07-02 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2020003813A (ja) * 2014-06-13 2020-01-09 株式会社半導体エネルギー研究所 表示装置

Also Published As

Publication number Publication date
US20110141413A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2010026683A1 (ja) 液晶表示パネル
US9341345B2 (en) Light diffusion member, method of manufacturing same, and display device
JP5095865B2 (ja) アクティブマトリクス基板及びそれを備えた表示パネル、並びにアクティブマトリクス基板の製造方法
US9557597B2 (en) Liquid crystal display device, light control film, and display device
US7626669B2 (en) LCD device with data/gate line pad electrodes and contact electrode including both a transparent conductive film and a metal layer interconnecting data link and data line through respective contact holes
WO2011004521A1 (ja) 表示パネル
JP2007017798A (ja) 液晶表示装置
JP2010139573A (ja) 液晶表示パネル
US8064024B2 (en) Transflective thin film transistor substrate of liquid crystal display device having a contact electrode connecting a data link to a data line
US10175517B2 (en) Display device
JP2008139555A (ja) 液晶表示装置及びその製造方法
JP4220231B2 (ja) 表示パネル用基板製造方法
JP3012596B2 (ja) 反射型液晶表示装置およびその製造方法
JP2003098537A (ja) 電気光学装置及びその製造方法並びに電子機器
WO2012124699A1 (ja) 液晶表示装置
WO2012077586A1 (ja) 液晶表示パネル用アレイ基板
JP5044832B2 (ja) 液晶装置、及びその製造方法
WO2011080968A1 (ja) 液晶パネルの製造方法
KR101612050B1 (ko) 반사투과형 액정표시장치 및 그 제조 방법
JPH11109366A (ja) 液晶表示装置
WO2011148557A1 (ja) 液晶表示装置の製造方法
JP2005084231A (ja) 液晶表示装置及びその製造方法
JP2010169888A (ja) 表示パネル
WO2016158834A1 (ja) 光配向部材、照明装置、液晶表示装置および光配向部材の製造方法
KR20080079141A (ko) 이중 컬럼스페이서구조의 액정표시소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13058896

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09811213

Country of ref document: EP

Kind code of ref document: A1