WO2010024440A1 - 活性酸素耐性菌及びその利用方法 - Google Patents

活性酸素耐性菌及びその利用方法 Download PDF

Info

Publication number
WO2010024440A1
WO2010024440A1 PCT/JP2009/065207 JP2009065207W WO2010024440A1 WO 2010024440 A1 WO2010024440 A1 WO 2010024440A1 JP 2009065207 W JP2009065207 W JP 2009065207W WO 2010024440 A1 WO2010024440 A1 WO 2010024440A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
microorganism
catalase
genus
culture
Prior art date
Application number
PCT/JP2009/065207
Other languages
English (en)
French (fr)
Inventor
博敬 内藤
Original Assignee
タムネットワーク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タムネットワーク株式会社 filed Critical タムネットワーク株式会社
Priority to JP2010526813A priority Critical patent/JP5525445B2/ja
Publication of WO2010024440A1 publication Critical patent/WO2010024440A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/32Assays involving biological materials from specific organisms or of a specific nature from bacteria from Bacillus (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/908Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)

Definitions

  • the present invention relates to bacteria having resistance to active oxygen, methods for using them, and apparatuses to which the method can be applied.
  • Catalase is an enzyme that catalyzes the reaction of decomposing hydrogen peroxide into water and oxygen, and is known to be widely distributed in animals and plants and microorganisms.
  • Commercially available products are of various origins such as catalase derived from beef liver and Aspergillus fungi.
  • a new strain of Iggiobacterium oxidorelicum that is resistant to hydrogen peroxide has been isolated from industrial wastewater containing hydrogen peroxide at a high concentration so far, and its cell extract is a strong catalase. It is disclosed that it has activity (for example, patent document 3).
  • Catalase is an enzyme that can reduce the generation of such active oxygen from hydrogen peroxide, and is expected to be applied in health foods, beverages, and other fields.
  • active oxygen similar to that generated from hydrogen peroxide water or the like can be generated by a so-called photocatalyst containing titanium oxide or the like. That is, water is decomposed by the photocatalyst to generate active oxygen.
  • active oxygen has a sterilization and antibacterial effect, and is generally commercially available as a material to be applied to a portion where a sterilization or antibacterial effect is desired.
  • the photocatalyst even if the raw material composition is the same, the catalytic activity is not always the same, and the evaluation is not always easy.
  • sterilization and antibacterial effects must be evaluated in a relatively mild environment where bacteria can inhabit, and it is not easy to confirm sterilization and antibacterial effects even when a control experiment is performed. Therefore, it is desired to create a base state by decomposing active oxygen generated in the working environment of the photocatalyst in a relatively mild environment where bacteria can inhabit.
  • active oxygen has a strong bactericidal action and is used in a wide range of fields other than the photocatalyst described above.
  • sodium hypochlorite has a bactericidal action due to active oxygen and is used in liquid chlorine bleaches and bactericides sold for household use (for washing, kitchen use, sterilization of milk bottles, etc.) Has been.
  • the aqueous solution diluted with sodium hypochlorite is also used as a food additive under the name of antiformin.
  • As a disinfectant it is also used for disinfecting vegetables and fruits. It is often used as a disinfectant in medical institutions. It is used for disinfection of medical equipment and linen in order to be effective against various bacteria and viruses.
  • the detoxification method is preferably a method that does not become harmful even if performed excessively.
  • micrococcus luteus which is a kind of bacteria
  • Aspergillus niger which is a kind of fungus
  • catalase derived from Thermoascusauranticus are relatively excellent in temperature stability, but have a high activity of catalase and a higher catalase activity.
  • an environment that further improves the production ability of such microorganisms can be created.
  • the microorganisms containing such bacteria can be detoxified when sterilized with active oxygen. Further, it is more preferable if the photocatalyst can be evaluated.
  • microorganisms provide a preferable environment thereof, and further apply them to provide a good utilization method of active oxygen, and sterilization using such utilization method. It is an object of the present invention to provide an evaluation method for photocatalysts and an apparatus that utilizes such a method.
  • SW1 genus Exibacterium
  • SW1 a novel microorganism (SW1) strain belonging to the genus Exigobacteria having high hydrogen peroxide resistance and high hydrogen peroxide decomposition activity.
  • SW1 the bacterium belonging to the genus Exigobacteria (SW1) deposited as an accession number NITE P-439 on October 24, 2007 to the National Institute for Product Evaluation and Technology is provided.
  • the environment where the catalase activity of the bacterium is particularly high is provided.
  • the disinfection and / or sterilization method using these, and the evaluation method of a photocatalyst are provided. More specifically, it is as follows.
  • SW1 strain deposited under the deposit number NITE P-439.
  • microorganism according to (1) above which is a novel microorganism belonging to the genus Exigobacterium, wherein the base sequence of DNA corresponding to 16S rRNA is the base sequence described in SEQ ID NO: 1.
  • microorganism according to (3) above which is a novel microorganism belonging to the genus Microbacterium, wherein the base sequence of DNA corresponding to 16S rRNA is the base sequence described in SEQ ID NO: 2.
  • microorganism according to (5) above which is a novel microorganism belonging to the genus Rahnella, wherein the base sequence of DNA corresponding to 16S rRNA is the base sequence described in SEQ ID NO: 3.
  • the hot water supply system using the method as described in said (10) or (11) can also be provided.
  • the hot water purification method using the method as described in said (10) or (11) can also be provided.
  • Such a bath water purification / circulation device (for example, a 24-hour bath) or a hot water supply system includes either a hot water tank or a bathtub and a pipe that discharges or supplies hot water to the tank through or without a valve.
  • a pump that pressurizes hot water in the hot water supply at the location a chemical tank that includes a case where a part of the pipe is substituted, a filtration tank (including the filtration tank of the filtration device), and a special shape (for example, zigzag) And a detoxification tank including any shape including those wound in a coil shape, wherein chemicals that generate active oxygen may be added to the chemical tank, for example, bacteria such as Legionella bacteria
  • chemicals that generate active oxygen may be added to the chemical tank, for example, bacteria such as Legionella bacteria
  • a sufficient amount of sodium hypochlorite is added so that the concentration is sufficient to kill (e.g., concentration in the chemical tank or in the pipe connected to the chemical tank).
  • a detoxification tank which may include a biological treatment tank
  • biopellets and the like may be placed in the biological treatment tank, and the bacterium belonging to the genus Exigobacterium (SW1)
  • a biopellet provided with auxiliary bacteria may be used, or the biodegradation tank may be provided with a mixture of both biopellets.
  • Catalase can be efficiently produced by the novel microorganism as described above. In addition, this makes it possible to eliminate excess hydrogen peroxide after being used for oxidation treatment under mild conditions. It is also possible to create a base state by decomposing active oxygen generated in the working environment of the photocatalyst in a relatively mild environment where bacteria can inhabit.
  • New microorganisms with catalase activity are not always able to decompose hydrogen peroxide most efficiently in an environment where hydrogen peroxide exists.
  • another microorganism may create an environment with higher catalase activity. In this way, the activity of a novel microorganism having originally high catalase activity can be further enhanced.
  • the amount (concentration) of active oxygen can be reduced under mild conditions, and it can also be used as an anti-aging agent when used in foods, beverages, and other ingestions. It becomes.
  • a water sample was collected from the Abe River in Shizuoka Prefecture, Japan, and cultured under the following conditions.
  • the sampling point is the Atogi area on the middle of the Abe River. This collection date and time was around 10:00 am on August 12, 2006.
  • the temperature at this time was 28.3 ° C., and the water temperature was 16.8 ° C. (20.3 ° C. at the river inflow point).
  • the medium used for the culture is a standard agar medium (granular type manufactured by Nissui Pharmaceutical Co., Ltd.), a nutrient broth agar medium (powder type manufactured by Oxioid), and an R2A medium (powder type manufactured by Nihon Pharmaceutical Co., Ltd.). It was.
  • the temperature at this time was 30 degreeC and 37 degreeC.
  • the culture time was 12 to 24 hours.
  • the target genus Exigobacterium was isolated under the following conditions.
  • the isolation method was fishing fungus isolation.
  • the colonies grown on the above-mentioned standard agar medium were picked using platinum loops, cultured at 37 ° C. for 12 hours in each liquid medium, and then streaked on the agar medium with platinum loops to obtain isolated colonies.
  • a nutrient broth agar medium and a liquid medium were used as other media.
  • the culture temperature was 37 ° C.
  • the culture time was 12 hours (liquid medium) and 24 hours (agar medium).
  • the 16S rRNA gene was amplified by the PCR method and analyzed as follows.
  • the isolated bacterium was cultured in the liquid medium described above, and then collected by centrifugation (5 to 15 minutes at 3000 rpm). Using a DNA extraction kit as a DNA sample, the gene was partially amplified targeting the 16S region (16S rRNA gene) used for bacterial genetic classification, and the amplified band was confirmed by electrophoresis. DNA was excised from the electrophoresis gel, purified, partially amplified again, and subjected to a sequencing reaction after purification, and the base sequence was determined with a sequencer. Then, the nucleotide sequence was collated with a database (NCINB; blast) and identified from homology.
  • NCINB NCINB; blast
  • a nutrient broth liquid medium (Oxioid powder type) was used and cultured at 37 ° C. for 12 hours. DNA extraction was performed using QIAamp DNA mini kit (manufactured by QIAGEN). At this time, GeneAmp PCR System 9600 (made by ABI) was used as a thermal cycler. In addition, a primer for detection of 16S rRNA (Shimadzu review, vol. 57 p121-131 2000) was used as a primer. AmpliTaq Gold (manufactured by ABI) was used as a gene amplification enzyme.
  • ABI Prism 3100-Avant Genetic Analyzer manufactured by ABI was used as a sequencer, and BigDye (registered trademark) Terminato 3.1 was used as a sequencing reagent. Thereby, the result of the base sequence as shown in Sequence Listing 1 was obtained.
  • a similar phylogenetic tree was prepared by using a similar base sequence and alignment and a neighbor-joining method, it was found to belong to the genus Exigobacterium. Specifically, the 16S rRNA gene was examined, and it was determined as an Exibacterium (SW1) bacterium based on a base sequence of 1523 bp.
  • the genus Exibacterium (SW1) of the present invention has the following characteristics. -Morphological characteristics Gram staining: Positive Spore: None Bacteria form: Cocci-Growth characteristics in medium (1) Meat agar plate culture (2) Meat broth liquid culture Color: Yellow to tan Color: Circular Surface: Smooth Biochemical characteristics Gram stainability: Existence Catalase test: Positive ⁇ Growth at each temperature -1 °C:- 4 ° C: + 30 ° C: + 45 ° C: + ⁇ DNA-DNA homology with related bacterial species
  • Exibacterium (SW1) bacterium of the present invention has higher resistance to sodium hypochlorite and hydrogen peroxide than Staphylococcus aureus.
  • Microbacterium genus bacteria and Ranella genus bacteria were isolated under the following conditions.
  • the sequences were as shown in SEQ ID NOs: 2 and 3 in the Sequence Listing.
  • the 16S rRNA gene was examined and identified by the base sequence of 1483 bp.
  • the bacterium belonging to the genus Microbacterium was deposited (EUS) as a deposit number NITE P-450 on November 1, 2007 with the National Institute of Technology and Evaluation.
  • 16S rRNA gene was investigated and identified by the base sequence of 1504 bp. This genus Ranella was deposited (Cit) under the accession number NITE P-440 on October 24, 2007 to the National Institute of Technology and Evaluation.
  • the bacteria on the isolated plate were collected and used as a DNA sample using a DNA extraction kit.
  • the gene was partially amplified targeting the 16S region (16S rRNA gene) used for bacterial genetic classification, and the amplified band was confirmed by electrophoresis.
  • DNA was excised from the electrophoresis gel, purified, partially amplified again, and subjected to a sequencing reaction after purification, and the base sequence was determined with a sequencer.
  • the nucleotide sequence was checked against a database (NCINB; blast) and identified from homology. As a culture condition at this time, a nutrient broth liquid medium was used and cultured at a temperature of 37 ° C. for 12 hours.
  • QIAamp DNA mini kit QIAGEN
  • QIAamp DNA mini kit QIAGEN
  • GeneAmp PCR System 9600 manufactured by ABI
  • primer a primer for detecting 16S rRNA (Shimazu review, vol. 57 p121-131 2000) was used.
  • AmpliTaq Gold manufactured by ABI
  • ABI Prism 3100-Avant Genetic Analyzer manufactured by ABI was used.
  • sequencing reagent at this time BigDye (registered trademark) Terminato 3.1 was used.
  • A Medium: Nutrient broth liquid medium Temperature: 37 ° C Time: 12 hours Shaking culture
  • B Medium: LB liquid medium Temperature: 37 ° C Time: 12 hours Shaking culture
  • C Medium: Standard liquid medium Temperature: 37 ° C Time: 12 hours Shaking culture
  • D Medium: GAM liquid medium Temperature: 37 ° C Time: 24 hours Anaerobic culture
  • E Medium: Standard liquid medium Temperature: 37 ° C Time: 12 hours Shaking culture
  • F Medium: R2A liquid medium Temperature: 37 ° C Time: 12 hours Shaking culture
  • G Medium: R2A liquid medium Temperature: 37 ° C Time: 12 hours Shaking culture
  • H Medium: R2A liquid medium Temperature: 37 ° C Time: 12 hours Shaking culture
  • I A standard liquid medium was prepared at a 10-fold concentration, and diluted 10-fold with Abe river water collected.
  • OD values (turbidity) and catalase activity after 0 to 7 hours (every hour) and 12 hours were measured in single cultures (cultured at 37 ° C. in 10 mL (ml) of nutrient broth liquid medium). .
  • the catalase activity was measured by a hydrogen peroxide decomposition reaction using a fermentation tube. Each measurement result is shown in FIG.1 and FIG.2.
  • catalase activity test The catalase activity test was performed by filling a 10 mL (milliliter) fermentation tube (Ainhorn type manufactured by Asahi Glass Co., Ltd.) with 3% aqueous hydrogen peroxide and using the micropipette for 1 mL (milliliter) of the bacterial solution after the above culture. Inserted and added, the amount of oxygen gas decomposed by catalase was measured.
  • the catalase activity was an oxygen 0.1 mL (milliliter) / 1 mL (milliliter) bacterial solution. In (I), it can be seen that the plateau is reached in 7 hours. The catalase activity was 0.2 mL (milliliter) / 1 mL (milliliter) bacterial solution of oxygen.
  • strain (A) also exists in (I), but catalase could not be obtained by culturing water itself.
  • Catalase activity was a bacterial solution of oxygen 2.5 mL (milliliter) / 1 mL (milliliter). In (AG), a plateau is reached in 7 hours. (Culture stagnation: 1 to 2 ⁇ 10 9 cells / mL (milliliter)) Catalase activity is 6.5 mL (milliliter) / 1 mL (milliliter) of oxygen and exceeds the activity of the main strain (AA) alone. I understand. In (AH), a plateau is reached in 7 hours.
  • Catalase activity is 5.5 mL (milliliter) / 1 mL (milliliter) of oxygen and exceeds the activity of the main strain (AA) alone. I understand. In (AI), a plateau is reached in 7 hours. (Culture stagnation: 1-2 ⁇ 10 9 cells / mL (milliliter)) The catalase activity was 4.0 mL (milliliter) / 1 mL (milliliter) of bacterial solution.
  • (B) Escherichia coli (E. Coli) and (E) Bacillus natto (B. subtilis) are considered to have almost the same growth rate as the main strain, and (C) S. aureus And (D) Lactobacillus hardly grows in a nutrient broth medium. Moreover, (F) Ranella genus bacteria and (G) Microbacterium genus bacteria have a slower growth rate than the main strain.
  • Xanthomonas axonopodis pv. Citri-related bacteria are considered to compete with the main strain and reduce catalase activity.
  • mixing with Microbacterium genus microbacterium can give a slightly higher catalase activity than single culture of the main strain. Since the highest catalase activity was obtained by adding only the microbacteria genus, which is a heterotrophic bacterium, mixed culture of the main strain and the bacterium belonging to the genus Microbacterium is effective. Since the bacterium belonging to the genus Microbacterium is a heterotrophic bacterium, the isolation and storage is stable when the genus Ranella is present. However, separation culture is possible by using R2A medium.
  • the amount of active 60 kD (kilodalton) catalase is less than that when sodium hypochlorite is not added in any of the original bacteria, lysis, and purification. It was. Further, when sodium hypochlorite was added, the amount of 120 kD (kilodalton) catalase was larger than the amount when sodium hypochlorite was not added. From this, it is recognized that when sodium hypochlorite was added, the amount of active 60 kD (kilodalton) catalase was reduced and changed to 120 kD (kilodalton). Incidentally, the molecular weight of catalase alone is about 24 kD (kilo dalton).
  • Adding sodium hypochlorite to the medium in this way is effective for sterilization of the medium and the culture tank.
  • sterilization of a culture medium and a culture tank is difficult by a normal laboratory level method.
  • it is a method of adding sodium hypochlorite to a culture medium, it can also carry out comparatively easily for mass culture.
  • it is added to the tolerance limit, it is considered that the catalase production has an adverse effect as described above. Therefore, when the addition concentration was examined, it is preferable to add sodium hypochlorite so that the amount of sodium hypochlorite added is 0.04% or less with respect to the medium.
  • the sterilization effect generally decreases when the concentration is low, from the viewpoint of the sterilization effect, it is preferably 0.0001% or more, more preferably 0.0005% or more, and still more preferably 0.01% or more. is there. For example, in the case of the present embodiment, a range of 0.002% to 0.005% is particularly preferable.
  • This concentration is relative to the theoretical value of sodium hypochlorite. For example, in the case of a 35% sodium hypochlorite solution, the actual addition amount multiplied by 35% is sodium hypochlorite. It becomes quantity.
  • Catalase produced by laboratory culture with Ex bacteria and catalase produced by about 1 t (ton) of Ex culture were compared by molecular weight.
  • a predetermined amount of each culture solution was taken and measured by CBB (Coomassie blue) staining and Western blotting by antibody reaction.
  • the samples used were those cultured at the laboratory level under the conditions (1) to (6) below, and cultured for about 1 t (ton) by the usual method.
  • (7) Before precipitation and (8) After precipitation Each thing was compared. Specifically, each 5 mL (milliliter) of the bacterial solution was frozen and thawed to destroy the bacteria and electrophoresed as it was.
  • cattle liver-derived catalase (CalBIOCHEM, Catalase, Bovine Liver) and human blood cell-derived catalase (CALBIOCHEM, Catalase, Human Erythrocytes) were also examined.
  • These standard samples mainly contained catalase of 60 kD (kilo dalton), and since the concentration was high, the band became large.
  • a catalase of 60 kD (kilo dalton) was detected.
  • a low molecular weight sample was observed in the standard sample, but none of the samples (1) to (6) could be detected because the sample amount was small (5 mL (milliliter)).
  • catalase available from Qingdao autoimmune Biotech Co. Ltd. http://www.ekl558.cn/) sold in China at a low price has more impurities than the standard product.
  • this catalase showed a luminol reaction, which was found to be blood, not extracted protein.
  • none of the catalases relating to the examples of the present invention showed a luminol reaction.
  • a predetermined amount of alum for example, 1 kg (kilogram) / 1 t (ton)
  • a predetermined amount of alum for example, 1 kg (kilogram) / 1 t (ton)
  • alum for example, 1 kg (kilogram) / 1 t (ton)
  • simple purification can be performed using dialysis membranes of 10 to 30 kD (kilodalton) and 100 to 300 kD (kilodalton).
  • Ex bacteria are grown under the most preferable conditions for the growth of Ex bacteria (for example, about 0.001% sodium hypochlorite added to the medium). For example, inoculate 2 L (liter) (2 ⁇ 10 12 cells) of Ex bacteria under conditions of [500 L (liter) medium + sodium hypochlorite 20 mL (milliliter) (35% concentration stock solution)] for 16 hours. .
  • Microbacterium Inoculum Prepare a predetermined amount (for example, 2 L (liter)) of Microbacterium inoculum during the growth of Ex bacteria.
  • the subordinate bacteria may be propagated under conditions different from the main bacteria.
  • the subordinate bacteria can be propagated after sterilization of other bacteria in advance.
  • the predetermined amount of medium for example, 4500 L (liter)
  • the prepared predetermined amount for example, 2 L (liter)
  • the predetermined amount for example, 2 to 5000 L (liter)
  • the predetermined amount may be an amount sufficient to promote the activity of the main bacteria.
  • the amount of subordinate bacteria is 0.001% or more with respect to the main bacteria.
  • the amount of the subordinate bacteria may be larger than that of the main bacteria, but in consideration of the production efficiency of catalase, the same amount or less than that of the main bacteria is preferable. Preferably, it is 25% or less, and it is 10% or less depending on conditions.
  • a predetermined amount of alum is added to the culture tank and separated and purified
  • a predetermined amount of alum for example, 1 kg (kilogram) / 1 t (ton)
  • Ex bacteria etc. are precipitated and bacteria are collected. From the remaining solution, catalase can be simply purified by dialysis membrane or ultrafiltration. In the steps I to IV described above, Ex bacteria have been described. However, it is considered that such a method for producing a large amount of catalase can be applied to other bacterial species.
  • FIG. 5 shows a schematic diagram of a hot water supply system incorporating a sterilizer using circulating hot water.
  • the hot water supply system 10 can discharge the hot water 14 that has entered the bathtub 12 to the outside of the tank by opening the drain lid 16, and can open the hot water into the tank by opening the water supply lid 18. Hot water drained from the drainage port passes through the pipe 20, is pressurized by the pump 22, is pushed up to the medicine tank 24, passes through the valve 26, and flows to the filtration device 28.
  • the hot water containing sodium hypochlorite having a sufficient concentration flows to the filtration device 28, and is filtered while flowing into the detoxification tank 30 while killing bacteria hidden in the dust trapped by the filter.
  • the detoxification tank 30 is provided with a stirring tank 42 at the top, and evenly mixes the chemicals etc. in the hot water flowing according to the arrow 50 and adjusts the temperature as necessary. be able to.
  • the hot water leaving the tank flows into the biological treatment tank 44 according to the arrow 52.
  • the stirring tank 42 may be omitted.
  • the biological treatment tank 44 includes V-shaped tanks 60, 62, and 64 that form zigzag channels similar to the drug tank 24 and the stirring tank 42.
  • a biopellet 68 having a specific gravity of 1.122 to 1.127 is arranged at the bottom of each V-shaped tank, and is provided with a pellet carrying an Exibacterium (SW1) bacterium.
  • SW1 Exibacterium
  • the genus Exibacterium (SW1) is sufficiently resistant to sodium hypochlorite, decomposing active oxygen and detoxifying it.
  • a biopellet using a single bacterium belonging to the genus Exibacterium (SW1) is used, but as described above, it may be used together with the above-mentioned auxiliary bacteria.
  • This biopellet is a technique based on a microorganism immobilization method, and pelletization includes a method of naturally fixing to a porous material such as activated carbon using a biofilm, a method of comprehensively fixing to acrylamide and the like. In general, the former is often used. A separately produced catalase may be added here.
  • the temperature is raised to 70 ° C. or higher with a heater, but it is necessary to sufficiently increase the heat resistance of each member. Moreover, the preferable temperature for a bath is around 40 ° C., and cooling is necessary to return to this temperature.
  • the genus Exibacterium (SW1) is the most. It is a temperature that functions efficiently, and it is possible to obtain an unexpected effect of improving efficiency by eliminating waste of energy.
  • the hot water that has passed through the biological treatment tank 44 traps the biopellet by the rough film 46. This trap is renewed by a roller 48 on both sides, after a predetermined time, with a new rough film 46, just like a typewriter ribbon.
  • the temperature at which Exigobacterium (SW1) bacteria function most efficiently and produce catalase and catalase works best is 25-42 ° C, more preferably 30-40 ° C, More preferably, since it is around 37 ° C. of 36 to 38 ° C., it is desirable to sufficiently control the temperature, and the range of pH 6 to 9 is preferable, pH 6 to 8 is more preferable, and about pH 7 is further preferable. In addition, since the other bacteria described above have optimum temperatures, such temperature control and pH control are desirable.
  • FIG. 9 shows a schematic diagram of the photocatalyst evaluation apparatus.
  • a petri dish 86 is disposed in a sealed container 84 irradiated by a lamp 82 (fluorescent lamp or black light), and water for preventing drying of the microorganism for evaluation is placed therein.
  • a glass plate 90 coated with a photocatalyst is placed on a piece of wood handed over a petri dish.
  • the light from the lamp 82 is applied to the plate 90 through the transparent glass 92 (preferably quartz glass) on the ceiling.
  • the transparent glass 92 preferably quartz glass
  • UV light from black light can also kill microorganisms directly.
  • coating a photocatalyst also has bactericidal ability. Therefore, the functional evaluation of the photocatalyst cannot be completely performed.
  • a microorganism for evaluation such as Escherichia coli that does not die by irradiation with a predetermined ultraviolet ray (for example, by black light) is selected in the same manner as in the genus Exibacterium (SW1). Thereby, the possibility of the death of the microorganisms by ultraviolet irradiation can be excluded. Experiments are performed by dropping such E.
  • microorganisms for producing high catalase activity and such an environment and to make effective use of those microorganisms, so that active oxygen can be effectively used.
  • a microorganism that produces an enzyme with high catalase activity the genus Exigobacterium (SW1) has been isolated, so that the production efficiency is extremely high.
  • SW1 genus Exigobacterium
  • an environment in which the catalase activity was particularly high could be found.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 高いカタラーゼ活性及びそのような環境を作るための微生物を提供する。また、それらの微生物を有効利用する方法やその方法を用いる装置を提供する。  高いカタラーゼ活性の酵素を産生する微生物として、イグジオバクテリウム(Exiguobacteriu)属(SW1)菌を単離した。この菌のカタラーゼ活性が特に高くなる環境を見出した。そして、このような環境にふさわしい微生物についても提案する。更に、これらを用いて、活性酸素を無毒化する方法を提案する。例えば、特殊条件下での活性酸素による殺菌と無毒化の方法や、光触媒の評価方法を提案する。

Description

活性酸素耐性菌及びその利用方法
 本発明は、活性酸素に対する耐性を有する菌等及びそれらの利用方法、並びに、該方法を適用可能な装置に関する。
 カタラーゼは過酸化水素を水と酸素に分解する反応を触媒する酵素であり、動植物や微生物に広く分布していることが知られている。市販のものとしても、牛肝臓由来やアスペルギルス(Aspergillus)属のカビ由来のカタラーゼなど様々な起源のものがある。また、これまでに高濃度の過酸化水素を含む工場排水から過酸化水素に対して耐性を有する新菌株イグジオバクテリウム・オキシドトレリカム(Exiguobacterium oxidotolericum)を単離し、その細胞抽出液が強いカタラーゼ活性を有することが開示されている(例えば、特許文献3)。
 通常過酸化水素からは活性酸素が生じるが、活性酸素は細胞にダメージを与えるものとして近年その無害化が注目されている。カタラーゼは、過酸化水素からこのような活性酸素の発生を低減することができる酵素であり、健康食品や飲料、その他の分野における応用が期待される。
 ところで、過酸化水素水等から生じるものと同様な活性な酸素は、酸化チタン等を含むいわゆる光触媒によっても生成することができる。即ち、光触媒により、水が分解され、活性な酸素が発生する。このような活性な酸素は、滅菌や抗菌効果があり、滅菌作用や抗菌作用が望まれる部分に適用する材料として一般に市販されている。しかしながら、光触媒においては、原料組成物が同一であっても、触媒活性が同程度であるとは限らず、その評価は必ずしも容易ではない。特に、滅菌や抗菌効果は、菌が生息できる比較的マイルドな環境下で評価しなければならず、対照実験を行った場合であっても、滅菌や抗菌効果を確認することは容易ではない。そこで、光触媒の作用環境下で生成される活性な酸素を分解してベースとなる状態を、菌が生息できる比較的マイルドな環境下で作り出すことが望まれる。
 一般に活性酸素は強い殺菌作用があり、上述の光触媒以外にも、広い分野において活用されている。例えば、次亜塩素酸ナトリウムは、活性酸素によって殺菌作用を示し、家庭用に販売されている液体の塩素系漂白剤、殺菌剤(洗濯用、キッチン用、ほ乳ビンの殺菌用など)などに使用されている。次亜塩素酸ナトリウムを希釈した水溶液はアンチホルミンという名称で食品添加物としても使われている。殺菌剤としては野菜、果実などの消毒にも用いられる。医療機関などで消毒薬として使用されることも多い。各種細菌やウイルスに効果を示すため、医療器具やリネンの消毒に使用されている。しかしながら、活性酸素がそのまま残っている場合は、やはり人体に有害であるので、何らかの方法で無毒化することが好ましい。その無毒化の方法は、過剰に行っても有害とならない方法が好ましい。
 従って、過酸化水素水や次亜塩素酸ナトリウム等から生じるものと同様な活性な酸素を高効率で分解できるカタラーゼ活性の高い酵素があると便利である。これまで、カタラーゼ活性の高い酵素を産生する菌やその遺伝子等が開示されているが、より高いカタラーゼ活性が望まれている(例えば、特許文献1から3、非特許文献1)。
特表2000-513574号公報 特開2002-253215号公報 特開2005-204559号公報
IsaoHara, Nobutoshi Ichise, Kiyoshi Kojima, Hidemasa Kondo, Satoru Ohgiya,Hidetoshi Matsuyama, and IsaoYumoto;"Relationshipbetween the Size of the Bottleneck 15Åfrom Iron in the Main Channel and the Reactivity ofCatalase Corresponding to the Molecular Size of Substrates"; Biochemistry, Vol. 46, No. 1, 2007, p.11-22.
 一般に、細菌の一種であるMicrococcus luteus(lysodeikticus)、カビの一種であるAspergillus niger及びThermoascusauranticus由来のカタラーゼは比較的温度安定性には優れているが、カタラーゼの活性が高くなく、より高いカタラーゼ活性の酵素を産生する微生物があれば好ましい。更に、そのような微生物の産生能力を更に向上させる環境を作り出すことができれば、より好ましい。そして、このような細菌を含む微生物を用いて、活性酸素で殺菌を行った場合の無毒化ができればより好ましい。また、光触媒の評価もできれば、更に好ましい。そこで、このような微生物を提供し、また、その好ましい環境を提供し、更に、それらを応用して、活性酸素の上手な利用方法を提供することを目的とし、そのような利用方法を使う殺菌や光触媒の評価方法を提供し、そのような方法を活用する装置を提供することを目的とする。
 上述のような課題に鑑みて、鋭意研究をすることにより、高いカタラーゼ活性の酵素を産生する微生物として、イグジオバクテリウム(Exiguobacteriu)属(SW1)菌を単離することができた。このように、過酸化水素耐性能を持ち高い過酸化水素分解活性を有するイグジオバクテリウム(Exiguobacteriu)属に属する新規微生物(SW1)菌株を提供する。特に、独立行政法人製品評価技術基盤機構に2007年10月24日に受託番号NITE P-439として寄託されたイグジオバクテリウム(Exiguobacteriu)属(SW1)菌を提供する。また、その菌のカタラーゼ活性が特に高くなる環境を提供する。そして、これらを利用する殺菌及び/又は滅菌方法、光触媒の評価方法を提供する。より具体的には以下の通りである。
(1)受託番号NITE P-439として寄託された新規微生物(SW1)菌株。
(2)イグジオバクテリウム(Exiguobacteriu)属に属する新規微生物であって、16S rRNAに対応するDNAの塩基配列が、配列番号1に記載の塩基配列である上記(1)に記載の微生物。
(3)受託番号NITE P-450として寄託された新規微生物(EUS)菌株。
(4)ミクロバクテリウム(Microbacterium)属に属する新規微生物であって、16S rRNAに対応するDNAの塩基配列が、配列番号2に記載の塩基配列である上記(3)に記載の微生物。
(5)受託番号NITE P-440として寄託された新規微生物(Cit)菌株。
(6)ラネラ(Rahnella)属に属する新規微生物であって、16S rRNAに対応するDNAの塩基配列が、配列番号3に記載の塩基配列である上記(5)に記載の微生物。
(7)主菌及び従菌を含む活性酸素を分解する混合物であって、前記主菌はカタラーゼ活性を示し、前記従菌は従属栄養細菌であることを特徴とする混合物。
(8)前記主菌は、イグジオバクテリウム(Exiguobacteriu)属(SW1)菌を含むことを特徴とする上記(7)に記載の混合物。
(9)前記従菌は、ミクロバクテリウム(Microbacterium)属(EUS)菌及び/又はラネラ(Rahnella)属(Cit)菌を含むことを特徴とする上記(7)又は(8)に記載の混合物。
(10)上記(7)から(9)のいずれかに記載の混合物を用いて、活性酸素を分解する方法。
(11)上記(1)から(6)のいずれかの新規微生物を用いて、過剰な活性酸素により殺菌した後に、残存活性酸素を無毒化することを特徴とする方法。
(12)上記(10)又は(11)に記載の方法を用いる光触媒の評価方法。
(13)上記(10)又は(11)に記載の方法を利用した24時間浴水浄化循環装置。また、上記(10)又は(11)に記載の方法を利用した給湯システムも提供できる。更に、上記(10)又は(11)に記載の方法を用いる給湯浄化方法も提供できる。このような浴水浄化循環装置(例えば、24時間風呂)若しくは給湯システムは、給湯槽若しくは浴槽と、バルブを介して若しくは介さずに槽外に排出又は槽内に給湯する配管と、いずれかの位置に設けられる給湯のお湯を加圧するポンプと、配管の一部を代用した場合を含む薬剤槽と、ろ過槽(ろ過装置のろ過槽を含む)と、配管を特殊形状(例えば、ジグザグに折り返すものやコイル状に巻いたものを含む如何なる形状も含む無害化槽とを含んで構成される。前記薬剤槽では、活性酸素を発生する薬品等が添加されてよい。例えば、レジオネラ菌等の細菌を殺すのに十分な濃度(例えば、薬剤槽における濃度又は薬剤槽に接続される配管中の濃度)となるように十分な量の次亜塩素酸ナトリウムが添加される。前記ろ過槽でろ過され、前記無害化槽(生物処理槽を含んでよい)へお湯が流される。生物処理槽には、バイオペレット等が配置されてよく、主菌となるイグジオバクテリウム(Exiguobacteriu)属 (SW1)菌等が担持されたペレットが備えられてよい。補助菌を備えるバイオペレットを用いてもよく、両バイオペレットが混合した状態で前記無害化槽に備えられてよい。
 以上のような新規微生物により、効率的にカタラーゼを産生させることができる。また、これにより、酸化処理等に使用した後の過剰の過酸化水素をマイルドな条件で消滅させることもできる。また、光触媒の作用環境下で生成される活性な酸素を分解してベースとなる状態を、菌が生息できる比較的マイルドな環境下で作り出すことも可能である。
 カタラーゼ活性のある新規微生物は、必ずしも過酸化水素が存在する環境で最も効率よく過酸化水素を分解できるとは限らない。また、このような新規微生物にとって、カタラーゼ活性がより高い環境を、別の微生物が作り出すこともあり得る。そして、このようにして、元々高いカタラーゼ活性のある新規微生物の活性を更に高めることができる。また、これらの微生物を利用して、穏やかな条件で活性酸素の量(濃度)を低減することができ、食品、飲料、その他の摂取物に活用することにより、老化防止剤としても使用が可能となる。
単独の場合のOD値の時間変化を示すグラフである。 単独の場合のカタラーゼ活性の時間変化を示すグラフである。 複合の場合のOD値の時間変化を示す全体グラフである。 複合の場合のOD値の時間変化を示すグラフ(0から4時間)である。 複合の場合のOD値の時間変化を示すグラフ(3.5から7時間)である。 複合の場合のカタラーゼ活性の時間変化を示すグラフである。 殺菌装置を組込んだ給湯システムの概略模式図である。 薬剤槽の概略模式図である。 無害化槽の概略模式図である。 バイオ処理槽の概略模式図である。 光触媒評価装置の概略模式図である。
 以下、本発明の実施例についてより詳しく説明する。なお、同一要素には同一符号を用い、重複する説明は省略する。
 日本国静岡県にある安倍川より、水試料を採取し、下記のような条件で培養した。採取した地点は、安倍川中流沿岸にある有東木地区である。この採取日時は、2006年8月12日の午前10:00頃であった。このときの気温は、28.3℃で、水温は16.8℃(但し、河川流入地点では20.3℃)であった。培養に用いる培地は、それぞれ、標準寒天培地(日水製薬株式会社製 顆粒型)、ニュートリエントブロス寒天培地(Oxioid社製 粉末型)、そして、R2A培地(日本製薬株式会社製 粉末型)を用いた。このときの温度は、30℃及び37℃であった。また、培養時間は、12~24時間とした。
 次に、下記のような条件で、目的とするイグジオバクテリウム(Exiguobacteriu)属(SW1)菌を単離した。単離方法は、釣菌単離であった。上述する標準寒天培地に生育したコロニーを白金耳を用いて釣菌し、各々の液体培地で37℃で、12時間培養後、白金耳で寒天培地上にストリークして単離コロニーを得た。それ以外の培地として、ニュートリエントブロス寒天培地及び液体培地(振盪培養)を用いた。また、培養温度は、37℃で、培養時間としては、12時間(液体培地)及び24時間(寒天培地)を用いた。
 単離したイグジオバクテリウム(Exiguobacteriu)属(SW1)菌について、PCR法により16S rRNA遺伝子を増幅し、以下のような解析を行った。
(遺伝子の特定)
 単離菌を上述する液体培地で培養後、遠心回収(3000rpmで5分から15分)した。DNA抽出キットを用いてDNA試料とし、細菌の遺伝学的分類に用いられる16S領域(16S rRNA遺伝子)を標的として遺伝子を部分増幅し、電気泳動により増幅バンドを確認した。電気泳動ゲルからDNAを切り出して精製し、再度部分的に増幅し、精製後シーケンス反応を行いシーケンサーで塩基配列を確定した。そして、塩基配列をデータベース(NCINB;blast)と照合し、相同性から同定した。このときの培養条件として、ニュートリエントブロス液体培地(Oxioid社製 粉末型)を用い、37℃で、12時間培養を行った。DNAの抽出は、QIAamp DNA mini kit(QIAGEN社製)を用いて行った。このとき、サーマルサイクラーとしては、GeneAmp PCR System 9600 (ABI社製)を用いた。また、Primerとして、16S rRNA検出用プライマー(島津評論 vol.57 p121-131 2000年)を用いた。遺伝子増幅酵素としては、AmpliTaq Gold(ABI社製)を用いた。また、シーケンサーは、ABI Prism 3100-Avant Genetic Analyzer(ABI社製)を用い、シーケンス試薬としては、BigDye(登録商標) Terminato 3.1を用いた。これにより、配列表1のような塩基配列の結果を得た。類似した塩基配列とアラインメントを取り近隣結合法により系統樹を作成したところ、イグジオバクテリウム(Exiguobacterium)属に属することが分かった。具体的には、16S rRNA遺伝子を調べ、1523 bp の塩基配列により、イグジオバクテリウム(Exiguobacteriu)属(SW1)菌とした。
 本発明のイグジオバクテリウム(Exiguobacteriu)属(SW1)菌は次のような特性を有する。
  ・形態学的特性
      グラム染色:陽性
      芽胞:無し
      菌形:球桿菌
  ・培地における生育特性
    (1)肉汁寒天平板培養
    (2)肉汁液体培養
      色調:黄色~黄褐色
      形:円形
      表面:平滑
  ・生理・生化学的特性
      グラム染色性:有
      カタラーゼ試験:陽性
  ・各温度における生育
      -1℃:-
      4℃:+
      30℃:+
      45℃:+
  ・近縁菌種とのDNA-DNA 相同性
(次亜塩素酸及び過酸化水素耐性能)
 (ア)イグジオバクテリウム(Exiguobacteriu)属(SW1)菌、並びに、(イ)大腸菌(E.Coli)及び黄色ブドウ球菌(S.Aureus)の混合、について、それぞれ次亜塩素酸耐性を調べた。具体的には、ニュートリエントブロス液体培地を準備し、温度37℃で、6時間培養を行った。(ア)のSW1菌については、次亜塩素酸ナトリウム20ppm、200ppm、500ppmをそれぞれ添加した3種類を、(イ)の大腸菌及び黄色ブドウ球菌については、次亜塩素酸ナトリウム20ppm、200ppmをそれぞれ添加した2種類を準備した。その結果、SW1菌については、500ppm添加であっても生育するが、大腸菌及び黄色ブドウ球菌については、20ppm、200ppmのいずれにおいても生育が見られなかった。
 次に、R2A寒天培地に(ア)のSW1菌を均一に捲き、次亜塩素酸ナトリウムを0.0005%、0.005%、0.05%、0.5%、5%染み込ませたペレットをおいたところ、0.5%、5%のペレットの回りでは、育成の阻害が認められたが、他には阻害は認められなかった。一方、過酸化水素を0.003%、0.03%、0.3%、3%、30%染み込ませたペレットをおいたところ、3%、30%のペレットの回りでは、育成の阻害が認められたが、他には阻害は認められなかった。また、SW1菌及び黄色ブドウ球菌を均一に捲き、過酸化水素を0.00003%、0.0003%、0.003%、0.03%、0.3%染み込ませたペレットをおいたところ、SW1菌には育成阻害が認められなかったが、黄色ブドウ球菌には0.3%で育成阻害が認められた。
 以上より、本発明のイグジオバクテリウム(Exiguobacteriu)属(SW1)菌は、黄色ブドウ球菌よりも次亜塩素酸ナトリウム及び過酸化水素に対する耐性が高いことがわかった。
 次に、同じ試料から、ミクロバクテリウム(Microbacterium)属菌及びラネラ(Rahnella)属菌を下記のような条件で単離した。
(単離方法)
 これらの菌は、単離方法として、釣菌単離方法による。これらの菌は、R2A寒天培地に生育したコロニーを、個々に釣菌してリン酸緩衝液100μL(マイクロリットル)に懸濁し、コンラージ棒を用いて新たなR2A寒天培地に塗布し、37℃で、24時間培養することにより、単離した。このときの培地は、R2A寒天培地であり、培養温度を37℃として、24時間培養を行った。
 単離したミクロバクテリウム(Microbacterium)属菌及びラネラ(Rahnella)属菌を以下のような条件で調べたところ、配列表の配列番号2及び3のような配列であった。具体的には、ミクロバクテリウム(Microbacterium)属菌については、16S rRNA遺伝子を調べ、1483 bp の塩基配列により、特定した。このミクロバクテリウム(Microbacterium)属菌は、独立行政法人製品評価技術基盤機構に2007年11月1日に受託番号NITE P-450として寄託(EUS)した。また、ラネラ(Rahnella)属菌については、16S rRNA遺伝子を調べ、1504 bp の塩基配列により、特定した。このラネラ(Rahnella)属菌は、独立行政法人製品評価技術基盤機構に2007年10月24日に受託番号NITE P-440として寄託(Cit)した。
(遺伝子の特定)
 単離したプレート上の菌を回収し、DNA抽出キットを用いてDNA試料とした。細菌の遺伝学的分類に用いられる16S領域(16S rRNA遺伝子)を標的として遺伝子を部分増幅し、電気泳動により増幅バンドを確認した。電気泳動ゲルからDNAを切り出して精製し、再度部分的に増幅し、精製後シーケンス反応を行いシーケンサーで塩基配列を確定した。塩基配列をデータベース(NCINB;blast)と照合し、相同性から同定した。このときの培養条件として、ニュートリエントブロス液体培地を用い、温度37℃で、12時間培養を行った。このとき、DNA抽出には、QIAamp DNA mini kit(QIAGEN社)を用いた。また、サーマルサイクラーとしては、GeneAmp PCR System 9600 (ABI社製)を用いた。また、プライマーとしては、16S rRNA検出用プライマー(島津評論 vol.57 p121-131 2000年)を用いた。更に、遺伝子増幅酵素としては、AmpliTaq Gold(ABI社製)を用いた。そして、シーケンサーとしては、ABI Prism 3100-Avant Genetic Analyzer(ABI社製)を用いた。このときのシーケンス試薬としては、BigDye(登録商標) Terminato 3.1を用いた。
 上述する菌について、(A)イグジオバクテリウム(Exiguobacteriu)属(SW1)菌、(B)大腸菌(E.Coli)、(C)黄色ブドウ球菌(S.Aureus)、(D)乳酸菌(Lactobacillus)、(E)納豆菌(B. subtilis)、(F)ラネラ(Rahnella)属菌、(G)ミクロバクテリウム(Microbacterium)属菌、(H)ラネラ(Rahnella)属菌及びミクロバクテリウム(Microbacterium)属菌(F及びG)混合培養、そして、(I)安倍川の水そのものを、以下(A~I)のような条件でそれぞれ培養した。
(培養条件)
 (A~E)においては、液体窒素中保存菌株(1~2×10~10)を20μL(マイクロリットル)ずつ接種した。
 (F~H)においては、R2A寒天培地上に生育したコロニーを釣菌してリン酸緩衝液100μL(マイクロリットル)に懸濁した。ここで、(F)及び(G)は、20μL(マイクロリットル)ずつ接種した。そして、(H)においては、各20μL(マイクロリットル)ずつ接種した。以下に各々の条件を並べる。
  (A)培地:ニュートリエントブロス液体培地
      温度:37℃ 
      時間:12時間 振盪培養
  (B)培地:LB液体培地
      温度:37℃ 
      時間:12時間 振盪培養
  (C)培地:標準液体培地
      温度:37℃ 
      時間:12時間 振盪培養
  (D)培地:GAM液体培地
      温度:37℃ 
      時間:24時間 嫌気培養
  (E)培地:標準液体培地
      温度:37℃ 
      時間:12時間 振盪培養
  (F)培地:R2A液体培地
      温度:37℃ 
      時間:12時間 振盪培養
  (G)培地:R2A液体培地
      温度:37℃ 
      時間:12時間 振盪培養
  (H)培地:R2A液体培地
      温度:37℃ 
      時間:12時間 振盪培養
  (I)10倍濃度で標準液体培地を調整し、採水した安倍川の水で10倍に希釈した。
      培地:標準液体培地
      温度:37℃ 
      時間:12時間 振盪培養
 (A)~(I)各々の培養菌液は、100μL(マイクロリットル)をL字管に調整したニュートリエントブロス液体培地の、10mL(ミリリットル)中に添加し、37℃で振盪培養した。
 それぞれ単独培養(ニュートリエントブロス液体培地の10mL(ミリリットル)において、37℃にて培養)において、0~7時間(1時間毎)及び12時間後のOD値(濁度)とカタラーゼ活性を測定した。カタラーゼ活性測定は、発酵管を用いた過酸化水素分解反応によって行なった。それぞれの測定結果を図1及び図2に示す。
(カタラーゼ活性試験)
 カタラーゼ活性試験は、10mL(ミリリットル)の発酵管(旭硝子社製のアインホルン型)中に3%過酸化水素水を充填し、マイクロピペットを用いて上述の培養後菌液を1mL(ミリリットル)だけ、挿入添加し、カタラーゼにより分解発生する酸素ガス量を測定した。
 (A)においては、6時間でプラトー(培養停滞:1~2×10個/mL(ミリリットル))に達することがわかる。また、カタラーゼ活性は、酸素5mL(ミリリットル)/1mL(ミリリットル)菌液であった。(B)においては、7時間でプラトーに達することがわかる。カタラーゼ活性は、酸素0.05mL(ミリリットル)/1mL(ミリリットル)菌液であった。(C)においては、生育は極めて遅いことがわかる。カタラーゼ活性は、酸素0.05mL(ミリリットル)/1mL(ミリリットル)菌液であった。(D)においては、生育は極めて遅いことがわかる。カタラーゼ活性は確認できなかった。(E)においては、6~7時間でプラトー(培養停滞:0.5~1×10個/mL(ミリリットル))に達することがわかる。カタラーゼ活性は、酸素0.8mL(ミリリットル)/1mL(ミリリットル)菌液であった。(F)においては、6~7時間でプラトー(培養停滞:0.5~1×10個/mL(ミリリットル))に達することがわかる。カタラーゼ活性は、酸素0.01mL(ミリリットル)/1mL(ミリリットル)菌液であった。(G)においては、菌の生育は確認できなかった。カタラーゼ活性も確認できなかった。(H)においては、12時間まで成長を続けることがわかる。カタラーゼ活性は、酸素0.1mL(ミリリットル)/1mL(ミリリットル)菌液であった。(I)においては、7時間でプラトーに達することがわかる。カタラーゼ活性は、酸素0.2mL(ミリリットル)/1mL(ミリリットル)菌液であった。ここで、(I)の中には(A)の菌株も存在するが、水そのものの培養ではカタラーゼは獲得できなかった。
 次に、(A)のイグジオバクテリウム(Exiguobacteriu)属(SW1)菌を主菌株として、従菌株としての(B)から(I)を混合して培養し、同様にOD値とカタラーゼ活性を測定した。それぞれの測定結果を表1及び表2並びに図3Aから図4に示す。
(カタラーゼ活性の測定)
 上述(A)培養液100μL(マイクロリットル)と、(B)~(I)の各々の培養菌液の100μL(マイクロリットル)をL字管に調整したニュートリエントブロス液体培地10mL(ミリリットル)中に添加し((AB)、(AC)、(AD)、(AE)、(AF)、(AG)、(AH)、(AI))、37℃で振盪培養した。カタラーゼ活性試験は、10mL(ミリリットル)発酵管(アインホルン型)中に3%過酸化水素水を充填し、マイクロピペットを用いて上述の培養後菌液を1mL(ミリリットル)だけ、挿入添加し、カタラーゼにより分解発生する酸素ガス量を測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (AA)は、図1及び2の(A)単独と同じものである。(AB)においては、 7時間でプラトーに達することがわかる。(培養停滞:1~2×10個/mL(ミリリットル))また、カタラーゼ活性は、酸素0.2mL(ミリリットル)/1mL(ミリリットル)菌液であった。(AC)においては、7時間でプラトーに達する。(培養停滞:1~2×10個/mL(ミリリットル))カタラーゼ活性は、酸素3.7mL(ミリリットル)/1mL(ミリリットル)菌液であった。(AD)においては、7時間でプラトーに達する。(培養停滞:1~2×10個/mL(ミリリットル))カタラーゼ活性は、酸素4.0mL(ミリリットル)/1mL(ミリリットル)菌液であった。(AE)においては、7時間でほぼプラトーに達する。(培養停滞:1~2×10個/mL(ミリリットル))カタラーゼ活性は、酸素0.9mL(ミリリットル)/1mL(ミリリットル)菌液であった。(AF)においては、7時間でプラトーに達する。(培養停滞:1~2×10個/mL(ミリリットル))カタラーゼ活性は、酸素2.5mL(ミリリットル)/1mL(ミリリットル)菌液であった。(AG)においては、7時間でプラトーに達する。(培養停滞:1~2×10個/mL(ミリリットル))カタラーゼ活性は、酸素6.5mL(ミリリットル)/1mL(ミリリットル)菌液であり、(AA)の主菌株単独の活性を上回ることがわかる。(AH)においては、7時間でプラトーに達する。(培養停滞:1~2×10個/mL(ミリリットル))カタラーゼ活性は、酸素5.5mL(ミリリットル)/1mL(ミリリットル)菌液であり、(AA)の主菌株単独の活性を上回ることがわかる。(AI)においては、7時間でプラトーに達する。(培養停滞:1~2×10個/mL(ミリリットル))カタラーゼ活性は、酸素4.0mL(ミリリットル)/1mL(ミリリットル)菌液であった。
 ここで、(B)大腸菌(E.Coli)及び(E)納豆菌(B. subtilis)は、生育速度が主菌株とほぼ同じであると考えられ、(C)黄色ブドウ球菌(S. Aureus)及び(D)乳酸菌(Lactobacillus)は、ニュートリエントブロス培地ではほとんど生育しない。また、(F)ラネラ(Rahnella)属菌や、(G)ミクロバクテリウム(Microbacterium)属菌は、生育速度が主菌株より遅い。
 以上の結果から、大腸菌(B)、納豆菌(E)のように培養速度が近いと、競合により生育に必要な養分を取られてしまう(納豆菌ではナットウキナーゼによる分解も考えられるが、いずれにせよカタラーゼ活性は得られない)。黄色ブドウ球菌(C)及び乳酸菌(D)では、主菌株(A)より若干低い活性であり、これら菌株が単独培養ではほとんど生育していないことと、安倍川の水培養(I)でも同程度であることから、生育が競合しない場合の結果と考えられる。
 以上より、独立栄養細菌であるXanthomonas axonopodis pv. Citri類縁菌は、主菌株と競合し、カタラーゼ活性を低下させてしまうと考えられる。しかし、ミクロバクテリウム(Microbacterium)属菌と混合することで、主菌株の単独培養よりも若干高いカタラーゼ活性が得られる。従属栄養細菌であるミクロバクテリウム(Microbacterium)属菌のみの添加で最も高いカタラーゼ活性を得たことから、主菌株とミクロバクテリウム(Microbacterium)属菌との混合培養が効果的である。ミクロバクテリウム(Microbacterium)属菌が従属栄養細菌であるがゆえ、分離・保存にはラネラ(Rahnella)属菌が存在すると安定する。ただし、R2A培地を用いることで、分離培養は可能である。
 主菌株イグジオバクテリウム(Exiguobacteriu)属(SW1)菌(以下「Ex菌」という)の、単独培養で得られるカタラーゼ活性・酸素5.0mL(ミリリットル)/1mL(ミリリットル)培養液に対して、同じ安倍川の水より分離したミクロバクテリウム(Microbacterium)属菌を添加し培養することで、カタラーゼ活性・酸素6.5mL(ミリリットル)/1mL(ミリリットル)培養液と、有意に増加がみられた。従って、主菌株イグジオバクテリウム(Exiguobacteriu)属(SW1)菌と、従菌株ミクロバクテリウム(Microbacterium)属菌の複合がより好ましい。
(イグジオバクテリウム(Exiguobacteriu)属(SW1)菌の量産可能性)
 Ex菌の培養時に培地に耐性限界の次亜塩素酸ナトリウムを入れた場合及び入れない場合において、上述するような条件で16時間培養した結果、細胞溶解法で取り出したカタラーゼの量及び性質について検討した。元菌(原液)、溶解(細胞溶解液(自家製:50mM Tris-HCl緩衝液 pH7.5, 0.15M NaCl, 0.1% SDS,1% Triton X-100)で溶解した溶液)、精製(ゲルクロマト(GE社製 Sephacryl S-1000))についてそれぞれ調べた。次亜塩素酸ナトリウムを添加した場合、活性のある60kD(キロダルトン)カタラーゼの量が、元菌、溶解、精製の何れの場合でも次亜塩素酸ナトリウムを添加しなかった場合の量に比べ少なかった。また、次亜塩素酸ナトリウムを添加した場合、120kD(キロダルトン)カタラーゼの量が、次亜塩素酸ナトリウムを添加しなかった場合の量に比べ多かった。このことから、次亜塩素酸ナトリウムを添加した場合、活性のある60kD(キロダルトン)カタラーゼが減量し、120kD(キロダルトン)に変化したことが認める。因みに、カタラーゼ単体の分子量は約24kD(キロダルトン)である。このように培地に次亜塩素酸ナトリウムを添加することは、培地や培養タンクの滅菌のために有効である。例えば、大量培養時には、培地や培養タンクの滅菌は通常の実験室レベルの方法では困難である。しかし、次亜塩素酸ナトリウムを培地に添加するという方法であれば、大量培養にも比較的容易に行うことができる。但し、例えば、耐性限界まで添加してしまうとカタラーゼ産生には悪影響が上述するようにあると考えられる。そのため、添加濃度を検討したところ、次亜塩素酸ナトリウムの添加量は培地に対して0.04%以下となるように添加することが好ましい。より好ましくは、0.01%以下であり、更に好ましくは、0.005%以下である。例えば、約0.002%とすることもできる。一方、一般に濃度が低いと滅菌効果が低下するので、滅菌効果の観点からは、好ましくは、0.0001%以上、より好ましくは、0.0005%以上、更に好ましくは、0.01%以上である。例えば、本実施例の場合は、0.002%から0.005%の範囲が特に好ましい。尚、この濃度は、次亜塩素酸ナトリウムの理論値に対するもので、例えば、35%の次亜塩素酸ナトリウム溶液の場合、実際の添加量に35%を乗じたものが次亜塩素酸ナトリウムの量となる。
 Ex菌による実験室レベルの培養により生産されたカタラーゼと、約1t(トン)のEx菌培養により生産されたカタラーゼとを分子量により比較した。それぞれ所定の量の培養液を取り、それぞれCBB(クマシーブルー)染色により、また、抗体反応によるウエスタンブロッティングを用いて測定した。用いた試料は、実験室レベルにおいて、下記(1)から(6)の条件において培養したもの、通常の方法で約1t(トン)培養したもので(7)沈殿前及び(8)沈殿後のものをそれぞれ比較した。具体的には、各5mL(ミリリットル)の菌液を凍結溶解して菌を破壊し、そのまま電気泳動した。
(1)普通ブイヨン液体培地(0.1%肉エキス,0.2%酵母エキス,0.5%ペプトン,0.5%塩化ナトリウム,pH7.0±.)
(2)普通ブイヨン液体培地 + 次亜塩素酸ナトリウム 1μL(マイクロリットル)/25mL(ミリリットル)
(3)ノーマルLB(1.0%,0.5%酵母エキス,1.0%塩化ナトリウム)
(4)普通ブイヨン液体培地 + 次亜塩素酸ナトリウム 1μL(マイクロリットル)/25mL(ミリリットル)
(5)普通ブイヨン液体培地 + トリプトン(BD社製 Bacto Tryptone) 100mg(ミリグラム)/10mL(ミリリットル)
(6)普通ブイヨン液体培地 + トリプトン(BD社製 Bacto Tryptone) 100mg(ミリグラム)/10mL(ミリリットル) + 次亜塩素酸ナトリウム 1μL(マイクロリットル)/25mL(ミリリットル)
 ここで、標準試料として、牛肝臓由来カタラーゼ(CALBIOCHEM社製 Catalase, Bovine Liver)及びヒト血球由来カタラーゼ(CALBIOCHEM社製 Catalase, Human Erythrocytes)についても同時に調べた。これらの標準試料は、主として60kD(キロダルトン)のカタラーゼを含み、濃度が濃いため、バンドも大きくなった。試料(1)から(6)について、いずれも60kD(キロダルトン)のカタラーゼが検出された。また、標準試料では更に低分子のものが認められたが、試料(1)から(6)の何れもサンプル量が少量(5mL(ミリリットル))のため検出できなかった。
 培地の種類によるカタラーゼの出来具合を調べたところ、試料(1)から(6)については、大きな差はなかった。しかし、抗体反応の結果では(2)の「普通ブイヨン液体培地 + 次亜塩素酸ナトリウム 1μL(マイクロリットル)/25mL(ミリリットル)」が一番明確なバンドであり、最も大量に発現していることが分かった。大量生産でも、酵素反応でカタラーゼのバンドが確認された。
 因みに、中国で安価に販売されるカタラーゼ(Qingdao Ecole Biotech Co. Ltd製 http://www.ekl558.cn/)について同様に調べると、標準品に比べて不純物が多いことがわかった。実際に、このカタラーゼからは、ルミノール反応がみられ、これは抽出タンパク質ではなく、血液であることがわかった。尚、本発明の実施例に関するカタラーゼは、何れもルミノール反応はみられなかった。
 以上のことを踏まえ、効率の良い大量培養について検討する。上述するように、主菌としてEx菌と、従菌としてミクロバクテリウム(Microbacterium)属菌の複合がより好ましいが、最初の段階から混合培養をしてしまうと、カタラーゼは作るものの菌の増殖が進み難いおそれがある。そのため、結果的にカタラーゼの培地相対的産生量が低下すると考えられる。これは、増殖する条件と、カタラーゼを産生する条件が、必ずしも一致しないからと考えられる。そこで、段階的に菌を増やす方法を用いることができる。
 例えば、大量培養する際、2L(リットル)(2×1012個)のEx菌の種菌を一晩(16時間)で200L(リットル)(2×1014個)に増やし、さらに24時間で2~5000L(リットル)(2~5×1014個)に増やす。16時間培養する時にMicrobacterium属菌(G)の種菌を作り、24時間培養時に添加する。上述した実験において、Ex菌(A)とミクロバクテリウム(Microbacterium)属菌(G)は同量ずつ添加していたが、(G)を1/100量でもカタラーゼ活性は上がると考えられる。そのため、60kD(キロダルトン)のカタラーゼの産生効率の向上が期待される。
 また、大量培養時には、培地の滅菌や培養タンクの消毒は、実験室レベルの方法(例えば、ブラシ等による洗浄等)では困難である。タンク内に大腸菌等の微生物が存在している場合、上述する実験の混合培養結果にあるように、カタラーゼ活性の著しい低下を招くおそれがある。そこで、次亜塩素ナトリウムに対する耐性能を利用して、大量の培地を作成する時に、次亜塩素酸ナトリウムを滅菌に充分な所定量を添加する(例えば、200ppm(パーツ・パー・ミリオン)以下)。これにより、Ex菌(A)以外の菌を消毒することができる。
 (大量培養後の菌の回収法と精製法)
 大量に培養した場合、菌をどのように回収し、カタラーゼをどのように精製するかが重要である。そこで、例えば、タンク内で菌を沈殿させるために、ミョウバンを所定量(例えば、1kg(キログラム)/1t(トン))を加えることができる。菌回収後、物理的に破壊して(フレンチプレス)、カタラーゼ溶液とすることができる。更に、10~30kD(キロダルトン)と100~300kD(キロダルトン)の透析膜を使って簡易精製することができる。
 以上から、具体的な方法をまとめると次のようになる。
I.Ex菌の培養・増殖
 Ex菌の増殖に最も好ましい条件(例えば、培地に約0.001%の次亜塩素酸ナトリウムを添加したもの)で、Ex菌を増殖する。例えば、2L(リットル)(2×1012個)のEx菌の種菌を[500L(リットル)培地+次亜塩素酸ナトリウム20mL(ミリリットル)(35%濃度原液)]の条件で、16時間培養する。ここでは、主菌となる菌の増殖のための最適な条件を提供することが好ましい。例えば、主菌が活性酸素に対する耐性が高い場合、従菌を加えないので従菌の活性酸素対する耐性を考慮する必要がない。また、主菌の増殖を妨げる他の菌の増殖や生存を制限可能な条件(例えば、より高い濃度の活性酸素)を選択することもできる。特に高い活性酸素濃度での増殖は、増殖容器内の滅菌効果も期待できる。
II.ミクロバクテリウム(Microbacterium)種菌の準備
 Ex菌の増殖中にミクロバクテリウム(Microbacterium)種菌を別途所定量(例えば、2L(リットル))準備する。ここでは、主菌とは異なる条件で従菌を繁殖させてもよい。また、必ずしも大量である必要がないならば、その他の菌の滅菌を事前に行ってから従菌を繁殖させることもできる。
III.Ex菌及びミクロバクテリウム(Microbacterium)種菌による混合培養
 増殖したEx菌(例えば、16時間で200L(リットル)(2×1014個))に、培地を所定量(例えば、4500L(リットル))加え、更に、準備した所定量(例えば、2L(リットル))のミクロバクテリウム(Microbacterium)種菌を添加して、所定時間(例えば、24時間)培養し、所定量(例えば、2~5000L(リットル)(2~5×1014個))まで増やす。ここで、所定量とは、主菌の活性を図るのに充分な量であればよい。例えば、主菌に対して、従菌の量が、0.001%以上であることが好ましい。また、0.01%以上であることがより好ましい。更に、0.1%以上であることが好ましい。また、従菌の量は主菌よりも多くてもよいが、カタラーゼの産生効率を考慮すれば、主菌と同量又はそれ以下が好ましい。好ましくは、25%以下であり、条件によっては10%以下である。
IV.培養タンクへミョウバンを所定量添加・分離精製
 混合培養を行った培養タンクにミョウバンを所定量(例えば、1kg(キログラム)/1t(トン))を加える。これにより、Ex菌等を沈殿させ、菌を回収する。そして、残りの溶液から、カタラーゼを透析膜又は限界ろ過により簡易精製することができる。
 尚、上述するIからIVの工程では、Ex菌について述べてきたが、このような大量なカタラーゼの産生の方法は、他の菌種についても適用することが可能と考えられる。
 これまでは、Ex菌等を培養等して、カタラーゼを産生する方法について述べてきた。以下は、このようにして産生されたカタラーゼを利用する方法等について述べる。図5は、循環湯を用いた殺菌装置を組込んだ給湯システムの概略図を示す。給湯システム10は、浴槽12に入ったお湯14を排水蓋16を開けることにより、槽外に排出し、給水蓋18を開けることにより、槽内に湯を入れることができる。排水口から排水されたお湯は配管20を通り、ポンプ22により加圧され、薬剤槽24へと押し上げられ、バルブ26を通過して、ろ過装置28へと流れる。ろ過装置28を通ると、無害化槽30を通り、バルブ34を経て、配管36を通り浴槽12へと循環される。薬剤槽24では、レジオネラ菌等の細菌を殺すのに十分な濃度となるように十分な量の次亜塩素酸ナトリウムが添加される。この薬剤槽24は、図6に矢印24aで示すように下から入ったお湯が、上下にジグザグにお湯が流れ、矢印24bの方向に排出される。このジグザグの流路では、中に入れられた薬剤ペレットに含まれる次亜塩素ナトリウムと循環するお湯が十分接触し、十分な量の次亜塩素酸ナトリウムが供給される。この十分な濃度の次亜塩素酸ナトリウムを含むお湯は、ろ過装置28へと流れ、フィルタでトラップされたゴミに潜む細菌も殺しながら、ろ過され、無害化槽30へと流れる。無害化槽30は、図7に示すように、上部に撹拌槽42が設けられ、矢印50に従って流れてきたお湯の中の薬剤等の均一な混合及び温度調整や必要に応じてpH調整を行うことができる。この槽を出るお湯は、矢印52に従って、生物処理槽44へと流入する。尚、上記撹拌槽42は、省略してもよい。生物処理槽44は、図8に示すように、薬剤槽24や撹拌槽42と類似のジグザグ流路を形成するV字型槽60、62、64が備えられる。各V字槽の底部には、比重が1.122~1.127のバイオペレット68が配置され、イグジオバクテリウム(Exiguobacteriu)属(SW1)菌が担持されたペレットが備えられる。このイグジオバクテリウム(Exiguobacteriu)属(SW1)菌は上述するように、次亜塩素酸ナトリウムに十分耐性があり、活性酸素を分解して、無害化する。ここでは、イグジオバクテリウム(Exiguobacteriu)属(SW1)菌単体を用いたバイオペレットを用いているが、これまで述べてきたように、上述の補助菌と共に用いてもよい。このバイオペレットは、微生物固定化法に基づく技術であり、ペレット化は、生物膜を利用して、活性炭などの多孔質に自然に固定する方法や、アクリルアミドなどに包括固定する方法等がある。一般には、前者が多く用いられている。また、別途生産したカタラーゼをここで添加してもよい。
 ここで、通常のレジオネラ菌の消毒方法では、ヒータで70℃以上に昇温するが、各部材の耐熱性を十分に上げる必要がある。また、お風呂に好ましい温度は40℃前後であり、この温度に戻すために冷却が必要である。一方、本システムでは、40℃あたりで次亜塩素酸ナトリウムが殺菌剤として有効に機能するだけでなく、その後工程の無害化槽30で、イグジオバクテリウム(Exiguobacteriu)属(SW1)菌が最も効率よく機能する温度であり、エネルギーの無駄を省いて、効率が向上するという思わぬ効果をえることができる。
 この生物処理槽44を通過したお湯は、粗い膜46によりバイオペレットをトラップする。このトラップは、両側のローラ48により、所定時間が経つと、タイプライターのリボンと同じように新しい粗い膜46が更新される。イグジオバクテリウム(Exiguobacteriu)属(SW1)菌が最も効率よく機能し、カタラーゼを産生して、カタラーゼが最も良く働く温度は、25~42℃であるが、より好ましくは、30~40℃、更に好ましくは、36~38℃の37℃前後であるので、十分な温度管理をすることが望ましく、pH6~9の範囲が好ましいが、pH6~8がより好ましく、約pH7が更に好ましい。また、上述する他の菌も最適な温度があるので、そのような温度管理やpH管理が望ましい。
 図9に光触媒評価装置の概略模式図を示す。光触媒評価装置80は、ランプ82(蛍光灯若しくはブラックライト)により照射される密閉容器84の中にシャーレ86が配置され、中に評価用微生物の乾燥を防ぐための水が入れられている。光触媒をコーティングしたガラス板90が、シャーレ上に渡された木片の上に置かれる。ランプ82の光は、天井の透明ガラス92(好ましくは石英ガラス)を通ってこの板90に照射される。この照射により、光触媒で活性酸素が作られると、評価用の微生物が死滅するので、この光触媒が有効に作用することがわかる。しかしながら、ブラックライトによる紫外線もまた、微生物を直接殺すこともできる。また、光触媒を塗布する際の有機溶媒も殺菌能を有する。そのため、光触媒の機能評価が完全にはできない。ここで、まず、イグジオバクテリウム(Exiguobacteriu)属(SW1)菌と同様に、所定の紫外線(例えば、ブラックライトによるもの)の照射では、死ぬことがない大腸菌等の評価用微生物を選出する。これにより、紫外線照射による微生物の死の可能性を排除することができる。このような大腸菌等を評価用微生物として、光触媒をコーティングしたガラス板、及び、していないガラス板に滴下して実験を行う。このとき、光触媒コーティングしたガラス板の菌が死に、そうでないガラス板が生きていたとしても、光触媒の効果であるのか有機溶媒の効果であるのかは明確にならない(有機溶媒のみを塗布しても、混合溶液での作用、揮発性、浸潤性に差があり正当評価できない)。そこで、ブラックライトによる紫外線の照射を行わないものをコントロールとして準備する。また、大腸菌等の評価用微生物とは別のガラス板を用意し、イグジオバクテリウム(Exiguobacteriu)属(SW1)菌を、光触媒をコーティングした板、及び、していない板に滴下して同時に実験を行い、菌がそのまま生きていることを確認する。このような実験を以下の表にまとめる。ここで、コーティングしたもので大腸菌数が減少あるいは死滅していれば、活性酸素(即ち、光触媒)のせいであることがわかる(No.2)。
Figure JPOXMLDOC01-appb-T000003
 以上述べてきたように、高いカタラーゼ活性及びそのような環境を作るための微生物をし、それらの微生物を有効利用する方法を提供できるので、活性酸素の上手な活用ができる。特に、高いカタラーゼ活性の酵素を産生する微生物として、イグジオバクテリウム(Exiguobacteriu)属(SW1)菌が単離されているので、極めて産生効率が高い。また、そのカタラーゼ活性が特に高くなる環境を見出すことができた。
  A  イグジオバクテリウム(Exiguobacteriu)属(SW1)菌
  G  ミクロバクテリウム(Microbacterium)属菌
  10  給湯システム
  12  浴槽
  20、36  配管
  22  ポンプ
  24  薬剤槽 
  26、34  バルブ
  28  ろ過装置
  30  無害化槽
  42  撹拌槽
  44  生物処理槽
  46  粗い膜  
  48  ローラ  
  60、62、64  V字型槽
  68  バイオペレット
  80  光触媒評価装置
  82  ランプ
  86  シャーレ

Claims (12)

  1.  受託番号NITE P-439として寄託された新規微生物(SW1)菌株。
  2.  イグジオバクテリウム(Exiguobacteriu)属に属する新規微生物であって、16S rRNAに対応するDNAの塩基配列が、配列番号1に記載の塩基配列である請求項1に記載の微生物。
  3.  主菌及び従菌を含む活性酸素を分解する混合物であって、
     前記主菌は、請求項1又は2に記載の菌株を含み、かつ、カタラーゼ活性を示し、
     前記従菌は従属栄養細菌であることを特徴とする混合物。
  4.  前記従菌は、ミクロバクテリウム(Microbacterium)属(EUS)菌及び/又はラネラ(Rahnella)属(Cit)菌を含むことを特徴とする請求項3に記載の混合物。
  5.  主菌及び従菌を用いてカタラーゼを産生する方法において、
     前記主菌は、請求項1又は2に記載の菌株を含み、かつ、カタラーゼ活性を示し、
     前記従菌は従属栄養細菌であり、
     前記主菌を培養して増殖して増殖主菌溶液を生成する工程と、
     前記増殖主菌溶液に前記従菌を所定の割合で添加して混合培養溶液とする工程と、
     前記混合培養溶液を用いて培養し、カタラーゼを産生させる工程と、を含むカタラーゼの産生方法。
  6.  受託番号NITE P-450として寄託された新規微生物(EUS)菌株。
  7.  ミクロバクテリウム(Microbacterium)属に属する新規微生物であって、16S rRNAに対応するDNAの塩基配列が、配列番号2に記載の塩基配列である請求項6に記載の微生物。
  8.  受託番号NITE P-440として寄託された新規微生物(Cit)菌株。
  9.  ラネラ(Rahnella)属に属する新規微生物であって、16S rRNAに対応するDNAの塩基配列が、配列番号3に記載の塩基配列である請求項8に記載の微生物。
  10.  請求項3又は4に記載の混合物を用いて、活性酸素を分解する方法。
  11.  請求項1又は2の新規微生物を用いて、過剰な活性酸素により殺菌した後に、残存活性酸素を無毒化することを特徴とする方法。
  12.  光触媒を施した第1の試料に、請求項1又は2の微生物を含む培養液を滴下する工程と、
     光触媒を施した第2の試料に、紫外線耐性のある微生物を含む培養液を滴下する工程と、
     前記第1及び第2の試料に紫外線を所定の強さで、所定時間、均等に照射する工程と、
     前記第1及び第2の試料のそれぞれの微生物が紫外線照射後に生存しているかを調べる工程と、を含む光触媒の評価方法。
PCT/JP2009/065207 2008-08-29 2009-08-31 活性酸素耐性菌及びその利用方法 WO2010024440A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010526813A JP5525445B2 (ja) 2008-08-29 2009-08-31 活性酸素耐性菌及びその利用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-222803 2008-08-29
JP2008222803 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010024440A1 true WO2010024440A1 (ja) 2010-03-04

Family

ID=41721599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065207 WO2010024440A1 (ja) 2008-08-29 2009-08-31 活性酸素耐性菌及びその利用方法

Country Status (2)

Country Link
JP (1) JP5525445B2 (ja)
WO (1) WO2010024440A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067617A (ja) * 2011-09-23 2013-04-18 Evonik Degussa Gmbh 不飽和脂肪酸及びそれらの誘導体のオゾン分解

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103224478B (zh) * 2013-04-25 2015-08-05 中国科学院长春应用化学研究所 间苯二甲酸二四氢糠酯-5-磺酸及其盐、制备方法及应用与聚乳酸树脂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118760A (ja) * 1997-07-01 1999-01-26 Unitika Ltd 1,5−アンヒドログルシトール脱水素酵素を産生する細菌株及びその大量増殖方法
JP2001178447A (ja) * 1999-12-24 2001-07-03 Shinohara Seiki Kk 農薬分解能を有する微生物群、該微生物群を含む堆肥とその製造方法及び装置
JP2002058475A (ja) * 2000-08-16 2002-02-26 Kanbiken Kk 油を分解する能力を有する新規微生物及びそれを用いた油の分解方法
JP2002253215A (ja) * 2001-03-02 2002-09-10 National Institute Of Advanced Industrial & Technology 過酸化水素耐性微生物による過酸化水素含有廃水の処理法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117860A (ja) * 1997-06-27 1999-01-22 Nagano Japan Radio Co 電子郵便システムの処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118760A (ja) * 1997-07-01 1999-01-26 Unitika Ltd 1,5−アンヒドログルシトール脱水素酵素を産生する細菌株及びその大量増殖方法
JP2001178447A (ja) * 1999-12-24 2001-07-03 Shinohara Seiki Kk 農薬分解能を有する微生物群、該微生物群を含む堆肥とその製造方法及び装置
JP2002058475A (ja) * 2000-08-16 2002-02-26 Kanbiken Kk 油を分解する能力を有する新規微生物及びそれを用いた油の分解方法
JP2002253215A (ja) * 2001-03-02 2002-09-10 National Institute Of Advanced Industrial & Technology 過酸化水素耐性微生物による過酸化水素含有廃水の処理法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIN MURATA ET AL.: "4. Mokushitsu Bio-mass no Riyo Kaihatsu (2) Mokushitsukei Shigen no Taihika Shiken", HEISEI 16 NENDO RINGYO SHIKENJO NENPO, 2005, pages 7 - 8 *
MASATOSHI OTA ET AL.: "Daichokin o Mochiita Nisanka Titanium Hikarishokubai no Bussei Hyoka", THE ELECTROCHEMICAL SOCIETY OF JAPAN DAI 71 KAI TAIKAI KOEN YOSHISHU, 2004, pages 106 *
YUMOTO I. ET AL.: "Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity", INT. J. SYST. EVOL. MICROBIOL., vol. 54, 2004, pages 2013 - 2017 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067617A (ja) * 2011-09-23 2013-04-18 Evonik Degussa Gmbh 不飽和脂肪酸及びそれらの誘導体のオゾン分解

Also Published As

Publication number Publication date
JPWO2010024440A1 (ja) 2012-01-26
JP5525445B2 (ja) 2014-06-18

Similar Documents

Publication Publication Date Title
Shen et al. Efficacy of UVC-LED in water disinfection on Bacillus species with consideration of antibiotic resistance issue
Reed The inactivation of microbes by sunlight: solar disinfection as a water treatment process
Zakaria et al. Biological detoxification of Cr (VI) using wood-husk immobilized Acinetobacter haemolyticus
Misstear et al. The inactivation of phages MS2, ΦX174 and PR772 using UV and solar photocatalysis
CN105907688B (zh) 一株降解苯酚类化合物的菌株及其应用
Iredale et al. A series of experiments aimed at clarifying the mode of action of barley straw in cyanobacterial growth control
CN101857847A (zh) 一株铜绿假单胞菌菌株的分离纯化及其驯化方法与用途
Thomas et al. Isolation and characterization of metaldehyde‐degrading bacteria from domestic soils
JP2019037192A (ja) ラウルテラ属の微生物の単離方法及び植物性廃棄物処理剤の製造方法並びに植物性廃棄物処理方法
JP4904086B2 (ja) クラゲ類の分解廃液の処理装置及び処理方法、並びに微生物
Merugu et al. Biotechnological applications of purple non sulphur phototrophic bacteria: a minireview
JP5525445B2 (ja) 活性酸素耐性菌及びその利用方法
Koksunan et al. Growth and cyanide degradation of Azotobacter vinelandii in cyanide-containing wastewater system
KR101549191B1 (ko) 악취가스 감소처리제
Ahmad et al. Sugarcane bagasse as nutrient and support material for Cr (VI)-reducing biofilm
Mohsin et al. Anoxic growth optimization for metal respiration and photobiological hydrogen production by arsenic‐resistant Rhodopseudomonas and Rhodobacter species
CN112391312B (zh) 一种新种链霉菌及其在防治植物卵菌病害中的应用
CN102031228A (zh) 一株高效降解多种酚类化合物的假单胞菌xq23
JP4296564B2 (ja) バイオ系多孔質セラミック及びその製造方法、並びに環境浄化材、環境浄化具
CN105039222B (zh) 戴尔福特菌lw26及其在降解氯苯中的应用
KR101972494B1 (ko) 셀레늄 저항성 신규 미세조류
KR101851151B1 (ko) 악취가스 감소용 조성물
JP2005261234A (ja) 新規微生物と微生物によるヒ素類の除去方法
CN109628355A (zh) 一种硫化物降解菌及其应用
JP5425680B2 (ja) 微生物を用いた排水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810084

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010526813

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13061794

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09810084

Country of ref document: EP

Kind code of ref document: A1