WO2010024084A1 - 液体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置 - Google Patents

液体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置 Download PDF

Info

Publication number
WO2010024084A1
WO2010024084A1 PCT/JP2009/063519 JP2009063519W WO2010024084A1 WO 2010024084 A1 WO2010024084 A1 WO 2010024084A1 JP 2009063519 W JP2009063519 W JP 2009063519W WO 2010024084 A1 WO2010024084 A1 WO 2010024084A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
pressure
unit
ejection
pump
Prior art date
Application number
PCT/JP2009/063519
Other languages
English (en)
French (fr)
Inventor
文良 岩瀬
哲也 村瀬
雅利 戸田
Original Assignee
エスアイアイ・プリンテック株式会社
ローランドディー.ジー.株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エスアイアイ・プリンテック株式会社, ローランドディー.ジー.株式会社 filed Critical エスアイアイ・プリンテック株式会社
Priority to EP09809738A priority Critical patent/EP2316654A1/en
Priority to US12/737,777 priority patent/US8613487B2/en
Priority to CN2009801349214A priority patent/CN102171044A/zh
Publication of WO2010024084A1 publication Critical patent/WO2010024084A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17566Ink level or ink residue control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17506Refilling of the cartridge
    • B41J2/17509Whilst mounted in the printer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17596Ink pumps, ink valves

Definitions

  • the present invention relates to a liquid jet head, a carriage unit, a pressure control method, and a liquid jet recording apparatus.
  • a liquid ejecting recording apparatus that ejects droplets from a plurality of ejection ports toward a recording medium.
  • Some liquid ejection recording apparatuses include a liquid ejection head that ejects liquid as droplets of several to several tens of picoliters per droplet.
  • Such a liquid ejecting head that ejects minute liquid droplets is controlled so that the liquid in the ejection port is in an optimum state for ejecting in order to realize good liquid ejecting.
  • the optimum state for injection means that the pressure of the liquid in the injection port becomes negative and a meniscus is formed inside the injection port.
  • an apparatus that is provided with a pump or an atmospheric valve in a liquid flow path from a liquid container to a liquid ejecting head to adjust the pressure of the liquid supplied to the ejection port.
  • Patent Document 1 discloses a pump for decompressing the liquid in the ejection port in the liquid ejection head, an air communication valve for pressurizing the liquid in the ejection port in the liquid ejection head, and the interior of the ejection port in the liquid ejection head.
  • An ink jet printer liquid jet recording apparatus
  • a pressure sensor that measures the pressure of the liquid
  • a control unit that operates a pump and an air communication valve based on a measurement value obtained by the pressure sensor is described.
  • the pressure of the liquid supplied into the ejection port is increased or decreased by the pump disposed in the liquid flow path from the sub tank that stores the liquid to the liquid ejection head and the air communication valve.
  • the flow path connecting the liquid container and the liquid ejecting head repeats displacement with the movement of the carriage.
  • Pressure load is applied.
  • the liquid affected by the pressure load is supplied, and it becomes difficult to maintain the pressure suitable for the environment in which the liquid is ejected.
  • the pressure load applied to such a liquid is reduced by a pressure buffer device (liquid reservoir), but the effect of pressure loss due to an increase in the flow path length is still given to the liquid, thereby realizing an appropriate printing environment. Will be disturbed.
  • the scanning range of the carriage provided with the liquid ejecting head is also increased, so that the liquid exceeding the ability to reduce the pressure load of the pressure buffer is supplied to the liquid ejecting head.
  • the printing environment is expected to deteriorate due to the increased size of the device.
  • it is urgent to accurately measure and grasp the liquid pressure in the liquid ejecting head.
  • the present invention has been made in view of the above-described circumstances, and its object is to accurately measure the pressure of a liquid supplied to an ejection port and to supply a liquid to the ejection port with a desired pressure. It is an object to provide a carriage unit, a pressure control method, and a liquid jet recording apparatus.
  • the liquid ejecting head of the present invention is interposed between an ejecting unit having a plurality of ejecting ports for ejecting liquid and a conduit for supplying the liquid in the liquid container to the ejecting unit via a pump, and the pressure of the conduit
  • a liquid storage unit that buffers fluctuations and a pressure measurement unit that is interposed in the pipe line that connects the liquid storage unit and the ejection unit, and measures the pressure in the pipe line, the measurement of the pressure measurement unit Based on the value, the pump is driven and controlled so that the pressure of the liquid supplied from the pipe to the ejection unit is within a predetermined range.
  • the liquid flowing into the liquid reservoir through the liquid conduit from the liquid container passes through the liquid reservoir to be buffered in pressure fluctuation.
  • the pressure measuring unit is disposed in the pipe line connecting the liquid storing unit and the ejecting unit, the pressure of the liquid after being buffered by the liquid storing unit by the pressure measuring unit is Measured. As a result, it is possible to adjust the pressure of the liquid after being buffered by the liquid storage unit.
  • the liquid ejecting head according to the aspect of the invention is characterized in that the drive control is performed by a pressurizing mechanism and a depressurizing mechanism in which the pump pressurizes and depressurizes the liquid in the pipe.
  • the liquid is moved to the ejection unit side or the liquid container side inside the conduit by the pressurization mechanism and the decompression mechanism. As a result, the pressure of the liquid at the ejection port can be adjusted.
  • the liquid ejecting head according to the aspect of the invention is characterized in that the pressurizing mechanism and the pressure reducing mechanism are implemented by a forward rotation mechanism and a reverse rotation mechanism in which the pump rotates forward and backward.
  • the pressurizing mechanism and the pressure reducing mechanism are implemented by a forward rotation mechanism and a reverse rotation mechanism in which the pump rotates forward and backward.
  • the flow control block mechanism may be configured such that the drive control blocks the pipe line by the stop operation of the pump and blocks the supply of the liquid from the liquid container to the ejecting unit. It is characterized by having. According to this invention, when the pump is stopped, the movement of the liquid through the pipe line is blocked, and the liquid is stored in the pipe line from the pump to the injection port. Thereby, the drive control for maintaining the pressure of the liquid at the ejection port is simplified.
  • the liquid jet head according to the present invention is characterized in that the pressure measuring means is directly interposed in a pipe line connecting the liquid storage part and the jet part. According to this invention, since the flow path length of the liquid from the ejection unit to the pressure measurement unit is shortened, the pressure of the liquid in the ejection unit is accurately measured, and the pressure measurement unit is mounted. The space occupied by can be reduced.
  • the liquid jet head according to the present invention is characterized in that the pressure measuring means is connected to a pressure transmission pipe branched from a pipe connecting the liquid storage part and the jet part.
  • the length of the pipe line connecting the liquid storage part and the injection part only needs to be long enough to connect the pressure transmission pipe line, and the liquid storage part and the injection part are close to each other.
  • the degree of freedom of arrangement of the pressure measuring means is increased.
  • the pressure transmission pipe may be formed of a flexible tube and a gas barrier.
  • the liquid is thickened or solidified due to gas intrusion into the pressure transmission line, or the pressure transmission is performed by evaporating the volatile solvent from the liquid containing the volatile solvent. Viscosity or solidification of the liquid due to leakage from the inside of the conduit to the outside is suppressed. For this reason, constriction of the pressure transmission pipe line due to the liquid is suppressed. Furthermore, a decrease in measurement accuracy of the pressure sensor caused by the thickened or solidified liquid adhering to the pressure sensor is suppressed.
  • the liquid jet head according to the present invention is characterized in that the pressure transmission pipe is made of a metal material.
  • the use of a metal material reduces the effects of cracks and the like due to deterioration over time as compared with a resin tubular member, and fluid or light or the like enters the pressure transmission pipe into the pressure transmission pipe. Intrusion through the pipe wall of the passage is suppressed, and deterioration such as thickening or solidification of the liquid is suppressed.
  • the pressure transmission pipe may be formed of a flexible member that suppresses transmission of light having a specific wavelength. According to this invention, since the transmission of the light having the specific wavelength through the tube wall of the pressure transmission line is suppressed, the pressure transmission pipe of the liquid having a property of being cured by the light of the specific wavelength Thickening or solidification inside the road is suppressed.
  • the pressure transmission pipe can be attached to and detached from the pipe. According to this invention, by removing the pressure transmission pipe from the pipe, it is possible to clean the inside of the pressure transmission pipe, replace the pressure transmission pipe and the pressure sensor, and the like.
  • the carriage unit of the present invention is interposed between an ejection unit having a plurality of ejection ports for ejecting liquid, and a pipeline for supplying the liquid in the liquid container to the ejection unit via a pump, and pressure fluctuations in the pipeline
  • a liquid storage section that buffers the liquid
  • a pressure measuring means that is interposed in the pipe line connecting the liquid storage section and the ejection section, and measures the pressure in the pipeline, the ejection section, and the liquid storage section
  • a movable table that supports the pressure measuring unit, and drives the pump so that the pressure of the liquid supplied from the pipe to the ejection unit is within a predetermined range based on the measurement value of the pressure measuring unit.
  • the ejecting unit is controlled and supported by being separated from the recording medium by a predetermined distance, and can be reciprocated on the recording medium.
  • the liquid reservoir that interferes with the pressure fluctuation of the liquid accompanying the movement of the carriage unit is supported on the moving table, and the pressure measuring means is disposed on the ejecting portion side of the liquid reservoir. Accordingly, the pressure of the liquid after buffering can be measured even for a liquid ejecting head that does not have a conduit for connecting the pressure measuring means, and the pressure of the liquid can be adjusted.
  • the carriage unit according to the present invention is characterized in that the drive control is performed by a pressurizing mechanism and a depressurizing mechanism for the pump to pressurize and depressurize the liquid in the conduit.
  • the liquid is moved to the ejection unit side or the liquid container side inside the conduit by the pressurization mechanism and the decompression mechanism. As a result, the pressure of the liquid at the ejection port can be adjusted.
  • the carriage unit of the present invention is characterized in that the pressurizing mechanism and the depressurizing mechanism are implemented by a forward rotation mechanism and a reverse rotation mechanism in which the pump rotates forward and backward. According to this invention, when the pump is driven to rotate, the liquid inside the pipe is pressurized or depressurized, whereby the pressure of the liquid at the ejection port can be adjusted with a simple mechanism.
  • the drive control includes a flow path closing mechanism capable of closing the pipeline by stopping the pump and blocking the supply of the liquid from the liquid container to the ejection unit. It is characterized by having. According to this invention, when the pump is stopped, the movement of the liquid through the pipe line is blocked, and the liquid is stored in the pipe line from the pump to the injection port. Thereby, the drive control for maintaining the pressure of the liquid at the ejection port is simplified.
  • the carriage unit according to the present invention is characterized in that a length of the pipe line from the pressure sensor to the injection unit is in a range of 50 mm to 600 mm.
  • a length of the pipe line from the pressure sensor to the injection unit is in a range of 50 mm to 600 mm.
  • the degree of freedom of the arrangement of the pressure measurement unit is low and the moving table is separated from the injection unit. It is difficult to dispose the liquid storage part in the pipe, but the length of the pipe line from the pressure measuring means to the injection part is longer than 50 mm, so that the liquid storage part is separated from the injection part. And can be arranged on the carriage.
  • the length of the pipe line from the pressure measuring means to the jetting unit is longer than 600 mm, the amount of pressure fluctuation of the liquid absorbed by the pipe line is large, so that the pressure fluctuation in the jetting unit and the pressure measurement Since there is a discrepancy between the pressure value measured by the means and accurate pressure measurement becomes difficult, the length of the pipe line from the pressure measuring means to the injection unit is shorter than 600 mm. The influence of the pressure fluctuation on the liquid ejection accuracy is small. Accordingly, the pressure of the liquid is measured with sufficient accuracy for the liquid ejecting head to eject the liquid appropriately by the pressure measuring means.
  • the carriage unit according to the present invention is characterized in that the pressure measuring means is arranged above a height of +10 mm to +300 mm from the height of the injection port of the injection unit. According to this invention, when the pressure measuring means is disposed within +10 mm from the height of the ejection port of the ejecting section, the position of the ejecting section is limited by the pressure measuring means. On the other hand, since the pressure measuring unit is arranged at +10 mm or more above the height of the injection port of the injection unit, the injection unit and the pressure measurement unit do not interfere with each other.
  • the position of the pressure measuring unit and the position of the injection port of the injection unit are arranged at a position higher than +300 mm in the height direction, the pressure value measured by the pressure measurement unit and the pressure in the injection unit Since the deviation from the value is large, it is difficult to accurately measure the pressure.
  • the position of the pressure measuring unit and the position of the ejection port of the ejection unit are arranged closer to +300 mm in the height direction, the pressure of the liquid measured by the pressure measuring unit And the pressure of the liquid at the ejection port can be reduced. As a result, it is within the accuracy range required for adjusting the pressure of the liquid.
  • the liquid storage section includes a liquid storage chamber formed of a flexible thin film-like member, and the thin-film member is formed of gas from the outside of the liquid storage section via the thin-film member. It is characterized by suppressing intrusion or leakage.
  • the liquid reservoir absorbs the pressure fluctuation propagating from the liquid pipe by the thin film member.
  • the thin film-like member suppresses the thickening or solidification of the liquid due to the gas intrusion and the mixing of bubbles into the liquid ejected from the ejection unit.
  • a pressure control method of the present invention is a pressure control method using the liquid ejecting head according to any one of claims 1 to 10 or the carriage unit according to any one of claims 11 to 17,
  • a step of measuring the pressure of the liquid by the pressure measuring means a step of determining whether or not the pressure of the liquid is between a preset upper limit pressure value and a lower limit pressure value;
  • the driving of the pump is stopped, and when the pressure of the liquid is lower than the lower limit pressure value, the liquid is directed to the ejection unit.
  • the control unit determines whether or not the pressure of the liquid is between the upper limit pressure value and the lower limit pressure value.
  • the control unit stops when the pump is driven.
  • the pump is driven to send the liquid to the ejection unit side, thereby reducing the negative pressure of the head.
  • the pump is driven so as to move the liquid toward the liquid container. In this manner, the pump is driven by the control unit, and the pressure of the liquid is appropriately adjusted while the liquid ejecting head ejects the liquid.
  • the pressure control method of the present invention includes a correction control step of performing correction control in the control unit with respect to a differential pressure between the pressure value at the injection port and the pressure value measured by the pressure measuring means.
  • the pressure value of the liquid measured by the pressure measuring means in the correction control step is corrected to the pressure of the liquid at the ejection port and output, thereby being measured by the pressure measuring means.
  • the pressure value at the injection port can be adjusted based on the pressure value.
  • the pressure control method of the present invention is characterized in that the upper limit pressure value and the lower limit pressure value are set for the pressure value of the liquid at the ejection port. According to this invention, since the pressure value of the liquid at the ejection port is controlled to be between the upper limit pressure value and the lower limit pressure value, the pressure measuring unit does not depend on the position at which the pressure of the liquid is measured. The pressure of the liquid is adjusted so that the liquid is ejected from the ejection port.
  • the pressure control method of the present invention is characterized in that the upper limit pressure value is +0.5 kPa and the lower limit pressure value is ⁇ 2.0 kPa.
  • the upper limit pressure is +0.5 kPa or more
  • the liquid leaks from the injection port of the injection unit, so that it becomes difficult to eject the liquid as droplets
  • the lower limit pressure is Is less than ⁇ 2.0 kPa
  • the liquid is not sufficiently supplied to the injection port of the injection unit.
  • the pressure of the liquid By controlling the pressure of the liquid to be in the range of +0.5 kPa to ⁇ 2.0 kPa, a meniscus surface is formed inside the injection port of the injection unit, and the liquid is formed by the injection unit. Can be ejected as droplets onto the recording medium.
  • the pressure control method of the present invention is characterized in that the upper limit pressure value is -0.5 kPa and the lower limit pressure value is -1.0 kPa.
  • the upper limit pressure value is a negative pressure
  • a meniscus surface of the liquid is formed inside the ejection port, and the liquid can be favorably ejected as droplets.
  • the lower limit pressure value is ⁇ 1.0 kPa
  • the differential pressure between the upper limit pressure value and the lower limit pressure value is small, and variation in the shape of the droplets is suppressed, leading to good ejection results.
  • the control unit includes a calculation step of calculating a differential pressure between the pressure of the liquid and the upper limit pressure value or the lower limit pressure value, and the control unit is proportional to the magnitude of the differential pressure. It is characterized by changing the driving speed of the pump. According to the present invention, when the differential pressure is large, the liquid is quickly pressurized or depressurized by increasing the driving speed of the pump. Further, when the differential pressure becomes small, excessive pressurization or depressurization can be suppressed by slowing the drive of the pump.
  • a liquid jet recording apparatus includes a liquid jet head according to any one of claims 1 to 10 or a carriage unit according to any one of claims 11 to 17, and the liquid is provided to the jet unit.
  • a moving mechanism that reciprocates on the recording medium to be ejected, a conveyance mechanism that conveys the recording medium with a certain distance from the ejection section, and the pressure measuring means and the pump are electrically connected to each other. And a control unit.
  • the pressure of the liquid supplied from the liquid container to the liquid ejecting head is measured by the pressure sensor. Then, the pressure of the liquid is set to the upper limit pressure value and the lower limit by the control unit. The pump is driven to be between pressure values. As a result, the pressure fluctuation from the liquid storage part to the ejection part is kept low, and the liquid is ejected from the ejection part toward the recording medium with high accuracy and landed on the recording medium. Further, the liquid ejecting head and the recording medium are relatively moved by the moving mechanism and the transport mechanism, so that the liquid is ejected to a desired position of the recording medium.
  • the pressure of the liquid after being buffered in the liquid storage unit is measured by the pressure sensor, and the pressure is used as a basis.
  • the liquid is pressurized or depressurized, so that the liquid can be supplied to the ejection unit at an optimum pressure.
  • FIG. 5 is an explanatory diagram for explaining a configuration of a liquid jet recording apparatus on which the liquid jet head according to the invention is mounted. It is explanatory drawing which shows the structure of the flow path of the liquid from the liquid container of 1st Embodiment to a liquid jet head. It is explanatory drawing for demonstrating the operation
  • FIG. 10 is an explanatory diagram for explaining a configuration of a liquid flow path in a liquid jet recording apparatus according to a second embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing the configuration of the liquid jet recording apparatus.
  • FIG. 2 is an explanatory diagram showing a configuration of a liquid flow path from the liquid container to the liquid ejecting head.
  • FIG. 3 is an explanatory diagram for explaining the operation of liquid pressure control by the liquid jet recording apparatus.
  • the liquid ejection recording apparatus 1 includes a liquid ejection mechanism 2 that ejects a liquid 5 a onto a recording medium P such as paper, and a liquid supply mechanism 3 that supplies the liquid 5 a to the liquid ejection mechanism 2.
  • a transport mechanism 27 that transports the recording medium P below the liquid ejecting mechanism 2 in the X direction in the figure, and a control unit 11 that is electrically connected to each of the mechanisms.
  • the liquid supply mechanism 3 is interposed between a liquid container 5 that stores the liquid 5 a, a flexible tubular liquid pipe 6 having one end connected to the liquid container 5, and an intermediate part of the liquid pipe 6.
  • the roller tube pump 7 includes a motor (not shown) capable of normal and reverse rotation, a substantially cylindrical wheel 8 having a rotation center O connected to a drive shaft of the motor as shown in FIG. And a case member 10 formed with an arc-shaped groove with which the liquid pipe 6 is engaged.
  • the roller 9 presses a part of the liquid conduit 6 engaged with the case member 10.
  • the pressurization mechanism (forward rotation mechanism) and the pressure reduction mechanism (reverse rotation mechanism) in the roller tube pump 7 of this embodiment will be described.
  • the liquid is generated by the wheel 8 rotating forward or reverse while the liquid conduit 6 is pressed by the roller 9.
  • the liquid 5a inside the pipe line 6 is pressurized in the rotation direction of the wheel 8 and fed to the liquid container 5 side or the opposite side.
  • the roller tube pump 7 performs both operations of feeding the liquid 5a and increasing / decreasing pressure.
  • the motor is electrically connected to the control unit 11.
  • the liquid ejecting mechanism 2 includes a moving table 12 that is movably disposed above the recording medium P, and a liquid ejecting head 13 that is fixed to the moving table 12 and ejects the liquid 5a toward the recording medium P. Prepare.
  • the moving table 12 is supported by a moving mechanism 14 that reciprocates the moving table 12 on the recording medium P in the Y direction in the figure.
  • the liquid ejecting head 13 has one end connected to the liquid pipe 6 to buffer the pressure fluctuation of the liquid 5a and flow to the other end, and the other end of the liquid storing unit 15 is connected to the liquid.
  • An ejection unit 17 having an ejection port surface 16 on which a plurality of ejection ports for ejecting 5a as fine droplets are arranged; a first support unit 18 that fixes the liquid storage unit 15 and the ejection unit 17 in proximity to each other;
  • a branch part 19 that branches the flow path of the liquid 5a between the liquid storage unit 15 and the ejection part 17, and a pressure transmission pipe line 20 made of a flexible tubular member having one end connected to the branch part 19,
  • a pressure detection unit 21 is connected to the other end of the pressure transmission pipe 20 and a pressure sensor 22 (pressure measurement means) fixed to the moving table 12 is provided.
  • the pressure transmission line 20 is made of a material that suppresses gas permeation.
  • the pressure sensor 22 is electrically connected to the control unit 11, measures the pressure value of the liquid 5 a via the gas inside the pressure transmission pipe 20, and transmits the pressure value to the control unit 11.
  • the liquid storage unit 15 is accommodated in a liquid storage case 25 having a communication part 23 and 24 connected to the liquid pipe 6 and the branch part 19, respectively, and connected to each of the communication parts 23 and 24.
  • a liquid reservoir 26 is formed in the liquid storage case 25, and a thin film-like material that suppresses the permeation of gas is bonded to the frame portion of the liquid storage case 25 that is the peripheral portion of the concave portion using a method such as heat welding.
  • the above-described liquid storage portion 26 is formed by configuring the liquid storage chamber 26a that stores the liquid.
  • the liquid storage chamber 26 a in the liquid storage unit 26 communicates with the liquid conduit 6 and the branch unit 19 via the communication units 23 and 24.
  • the control unit 11 includes a determination unit 11a that determines whether the pressure is optimum by monitoring the operation of the pressure sensor 22, and a drive unit 11b that drives the roller tube pump 7.
  • the determination unit 11a is set with an upper limit and a lower limit of pressure optimum for injecting the liquid 5a (in this embodiment, the upper limit of the pressure at the injection port surface 16 is -0.5 kPa and the lower limit is -1.0 kPa).
  • the pressure measured by the pressure sensor 22 is compared with the set pressure.
  • the drive unit 11b transmits a drive signal for driving the roller tube pump 7 to be in a normal rotation, reverse rotation, or stop state based on the result of comparison by the determination unit 11a.
  • the forward rotation of the roller tube pump 7 is a direction in which the liquid pipe 6 is squeezed from the liquid container 5 side to the ejection part 17 side
  • the reverse direction is a direction in which the liquid pipe 6 is squeezed from the jet part 17 side to the liquid container 5 side Will be described.
  • forward rotation indicates a pressurizing operation
  • reverse rotation indicates a depressurizing operation.
  • the operator supplies the recording medium P to the transport mechanism 27 and positions the recording medium P below the liquid jet head 13. Subsequently, the liquid 5 a is ejected from the ejection unit 17 toward the recording medium P, the liquid ejection mechanism 2 is reciprocated on the recording medium P by the moving mechanism 14, and the recording medium P is further moved by the transport mechanism 27.
  • the liquid ejecting mechanism 2 is moved in a direction orthogonal to the reciprocating direction of the liquid ejecting mechanism 2 at a constant interval. As a result, the liquid 5a is jetted onto one surface of the recording medium P.
  • the roller tube pump 7 is stopped, and the liquid conduit 6 is closed by the roller 9. (Flow path closing mechanism) Therefore, the pressure of the liquid 5a inside the liquid pipe 6 from the roller tube pump 7 to the injection unit 17 decreases as the liquid 5a is injected. (Pump stop step A1 shown in FIG. 3)
  • the pressure of the liquid 5 a inside the liquid ejecting head 13 is measured by the pressure sensor 22 through the pressure transmission line 20 connected to the branch portion 19.
  • the pressure value of the liquid 5a measured by the pressure sensor 22 is sent to the determination unit 11a in the form of a signal.
  • the optimum value is set with a certain width (the pressure value at the injection port surface 16 in the present embodiment is in the range of ⁇ 0.5 kPa to ⁇ 1.0 kPa).
  • the drive unit 11b corresponds to the determination by the determination unit 11a. Actuated, a drive signal is sent to the roller tube pump 7. Then, the wheel 8 of the roller tube pump 7 is rotated, and the roller 9 operates so as to squeeze the liquid conduit 6 from the liquid container 5 toward the ejecting unit 17 while crushing the liquid conduit 6.
  • the determination unit 11a continuously monitors the pressure value transmitted from the pressure sensor 22, and when it is determined that the pressure value at the injection port surface 16 indicated by the pressure sensor 22 has reached -1.0 kPa, the drive unit 11b. As a result, the driving of the roller tube pump 7 is stopped. In this way, pressurization control is performed so that the pressure of the liquid 5a falls within the optimum range. (Pressurizing step A2 shown in FIG. 3)
  • control unit 11 compares the pressure value transmitted from the pressure sensor 22 to the control unit 11 with the upper limit value or the lower limit value, and determines the rotation speed of the roller tube pump 7 according to the differential pressure. Therefore, by providing a proportional control circuit (not shown), it is possible to increase the rotational speed of the roller tube pump 7 and to quickly adjust the pressure of the liquid 5a when the differential pressure is large.
  • the proportional control circuit includes a calculation step for calculating the differential pressure based on the pressure value received from the determination unit, and a comparison map for comparing the differential pressure with the rotation amount of the roller tube pump 7,
  • a method of outputting a signal designating the rotation speed of the roller tube pump 7 to the drive unit 11b in response to an input of a pressure value from the determination unit 11a, or a roller tube pump 7 in response to an input of a pressure value from the determination unit 11a For example, a method of directly calculating the driving speed and issuing a driving signal to the driving unit 11b can be employed.
  • the moving mechanism 14 conveys the liquid ejecting mechanism 2 to the service station 28a.
  • the service station 28 a is configured to store the liquid 5 a leaking from the ejection port surface 16 of the ejection unit 17 in the waste liquid tank 28.
  • the roller tube pump 7 is driven by the drive unit 11b. Then, a negative pressure is generated inside the liquid conduit 6 on the liquid container 5 side from the roller tube pump 7, and the liquid 5 a is sucked up from the liquid container 5 and supplied to the ejection unit 17 via the roller tube pump 7. Is done.
  • the roller tube pump 7 is stopped by the driving unit 11b.
  • the pressure value indicated by the pressure sensor 22 is monitored by the determination unit 11a, and it is determined whether or not the pressure of the liquid 5a in the branching unit 19 is at an optimum value.
  • the determination unit 11a calculates the differential pressure between the pressure value indicated by the pressure sensor 22 and the optimal range, and corresponds to the determination by the determination unit 11a.
  • the roller tube pump 7 is driven so as to reduce the differential pressure by the drive unit 11b, and the drive of the roller tube pump 7 is stopped when it is determined that the pressure value indicated by the pressure sensor 22 is within the optimum range. The Thereafter, the liquid jet recording process can be started.
  • the pressure of the liquid 5 a buffered by the liquid storage unit 15 is the pressure transmission line 20 disposed between the liquid storage unit 15 and the jetting unit 17.
  • the roller tube pump 7 is driven in accordance with the value measured by the pressure sensor in the control unit 11, and the optimum pressure is transmitted.
  • the liquid 5a inside the liquid pipe line 6 is fed until it reaches the range.
  • the liquid storage unit 15 since the liquid storage unit 15 is provided, it is possible to reduce the pressure fluctuation of the liquid 5a accompanying the movement of the movable table 12. Further, as described above, by measuring the pressure of the liquid 5a existing between the liquid storage unit 15 and the ejection orifice surface 16, it is possible to perform measurement on the liquid whose pressure fluctuation is reduced in the liquid storage unit 15. . As a result, the pressure of the liquid 5a on the ejection port surface 16 can be measured even if the effect of pressure loss due to the length of the flow path or the effect of pressure fluctuation accompanying the movement of the liquid ejection mechanism 2 remains. Therefore, an appropriate printing environment can be prepared.
  • the pressure transmission pipe 20 of the present embodiment is formed of a material that suppresses the permeation of gas, outside air enters the liquid 5a flowing into the pressure transmission pipe 20 from the branch portion 19 through the pipe wall. Is suppressed.
  • the liquid 5a that has deteriorated due to suppression of thickening, solidification, or denaturation (hereinafter collectively referred to as deterioration) of the liquid 5a adheres to the pressure detection unit 21 of the pressure sensor 22, or the liquid 5a up to the ejection unit 17 A part or all of the flow path is blocked to reduce the accuracy of liquid ejection.
  • the pressure transmission line 20 is detachable at the branch portion 19, but this makes it difficult for the cleaning liquid to enter and exit when the flow path of the liquid 5 a from the liquid container 5 to the ejection part 17 is washed. 20 can be cleaned individually.
  • the pressure transmission pipe line 20 is connected to a branch part 19 formed in a part of the flow path of the liquid 5 a on the ejection part 17 side from the liquid storage unit 15.
  • the liquid storage unit 15 absorbs the pressure fluctuation generated in the liquid pipe 6 on the liquid container 5 side by the liquid storage section 26 and attenuates the fluctuation range of the pressure fluctuation. For this reason, the pressure of the attenuated fluctuation range is transmitted to the branch portion 19 and is measured by the pressure sensor 22 via the pressure transmission line 20.
  • the distance of the flow path of the liquid 5a from the branch part 19 to the ejection part 17 is short, the difference between the pressure measured by the pressure sensor 22 and the pressure of the liquid 5a supplied to the ejection port surface 16 Can be reduced.
  • the method for controlling the pressure of the liquid 5 a according to the configuration of the present embodiment is performed by pressurizing or depressurizing the liquid 5 a in the liquid pipe 6 with the roller tube pump 7. For this reason, compared with the technique which introduces gas into the liquid container 5 and controls the pressure of the liquid 5a as in the prior art, the deterioration of the liquid 5a due to the liquid 5a being exposed to the gas is suppressed, and good liquid jetting is achieved. Can be achieved.
  • the optimum value for ejecting the liquid 5a from the ejection unit 17 is set with a certain width (in this embodiment, the pressure value at the ejection port surface 16 is -0.5 kPa to -1. Range of 0 kPa).
  • the pressure value at the ejection port surface 16 is -0.5 kPa to -1. Range of 0 kPa.
  • the determination unit 11a of the control unit 11 is provided with a correction table (not shown) in which the correspondence between the pressure measured by the pressure sensor 22 and the pressure generated on the injection port surface 16 is set. .
  • the determination unit 11a refers to the correction table to convert the pressure value measured by the pressure sensor 22 into the pressure value at the injection port surface 16 to determine whether the pressure value at the injection port surface 16 is within the optimum range. It comes to judge.
  • the drive unit 11b drives the roller tube pump 7 by transmitting a drive signal corresponding to the determination based on the converted pressure value by the determination unit 11a to the roller tube pump 7.
  • the correction value may be measured in advance based on the configuration of the liquid ejecting head 13, and the correction value may be set to be used in the determination unit 11a from the beginning.
  • FIG. 4 is an explanatory diagram for explaining a configuration of a liquid flow path in the liquid jet recording apparatus according to the second embodiment of the present invention.
  • the liquid storage unit 31 of the liquid jet head 30 of this embodiment is a conventional liquid storage unit that does not include a branch pipe.
  • a part of the movable table 12 is a second support portion 32, and a liquid storage unit 33 including the pressure sensor 22 is fixed.
  • the liquid ejecting head 30, the movable table 12, the liquid storage units 31 and 33, and the pressure sensor 22 constitute a carriage unit 28.
  • the branch portion 35 is different from the first embodiment in that a branch portion 35 is formed in the liquid storage case 34 and the pressure sensor 22 is connected, but the branch portion 35 is a liquid storage portion of the liquid storage unit 33.
  • the liquid storage part 36 is provided with the liquid storage chamber 36a of the structure similar to 1st Embodiment.
  • the liquid storage unit 33 is interposed in a part of the liquid pipe 6 at the intermediate portion between the roller tube pump 7 and the liquid storage unit 31.
  • the length of the flow path of the liquid 5a from the liquid storage unit 33 to the ejection unit 17 is adjusted so as to be within the range of 50 mm to 600 mm which is the optimum value in the present embodiment as the liquid supply flow path. Yes.
  • the measurement position of the pressure sensor 22 is the position of the liquid storage unit 33
  • the pressure of the liquid 5a is measured at a remote location from the ejection port surface 16 as compared with the first embodiment.
  • the pressure of the liquid 5a on the ejection orifice surface 16 can be maintained in the optimum range by correcting the pressure value measured by the pressure sensor 22 as in the first embodiment.
  • the second embodiment is different from the first embodiment in that the pressure value in the liquid storage unit 36 of the liquid storage unit 33 is measured.
  • Liquid 5a is stored in the liquid reservoir 36, and when the measurement is performed in the liquid reservoir 36, the variation in the displacement amount or pressure value of the liquid 5a is small compared to the case where measurement is performed in the flow path or the pipe. . That is, in the second embodiment, by adopting such a configuration, the pressure sensor 22 measures the pressure value of the portion where the liquid 5a is stored, so that fluctuations in the measured pressure value and noise are included in the pressure value. The possibility of being lost can be reduced. Therefore, in the second embodiment, the pressure value of the liquid 5a can be measured stably.
  • the target value of the pressure at the injection port surface 16 controlled by the control unit 11 is an optimum value of ⁇ 0.5 kPa to ⁇ 1.0 kPa, but +0.5 kPa to ⁇ 2. Even if the target value is set to 0 kPa, the ejection accuracy of the liquid 5a can be satisfied. In this case, the driving frequency of the roller tube pump 7 for pressure adjustment can be reduced by widening the range of the target value.
  • the roller tube pump 7 employs a configuration in which the liquid conduit 6 is disposed along the outer periphery of the wheel 8 and pressed by the roller 9, but is not limited to this configuration.
  • a roller tube pump having a configuration in which an intermediate portion of a flexible tubular member is arranged along a part of the outer periphery of the wheel and pressed by a roller and both ends are opened as connection ports is provided in the middle of the liquid pipe 6. It is also possible to intervene in the part.
  • the pump for pressurizing or depressurizing the liquid 5a inside the liquid pipe 6 is configured to include a roller tube pump having two rollers 9, but the present invention is not limited thereto.
  • a roller tube pump having two or more rollers 9 may be employed, or the liquid 5a inside the liquid pipe 6 may be pressurized or depressurized by a pump mechanism other than the roller tube pump.
  • the liquid container 5 is adopted as a liquid container.
  • the present invention is not limited to this.
  • a main tank that stores a relatively large amount of liquid, and a tubular member in the main tank.
  • a liquid supply mechanism including a sub tank that accommodates a part of the liquid that is connected and accommodated inside the main tank.
  • the pressure sensor 22 measures the pressure value from the branch part 19 via the pressure transmission line 20, but the liquid 5 a is located near the pressure detection part 21 of the pressure sensor 22. There may be provided a pressure measurement chamber in which is stored. By adopting such a configuration, also in the first embodiment, it is possible to improve the stability regarding the measurement of the pressure value of the liquid 5a.
  • invasion of gas was employ
  • members made of different materials depending on the properties of the liquid 5a For example, when a tubular member made of metal such as stainless steel or aluminum is used for the pressure transmission pipe, the durability of the pressure transmission pipe becomes higher, and gas inside the pressure transmission pipe due to cracks due to deterioration over time, etc. Intrusion is suppressed.
  • the pressure transmission pipe is covered with a light-shielding paint or the pressure transmission pipe is formed of a light-shielding material, the transmission of light into the pressure transmission pipe is suppressed. For this reason, hardening or modification
  • the configuration in which the pressure sensor is directly fixed to the liquid storage unit 33 is adopted.
  • the pressure of the liquid 5a after the pressure fluctuation is buffered by the liquid storage unit 33 can be measured.
  • the pressure sensor 22 may be connected to the branch portion 35 via the pressure transmission pipe line 20, or a part of the flow path of the liquid 5 a from the liquid storage unit 33 to the ejection unit 17.
  • a new branch portion may be provided, and the pressure sensor 22 may be connected to the tip of the branch portion.
  • the liquid ejecting head 30 has a configuration in which the liquid storing unit 31 is mounted in advance.
  • the present invention is not limited to this, and a liquid ejecting head that does not include the liquid storing unit 31 is mounted.
  • the liquid storage unit 33 and the pressure sensor 22 of the present invention can be adjusted by measuring the pressure of the liquid 5a after the pressure fluctuation of the liquid 5a is buffered by the liquid storage unit 33.

Landscapes

  • Ink Jet (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 液体が噴射口から噴射されるときの液体の圧力を精度よく測定して液体の圧力を最適な値まで加圧あるいは減圧する液体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置を提供する。  液体5aを噴射する複数の噴射口を備える噴射部17と、液体収容体5内の液体5aをローラーチューブポンプ7を介して噴射部17へ供給する管路6に介在されて、管路6の圧力変動を緩衝する液体貯留ユニット15と、液体貯留ユニット15と噴射部17とを接続する管路6に介在されて管路6a内の圧力を測定する圧力測定手段である圧力センサ22とを備え、圧力センサ22による測定値に基づき、管路6から噴射部17へ供給する液体5aの圧力が所定範囲内になるように、ローラーチューブポンプ7を駆動制御する。

Description

液体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置
 本発明は、液体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置に関する。
 従来から、被記録媒体に液体を噴射する装置には複数の噴射口から被記録媒体に向かって液滴を噴射する液体噴射記録装置が知られている。液体噴射記録装置には、例えば液体を一滴あたり数~数十ピコリットル程度の液滴として噴射する液体噴射ヘッドを備えたものがある。このような微小な液滴を噴射する液体噴射ヘッドは、良好な液体噴射を実現するために噴射口内の液体を噴射に最適な状態になるように制御するようになっている。ここで、噴射に最適な状態とは噴射口内の液体の圧力が負圧になり噴射口内部でメニスカスが形成されているようになっていることである。このような圧力調整を行うために、液体収容体から液体噴射ヘッドまでの液体の流路にポンプや大気弁を備えて噴射口に供給する液体の圧力調整を図った装置が知られている。
 ここで、特許文献1には、液体噴射ヘッドにおける噴射口内の液体を減圧させるためのポンプと、液体噴射ヘッドにおける噴射口内の液体を加圧させるための大気連通弁と、液体噴射ヘッドにおける噴射口内の液体の圧力を測定する圧力センサと、圧力センサによる測定値に基づいてポンプと大気連通弁を動作させる制御部とを備えるインクジェットプリンタ(液体噴射記録装置)が記載されている。このインクジェットプリンタによれば、液体を貯留するサブタンクから液体噴射ヘッドまでの液体流路に配置されたポンプと大気連通弁とによって噴射口内へ供給される液体の圧力が増減されるようになっている。
特開2005-34999号公報
 しかしながら、特許文献1に記載のインクジェットプリンタでは、高速で往復運動する液体噴射ヘッドの噴射口内に生じる圧力変動が大きい。そのため、圧力センサには測定範囲が広いものが求められ、さらに圧力変動に対応させて頻繁な圧力調整が必要であったため、液体噴射ヘッドから噴射される液体の圧力を最適に保つのは困難であった。
 また、近年のインクジェットプリンタにおいては、ポスターや看板の表面を印刷する際に、広大な印刷範囲を印刷することができる大型印刷装置が用いられることが多く、特定の分野において装置が大型化する傾向にある。このような大型印刷装置においては、小型の印刷装置と比較して、噴射する液体を貯蔵した液体収容体から液体噴射ヘッドまでの距離が遠くなり、液体噴射ヘッドへ液体を供給する流路の流路長が長くなる。そのため大型の装置においては、液体にかかる流路圧力損失が増大し、液体噴射環境に適している圧力を保持した液体が液体噴射ヘッドへ供給されることを妨げてしまう可能性がある。そのため、液体噴射ヘッドにおける液体の圧力値を正確に設定するには、液体噴射ヘッドにおける圧力値を精度良く測定し、適正な圧力を保持した液体を供給することが必要である。
 また、液体噴射ヘッドを具備するキャリッジが印刷範囲を走査する場合、液体収容体と液体噴射ヘッドを連通する流路が、キャリッジの移動に伴って変位を繰り返すため、流路内に存在する液体に圧力負荷がかかる。その場合、流路の下流に位置する液体噴射ヘッドにおいては、圧力負荷の影響を受けた液体が供給されることになり、液体を噴射する環境に適した圧力を保持することが困難になる。通常、このような液体にかかる圧力負荷は、圧力緩衝装置(液体貯留部)によって低減されるが、依然として、流路長の増大による圧力損失の影響が液体に与えられ、適切な印刷環境の実現を妨げてしまう。
 さらに、上述のような印刷範囲の増大に伴って、液体噴射ヘッドを具備したキャリッジの走査範囲も増大するので、圧力緩衝装置の圧力負荷を低減する能力を超えた液体が液体噴射ヘッドへ供給される可能性があり、装置の大型化による印刷環境の悪化が見込まれる。
 以上のとおり、印刷装置における高等な印刷環境を整えるためには、液体噴射ヘッドにおける液体の圧力を正確に測定し把握することが急務である。
 本発明は、上述した事情に鑑みてなされたものであって、その目的は噴射口へ供給する液体の圧力を精度良く測定するとともに、液体を所望の圧力をもって噴射口に供給できる体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置を提供することにある。
 上記課題を解決するために、この発明は以下の手段を提案している。
 本発明の液体噴射ヘッドは、液体を噴射する複数の噴射口を備える噴射部と、液体収容体内の液体をポンプを介して前記噴射部へ供給する管路に介在されて、該管路の圧力変動を緩衝する液体貯留部と、前記液体貯留部と前記噴射部とを接続する前記管路に介在されて該管路内の圧力を測定する圧力測定手段とを備え、前記圧力測定手段の測定値に基づき、前記管路から前記噴射部へ供給する液体の圧力が所定範囲内になるように、前記ポンプを駆動制御することを特徴としている。
 この発明によれば、前記液体収容体から前記液体管路を通じて前記液体貯留部へ流入した前記液体は、前記液体貯留部を通過することによって圧力変動が緩衝される。ここで、前記圧力測定手段は前記液体貯留部と前記噴射部とを接続する前記管路に配置されているため、前記圧力測定手段によって前記液体貯留部で緩衝された後の前記液体の圧力が測定される。その結果、前記液体貯留部で緩衝された後の前記液体の圧力を調整することが可能になる。
 本発明の液体噴射ヘッドは、前記駆動制御が、前記ポンプが前記管路内の前記液体を加圧及び減圧する加圧機構及び減圧機構によって実施されることを特徴としている。
 この発明によれば、前記加圧機構及び減圧機構によって前記液体が前記管路の内部で前記噴射部側あるいは前記液体収容体側へ移動される。その結果、前記噴射口における前記液体の圧力を調整することができる。
 本発明の液体噴射ヘッドは、前記加圧機構及び前記減圧機構が、前記ポンプが正転及び逆転する正転機構及び逆転機構によって実施されることを特徴としている。
 この発明によれば、前記ポンプが回転駆動することによって前記管路の内部の前記液体を加圧あるいは減圧され、これにより単純な機構で前記噴射口における前記液体の圧力を調整することができる。
 本発明の液体噴射ヘッドは、前記駆動制御が、前記ポンプの停止動作により前記管路を閉塞し、前記液体収容体から前記噴射部への前記液体の供給を遮断することができる流路閉塞機構を有することを特徴としている。
 この発明によれば、前記ポンプが停止すると前記液体の前記管路を介した移動が遮断されて前記ポンプから前記噴射口に至るまでの前記管路の内部に前記液体が貯留するようになる。これにより、前記噴射口における前記液体の圧力を維持するための前記駆動制御が簡略化される。
 本発明の液体噴射ヘッドは、前記液体貯留部と前記噴射部とを接続する管路に前記圧力測定手段が直接介在されていることを特徴としている。
 この発明によれば、前記噴射部から前記圧力測定手段までの前記液体の流路長が短くなるため、前記噴射部における前記液体の圧力が精度よく測定されると共に、圧力測定手段を搭載することによって占有される空間を小さくすることができる。
 本発明の液体噴射ヘッドは、前記液体貯留部と前記噴射部とを接続する管路から分岐された圧力伝達管路に前記圧力測定手段が接続されていることを特徴としている。
 この発明によれば、前記液体貯留部と前記噴射部とを接続する管路の長さは圧力伝達管路が接続可能な長さであればよく、前記液体貯留部と前記噴射部とを近接して配置可能であると共に、圧力測定手段の配置の自由度が高まる。
 本発明の液体噴射ヘッドは、前記圧力伝達管路が可撓性を有しかつガスバリア性を持つチューブで構成されることを特徴としている。
 この発明によれば、前記圧力伝達管路の内部への気体が侵入することによる前記液体の増粘あるいは固化や、揮発性溶剤が配合された前記液体から揮発性溶剤が蒸発して前記圧力伝達管路の内部から外部へ洩出することによる前記液体の増粘あるいは固化が抑制される。このため、前記液体による前記圧力伝達管路の狭窄が抑制される。さらに、増粘あるいは固化した前記液体が前記圧力センサに付着することによって生じる前記圧力センサの測定精度の低下が抑制される。
 本発明の液体噴射ヘッドは、前記圧力伝達管路が金属材料によって作られていることを特徴としている。
 この発明によれば、金属材料が用いられることによって樹脂製の管状部材と比較して経年劣化によるひび割れ等の影響が軽減され、流体あるいは光等が前記圧力伝達管路の内部へ前記圧力伝達管路の管壁を介して侵入するのが抑制されて前記液体の増粘あるいは固化等の劣化が抑制される。
 本発明の液体噴射ヘッドは、前記圧力伝達管路は特定の波長を有する光の透過を抑制する可撓部材からなることを特徴としている。
 この発明によれば、前記特定の波長を有する光の前記圧力伝達管路の管壁を介した透過が抑制されるため、前記特定の波長の光によって硬化する特性を有する液体の前記圧力伝達管路の内部での増粘あるいは固化が抑制される。
 本発明の液体噴射ヘッドは、前記圧力伝達管路は前記管路に対して脱着可能であることを特徴としている。
 この発明によれば、前記圧力伝達管路を前記管路から取り外すことで前記圧力伝達管路の内部の洗浄や、前記圧力伝達管路及び前記圧力センサの交換等ができる。
 本発明のキャリッジユニットは、液体を噴射する複数の噴射口を備える噴射部と、液体収容体内の液体をポンプを介して前記噴射部へ供給する管路に介在されて、該管路の圧力変動を緩衝する液体貯留部と、前記液体貯留部と前記噴射部とを接続する前記管路に介在されて該管路内の圧力を測定する圧力測定手段と、前記噴射部と前記液体貯留部と前記圧力測定手段とを支持する移動台とを備え、前記圧力測定手段の測定値に基づき、前記管路から前記噴射部へ供給する液体の圧力が所定範囲内になるように、前記ポンプを駆動制御し、前記噴射部を被記録媒体から所定の距離だけ離間させて支持して前記被記録媒体上を往復移動可能することを特徴としている。
 この発明によれば、前記キャリッジユニットの移動に伴う前記液体の圧力変動を干渉する前記液体貯留部が前記移動台上に支持され、前記液体貯留部より前記噴射部側に圧力測定手段が配置されていることで、前記圧力測定手段を接続するための管路を持たない液体噴射ヘッドに対しても緩衝した後の前記液体の圧力を測定して前記液体の圧力を調整することができる。
 本発明のキャリッジユニットは、前記駆動制御は、前記ポンプが前記管路内の前記液体を加圧及び減圧する加圧機構及び減圧機構によって実施されることを特徴としている。
 この発明によれば、前記加圧機構及び減圧機構によって前記液体が前記管路の内部で前記噴射部側あるいは前記液体収容体側へ移動される。その結果、前記噴射口における前記液体の圧力を調整することができる。
 本発明のキャリッジユニットは、前記加圧機構及び前記減圧機構は、前記ポンプが正転及び逆転する正転機構及び逆転機構によって実施されることを特徴としている。
 この発明によれば、前記ポンプが回転駆動することによって前記管路の内部の前記液体を加圧あるいは減圧され、これにより単純な機構で前記噴射口における前記液体の圧力を調整することができる。
 本発明のキャリッジユニットは、前記駆動制御は、前記ポンプの停止動作により前記管路を閉塞し、前記液体収容体から前記噴射部への前記液体の供給を遮断することができる流路閉塞機構を有することを特徴としている。
 この発明によれば、前記ポンプが停止すると前記液体の前記管路を介した移動が遮断されて前記ポンプから前記噴射口に至るまでの前記管路の内部に前記液体が貯留するようになる。これにより、前記噴射口における前記液体の圧力を維持するための前記駆動制御が簡略化される。
 本発明のキャリッジユニットは、前記圧力センサから前記噴射部までの前記管路の長さが50mm~600mmの範囲にあることを特徴としている。
 この発明によれば、前記圧力測定手段から前記噴射部までの前記管路の長さが50mmよりも短い場合は前記圧力測定手段の配置の自由度が低く前記噴射部から離間させて前記移動台に前記液体貯留部を配置するのは困難であるのに対して、前記圧力測定手段から前記噴射部までの前記管路の長さが50mmよりも長いので前記液体貯留部を前記噴射部から離間させて前記キャリッジ上に配置可能である。また、前記圧力測定手段から前記噴射部までの前記管路の長さが600mmよりも長いと、前記液体の圧力変動の前記管路による吸収量が大きいため前記噴射部における圧力変動と前記圧力測定手段において測定された圧力値との間に乖離が生じるため正確な圧力測定が困難になるのに対して、前記圧力測定手段から前記噴射部までの前記管路の長さが600mmよりも短いので、前記圧力変動が前記液体の噴射精度に与える影響が少ない。これにより前記圧力測定手段によって前記液体噴射ヘッドが適切に液体を噴射するのに十分な精度で前記液体の圧力が測定される
 本発明のキャリッジユニットは、前記圧力測定手段は、前記噴射部の噴射口の高さよりも+10mm~+300mmの範囲内で上方に配置されていることを特徴としている。
 この発明によれば、前記圧力測定手段が前記噴射部の噴射口の高さから+10mm以内に配置されていると前記圧力測定手段によって前記噴射部の配置位置が制限されてしまう。これに対して、前記圧力測定手段が前記噴射部の噴射口の高さから+10mm以上上方に配置されているため、前記噴射部と前記圧力測定手段とが干渉しない。また、前記圧力測定手段の位置と前記噴射部の噴射口の位置とが高さ方向で+300mmよりも高い位置に配置されていると前記圧力測定手段によって測定された圧力値と前記噴射部における圧力値との乖離が大きいため精度よく圧力測定を行うことが困難である。これに対して、前記圧力測定手段の位置と前記噴射部の噴射口の位置とが高さ方向で+300mmよりも近接して配置されているため、前記圧力測定手段によって測定される前記液体の圧力と前記噴射口における前記液体の圧力との差を低減することができる。その結果、前記液体の圧力を調整するために要求される精度の範囲内に収まる。
 本発明のキャリッジユニットは、前記液体貯留部は可撓性の薄膜状部材によって形成された液体貯留室を備え、前記薄膜状部材は前記液体貯留部の外部から前記薄膜状部材を介した気体の侵入あるいは洩出を抑制していることを特徴としている。
 この発明によれば、前記液体貯留部は、前記液体管路から伝播する圧力変動を前記薄膜状部材によって吸収する。さらに前記薄膜状部材は前記気体の侵入による前記液体の増粘あるいは固化と、前記噴射部から噴射される前記液体への気泡の混入を抑制している。
 本発明の圧力制御方法は、請求項1~10のいずれか一項に記載の液体噴射ヘッドまたは請求項11~17のいずれか一項に記載のキャリッジユニットを用いた圧力制御方法であって、前記圧力測定手段によって前記液体の圧力を測定する工程と、前記液体の圧力があらかじめ設定された上限圧力値と下限圧力値との間にあるか否かを判定する工程と、制御部によって前記液体の圧力が前記上限圧力値と前記下限圧力値の間にある際には前記ポンプの駆動を停止させ、前記液体の圧力が前記下限圧力値よりも低い際には前記液体を前記噴射部の方向へ移動させるように前記ポンプを正転させ、前記液体の圧力が前記上限圧力値よりも高い際には前記液体を前記液体収容体の方向へ移動させるように前記ポンプを逆転させる工程とを備えることを特徴としている。
 この発明によれば、まず、前記圧力測定手段によって前記液体貯留部よりも前記噴射部側の前記液体の圧力が測定される。すると、前記制御部によって、前記液体の圧力が前記上限圧力値と下限圧力値との間にあるかどうかが判断される。ここで、前記圧力が上限圧力値と下限圧力値の間にある際には、前記制御部は前記ポンプが駆動している場合には停止させる。一方、前記液体の圧力が前記下限圧力値よりも低い際には前記ポンプを駆動して前記液体を前記噴射部側へ送液して前記ヘッドの負圧を低減させる。また、前記液体の圧力が前記上限圧力値よりも高い際には前記液体を前記液体収容体の方向へ移動させるように前記ポンプを駆動させる。このようにして前記制御部によって前記ポンプが駆動され、前記液体噴射ヘッドが前記液体を噴射している間の前記液体の圧力は適切に調整される。
 本発明の圧力制御方法は、前記噴射口における圧力値と前記圧力測定手段において測定した圧力値の差圧に対して、前記制御部において補正制御を施す補正制御工程を有することを特徴としている。
 この発明によれば、前記補正制御工程で前記圧力測定手段よって測定された前記液体の圧力値を前記噴射口における前記液体の圧力へと補正して出力することによって、前記圧力測定手段で測定される圧力値に基づいて前記噴射口における圧力値を調整することができる。
 本発明の圧力制御方法は、前記上限圧力値と前記下限圧力値は、前記噴射口における前記液体の圧力値を対象として設定されていることを特徴としている。
 この発明によれば、前記噴射口における前記液体の圧力値が上限圧力値と下限圧力値の間になるように制御されるため、前記圧力測定手段が前記液体の圧力を測定する位置によらず、前記液体の圧力が前記噴射口から前記液体が良好に噴射されるように調整される。
 本発明の圧力制御方法は、前記上限圧力値が+0.5kPaであり、前記下限圧力値が-2.0kPaであることを特徴としている。
 この発明によれば、前記上限圧力が+0.5kPa以上の場合は前記液体が前記噴射部の噴射口から洩出するために前記液体を液滴として噴射することが困難になり、一方前記下限圧力が-2.0kPa以下の場合には前記液体が前記噴射部の噴射口に十分に供給されない。前記液体の圧力が+0.5kPa~-2.0kPaの範囲にあるように制御されることによって、前記噴射部の噴射口の内部には前記液体によるメニスカス面が形成され、前記噴射部によって前記液体が液滴となって前記被記録媒体へ噴射されることが可能である。さらに前記液体の圧力を+0.5kPaから-2.0kPaの間になるように幅を持たせて制御することで、前記制御部による加圧制御あるいは減圧制御が頻繁に反転して生じる過剰なポンプ駆動が抑制される。
 本発明の圧力制御方法は、前記上限圧力値が-0.5kPaであり、前記下限圧力値が-1.0kPaであることを特徴としている。
 この発明によれば、前記上限圧力値が負圧であるため、前記噴射口の内部には前記液体によるメニスカス面が形成されて前記液体を液滴として良好に噴射可能である。さらに前記下限圧力値が-1.0kPaであることで前記上限圧力値と前記下限圧力値との差圧が小さく、前記液滴の形状のばらつきが抑えられることで良好な噴射結果に繋がる。
 本発明の圧力制御方法は、前記制御部は前記液体の圧力と前記上限圧力値あるいは前記下限圧力値との差圧を計算する計算工程を備え、前記差圧の大きさに比例するように前記ポンプの駆動速度を変化させることを特徴としている。
 この発明によれば、前記差圧が大きいときには前記ポンプの駆動を高速にすることによって迅速に前記液体が加圧あるいは減圧される。また、前記差圧が小さくなった際には前記ポンプの駆動を低速にすることによって過剰な加圧あるいは減圧が抑えられる。
 本発明の液体噴射記録装置は、請求項1~10のいずれか一項に記載の液体噴射ヘッドまたは請求項11~17のいずれか一項に記載のキャリッジユニットと、前記噴射部を前記液体が噴射される被記録媒体上で往復移動させる移動機構と、前記被記録媒体を前記噴射部と一定の距離をもって搬送する搬送機構と、前記圧力測定手段及び前記ポンプのそれぞれに電気的に接続された制御部とを備えることを特徴としている。
 この発明によれば、前記液体収容体から前記液体噴射ヘッドへ供給された前記液体の圧力は前記圧力センサで測定される、すると、前記制御部によって前記液体の圧力が前記上限圧力値と前記下限圧力値の間になるように前記ポンプが駆動される。これにより、前記液体貯留部から前記噴射部までの圧力変動が低く抑えられ、前記液体が前記噴射部から前記被記録媒体に向かって精度よく噴射されて被記録媒体に着弾する。さらに前記移動機構と前記搬送機構とによって前記液体噴射ヘッドと前記被記録媒体が相対移動することで、前記被記録媒体の所望の位置に前記液体が噴射される。
 本発明に係る液体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置によれば、前記圧力センサによって前記液体貯留部で緩衝された後の前記液体の圧力が測定され、その圧力を基にして前記液体が加圧あるいは減圧されることで、前記液体を最適な圧力で前記噴射部に供給することができる。
本発明の液体噴射ヘッドを搭載する液体噴射記録装置の構成を説明するための説明図である。 第1実施形態の液体収容体から液体噴射ヘッドまでの液体の流路の構成を示す説明図である。 本発明による液体圧力制御の動作を説明するための説明図である。 本発明の第2実施形態の液体噴射記録装置における液体の流路の構成を説明するための説明図である。
(第1実施形態)
 以下、本発明の第1実施形態について図1~図3を参照して説明する。図1は、液体噴射記録装置の構成を示す構成図である。また、図2は、液体収容体から液体噴射ヘッドまでの液体の流路の構成を示す説明図である。また、図3は液体噴射記録装置による液体圧力制御の動作を説明するための説明図である。
 まず、本実施形態の液体噴射ヘッドが搭載された液体噴射記録装置について説明する。
 図1及び図2に示すように、液体噴射記録装置1は、用紙等の被記録媒体Pに液体5aを噴射する液体噴射機構2と、液体噴射機構2に液体5aを供給する液体供給機構3と、被記録媒体Pを液体噴射機構2の下側で図中X方向に搬送する搬送機構27と、前記各機構と電気的に接続された制御部11とを筐体4の内部に備える。液体供給機構3は、液体5aを貯留する液体収容体5と、液体収容体5に一端が接続された可撓性の管状の液体管路6と、液体管路6の中間部に介在されたローラーチューブポンプ7とを備える。
 ローラーチューブポンプ7は、図示しない正転逆転可能なモーターと、図2に示すようにモーターの駆動軸に回転中心Oが接続された略円柱状のホイール8と、ホイール8の外周部に回転自在に係合されたローラー9と、液体管路6が係合する円弧状の溝が形成されたケース部材10とを備える。ローラー9はケース部材10に係合した液体管路6の一部を押圧するようになっている。本実施形態のローラーチューブポンプ7における加圧機構(正転機構)及び減圧機構(逆転機構)について説明すると、ローラー9によって液体管路6が押圧されながらホイール8が正転または逆転することによって液体管路6の内部の液体5aがホイール8の回転方向に加圧されて液体収容体5側あるいは逆側へ送液される。本実施形態においてローラーチューブポンプ7は液体5aの送液と加減圧との両方の動作を行うようになっている。また、モーターは制御部11へ電気的に接続されている。
 液体噴射機構2は、被記録媒体Pの上側に移動可能に配置された移動台12と、移動台12に固定されて被記録媒体P側へ液体5aを噴射するための液体噴射ヘッド13とを備える。移動台12は移動台12を被記録媒体P上で図中Y方向に往復移動させる移動機構14に支持されている。
 また、液体噴射ヘッド13は、液体管路6に一端が接続されて液体5aの圧力変動を緩衝して他端へ流通させる液体貯留ユニット15と、液体貯留ユニット15の他端に接続されて液体5aを微小な液滴にして噴射する複数の噴射口が配置された噴射口面16を有する噴射部17と、液体貯留ユニット15と噴射部17とを近接させて固定する第一支持部18と、液体貯留ユニット15と噴射部17との間で液体5aの流路を分岐する分岐部19と、分岐部19に一端が接続された可撓性の管状部材からなる圧力伝達管路20と、圧力伝達管路20の他端に圧力検知部21が接続されて移動台12に固定された圧力センサ22(圧力測定手段)とを備える。
 圧力伝達管路20は、気体の透過を抑制する素材からなる。また、圧力センサ22は制御部11へ電気的に接続されて圧力伝達管路20の内部の気体を介して液体5aの圧力値を測定して制御部11へ発信する。液体貯留ユニット15は、液体管路6と分岐部19にそれぞれ接続された連通部23、24を有する液体貯留ケース25と、連通部23、24のそれぞれに接続され液体貯留ケース25内に収容された液体貯留部26とを備える。液体貯留ケース25には凹部が形成されており、該凹部の周縁部となる液体貯留ケース25のフレーム部分に、気体の透過を抑制する薄膜状の素材を熱溶着などの方法を用いて接着することによって、液体を貯留する液体貯留室26aを構成することで、上述の液体貯留部26が形成されている。また液体貯留部26内の液体貯留室26aは、連通部23、24を介して、液体管路6及び分岐部19にそれぞれ連通している。このような液体貯留ユニット15を持つことによって、液体噴射機構2の移動に伴う圧力の変動を吸収することができる。
 制御部11は、圧力センサ22の動作を監視して最適な圧力であるかどうかを判定する判定部11aと、ローラーチューブポンプ7を駆動させる駆動部11bとを備える。判定部11aには液体5aを噴射するために最適な圧力の上限と下限(本実施形態において噴射口面16における圧力の上限は-0.5kPaで下限は-1.0kPa)が設定されており、圧力センサ22で測定された圧力と設定された圧力を比較するようになっている。
 また駆動部11bは判定部11aによって比較された結果を基にしてローラーチューブポンプ7を正転、逆転、あるいは停止のいずれかの状態となるように駆動させる駆動信号を発信するようになっている。以下では、ローラーチューブポンプ7の正転は液体管路6を液体収容体5側から噴射部17側へしごく方向、逆転は液体管路6を噴射部17側から液体収容体5側へしごく方向として説明する。また本実施形態において、正転とは加圧動作を示し、逆転とは減圧動作を示す。
 以上に説明する構成の液体噴射記録装置1の動作について図1から図3を参照しながら説明する。
 まず、操作者は搬送機構27に被記録媒体Pを供給し、液体噴射ヘッド13の下方に被記録媒体Pを位置させる。引き続いて噴射部17から被記録媒体Pに向かって液体5aが噴射されるとともに、移動機構14によって液体噴射機構2が被記録媒体P上を往復移動され、さらに搬送機構27によって被記録媒体Pが一定の間隔をもって液体噴射機構2の往復方向と直交する方向へ移動される。これにより被記録媒体Pの一面に液体5aが噴射される。この時、ローラーチューブポンプ7は停止されており、ローラー9によって液体管路6は閉じられている。(流路閉塞機構)そのため、ローラーチューブポンプ7から噴射部17までの液体管路6の内部の液体5aの圧力が液体5aの噴射に伴って低下する。(図3に示すポンプ停止工程A1)
 液体噴射ヘッド13の内部の液体5aの圧力は分岐部19に接続された圧力伝達管路20を通じて圧力センサ22で測定されている。圧力センサ22によって測定された液体5aの圧力値は信号の形で判定部11aへ送られる。本実施形態では最適な値は一定の幅を持って設定される(本実施形態での噴射口面16における圧力値は-0.5kPa~-1.0kPaの範囲)。
 判定部11aによって圧力センサ22での測定において、噴射口面16における圧力の値が-1.0kPaよりも低下したことが判定されると、判定部11aでの判定に対応して駆動部11bが作動されて、ローラーチューブポンプ7へ駆動信号が送信される。するとローラーチューブポンプ7のホイール8が回転し、ローラー9が液体管路6を押しつぶしながら液体管路6を液体収容体5から噴射部17側へしごくように動作する。
 判定部11aでは継続的に圧力センサ22から送信される圧力値が監視され、圧力センサ22が示す噴射口面16における圧力値が-1.0kPaに達したことが判定されたときに駆動部11bによってローラーチューブポンプ7の駆動が停止される。このようにして液体5aの圧力が最適な範囲内に収まるように加圧制御される。(図3に示す加圧工程A2)
 また、液体噴射機構2の移動による圧力変動等によって圧力センサ22で測定された噴射口面16における圧力が下限値である-1.0kPaを下回っていることが判定された際にも、同様な制御によって液体5aの噴射口面16における圧力が-1.0kPaに回復するように加圧制御される。(図3に示す加圧工程A3)
 これに対して、液体噴射機構2の移動による圧力変動等によって圧力センサ22で測定された噴射口面16における圧力が上限値である-0.5kPaを越えていることが判定された際には、駆動部11bによってローラーチューブポンプ7が逆転駆動され、液体管路6の内部の液体5aが液体収容体5方向に送液される。これにより液体噴射ヘッド13の内部の液体5aの圧力が減少する。判定部11aによって圧力センサ22が示す噴射口面16における圧力値が-0.5kPaよりも低下したことが判定されたときに、駆動部11aによってローラーチューブポンプ7が停止されることで減圧制御される。(図3に示す減圧工程A4)
 なお、本実施形態では、制御部11において圧力センサ22から制御部11へ送信された圧力値と上限値あるいは下限値とを比較し、その差圧に応じたローラーチューブポンプ7の回転速度を決定するため図示しない比例制御回路を備えることによって、差圧が大きい際にローラーチューブポンプ7の回転速度を高めて迅速に液体5aの圧力調整を行うことが可能である。その方法として、比例制御回路には判定部から受信した圧力値を基にして前記差圧を算出する計算工程と、前記差圧とローラーチューブポンプ7の回転量を対比させる対比マップとを備え、判定部11aからの圧力値の入力に対して駆動部11bへローラーチューブポンプ7の回転速度を指定する信号を出力する方法や、あるいは判定部11aからの圧力値の入力に対してローラーチューブポンプ7の駆動速度を直接算出して駆動部11bへ駆動信号を発する方法等を採用することができる。
 以下では、液体噴射ヘッド13に液体5aを充填する際の充填動作について説明する。初めて液体噴射記録装置1を使用する際や液体収容体5を交換した際には液体管路6に多量の気体が混入しているため、液体管路6に液体5aを充填する工程がなされる。移動機構14は液体噴射機構2をサービスステーション28aまで搬送する。サービスステーション28aは噴射部17の噴射口面16から洩出した液体5aを廃液タンク28に貯留させるようになっている。
 続いて、駆動部11bによってローラーチューブポンプ7が駆動される。すると、ローラーチューブポンプ7より液体収容体5側の液体管路6の内部には負圧が発生し、液体収容体5から液体5aが吸い上げられてローラーチューブポンプ7を介して噴射部17まで供給される。液体5aが噴射部17に供給されて液体5aが液体管路6に充填されると駆動部11bによってローラーチューブポンプ7は停止される。
 続いて、判定部11aによって圧力センサ22が示す圧力値が監視され、分岐部19における液体5aの圧力が最適な値にあるかどうかが判定される。圧力センサ22が示す圧力値が最適な範囲以外であった際には、判定部11aにおいて圧力センサ22が示す圧力値と最適な範囲との差圧が算出され、判定部11aでの判定に対応して駆動部11bによって差圧を減じるようにローラーチューブポンプ7が駆動され、圧力センサ22が示す圧力値が最適な範囲内にあることが判定されたときにローラーチューブポンプ7の駆動を停止される。その後、液体噴射記録工程が開始可能となる。
 以上説明したように、本実施形態の液体噴射ヘッド13によれば、液体貯留ユニット15で緩衝された液体5aの圧力は液体貯留ユニット15から噴射部17の間に配置された圧力伝達管路20を介して接続された圧力センサ22へ伝達され、圧力が不足あるいは過剰であった際には制御部11において圧力センサで測定された値に対応してローラーチューブポンプ7が駆動されて最適な圧力の範囲になるまで液体管路6の内部の液体5aが送液されるようになっている。
 このような構成を持つことによって、本実施形態の液体噴射装置では、例え流路長が長尺になり、流路における圧力損失が増大したとしても、噴射口面16における液体5aの圧力値を測定することができるため、適正な圧力を保持した液体5aを供給することができる。
 さらに、液体貯留ユニット15を備えているため、移動台12の移動に伴う液体5aの圧力変動を低減することが可能である。また上述のとおり、液体貯留ユニット15から噴射口面16の間に存在する液体5aの圧力を測定することによって、液体貯留ユニット15で圧力変動を低減された液体についての測定を実施することができる。これによって、流路の長尺化による圧力損失の影響や、液体噴射機構2の移動に伴う圧力変動の影響が残存していたとしても、噴射口面16における液体5aの圧力を測定することができるため、適正な印刷環境を整えることができる。
 また、本実施形態の圧力伝達管路20は気体の透過を抑制する素材で形成されているため、分岐部19から圧力伝達管路20内に流入する液体5aに管壁を介して外気が侵入することが抑制される。これにより液体5aの増粘、固化、あるいは変性(以下合わせて劣化と称する)が抑制されて劣化した液体5aが圧力センサ22の圧力検知部21へ付着したり、噴射部17までの液体5aの流路の一部あるいは全部を閉塞して液体噴射の精度を低下したりするのを抑制している。
 また、圧力伝達管路20は分岐部19において脱着可能であるが、これにより液体収容体5から噴射部17までの液体5aの流路を洗浄したときに、洗浄液を出入りさせにくい圧力伝達管路20を個別に洗浄することが可能になっている。
 また、圧力伝達管路20は液体貯留ユニット15より噴射部17側の液体5aの流路の一部に形成された分岐部19に接続されている。液体貯留ユニット15は液体収容体5側の液体管路6に生じる圧力変動を液体貯留部26で吸収して圧力変動の変動幅を減衰させるものである。このため、分岐部19にはこの減衰された変動幅の圧力が伝達されて圧力伝達管路20を介して圧力センサ22で測定される。また、分岐部19から噴射部17までの液体5aの流路の距離が短く配置されているため、圧力センサ22で測定される圧力と噴射口面16に供給される液体5aの圧力との差を低減することができる。
 また、本実施形態の構成による液体5aの圧力制御方法は、液体管路6内の液体5aをローラーチューブポンプ7で加圧あるいは減圧することによってなされる。このため従来のように液体収容体5に気体を導入させて液体5aの圧力を制御する技術と比較して液体5aが気体に暴露されることによる液体5aの劣化が抑制され、良好な液体噴射を図ることができる。
 また、本発明では液体5aを噴射部17から噴射させるために最適な値は一定の幅を持って設定される(本実施形態では噴射口面16における圧力値が-0.5kPa~-1.0kPaの範囲)。最適な圧力として単一の値が設定されている場合には、圧力センサ22で最適な値が示されてから制御部11によって圧力値が受信されてローラーチューブポンプ7が停止されるまでの微小なタイムラグの間にローラーチューブポンプ7によって液体5aが加圧あるいは減圧されて最適な値を逆側に逸脱した際に、これら微小な圧力変動を減じるための頻繁な制御が発生することがある。本発明では最適な値に幅を持たせ、最適な値の近傍における微小な圧力変動時にはローラーチューブポンプ7を停止させる機構を採用しているため、前述したような頻繁な制御は発生しない。
 以下では、ローラーチューブポンプ7の駆動制御の変形例として、分岐部19と噴射口面16とのそれぞれの配置位置の高低差によって生じる圧力センサ22の圧力検知部21において測定される圧力値と噴射口面16にかかる圧力との差を補正する補正制御について詳述する。
 分岐部19と噴射口面16の位置には微小なりとも高低差があるので、両部における圧力値に差異が生じる可能性がある。この問題を解決するために、本変形例では、制御部11は、噴射口面16における圧力値が適正な圧力値となるように圧力検知部21で測定した圧力値を補正する補正制御(補正制御工程A5)を備える。
 補正制御(補正制御工程A5)は、制御部11の判定部11aに圧力センサ22によって測定される圧力と噴射口面16に生じる圧力との対応が設定された図示しない補正テーブルが設けられてなる。判定部11aは前記補正テーブルを参照して圧力センサ22によって測定された圧力値を噴射口面16における圧力値へ変換することで噴射口面16における圧力値が最適な範囲内にあるか否かを判定するようになっている。
 駆動部11bは、判定部11aによる変換後の圧力値に基づく判定に対応した駆動信号をローラーチューブポンプ7へ送信することでローラーチューブポンプ7を駆動するようになっている。
 なお、本変形例では、液体噴射ヘッド13の構成に基づいて予め補正値を測定し、最初からその補正値を判定部11aにおいて使用するように設定してもよい。
(第2実施形態)
 次に、本発明の第2実施形態の液体噴射記録装置について図4を参照して説明する。なお、以下に説明する各実施形態において、上述した第1実施形態と構成を共通とする箇所には同一符号を付けて、説明を省略することにする。
 図4は本発明の第2実施形態の液体噴射記録装置における液体の流路の構成を説明するための説明図である。
 本実施形態の液体噴射ヘッド30の液体貯留ユニット31は分岐管を備えない従来の液体貯留ユニットである。一方、移動台12の一部は第二支持部32になっており、圧力センサ22を備える液体貯留ユニット33が固定されている。本実施形態では液体噴射ヘッド30と移動台12と液体貯留ユニット31、33と、圧力センサ22とによってキャリッジユニット28が構成されている。また、本実施形態では液体貯留ケース34に分岐部35が形成されて圧力センサ22が接続されている点で第1実施形態と異なっているが、分岐部35は液体貯留ユニット33の液体貯留部36よりも噴射部17側に開口しているため、圧力センサ22には液体貯留ユニット33によって減衰された圧力が伝達される。また、液体貯留部36は第1実施形態と同様の構成の液体貯留室36aを備える。
 また、液体貯留ユニット33はローラーチューブポンプ7と液体貯留ユニット31との中間部の液体管路6の一部に介在されている。ここで、液体貯留ユニット33から噴射部17までの液体5aの流路の長さは、液体供給流路として本実施形態での最適値である50mmから600mmの範囲内になるように調整されている。
 第2実施形態では、液体貯留ユニット31から噴射部17までの間の液体5aの流路に圧力センサ22を備えることができない液体噴射ヘッド30に対して、ローラーチューブポンプ7と噴射部17の間の液体管路6のキャリッジユニット28側に新たな液体貯留ユニット33を配置して、さらに液体貯留ユニット33から噴射部17までの間の液体5aの流路に圧力センサ22を配置することで、第1実施形態と同様に液体貯留ユニット33によって圧力が緩衝された後の液体5aの圧力を測定することを可能にするものである。第2実施形態においても第1実施形態と同様に、制御部11によって圧力センサ22で測定された圧力値が監視されて、その値が下限圧力値と上限圧力値との間を逸脱していた際にはローラーチューブポンプ7が駆動されて液体5aが加圧あるいは減圧されることによって液体噴射ヘッド30に供給される液体5aの圧力が調整される。
 また、圧力センサ22での測定位置が液体貯留ユニット33の位置であるため、第1実施形態と比較して噴射口面16から遠隔地で液体5aの圧力を測定するようになっている。この場合、噴射口面16における液体5aの圧力値と液体貯留ユニット33における液体5aの測定値には、測定差が生じる可能性がある。このような場合にも、第1実施形態と同様に圧力センサ22によって測定された圧力値を補正することによって噴射口面16における液体5aの圧力を最適な範囲に維持することができる。
 さらに、第2実施形態では液体貯留ユニット33の液体貯留部36における圧力値を測定している点で第1実施形態と構成が異なっている。液体貯留部36では液体5aが貯留されており、流路や管路で測定する場合と比較して、液体貯留部36において測定する場合は、液体5aの変位量や圧力値の変動差が少ない。つまり、第2実施形態ではこのような構成を採用したことによって、圧力センサ22は液体5aが貯留される部位の圧力値を測定するので、測定した圧力値の変動や、圧力値にノイズが含まれる可能性を低減することができる。そのため、第2実施形態では、安定して液体5aの圧力値を測定することができる。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、本発明の実施形態において、制御部11によって制御される噴射口面16における圧力の目標値は-0.5kPa~-1.0kPaが最適な値であるが、+0.5kPa~-2.0kPaとして目標値を設定しても液体5aの噴射精度を満足することができる。この場合、目標値の幅を広げることで圧力調整のためのローラーチューブポンプ7の駆動頻度を減らすことができる。
 また、本発明の実施形態において、ローラーチューブポンプ7は液体管路6がホイール8の外周に沿って配置されてローラー9によって押圧される構成を採用したが、この構成に限られるものではなく、例えば可撓性の管状部材の中間部がホイールの外周の一部に沿って配置されてローラーによって押圧され、両端部が接続口として開放されている構成のローラーチューブポンプを液体管路6の中間部に介在させることも可能である。
 また、本発明の実施形態において、液体管路6の内部の液体5aを加圧あるいは減圧するためのポンプには二つのローラー9を有するローラーチューブポンプを備える構成を採用したが、これに限らず、ローラー9が二つ以上あるローラーチューブポンプを採用してもよいし、あるいはローラーチューブポンプ以外の他のポンプ機構によって液体管路6の内部の液体5aを加圧あるいは減圧しても良い。
 また、本発明の実施形態において、液体を収容するものとして液体収容体5を採用したが、これに限らず、例えば相対的に大量の液体を収容するメインタンクと、メインタンクに管状部材を介して接続されてメインタンクの内部に収容された液体の一部を収容するサブタンクとを備えた液体供給機構を採用することもできる。
 また、本発明の第1実施形態において、圧力センサ22は分岐部19から圧力伝達管路20を介して圧力値を測定しているが、圧力センサ22の圧力検知部21の近傍に、液体5aが貯留される圧力測定室を設けてもよい。このような構成を採用することによって、第1の実施形態においても、液体5aの圧力値の測定に関する安定性を高めることができる。
 また、本発明の第1実施形態において、圧力伝達管路20は気体の侵入を抑制する管状の可撓部材からなる構成を採用したが、これに限らず、圧力伝達管路の内部に充填する液体5aの性質等に応じて異なる材質の部材を使用することも可能である。例えば、圧力伝達管路にステンレス鋼やアルミニウム等の金属製の管状部材を採用すると、圧力伝達管路の耐久性がより高くなり、経年劣化等によるひび割れによる圧力伝達管路の内部への気体の侵入が抑制される。また、遮光性の塗料で圧力伝達管路を被覆するか、あるいは遮光性の素材で圧力伝達管路を形成する構成を採用すると、圧力伝達管路の内部への光の透過が抑制される。このため、紫外線や可視光による液体5aの硬化あるいは変性が抑制される。
 また、本発明の第2実施形態において、液体貯留ユニット33に圧力センサが直接固定されている構成を採用したが、液体貯留ユニット33によって圧力変動が緩衝された後の液体5aの圧力が測定できる位置であればよく、例えば分岐部35に圧力伝達管路20を介して圧力センサ22が接続されていても良いし、あるいは液体貯留ユニット33から噴射部17までの液体5aの流路の一部に新たな分岐部が設けられて分岐部の先端部に圧力センサ22が接続されていても良い。
また、本発明の第2実施形態において、液体噴射ヘッド30にはあらかじめ液体貯留ユニット31が搭載されている構成を採用したが、これに限らず、液体貯留ユニット31を搭載しない液体噴射ヘッドが搭載された液体噴射記録装置において本発明の液体貯留ユニット33及び圧力センサ22を配置することも可能である。この場合にも液体貯留ユニット33によって液体5aの圧力変動が緩衝された後の液体5aの圧力を測定して圧力調整を行うことができる。
 1 液体噴射記録装置
 5 液体収容体
 5a 液体
 6 液体管路(管路)
 7 ローラーチューブポンプ(ポンプ)
 11 制御部
 12 移動台
 13、30液体噴射ヘッド
 14 移動機構
 16 噴射口面
 17 噴射部
 19、35 分岐部
 20 圧力伝達管路
 22 圧力センサ(圧力測定手段)
 26、36 液体貯留部
 26a、36a 液体貯留室
 27 搬送機構
 28 キャリッジユニット
 A1 ポンプ停止工程
 A2、A3 加圧工程
 A4 減圧工程
 A5 補正制御工程
 P 被記録媒体

Claims (24)

  1.  液体を噴射する複数の噴射口を備える噴射部と、
     液体収容体内の液体をポンプを介して前記噴射部へ供給する管路に介在されて、該管路の圧力変動を緩衝する液体貯留部と、
     前記液体貯留部と前記噴射部とを接続する前記管路に介在されて該管路内の圧力を測定する圧力測定手段とを備え、
     前記圧力測定手段の測定値に基づき、前記管路から前記噴射部へ供給する液体の圧力が所定範囲内になるように、前記ポンプを駆動制御することを特徴とする液体噴射ヘッド。
  2.  前記駆動制御は、前記ポンプが前記管路内の前記液体を加圧及び減圧する加圧機構及び減圧機構によって実施されることを特徴とする請求項1に記載の液体噴射ヘッド。
  3.  前記加圧機構及び前記減圧機構は、前記ポンプが正転及び逆転する正転機構及び逆転機構によって実施されることを特徴とする請求項2に記載の液体噴射ヘッド。
  4.  前記駆動制御は、前記ポンプの停止動作により前記管路を閉塞し、前記液体収容体から前記噴射部への前記液体の供給を遮断することができる流路閉塞機構を有することを特徴とする請求項1~3のいずれか一項に記載の液体噴射ヘッド。
  5.  前記液体貯留部と前記噴射部とを接続する管路に前記圧力測定手段が直接介在されていることを特徴とする請求項1~4のいずれか一項に記載の液体噴射ヘッド。
  6.  前記液体貯留部と前記噴射部とを接続する管路から分岐された圧力伝達管路に前記圧力測定手段が接続されていることを特徴とする請求項1~4のいずれか一項に記載の液体噴射ヘッド。
  7.  前記圧力伝達管路は可撓性を有しかつガスバリア性を持つチューブで構成されることを特徴とする請求項6に記載の液体噴射ヘッド。
  8.  前記圧力伝達管路が金属材料によって作られていることを特徴とする請求項36に記載の液体噴射ヘッド。
  9.  前記圧力伝達管路は特定の波長を有する光の透過を抑制する可撓部材からなることを特徴とする請求項6または7に記載の液体噴射ヘッド。
  10.  前記圧力伝達管路は前記管路に対して脱着可能であることを特徴とする請求項6~9のいずれか一項に記載の液体噴射ヘッド。
  11.  液体を噴射する複数の噴射口を備える噴射部と、
     液体収容体内の液体をポンプを介して前記噴射部へ供給する管路に介在されて、該管路の圧力変動を緩衝する液体貯留部と、
     前記液体貯留部と前記噴射部とを接続する前記管路に介在されて該管路内の圧力を測定する圧力測定手段と、
    前記噴射部と前記液体貯留部と前記圧力測定手段とを支持する移動台とを備え、
     前記圧力測定手段の測定値に基づき、前記管路から前記噴射部へ供給する液体の圧力が所定範囲内になるように、前記ポンプを駆動制御し、
    前記噴射部を被記録媒体から所定の距離だけ離間させて支持して前記被記録媒体上を往復移動することを特徴とするキャリッジユニット。
  12.  前記駆動制御は、前記ポンプが前記管路内の前記液体を加圧及び減圧する加圧機構及び減圧機構によって実施されることを特徴とする請求項11に記載のキャリッジユニット。
  13.  前記加圧機構及び前記減圧機構は、前記ポンプが正転及び逆転する正転機構及び逆転機構によって実施されることを特徴とする請求項12に記載のキャリッジユニット。
  14.  前記駆動制御は、前記ポンプの停止動作により前記管路を閉塞し、前記液体収容体から前記噴射部への前記液体の供給を遮断することができる流路閉塞機構を有することを特徴とする請求項11~13のいずれか一項に記載のキャリッジユニット。
  15.  前記圧力測定手段から前記噴射部までの前記管路の長さが50mm~600mmの範囲にあることを特徴とする請求項11~14のいずれか一項に記載のキャリッジユニット。
  16.  前記圧力測定手段は、前記噴射部の噴射口の高さよりも+10mm~+300mmの範囲内で上方に配置されていることを特徴とする請求項11~15のいずれか一項に記載のキャリッジユニット。
  17.  前記液体貯留部は可撓性の薄膜状部材によって形成された液体貯留室を備え、前記薄膜状部材は前記液体貯留部の外部から前記薄膜状部材を介した気体の侵入あるいは洩出を抑制していることを特徴とする請求項11~16のいずれか一項に記載のキャリッジユニット。
  18.  請求項1~10のいずれか一項に記載の液体噴射ヘッドまたは請求項11~17のいずれか一項に記載のキャリッジユニットを用いた圧力制御方法であって、前記圧力測定手段によって前記液体の圧力を測定する工程と、前記液体の圧力があらかじめ設定された上限圧力値と下限圧力値との間にあるか否かを判定する工程と、制御部によって前記液体の圧力が前記上限圧力値と前記下限圧力値の間にある際には前記ポンプの駆動を停止させ、前記液体の圧力が前記下限圧力値よりも低い際には前記液体を前記噴射部の方向へ移動させるように前記ポンプを正転させ、前記液体の圧力が前記上限圧力値よりも高い際には前記液体を前記液体収容体の方向へ移動させるように前記ポンプを逆転させる工程とを備えることを特徴とする圧力制御方法。
  19.  前記噴射口における圧力値と前記圧力測定手段において測定した圧力値の差圧に対して、前記制御部において補正制御を施す補正制御工程を有することを特徴とする請求項18に記載の圧力制御方法。
  20.  前記上限圧力値と前記下限圧力値は、前記噴射口における前記液体の圧力値を対象として設定されていることを特徴とする請求項18または19に記載の圧力制御方法。
  21.  前記上限圧力値が+0.5kPaであり、前記下限圧力値が-2.0kPaであることを特徴とする請求項20に記載の圧力制御方法。
  22.  前記上限圧力値が-0.5kPaであり、前記下限圧力値が-1.0kPaであることを特徴とする請求項20に記載の圧力制御方法。
  23.  前記制御部は前記液体の圧力と前記上限圧力値あるいは前記下限圧力値との差圧を計算する計算工程を備え、前記差圧の大きさに比例するように前記ポンプの駆動速度を変化させることを特徴とする請求項18~22のいずれか一項に記載の圧力制御方法。
  24.  請求項1~10のいずれか一項に記載の液体噴射ヘッドまたは請求項11~17のいずれか一項に記載のキャリッジユニットと、前記噴射部を前記液体が噴射される被記録媒体上で往復移動させる移動機構と、前記被記録媒体を前記噴射部と一定の距離をもって搬送する搬送機構と、前記圧力測定手段及び前記ポンプのそれぞれに電気的に接続された制御部とを備えることを特徴とする液体噴射記録装置。
PCT/JP2009/063519 2008-08-29 2009-07-29 液体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置 WO2010024084A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09809738A EP2316654A1 (en) 2008-08-29 2009-07-29 Liquid ejection head, carriage unit, pressure control method, and liquid ejection recording device
US12/737,777 US8613487B2 (en) 2008-08-29 2009-07-29 Liquid ejection head, carriage unit, pressure control method, and liquid ejection recording apparatus
CN2009801349214A CN102171044A (zh) 2008-08-29 2009-07-29 液体喷射头、滑架单元、压力控制方法以及液体喷射记录装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-221649 2008-08-29
JP2008221649A JP2010052357A (ja) 2008-08-29 2008-08-29 液体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置

Publications (1)

Publication Number Publication Date
WO2010024084A1 true WO2010024084A1 (ja) 2010-03-04

Family

ID=41721256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063519 WO2010024084A1 (ja) 2008-08-29 2009-07-29 液体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置

Country Status (6)

Country Link
US (1) US8613487B2 (ja)
EP (1) EP2316654A1 (ja)
JP (1) JP2010052357A (ja)
KR (1) KR20110053428A (ja)
CN (1) CN102171044A (ja)
WO (1) WO2010024084A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508869B (zh) * 2012-01-16 2015-11-21 Pamnred Corp 噴印機的供墨系統
JP6280742B2 (ja) * 2013-12-27 2018-02-14 東芝テック株式会社 液体循環装置、液体吐出記録装置、および液体循環方法
CN108016133B (zh) * 2016-11-04 2019-12-03 精工爱普生株式会社 液体喷射装置
DE102020129787A1 (de) * 2020-11-11 2022-05-12 Canon Production Printing Holding B.V. Anordnung zur Tintenversorgung eines Druckriegels mit geringen Druckschwankungen sowie mit geringem Gasanteil in der Tinte

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584922A (ja) * 1991-09-25 1993-04-06 Canon Inc インクジエツト記録装置
JPH1034899A (ja) * 1996-07-19 1998-02-10 Canon Inc インクジェット捺染装置
JP2000343723A (ja) * 1999-06-07 2000-12-12 Seiko Epson Corp 記録装置におけるインクタンクの装着状態検出装置
JP2002241653A (ja) * 2001-02-14 2002-08-28 Sharp Corp 記録用水性顔料インク、その製造装置及びその製造方法
JP2005034999A (ja) 2003-07-15 2005-02-10 Konica Minolta Medical & Graphic Inc インクジェットプリンタ
JP2006021383A (ja) * 2004-07-07 2006-01-26 Konica Minolta Medical & Graphic Inc インクジェットプリンタ
JP2007203641A (ja) * 2006-02-02 2007-08-16 Canon Finetech Inc インクジェット記録装置およびインクジェット記録方法
JP2008188854A (ja) * 2007-02-05 2008-08-21 Sharp Corp 流路形成体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118300A1 (ja) * 2004-06-01 2005-12-15 Canon Finetech Inc. インク供給装置、記録装置、インク供給方法、および記録方法
JP2006150963A (ja) * 2004-11-25 2006-06-15 Oce Technologies Bv インクジェットプリンタのインク容器内の圧力を制御する装置及び方法
JP4690034B2 (ja) * 2004-12-28 2011-06-01 エスアイアイ・プリンテック株式会社 チューブポンプ、インクジェット記録装置、及びインク供給方法
JP4841467B2 (ja) * 2007-03-07 2011-12-21 株式会社リコー 画像形成装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584922A (ja) * 1991-09-25 1993-04-06 Canon Inc インクジエツト記録装置
JPH1034899A (ja) * 1996-07-19 1998-02-10 Canon Inc インクジェット捺染装置
JP2000343723A (ja) * 1999-06-07 2000-12-12 Seiko Epson Corp 記録装置におけるインクタンクの装着状態検出装置
JP2002241653A (ja) * 2001-02-14 2002-08-28 Sharp Corp 記録用水性顔料インク、その製造装置及びその製造方法
JP2005034999A (ja) 2003-07-15 2005-02-10 Konica Minolta Medical & Graphic Inc インクジェットプリンタ
JP2006021383A (ja) * 2004-07-07 2006-01-26 Konica Minolta Medical & Graphic Inc インクジェットプリンタ
JP2007203641A (ja) * 2006-02-02 2007-08-16 Canon Finetech Inc インクジェット記録装置およびインクジェット記録方法
JP2008188854A (ja) * 2007-02-05 2008-08-21 Sharp Corp 流路形成体

Also Published As

Publication number Publication date
CN102171044A (zh) 2011-08-31
KR20110053428A (ko) 2011-05-23
EP2316654A1 (en) 2011-05-04
US8613487B2 (en) 2013-12-24
US20110205264A1 (en) 2011-08-25
JP2010052357A (ja) 2010-03-11

Similar Documents

Publication Publication Date Title
US7976140B2 (en) Liquid droplet ejecting apparatus
US8657394B2 (en) Image forming apparatus
US8915579B2 (en) Inkjet printing device and method for replacing a print head
WO2010024084A1 (ja) 液体噴射ヘッド、キャリッジユニット、圧力制御方法及び液体噴射記録装置
JP2009285837A (ja) 印刷装置、インク循環方法およびインク初期導入方法
JP5026370B2 (ja) 液体噴射記録装置及び液体噴射記録方法
JP6468044B2 (ja) 印刷装置および印刷装置におけるメンテナンス方法
JP2009269361A (ja) インクジェットヘッドのメンテナンス方法
JP5298860B2 (ja) 液滴吐出装置及び液滴吐出装置の液滴吐出ヘッド回復方法
JP5793728B2 (ja) インクジェット印刷装置及びそのパージ方法
JP2010052359A (ja) 液体噴射記録装置及び液体噴射記録方法
WO2016199370A1 (ja) 液体吐出装置およびその制御方法
JP2010052360A (ja) 液体噴射記録装置、液体噴射ヘッドユニット及び液体噴射記録方法
JP2017144682A (ja) インクジェットプリンター
JP2009040002A (ja) インクジェットプリントシステム
JP2014080008A (ja) 印刷装置および液体供給方法
JP2008049582A (ja) インク供給装置およびインクジェット記録装置
JP2011161648A (ja) 液体供給システム
US12097525B2 (en) Substrate treating apparatus, and method of controlling the substrate treating apparatus
CN118254479A (zh) 液体供给装置及液体涂敷装置
US20240217244A1 (en) Liquid supply apparatus and liquid application apparatus
JP2010221182A (ja) インキ供給装置
JP2018118383A (ja) インクジェット印刷装置
WO2016051826A1 (ja) インクジェットプリンター
JP2011218751A (ja) インクジェット記録装置およびインクジェット記録装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134921.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009809738

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117003583

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12737777

Country of ref document: US