WO2010023942A1 - タリウム及び硝酸カリウムの回収方法及び回収装置 - Google Patents

タリウム及び硝酸カリウムの回収方法及び回収装置 Download PDF

Info

Publication number
WO2010023942A1
WO2010023942A1 PCT/JP2009/004216 JP2009004216W WO2010023942A1 WO 2010023942 A1 WO2010023942 A1 WO 2010023942A1 JP 2009004216 W JP2009004216 W JP 2009004216W WO 2010023942 A1 WO2010023942 A1 WO 2010023942A1
Authority
WO
WIPO (PCT)
Prior art keywords
thallium
potassium nitrate
aqueous solution
dissolved
recovering
Prior art date
Application number
PCT/JP2009/004216
Other languages
English (en)
French (fr)
Inventor
小西正芳
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to KR1020117002509A priority Critical patent/KR101542287B1/ko
Priority to CN200980129855.1A priority patent/CN102112662B/zh
Publication of WO2010023942A1 publication Critical patent/WO2010023942A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • B01D61/423Electrodialysis comprising multiple electrodialysis steps
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/422Electrodialysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • C23G5/04Apparatus
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals

Definitions

  • the present invention relates to a thallium and potassium nitrate recovery method and recovery apparatus, and more particularly, recovers and effectively uses thallium (Tl), which is a rare metal, from thallium-containing potassium nitrate, and recovers and effectively uses potassium nitrate (KNO 3 ).
  • Tl thallium
  • KNO 3 potassium nitrate
  • the present invention relates to a thallium and potassium nitrate recovery method and recovery apparatus suitable for use at the time.
  • a chlorine bypass device is installed to remove volatile components such as chlorine contained in industrial waste.
  • the chlorine bypass dust discharged from this chlorine bypass device contains useful heavy metals such as thallium. Therefore, in order to reuse it as a cement raw material again, these chlorine compounds are removed and useful as thallium and the like. Heavy metals need to be recovered.
  • Patent Document 3 A method in which a metal dissolved in the waste water is precipitated as an oxide by applying a direct current to the waste water, and the metal oxide is separated from the waste water. According to this metal removal method, the metal contained in the wastewater can be efficiently removed, and the metal concentration in the wastewater can be significantly reduced. Therefore, there is an effect that the quality of the waste water can be improved to a state that sufficiently meets the waste water standard.
  • the present invention was made in order to solve the above-mentioned problem, and without using the thallium-containing potassium nitrate as a waste, recovering and effectively using thallium, which is a rare metal contained in the thallium-containing potassium nitrate, It is an object of the present invention to provide a thallium and potassium nitrate recovery method and recovery apparatus that can recover and effectively use potassium nitrate contained in this thallium-containing potassium nitrate.
  • the present invention provides the following thallium and potassium nitrate recovery method and recovery apparatus. That is, the method for recovering thallium and potassium nitrate according to the present invention is a method for recovering thallium and potassium nitrate from thallium-containing potassium nitrate, wherein the thallium-containing potassium nitrate is dissolved in water to form an aqueous solution, and a direct current is passed through the aqueous solution.
  • the thallium dissolved in the aqueous solution is precipitated as metal thallium or thallium oxide, and the thallium recovery step for recovering the metal thallium or thallium oxide and the aqueous solution from which the thallium has been removed are concentrated to dissolve in the aqueous solution.
  • thallium and potassium nitrate recovery method by applying a direct current to an aqueous solution containing thallium-containing potassium nitrate, thallium dissolved in the aqueous solution is precipitated as metal thallium or thallium oxide, and this metal thallium or thallium oxide is recovered. Thereafter, by concentrating the aqueous solution from which the thallium has been removed, potassium nitrate dissolved in the aqueous solution is precipitated as crystals, and the potassium nitrate crystals are recovered. Thereby, thallium and potassium nitrate contained in thallium-containing potassium nitrate can be efficiently recovered, and the recovered thallium and potassium nitrate can be effectively used.
  • thallium dissolved in the aqueous solution as metallic thallium by maintaining the hydrogen ion concentration of the aqueous solution in which the thallium-containing potassium nitrate is dissolved to be less than 7. It is preferable to deposit thallium dissolved in the aqueous solution as thallium oxide by adding potassium halide to the aqueous solution in which the thallium-containing potassium nitrate is dissolved.
  • the concentration is preferably performed using one or more of heating means, reverse osmosis membrane, and electrodialysis.
  • the thallium and potassium nitrate recovery device of the present invention is a device for recovering thallium and potassium nitrate from thallium-containing potassium nitrate, wherein the thallium-containing potassium nitrate is dissolved in water to form an aqueous solution, and a direct current is passed through the aqueous solution.
  • the electrolysis tank for depositing thallium dissolved in the aqueous solution as metal thallium or thallium oxide, the first separation and recovery means for separating and recovering the deposited metal thallium or thallium oxide, and the thallium were removed. It comprises a precipitation means for concentrating the aqueous solution and precipitating potassium nitrate dissolved in the aqueous solution as crystals, and a second separation and recovery means for separating and recovering the potassium nitrate crystals.
  • the thallium-containing potassium nitrate aqueous solution obtained in the dissolution tank is put into an electrolysis tank, and a direct current is passed through the aqueous solution in the electrolysis tank, so that thallium dissolved in the aqueous solution is converted into metal thallium or It is deposited as thallium oxide, and the deposited metal thallium or thallium oxide is separated and recovered by the first separation and recovery means.
  • the aqueous solution from which thallium has been removed is concentrated by a precipitation means, whereby potassium nitrate dissolved in the aqueous solution is precipitated as crystals, and the precipitated potassium nitrate crystals are separated and recovered by a second separation and recovery means.
  • the precipitation means preferably includes any one or more of a heating means, a reverse osmosis membrane, and electrodialysis.
  • thallium-containing potassium nitrate is dissolved in water to form an aqueous solution, and a direct current is applied to the aqueous solution to precipitate thallium dissolved in the aqueous solution as metal thallium or thallium oxide.
  • the thallium and potassium nitrate recovery apparatus of the present invention by dissolving a thallium-containing potassium nitrate in water to form an aqueous solution, and by applying a direct current to the aqueous solution, the thallium dissolved in the aqueous solution is converted into metal thallium or Electrolysis tank for depositing as thallium oxide, first separation and recovery means for separating and recovering this deposited metal thallium or thallium oxide, and concentrating the aqueous solution from which this thallium has been removed, and using potassium nitrate dissolved in this aqueous solution as crystals Since the precipitation means for precipitating and the second separation and recovery means for separating and recovering the potassium nitrate crystals are provided, thallium and potassium nitrate contained in the thallium-containing potassium nitrate can be efficiently recovered with a simple device. Therefore, thallium and potassium nitrate recovered from thallium-containing potassium nitrate can be
  • XRD powder X-ray-diffraction
  • FIG. 1 is a schematic diagram showing a thallium and potassium nitrate recovery device according to an embodiment of the present invention, which is an example of a device for recovering thallium (Tl) and potassium nitrate (KNO 3 ) from thallium-containing potassium nitrate.
  • This thallium and potassium nitrate recovery device is a dissolution tank 1 in which thallium-containing potassium nitrate is dissolved in water to form an aqueous solution, and high-temperature water vapor of 100 ° C. or higher is supplied to the water in order to heat the water in the dissolution tank 1
  • the high-temperature steam supply pipe 2 to be stored, the electrolytic solution 3 for storing the aqueous solution, and applying a direct current to the aqueous solution to precipitate thallium dissolved in the aqueous solution as metal thallium or thallium oxide, and the electrolysis
  • a direct current stabilizing power source 4 for supplying direct current to the aqueous solution in the tank 3, a solid-liquid separator (first separation and recovery means) 5 for separating and recovering metal thallium or thallium oxide deposited from the aqueous solution, and the thallium removed.
  • the solid-liquid separator 5 may be anything as long as it can separate and recover metal thallium or thallium oxide. Examples thereof include a microfiltration device equipped with a microfiltration membrane (MF), a centrifugal separator, and the like.
  • the crystal can 6 may be any means as long as it can precipitate the potassium nitrate dissolved in the aqueous solution by concentrating the aqueous solution from which thallium has been removed, and is therefore a means for concentrating the aqueous solution by heating.
  • the high-temperature steam supply pipe 7 can be replaced with a reverse osmosis membrane or electrodialysis for concentrating the aqueous solution.
  • the solid-liquid separator 8 may be any one that can separate and recover potassium nitrate, and examples thereof include a microfiltration device and a centrifugal separator.
  • thallium and potassium nitrate recovery method of the present invention (hereinafter simply referred to as “recovery method”) will be described with reference to FIG.
  • recovery method of the present embodiment thallium-containing potassium nitrate is dissolved in water to form an aqueous solution, and a direct current is passed through the aqueous solution to precipitate thallium dissolved in the aqueous solution as metal thallium or thallium oxide.
  • Thallium-containing potassium nitrate used in this recovery method is a nitrate containing 0.2 to 3 mass% of thallium in potassium nitrate, and the purity of potassium nitrate is generally 97 to 99.8 mass%.
  • This potassium nitrate contains Na, Pb, Ca, Fe and the like as impurities.
  • the amount of water input is limited as described above is that it is in a range sufficient to effectively precipitate thallium dissolved in the aqueous solution as metal thallium or thallium oxide when a direct current is applied to the aqueous solution. Because. Note that if the amount of water input is less than 2 times the mass of thallium-containing potassium nitrate, depending on the temperature, the entire amount of potassium nitrate may not dissolve, and the viscosity of the resulting aqueous solution increases, leading to the subsequent steps. This is not preferable because it is difficult to pump.
  • Electrolysis of aqueous potassium nitrate containing thallium A potassium nitrate aqueous solution containing thallium is pumped from the dissolution tank 1 to the electrolysis tank 3, and the electrolysis tank 3 is electrolyzed by applying a direct current to the aqueous solution from the DC stabilizing power source 4 and dissolved in this aqueous solution.
  • the thallium is deposited as metal thallium or thallium oxide.
  • an acid such as hydrochloric acid, nitric acid, sulfuric acid or the like is added to the aqueous solution, and the pH (hydrogen ion concentration) of the aqueous solution is less than 7, preferably 4 or more and less than 7.
  • the thallium dissolved in this aqueous solution can be deposited as metallic thallium.
  • potassium halide such as potassium chloride
  • thallium dissolved in the aqueous solution can be precipitated as thallium oxide.
  • thallium dissolved in the aqueous solution can be precipitated in a state of either metal thallium or thallium oxide.
  • Solid-liquid separation of thallium The aqueous solution in which the metal thallium or thallium oxide is precipitated is pumped to a solid-liquid separator (first separation and recovery means) 5, and the precipitated metal thallium or thallium oxide is separated from the aqueous solution and recovered.
  • the purity of the metal thallium recovered here is about 97% by mass, and the purity of thallium oxide is about 97% by mass.
  • Solid-liquid separation of potassium nitrate The aqueous solution in which the potassium nitrate is precipitated is pumped to a solid-liquid separator (second separation / recovery means) 8, and the precipitated potassium nitrate is separated from the aqueous solution and recovered.
  • the purity of the potassium nitrate recovered here is about 97% by mass and contains about 0.05% by mass of metal thallium or thallium oxide.
  • the waste water discharged from the solid-liquid separator 8 is sent to the crystal can 6 and reused, but may be discharged to the outside after performing a predetermined waste water treatment.
  • thallium-containing potassium nitrate is dissolved in water to form an aqueous solution, and a direct current is passed through the aqueous solution, whereby thallium dissolved in the aqueous solution is obtained.
  • the aqueous solution from which the thallium has been removed is concentrated to precipitate and recover potassium nitrate dissolved in the aqueous solution as crystals, so that thallium contained in thallium-containing potassium nitrate and Potassium nitrate can be recovered efficiently by a simple operation individually.
  • thallium and potassium nitrate can be individually recovered from thallium-containing potassium nitrate, and these can be effectively used again.
  • the thallium recovery step and the potassium nitrate recovery step can be performed continuously, the cost and time for recovering thallium and potassium nitrate can be kept low.
  • a dissolution tank 1 for producing a thallium-containing potassium nitrate aqueous solution, a high-temperature steam supply pipe 2, and an electrolysis tank 3 for depositing metal thallium or thallium oxide from the aqueous solution; , DC stabilized power supply 4, solid-liquid separator 5 for separating and recovering metal thallium or thallium oxide, crystal can 6 for precipitating potassium nitrate in aqueous solution as crystals, high-temperature steam supply pipe 7, and potassium nitrate crystals are separated Since it comprises the solid-liquid separator 8 to be recovered, thallium and potassium nitrate contained in the thallium-containing potassium nitrate can be efficiently recovered with a simple device. Therefore, thallium and potassium nitrate recovered from thallium-containing potassium nitrate can be effectively used again. Moreover, since the structure of the apparatus is simple, the cost for recovering thallium and
  • Example 1 1 kg of thallium-containing potassium nitrate containing 7210 mg / kg of thallium was added to 5 kg of water so that the mass ratio of thallium-containing potassium nitrate to water was 1: 5, and stirred to obtain a thallium-containing potassium nitrate aqueous solution.
  • FIG. 2 shows a powder X-ray diffraction (XRD) pattern of the precipitate of Example 1.
  • the aqueous solution from which the metal thallium had been removed was put into the crystal can 6 and heated with high-temperature steam at 100 ° C. for 60 minutes to evaporate water, and concentrated until the volume of this aqueous solution became 1/10. Thereby, brown white fine crystals were precipitated in the aqueous solution.
  • the aqueous solution in which the microcrystals were precipitated was subjected to solid-liquid separation using the solid-liquid separator 8, and the precipitated microcrystals were separated from the aqueous solution and collected.
  • FIG. 3 shows a powder X-ray diffraction (XRD) pattern of the microcrystals of Example 1.
  • XRD powder X-ray diffraction
  • Example 2 1 kg of thallium-containing potassium nitrate containing 7210 mg / kg of thallium was added to 5 kg of water so that the mass ratio of thallium-containing potassium nitrate to water was 1: 5, and stirred to obtain a thallium-containing potassium nitrate aqueous solution.
  • hydrochloric acid was added to this aqueous solution of potassium nitrate containing thallium to maintain the pH of this aqueous solution at 5, and when this aqueous solution was electrolyzed by applying a direct current of 500 mA through a platinum electrode, a silver-colored precipitate was obtained. A product was formed. Next, the precipitate was recovered, and the precipitate was identified by powder X-ray diffraction (XRD), and was confirmed to be metal thallium.
  • XRD powder X-ray diffraction
  • the aqueous solution from which the metal thallium had been removed was put into the crystal can 6 and heated with high-temperature steam at 100 ° C. for 60 minutes to evaporate water, and concentrated until the volume of this aqueous solution became 1/10. Thereby, brown white fine crystals were precipitated in the aqueous solution.
  • the aqueous solution in which the microcrystals were precipitated was subjected to solid-liquid separation using the solid-liquid separator 8, and the precipitated microcrystals were separated from the aqueous solution and collected.
  • the microcrystal was identified by powder X-ray diffraction (XRD), it was confirmed that the crystallite had good crystallinity.
  • XRD powder X-ray diffraction
  • the thallium content in the microcrystals was analyzed by IPC-AES, it was 965 mg / kg, and it was found that the thallium content was about 1/8 of the original thallium-containing potassium nitrate.
  • Example 3 1 kg of thallium-containing potassium nitrate containing 7210 mg / kg of thallium was added to 5 kg of water so that the mass ratio of thallium-containing potassium nitrate to water was 1: 5, and stirred to obtain a thallium-containing potassium nitrate aqueous solution.
  • FIG. 4 shows a powder X-ray diffraction (XRD) pattern of the precipitate of Example 3.
  • the aqueous solution from which thallium oxide had been removed was put into the crystal can 6 and heated with high-temperature steam at 100 ° C. for 60 minutes to evaporate water, and concentrated until the volume of this aqueous solution became 1/10. Thereby, brown white fine crystals were precipitated in the aqueous solution.
  • the aqueous solution in which the microcrystals were precipitated was subjected to solid-liquid separation using the solid-liquid separator 8, and the precipitated microcrystals were separated from the aqueous solution and collected.
  • the microcrystal was identified by powder X-ray diffraction (XRD), it was confirmed that the crystallite had good crystallinity.
  • XRD powder X-ray diffraction
  • the thallium content in the microcrystals was analyzed by IPC-AES, it was 755 mg / kg, and it was found that the thallium content was about 1/10 compared to the original thallium-containing potassium nitrate.
  • FIG. 5 is a diagram showing a change in the concentration of thallium according to the energization amount (C / L).
  • A indicates electrolysis only by energization, and since electrolysis only by energization was performed without any particular action, the pH changed to acid over time, and thallium in the aqueous solution was inversely proportional to the energization amount. The concentration is decreasing.
  • B shows electrolysis when potassium hydroxide is added during energization to maintain the pH at a weak alkali. Like A, the thallium concentration in the aqueous solution decreases in inverse proportion to the energization amount.
  • C shows electrolysis when potassium chloride is added at the time of energization, no precipitation on the electrode is observed, and precipitation of brown tantalum oxide is observed.
  • the aqueous solution is inversely proportional to the energization amount.
  • the thallium concentration in the inside is decreasing.
  • the thallium concentration in the aqueous solution decreases with increasing energization amount (C / L) in both cases of energization only, potassium hydroxide addition, and potassium chloride addition.

Abstract

 本発明は、タリウム含有硝酸カリウムを水に溶解して水溶液とし、この水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させ、この金属タリウムまたは酸化タリウムを回収するタリウム回収工程と、このタリウムが除去された水溶液を濃縮することにより、この水溶液に溶存する硝酸カリウムを結晶として析出させ、この硝酸カリウム結晶を回収する硝酸カリウム回収工程と、を有するタリウム及び硝酸カリウムの回収方法及びその回収装置を提供する。本発明によれば、タリウム含有硝酸カリウムに含まれるタリウムを回収し有効利用するとともに、硝酸カリウムについても回収して有効利用することができる。

Description

タリウム及び硝酸カリウムの回収方法及び回収装置
 本発明は、タリウム及び硝酸カリウムの回収方法及び回収装置に関し、更に詳しくは、タリウム含有硝酸カリウムからレアメタルであるタリウム(Tl)を回収し有効利用するとともに、硝酸カリウム(KNO)を回収して有効利用する際に用いて好適なタリウム及び硝酸カリウムの回収方法及び回収装置に関する。
 本願は、2008年8月29日に、日本に出願された特願2008-221212号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境の保護の高まりにより、産業廃棄物を有効利用するセメント製造設備を初め、産業廃棄物の最終処分施設、石油化学プラント、各種工場等においても、環境対策が非常に重要視されている。例えば、セメント製造設備では、産業廃棄物に含まれる塩素等の揮発性成分を取り除くために塩素バイパス装置が設置されている。
 ところで、この塩素バイパス装置から排出される塩素バイパスダストは、タリウム等の有用な重金属類を含んでいるので、再びセメント原料として再利用するには、これらの塩素化合物を取り除くとともに、タリウム等の有用な重金属類を回収する必要がある。
 従来のタリウムの回収方法としては、次の様な各種の方法が提案されている。
(1)タリウム含有原料を、硫酸と還元剤とを用いて還元浸出し、得られた浸出液を中和し濾別して、タリウム浸出液と中和澱物とを得、この中和澱物を塩酸に溶解した後、還元剤を添加し、生成した沈澱を固液分離することにより、タリウムを回収する方法(特許文献1)。
(2)タリウム含有物質を、酸化浸出し、固液分離してタリウム含有液を得、このタリウム含有液に還元剤及び塩素源を加えて塩化タリウム等を沈澱させ、この塩化タリウムを濃硫酸で加熱溶解して硫酸タリウム溶液を得、この硫酸タリウム溶液を還元することにより、金属タリウムを回収する方法(特許文献2)。
 一方、工場や流通施設等から排出される産業廃棄物や一般家庭から排出される一般廃棄物においても、これらの廃棄物を水洗した際に生じる排水中、あるいは都市ごみ焼却灰、飛灰、プラスチック焼却灰等を水洗した際に生じる排水中には、タリウム、鉛、カドミウム、クロム、水銀等の金属が含まれているので、これらの重金属を排水中から極力除去し、水質を浄化するとともに、タリウム等の有用な重金属類を回収する必要がある。
 そこで、次の様な排水からの金属の除去方法が提案されている。
(3)排水に直流電流を通電することにより、この排水に溶存する金属を酸化物として析出させ、この金属酸化物を上記の排水から分離する方法(特許文献3)。
 この金属の除去方法によれば、排水に含まれる金属を効率的に取り除くことができ、排水中の金属濃度を著しく低下させることができる。したがって、排水の水質を排水基準に十分適合した状態にまで向上させることができるという効果がある。
特許第2682733号公報 特許第2970095号公報 特開2007-117965号公報
 ところで、タリウム含有硝酸カリウムのように、硝酸カリウムにタリウムが含まれているような場合、従来のタリウムの回収方法や金属の除去方法では、タリウムと硝酸カリウムとを全く別個の工程により回収せざるを得ず、また、タリウムと硝酸カリウムとを個々に回収する場合、回収するためのコストが高くなり過ぎるという問題があり、タリウム含有硝酸カリウムを資源として有効利用することが難しかった。
 このように、タリウム含有硝酸カリウムについては、従来から資源として有効利用されておらず、また、有効利用するための方法についても殆どなされておらず、安全性を考慮した上で廃棄物として処理されているのが現状である。
 本発明は、上記の課題を解決するためになされたものであって、タリウム含有硝酸カリウムを廃棄物として処分することなく、このタリウム含有硝酸カリウムに含まれるレアメタルであるタリウムを回収し有効利用するとともに、このタリウム含有硝酸カリウムに含まれる硝酸カリウムについても回収して有効利用することができるタリウム及び硝酸カリウムの回収方法及び回収装置を提供することを目的とする。
 本発明は、上記課題を解決するために次の様なタリウム及び硝酸カリウムの回収方法及び回収装置を提供する。
 すなわち、本発明のタリウム及び硝酸カリウムの回収方法は、タリウム含有硝酸カリウムからタリウム及び硝酸カリウムを回収する方法であって、前記タリウム含有硝酸カリウムを水に溶解して水溶液とし、この水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させ、この金属タリウムまたは酸化タリウムを回収するタリウム回収工程と、このタリウムが除去された水溶液を濃縮することにより、この水溶液に溶存する硝酸カリウムを結晶として析出させ、この硝酸カリウム結晶を回収する硝酸カリウム回収工程と、を有することを特徴とする。
 このタリウム及び硝酸カリウムの回収方法では、タリウム含有硝酸カリウムを含む水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させ、この金属タリウムまたは酸化タリウムを回収する。その後、このタリウムが除去された水溶液を濃縮することにより、この水溶液に溶存する硝酸カリウムを結晶として析出させ、この硝酸カリウム結晶を回収する。
 これにより、タリウム含有硝酸カリウムに含まれるタリウム及び硝酸カリウムを効率的に回収することが可能になり、この回収されたタリウム及び硝酸カリウムを有効利用することが可能になる。
 前記タリウム含有硝酸カリウムを溶解させた水溶液の水素イオン濃度を7未満に保持することにより、この水溶液に溶存するタリウムを金属タリウムとして析出させることが好ましい。
 前記タリウム含有硝酸カリウムを溶解させた水溶液にカリウムハロゲン化物を加えることにより、この水溶液に溶存するタリウムを酸化タリウムとして析出させることが好ましい。
 前記濃縮は、加熱手段、逆浸透膜、電気透析のいずれか1つ以上の手段を用いて行うことが好ましい。
 本発明のタリウム及び硝酸カリウムの回収装置は、タリウム含有硝酸カリウムからタリウム及び硝酸カリウムを回収する装置であって、前記タリウム含有硝酸カリウムを水に溶解して水溶液とする溶解槽と、前記水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させる電気分解槽と、この析出した金属タリウムまたは酸化タリウムを分離回収する第1の分離回収手段と、このタリウムが除去された水溶液を濃縮し、この水溶液に溶存する硝酸カリウムを結晶として析出させる析出手段と、この硝酸カリウム結晶を分離回収する第2の分離回収手段と、を備えてなることを特徴とする。
 この回収装置では、溶解槽にて得られたタリウム含有硝酸カリウム水溶液を電気分解槽に投入し、この電気分解槽にて水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させ、析出した金属タリウムまたは酸化タリウムを第1の分離回収手段にて分離回収する。
 また、このタリウムが除去された水溶液を析出手段にて濃縮することにより、この水溶液に溶存する硝酸カリウムを結晶として析出させ、この析出した硝酸カリウム結晶を第2の分離回収手段にて分離回収する。
 これにより、簡単な装置で、タリウム含有硝酸カリウムに含まれるタリウム及び硝酸カリウムを効率的に回収することが可能になり、この回収されたタリウム及び硝酸カリウムを有効利用することが可能になる。
 前記析出手段は、加熱手段、逆浸透膜、電気透析のいずれか1つ以上を備えていることが好ましい。
 本発明のタリウム及び硝酸カリウムの回収方法によれば、タリウム含有硝酸カリウムを水に溶解して水溶液とし、この水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させ、この金属タリウムまたは酸化タリウムを回収するタリウム回収工程と、このタリウムが除去された水溶液を濃縮することにより、この水溶液に溶存する硝酸カリウムを結晶として析出させ、この硝酸カリウム結晶を回収する硝酸カリウム回収工程と、を有するので、タリウム含有硝酸カリウムに含まれるタリウム及び硝酸カリウムを簡単な操作で効率的に回収することができる。したがって、タリウム含有硝酸カリウムからタリウム及び硝酸カリウムを個々に回収して、これらを再度有効利用することができる。
 また、工程が簡素であるから、タリウム及び硝酸カリウムを回収するためのコスト及び時間も低く抑えることができる。
 本発明のタリウム及び硝酸カリウムの回収装置によれば、タリウム含有硝酸カリウムを水に溶解して水溶液とする溶解槽と、前記水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させる電気分解槽と、この析出した金属タリウムまたは酸化タリウムを分離回収する第1の分離回収手段と、このタリウムが除去された水溶液を濃縮し、この水溶液に溶存する硝酸カリウムを結晶として析出させる析出手段と、この硝酸カリウム結晶を分離回収する第2の分離回収手段と、を備えたので、タリウム含有硝酸カリウムに含まれるタリウム及び硝酸カリウムを簡単な装置で効率的に回収することができる。したがって、タリウム含有硝酸カリウムから回収したタリウム及び硝酸カリウムを再度有効利用することができる。
 また、装置が簡素であるから、タリウム及び硝酸カリウムを回収するためのコストも低く抑えることができる。
本発明の一実施形態のタリウム及び硝酸カリウムの回収装置を示す模式図である。 本発明の実施例1の析出物の粉末X線回折(XRD)図形を示す図である。 本発明の実施例1の微結晶の粉末X線回折(XRD)図形を示す図である。 本発明の実施例3の析出物の粉末X線回折(XRD)図形を示す図である。 通電量によるタリウムの濃度変化を示す図である。
 本発明のタリウム及び硝酸カリウムの回収方法及び回収装置を実施するための最良の形態について、図面に基づき説明する。
 なお、本形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
 図1は、本発明の一実施形態のタリウム及び硝酸カリウムの回収装置を示す模式図であり、タリウム含有硝酸カリウムからタリウム(Tl)及び硝酸カリウム(KNO)を回収する装置の例である。
 このタリウム及び硝酸カリウムの回収装置は、タリウム含有硝酸カリウムを水に溶解して水溶液とする溶解槽1と、この溶解槽1内の水を加熱するために当該水に100℃以上の高温の水蒸気を供給する高温水蒸気供給用配管2と、この水溶液を貯留し、この水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させる電気分解槽3と、この電気分解槽3内の水溶液に直流電流を通電する直流安定化電源4と、水溶液から析出した金属タリウムまたは酸化タリウムを分離回収する固液分離機(第1の分離回収手段)5と、このタリウムが除去された水溶液を濃縮し、この水溶液に溶存する硝酸カリウムを結晶として析出させる結晶缶(析出手段)6と、この結晶缶6内の水溶液を加熱するために該水溶液に100℃以上の高温の水蒸気を供給する高温水蒸気供給用配管(加熱手段)7と、この水溶液から析出した硝酸カリウム結晶を分離回収する固液分離機(第2の分離回収手段)8とにより構成されている。
 固液分離機5としては、金属タリウムまたは酸化タリウムを分離回収することのできるものであればよく、例えば、精密濾過膜(MF)を備えた精密濾過装置、遠心分離装置等が挙げられる。
 結晶缶6としては、タリウムが除去された水溶液を濃縮することで、この水溶液に溶存する硝酸カリウムを結晶として析出させることができるものであればよく、したがって、水溶液を加熱濃縮するための手段である高温水蒸気供給用配管7は、水溶液を濃縮するための逆浸透膜あるいは電気透析に替えることもできる。また、これら高温水蒸気供給用配管7、逆浸透膜及び電気透析は、これらのうち2つまたは3つを同時に備えていてもよい。
 固液分離機8としては、硝酸カリウムを分離回収することのできるものであればよく、例えば、精密濾過装置、遠心分離装置等が挙げられる。
 次に、本発明のタリウム及び硝酸カリウムの回収方法(以下、単に「回収方法」と称する)について、図1に基づき説明する。
 本実施形態の回収方法は、タリウム含有硝酸カリウムを水に溶解して水溶液とし、この水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させ、この金属タリウムまたは酸化タリウムを回収するタリウム回収工程と、このタリウムが除去された水溶液を濃縮することにより、この水溶液に溶存する硝酸カリウムを結晶として析出させ、この硝酸カリウム結晶を回収する硝酸カリウム回収工程と、を有する。
 この回収方法で用いられる「タリウム含有硝酸カリウム」は、硝酸カリウム中にタリウムが0.2~3質量%含まれる硝酸塩であり、硝酸カリウムの純度は概ね97~99.8質量%である。この硝酸カリウムには、不純物としてNa、Pb、Ca、Fe等が含まれている。
 次に、この回収方法の各工程について詳細に説明する。
[タリウム回収工程]
「タリウム含有硝酸カリウム水溶液の調製」
 溶解槽1に所定量の水、例えば、溶解するタリウム含有硝酸カリウムに対して2質量倍~10質量倍の水を投入し、この水に所定量のタリウム含有硝酸カリウムを投入し撹拌して、このタリウム含有硝酸カリウムを水に溶解させ、タリウム含有硝酸カリウム水溶液とする。
 この水の温度は、タリウム含有硝酸カリウムが溶解する温度であればよく、10℃~50℃の範囲が好ましい。
 ここで水の投入量を上記の様に限定した理由は、この水溶液に直流電流を通電した際に、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして効果的に析出させるのに十分な範囲であるからである。
 なお、水の投入量がタリウム含有硝酸カリウムの2質量倍未満であると、温度によっては硝酸カリウムが全量溶解しない場合があり得るからであり、また、得られる水溶液の粘性が高くなり、後の工程へのポンプ輸送が難しくなるので好ましくない。一方、水の投入量がタリウム含有硝酸カリウムの10質量倍を超えると、水溶液中のタリウム及び硝酸カリウムの量が少なくなり、タリウム及び硝酸カリウムの回収効率が低下することになるので、好ましくない。
「タリウム含有硝酸カリウム水溶液の電気分解」
 タリウム含有硝酸カリウム水溶液を溶解槽1から電気分解槽3へポンプ輸送し、この電気分解槽3にて水溶液に直流安定化電源4により直流電流を通電して電気分解を行い、この水溶液中に溶解しているタリウムを金属タリウムまたは酸化タリウムとして析出させる。
 ここで、電気分解の際に、上記の水溶液に塩酸、硝酸、硫酸等の酸を添加して、この水溶液のpH(水素イオン濃度)を7未満、好ましくは4以上かつ7未満に保持すれば、この水溶液に溶存するタリウムを金属タリウムとして析出させることができる。
 一方、上記の水溶液に、塩化カリウム等のカリウムハロゲン化物を添加すれば、この水溶液に溶存するタリウムを酸化タリウムとして析出させることができる。
 このように、電気分解の際に、酸、カリウムハロゲン化物のいずれか1種を添加することにより、この水溶液に溶存するタリウムを金属タリウム、酸化タリウムのいずれかの状態で析出させることができる。
「タリウムの固液分離」
 この金属タリウムまたは酸化タリウムが析出した水溶液を固液分離機(第1の分離回収手段)5にポンプ輸送し、析出した金属タリウムまたは酸化タリウムを水溶液から分離し回収する。
 ここで回収された金属タリウムの純度は97質量%程度であり、また、酸化タリウムの純度は97質量%程度である。
[硝酸カリウム回収工程]
「水溶液の加熱濃縮・晶析」
 タリウムが除去された水溶液を結晶缶(析出手段)6に投入し、この水溶液を高温水蒸気供給用配管7から供給される100℃以上の高温水蒸気により加熱して水分を蒸発させることにより、濃縮・析出させる。
 この濃縮の程度は、上記の水溶液中に過剰に含まれる硝酸カリウムが析出するまで濃縮する必要があり、上記の水溶液の温度にもよるが、概ね1/2~1/10まで濃縮することが好ましい。
 この濃縮は、高温水蒸気による加熱の他、逆浸透膜や電気透析を用いても容易に行うことができる。また、これらのうち2つまたは3つを同時に行ってもよい。
「硝酸カリウムの固液分離」
 この硝酸カリウムが析出した水溶液を固液分離機(第2の分離回収手段)8にポンプ輸送し、析出した硝酸カリウムを水溶液から分離し回収する。
 ここで回収された硝酸カリウムの純度は97質量%程度であり、金属タリウムまたは酸化タリウムを0.05質量%程度含んでいる。
 この固液分離機8から排出される排水は、結晶缶6に送られて再利用されるが、所定の排水処理を施した後、外部へ排出されることもある。
 以上説明したように、本実施形態のタリウム及び硝酸カリウムの回収方法によれば、タリウム含有硝酸カリウムを水に溶解して水溶液とし、この水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させて回収した後、このタリウムが除去された水溶液を濃縮することにより、この水溶液に溶存する硝酸カリウムを結晶として析出させて回収するので、タリウム含有硝酸カリウムに含まれるタリウム及び硝酸カリウムを個別に簡単な操作で効率的に回収することができる。したがって、タリウム含有硝酸カリウムからタリウム及び硝酸カリウムを個々に回収して、これらを再度有効利用することができる。
 また、タリウム回収工程と、硝酸カリウム回収工程とを続けて行うことができるので、タリウム及び硝酸カリウムを回収するためのコスト及び時間も低く抑えることができる。
 本実施形態のタリウム及び硝酸カリウムの回収装置によれば、タリウム含有硝酸カリウム水溶液を作製する溶解槽1と、高温水蒸気供給用配管2と、この水溶液から金属タリウムまたは酸化タリウムを析出させる電気分解槽3と、直流安定化電源4と、金属タリウムまたは酸化タリウムを分離回収する固液分離機5と、水溶液中の硝酸カリウムを結晶として析出させる結晶缶6と、高温水蒸気供給用配管7と、硝酸カリウム結晶を分離回収する固液分離機8とにより構成したので、タリウム含有硝酸カリウムに含まれるタリウム及び硝酸カリウムを簡単な装置で効率的に回収することができる。したがって、タリウム含有硝酸カリウムから回収したタリウム及び硝酸カリウムを再度有効利用することができる。
 また、装置の構成が簡単であるから、タリウム及び硝酸カリウムを回収するためのコストも低く抑えることができる。
 以下、本発明のタリウム及び硝酸カリウムの回収方法について実施例を挙げて具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例によって何ら制限されるものではない。
「実施例1」
 タリウム含有硝酸カリウムと水との質量比が1:5になるように、タリウムを7210mg/kg含むタリウム含有硝酸カリウム1kgを水5kgに投入し、撹拌してタリウム含有硝酸カリウム水溶液を得た。
 次いで、このタリウム含有硝酸カリウム水溶液に白金電極を介して500mAの直流電流を通電して電気分解を行ったところ、銀色の析出物が生成した。
 次いで、この析出物を回収し、この析出物の同定を粉末X線回折(XRD)により行ったところ、金属タリウムであることが確認された。図2に、実施例1の析出物の粉末X線回折(XRD)図形を示す。
 次いで、金属タリウムが除去された水溶液を結晶缶6に投入し、100℃の高温水蒸気による加熱を60分間行って水分を蒸発させ、この水溶液の容積が1/10になるまで濃縮した。これにより、水溶液中に茶白色の微結晶が析出した。
 次いで、この微結晶が析出した水溶液を固液分離機8を用いて固液分離し、析出した微結晶を水溶液から分離し回収した。
 この微結晶の同定を粉末X線回折(XRD)により行ったところ、結晶性の良い硝酸カリウムであることが確認された。図3に、実施例1の微結晶の粉末X線回折(XRD)図形を示す。
 この微結晶中のタリウムの含有量をIPC-AESにより分析したところ、715mg/kgであり、当初のタリウム含有硝酸カリウムと比べてタリウムの含有量が約1/10になっていることが分かった。
「実施例2」
 タリウム含有硝酸カリウムと水との質量比が1:5になるように、タリウムを7210mg/kg含むタリウム含有硝酸カリウム1kgを水5kgに投入し、撹拌してタリウム含有硝酸カリウム水溶液を得た。
 次いで、このタリウム含有硝酸カリウム水溶液に塩酸を添加して、この水溶液のpHを5に保持し、この水溶液に白金電極を介して500mAの直流電流を通電して電気分解を行ったところ、銀色の析出物が生成した。
 次いで、この析出物を回収し、この析出物の同定を粉末X線回折(XRD)により行ったところ、金属タリウムであることが確認された。
 次いで、金属タリウムが除去された水溶液を結晶缶6に投入し、100℃の高温水蒸気による加熱を60分間行って水分を蒸発させ、この水溶液の容積が1/10になるまで濃縮した。これにより、水溶液中に茶白色の微結晶が析出した。
 次いで、この微結晶が析出した水溶液を固液分離機8を用いて固液分離し、析出した微結晶を水溶液から分離し回収した。
 この微結晶の同定を粉末X線回折(XRD)により行ったところ、結晶性の良い硝酸カリウムであることが確認された。
 この微結晶中のタリウムの含有量をIPC-AESにより分析したところ、965mg/kgであり、当初のタリウム含有硝酸カリウムと比べてタリウムの含有量が約1/8になっていることが分かった。
「実施例3」
 タリウム含有硝酸カリウムと水との質量比が1:5になるように、タリウムを7210mg/kg含むタリウム含有硝酸カリウム1kgを水5kgに投入し、撹拌してタリウム含有硝酸カリウム水溶液を得た。
 次いで、このタリウム含有硝酸カリウム水溶液に塩化カリウム50gを添加し、この水溶液に白金電極を介して500mAの直流電流を通電して電気分解を行ったところ、褐色の析出物が生成した。
 次いで、この析出物を含む水溶液を固液分離機5を用いて固液分離し、析出物を水溶液から分離し回収した。
 この析出物の同定を粉末X線回折(XRD)により行ったところ、酸化タリウムであることが確認された。図4に、実施例3の析出物の粉末X線回折(XRD)図形を示す。
 次いで、酸化タリウムが除去された水溶液を結晶缶6に投入し、100℃の高温水蒸気による加熱を60分間行って水分を蒸発させ、この水溶液の容積が1/10になるまで濃縮した。これにより、水溶液中に茶白色の微結晶が析出した。
 次いで、この微結晶が析出した水溶液を固液分離機8を用いて固液分離し、析出した微結晶を水溶液から分離し回収した。
 この微結晶の同定を粉末X線回折(XRD)により行ったところ、結晶性の良い硝酸カリウムであることが確認された。
 この微結晶中のタリウムの含有量をIPC-AESにより分析したところ、755mg/kgであり、当初のタリウム含有硝酸カリウムと比べてタリウムの含有量が約1/10になっていることが分かった。
 図5は、通電量(C/L)によるタリウムの濃度変化を示す図である。
 図中、Aは通電のみによる電気分解を示すもので、特に何もせず通電のみによる電気分解を行ったために、時間の経過と共にpHが酸性に変化し、通電量に反比例して水溶液中のタリウム濃度が減少している。
 Bは、通電時に水酸化カリウムを添加してpHを弱アルカリに維持した場合の電気分解を示すもので、Aと同様、通電量に反比例して水溶液中のタリウム濃度が減少している。
 Cは、通電時に塩化カリウムを添加した場合の電気分解を示すもので、電極上への析出は認められず、茶色の酸化タンタルの沈澱が認められ、Aと同様、通電量に反比例して水溶液中のタリウム濃度が減少している。
 このように、通電のみ、水酸化カリウム添加、塩化カリウム添加、のいずれの場合においても、通電量(C/L)の増加に伴って、水溶液中のタリウム濃度が減少していることが分かる。
 1 溶解槽
 2 高温水蒸気供給用配管
 3 電気分解槽
 4 直流安定化電源
 5 固液分離機
 6 結晶缶
 7 高温水蒸気供給用配管
 8 固液分離機

Claims (8)

  1.  タリウム含有硝酸カリウムからタリウム及び硝酸カリウムを回収する方法であって、
     前記タリウム含有硝酸カリウムを水に溶解して水溶液とし、この水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させ、この金属タリウムまたは酸化タリウムを回収するタリウム回収工程と、
     このタリウムが除去された水溶液を濃縮することにより、この水溶液に溶存する硝酸カリウムを結晶として析出させ、この硝酸カリウム結晶を回収する硝酸カリウム回収工程と、
     を有することを特徴とするタリウム及び硝酸カリウムの回収方法。
  2.  前記タリウム含有硝酸カリウムを溶解させた水溶液の水素イオン濃度を7未満に保持することにより、この水溶液に溶存するタリウムを金属タリウムとして析出させることを特徴とする請求項1記載のタリウム及び硝酸カリウムの回収方法。
  3.  前記タリウム含有硝酸カリウムを溶解させた水溶液にカリウムハロゲン化物を加えることにより、この水溶液に溶存するタリウムを酸化タリウムとして析出させることを特徴とする請求項1記載のタリウム及び硝酸カリウムの回収方法。
  4.  前記濃縮は、加熱手段、逆浸透膜、電気透析のいずれか1つ以上の手段を用いて行うことを特徴とする請求項1記載のタリウム及び硝酸カリウムの回収方法。
  5.  前記濃縮は、加熱手段、逆浸透膜、電気透析のいずれか1つ以上の手段を用いて行うことを特徴とする請求項2記載のタリウム及び硝酸カリウムの回収方法。
  6.  前記濃縮は、加熱手段、逆浸透膜、電気透析のいずれか1つ以上の手段を用いて行うことを特徴とする請求項3記載のタリウム及び硝酸カリウムの回収方法。
  7.  タリウム含有硝酸カリウムからタリウム及び硝酸カリウムを回収する装置であって、
     前記タリウム含有硝酸カリウムを水に溶解して水溶液とする溶解槽と、
     前記水溶液に直流電流を通電することにより、この水溶液に溶存するタリウムを金属タリウムまたは酸化タリウムとして析出させる電気分解槽と、
     この析出した金属タリウムまたは酸化タリウムを分離回収する第1の分離回収手段と、
     このタリウムが除去された水溶液を濃縮し、この水溶液に溶存する硝酸カリウムを結晶として析出させる析出手段と、
     この硝酸カリウム結晶を分離回収する第2の分離回収手段と、
     を備えてなることを特徴とするタリウム及び硝酸カリウムの回収装置。
  8.  前記析出手段は、加熱手段、逆浸透膜、電気透析のいずれか1つ以上を備えていることを特徴とする請求項7記載のタリウム及び硝酸カリウムの回収装置。
PCT/JP2009/004216 2008-08-29 2009-08-28 タリウム及び硝酸カリウムの回収方法及び回収装置 WO2010023942A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117002509A KR101542287B1 (ko) 2008-08-29 2009-08-28 탈륨 및 질산칼륨의 회수방법 및 회수장치
CN200980129855.1A CN102112662B (zh) 2008-08-29 2009-08-28 铊及硝酸钾的回收方法以及回收装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-221212 2008-08-29
JP2008221212A JP5293005B2 (ja) 2008-08-29 2008-08-29 タリウム及び硝酸カリウムの回収方法及び回収装置

Publications (1)

Publication Number Publication Date
WO2010023942A1 true WO2010023942A1 (ja) 2010-03-04

Family

ID=41721123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004216 WO2010023942A1 (ja) 2008-08-29 2009-08-28 タリウム及び硝酸カリウムの回収方法及び回収装置

Country Status (4)

Country Link
JP (1) JP5293005B2 (ja)
KR (1) KR101542287B1 (ja)
CN (1) CN102112662B (ja)
WO (1) WO2010023942A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537166B1 (ko) * 2013-11-01 2015-07-15 창원대학교 산학협력단 소결처리를 이용한 폐 점화체의 처리방법
CN105217659B (zh) * 2015-10-28 2017-01-11 天脊煤化工集团股份有限公司 一种生产硝酸钾的方法及其系统
JP7098962B2 (ja) 2018-03-05 2022-07-12 住友ゴム工業株式会社 タイヤ
FR3083224B1 (fr) * 2018-06-29 2023-01-06 Centre Nat Rech Scient Procede de decontamination de metaux lourds dans une solution aqueuse

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693887A (en) * 1979-12-27 1981-07-29 Nippon Mining Co Ltd Pecovery of tallium from lead electrolyte

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508554B2 (ja) 1998-07-02 2004-03-22 三菱マテリアル株式会社 高純度ヨウ化タリウムの製造方法および球状高純度ヨウ化タリウム
JP4446426B2 (ja) 2003-01-30 2010-04-07 株式会社タクマ タリウム含有液処理方法と処理設備
FI115537B (fi) * 2003-03-14 2005-05-31 Outokumpu Oy Menetelmä talliumin poistamiseksi sinkkipitoisesta liuoksesta
CN1317205C (zh) * 2005-05-30 2007-05-23 广州大学 含铊废水的处理方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693887A (en) * 1979-12-27 1981-07-29 Nippon Mining Co Ltd Pecovery of tallium from lead electrolyte

Also Published As

Publication number Publication date
CN102112662B (zh) 2013-02-13
JP5293005B2 (ja) 2013-09-18
JP2010053416A (ja) 2010-03-11
KR101542287B1 (ko) 2015-08-06
CN102112662A (zh) 2011-06-29
KR20110044859A (ko) 2011-05-02

Similar Documents

Publication Publication Date Title
JP4907950B2 (ja) 排水からの金属の除去方法及び除去装置
JP5023469B2 (ja) 塩素含有廃棄物の処理方法及び処理装置
JP4583065B2 (ja) 工業的に有用な無機材料の回収方法
CN101945826B (zh) 含有金属成分的水的净化处理方法以及净化处理装置
JP2001026418A (ja) 工業的に有用な無機材料の回収方法及び該回収方法によって回収した工業的に有用な無機材料
CN105906126A (zh) 一种含盐废水资源化回收处理系统及方法
CN105906128A (zh) 一种从高含盐废水中回收氯化钠的方法和系统
TWI383958B (zh) Wastewater treatment methods
CN105906127A (zh) 一种脱硫废水近零排放处理系统及方法
JP5293005B2 (ja) タリウム及び硝酸カリウムの回収方法及び回収装置
JP5267355B2 (ja) 排水からのタリウムの除去回収方法及び除去回収装置
CN111170499A (zh) 一种从电镀镍废液中回收硫酸镍的方法
JP2006231325A (ja) 排水の処理方法
JP2004035937A (ja) 水溶液からの塩化物の回収方法
JP2009023847A (ja) ヨウ化水素酸の製造方法
JP5293007B2 (ja) タリウム及び硝酸カリウムの回収方法及び回収装置
JP2011184764A (ja) 廃触媒の処理方法
JP4121418B2 (ja) セメントキルン燃焼ガス抽気ダストの処理方法
CN101723426A (zh) 一种铝合金失效化铣液利用方法
JP4825858B2 (ja) ホウ素分離システム
CN117897359A (zh) 碳酸钙的生成方法及系统
CN205856230U (zh) 一种从高含盐废水中回收氯化钠的系统
JP5032784B2 (ja) 塩化ナトリウムの製造システム
JP4405281B2 (ja) 無電解ニッケルめっき廃液の再資源化処理方法
JP3749204B2 (ja) クロムエッチング液からのセリウムの回収方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129855.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117002509

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809597

Country of ref document: EP

Kind code of ref document: A1