WO2010022358A1 - 6-substituted 2-(benzimidazolyl)purine and purinone derivatives and 6-substituted 2-(imidazoio[4,5- c]pyridinyl)purine and purinone derivatives for immunosuppression - Google Patents
6-substituted 2-(benzimidazolyl)purine and purinone derivatives and 6-substituted 2-(imidazoio[4,5- c]pyridinyl)purine and purinone derivatives for immunosuppression Download PDFInfo
- Publication number
- WO2010022358A1 WO2010022358A1 PCT/US2009/054663 US2009054663W WO2010022358A1 WO 2010022358 A1 WO2010022358 A1 WO 2010022358A1 US 2009054663 W US2009054663 W US 2009054663W WO 2010022358 A1 WO2010022358 A1 WO 2010022358A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substituted
- alkyl
- mmol
- chosen
- purin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 *c(cc1)cc(*)c1[N+]([O-])=O Chemical compound *c(cc1)cc(*)c1[N+]([O-])=O 0.000 description 4
- BEXWAXYTSUVJOB-SNVBAGLBSA-N COCC(N[C@H]1c(cccc2F)c2OCC1)=O Chemical compound COCC(N[C@H]1c(cccc2F)c2OCC1)=O BEXWAXYTSUVJOB-SNVBAGLBSA-N 0.000 description 1
- HHWMXZAOBMVCDA-UHFFFAOYSA-N Cc([n]1C(CC2)CCC2O)nc2c1nc(-[n]1c(cc(cc3)Cl)c3nc1)nc2-c1ccncc1 Chemical compound Cc([n]1C(CC2)CCC2O)nc2c1nc(-[n]1c(cc(cc3)Cl)c3nc1)nc2-c1ccncc1 HHWMXZAOBMVCDA-UHFFFAOYSA-N 0.000 description 1
- HPERXILLDZTZNK-UHFFFAOYSA-O N#Cc(cc1)cc2c1nc[n]2-c(nc1N2CCOCC2)nc(N2C3CCOCC3)c1[NH2+]C2O Chemical compound N#Cc(cc1)cc2c1nc[n]2-c(nc1N2CCOCC2)nc(N2C3CCOCC3)c1[NH2+]C2O HPERXILLDZTZNK-UHFFFAOYSA-O 0.000 description 1
- HXACNHXAKSMYNU-UHFFFAOYSA-N NC1c2cccc(F)c2OCC1 Chemical compound NC1c2cccc(F)c2OCC1 HXACNHXAKSMYNU-UHFFFAOYSA-N 0.000 description 1
- HENBKXCBMKBHTC-UHFFFAOYSA-N O=C(Nc1c(-c2ccccc2)nc(-[n]2c(cc(cc3)F)c3nc2)nc11)N1C1=CCOc2c1cccc2F Chemical compound O=C(Nc1c(-c2ccccc2)nc(-[n]2c(cc(cc3)F)c3nc2)nc11)N1C1=CCOc2c1cccc2F HENBKXCBMKBHTC-UHFFFAOYSA-N 0.000 description 1
- PDLAEKXROHFZPV-UHFFFAOYSA-N OC(CC1)CCC1N(c(nc(-[n]1c(cc(cc2)F)c2nc1)nc1N(C2)CC2(F)F)c1N1)C1=O Chemical compound OC(CC1)CCC1N(c(nc(-[n]1c(cc(cc2)F)c2nc1)nc1N(C2)CC2(F)F)c1N1)C1=O PDLAEKXROHFZPV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/02—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
- C07D473/16—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two nitrogen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/02—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
- C07D473/18—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 one oxygen and one nitrogen atom, e.g. guanine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/26—Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
- C07D473/32—Nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/40—Heterocyclic compounds containing purine ring systems with halogen atoms or perhalogeno-alkyl radicals directly attached in position 2 or 6
Definitions
- the invention relates to 6-substituted 2-(benzimidazolyl)purine or purinone derivatives and 6-substituted 2-(imidazolo[4,5-c]pyridinyl)purine or purinone derivatives useful as immunosuppressants.
- Immunosuppression is an important clinical approach in treating autoimmune disease and in preventing organ and tissue rejection.
- the clinically available immunosuppressants including azathioprine, cyclosporine and tacrolimus, although effective, often cause undesirable side effects including nephrotoxicity, hypertension, gastrointestinal disturbances and gum inflammation.
- Inhibitors of the tyrosine kinase Jak3 are known to be useful as immunosuppressants (see U.S. Pat. No. 6,313,129).
- Jak The members of the Janus kinase (Jak) family of non-receptor intracellular tyrosine kinases are components of cytokine signal transduction.
- Jakl The Jaks play a key role in the intracellular signaling mediated through cytokine receptors. Upon binding of cytokines to their receptors, Jaks are activated and phosphorylate the receptors, creating docking sites for other signaling molecules, in particular members of the signal transducer and activator of transcription (STAT) family. While expression of Jakl , Jak2 and Tyk2 is relatively ubiquitous, Jak3 expression is temporally and spatially regulated.
- Jak3 is predominantly expressed in cells of hematopoietic lineage; it is constitutively expressed in natural killer (NK) cells and thymocytes and is inducible in T cells, B cells and myeloid cells (reviewed in Ortmann, et al., 1999 and Yamaoka, et al., 2004). Jak3 is also is expressed in mast cells, and its enzymatic activity is enhanced by IgE receptor/Fc.epsilon.RI cross-linking (Malaviya and Uckun, 1999).
- Jak3 inhibitor CP-690,550
- Jak3 activity has been linked to a leukemic form of cutaneous T-cell lymphoma (Sezary's syndrome) and acute lymphoblastic leukemia (ALL), the most common form of childhood cancer.
- the identification of Jak3 inhibitors has provided the basis for new clinical approaches in treating leukemias and lymphomas (reviewed in Uckun, et al, 2005).
- WHI-Pl 31 Two dimethoxyquinazoline derivatives, WHI-Pl 31 (JANEX-I) and WHI-P 154 (JANEX-2), have been reported to be selective inhibitors of Jak3 in leukemia cells (Sudbeck et al., 1999).
- Jak3 has also been shown to play a role in mast-cell mediated allergic reactions and inflammatory diseases and serves as a target in indications such as asthma and anaphylaxis.
- Jak3 are useful for indications such as leukemias and lymphomas, organ and bone marrow transplant rejection, mast cell-mediated allergic reactions and inflammatory diseases and disorders.
- Q is selected from the group consisting of CX and nitrogen;
- X is selected from the group consisting of hydrogen, halogen, and electron-withdrawing groups;
- A is chosen from the group consisting of H, (Ci-C 6 ) alkyl, heteroaryl and aryl;
- R 1 is selected from the group consisting of halogen, CN, (C 2 -C 6 ) alkyl, substituted (C r C 6 ) alkyl, aryl, substituted aryl, heterocyclyl, substituted heterocyclyl and-V-R 7 ;
- R 2 and R 3 are selected independently for each occurrence of (CR 2 R ) from the group consisting of hydrogen and (Ci-C 6 ) alkyl;
- R 4 is selected from a group consisting of alkyl, OH, alkoxy, heterocyclyl, aryl, substituted alkyl, substituted heterocyclyl, and substituted aryl;
- R 7 is chosen from H, (C]-C 6 ) alkyl, substituted (Ci-C 6 ) alkyl, aryl, substituted aryl, heterocyclyl, and substituted heterocyclyl;
- R is chosen from H and (Ci-C 6 ) alkyl, or, when taken together with the nitrogen to which they are attached, R7 and R8 form a 4-7 membered nitrogen heterocycle;
- R 9 is chosen from hydrogen, alkyl, and substituted alkyl; and
- y is zero or an integer selected from 1 , 2, 3 and 4.
- the members of this genus are useful in inhibiting Jak3 activity and as such are useful in indications where clinical immunosuppression is desired and in the treatment of hematological cancers.
- the invention relates to pharmaceutical compositions comprising a therapeutically effective amount of at least one compound of general formula I or II, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier.
- the invention relates to a method for treating a disease by altering a response mediated by Jak3 tyrosine kinase.
- the method comprises bringing into contact with Jak3 at least one compound of general formula I or II.
- the present invention relates to a method of suppressing the immune system in a subject in need thereof comprising administering to the subject a therapeutically effective amount of at least one compound of general formula I or II. Suppression of immune system activity is desirable for preventing or treating tissue or organ rejection following transplant surgery and for preventing and treating diseases and disorders arising from aberrant activity of the immune system, in particular autoimmune disorders and diseases.
- Exemplary autoimmune disorders include graft versus host disease (GVHD), insulin-dependent diabetes (Type I), Hashimoto's thyroiditis and Graves' disease, pernicious anemia, Addison's disease, chronic active hepatitis, Crohn's disease, ulcerative colitis, rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, psoriasis, scleroderma and myasthenia gravis.
- GVHD graft versus host disease
- Type I insulin-dependent diabetes
- Graves' disease pernicious anemia
- Addison's disease chronic active hepatitis
- Crohn's disease ulcerative colitis
- rheumatoid arthritis multiple sclerosis
- systemic lupus erythematosus psoriasis
- scleroderma myasthenia gravis.
- the compounds of the present invention are useful in preventing and treating diseases and disorders related to mast cell-mediated allergic reactions and inflammation.
- Jak3 inhibitors are useful include leukemias and lymphomas.
- the invention relates to purines and purinones of the formulae:
- the members of the genus I may be conveniently divided into two subgenera based on the values of Q.
- Q When Q is nitrogen, a subgenus of pur in ones having an attached imidazo[5,4-c]pyridine arises.
- Q When Q is carbon, a subgenus of pur in ones having an attached benzimidazole arises.
- the structures of these subgenera are shown below:
- the members of the genus II may be conveniently divided into two subgenera based on the values ofQ.
- Q is nitrogen
- Q is carbon
- a subgenus of purines having an attached benzimidazole arises.
- the structures of these subgenera are shown below:
- X may be hydrogen, halogen, or an electron- withdrawing group containing one or fewer carbons. Examples include: H, F, Cl, CN, CF3, or OCF3.
- y is I or 2, and R 2 and R are hydrogen or methyl, and in particular, y may be one, both of R 2 and R 3 may be hydrogen, R 9 may be hydrogen, and R 4 may be aryl, heteroaryl, and their substituted counterparts. In other embodiments, y may be 1 to 4, R 2 and R 3 may be hydrogen in all occurrences, R 9 may be hydrogen, and R 4 may be alkoxy or OH.
- R 5 is hydrogen or (Ci-C 6 ) alkyl.
- R y is hydrogen, y is zero, and R 4 is a residue selected from an optionally substituted monocycle or bicycle.
- the R 4 residue in this case contains at least one oxygen atom.
- R 4 may be an oxygen heterocycle, an amide, a substituted alkyl amide, a halogen-substituted oxygen heterocycle, a hydroxyl- substituted cycloalkyl, a hydroxyl-substituted aryl, or an alkoxy-substituted cycloalkyl, such as methoxycyclohexyl, particularly trans 4-methoxycyclohexyl, or
- R 6 is hydrogen or fluorine.
- the carbon marked with an asterisk may be of the R absolute configuration:
- the carbon atoms marked with an asterisk may both be of the R absolute configuration:
- A is hydrogen or (C]-C 6 ) alkyl.
- A may be hydrogen or methyl.
- R 1 is (1) heteroaryl, substituted heteroaryl, heterocyclyl, or substituted heterocyclyl, e.g., pyridinyl, pyrazolyl, pyrimidinyl, isoquinolinyl, azetidinyl, piperidinyl, piperizinyl, pyrrolidinyl, morpholinyl, azepanyl, and diazepanyl; (2) aryl, substituted aryl, (C 2 -C 6 ) alkyl or substituted (C ,-C 6 ) alkyl; (3) halogen or CN; or (4) -V- R 7 .
- the foregoing are typically optionally substituted with hydroxy, halogen, carboxamide, alkyl, carboxy, sulfone, alkoxy, and cyano.
- VR 7 may be
- R 1 is VR 7
- V may be -O- or -NR 8 -
- R 7 may be (C ,-C 6 ) alkyl
- R 8 may be H.
- R 9 may be H, Q may be CX and Y may be zero as shown in formulae Ic and Hc:
- R is chosen from substituted alkyl, heterocyclyl, substituted heterocyclyl, and substituted aryl, e.g., tetrahydrofuranyl, pyranyl, benzopyranyl, hydroxytetralinyl, oxepanyl, hydroxycyclohexyl, and their halogenated congeners;
- R 1 is chosen from halogen, (C 2 -C 6 ) alkyl, substituted (Ci-C 6 ) alkyl, phenyl, azetidinyl, piperidinyl, piperizinyl, pyrrolidinyl, morpholinyl, azepanyl, diazepanyl, pyridinyl, pyrimidinyl, and pyrazolyl optionally substituted with hydroxy, halogen, carboxamide, carboxy, sulfone, alkoxy, and cyano; and X is chosen from halogen,
- R may be H
- Q may be CX
- y may be zero
- R 4 is a hydroxytetralin and hydroxycycbhexyl of formulae Id and Hd:
- R is H or halogen.
- R may be selected from (C 2 -C 6 ) alkyl, substituted (Ci-C 6 ) alkyl, halogen, azetidinyl, piperidinyl, piperizinyl, pyrrolidinyl, phenyl, morpholinyl, azepanyl, diazepanyl, pyridinyl, pyrimidinyl, and pyrazolyl optionally substituted with hydroxy, halogen, carboxamide, alkyl, carboxy, sulfone, alkoxy, and cyano; and X is halogen, cyano, substituted alkoxy, and hydrogen.
- R may be alkyl or substituted alkyl
- Q may be CX
- y may be zero, and of formula Ie:
- R 4 may be chosen from tetrahydrofuran, benzopyran, hydroxytetralin, oxepane, hydroxycyclohexane, and their halogenated congeners;
- R 1 may be chosen from halogen, heterocyclyl, substituted heterocyclyl, (C 2 -C 6 ) alkyl, substituted (Ci-C 6 ) alkyl, aryl, substituted aryl, cyano, carboxy, carboalkoxy, carboxamide, and amidino; and
- X may be chosen from halogen, cyano, hydrogen, alkoxy, or substituted alkoxy.
- Alkyl is intended to include linear, branched, or cyclic hydrocarbon structures and combinations thereof.
- Lower alkyl refers to alkyl groups of from 1 to 6 carbon atoms. Examples of lower alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, s- and t-butyl and the like. Preferred alkyl groups are those of C 20 or below; more preferred are Ci- C 8 alkyl.
- Cycloalkyl is a subset of alkyl and includes cyclic hydrocarbon groups of from 3 to 8 carbon atoms. Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, and the like.
- Ci to C 20 hydrocarbon includes alkyl, cycloalkyl, alkenyl, alkynyl, aryl and combinations thereof. Examples include phenethyl, cyclohexylmethyl, camphoryl and naphthylethyl.
- Alkoxy or alkoxyl refers to groups of from 1 to 8 carbon atoms of a straight, branched, cyclic configuration and combinations thereof attached to the parent structure through an oxygen. Examples include methoxy, ethoxy, propoxy, isopropoxy, cyclopropyloxy, cyclohexyloxy and the like. Lower-alkoxy refers to groups containing one to four carbons.
- oxaalkyl is intended as it is understood in the art [see Naming and Indexing of Chemical Substances for Chemical Abstracts, published by the American Chemical Society, TJl 96, but without the restriction of fl27(a)], i.e.
- Acyl refers to groups of from 1 to 8 carbon atoms of a straight, branched, cyclic configuration, saturated, unsaturated and aromatic and combinations thereof, attached to the parent structure through a carbonyl functionality. One or more carbons in the. acyl residue may be replaced by nitrogen, oxygen or sulfur as long as the point of attachment to the parent remains at the carbonyl. Examples include acetyl, benzoyl, propionyl, isobutyryl, t- butoxycarbonyl, benzyloxycarbonyl and the like. Lower-acyl refers to groups containing one to four carbons.
- Aryl and heteroaryl mean a 5- or 6-membered aromatic or heteroaromatic ring containing 0-3 heteroatoms selected from O, N, or S; a bicyclic 9- or 10-membered aromatic or heteroaromatic ring system containing 0-3 heteroatoms selected from O, N, or S; or a tricyclic 13- or 14-membered aromatic or heteroaromatic ring system containing 0-3 heteroatoms selected from O, N, or S.
- the aromatic 6- to 14-membered carbocyclic rings include, e.g., benzene and naphthalene, and for the purposes of the present invention, fused moieties such as tetrahydronaphthalene (tetralin), indane and fluorine, in which one or more rings are aromatic, but not all need be.
- the 5- to 10-membered aromatic heterocyclic rings include, e.g., imidazole, pyridine, indole, thiophene, benzopyranone, thiazole, furan, benzimidazole, quinoline, isoquinoline, quinoxaline, pyrimidine, pyrazine, tetrazole and pyrazole.
- Arylalkyl refers to a substituent in which an aryl residue is attached to the parent structure through alkyl. Examples are benzyl, phenethyl and the like.
- Heteroarylalkyl refers to a substituent in which a heteroaryl residue is attached to the parent structure through alkyl. Examples include, e.g., pyridinylmethyl, pyrimidinylethyl and the like.
- Heterocycle means a cycloalkyl or aryl residue in which from one to three carbons is replaced by a heteroatom selected from the group consisting of N, O and S.
- the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quaternized.
- heterocycles include pyrrolidine, pyrazole, pyrrole, indole, quinoline, isoquinoline, tetrahydroisoquinoline, benzofuran, benzodioxan, benzodioxole (commonly referred to as methylenedioxyphenyl, when occurring as a substituent), tetrazole, morpholine, thiazole, pyridine, pyridazine, pyrimidine, thiophene, furan, oxazole, oxazoline, isoxazole, dioxane, tetrahydrofuran and the like. It is to be noted that heteroaryl is a subset of heterocycle in which the heterocycle is aromatic.
- heterocyclyl residues additionally include piperazinyl ⁇ 2- oxopiperazinyl, 2-oxopiperidinyl, 2-oxo-pyrrolidinyl, 2-oxoazepinyl, azepinyl, 4-piperidinyl, pyrazolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyrazinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolyl, quinuclidinyl, isothiazolidinyl, benzimidazolyl, thiadiazolyl, benzopyranyl, benzothiazolyl, tetrahydrofuryl, tetrahydropyranyl, thienyl, benzothienyl, thiamorpholinyl, thiamorpholinylsulfoxide, thiamorpholinylsulfone
- Substituted alkyl, aryl, cycloalkyl, heterocyclyl etc. refer to alkyl, aryl, cycloalkyl, or heterocyclyl wherein up to three H atoms in each residue are replaced with halogen, haloalkyl, alkyl, acyl, alkoxyalkyl, hydroxyloweralkyl, phenyl, heteroaryl, benzenesulfonyl, hydroxy, loweralkoxy, haloalkoxy, carboxy, carboalkoxy (also referred to as alkoxycarbonyl), alkoxycarbonylamino, carboxamido (also referred to as alkylaminocarbonyl), cyano, carbonyl, acetoxy, nitro, amino, alkylamino, dialkylamino, mercapto, alkylthio, sulfoxide, sulfone, sulfonylamino, acylamino,
- the term also includes oxides, for example pyridine-N-oxide, thiopyran sulfoxide and thiopyran-S,S-dioxide.
- oxides for example pyridine-N-oxide, thiopyran sulfoxide and thiopyran-S,S-dioxide.
- two hydrogens on a single carbon may be replaced by a carbonyl to form an oxo derivative.
- oxo- substituted aryl residues include tetralone (3,4-dihydronaphthalen-l(2H)-one) and indanone (2,3-dihydroinden- 1 -one).
- halogen and halo refer to fluorine, chlorine, bromine or iodine.
- the term "electron-withdrawing group” refers to substituents which have a Hammett ⁇ meta greater than 0.2. Examples of such substituents include cyanide, trifluoromethoxy, trifluoromethyl, chlorine, and fluorine. [0048] Some of the compounds described herein may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers ⁇ and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)-. The present invention is meant to include all such possible isomers, as well as, their racemic and optically pure forms.
- Optically active (R)- and (S)-isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques.
- the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers.
- keto-form of the compound is also within the scope of the present invention.
- An example of a keto-enol tautomerization of a 6- substituted 2-(benzimidazolyl) purinone and subsequently a tautomer of the foregoing that is in accordance with the present invention are depicted below.
- the compounds of this invention can exist in radiolabeled form, i.e., the compounds may contain one or more atoms containing an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
- Radioisotopes of hydrogen, carbon, phosphorous, fluorine, chlorine and iodine include 3 H, 14 C, 35 S, 18 F, 36 Cl and 125 I, respectively.
- Compounds that contain those radioisotopes and/or other radioisotopes of other atoms are within the scope of this invention.
- Tritiated, i.e. 3 H, and carbon-14, i.e., 14 C, radioisotopes are particularly preferred for their ease in preparation and detectability.
- Radiolabeled compounds of this invention can generally be prepared by methods well known to those skilled in the art. Conveniently, such radiolabeled compounds can be prepared by carrying out the procedures disclosed in the Examples by substituting a readily available radiolabeled reagent for a non-radiolabeled reagent. Because of the high affinity for the JAK3 enzyme active site, radiolabeled compounds of the invention are useful for JAK3 assays.
- An oxygenous heterocycle is a heterocycle containing at least one oxygen in the ring; it may contain additional oxygens, as well as other heteroatoms.
- Exemplary oxygenous heterocycles include tetrahydropyran, chroman and their variously substituted derivatives, such as:
- a protecting group refers to a group which is used to mask a functionality during a process step in which it would otherwise react, but in which reaction is undesirable.
- the protecting group prevents reaction at that step, but may be subsequently removed to expose the original functionality. The removal or "deprotection” occurs after the completion of the reaction or reactions in which the functionality would interfere.
- the compounds of the present invention may be prepared by the methods illustrated in the general reaction schemes as, for example, described below, or by modifications thereof, using readily available starting materials, reagents and conventional synthesis procedures. In these reactions, it is also possible to make use of variants that are in themselves known, but are not mentioned here.
- the starting materials for example in the case of suitably substituted benzimidazole ring compounds, are either commercially available, synthesized as described in the examples or may be obtained by the methods, well known to persons of skill in the art.
- the present invention further provides pharmaceutical compositions comprising as active agents, the compounds described herein.
- a "pharmaceutical composition” refers to a preparation of one or more of the compounds described herein, or physiologically acceptable salts or solvents thereof, with other chemical components such as physiologically suitable carriers and excipients.
- Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries, which facilitate processing of the active compounds into preparations which, can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.
- Compounds that inhibit Jak-3 can be formulated as pharmaceutical compositions and administered to a mammalian subject, such as a human patient in a variety of forms adapted to the chosen route of administration, i.e., orally or parenterally, by intravenous, intramuscular, topical, transdermal or subcutaneous routes.
- the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art.
- Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for oral ingestion by a patient.
- Pharmacological preparations for oral use can be made using a solid excipient, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries if desired, to obtain tablets or dragee cores.
- Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carbomethylcellulose; and/or physiologically acceptable polymers such as polyvinylpyrrolidone (PVP).
- disintegrating agents may be added, such as cross- linked polyvinyl pyrrolidone, agar or alginic acid or a salt thereof such as sodium alginate.
- enteric coating may be useful as it is may be desirable, to prevent exposure of the compounds of the invention to the gastric environment.
- Pharmaceutical compositions which can be used orally, include push-fit capsules made of gelatin as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol.
- the push-fit capsules may contain the active ingredients in admixture with filler such as lactose, binders such as starches, lubricants such as talc or magnesium stearate and, optionally, stabilizers.
- the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
- suitable liquids such as fatty oils, liquid paraffin, or liquid polyethylene glycols.
- stabilizers may be added. All formulations for oral administration should be in dosages suitable for the chosen route of administration.
- the compounds of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank's or Ringer's solution or physiological saline buffer.
- physiologically compatible buffers such as Hank's or Ringer's solution or physiological saline buffer.
- penetrants appropriate to the barrier to be permeated may be used in the composition.
- penetrants including for example DMSO or polyethylene glycol, are known in the art.
- the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from a pressurized pack or a nebulizer with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichloro-tetrafluoroethane or carbon dioxide.
- a suitable propellant e.g., dichlorodifluoromethane, trichlorofluoromethane, dichloro-tetrafluoroethane or carbon dioxide.
- the dosage unit may be determined by providing a valve to deliver a metered amount.
- Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.
- compositions for parenteral administration include aqueous solutions of the active ingredients in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acids esters such as ethyl oleate, triglycerides or liposomes. Aqueous injection suspensions may contain substances, which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol or dextran. Optionally, the suspension may also contain suitable stabilizers or agents, which increase the solubility of the compounds, to allow for the preparation of highly concentrated solutions.
- the compounds of the present invention may also be formulated in rectal compositions such as suppositories or retention enemas, using, e.g., conventional suppository bases such as cocoa butter or other glycerides.
- dosing can also be a single administration of a slow release composition, with course of treatment lasting from several days to several weeks or until cure is effected or diminution of the disease state is achieved.
- the amount of a composition to be administered will, of course, be dependent on many factors including the subject being treated, the severity of the affliction, the manner of administration, the judgment of the prescribing physician.
- the compounds of the invention may be administered orally or via injection at a dose from 0.001 to 2500 mg/kg per day.
- the dose range for adult humans is generally from 0.005 mg to 10 g/day.
- Tablets or other forms of presentation provided in discrete units may conveniently contain an amount of compound of the invention which is effective at such dosage or as a multiple of the same, for instance, units containing 5 mg to 500 mg, usually around 10 mg to 200 mg.
- the precise amount of compound administered to a patient will be the responsibility of the attendant physician. However, the dose employed will depend on a number of factors, including the age and sex of the patient, the precise disorder being treated, and its severity. Also, the route of administration may vary depending on the condition and its severity.
- solvate refers to a compound of Formula I or II in the solid state, wherein molecules of a suitable solvent are incorporated in the crystal lattice.
- a suitable solvent for therapeutic administration is physiologically tolerable at the dosage administered. Examples of suitable solvents for therapeutic administration are ethanol and water. When water is the solvent, the solvate is referred to as a hydrate.
- solvates are formed by dissolving the compound in the appropriate solvent and isolating the solvate by cooling or using an antisolvent.
- the solvate is typically dried or azeotroped under ambient conditions.
- Inclusion complexes are described in Remington: The Science and Practice of Pharmacy 19th Ed. (1995) volume 1, page 176-177, which is incorporated herein by reference. The most commonly employed inclusion complexes are those with cyclodextrins, and all cyclodextrin complexes, natural and synthetic, are specifically encompassed within the claims.
- salts refers to salts prepared from pharmaceutically acceptable non-toxic acids or bases including inorganic acids and bases and organic acids and bases.
- salts may be prepared from pharmaceutically acceptable non-toxic acids including inorganic and organic acids.
- Suitable pharmaceutically acceptable acid addition salts for the compounds of the present invention include acetic, benzenesulfonic (besylate), benzoic, camphorsulfonic, citric, ethenesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric acid, p-toluenesulfonic, and the like.
- suitable pharmaceutically acceptable base addition salts for the compounds of the present invention include metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from lysine, N,N'- dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine.
- preventing refers to administering a medicament beforehand to forestall or obtund an attack.
- the person of ordinary skill in the medical art recognizes that the term “prevent” is not an absolute term. In the medical art it is understood to refer to the prophylactic administration of a drug to substantially diminish the likelihood or seriousness of a condition, and this is the sense intended herein.
- formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
- compositions may be presented in a packaging device or dispenser, which may contain one or more unit dosage forms containing the active ingredient.
- a packaging device include metal or plastic foil, such as a blister pack and a nebulizer for inhalation.
- the packaging device or dispenser may be accompanied by instructions for administration.
- Compositions comprising a compound of the present invention formulated in a compatible pharmaceutical carrier may also be placed in an appropriate container and labeled for treatment of an indicated condition. Indications
- the compounds of the present invention are useful in inhibiting the activity if Jak3 or in inhibiting Jak3 mediated activity and are useful as immunosuppressive agents for tissue and organ transplants, including bone marrow transplant and in the treatment of autoimmune and inflammatory diseases and of complications arising therefrom.
- Hyperacute, acute and chronic organ transplant rejection may be treated. Hyperacute rejection occurs within minutes of transplantation. Acute rejection generally occurs within six to twelve months of the transplant. Hyperacute and acute rejections are typically reversible where treated with immunosuppressant agents.
- Chronic rejection characterized by gradual loss of organ function, is an ongoing concern for transplant recipients because it can occur anytime after transplantation.
- autoimmune disorders There are about 75 different autoimmune disorders known that may be classified into two types, organ-specific (directed mainly at one organ) and non-organ-specific (affecting multiple organs).
- organ-specific autoimmune disorders are insulin-dependent diabetes (Type I) which affects the pancreas, Hashimoto's thyroiditis and Graves' disease which affect the thyroid gland, pernicious anemia which affects the stomach, Cushing's disease and Addison's disease which affect the adrenal glands, chronic active hepatitis which affects the liver; polycystic ovary syndrome (PCOS), celiac disease, psoriasis, inflammatory bowel disease (IBD) and ankylosing spondylitis.
- non-organ-specific autoimmune disorders are rheumatoid arthritis, multiple sclerosis, systemic lupus and myasthenia gravis.
- Type I diabetes ensues from the selective aggression of autoreactive- T- cells against insulin secreting ⁇ cells of the islets of Langerhans.
- Targeting Jak3 in this disease is based on the observation that multiple cytokines that signal through the Jak pathway are known to participate in the T -cell mediated autoimmune destruction of ⁇ cells.
- a Jak3 inhibitor, JANEX-I was shown to prevent spontaneous autoimmune diabetes development in the NOD mouse model of type I diabetes.
- GVHD graft-versus-host disease
- BMT allogeneic bone marrow transplantation
- Jak3 plays a key role in the induction of GVHD and treatment with a Jak3 inhibitor, JANEX-I, was shown to attenuate the severity of GVHD (reviewed in Cetkovic-Cvrlje and Ucken, 2004).
- Mast cells express Jak3 and Jak3 is a key regulator of the IgE mediated mast cell responses including the release of inflammatory mediators. Jak3 was shown to be a valid target in the treatment of mast cell mediated allergic reaction.
- Allergic disorders associated with mast cell activation include Type I immediate hypersensitivity reactions such as allergic rhinitis (hay fever), allergic urticaria (hives), angioedema, allergic asthma and anaphylaxis, i.e., "anaphylatic shock.” These disorders are treated or prevented by inhibition of Jak3 activity, for example, by administration of a Jak3 inhibitor according to the present invention.
- the Jak3 inhibitors may be administered prophylactically, i.e., prior to onset of acute allergic reaction, or they may be administered after onset of the reaction, or at both times.
- Inflammation of tissues and organs occurs in a wide range of disorders and diseases and in certain variations, results from activation of the cytokine family of receptors.
- Exemplary inflammatory disorders associated with activation of Jak3 include, in a non- limiting manner, skin inflammation due radiation exposure, asthma, allergic inflammation and chronic inflammation.
- the Jak3 inhibitors of the present invention are also useful in treating certain malignancies, including skin cancer and hematological malignancy such as lymphomas and leukemias.
- the reaction mixture was cooled to room temperature, diluted with 5 % methanol in methylene chloride, filtered through a Nylon 0.45 ⁇ m filter, and the filter repeatedly washed with 5% methanol in methylene chloride.
- the filtrate was concentrated in vacuo and the resulting residue was purified using preparative TLC (silica gel, 4.25% methanol in methylene chloride) to give the desired product as a yellow solid (45.3 mg, 60 % yield).
- reaction mixture was cooled to room temperature, diluted with toluene (450 mL) and passed through Celite. The filtrate was concentrated in vacuo to give a dark brown residue.
- desired product was recrystallized as a bright orange solid from the residue using mixtures of 100 mL acetonitrile/100 mL water. Repeated recrystallizations resulted in isolation of 1.49 g of desired product (30% yield) in high purity.
- reaction mixture was stirred at room temperature for 1 h. Completion of the reaction mixture was checked by HPLC and MS. The reaction mixture was filtered and the resin was washed with CH 3 CN (5 mL x 2) and MeOH (5 mL x 2). The washings and the filtrate were combined and concentrated in vacuo to give the desired compound.
- reaction mixture was stirred at room temperature for 18 h.
- the solvent was then removed in vacuo and the residue purified by column chromatography (silica gel, elution with 4 / 1 hexanes / ethyl acetate) to afford, after evaporation and drying, the desired product as a yellow solid (7.59 g, 70% yield).
- the mixture was stirred under Ar for 10 min, then it was cooled to 0 0 C and the organozinc halide reagent (0.5 M solution in THF, 1.5 equiv.) was added drop wise, under Ar, within 30 min.
- the reaction mixture was then warmed up to room temperature, and subsequently heated to 50 0 C for 3 days.
- the mixture was poured into a saturated aqueous NH 4 Cl solution. Extraction into ethyl acetate (3 x 100 mL), washing of the combined organic layers with brine (1 x 100 mL), drying (Na 2 SO 4 ), and solvent removal in vacuo afforded a brown residue, which was purified by column chromatography to give the desired product.
- the vial was purged with Ar for 3 min, then closed and heated at 80°C for 3 days.
- the reaction mixture was allowed to stand overnight at room temperature and poured into saturated aqueous NH 4 Cl (10 mL). To this mixture, saturated aqueous Na 2 EDTA (10 mL) was added and the mixture was stirred for 10 min.
- the mixture was extracted with ethyl acetate (3 x 20 mL), the collected organic layers were washed with brine, dried (anhydrous Na 2 SO 4 ) and the solvent evaporated in vacuo.
- the reaction mixture was cooled to room temperature, diluted with ethyl acetate/methylene chloride, filtered through a Nylon 0.45 ⁇ m filter, and the filtrate was concentrated in vacuo.
- the resulting residue was purified using preparative TLC (silica gel, 7.5% methanol in methylene chloride) to give the desired product as a brown solid (1 1 mg, 1 1% yield).
- N-(5-chloro-2-nitrophenyl)-8-methyl-6-(pyridin-4-yl)-9-(tetrahydro-2-H- pyran-4-yl)-9H-purin-2-amine was added 8-methyl-6-(pyridin-4-yl)-9- (tetrahydro-2H-pyran-4-yl)-9H-purin-2-amine (56 mg, 0.18 mmol, 1 equiv.) in anhydrous toluene (1 mL), then freshly grounded cesium carbonate (82 mg, 0.25 mmol, 1.4 equiv.) with stirring at room temperature under Ar.
- 8-fluorochroman-4-amine (5) A round bottom flask was charged with 8- fluorochroman-4-one (8.2 g), hydroxylamine hydrochloride (3.78 g) and sodium acetate (4.46 g). A reflux condenser was added, the flask was purged with argon, dry EtOH (20 mL) was added, and the mixture was stirred at reflux for 18 hours. The solution was cooled to room temperature, diluted with EtOAc, and washed with water.
- reaction mixture was stirred at -78 0 C for 2 h, and then it was allowed to warm up to room temperature and stirred at ambient temperature for another 2 h (TLC monitoring). The solvent was removed in vacuo and the residue purified by column chromatography to give the desired product.
- Ethyl 2-(6-fluoro-lH-benzo[d]imidazol-l-yl)-5-nitro-6-(tetrahydro-2H- pyran-4-yl-amino)pyrimidine-4-carboxylate Ethyl 2-(2-(tert-butoxycarbonyl)-5- fluorophenylamino)-5-nitro-6-(tetrahydro-2H-pyran-4-ylamino)pyrimidine-4-carboxylate (530 mg, 1.02 mmol) was treated with a 30% (v) solution of TFA in methylene chloride with stirring at room temperature. TLC monitoring showed the reaction to be complete in 3 h.
- 6-chloropyrimidine-2,4,5-triamine hydrochloride was prepared as described in WO 94/07892.
- 2,5-Diamino-4,6-dichloropyrimidine (10.8 g, 60.3 mmol) and concentrated aqueous ammonia (30 mL) were heated together in a sealed tube at 105 0 C for 18 h, then cooled to room temperature.
- 2.34 g NaOH in water (10 mL) was added and the excess ammonia stripped out by concentrating to a low volume.
- reaction mixture was stirred at room temperature for 1 h. Completion of the reaction mixture was checked by HPLC and MS. The reaction mixture was filtered and the resin was washed with CH 3 CN (10 mL x 2) and MeOH (10 mL x 2). The washings and the filtrate were combined and concentrated in vacuo to give the desired compound.
- Ethanol (3 mL) was added to an argon-purged vial containing 3-(6-chloro-9-(trans-4-hydroxycyclohexyl)-7-methyl-8-oxo- 8,9-dihydro-7H-purin-2-yl)-3H-benzo[d]imidazole-5-carbonitrile (100 mg, 0.236 mmol), pyridine-4-boronic acid pinacol ester (97 mg, 0.47 mmol, 2 equiv.), Pd(PPh 3 ) 4 (27 mg, 0.0236 mmol, 0.1 equiv.) and a 2M aqueous solution Of Na 2 CO 3 (200 ⁇ L).
- 6-Chloro-2-(6-chloro- 1 H- benzo[d]imidazole-l-yl-9-((trans-4-hydroxycyclohexyl)-7-methyl-7H-purin-8(9H)-one (166 mg, 0.38 mmol) was taken in a scintillation vial with 1 -butanol (2 mL), DMSO (1 mL) and DIEA (200 ⁇ L). To it was then added 3,3-difluoroazetidine hydrochloride (220 mg, 1.71 mmol, 4.5 equiv.) The reaction mixture was stirred at 1 10 0 C for 18 h. The solvent was then removed under high vacuum. The residue was dissolved in MeOH and filtered.
- Human Jak3 cDNA was amplified by PCR. A fragment encoding the catalytic domain of Jak3 (508aa to 1124aa) was ligated with GST at 5' end. This fused GST- Jak3 DNA fragment was cloned into the EcoRI site of the donor plasmid pFastBac 1 (Life Technologies #10359-016). The transformation, transposition, and transfection of insect cells (Sf9) were performed according to the manufacture's instructions. The cell lysate containing recombinant GST- Jak3 was used in the kinase assay. Anti-GST antibody (10 ⁇ g/ml, Sigma #G1417) was coated onto a 384-well plate at 4°C overnight.
- Cell lysate containing GST- Jak3 (1:100 dilution) was added to the anti-GST coated plates, and GST- Jak3 was captured by immobilized anti-GST antibody.
- Testing compounds and substrate mix 50 mM HEPES, pH 7, 0.5 mM Na 3 VO 4 , 25 mM MgCl 2 , 1 mM DTT, 0.005% BSA, 1 ⁇ M ATP, and 4.5 ⁇ g/ml biotinyl poly-Glu,Ala,Tyr) were added to the plate to initiate the reaction.
- the mouse F7 pre-B lymphocyte cell line was used for the cellular Jak3 assay.
- Human IL-2R ⁇ c cDNA is stably expressed in F7 cells (Kawahara et al., 1995).
- F7 cells were maintained in RPMI 1640 medium supplemented with 10% fetal bovine serum plus IL- 3.
- Cells (30,000 cells/well) in serum-free medium were seeded in 96-well plates for the cell proliferation assay. Testing compounds were added to cells, followed by the addition of IL-2 (final 20 ng/ml).
- IL-2 leads to an increase in serum IFN- ⁇ in the mouse due to NK secretion of the cytokine (Thornton S, Kuhn K A, Finkelman F D and Hirsch R. NK cells secrete high levels of IFN- ⁇ in response to in vivo administration of IL-2. Eur J Immunol 2001 31 :3355-3360).
- the experiment is carried out essentially according to the protocol in Thornton et al. and the test compounds are administered in order to determine the level of inhibition attained.
- female BALB/c mice are fasted for 12-18 hours before a study but have free access to water at all times. Test compounds are administered by gavage one hour before intraperitoneal injection of IL-2 and capture antibody.
- mice are sacrificed by carbon dioxide inhalation, terminal blood samples are collected by cardiac puncture and serum is generated. Serum is stored frozen until assayed for IFN- ⁇ , as described by the kit manufacturer (BD Pharmingen.TM., San Diego, Calif).
- an IC 50 less than 100 nM is represented as 1 ; an IC 5O between 100 nM and 1 uM is represented as 2; and an IC 50 greater than I ⁇ M is represented as 3.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Diabetes (AREA)
- Pulmonology (AREA)
- Hematology (AREA)
- Rheumatology (AREA)
- Neurology (AREA)
- Physical Education & Sports Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Endocrinology (AREA)
- Obesity (AREA)
- Emergency Medicine (AREA)
- Biomedical Technology (AREA)
- Pain & Pain Management (AREA)
- Neurosurgery (AREA)
- Oncology (AREA)
- Transplantation (AREA)
- Gastroenterology & Hepatology (AREA)
- Dermatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2011524034A JP2012500805A (ja) | 2008-08-22 | 2009-08-21 | 免疫抑制のための6−置換2−(ベンズイミダゾリル)プリンおよびプリノン誘導体ならびに6−置換2−(イミダゾロ[4,5−c]ピリジニル)プリンおよびプリノン誘導体 |
| EP09808894A EP2326647A4 (en) | 2008-08-22 | 2009-08-21 | 2- (BENZIMIDAZOLYL) PURINE SUBSTITUTED IN POSITION 6 AND PURINONE DERIVATIVES FOR IMMUNOSUPPRESSION |
| CA2735048A CA2735048A1 (en) | 2008-08-22 | 2009-08-21 | 6-substituted 2-(benzimidazolyl)purine and purinone derivatives and 6-substituted 2-(imidazolo[4,5- c]pyridinyl)purine and purinone derivatives for immunosuppression |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/196,516 | 2008-08-22 | ||
| US12/196,516 US7902187B2 (en) | 2006-10-04 | 2008-08-22 | 6-substituted 2-(benzimidazolyl)purine and purinone derivatives for immunosuppression |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2010022358A1 true WO2010022358A1 (en) | 2010-02-25 |
| WO2010022358A8 WO2010022358A8 (en) | 2011-03-24 |
Family
ID=41707479
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/054663 Ceased WO2010022358A1 (en) | 2008-08-22 | 2009-08-21 | 6-substituted 2-(benzimidazolyl)purine and purinone derivatives and 6-substituted 2-(imidazoio[4,5- c]pyridinyl)purine and purinone derivatives for immunosuppression |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US7902187B2 (enExample) |
| EP (1) | EP2326647A4 (enExample) |
| JP (1) | JP2012500805A (enExample) |
| CA (1) | CA2735048A1 (enExample) |
| WO (1) | WO2010022358A1 (enExample) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011136264A1 (ja) * | 2010-04-28 | 2011-11-03 | 第一三共株式会社 | [5,6]複素環化合物 |
| US8501735B2 (en) | 2009-10-29 | 2013-08-06 | Palau Pharma, S.A. | N-containing heteroaryl derivatives as JAK3 kinase inhibitors |
| JP2014139159A (ja) * | 2007-10-05 | 2014-07-31 | Verastem Inc | ピリミジン置換プリン誘導体 |
| WO2017133657A1 (en) * | 2016-02-05 | 2017-08-10 | Savira Pharmaceuticals Gmbh | Pyridine and pyrimidine derivatives and their use in treatment, amelioration or prevention of influenza |
| WO2017133664A1 (en) * | 2016-02-05 | 2017-08-10 | Savira Pharmaceuticals Gmbh | Bicyclic pyridine and pyrimidine derivatives and their use in the treatment, amelioration or prevention of influenza |
| US10183949B2 (en) | 2014-08-29 | 2019-01-22 | The University Of Tokyo | Pyrimidinone derivative having autotaxin-inhibitory activity |
| WO2023020604A1 (zh) * | 2021-08-20 | 2023-02-23 | 南京大美生物制药有限公司 | 一种五元含氮杂环并杂芳基类衍生物及其用途 |
Families Citing this family (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101304748A (zh) | 2005-08-22 | 2008-11-12 | 加利福尼亚大学董事会 | Tlr激动剂 |
| US20070225304A1 (en) * | 2005-09-06 | 2007-09-27 | Pharmacopeia Drug Discovery, Inc. | Aminopurine derivatives for treating neurodegenerative diseases |
| WO2007092496A2 (en) * | 2006-02-07 | 2007-08-16 | Conforma Therapeutics Corporation | 7,9-dihydro-purin-8-one and related analogs as hsp90-inhibitors |
| US20090281075A1 (en) * | 2006-02-17 | 2009-11-12 | Pharmacopeia, Inc. | Isomeric purinones and 1h-imidazopyridinones as pkc-theta inhibitors |
| US7989459B2 (en) * | 2006-02-17 | 2011-08-02 | Pharmacopeia, Llc | Purinones and 1H-imidazopyridinones as PKC-theta inhibitors |
| CA2646429A1 (en) * | 2006-03-09 | 2007-09-13 | Pharmacopeia, Inc. | 8-heteroarylpurine mnk2 inhibitors for treating metabolic disorders |
| EP2700638A1 (en) * | 2006-05-31 | 2014-02-26 | The Regents Of the University of California | Purine analogs |
| US7767685B2 (en) * | 2006-06-29 | 2010-08-03 | King Pharmaceuticals Research And Development, Inc. | Adenosine A2B receptor antagonists |
| US7915268B2 (en) * | 2006-10-04 | 2011-03-29 | Wyeth Llc | 8-substituted 2-(benzimidazolyl)purine derivatives for immunosuppression |
| US7902187B2 (en) | 2006-10-04 | 2011-03-08 | Wyeth Llc | 6-substituted 2-(benzimidazolyl)purine and purinone derivatives for immunosuppression |
| AR063142A1 (es) * | 2006-10-04 | 2008-12-30 | Pharmacopeia Inc | Derivados de 2-(bencimidazolil) purina y purinonas 6-sustituidas utiles como inmunosupresores,y composiciones farmaceuticas que los contienen. |
| ES2383370T3 (es) * | 2006-10-19 | 2012-06-20 | Signal Pharmaceuticals Llc | Compuestos de heteroarilo, sus composiciones y uso de los mismos como inhibidores de proteína quinasa |
| US20080119496A1 (en) * | 2006-11-16 | 2008-05-22 | Pharmacopeia Drug Discovery, Inc. | 7-Substituted Purine Derivatives for Immunosuppression |
| HUE025555T2 (en) | 2007-02-07 | 2016-02-29 | Univ California | Conjugates and applications of synthetic tlr agonists |
| US20090202626A1 (en) * | 2008-02-07 | 2009-08-13 | Carson Dennis A | Treatment of bladder diseases with a tlr7 activator |
| WO2010088924A1 (en) | 2009-02-06 | 2010-08-12 | Telormedix Sa | Pharmaceutical compositions comprising imidazoquinolin(amines) and derivatives thereof suitable for local administration |
| EP2396328A2 (en) * | 2009-02-11 | 2011-12-21 | The Regents of The University of California | Toll-like receptor modulators and treatment of diseases |
| JP2013508456A (ja) * | 2009-10-26 | 2013-03-07 | シグナル ファーマシューティカルズ, エルエルシー | ヘテロアリール化合物の合成方法および精製方法 |
| US9050319B2 (en) | 2010-04-30 | 2015-06-09 | Telormedix, Sa | Phospholipid drug analogs |
| CA2797315C (en) | 2010-04-30 | 2018-09-11 | Telormedix Sa | Phospholipid drug analogs |
| SG10201912850WA (en) | 2011-10-19 | 2020-02-27 | Signal Pharm Llc | Treatment Of Cancer With TOR Kinase Inhibitors |
| ES2694413T3 (es) | 2011-12-02 | 2018-12-20 | Signal Pharmaceuticals, Llc | Composiciones farmacéuticas de 7-(6-(2-hidroxipropan-2-il)piridin-3-il)-1-((trans)-4-metoxiciclohexil)-3,4-dihidropirazino [2,3-b]pirazin-2(1H)-ona, una forma sólida de la misma y métodos para su uso |
| CA2864905A1 (en) | 2012-02-24 | 2013-08-29 | Signal Pharmaceuticals, Llc | Methods for treating non- small cell lung cancer using tor kinase inhibitor combination therapy |
| AU2013203714B2 (en) | 2012-10-18 | 2015-12-03 | Signal Pharmaceuticals, Llc | Inhibition of phosphorylation of PRAS40, GSK3-beta or P70S6K1 as a marker for TOR kinase inhibitory activity |
| EP2945636B1 (en) | 2013-01-16 | 2017-06-28 | Signal Pharmaceuticals, LLC | Substituted pyrrolopyrimidine compounds, compositions thereof, and methods of treatment therewith |
| NZ629411A (en) | 2013-04-17 | 2017-06-30 | Signal Pharm Llc | Treatment of cancer with dihydropyrazino-pyrazines |
| BR112015026257B1 (pt) | 2013-04-17 | 2022-12-20 | Signal Pharmaceuticals, Llc | Uso de um composto dihidropirazino-pirazina e enzalutamida, composição farmacêutica que os compreende, e kit |
| AU2014254057A1 (en) | 2013-04-17 | 2015-11-05 | Signal Pharmaceuticals, Llc | Combination therapy comprising a TOR kinase inhibitor and N-(3-(5-fluoro-2-(4-(2-methoxyethoxy)phenylamino)pyrimidin-4-ylamino)phenyl)acrylamide for treating cancer |
| MX368286B (es) | 2013-04-17 | 2019-09-27 | Signal Pharm Llc | Terapia de combinacion que comprende un inhibidor de tor cinasa y un compuesto de quinazolinona 5-sustituida para tratar cancer. |
| ES2944478T3 (es) | 2013-04-17 | 2023-06-21 | Signal Pharm Llc | 1-etil-7-(2-metil-6-(1H-1,2,4-triazol-3-il)piridin-3-il)-3,4-dihidropirazino[2,3-b]pirazin-2(1H)-ona para tratar el glioblastoma multiforme |
| SG11201508527VA (en) | 2013-04-17 | 2015-11-27 | Signal Pharm Llc | Pharmaceutical formulations, processes, solid forms and methods of use relating to 1-ethyl-7-(2-methyl-6-(1h-1,2,4-triazol-3-yl) pyridin-3-yl) -3,4-dihydropyrazino[2,3-b]pyrazin-2(1h)-one |
| KR102242505B1 (ko) | 2013-04-17 | 2021-04-20 | 시그날 파마소티칼 엘엘씨 | 암 치료용 tor 키나제 억제제 및 시티딘 유사체를 포함하는 병용 요법 |
| JP6401250B2 (ja) | 2013-05-29 | 2018-10-10 | シグナル ファーマシューティカルズ,エルエルシー | 7−(6−(2−ヒドロキシプロパン−2−イル)ピリジン−3−イル)−1−((trans)−4−メトキシシクロヘキシル)−3,4−ジヒドロピラジノ[2,3−b]ピラジン−2(1H)−オン、その固体形態の医薬組成物、及びその使用方法 |
| NZ714742A (en) | 2014-04-16 | 2017-04-28 | Signal Pharm Llc | Solid forms of 1-ethyl-7-(2-methyl-6-(1h-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1h)-one, compositions thereof and methods of their use |
| US9512129B2 (en) | 2014-04-16 | 2016-12-06 | Signal Pharmaceuticals, Llc | Solid forms comprising 1-ethyl-7-(2-methyl-6-(1H-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one and a coformer |
| US9718824B2 (en) | 2014-04-16 | 2017-08-01 | Signal Pharmaceuticals, Llc | Solid forms comprising 7-(6-(2-hydroxypropan-2-yl)pyridin-3-yl)-1-((trans)-4-methoxycyclohexyl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1H)-one, and a coformer, compositions and methods of use thereof |
| US9737535B2 (en) | 2014-04-16 | 2017-08-22 | Signal Pharmaceuticals, Llc | Methods for treating cancer using TOR kinase inhibitor combination therapy comprising administering substituted pyrazino[2,3-b]pyrazines |
| AU2015289929A1 (en) | 2014-07-14 | 2017-03-02 | Signal Pharmaceuticals, Llc | Methods of treating a cancer using substituted pyrrolopyrimidine compounds, compositions thereof |
| NZ629796A (en) | 2014-07-14 | 2015-12-24 | Signal Pharm Llc | Amorphous form of 4-((4-(cyclopentyloxy)-5-(2-methylbenzo[d]oxazol-6-yl)-7h-pyrrolo[2,3-d]pyrimidin-2-yl)amino)-3-methoxy-n-methylbenzamide, compositions thereof and methods of their use |
| US11697851B2 (en) | 2016-05-24 | 2023-07-11 | The Regents Of The University Of California | Early ovarian cancer detection diagnostic test based on mRNA isoforms |
| HUE054548T2 (hu) | 2016-12-20 | 2021-09-28 | Astrazeneca Ab | Amino-triazolopiridin vegyületek és azok alkalmazása rák kezelésében |
| EP3641772B1 (en) | 2017-06-22 | 2023-08-02 | Celgene Corporation | Treatment of hepatocellular carcinoma characterized by hepatitis b virus infection |
| WO2025234404A1 (ja) * | 2024-05-07 | 2025-11-13 | 全薬工業株式会社 | ピリミジン含有縮合環化合物及びその用途 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070021443A1 (en) * | 2005-04-05 | 2007-01-25 | Ohlmeyer Michael J | Purine and imidazopyridine derivatives for immunosuppression |
| WO2008043031A1 (en) * | 2006-10-04 | 2008-04-10 | Pharmacopeia, Inc. | 6-substituted 2-(benzimidazolyl)purine and purinone derivatives for immunosuppression |
| WO2008051494A1 (en) * | 2006-10-19 | 2008-05-02 | Signal Pharmaceuticals, Llc | Heteroaryl compounds, compositions thereof, and use thereof as protein kinase inhibitors |
| US20080119496A1 (en) * | 2006-11-16 | 2008-05-22 | Pharmacopeia Drug Discovery, Inc. | 7-Substituted Purine Derivatives for Immunosuppression |
Family Cites Families (51)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES473201A1 (es) | 1977-09-26 | 1979-03-16 | Degussa | Procedimiento para la preparacion de 7-azabencimidazoles |
| US4813998A (en) | 1986-02-27 | 1989-03-21 | Janssen Pharmaceutica N.V. | Herbicidal 1H-imidazole-5-carboxylic acid derivatives |
| EP0277384A3 (en) | 1986-12-24 | 1990-05-23 | Janssen Pharmaceutica N.V. | 1h-imidazole-5-carboxylic acid derivatives |
| DE4007535A1 (de) | 1990-03-09 | 1991-09-12 | Hoechst Ag | Wasserunloesliche azofarbmittel, ihre herstellung und verwendung |
| JP3396924B2 (ja) | 1993-09-07 | 2003-04-14 | 日本曹達株式会社 | 活性汚泥のバルキング防止剤 |
| US5705625A (en) | 1994-12-15 | 1998-01-06 | The Johns Hopkins University School Of Medicine | Nucleic Acid Encoding novel protein tyrosine kinase |
| KR19990071656A (ko) | 1995-11-27 | 1999-09-27 | 도미나가 가즈토 | 트리아진 유도체 |
| EP0807629B1 (de) | 1996-05-15 | 2004-03-03 | Aventis Pharma Deutschland GmbH | Sulfonamid-substituierte Chromane, Verfahren zu ihrer Herstellung, ihre Verwendung als Medikament oder Diagnostikum sowie sie enthaltendes Medikament |
| US6432947B1 (en) | 1997-02-19 | 2002-08-13 | Berlex Laboratories, Inc. | N-heterocyclic derivatives as NOS inhibitors |
| WO2000012089A1 (en) | 1998-08-31 | 2000-03-09 | Merck & Co., Inc. | Novel angiogenesis inhibitors |
| DE69824632T2 (de) | 1997-11-12 | 2005-06-09 | Mitsubishi Chemical Corp. | Purinderivate und medikamente, welche dieselben als aktiven bestandteil enthalten |
| ZA9810490B (en) | 1997-12-03 | 1999-05-20 | Dainippon Pharmaceutical Co | 2-Aryl-8-oxodihydropurine derivative process for the preparation thereof pharmaceutical composition containing the same and intermediate therefor |
| JP2002503659A (ja) | 1998-02-13 | 2002-02-05 | アベンテイス・フアルマ・ソシエテ・アノニム | 縮合した複素環式系誘導体、それらの製造及びそれらを含有する製薬学的組成物 |
| KR20010089171A (ko) | 1998-08-21 | 2001-09-29 | 추후제출 | 퀴나졸린 유도체 |
| US6080747A (en) | 1999-03-05 | 2000-06-27 | Hughes Institute | JAK-3 inhibitors for treating allergic disorders |
| CA2376835C (en) | 1999-07-02 | 2009-09-15 | Eisai Co., Ltd. | Condensed imidazole compounds and a therapeutic agent for diabetes mellitus |
| SK3792002A3 (en) | 1999-09-17 | 2003-09-11 | Abbott Gmbh & Co Kg | Kinase inhibitors as therapeutic agents |
| US6582357B2 (en) | 2000-05-24 | 2003-06-24 | Pentax Corporation | Treating instrument erecting device for use in endoscope |
| US6506738B1 (en) | 2000-09-27 | 2003-01-14 | Bristol-Myers Squibb Company | Benzimidazolone antiviral agents |
| GB0100623D0 (en) | 2001-01-10 | 2001-02-21 | Vernalis Res Ltd | Chemical compounds IV |
| AR035230A1 (es) | 2001-03-19 | 2004-05-05 | Astrazeneca Ab | Compuestos de bencimidazol, proceso para su preparacion, composicion farmaceutica, proceso para la preparacion de dicha composicion farmaceutica, y usos de estos compuestos para la elaboracion de medicamentos |
| SE0104331D0 (sv) | 2001-12-19 | 2001-12-19 | Astrazeneca Ab | Novel compounds |
| EP1578366A4 (en) | 2002-10-09 | 2007-12-19 | Tolerrx Inc | MOLECULES PREFERABLY ASSOCIATED WITH EFFECTOR T CELLS OR REGULATORY T CELLS AND METHODS OF USE THEREOF |
| JP2006508191A (ja) | 2002-11-08 | 2006-03-09 | トーラーレックス, インク. | エフェクタt細胞に優先的に関連する分子及びそれらの使用法 |
| CA2507392A1 (en) | 2002-11-26 | 2004-06-10 | Pfizer Products Inc. | Method of treatment of transplant rejection |
| JP2004217582A (ja) | 2003-01-16 | 2004-08-05 | Abbott Japan Co Ltd | 9h−プリン誘導体 |
| KR101224300B1 (ko) | 2003-02-05 | 2013-01-21 | 바이엘 크롭사이언스 아게 | 키랄 바이사이클릭 라디칼로 n-치환된 아미노 1,3,5-트라이아진, 이것의 제조방법, 이것의 조성물 및 제초제 및 식물 성장 조절제로서의 이것의 용도 |
| SE0301373D0 (sv) | 2003-05-09 | 2003-05-09 | Astrazeneca Ab | Novel compounds |
| WO2005023761A2 (en) | 2003-09-11 | 2005-03-17 | Kemia, Inc. | Cytokine inhibitors |
| GB2432834A (en) | 2004-01-12 | 2007-06-06 | Cytopia Res Pty Ltd | Selective Kinase Inhibitors |
| AR054416A1 (es) | 2004-12-22 | 2007-06-27 | Incyte Corp | Pirrolo [2,3-b]piridin-4-il-aminas y pirrolo [2,3-b]pirimidin-4-il-aminas como inhibidores de las quinasas janus. composiciones farmaceuticas. |
| AU2006205851A1 (en) | 2005-01-14 | 2006-07-20 | Janssen Pharmaceutica N.V. | 5-membered annelated heterocyclic pyrimidines as kinase inhibitors |
| JP5227032B2 (ja) | 2005-02-03 | 2013-07-03 | バーテックス ファーマシューティカルズ インコーポレイテッド | プロテインキナーゼの阻害剤として有用なピロロピリミジン |
| AU2006215394B2 (en) | 2005-02-16 | 2009-10-08 | Astrazeneca Ab | Chemical compounds |
| WO2006091737A1 (en) | 2005-02-24 | 2006-08-31 | Kemia, Inc. | Modulators of gsk-3 activity |
| US7884109B2 (en) * | 2005-04-05 | 2011-02-08 | Wyeth Llc | Purine and imidazopyridine derivatives for immunosuppression |
| DE102005042742A1 (de) | 2005-09-02 | 2007-03-08 | Schering Ag | Substituierte Imidazo[1,2b]pyridazine als Kinase-Inhibitoren, deren Herstellung und Verwendung als Arzneimittel |
| WO2007035873A1 (en) | 2005-09-21 | 2007-03-29 | Pharmacopeia, Inc. | Purinone derivatives for treating neurodegenerative diseases |
| WO2007058990A2 (en) | 2005-11-14 | 2007-05-24 | Kemia, Inc. | Therapy using cytokine inhibitors |
| WO2007092496A2 (en) * | 2006-02-07 | 2007-08-16 | Conforma Therapeutics Corporation | 7,9-dihydro-purin-8-one and related analogs as hsp90-inhibitors |
| US7989459B2 (en) * | 2006-02-17 | 2011-08-02 | Pharmacopeia, Llc | Purinones and 1H-imidazopyridinones as PKC-theta inhibitors |
| US20090281075A1 (en) | 2006-02-17 | 2009-11-12 | Pharmacopeia, Inc. | Isomeric purinones and 1h-imidazopyridinones as pkc-theta inhibitors |
| JO3235B1 (ar) | 2006-05-26 | 2018-03-08 | Astex Therapeutics Ltd | مركبات بيررولوبيريميدين و استعمالاتها |
| EP2035005A4 (en) | 2006-06-09 | 2011-07-06 | Kemia Inc | THERAPY BASED ON CYTOKINE INHIBITORS |
| US7915268B2 (en) * | 2006-10-04 | 2011-03-29 | Wyeth Llc | 8-substituted 2-(benzimidazolyl)purine derivatives for immunosuppression |
| US7902187B2 (en) | 2006-10-04 | 2011-03-08 | Wyeth Llc | 6-substituted 2-(benzimidazolyl)purine and purinone derivatives for immunosuppression |
| EP2457913B1 (en) | 2006-10-19 | 2017-04-19 | Signal Pharmaceuticals, LLC | Heteroaryl compounds, compositions thereof, and methods of treatment therewith |
| US20080220256A1 (en) * | 2007-03-09 | 2008-09-11 | Ues, Inc. | Methods of coating carbon/carbon composite structures |
| US20080254029A1 (en) * | 2007-04-11 | 2008-10-16 | Alcon Research, Ltd. | Use of an Inhibitor of TNFa Plus an Antihistamine to Treat Allergic Rhinitis and Allergic Conjunctivitis |
| JP2010527999A (ja) | 2007-05-23 | 2010-08-19 | フアーマコペイア・エル・エル・シー | PKC−θ阻害剤としてのプリノン類および1H−イミダゾピリジノン類 |
| WO2009062059A2 (en) | 2007-11-08 | 2009-05-14 | Pharmacopeia, Inc. | Isomeric purinones and 1h-imidazopyridinones as pkc-theta inhibitors |
-
2008
- 2008-08-22 US US12/196,516 patent/US7902187B2/en active Active
-
2009
- 2009-08-21 CA CA2735048A patent/CA2735048A1/en not_active Abandoned
- 2009-08-21 WO PCT/US2009/054663 patent/WO2010022358A1/en not_active Ceased
- 2009-08-21 EP EP09808894A patent/EP2326647A4/en not_active Withdrawn
- 2009-08-21 JP JP2011524034A patent/JP2012500805A/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070021443A1 (en) * | 2005-04-05 | 2007-01-25 | Ohlmeyer Michael J | Purine and imidazopyridine derivatives for immunosuppression |
| WO2008043031A1 (en) * | 2006-10-04 | 2008-04-10 | Pharmacopeia, Inc. | 6-substituted 2-(benzimidazolyl)purine and purinone derivatives for immunosuppression |
| US20080214580A1 (en) * | 2006-10-04 | 2008-09-04 | Pharmacopeia, Inc. | 6-substituted 2-(benzimidazolyl)purine and purinone derivatives for immunosuppression |
| WO2008051494A1 (en) * | 2006-10-19 | 2008-05-02 | Signal Pharmaceuticals, Llc | Heteroaryl compounds, compositions thereof, and use thereof as protein kinase inhibitors |
| US20080119496A1 (en) * | 2006-11-16 | 2008-05-22 | Pharmacopeia Drug Discovery, Inc. | 7-Substituted Purine Derivatives for Immunosuppression |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP2326647A4 * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2014139159A (ja) * | 2007-10-05 | 2014-07-31 | Verastem Inc | ピリミジン置換プリン誘導体 |
| US8501735B2 (en) | 2009-10-29 | 2013-08-06 | Palau Pharma, S.A. | N-containing heteroaryl derivatives as JAK3 kinase inhibitors |
| US8946257B2 (en) | 2009-10-29 | 2015-02-03 | Vectura Limited | N-containing heteroaryl derivatives as JAK3 kinase inhibitors |
| WO2011136264A1 (ja) * | 2010-04-28 | 2011-11-03 | 第一三共株式会社 | [5,6]複素環化合物 |
| US10183949B2 (en) | 2014-08-29 | 2019-01-22 | The University Of Tokyo | Pyrimidinone derivative having autotaxin-inhibitory activity |
| WO2017133657A1 (en) * | 2016-02-05 | 2017-08-10 | Savira Pharmaceuticals Gmbh | Pyridine and pyrimidine derivatives and their use in treatment, amelioration or prevention of influenza |
| WO2017133664A1 (en) * | 2016-02-05 | 2017-08-10 | Savira Pharmaceuticals Gmbh | Bicyclic pyridine and pyrimidine derivatives and their use in the treatment, amelioration or prevention of influenza |
| WO2023020604A1 (zh) * | 2021-08-20 | 2023-02-23 | 南京大美生物制药有限公司 | 一种五元含氮杂环并杂芳基类衍生物及其用途 |
| CN117751127A (zh) * | 2021-08-20 | 2024-03-22 | 南京大美生物制药有限公司 | 一种五元含氮杂环并杂芳基类衍生物及其用途 |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2010022358A8 (en) | 2011-03-24 |
| US20090069289A1 (en) | 2009-03-12 |
| EP2326647A1 (en) | 2011-06-01 |
| US7902187B2 (en) | 2011-03-08 |
| EP2326647A4 (en) | 2012-12-26 |
| CA2735048A1 (en) | 2010-02-25 |
| JP2012500805A (ja) | 2012-01-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7902187B2 (en) | 6-substituted 2-(benzimidazolyl)purine and purinone derivatives for immunosuppression | |
| US7919490B2 (en) | 6-substituted 2-(benzimidazolyl)purine and purinone derivatives for immunosuppression | |
| US7915268B2 (en) | 8-substituted 2-(benzimidazolyl)purine derivatives for immunosuppression | |
| CA2880251C (en) | Novel heteroaryl and heterocycle compounds, composition and methods thereof | |
| AU2018392616B2 (en) | Quinazolinones as PARP14 inhibitors | |
| US20080119496A1 (en) | 7-Substituted Purine Derivatives for Immunosuppression | |
| WO2009062059A2 (en) | Isomeric purinones and 1h-imidazopyridinones as pkc-theta inhibitors | |
| AU2006350748A2 (en) | 7-substituted purine derivatives for immunosuppression | |
| US20020091263A1 (en) | Biaryl substituted purine derivatives as potent antiproliferative agents | |
| EP3080131A1 (en) | Imidazopyridazine compounds useful as modulators of il-12, il-23 and/or ifn alpha responses | |
| US6667311B2 (en) | Nitrogen substituted biaryl purine derivatives as potent antiproliferative agents | |
| CA2604161A1 (en) | Purine and imidazopyridine derivatives for immunosuppression | |
| EP3541817A1 (en) | Imidazopyridazine modulators of il-12, il-23 and/or ifn-alpha | |
| WO2003022805A2 (en) | Heterocycle substituted purines as antiproliferative agents | |
| EP2078019A2 (en) | Purines as pkc-theta inhibitors | |
| WO2009048474A1 (en) | 2,7,9-substituted purinone derivatives for immunosuppression | |
| WO2004034985A2 (en) | Chemical compounds | |
| WO2007022305A2 (en) | 2-aminoimidazopyridines for treating neurodegenerative diseases | |
| WO2007030438A2 (en) | Aminopurine derivatives for treating neurodegenerative diseases | |
| WO2010008775A1 (en) | Aminopyridopyrazinone derivatives for treating neurodegenerative diseases |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09808894 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2011524034 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2735048 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009808894 Country of ref document: EP |