WO2010021343A1 - 観察装置および観察方法 - Google Patents

観察装置および観察方法 Download PDF

Info

Publication number
WO2010021343A1
WO2010021343A1 PCT/JP2009/064520 JP2009064520W WO2010021343A1 WO 2010021343 A1 WO2010021343 A1 WO 2010021343A1 JP 2009064520 W JP2009064520 W JP 2009064520W WO 2010021343 A1 WO2010021343 A1 WO 2010021343A1
Authority
WO
WIPO (PCT)
Prior art keywords
path length
optical path
length difference
light
reflected light
Prior art date
Application number
PCT/JP2009/064520
Other languages
English (en)
French (fr)
Inventor
豊彦 山内
秀直 岩井
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008211990A external-priority patent/JP5038994B2/ja
Priority claimed from JP2008212004A external-priority patent/JP5261071B2/ja
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to DE112009002073.9T priority Critical patent/DE112009002073B4/de
Priority to US13/059,860 priority patent/US9080861B2/en
Publication of WO2010021343A1 publication Critical patent/WO2010021343A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Definitions

  • the present invention relates to a method and an apparatus for observing an observation object.
  • Patent Document 1 As an apparatus for observing or measuring an object using an interference optical system, an apparatus disclosed in Patent Document 1 is known.
  • the apparatus disclosed in this document uses the fact that the amplitude peak of the interference fringe due to the reflected light from the object and the reflected light from the mirror depends on the optical path length difference between the two reflected lights. Observe or measure the object based on Japanese Patent Laid-Open No. 9-2108016
  • Patent Document 1 cannot obtain detailed information on objects such as cells.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an observation apparatus and an observation method capable of obtaining detailed information on an object such as a cell.
  • Patent Document 1 cannot display information effectively.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an observation apparatus and an observation method that can obtain detailed information of an object such as a cell and display it effectively. To do.
  • the observation apparatus includes (1) a light source that outputs fluorescent light, and (2) a light output from the light source that is branched into two to be output as first branched light and second branched light.
  • the first reflected light generated by being reflected by the mirror is input, and the second reflected light generated by reflecting the second branched light on the surface or inside of the observation object is input, and the first reflected light and the second reflected light are input.
  • An interference optical system that interferes with the reflected light and outputs the interference light
  • an imaging optical system that forms the interference light output from the interference optical system
  • (4) an image formed by the imaging optical system is an image formed by the imaging optical system.
  • An imaging unit that captures the interference light image, and (5) the optical path length from the light source to the imaging unit through the reference position of the observation object, and the optical path length from the light source to the imaging unit through the mirror And (6) the optical path length difference so that the optical path length difference is sequentially set to each target value.
  • a control unit for controlling the optical path length difference adjustment operation by the settling unit.
  • the observation apparatus further obtains the complex amplitude of the interference light image captured by the imaging unit with the optical path length difference being sequentially set to each target value by the optical path length difference adjusting means by the phase shift method, and obtaining this Based on the absolute value of the change amount of the complex amplitude per fixed time and the absolute value of the complex amplitude, the change amount of the phase component of the second reflected light generated on the surface or inside of the observation object per fixed time is calculated.
  • An analysis unit to be obtained is provided.
  • An observation method uses a light source, an interference optical system, an imaging optical system, an imaging unit, an optical path length difference adjusting unit, and a control unit as described above, and an optical path length difference by an optical path length difference adjusting unit by a phase shift method.
  • Is sequentially set to each target value and the complex amplitude of the interference light image captured by the imaging unit is obtained, and based on the absolute value of the amount of change of the complex amplitude per fixed time and the absolute value of the complex amplitude
  • the amount of change per phase of the phase component of the second reflected light generated on the surface or inside of the observation object is obtained.
  • the observation apparatus preferably further includes a display unit that displays an image of the spatial distribution of the amount of change per fixed time of the phase component of the second reflected light obtained by the analysis unit.
  • a display unit that displays an image of the spatial distribution of the amount of change per fixed time of the phase component of the second reflected light obtained by the analysis unit.
  • the analysis unit obtains a change amount per phase of the phase component of the second reflected light for each of a plurality of slice surfaces of the observation target.
  • the observation apparatus preferably further includes an optical path length difference detecting unit that detects the optical path length difference, and the optical path length difference adjusting unit adjusts the optical path length difference based on a detection result by the optical path length difference detecting unit. is there.
  • an optical path length difference detecting unit that detects an optical path length difference is further used, and the optical path length difference adjusting unit is adjusted based on a detection result by the optical path length difference detecting unit. is there.
  • the optical path length difference adjusting means includes a first moving means for moving one of the observation object and the mirror, and the observation object. And a second moving means for moving the other second object among the mirrors, adjusting the optical path length difference by the moving operation by the first moving means or the second moving means, and (b) the first moving means, (C) the second moving means is located between the interference optical system and the second object, and has a position accuracy higher than that of the second moving means.
  • the second object is moved while maintaining the optical system, and (d) the eaves controller controls the first moving means so that the moving amount by the first moving means is within a predetermined range within the operating range at each target value of the optical path length difference.
  • the moving operation by the moving means is performed continuously or intermittently, During the movement operation by the moving means is also preferable that feedback-controls the moving operation by the first moving means so that the optical path length difference becomes the target value.
  • the observation object includes cells.
  • the observation apparatus includes (1) a light source that outputs fluorescent light, and (2) a light output from the light source that is branched into two to be output as first branched light and second branched light.
  • the first reflected light generated by being reflected by the mirror is input, and the second reflected light generated by reflecting the second branched light on the surface or inside of the observation object is input, and the first reflected light and the second reflected light are input.
  • An interference optical system that interferes with reflected light and outputs the interference light
  • an imaging optical system that forms an image of the interference light output from the interference optical system
  • (4) an image formed by the imaging optical system is an image formed by the imaging optical system.
  • An imaging unit that captures the interference light image, and (5) the optical path length from the light source to the imaging unit through the reference position of the observation object, and the optical path length from the light source to the imaging unit through the mirror
  • Optical path length difference adjusting means for adjusting the optical path length difference, and (6) optical path length difference adjustment so that the optical path length difference sequentially reaches each target value.
  • a control unit for controlling the optical path length difference adjusting operation by means.
  • the observation apparatus further includes (7) an observation based on an interference light image picked up by the image pickup unit in which the optical path length difference is sequentially set to each target value by the optical path length difference adjusting means by the phase shift method.
  • the analysis unit for obtaining the intensity component and phase component of the second reflected light generated on the surface or inside of the object and the phase component of the second reflected light obtained by the (8) analysis unit are reflected in the hue, and the analysis unit A display unit that displays an image of the second reflected light in the HSV color space by reflecting the obtained intensity component of the second reflected light in saturation or brightness.
  • An observation method uses a light source, an interference optical system, an imaging optical system, an imaging unit, an optical path length difference adjusting unit, and a control unit as described above, and an optical path length difference by an optical path length difference adjusting unit by a phase shift method.
  • the second reflected light is displayed as an image in the HSV color space by reflecting the phase component of the two reflected light in the hue and the intensity component of the second reflected light in the saturation or brightness.
  • the analysis unit obtains the intensity component and phase component of the plurality of sets of second reflected light in time series
  • the display unit obtains the intensity of the plurality of sets of second reflected light obtained by the analysis unit. It is preferable to display these second reflected lights in time series in the HSV color space based on the component and the phase component.
  • the intensity component and phase component of a plurality of sets of second reflected light are obtained in time series, and the HSV color space is obtained based on the obtained intensity components and phase components of the plurality of sets of second reflected light. Therefore, it is preferable to display the images of these second reflected lights in time series.
  • the analysis unit obtains the intensity component and the phase component of the second reflected light for each of the plurality of slice planes of the observation object
  • the display unit obtains a plurality of sets of second obtained by the analysis unit. It is preferable to display an image of the second reflected light in the HSV color space based on the intensity component and the phase component of the reflected light.
  • the observation method according to the present invention obtains the intensity component and phase component of the second reflected light for each of the plurality of slice planes of the observation object, and based on the obtained intensity component and phase component of the plurality of sets of second reflected light. It is preferable to display an image of these second reflected lights in the HSV color space.
  • the observation apparatus preferably further includes an optical path length difference detecting unit that detects the optical path length difference, and the optical path length difference adjusting unit adjusts the optical path length difference based on a detection result by the optical path length difference detecting unit. is there.
  • an optical path length difference detecting unit that detects an optical path length difference is further used, and the optical path length difference adjusting unit is adjusted based on a detection result by the optical path length difference detecting unit. is there.
  • the optical path length difference adjusting means includes a first moving means for moving one of the observation object and the mirror, and the observation object. And a second moving means for moving the other second object among the mirrors, adjusting the optical path length difference by the moving operation by the first moving means or the second moving means, and (b) the first moving means, (C) the second moving means is located between the interference optical system and the second object, and has a position accuracy higher than that of the second moving means.
  • the second object is moved while maintaining the optical system, and (d) the control unit sets the first moving means so that the movement amount by the first moving means is within a predetermined range within the operating range at each target value of the optical path length difference. 2
  • the moving operation by the moving means is performed continuously or intermittently, It is preferable that the optical path length difference during their movement to the feedback control of the movement operation by the first moving means so that the target value by the motion means.
  • the observation object includes cells.
  • FIG. 6 is a diagram for explaining an optical path length difference adjusting operation by a piezo actuator 71 and a stage 81. It is a flowchart explaining the 1st operation
  • FIG. 6 is a diagram showing an example of image display on the display unit 53.
  • FIG. 6 is a diagram showing an example of image display on the display unit 53.
  • FIG. It is a figure which shows the intensity component R (x, y) of an interference light image. It is a figure which shows the example of the image display by the display part 53 in case the intensity
  • FIG. 25 is a diagram showing the image (original pseudo color display image) shown in FIG. 24 broken down into R, G, and B components. It is a figure which decomposes
  • FIG. 1 is a configuration diagram of an observation apparatus 1 according to the present embodiment.
  • the observation apparatus 1 shown in this figure is for observing the surface or the inside of an observation object 9, and includes light sources 11 and 12, lenses 21 to 25, an aperture 31, an optical multiplexer 41, an optical demultiplexer 42, A half mirror 43, an imaging unit 51, an analysis unit 52, a display unit 53, a light receiving unit 61, a displacement detection unit 62, a piezo actuator 71, a drive unit 72, a mirror 73, a stage 81, a drive unit 82, and a control unit 90 are provided.
  • the light source 11 outputs light ⁇ 1 having a relatively short coherent length, and is, for example, a tungsten lamp capable of outputting broadband light having a wavelength band of 600 nm to 900 nm.
  • the coherence length of the light ⁇ 1 output from the light source 11 is preferably 5 ⁇ m or less.
  • the light source 12 outputs light ⁇ 2 having a relatively long coherent length, and is a semiconductor laser light source that outputs laser light having a wavelength of 1.31 ⁇ m, for example.
  • the optical multiplexer 41 reflects the light ⁇ 1 output from the light source 11 and reached through the lens 21 and the aperture 31, and transmits the light ⁇ 2 output from the light source 12 and combines them. Wave and output to the lens 22.
  • the half mirror 43 divides the light ⁇ 1 and ⁇ 2 that have been combined by the optical multiplexer 41 and arrived through the lens 22 into a first branched light and a second branched light, and the first branched light to the lens 23.
  • the second branched light is output to the lens 24.
  • the half mirror 43 inputs the first reflected light, which is generated by the first branched light being reflected by the mirror 73 through the lens 23, again through the lens 23, and the second branched light is input through the lens 24 to the observation object 9.
  • Second reflected light generated by being reflected on the surface or inside of the lens is input again through the lens 24, and the first reflected light and the second reflected light are caused to interfere with each other, and the interference light is output to the lens 25. That is, the half mirror 43 is an element constituting an interference optical system.
  • the optical demultiplexer 42 receives the light output from the half mirror 43 and passed through the lens 25, reflects the light ⁇ 1 among them, outputs the light ⁇ 2 to the imaging unit 51, transmits the light ⁇ 2 , and outputs it to the light receiving unit 61.
  • the lenses 23 to 25 are elements constituting an imaging optical system that forms an image on the imaging surface of the imaging unit 51 of the interference light ⁇ 1 output from the half mirror 43 and demultiplexed by the optical demultiplexer 42.
  • the imaging unit 51 captures the image of the formed interference light ⁇ 1 and is, for example, a CCD camera.
  • the light receiving unit 61 detects the intensity of the light ⁇ 2 output from the half mirror 43 and demultiplexed by the optical demultiplexer 42, and is, for example, a photodiode.
  • the optical path length difference from the optical path length is ⁇ L.
  • the reference position of the observation object 9 may be the highest position of the observation object 9 (the position closest to the lens 24), or a stage on which the observation object 9 is placed, or an intermediate point between them. Or other positions.
  • the intensity of the light ⁇ 2 reaching the light receiving unit 51 as shown in FIG. Changes periodically in a relatively wide optical path length difference ⁇ L.
  • the intensity of the light ⁇ 1 reaching the imaging unit 61 as shown in FIG. Changes periodically within a relatively narrow optical path length difference ⁇ L, and the closer the optical path length difference ⁇ L is to 0, the greater the amplitude of interference.
  • the analysis unit 52 acquires an interference light image of the light ⁇ 1 captured by the imaging unit 51 when the optical path length difference is set to each of a plurality of target values.
  • This interference light image is generated by the mirror 73 when the optical path length from the half mirror 43 to the mirror 73 and the optical path length from the half mirror 43 to a certain slice surface of the observation object 9 are substantially equal to each other. It is an image due to interference between the reflected light and the second reflected light generated on the slice surface (and a range of about the coherence length of the light ⁇ 1 centered on the slice surface).
  • the analysis unit 52 performs a predetermined analysis based on the acquired interference light image.
  • the display unit 53 displays the result of analysis by the analysis unit 52 as an image. The analysis by the analysis unit 52 and the image display by the display unit 53 will be described later.
  • the observation object 9 is preferably a translucent cell 93 placed on a thin film 92 formed on the main surface of a substantially flat substrate 91, for example, as shown in FIG.
  • the thin film 92 is preferably used as a reference surface in feedback control described later by reflecting the light ⁇ 2 with a high reflectance.
  • a slice plane S is set as a cross section of the cell 93 as the observation object 9.
  • the slice plane S is a plane perpendicular to the optical axis of the lens 24, and its position is variable with respect to the optical axis direction.
  • the displacement detector 62 obtains the optical path length difference (or the change amount of the optical path length relative to a certain reference value) from the change in the intensity of the light ⁇ 2 detected by the light receiver 61. That is, the light source 12, the light receiving unit 61, and the displacement detecting unit 62 are elements constituting optical path length difference detecting means for detecting the optical path length difference. Note that the optical path length difference can be detected more accurately by applying minute vibrations to the mirror 73 by the piezo actuator 71 and modulating the optical signal with a certain optical path length difference as a center.
  • the piezo actuator 71, the drive unit 72, the stage 81, and the drive unit 82 are elements constituting optical path length difference adjusting means for adjusting the optical path length difference.
  • the piezo actuator 71 is driven by the drive unit 72 to move the mirror 73 in a direction parallel to the optical axis of the optical system between the half mirror 43 and the mirror 73. At this time, the optical system between the half mirror 43 and the mirror 73 is maintained without moving the lens 23.
  • the focus surface of the lens 23 coincides with the reflection surface of the mirror 73 with an accuracy of the depth of focus (for example, 0.5 ⁇ m).
  • the stage 81 is driven by the drive unit 82 to move the observation object 9 in a direction parallel to the optical axis of the optical system between the half mirror 43 and the observation object 9. At this time, the optical system between the half mirror 43 and the observation object 9 is maintained without moving the lens 24. That is, the distance from the half mirror 43 to the focus surface on the observation object 9 side is maintained.
  • the operating range of the piezo actuator 71 (first moving means) is narrower than the operating range of the stage 81 (second moving means). Further, the positional accuracy of the piezo actuator 71 is higher than the positional accuracy of the stage 81.
  • the drive unit 82 for moving the stage 81 for example, a long-distance moving piezo actuator or a rotation mechanism using a stepping motor can be used.
  • the control unit 90 uses the drive units 72 and 82 so that the optical path length difference sequentially becomes a plurality of target values, and the optical path by the piezo actuator 71 and the stage 81. Controls the length difference adjustment operation.
  • the controller 90 causes the stage 81 to move continuously or intermittently so that the amount of movement by the piezo actuator 71 falls within a predetermined range within the operating range at each of the plurality of target values.
  • the control unit 90 also feeds back the movement operation by the piezo actuator 71 so that the optical path length difference becomes each target value based on the detection result of the optical path length difference by the displacement detection unit 62 even during the movement operation by the stage 81. Control.
  • FIG. 4 is a diagram for explaining an optical path length difference adjusting operation by the piezo actuator 71 and the stage 81.
  • an optical system between the half mirror 43 and the mirror 73 is shown
  • an optical system between the half mirror 43 and the observation object 9 is shown
  • stage 81 is shown.
  • the distance between the half mirror 43 and the lens 23 and x 1, the distance between the lens 23 and the mirror 73 and x 2.
  • the interval between the half mirror 43 and the lens 24 is y 1
  • the interval between the lens 24 and the observation object 9 is y 2 . If the observation object 9 has the configuration shown in FIG.
  • y 2 is the distance from the lens 24 to a certain slice surface of the observation object 9.
  • the interval x 2 is adjusted by a moving operation by the piezo actuator 71.
  • the interval y 2 is adjusted by the moving operation by the stage 81.
  • the optical path length difference ⁇ L can be adjusted by changing the interval (x 1 + x 2 ) or the interval (y 1 + y 2 ) by the piezo actuator 71 or the stage 81.
  • the optical path length difference can be adjusted with a wide dynamic range because the operating range of the stage 81 is relatively wide.
  • the position accuracy of the stage 81 is relatively low, the optical path length difference cannot be adjusted with high accuracy, and therefore the shape or the like of the observation object 9 cannot be measured with high accuracy.
  • the difference between the focal distance and the distance x 2 of the lens 23 becomes large, in which case The imaging surface of the interference light by the imaging optical system and the imaging surface of the imaging unit 51 are greatly displaced from each other, the interference light image captured by the imaging unit 51 becomes unclear, the shape of the observation object 9, etc. Cannot be measured with high accuracy.
  • the control unit 90 in order to measure the surface or the inside of the observation object with high accuracy and a wide dynamic range, the control unit 90 has a movement amount by the piezo actuator 71 within the operation range at each of the plurality of target values.
  • the moving operation by the stage 81 is performed continuously or intermittently so as to be within a predetermined range.
  • the control unit 90 also feeds back the movement operation by the piezo actuator 71 so that the optical path length difference becomes each target value based on the detection result of the optical path length difference by the displacement detection unit 62 even during the movement operation by the stage 81. Control.
  • two preferable operation modes of the piezo actuator 71 and the stage 81 will be described.
  • FIG. 5 is a flowchart illustrating a first operation mode of the observation apparatus 1 according to the present embodiment.
  • FIG. 6 is a diagram showing temporal changes of the interval x 2 , the interval y 2, and the optical path length difference ⁇ (y 1 + y 2 ) ⁇ (x 1 + x 2 ) ⁇ in the first operation mode.
  • the control unit 90 causes the stage 81 to continuously perform the moving operation via the drive unit 82.
  • step S ⁇ b> 11 the control unit 90 starts a moving operation by the stage 81 via the driving unit 82.
  • the moving speed of the stage 81 is “ ⁇ y / ⁇ t ”.
  • the distance y 2 between the lens 24 and the observation object 9 changes substantially linearly with the passage of time.
  • the position accuracy of the stage 81 is relatively low, the temporal variation of the interval y 2 is relatively large.
  • step S12 the control unit 90 feedback-controls the moving operation by the piezo actuator 71 via the drive unit 72 so that the optical path length difference becomes the target value.
  • the interval x 2 is adjusted by the piezo actuator 71, and the optical path length difference ⁇ (y 1 + y 2 ) ⁇ (x 1 + x 2 ) ⁇ is set with high accuracy.
  • step S13 the control unit 90 determines whether or not a certain time ⁇ t has elapsed since the optical path length difference was set to a certain target value. When the certain time ⁇ t has elapsed, the process proceeds to the next step S14. In step S14, the control unit 90 determines whether or not there is a next target value. If there is a next target value, the process proceeds to the next step S15, and if there is no next target value, the process in step S18. Proceed to
  • step S15 the control unit 90, before the optical path length difference shifts to the next target value, it is determined whether the amount of movement x 2 by the piezoelectric actuator 71 at the target value after the shifting is out of a predetermined range . Then, the control unit 90, if the amount of movement x 2 is determined to be outside the predetermined range the process proceeds to the step S17 through step S16, also, determines the amount of movement x 2 is to be within a predetermined range In this case, the process immediately proceeds to step S17. In step S16, the control unit 90, the amount of movement x 2 by the piezoelectric actuator 71 to adjust the speed of the moving operation by the stage 81 so as to fall within a predetermined range after the transition to the next target value.
  • step S17 the control unit 90 sets the optical path length difference to the next target value, and moves the piezo actuator 71 stepwise by ⁇ x via the drive unit 72. Thereafter, returning to the process of step S12, the control unit 90 feedback-controls the movement operation by the piezo actuator 71 via the drive unit 72 so that the optical path length difference becomes a new target value.
  • step S ⁇ b> 18 the control unit 90 ends the moving operation by the stage 81 via the driving unit 82.
  • the control unit 90 continuously performs the movement operation by the stage 81, and when the optical path length difference is shifted from a certain target value to the next target value, by the piezo actuator 71.
  • the moving operation is performed stepwise, and during the period in which the optical path length difference is set to a certain target value, the moving operation by the piezo actuator 71 is feedback-controlled so that the optical path length difference becomes the target value.
  • the control unit 90 controls the moving operation of the piezo actuator 71 and the stage 81, thereby making use of both the wide dynamic range of the moving operation of the stage 81 and the high positional accuracy of the moving operation of the piezo actuator 71.
  • the surface shape and the like of the observation object 9 can be measured with high accuracy and a wide dynamic range.
  • the control unit 90 causes the movement amount by the piezo actuator 71 to be within a predetermined range at the target value after the shift.
  • the speed of the moving operation by the stage 81 is adjusted so that the moving amount falls within the predetermined range (steps S15 and S16).
  • the control unit 90 adjusts the moving speed of the stage 81, so that even if the moving speed of the stage 81 and the accuracy of the target value change time interval ⁇ t are insufficient, the moving amount by the piezo actuator 71 is increased.
  • Step S15 and S16 are not necessary, and it is only necessary to proceed to Step S17 immediately after Step S14.
  • FIG. 7 is a flowchart for explaining a second operation mode of the observation apparatus 1 according to the present embodiment.
  • FIG. 8 is a diagram showing temporal changes of the interval x 2 , the interval y 2, and the optical path length difference ⁇ (y 1 + y 2 ) ⁇ (x 1 + x 2 ) ⁇ in the second operation mode.
  • the control unit 90 causes the stage 81 to intermittently perform the moving operation via the drive unit 82.
  • step S21 the control unit 90 feedback-controls the moving operation by the piezo actuator 71 via the drive unit 72 so that the optical path length difference becomes a target value.
  • the stage 81 is not moving, but the temporal variation of the interval y 2 is relatively large because the position accuracy of the stage 81 is relatively low.
  • the distance x 2 is adjusted by the piezo actuator 71, and the optical path length difference ⁇ (y 1 + y 2 ) ⁇ (x 1 + x 2 ) ⁇ is set with high accuracy.
  • step S22 the control unit 90 determines whether or not a certain time ⁇ t has elapsed since the optical path length difference was set to a certain target value. When the certain time ⁇ t has elapsed, the process proceeds to the next step S23. In step S23, the control unit 90 determines whether or not there is a next target value. If there is a next target value, the process proceeds to the next step S24, and ends if there is no next target value.
  • step S24 the control unit 90, before the optical path length difference shifts to the next target value, it is determined whether the amount of movement x 2 by the piezoelectric actuator 71 at the target value after the shifting is out of a predetermined range . If the control unit 90 determines that the movement amount x 2 is out of the predetermined range, the control unit 90 proceeds to step S26 through step S25, and determines that the movement amount x 2 is within the predetermined range. In this case, the process immediately proceeds to step S26.
  • the control unit 90 stops after the amount of movement x 2 by the piezoelectric actuator 71 after moving to the next target value moves the stage 81 to be within a predetermined range, also the stage 81 is moved During the period, the movement operation by the piezo actuator 71 is controlled so that the optical path length difference at that time becomes each target value. Note that when the movement of the stage 81 at this time, when the amount of movement x 2 by the piezoelectric actuator 71 exceeds the upper limit of the predetermined range in the next target value, the amount of movement x 2 by the piezoelectric actuator 71 is the lower limit of the predetermined range Try to be close.
  • the amount of movement x 2 by the piezoelectric actuator 71 exceeds the lower limit of the predetermined range in the next target value, the amount of movement x 2 by the piezoelectric actuator 71 is set to be near the upper limit of the predetermined range.
  • step S26 the control unit 90 sets the optical path length difference to the next target value, and moves the piezo actuator 71 stepwise by ⁇ x via the drive unit 72. Thereafter, returning to the process of step S21, the control unit 90 feedback-controls the moving operation by the piezo actuator 71 via the drive unit 72 so that the optical path length difference becomes a new target value.
  • the control unit 90 feedback-controls the movement operation by the piezo actuator 71 so that the optical path length difference becomes each target value.
  • the control unit 90 controls the moving operation of the piezo actuator 71 and the stage 81, thereby making use of both the wide dynamic range of the moving operation of the stage 81 and the high positional accuracy of the moving operation of the piezo actuator 71.
  • the surface shape and the like of the observation object 9 can be measured with high accuracy and a wide dynamic range. If the position accuracy of the stage 81 is poor, the second operation mode is more effective than the first operation mode.
  • the second reflected light E (x, y) reflected on the surface or inside of the observation object 9 and reaching the imaging surface of the imaging unit 51 is an intensity component R (x, y) and a phase component ⁇ (x, y). Is represented by the following formula (1).
  • the interference image picked up by the image pickup unit 51 is an image of the observation object 9 in which the second reflected light is generated such that the optical path lengths of the first reflected light and the second reflected light coincide with each other in the degree of the coherence length of the light ⁇ 1 . It reflects information on the slice plane (and a range of about the coherence length of light ⁇ 1 centered on the slice plane). Note that x and y represent coordinate values of two orthogonal axes on the slice plane.
  • the intensity component R (x, y) of the second reflected light E (x, y) represents the reflectance of the light ⁇ 1 on the slice surface, that is, information on the presence or absence of a reflector.
  • the phase component ⁇ (x, y) of the second reflected light E (x, y) represents information on the position of the reflector in the z direction (direction parallel to the optical axis) on the slice surface. For example, when a reflector (for example, a cell membrane, a nucleolus membrane, a lysosomal membrane, etc.) existing on the slice surface of the observation object 9 moves by ⁇ z in the z direction, it reaches the imaging surface of the imaging unit 51.
  • a reflector for example, a cell membrane, a nucleolus membrane, a lysosomal membrane, etc.
  • phase component ⁇ (x, y) of the second reflected light E (x, y) changes by 4 ⁇ n 1 ⁇ z / ⁇ 1 .
  • n 1 is the refractive index of the observation object 9. That is, the change amount of the phase component ⁇ (x, y) represents the change amount of the position of the reflector in the z direction on the slice plane.
  • Such an intensity component R (x, y) and phase component ⁇ (x, y) of the second reflected light E (x, y) are obtained by the phase shift method.
  • the phase shift method, the piezoelectric actuator 71 is driven shifted optical path length difference ⁇ L is by lambda 1/4 under the control of the control unit 90 and drive unit 72 sequentially by the imaging unit 51 four interference light image I 1 (x , y), I 2 (x, y), I 3 (x, y), I 4 (x, y).
  • ⁇ 1 is the center wavelength of the low-coherent light output from the light source 11.
  • the sine component A (x, y) and cosine component B (x, y) of the interference light image are obtained according to the following equation (2).
  • the intensity component R (x, y) of the second reflected light E (x, y) according to the following equation (3): y) and a phase component ⁇ (x, y) are obtained.
  • the sine component A (x, y) and the cosine component B (x, y) are the intensity component R (x, y) and phase component ⁇ (x, y) of the second reflected light E (x, y).
  • the complex amplitude C (x, y) of the interference light image is expressed by the following equation (5) or (6).
  • the analysis unit 52 obtains the complex amplitude C (x, y) of such an interference light image.
  • FIG. 9 is a diagram illustrating a sine component A (x, y) of the interference light image.
  • FIG. 10 is a diagram illustrating the cosine component B (x, y) of the interference light image.
  • FIG. 11 is a diagram illustrating the intensity component R (x, y) of the interference light image.
  • FIG. 12 is a diagram showing the phase component ⁇ (x, y) of the interference light image.
  • phase shift method there are various improved algorithms for the phase shift method, but any algorithm may be used.
  • any algorithm may be used. For example, according to an algorithm known as Schwider-Hariharan Algorithm, based on the five interference light images, the sine component A (x, y) and cosine component B (x, y) of the interference light image according to the following equation (7) Further, the intensity component R (x, y) and the phase component ⁇ (x, y) of the second reflected light E (x, y) may be obtained from these.
  • an arbitrary phase shift algorithm can be used.
  • the improved algorithm of the phase shift method according to the above equation (7) has advantages such as being robust against the error of the phase shift amount. This is preferably used when the coherence length of the light ⁇ 1 is relatively short as in the embodiment.
  • FIG. 14 is a diagram illustrating a temporal change in the amount of phase shift when a plurality of sets of sine components A (x, y) and cosine components B (x, y) are acquired in time series.
  • the piezoelectric actuator 71 is driven optical path length difference ⁇ L is shifted by lambda 1/4 every predetermined time by the control by the control unit 90 and drive unit 72, the phase shift amount is zero and 3 ⁇ The increase / decrease is repeated between 1/4.
  • the first A 1 , B 1 , R 1 and ⁇ 1 are obtained by using the first interference optical image I 1 to the fourth interference optical image I 4 .
  • the second A 2 , B 2 , R 2 and ⁇ 2 are obtained by using the fourth interference optical image I 4 to the seventh interference optical image I 1 .
  • the third A 3 , B 3 , R 3 and ⁇ 3 are obtained by using the seventh interference optical image I 1 to the tenth interference optical image I 4 .
  • the sine component An and cosine component B n of the interference light image, the intensity component R n of the second reflected light, and the phase component ⁇ n are sequentially obtained at regular time intervals.
  • these are the sine component A (x, y, n), cosine component B (x, y, n), intensity component R (x, y, n) and phase component ⁇ (x, y, n) It may be written.
  • n in the notation of each component indicates that the component is obtained n-th and corresponds to a time variable.
  • the optical path length from the half mirror 43 to the mirror 73 and the optical path length from the half mirror 43 to a certain slice surface of the observation object 9 are substantially equal to each other.
  • it represents information on the position of the reflector in the z direction (direction parallel to the optical axis) on the slice surface.
  • the change amount of the phase component ⁇ (x, y, n) represents the change amount of the position of the reflector in the z direction on the slice surface. Therefore, as shown in FIG. 15, when the analysis unit 52 obtains a plurality of phase components ⁇ (x, y, n) at regular time intervals, these are displayed in time series by the display unit 53 (moving images). Display), it is possible to observe the change in the position of the reflector in the z direction on the slice surface of the observation object 9.
  • the observation of the change in the position of the reflector in the z direction on the sliced surface of the observation object 9 is based on a plurality of phase components ⁇ (x, y, n) obtained at regular time intervals as follows. It is possible to use processing techniques. For each position (x, y), the phase component ⁇ (x, y, n), which usually has a value only in the range of 2 ⁇ , is not suitable for quantitative evaluation as it is. As shown in FIG. 16, a process of connecting portions where the phases are discontinuous when viewed in time series (that is, phase unwrapping) is performed.
  • phase component before phase unwrapping is expressed as ⁇ (x, y, n) in lower case
  • phase component after phase unwrapping is expressed as ⁇ (x, y, n) in upper case
  • FIG. 16A shows how the phase component ⁇ (x, y, n) changes with time before phase unwrapping
  • FIG. 4B shows how the phase component ⁇ (x, y, n) changes with time after phase unwrapping.
  • N phase components ⁇ (x, y, 1) to ⁇ (x, y, N) after N phase unwrapping are obtained in order at regular time intervals.
  • any one of the following formulas (8) to (11) By processing, the state of the position change in the z direction of the reflector on the slice surface of the observation object 9 is analyzed for each position (x, y).
  • the following equation (8) is the width (maximum value ⁇ minimum) of the position change in the z direction of the reflector at each position (x, y) within the time when N phase components ⁇ (x, y, n) are acquired. Value).
  • Equation (9) shows the standard deviation of the magnitude of the position change in the z direction of the reflector at each position (x, y) within the time when N phase components ⁇ (x, y, n) are acquired. It represents.
  • Each of the following formulas (10) and (11) represents the magnitude of the position change in the z direction of the reflector at each position (x, y) per predetermined time ( ⁇ n ⁇ t 0 ).
  • t 0 represents an acquisition time interval of each phase component ⁇ (x, y, n).
  • the N phase components ⁇ (x, y, 1) to ⁇ (x, y, N) after phase unwrapping are Fourier-transformed, and the z-direction of the reflector
  • a frequency analysis of the position change may be performed.
  • the result is displayed on the display unit 53 as an image. Is done.
  • the analysis result by the analysis unit 52 is displayed as an image in gray scale or pseudo color.
  • the observation of the change in the position of the reflector in the z direction on the slice surface of the observation object 9 is as follows based on the complex amplitudes C (x, y, n) of a plurality of interference light images acquired at regular time intervals. It is also possible to use a mathematical processing method such as The n-th obtained complex amplitude C (x, y, n) is expressed by the following equation (12) or (13). Then, the slice 52 of the observation object 9 is processed by the analysis unit 52 based on the N complex amplitude images C (x, y, 1) to C (x, y, N) according to the following equation (14). The state of the position change of the reflector in the z direction is analyzed for each position (x, y).
  • FIG. 17 is a diagram illustrating the complex amplitude C (x, y, n) in the complex plane.
  • each of the complex amplitude C (x, y, n) and the complex amplitude C (x, y, n- ⁇ n) is shown as an end point of a vector starting from the origin.
  • the denominator of the above equation (14) represents the average value of the intensity components R (x, y, n). Therefore, the index ⁇ dev (x, y) in the above equation (14) represents the average value of the amount of change in the phase component ⁇ (x, y, n) per predetermined time ( ⁇ n ⁇ t 0 ). That is, it is suggested that a reflector having high mobility exists at a position where the value of the index ⁇ dev (x, y) is large.
  • the analysis unit 52 causes the absolute value of the change amount of the complex amplitude C (x, y, n) per fixed time and the absolute value of the complex amplitude C (x, y, n) (that is, the intensity component).
  • R (x, y, n)) and the amount of change per phase of the phase component ⁇ (x, y, n) of the second reflected light generated on the slice surface of the observation object 9 is obtained,
  • the state of the position change of the reflector in the z direction on the slice surface of the observation object 9 is obtained for each position (x, y).
  • R no is a constant that does not depend on coordinates indicating the magnitude of noise, and is given by the following equation (17).
  • (x 0 , y 0 ) is the coordinates of a point where it can be considered that there is no significant interference signal in the image.
  • (x 0 , y 0 ) can be selected as a position where a cell does not exist in a slice plane that can be regarded as being sufficiently far from the substrate compared to the coherence length.
  • FIG. 18 shows ⁇ dev calculated by the equations (14) and (16) when the noise term exists.
  • the result of analysis by the analysis unit 52 is displayed as an image on the display unit 53.
  • the analysis result by the analysis unit 52 is displayed as an image in gray scale or pseudo color.
  • FIGS. 19 to 20 are diagrams showing examples of image display on the display unit 53.
  • FIG. The images shown in FIGS. 19 and 20 are obtained according to the above equation (16).
  • FIG. 19 is a diagram showing an image in which a live HeLa cell is used as the observation object 9 and the state of the position change in the z direction of the reflector on the slice plane is represented in gray scale.
  • FIG. 20 is a diagram illustrating an image in which the state of the positional change in the z direction of the reflector on the slice surface is expressed in gray scale using the fixed HeLa cell as the observation object 9.
  • N is set to 66
  • ⁇ n is set to 2
  • t 0 is set to 1.2 seconds.
  • HeLa cells were fixed with cell membranes and contents by treatment with paraformaldehyde.
  • FIG. 21 is a diagram showing an image of the intensity component R (x, y, n) of the fixed HeLa cell shown in FIG.
  • phase unwrapping is a numerical process that makes phase discontinuities continuous.
  • index ⁇ dev which may generate artifacts
  • the observation device 1 As described above, according to the observation device 1 according to the present embodiment or the observation method according to the present embodiment, detailed information of the observation target 9 such as a cell can be obtained. This enables imaging of intracellular activity and is expected to be applied to cell research, drug discovery and regenerative medicine.
  • the amount of change per phase of the phase component ⁇ (x, y, n) of the second reflected light is obtained by the analysis unit 52 in the same manner as described above for each of the plurality of slice planes of the observation object 9.
  • a change in the position of the reflector in the z direction is obtained for each position (x, y).
  • the piezoelectric actuator 71 not only the piezoelectric actuator 71 but also the stage 81 is used, and the optical path length difference ⁇ (y 1 + y 2 ) ⁇ (x 1 + x 2 ) ⁇ is adjusted stepwise as shown in FIG. 6 or FIG.
  • a plurality of complex amplitudes C (x, y, n) may be acquired such that the phase shift amount changes with time as shown in FIG. In this way, the tomographic observation of the observation object 9 becomes possible.
  • phase component ⁇ (x, y, n) of the second reflected light is image-displayed by the display unit 53 in gray scale or pseudo color, so that the position of the reflector in the slice plane of the observation object 9 in the z direction. The state of change can be observed. However, in this case, the phase component ⁇ (x, y, n) is displayed in gray scale or pseudo color regardless of the magnitude of the intensity component R (x, y, n). A position where (x, y, n) is small (that is, a position where the reflectance of the light ⁇ 1 is small) becomes noise.
  • the position where the amount of change in the phase component ⁇ (x, y, n) is large that is, the position of the reflector in the slice direction of the observation object 9 in the z direction. It is difficult to confirm the position where the amount of change is large.
  • the intensity component R (x, y, n) and the phase component ⁇ (x, y, n) of the second reflected light obtained by the analyzing unit 52 are displayed on the display unit 53 as follows. . That is, the phase component ⁇ (x, y, n) of the second reflected light obtained by the analyzing unit 52 is reflected on the hue H by the display unit 53, and the intensity component of the second reflected light obtained by the analyzing unit 52.
  • R (x, y, n) is reflected in the saturation S or the brightness V, and the second reflected light is displayed as an image in the HSV color space.
  • the hue H in the HSV color space is a parameter indicating the color type in the range of 0 to 360. Therefore, for example, if the phase component ⁇ (x, y, n) can take a value in the range of ⁇ to + ⁇ , the hue H is an expression of “360 ⁇ [ ⁇ + ⁇ (x, y, n)] / 2 ⁇ ”. It is represented by
  • the saturation S in the HSV color space is a parameter indicating the vividness of the color in the range of 0 to 1.
  • the brightness V in the HSV color space is a parameter indicating the brightness of the color in the range of 0 to 1. Therefore, for example, the intensity component R (x, y, n) normalized so that the maximum value is 1 is used, and the saturation S or brightness V is the normalized intensity component R (x, y, n). y, n) or represented by the expression “[1 + R (x, y, n)] / 2”.
  • the correspondence between the two is set such that the greater the intensity component R (x, y, n), the greater the saturation S or brightness V.
  • the intensity component R (x, y, n) is represented by only one parameter of saturation S and brightness V, the other parameter is set to a fixed value (for example, value 1).
  • the phase component ⁇ (x, y, n) is represented by the hue H
  • the intensity component R (x, y, n) is represented by the saturation S or the lightness V
  • the HSV color is represented in a common image.
  • a specific example of image display by the display unit 53 is as follows.
  • the HSV color space is represented by the following (20) by the phase component ⁇ (x, y, n) and the intensity component R (x, y, n).
  • the intensity component R (x, y, n) is reflected only in the saturation S
  • the HSV color space is represented by the following (21) by the phase component ⁇ (x, y, n) and the intensity component R (x, y, n).
  • the HSV color space has a phase component ⁇ (x, y, n) and an intensity component R (x, y, n). n) is expressed by the following equation (22).
  • the HSV color space I expressed by the following equation (23) by only the phase component ⁇ (x, y, n) out of the phase component ⁇ (x, y, n) and the intensity component R (x, y, n).
  • FIG. 22 is a diagram illustrating an example of image display by the display unit 53 when the intensity component R (x, y, n) is reflected only in the brightness V (in the case of the expression (20)).
  • FIG. 23 is a diagram illustrating an example of image display by the display unit 53 when the intensity component R (x, y, n) is reflected only in the saturation S (in the case of the expression (21)).
  • FIG. 24 is a diagram illustrating an example of image display by the display unit 53 when the intensity component R (x, y, n) is reflected in both the saturation S and the brightness V (in the case of the expression (22)). .
  • FIG. 22 is a diagram illustrating an example of image display by the display unit 53 when the intensity component R (x, y, n) is reflected only in the brightness V (in the case of the expression (20)).
  • FIG. 23 is a diagram illustrating an example of image display by the display unit 53 when the intensity component R (x, y, n) is reflected
  • FIG. 25 shows an example of image display by the display unit 53 in the case of a comparative example (in the case of equation (23)) in which the intensity component R (x, y, n) is not reflected in either the saturation S or the brightness V.
  • FIG. 26 is a diagram showing the image (original pseudo color display image) shown in FIG. 24 broken down into R, G, and B components.
  • FIG. 27 is a diagram showing the image (original pseudo color display) shown in FIG. 25 broken down into R, G, and B components.
  • (a) displays an R component image in gray scale
  • (b) displays a G component image in gray scale
  • (c) displays a B component image in gray scale. Display in scale.
  • the position where the intensity component R (x, y, n) is small (that is, the position where the reflectance of the light ⁇ 1 is small) is also the phase component ⁇ (x, y, n).
  • the phase component ⁇ (x, y, n)
  • Is displayed in pseudo-color so that a person who views the image displayed on the display unit 53 with a large amount of noise has a large change amount of the phase component ⁇ (x, y, n) (that is, an observation countermeasure object).
  • the observation device 1 As described above, according to the observation device 1 according to the present embodiment or the observation method according to the present embodiment, detailed information of the observation object 9 such as a cell is obtained and effectively displayed, so that confirmation is easy. . This enables imaging of intracellular activity and is expected to be applied to cell research, drug discovery and regenerative medicine.
  • the amount of change per phase of the phase component ⁇ (x, y, n) of the second reflected light is obtained by the analysis unit 52 in the same manner as described above for each of the plurality of slice planes of the observation object 9.
  • a change in the position of the reflector in the z direction is obtained for each position (x, y).
  • the piezoelectric actuator 71 not only the piezoelectric actuator 71 but also the stage 81 is used, and the optical path length difference ⁇ (y 1 + y 2 ) ⁇ (x 1 + x 2 ) ⁇ is adjusted stepwise as shown in FIG. 6 or FIG.
  • a plurality of sets of intensity components R (x, y, n) and phase components ⁇ (x, y, n) are set such that the phase shift amount changes with time as shown in FIG. ) Can be acquired. In this way, the tomographic observation of the observation object 9 becomes possible.
  • the present invention provides an observation apparatus and an observation method capable of obtaining detailed information on an object such as a cell.
  • the present invention provides an observation apparatus and an observation method capable of obtaining detailed information of an object such as a cell and displaying it effectively.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 観察装置1は、観察対象物9の表面または内部を観察するものであって、光源11,12、レンズ21~25、アパーチャ31、光合波器41、光分波器42、ハーフミラー43、撮像部51、解析部52、表示部53、受光部61、変位検出部62、ピエゾアクチュエータ71、駆動部72、ミラー73、ステージ81、駆動部82および制御部90を備える。解析部52は、位相シフト法により光路長差が各目標値に順次に設定されて撮像部51により撮像された干渉光像の複素振幅を求め、この求めた複素振幅の一定時間当りの変化量の絶対値と該複素振幅の絶対値とに基づいて、観察対象物9の表面または内部で生じた反射光の位相成分の一定時間当りの変化量を求める。

Description

観察装置および観察方法
 本発明は、観察対象物を観察する方法および装置に関するものである。
 干渉光学系を用いて対象物を観察または測定する装置として、特許文献1に開示されたものが知られている。この文献に開示された装置は、対象物からの反射光とミラーからの反射光とによる干渉縞の振幅ピークが両反射光の光路長差に依存することを利用して、干渉縞の振幅ピークに基づいて対象物を観察または測定する。
特開平9-218016号公報
 しかしながら、特許文献1に開示された装置は、細胞等の対象物の詳細な情報を得ることができない。本発明は、上記問題点を解消する為になされたものであり、細胞等の対象物の詳細な情報を得ることができる観察装置および観察方法を提供することを目的とする。
 また、特許文献1に開示された装置は、情報を効果的に表示することができない。本発明は、上記問題点を解消する為になされたものであり、細胞等の対象物の詳細な情報を得て効果的に表示することができる観察装置および観察方法を提供することを目的とする。
 本発明に係る観察装置は、(1) 光を出力する光源と、(2) 該光源から出力された光を2分岐して第1分岐光および第2分岐光として出力し、第1分岐光がミラーにより反射されて生じる第1反射光を入力するとともに、第2分岐光が観察対象物の表面または内部で反射されて生じる第2反射光を入力して、これら第1反射光と第2反射光とを干渉させて当該干渉光を出力する干渉光学系と、(3) 干渉光学系から出力される干渉光を結像する結像光学系と、(4) 結像光学系により結像された干渉光像を撮像する撮像部と、(5) 光源から観察対象物の基準位置を経て撮像部に到るまでの光路長と、光源からミラーを経て撮像部に到るまでの光路長との、光路長差を調整する光路長差調整手段と、(6) 光路長差が各目標値に順次になるように光路長差調整手段による光路長差調整動作を制御する制御部と、を備える。
 本発明に係る観察装置は、更に、位相シフト法により光路長差調整手段により光路長差が各目標値に順次に設定されて撮像部により撮像された干渉光像の複素振幅を求め、この求めた複素振幅の一定時間当りの変化量の絶対値と該複素振幅の絶対値とに基づいて、観察対象物の表面または内部で生じた第2反射光の位相成分の一定時間当りの変化量を求める解析部を備えることを特徴とする。
 本発明に係る観察方法は、上記のような光源,干渉光学系,結像光学系,撮像部,光路長差調整手段および制御部を用い、位相シフト法により光路長差調整手段により光路長差が各目標値に順次に設定されて撮像部により撮像された干渉光像の複素振幅を求め、この求めた複素振幅の一定時間当りの変化量の絶対値と該複素振幅の絶対値とに基づいて、観察対象物の表面または内部で生じた第2反射光の位相成分の一定時間当りの変化量を求めることを特徴とする。
 本発明に係る観察装置は、解析部により求められた第2反射光の位相成分の一定時間当りの変化量の空間的分布を画像表示する表示部を更に備えるのが好適である。本発明に係る観察方法は、第2反射光の位相成分の一定時間当りの変化量の空間的分布を表示部により画像表示するのが好適である。
 本発明に係る観察装置は、解析部が観察対象物の複数のスライス面それぞれについて第2反射光の位相成分の一定時間当りの変化量を求めるのが好適である。本発明に係る観察方法は、観察対象物の複数のスライス面それぞれについて第2反射光の位相成分の一定時間当りの変化量を求めるのが好適である。
 本発明に係る観察装置は、光路長差を検出する光路長差検出手段を更に備え、光路長差検出手段による検出結果に基づいて光路長差調整手段が光路長差を調整するのが好適である。本発明に係る観察方法は、光路長差を検出する光路長差検出手段を更に用い、光路長差検出手段による検出結果に基づいて光路長差調整手段により光路長差を調整するのが好適である。
 本発明に係る観察装置または本発明に係る観察方法では、(a) 光路長差調整手段が、観察対象物およびミラーのうち一方の第1対象物を移動させる第1移動手段と、観察対象物およびミラーのうち他方の第2対象物を移動させる第2移動手段とを含み、第1移動手段または第2移動手段による移動動作により光路長差を調整し、(b) 第1移動手段が、第2移動手段の作動範囲より狭い作動範囲を有するとともに、第2移動手段の位置精度より高い位置精度を有し、(c) 第2移動手段が、干渉光学系と第2対象物との間の光学系を維持したまま第2対象物を移動させ、(d) 制御部が、光路長差の各目標値において第1移動手段による移動量が作動範囲内の所定範囲内となるように第2移動手段による移動動作を連続的または断続的に行わせ、第2移動手段による移動動作の際にも光路長差が各目標値になるように第1移動手段による移動動作をフィードバック制御するのが好適である。
 本発明に係る観察装置または本発明に係る観察方法では、観察対象物が細胞を含むのが好適である。
 本発明に係る観察装置は、(1) 光を出力する光源と、(2) 該光源から出力された光を2分岐して第1分岐光および第2分岐光として出力し、第1分岐光がミラーにより反射されて生じる第1反射光を入力するとともに、第2分岐光が観察対象物の表面または内部で反射されて生じる第2反射光を入力して、これら第1反射光と第2反射光とを干渉させて当該干渉光を出力する干渉光学系と、(3)干渉光学系から出力される干渉光を結像する結像光学系と、(4) 結像光学系により結像された干渉光像を撮像する撮像部と、(5) 光源から観察対象物の基準位置を経て撮像部に到るまでの光路長と、光源からミラーを経て撮像部に到るまでの光路長との、光路長差を調整する光路長差調整手段と、(6)光路長差が各目標値に順次になるように光路長差調整手段による光路長差調整動作を制御する制御部と、を備える。
 本発明に係る観察装置は、更に、(7) 位相シフト法により光路長差調整手段により光路長差が各目標値に順次に設定されて撮像部により撮像された干渉光像に基づいて、観察対象物の表面または内部で生じた第2反射光の強度成分および位相成分を求める解析部と、 (8) 解析部により求められた第2反射光の位相成分を色相に反映させ、解析部により求められた第2反射光の強度成分を彩度または明度に反映させて、HSV色空間で第2反射光を画像表示する表示部と、を備えることを特徴とする。
 本発明に係る観察方法は、上記のような光源,干渉光学系,結像光学系,撮像部,光路長差調整手段および制御部を用い、位相シフト法により光路長差調整手段により光路長差が各目標値に順次に設定されて撮像部により撮像された干渉光像に基づいて、観察対象物の表面または内部で生じた第2反射光の強度成分および位相成分を求め、これら求めた第2反射光の位相成分を色相に反映させ、第2反射光の強度成分を彩度または明度に反映させて、HSV色空間で第2反射光を画像表示することを特徴とする。
 本発明に係る観察装置は、解析部が、複数組の第2反射光の強度成分および位相成分を時系列に求め、表示部が、解析部により求められた複数組の第2反射光の強度成分および位相成分に基づいて、HSV色空間でこれらの第2反射光を時系列に画像表示するのが好適である。本発明に係る観察方法は、複数組の第2反射光の強度成分および位相成分を時系列に求め、これら求めた複数組の第2反射光の強度成分および位相成分に基づいて、HSV色空間でこれらの第2反射光を時系列に画像表示するのが好適である。
 本発明に係る観察装置は、解析部が、観察対象物の複数のスライス面それぞれについて第2反射光の強度成分および位相成分を求め、表示部が、解析部により求められた複数組の第2反射光の強度成分および位相成分に基づいて、HSV色空間でこれらの第2反射光を画像表示するのが好適である。本発明に係る観察方法は、観察対象物の複数のスライス面それぞれについて第2反射光の強度成分および位相成分を求め、これら求めた複数組の第2反射光の強度成分および位相成分に基づいて、HSV色空間でこれらの第2反射光を画像表示するのが好適である。
 本発明に係る観察装置は、光路長差を検出する光路長差検出手段を更に備え、光路長差検出手段による検出結果に基づいて光路長差調整手段が光路長差を調整するのが好適である。本発明に係る観察方法は、光路長差を検出する光路長差検出手段を更に用い、光路長差検出手段による検出結果に基づいて光路長差調整手段により光路長差を調整するのが好適である。
 本発明に係る観察装置または本発明に係る観察方法では、(a) 光路長差調整手段が、観察対象物およびミラーのうち一方の第1対象物を移動させる第1移動手段と、観察対象物およびミラーのうち他方の第2対象物を移動させる第2移動手段とを含み、第1移動手段または第2移動手段による移動動作により光路長差を調整し、(b) 第1移動手段が、第2移動手段の作動範囲より狭い作動範囲を有するとともに、第2移動手段の位置精度より高い位置精度を有し、(c) 第2移動手段が、干渉光学系と第2対象物との間の光学系を維持したまま第2対象物を移動させ、(d)制御部が、光路長差の各目標値において第1移動手段による移動量が作動範囲内の所定範囲内となるように第2移動手段による移動動作を連続的または断続的に行わせ、第2移動手段による移動動作の際にも光路長差が各目標値になるように第1移動手段による移動動作をフィードバック制御するのが好適である。
 本発明に係る観察装置または本発明に係る観察方法では、観察対象物が細胞を含むのが好適である。
 本発明によれば、細胞等の対象物の詳細な情報を得ることができる。また、本発明によれば、細胞等の対象物の詳細な情報を得て効果的に表示することができる。
本実施形態に係る観察装置1の構成図である。 撮像部51または受光部51に到達する光の強度と光路長差との関係を示す図である。 観察対象物9の構成例を示す図である。 ピエゾアクチュエータ71およびステージ81による光路長差調整動作について説明する図である。 本実施形態に係る観察装置1の第1動作態様を説明するフローチャートである。 本実施形態に係る観察装置1の第1動作態様における間隔x2,間隔y2および光路長差{(y1+y2)-(x1+x2)}それぞれの時間的変化を示す図である。 本実施形態に係る観察装置1の第2動作態様を説明するフローチャートである。 本実施形態に係る観察装置1の第2動作態様における間隔x2,間隔y2および光路長差{(y1+y2)-(x1+x2)}それぞれの時間的変化を示す図である。 干渉光像の正弦成分A(x,y)を示す図である。 干渉光像の余弦成分B(x,y)を示す図である。 干渉光像の強度成分R(x,y)を示す図である。 干渉光像の位相成分φ(x,y)を示す図である。 HeLa細胞の器官と反射体との関係を示す図である。 複数組の正弦成分A(x,y)および余弦成分B(x,y) を時系列で取得する場合の位相シフト量の時間的変化の様子を示す図である。 複数枚の位相成分φ(x,y,n) の取得の様子を示す図である。 位相アンラッピングを説明する図である。 複素平面において複素振幅C(x,y,n)を表す図である。 (14)式および(16)式それぞれによるφdevの計算機シミュレーション結果を示す図である。 表示部53における画像表示例を示す図である。 表示部53における画像表示例を示す図である。 干渉光像の強度成分R(x,y)を示す図である。 強度成分R(x,y,n)が明度Vのみに反映される場合((20)式の場合)における表示部53による画像表示の例を示す図である。 強度成分R(x,y,n)が彩度Sのみに反映される場合((21)式の場合)における表示部53による画像表示の例を示す図である。 強度成分R(x,y,n)が彩度Sおよび明度Vの双方に反映される場合((22)式の場合)における表示部53による画像表示の例を示す図である。 強度成分R(x,y,n)が彩度Sおよび明度Vの何れにも反映されない比較例の場合((23)式の場合)における表示部53による画像表示の例を示す図である。 図24に示される画像(本来の擬似カラー表示画像)をR,G,Bの各成分に分解して示す図である。 図25に示される画像(本来の擬似カラー表示画像)をR,G,Bの各成分に分解して示す図である。
 1…観察装置、9…観察対象物、11,12…光源、21~25…レンズ、31…アパーチャ、41…光合波器、42…光分波器、43…ハーフミラー、51…撮像部、52…解析部、53…表示部、61…受光部、62…変位検出部、71…ピエゾアクチュエータ、72…駆動部、73…ミラー、81…ステージ、82…駆動部、90…制御部。
 以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 (観察装置1の全体構成)
 図1は、本実施形態に係る観察装置1の構成図である。この図に示される観察装置1は、観察対象物9の表面または内部を観察するものであって、光源11,12、レンズ21~25、アパーチャ31、光合波器41、光分波器42、ハーフミラー43、撮像部51、解析部52、表示部53、受光部61、変位検出部62、ピエゾアクチュエータ71、駆動部72、ミラー73、ステージ81、駆動部82および制御部90を備える。
 光源11は、コヒーレント長が比較的短い光λ1を出力するものであり、例えば波長帯域600nm~900nmの広帯域光を出力することができるタングステンランプである。光源11から出力される光λ1のコヒーレンス長は5μm以下であるのが好ましい。一方、光源12は、コヒーレント長が比較的長い光λ2を出力するものであり、例えば波長1.31μmのレーザ光を出力する半導体レーザ光源である。光合波器41は、光源11から出力されてレンズ21およびアパーチャ31を経て到達した光λ1を反射させるとともに、光源12から出力されて到達した光λ2を透過させて、これらの光を合波してレンズ22へ出力する。
 ハーフミラー43は、光合波器41により合波されてレンズ22を経て到達した光λ1,λ2を2分岐して第1分岐光および第2分岐光とし、第1分岐光をレンズ23へ出力し、第2分岐光をレンズ24へ出力する。また、ハーフミラー43は、第1分岐光がレンズ23を経てミラー73により反射されて生じる第1反射光を再びレンズ23を経て入力するとともに、第2分岐光がレンズ24を経て観察対象物9の表面または内部で反射されて生じる第2反射光を再びレンズ24を経て入力して、これら第1反射光と第2反射光とを干渉させて当該干渉光をレンズ25へ出力する。すなわち、ハーフミラー43は、干渉光学系を構成する要素である。
 光分波器42は、ハーフミラー43から出力されてレンズ25を経た光を入力し、そのうち光λ1を反射させて撮像部51へ出力し、光λ2を透過させて受光部61へ出力する。レンズ23~25は、ハーフミラー43から出力されて光分波器42により分波された干渉光λ1を撮像部51の撮像面上に結像する結像光学系を構成する要素である。撮像部51は、その結像された干渉光λ1の像を撮像するものであり、例えばCCDカメラである。受光部61は、ハーフミラー43から出力されて光分波器42により分波された光λ2の強度を検出するものであり、例えばフォトダイオードである。
 ここで、ハーフミラー43からミラー73により反射されて再びハーフミラー43に到るまでの光路長と、ハーフミラー43から観察対象物9の基準位置により反射されて再びハーフミラー43に到るまでの光路長との光路長差をΔLとする。なお、観察対象物9の基準位置は、観察対象物9の最も高い位置(レンズ24に最も近い位置)であってもよいし、観察対象物9を載せる台であってもよし、これらの中間の位置であってもよし、また、その他の位置であってもよい。
 前述したように、光源12から出力され受光部61に到達する光λ2のコヒーレント長は比較的長いので、図2(a)に示されるように、受光部51に到達する光λ2の強度は、比較的広い光路長差ΔLの範囲において周期的に変化する。これに対して、光源11から出力され撮像部51に到達する光λ1のコヒーレント長は比較的短いので、図2(b)に示されるように、撮像部61に到達する光λ1の強度は、比較的狭い光路長差ΔLの範囲において周期的に変化し、しかも、光路長差ΔLが値0に近いほど干渉の振幅が大きい。
 このことを利用して、解析部52は、光路長差が複数の目標値それぞれに設定されたときに撮像部51により撮像された光λ1の干渉光像を取得する。この干渉光像は、ハーフミラー43からミラー73までの光路長と、ハーフミラー43から観察対象物9の或るスライス面までの光路長とが互いに略等しいときに、ミラー73で生じた第1反射光と該スライス面(および、該スライス面を中心とする光λ1のコヒーレンス長程度の範囲)で生じた第2反射光との干渉による像である。さらに、解析部52は、取得した干渉光像に基づいて所定の解析を行う。表示部53は、解析部52による解析の結果を画像表示する。解析部52による解析および表示部53による画像表示については後述する。
 観察対象物9は、好適には例えば図3に示されるように、略平坦な基板91の主面に形成された薄膜92の上に置かれた半透明の細胞93である。薄膜92は、光λ2を高い反射率で反射させることで、後述するフィードバック制御の際の基準面として好適に用いられる。観察対象物9としての細胞93の断面としてスライス面Sが設定される。このスライス面Sは、レンズ24の光軸に垂直な面であり、また、その光軸方向に関して位置が可変である。
 変位検出部62は、受光部61により検出された光λ2の強度の変化から、光路長差(または、或る基準値に対する相対的な光路長差の変化量)を求める。すなわち、光源12、受光部61および変位検出部62は、光路長差を検出する光路長差検出手段を構成する要素である。なお、ピエゾアクチュエータ71によりミラー73に微小振動を与えて、或る光路長差を中心にして変調を与えることで、より正確に光路長差を検出することができる。
 ピエゾアクチュエータ71,駆動部72,ステージ81および駆動部82は、光路長差を調整する光路長差調整手段を構成する要素である。ピエゾアクチュエータ71は、駆動部72により駆動されて、ハーフミラー43とミラー73との間の光学系の光軸に平行な方向に、ミラー73を移動させる。このとき、レンズ23を移動させることなく、ハーフミラー43とミラー73との間の光学系を維持したままとする。レンズ23のフォーカス面は、焦点深度(例えば0.5μm)の精度でミラー73の反射面に一致している。
 ステージ81は、駆動部82により駆動されて、ハーフミラー43と観察対象物9との間の光学系の光軸に平行な方向に観察対象物9を移動させる。このとき、レンズ24を移動させることなく、ハーフミラー43と観察対象物9との間の光学系を維持したままとする。すなわち、ハーフミラー43から測った観察対象物9側のフォーカス面までの距離を維持したままとする。
 ピエゾアクチュエータ71(第1移動手段)の作動範囲は、ステージ81(第2移動手段)の作動範囲より狭い。また、ピエゾアクチュエータ71の位置精度は、ステージ81の位置精度より高い。なお、ステージ81を移動させるための駆動部82としては、例えば長距離移動型のピエゾアクチュエータや、ステッピングモータによる回転機構を用いることが可能である。
 制御部90は、変位検出部62による光路長差検出結果に基づいて、光路長差が複数の目標値に順次になるように、駆動部72,82を介してピエゾアクチュエータ71およびステージ81による光路長差調整動作を制御する。特に、制御部90は、複数の目標値それぞれにおいて、ピエゾアクチュエータ71による移動量が作動範囲内の所定範囲内となるように、ステージ81による移動動作を連続的または断続的に行わせる。また、制御部90は、ステージ81による移動動作の際にも、変位検出部62による光路長差検出結果に基づいて、光路長差が各目標値になるようにピエゾアクチュエータ71による移動動作をフィードバック制御する。
 (ピエゾアクチュエータ71およびステージ81による光路長差調整動作)
 図4は、ピエゾアクチュエータ71およびステージ81による光路長差調整動作について説明する図である。この図には、ハーフミラー43とミラー73との間の光学系が示され、ハーフミラー43と観察対象物9との間の光学系が示され、また、光路長差を調整するピエゾアクチュエータ71およびステージ81が示されている。ここで、ハーフミラー43とレンズ23との間の間隔をx1とし、レンズ23とミラー73との間の間隔をx2とする。また、ハーフミラー43とレンズ24との間の間隔をy1とし、レンズ24と観察対象物9との間の間隔をy2とする。なお、観察対象物9が図3に示される構成である場合には、y2はレンズ24から観察対象物9の或るスライス面までの間隔とする。間隔x2は、ピエゾアクチュエータ71による移動動作により調整される。間隔y2は、ステージ81による移動動作により調整される。ピエゾアクチュエータ71またはステージ81により、間隔(x1+x2)又は間隔(y1+y2)を変更することで、光路長差ΔLを調整することができる。
 仮に、ステージ81による移動動作により間隔y2のみを調整する場合、ステージ81の作動範囲が比較的広いことから、広いダイナミックレンジで光路長差を調整することができる。しかし、この場合、ステージ81の位置精度が比較的低いことから、高精度で光路長差を調整することができず、したがって、高精度に観察対象物9の形状等を測定することができない。
 一方、仮に、ピエゾアクチュエータ71による移動動作により間隔x2のみを調整する場合、ピエゾアクチュエータ71の位置精度が比較的高いことから、高精度で光路長差を調整することができる。しかし、この場合、ピエゾアクチュエータ71の作動範囲が比較的狭いことから、広いダイナミックレンジで光路長差を調整することができず、したがって、広いダイナミックレンジで観察対象物9の形状等を測定することができない。
 また、仮に、ピエゾアクチュエータ71の作動範囲内であっても広い範囲に亘って移動動作を行わせると、レンズ23の焦点距離と間隔x2との差が大きくなる場合があり、その場合には、結像光学系による干渉光の結像面と撮像部51の撮像面とが互いに大きくずれてしまい、撮像部51により撮像される干渉光像が不鮮明となって、観察対象物9の形状等の測定を高精度に行うことができない。
 そこで、本実施形態では、高精度かつ広ダイナミックレンジで観察対象物の表面または内部を測定する為に、制御部90は、複数の目標値それぞれにおいて、ピエゾアクチュエータ71による移動量が作動範囲内の所定範囲内となるように、ステージ81による移動動作を連続的または断続的に行わせる。また、制御部90は、ステージ81による移動動作の際にも、変位検出部62による光路長差検出結果に基づいて、光路長差が各目標値になるようにピエゾアクチュエータ71による移動動作をフィードバック制御する。以下では、ピエゾアクチュエータ71およびステージ81それぞれの好適な2つの動作態様について説明する。
 (光路長差調整動作の第1態様)
 図5は、本実施形態に係る観察装置1の第1動作態様を説明するフローチャートである。また、図6は、この第1動作態様における間隔x2,間隔y2および光路長差{(y1+y2)-(x1+x2)}それぞれの時間的変化を示す図である。この第1動作態様では、制御部90は、駆動部82を介して、ステージ81による移動動作を連続的に行わせる。
 初めに、ステップS11では、制御部90は、駆動部82を介してステージ81による移動動作を開始させる。光路長差を或る目標値から次の目標値に一定時間間隔Δtで移行させるとし、その移行の際の間隔y2の変化量をΔyとしたときに、ステージ81の移動速度は「Δy/Δt」に設定される。これにより、レンズ24と観察対象物9との間の間隔y2は、時間の経過とともに略リニアに変化していく。しかし、ステージ81の位置精度が比較的低いことから、間隔y2の時間的変動は比較的大きい。
 そこで、ステップS12では、制御部90は、光路長差が該目標値になるように、駆動部72を介してピエゾアクチュエータ71による移動動作をフィードバック制御する。このとき、ピエゾアクチュエータ71により間隔x2が調整されて、光路長差{(y1+y2)-(x1+x2)}が高精度に設定される。
 ステップS13では、制御部90は、光路長差が或る目標値に設定されてから一定時間Δtが経過したか否かを判断し、一定時間Δtが経過したら次のステップS14の処理に進む。ステップS14では、制御部90は、次の目標値が有るか否かを判断し、次の目標値が有れば次のステップS15の処理に進み、次の目標値が無ければステップS18の処理に進む。
 ステップS15では、制御部90は、光路長差が次の目標値に移行される前に、その移行後の目標値においてピエゾアクチュエータ71による移動量x2が所定範囲から外れるか否かを判断する。そして、制御部90は、その移動量x2が所定範囲から外れると判断した場合にはステップS16を経てステップS17の処理に進み、また、その移動量x2が所定範囲内にあると判断した場合には直ちにステップS17の処理に進む。ステップS16では、制御部90は、次の目標値に移行した後にピエゾアクチュエータ71による移動量x2が所定範囲内に入るようにステージ81による移動動作の速さを調整する。
 ステップS17では、制御部90は、光路長差を次の目標値に設定し、駆動部72を介してピエゾアクチュエータ71をΔxだけステップ的に移動させる。その後、ステップS12の処理に戻って、制御部90は、光路長差が新たな目標値になるように、駆動部72を介してピエゾアクチュエータ71による移動動作をフィードバック制御する。ステップS18では、制御部90は、駆動部82を介してステージ81による移動動作を終了させる。
 このように第1動作態様では、制御部90は、ステージ81による移動動作を連続的に行わせ、光路長差が或る目標値から次の目標値に移行される際に、ピエゾアクチュエータ71による移動動作をステップ的に行わせ、また、光路長差が或る目標値に設定されている期間には、光路長差が該目標値になるようにピエゾアクチュエータ71による移動動作をフィードバック制御する。このように制御部90がピエゾアクチュエータ71およびステージ81それぞれの移動動作を制御することにより、ステージ81の移動動作の広いダイナミックレンジと、ピエゾアクチュエータ71の移動動作の高い位置精度とを、共に活かすことができて、高精度かつ広ダイナミックレンジで観察対象物9の表面形状等を測定することができる。
 また、第1動作態様では、制御部90は、光路長差が或る目標値から次の目標値に移行される前に、その移行後の目標値においてピエゾアクチュエータ71による移動量が所定範囲から外れる場合に、該移動量が該所定範囲内に入るようにステージ81による移動動作の速さを調整する(ステップS15,S16)。このように制御部90がステージ81の移動速度を調整することにより、ステージ81の移動速度や目標値変更の時間間隔Δtの精度が不充分である場合であっても、ピエゾアクチュエータ71による移動量を所定範囲内に維持することができるので、観察対象物9の表面形状等の高精度測定を維持することができる。なお、光路長差の目標値の個数をNとしたときに、N・Δtの時間内にステージ81を速度「Δy/Δt」で等速移動させたときの移動距離が充分な精度(例えば誤差が±1μm以下)であれば、ステップS15,16は不要であり、ステップS14の後に直ちにステップS17の処理に進めばよい。
 (光路長差調整動作の第2態様)
 図7は、本実施形態に係る観察装置1の第2動作態様を説明するフローチャートである。また、図8は、この第2動作態様における間隔x2,間隔y2および光路長差{(y1+y2)-(x1+x2)}それぞれの時間的変化を示す図である。この第2動作態様では、制御部90は、駆動部82を介して、ステージ81による移動動作を断続的に行わせる。
 ステップS21では、制御部90は、光路長差が目標値になるように、駆動部72を介してピエゾアクチュエータ71による移動動作をフィードバック制御する。このとき、ステージ81は移動していないが、ステージ81の位置精度が比較的低いことから、間隔y2の時間的変動は比較的大きい。しかし、ピエゾアクチュエータ71により間隔x2が調整されて、光路長差{(y1+y2)-(x1+x2)}が高精度に設定される。
 ステップS22では、制御部90は、光路長差が或る目標値に設定されてから一定時間Δtが経過したか否かを判断し、一定時間Δtが経過したら次のステップS23の処理に進む。ステップS23では、制御部90は、次の目標値が有るか否かを判断し、次の目標値が有れば次のステップS24の処理に進み、次の目標値が無ければ終了する。
 ステップS24では、制御部90は、光路長差が次の目標値に移行される前に、その移行後の目標値においてピエゾアクチュエータ71による移動量x2が所定範囲から外れるか否かを判断する。そして、制御部90は、その移動量x2が所定範囲から外れると判断した場合にはステップS25を経てステップS26の処理に進み、また、その移動量x2が所定範囲内にあると判断した場合には直ちにステップS26の処理に進む。
 ステップS25では、制御部90は、次の目標値に移行した後にピエゾアクチュエータ71による移動量x2が所定範囲内に入るようにステージ81を移動させた後に停止させ、また、そのステージ81が移動している期間にも、そのときの光路長差が各目標値になるようにピエゾアクチュエータ71による移動動作を制御する。なお、このときのステージ81の移動に際しては、次の目標値においてピエゾアクチュエータ71による移動量x2が所定範囲の上限を超える場合には、ピエゾアクチュエータ71による移動量x2が所定範囲の下限の近くになるようにする。逆に、次の目標値においてピエゾアクチュエータ71による移動量x2が所定範囲の下限を超える場合には、ピエゾアクチュエータ71による移動量x2が所定範囲の上限の近くになるようにする。
 ステップS26では、制御部90は、光路長差を次の目標値に設定し、駆動部72を介してピエゾアクチュエータ71をΔxだけステップ的に移動させる。その後、ステップS21の処理に戻って、制御部90は、光路長差が新たな目標値になるように、駆動部72を介してピエゾアクチュエータ71による移動動作をフィードバック制御する。
 このように第2動作態様では、制御部90は、光路長差が各目標値になるようにピエゾアクチュエータ71による移動動作をフィードバック制御する。このように制御部90がピエゾアクチュエータ71およびステージ81それぞれの移動動作を制御することにより、ステージ81の移動動作の広いダイナミックレンジと、ピエゾアクチュエータ71の移動動作の高い位置精度とを、共に活かすことができて、高精度かつ広ダイナミックレンジで観察対象物9の表面形状等を測定することができる。なお、ステージ81の位置精度が悪い場合には、第1動作態様より第2動作態様の方が有効である。
 (解析部52による解析および表示部53による画像表示の詳細、その1)
 次に、本実施形態に係る観察装置1および本実施形態に係る観察方法における観察対象物9の観察(特に解析部52による解析および表示部53による画像表示)について更に詳細に説明する。
 観察対象物9の表面または内部で反射されて撮像部51の撮像面に到達する第2反射光E(x,y)は、強度成分R(x,y)および位相成分φ(x,y)を含んでいて、下記(1)式で表される。撮像部51により撮像される干渉像は、光λ1のコヒーレンス長の程度で第1反射光および第2反射光それぞれの光路長が一致するような該第2反射光が生じる観察対象物9のスライス面(および、該スライス面を中心とする光λ1のコヒーレンス長程度の範囲)の情報を反映したものである。なお、x,yは、該スライス面における直交2軸の座標値を表す。
Figure JPOXMLDOC01-appb-M000001
 第2反射光E(x,y)の強度成分R(x,y)は、該スライス面における光λ1の反射率、すなわち、反射体の有無の情報を表す。また、第2反射光E(x,y)の位相成分φ(x,y)は、該スライス面における反射体のz方向(光軸に平行な方向)の位置の情報を表す。例えば、観察対象物9の該スライス面に存在する反射体(例えば、細胞膜、核小体の膜、リソソームの膜、等)がz方向にΔzだけ移動した場合、撮像部51の撮像面に到達する第2反射光E(x,y)の位相成分φ(x,y)は 4πn1Δz/λ1 だけ変化する。ここで、n1は観察対象物9の屈折率である。すなわち、位相成分φ(x,y)の変化量は、スライス面における反射体のz方向の位置変化量を表す。
 このような第2反射光E(x,y)の強度成分R(x,y)および位相成分φ(x,y)は位相シフト法により求められる。位相シフト法では、制御部90および駆動部72による制御によりピエゾアクチュエータ71が駆動されて光路長差ΔLがλ1/4ずつシフトされ、順に撮像部51により4枚の干渉光像I1(x,y),I2(x,y),I3(x,y),I4(x,y)が撮像される。ここで、λ1は、光源11から出力される低コヒーレント光の中心波長である。これら4枚の干渉光像から、下記(2)式に従って、干渉光像の正弦成分A(x,y)および余弦成分B(x,y)が得られる。
Figure JPOXMLDOC01-appb-M000002
 そして、これら干渉光像の正弦成分A(x,y)および余弦成分B(x,y)から、下記(3)式に従って、第2反射光E(x,y)の強度成分R(x,y)および位相成分φ(x,y)が得られる。なお、正弦成分A(x,y)および余弦成分B(x,y)は、第2反射光E(x,y)の強度成分R(x,y)および位相成分φ(x,y)を用いて、下記(4)式のように表される。また、干渉光像の複素振幅C(x,y)は、下記(5)式または(6)式で表される。解析部52は、このような干渉光像の複素振幅C(x,y)を求める。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 図9は、干渉光像の正弦成分A(x,y)を示す図である。図10は、干渉光像の余弦成分B(x,y)を示す図である。図11は、干渉光像の強度成分R(x,y)を示す図である。また、図12は、干渉光像の位相成分φ(x,y)を示す図である。これらは何れも、観察対象物9としてのHeLa細胞について位相シフト法により求められた4枚の干渉光像I1(x,y),I2(x,y),I3(x,y),I4(x,y)に基づくものである。図11に示される干渉光像の強度成分R(x,y)を見ると、HeLa細胞には、細胞膜付近および細胞内に様々な反射体が存在することが見て取れる。これらの反射体とHeLa細胞の器官との関係は図13に示されるとおりであると考えられる。
 位相シフト法には様々な改良アルゴリズムが存在するが、何れのアルゴリズムが用いられてもよい。例えば、Schwider-Hariharan Algorithm として知られるアルゴリズムに従って、5枚の干渉光像に基づいて、下記(7)式に従って、干渉光像の正弦成分A(x,y)および余弦成分B(x,y) が求められてもよく、さらに、これらから、第2反射光E(x,y)の強度成分R(x,y)および位相成分φ(x,y) が求められてもよい。
Figure JPOXMLDOC01-appb-M000007
 本実施形態では任意の位相シフト法のアルゴリズムが用いられ得る。ただし、上記(2)式に従う位相シフト法の基本アルゴリズムと比べると、上記(7)式に従う位相シフト法の改良アルゴリズムは、位相シフト量の誤差に対してロバストである等の利点があり、本実施形態のように光λ1のコヒーレンス長が比較的短い場合に好適に用いられる。
 図14は、複数組の正弦成分A(x,y)および余弦成分B(x,y) を時系列で取得する場合の位相シフト量の時間的変化の様子を示す図である。この図に示されるように、制御部90および駆動部72による制御によりピエゾアクチュエータ71が駆動されて光路長差ΔLが一定時間毎にλ1/4ずつシフトされて、位相シフト量が0と3λ1/4との間で増減が繰り返される。これにより、順次に干渉光学像I1,I2,I3,I4,I3,I2,I1,I2,I3,I4,…が得られる。そして、第1の干渉光学像I1から第4の干渉光学像I4までが用いられて、1番目のA1,B1,R1およびφ1が得られる。また、第4の干渉光学像I4から第7の干渉光学像I1までが用いられて、2番目のA2,B2,R2およびφ2が得られる。さらに、第7の干渉光学像I1から第10の干渉光学像I4までが用いられて、3番目のA3,B3,R3およびφ3が得られる。
 このようにして、干渉光像の正弦成分Anおよび余弦成分Bnならびに 第2反射光の強度成分Rnおよび位相成分φnが一定時間間隔で順次に得られる。以降では、これらは、正弦成分A(x,y,n)、余弦成分B(x,y,n)、強度成分R(x,y,n)および位相成分φ(x,y,n) と表記される場合がある。ここで、各成分の表記におけるnは、その成分がn番目に得られたものであることを示すものであり、時間変数に相当するものである。
 前述したとおり、位相成分φ(x,y,n)は、ハーフミラー43からミラー73までの光路長と、ハーフミラー43から観察対象物9の或るスライス面までの光路長とが互いに略等しいときに、該スライス面における反射体のz方向(光軸に平行な方向)の位置の情報を表す。また、位相成分φ(x,y,n)の変化量は、該スライス面における反射体のz方向の位置変化量を表す。そこで、図15に示されるように、解析部52により、一定時間間隔で複数枚の位相成分φ(x,y,n)が得られると、これらが表示部53により時系列に画像表示(動画表示)されることで、観察対処物9のスライス面における反射体のz方向の位置変化の様子が観察され得る。
 観察対処物9のスライス面における反射体のz方向の位置変化の様子の観察は、一定時間間隔で取得された複数枚の位相成分φ(x,y,n)に基づいて以下のような数理処理手法によることが可能である。各位置(x,y)について、通常は2πの幅の範囲でしか値を有しない位相成分φ(x,y,n)は、このままでは定量的な評価には不適当であるので、先ず、図16に示されるように、時系列に見たときに位相が不連続になっている箇所を繋ぎ合わせる処理(すなわち、位相アンラッピング)が行われる。
 位相アンラッピング前の位相成分を小文字でφ(x,y,n)と表し、位相アンラッピング後の位相成分を大文字でΦ(x,y,n)と表すことにする。図16(a)は、位相アンラッピング前の位相成分φ(x,y,n)の時間変化の様子を示す。同図(b)は、位相アンラッピング後の位相成分Φ(x,y,n)の時間変化の様子を示す。以下では、一定時間間隔で順にN枚の位相アンラッピング後の位相成分Φ(x,y,1)~Φ(x,y,N)が得られたとする。
 解析部52により、N枚の位相アンラッピング後の位相成分Φ(x,y,1)~Φ(x,y,N)に基づいて、下記(8)式~(11)式の何れかの処理により、観察対処物9のスライス面における反射体のz方向の位置変化の様子が各位置(x,y)について解析される。
 下記(8)式は、N枚の位相成分Φ(x,y,n)が取得される時間内において各位置(x,y)における反射体のz方向の位置変化の幅(最大値-最小値)を表すものである。
Figure JPOXMLDOC01-appb-M000008
 下記(9)式は、N枚の位相成分Φ(x,y,n)が取得される時間内において各位置(x,y)における反射体のz方向の位置変化の大きさの標準偏差を表すものである。
Figure JPOXMLDOC01-appb-M000009
 下記(10)式および(11)式それぞれは、所定時間(Δn・t0)当りの各位置(x,y)における反射体のz方向の位置変化の大きさを表すものである。t0は各位相成分Φ(x,y,n)の取得時間間隔を表す。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 或いは、各位置(x,y)について、N枚の位相アンラッピング後の位相成分Φ(x,y,1)~Φ(x,y,N)がフーリエ変換されて、反射体のz方向の位置変化の周波数解析が行われてもよい。
 以上のようにして、観察対処物9のスライス面における反射体のz方向の位置変化の様子が各位置(x,y)について解析物52により得られると、その結果は表示部53により画像表示される。表示部53では、解析部52による解析結果がグレイスケールまたは擬似カラー等により画像表示されるのが好ましい。このように表示されることにより、観察対処物9のスライス面における反射体のz方向の位置変化の様子の観察が容易である。
 これらの信号処理手法が優れている点は、観察対象物9である細胞の表面の膜からの反射光の信号と、細胞内の膜からの反射光の信号とを互いに区別することなく、その水平切断面(スライス面)に存在する運動性の高い膜(反射体)を抽出することができるという点である。膜の運動性は細胞の活性に強く係わっており、膜の運動性の高い細胞を抽出し、二次元的に表示できるということには、細胞診断における実用上多くの利点がある。
 観察対処物9のスライス面における反射体のz方向の位置変化の様子の観察は、一定時間間隔で取得された複数枚の干渉光像の複素振幅C(x,y,n)に基づいて以下のような数理処理手法によることも可能である。n番目に得られた複素振幅C(x,y,n)は、下記(12)式または(13)式により表される。そして、解析部52により、N枚の複素振幅像C (x,y,1)~C(x,y,N)に基づいて、下記(14)式の処理により、観察対処物9のスライス面における反射体のz方向の位置変化の様子が各位置(x,y)について解析される。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 この(14)式の分子にある|C(x,y,n)-C(x,y,n-Δn)|なる因子は図17により説明される。図17は、複素平面において複素振幅C(x,y,n)を表す図である。同図の複素平面上において、複素振幅C(x,y,n)および複素振幅C(x,y,n-Δn)それぞれは、原点を始点とするベクトルの終点として示されている。|C(x,y,n)-C(x,y,n-Δn)|は、同図の複素平面上において複素振幅C(x,y,n)および複素振幅C(x,y,n-Δn)それぞれを表す点を互いに結ぶ線分の長さである。
 ここで、n番目から(n-Δn)番目までの間で、各位置(x,y)について、強度成分R(x,y,n)の変化量は無視し得る程度に小さいとし、位相成分φ(x,y,n)の変化量は僅かであるとする。この場合、下記(15)式の近似式が成り立つ。すなわち、上記(14)式の分子にある|C(x,y,n)-C(x,y,n-Δn)|なる因子は、所定時間(Δn・t0)当りの位相成分φ(x,y,n)の変化量に強度成分R(x,y,n)を乗じたものである。
Figure JPOXMLDOC01-appb-M000015
 一方、上記(14)式の分母は、強度成分R(x,y,n)の平均値を表す。したがって、上記(14)式の指標φdev(x,y)は、所定時間(Δn・t0)当りの位相成分φ(x,y,n)の変化量の平均値を表す。すなわち、指標φdev(x,y)の値が大きい位置には運動性が高い反射体が存在することが示唆される。このようにして、解析部52により、複素振幅C(x,y,n)の一定時間当りの変化量の絶対値と該複素振幅C(x,y,n)の絶対値(すなわち、強度成分R(x,y,n))とに基づいて、観察対象物9のスライス面で生じた第2反射光の位相成分φ(x,y,n)の一定時間当りの変化量が求められ、ひいては、観察対処物9のスライス面における反射体のz方向の位置変化の様子が各位置(x,y)について得られる。
 なお、干渉像に重畳するノイズが干渉成分に比して大きい場合、強度成分Rの変化量が無視できなくなる。ノイズの寄与は、複素平面状で実軸成分と虚軸成分ともにガウシアン型に現れるため、統計的な手法によってノイズによる寄与を補正することが可能である。(14)式に代えて下記(16)式を用いることで、干渉信号にランダムなノイズが重畳している場合のφdev(x,y)を与えることができる。
Figure JPOXMLDOC01-appb-M000016
 ここで、Rnoは、ノイズの大きさを示す座標によらない定数であり、下記(17)式によって与えられる。ただし、(x0,y0)は、画像内で有意な干渉信号が存在しないとみなせる地点の座標である。例えば(x0,y0)は、コヒーレンス長に比して基板から十分に遠いとみなせるスライス面における、細胞の存在しない位置として選ぶことができる。
Figure JPOXMLDOC01-appb-M000017
 (16)式の有効性を示すため、モンテカルロ法によるシミュレーションを行った。シミュレーションは、Rno=1となるようなガウシアン型のノイズを、R=4でありかつ偏角がφdevずつ変化していくようなC(n)に重畳させて行った。シミュレーションに用いたC(n)は下記(18)式によって与えられる。ここで、Noiseは実軸成分と虚軸成分がともに標準偏差1/20.5となるような、原点を中心とする複素ガウシアンノイズであり、Rno=1を満たす。
Figure JPOXMLDOC01-appb-M000018
 Δn=1の条件で計算すると、Noiseの項が存在しないときは、(14)式はφdevの真値を常に与える。一方、Noiseの項が存在する場合、(14)式は特にφdevの値の小さい領域においてφdevの真値から外れていくこととなるが、(16)式を用いることでNoiseの項の寄与を補正することが可能となる。Noiseの項が存在する場合において、(14)式、(16)式それぞれによって計算したφdevを図18に示す。
 なお、干渉信号の強度成分Rが小さい場合すなわち見かけの干渉信号に寄与するノイズの割合が大きい場合、(16)式の分母が極めて小さいかゼロになってしまい、正確なφdevの定量ができなくなる。そのため、例えば下記(19)式に示すような条件を用いて、この条件を満たすほどに信号のRが小さい座標(x,y)のデータについては、後段の処理に使用しないようにするのが望ましい。
Figure JPOXMLDOC01-appb-M000019
 解析部52による解析の結果は表示部53により画像表示される。表示部53では、解析部52による解析結果がグレイスケールまたは擬似カラー等により画像表示されるのが好ましい。このように表示されることにより、観察対処物9のスライス面における反射体のz方向の位置変化の様子の観察が容易である。
 図19~図20それぞれは、表示部53における画像表示例を示す図である。図19および図20それぞれに示される画像は、上記(16)式に従って求められたものである。図19は、生きたHeLa細胞を観察対象物9として用いて、これのスライス面における反射体のz方向の位置変化の様子をグレイスケールで表した画像を示す図である。図20は、固定されたHeLa細胞を観察対象物9として用いて、これのスライス面における反射体のz方向の位置変化の様子をグレイスケールで表した画像を示す図である。ここで、Nを66とし、Δnを2とし、t0を1.2秒とした。HeLa細胞は、パラホルムアルデヒド処理されることで細胞膜や内容物が固定された。図21は、図20に示された固定されたHeLa細胞の強度成分R(x,y,n)の画像を示す図である。
 図19および図20それぞれにおいて、濃度が高いほど、その位置の反射体の運動性が高いことが示されている。図20に示されるように、固定されたHeLa細胞では、細胞膜も内容物も動きが止まるので、反射体のz方向の位置変化は認められなかった。これに対して、図19に示されるように、生きたHeLa細胞では、細胞膜も内容物も動いており、反射体のz方向の位置変化が認められた。
 上記(16)式に従って反射体のz方向の位置変化を観察する手法の利点は、位相アンラッピング処理を用いる必要がないという点である。位相アンラッピングは、位相の不連続点を連続的にする数値処理であるが、処理にあたってアーチファクトを発生する可能性がある、上記の指標φdevを用いる手法では、位相アンラッピングを用いる必要がないので、アーチファクトの発生も抑えられる。
 以上のように、本実施形態に係る観察装置1または本実施形態に係る観察方法によれば、細胞等の観察対象物9の詳細な情報が得られ得る。これにより、細胞内の活性のイメージングが可能となって、細胞研究,創薬および再生医療などへの応用が期待される。
 また、解析部52により、上記と同様にして、観察対象物9の複数のスライス面それぞれについて、第2反射光の位相成分φ(x,y,n)の一定時間当りの変化量が求められ、ひいては、反射体のz方向の位置変化の様子が各位置(x,y)について得られるのが好適である。この場合、ピエゾアクチュエータ71だけでなくステージ81も用いられて、図6または図8に示されるように光路長差{(y1+y2)-(x1+x2)}がステップ的に調整された上で、その各ステップにおいて図14に示されるように位相シフト量が時間的に変化するようにして複数枚の複素振幅C(x,y,n)が獲得されるようにすればよい。このようにすることにより、観察対象物9のトモグラフィ観察が可能となる。
 (解析部52による解析および表示部53による画像表示の詳細、その2)
 第2反射光の位相成分φ(x,y,n)のみが表示部53によりグレイスケールまたは擬似カラー等により画像表示されることにより、観察対処物9のスライス面における反射体のz方向の位置変化の様子が観察され得る。しかし、この場合には、強度成分R(x,y,n)の大きさに拘わらず位相成分φ(x,y,n)がグレイスケールまたは擬似カラー等により画像表示されるので、強度成分R(x,y,n)が小さい位置(すなわち、光λ1の反射率が小さい位置)がノイズとなる。それ故、表示部53に表示された画像を見る人間にとって、位相成分φ(x,y,n)の変化量が大きい位置(すなわち、観察対処物9のスライス面における反射体のz方向の位置変化量が大きい位置)の確認が困難となる。
 そこで、解析部52により得られた第2反射光の強度成分R(x,y,n)および位相成分φ(x,y,n)は、以下のようにして表示部53により画像表示される。すなわち、表示部53により、解析部52により求められた第2反射光の位相成分φ(x,y,n)が色相Hに反映され、解析部52により求められた第2反射光の強度成分R(x,y,n)が彩度Sまたは明度Vに反映されて、HSV色空間で第2反射光が画像表示される。
 HSV色空間における色相Hは、色の種類を0~360の範囲で示すパラメータである。したがって、例えば、位相成分φ(x,y,n)が-π~+πの範囲の値を取り得るとすると、色相Hは「360×[φ+π(x,y,n)]/2π」なる式で表される。
 HSV色空間における彩度Sは、色の鮮やかさを0~1の範囲で示すパラメータである。また、HSV色空間における明度Vは、色の明るさを0~1の範囲で示すパラメータである。したがって、例えば、最大値が1になるように規格化された強度成分R(x,y,n)が用いられて、彩度Sまたは明度Vは、その規格化された強度成分R(x,y,n)として表され、或いは、「[1+R(x,y,n)]/2」なる式で表される。
 強度成分R(x,y,n)が大きいほど彩度Sまたは明度Vが大きい値になるように両者間の対応が設定される。強度成分R(x,y,n)が彩度Sおよび明度Vのうち一方のパラメータのみにより表される場合、他方のパラメータは固定値(例えば値1)に設定される。
 このように、表示部53において、位相成分φ(x,y,n)が色相Hにより表され、強度成分R(x,y,n)が彩度Sまたは明度Vにより表されて、HSV色空間で第2反射光が画像表示されることにより、位相成分φ(x,y,n)および強度成分R(x,y,n)が共通の画像に表される。これにより、強度成分R(x,y,n)が大きい位置(すなわち、光λ1の反射率が大きい位置)では、彩度Sまたは明度Vが大きいので、色相Hの表示が強くなり、それ故、表示部53に表示された画像を見る人間にとってノイズが気にならなくなる。一方、強度成分R(x,y,n)が小さい位置(すなわち、光λ1の反射率が小さい位置)では、彩度Sまたは明度Vが小さいので、色相Hの表示が弱くなり、それ故、表示部53に表示された画像を見る人間にとって、位相成分φ(x,y,n)の変化量が大きい位置(すなわち、観察対処物9のスライス面における反射体のz方向の位置変化量が大きい位置)の確認が容易となる。
 表示部53による画像表示の具体例は以下のとおりである。強度成分R(x,y,n)が明度Vのみに反映される場合、HSV色空間は位相成分φ(x,y,n)および強度成分R(x,y,n)により下記(20)式により表現される。強度成分R(x,y,n)が彩度Sのみに反映される場合、HSV色空間は位相成分φ(x,y,n)および強度成分R(x,y,n)により下記(21)式により表現される。また、強度成分R(x,y,n)が彩度Sおよび明度Vの双方に反映される場合、HSV色空間は位相成分φ(x,y,n)および強度成分R(x,y,n)により下記(22)式により表現される。
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 なお、比較例として、強度成分R(x,y,n)が彩度Sおよび明度Vの何れにも反映されず、彩度Sおよび明度Vの双方が固定値1である場合、HSV色空間は、位相成分φ(x,y,n)および強度成分R(x,y,n)のうち位相成分φ(x,y,n)のみにより下記(23)式により表現される。
Figure JPOXMLDOC01-appb-M000023
 図22は、強度成分R(x,y,n)が明度Vのみに反映される場合((20)式の場合)における表示部53による画像表示の例を示す図である。図23は、強度成分R(x,y,n)が彩度Sのみに反映される場合((21)式の場合)における表示部53による画像表示の例を示す図である。図24は、強度成分R(x,y,n)が彩度Sおよび明度Vの双方に反映される場合((22)式の場合)における表示部53による画像表示の例を示す図である。また、図25は、強度成分R(x,y,n)が彩度Sおよび明度Vの何れにも反映されない比較例の場合((23)式の場合)における表示部53による画像表示の例を示す図である。これらの図は、本来は擬似カラー表示であるものをグレイスケールで表示したものである。
 図26は、図24に示される画像(本来の擬似カラー表示画像)をR,G,Bの各成分に分解して示す図である。また、図27は、図25に示される画像(本来の擬似カラー表示)をR,G,Bの各成分に分解して示す図である。図26および図27それぞれにおいて、(a)はR成分の画像をグレイスケールで表示し、(b)はG成分の画像をグレイスケールで表示し、また、(c)はB成分の画像をグレイスケールで表示する。
 比較例の画像表示(図25,図27)では、強度成分R(x,y,n)が小さい位置(すなわち、光λ1の反射率が小さい位置)も位相成分φ(x,y,n)が擬似カラー表示されるので、ノイズが多くなって、表示部53に表示された画像を見る人間にとって、位相成分φ(x,y,n)の変化量が大きい位置(すなわち、観察対処物9のスライス面における反射体のz方向の位置変化量が大きい位置)の確認が困難となっている。
 これに対して、本実施形態による画像表示(図22~図24、図26)では、強度成分R(x,y,n)が大きい位置(すなわち、光λ1の反射率が大きい位置)では、彩度Sおよび明度Vが大きいので、色相Hの表示が強くなり、表示部53に表示された画像を見る人間にとってノイズが気にならない。一方、強度成分R(x,y,n)が小さい位置(すなわち、光λ1の反射率が小さい位置)では、彩度Sまたは明度Vが小さいので、色相Hの表示が弱くなり、表示部53に表示された画像を見る人間にとって、位相成分φ(x,y,n)の変化量が大きい位置(すなわち、観察対処物9のスライス面における反射体のz方向の位置変化量が大きい位置)の確認が容易となる。
 以上のように、本実施形態に係る観察装置1または本実施形態に係る観察方法によれば、細胞等の観察対象物9の詳細な情報が得られ効果的に表示されて確認が容易である。これにより、細胞内の活性のイメージングが可能となって、細胞研究,創薬および再生医療などへの応用が期待される。
 また、解析部52により、上記と同様にして、観察対象物9の複数のスライス面それぞれについて、第2反射光の位相成分φ(x,y,n)の一定時間当りの変化量が求められ、ひいては、反射体のz方向の位置変化の様子が各位置(x,y)について得られるのが好適である。この場合、ピエゾアクチュエータ71だけでなくステージ81も用いられて、図6または図8に示されるように光路長差{(y1+y2)-(x1+x2)}がステップ的に調整された上で、その各ステップにおいて図14に示されるように位相シフト量が時間的に変化するようにして複数組の強度成分R(x,y,n)および位相成分φ(x,y,n)が獲得されるようにすればよい。このようにすることにより、観察対象物9のトモグラフィ観察が可能となる。
 本発明は、細胞等の対象物の詳細な情報を得ることができる観察装置および観察方法を提供する。また、本発明は、細胞等の対象物の詳細な情報を得て効果的に表示することができる観察装置および観察方法を提供する。

Claims (22)

  1.  光を出力する光源と、
     該光源から出力された光を2分岐して第1分岐光および第2分岐光として出力し、前記第1分岐光がミラーにより反射されて生じる第1反射光を入力するとともに、前記第2分岐光が観察対象物の表面または内部で反射されて生じる第2反射光を入力して、これら第1反射光と第2反射光とを干渉させて当該干渉光を出力する干渉光学系と、
     前記干渉光学系から出力される干渉光を結像する結像光学系と、
     前記結像光学系により結像された干渉光像を撮像する撮像部と、
     前記光源から前記観察対象物の基準位置を経て前記撮像部に到るまでの光路長と、前記光源から前記ミラーを経て前記撮像部に到るまでの光路長との、光路長差を調整する光路長差調整手段と、
     前記光路長差が各目標値に順次になるように前記光路長差調整手段による光路長差調整動作を制御する制御部と、
     位相シフト法により前記光路長差調整手段により前記光路長差が各目標値に順次に設定されて前記撮像部により撮像された干渉光像の複素振幅を求め、この求めた複素振幅の一定時間当りの変化量の絶対値と該複素振幅の絶対値とに基づいて、前記観察対象物の表面または内部で生じた前記第2反射光の位相成分の一定時間当りの変化量を求める解析部と、
     を備えることを特徴とする観察装置。
  2.  前記解析部により求められた前記第2反射光の位相成分の一定時間当りの変化量の空間的分布を画像表示する表示部を更に備えることを特徴とする請求項1に記載の観察装置。
  3.  前記解析部が前記観察対象物の複数のスライス面それぞれについて前記第2反射光の位相成分の一定時間当りの変化量を求めることを特徴とする請求項1に記載の観察装置。
  4.  前記光路長差を検出する光路長差検出手段を更に備え、
     前記光路長差検出手段による検出結果に基づいて前記光路長差調整手段が前記光路長差を調整する、
     ことを特徴とする請求項1に記載の観察装置。
  5.  前記光路長差調整手段が、前記観察対象物および前記ミラーのうち一方の第1対象物を移動させる第1移動手段と、前記観察対象物および前記ミラーのうち他方の第2対象物を移動させる第2移動手段とを含み、前記第1移動手段または前記第2移動手段による移動動作により前記光路長差を調整し、
     前記第1移動手段が、前記第2移動手段の作動範囲より狭い作動範囲を有するとともに、前記第2移動手段の位置精度より高い位置精度を有し、
     前記第2移動手段が、前記干渉光学系と前記第2対象物との間の光学系を維持したまま前記第2対象物を移動させ、
     前記制御部が、前記光路長差の各目標値において前記第1移動手段による移動量が前記作動範囲内の所定範囲内となるように前記第2移動手段による移動動作を連続的または断続的に行わせ、前記第2移動手段による移動動作の際にも前記光路長差が各目標値になるように前記第1移動手段による移動動作をフィードバック制御する、
     ことを特徴とする請求項1に記載の観察装置。
  6.  光を出力する光源と、
     該光源から出力された光を2分岐して第1分岐光および第2分岐光として出力し、前記第1分岐光が観察対象物の表面または内部で反射されて生じる第1反射光を入力するとともに、前記第2分岐光がミラーにより反射されて生じる第2反射光を入力して、これら第1反射光と第2反射光とを干渉させて当該干渉光を出力する干渉光学系と、
     前記干渉光学系から出力される干渉光を結像する結像光学系と、
     前記結像光学系により結像された干渉光像を撮像する撮像部と、
     前記光源から前記観察対象物の基準位置を経て前記撮像部に到るまでの光路長と、前記光源から前記ミラーを経て前記撮像部に到るまでの光路長との、光路長差を調整する光路長差調整手段と、
     前記光路長差が各目標値に順次になるように前記光路長差調整手段による光路長差調整動作を制御する制御部と、
     を用い、
     位相シフト法により前記光路長差調整手段により前記光路長差が各目標値に順次に設定されて前記撮像部により撮像された干渉光像の複素振幅を求め、この求めた複素振幅の一定時間当りの変化量の絶対値と該複素振幅の絶対値とに基づいて、前記観察対象物の表面または内部で生じた前記第2反射光の位相成分の一定時間当りの変化量を求める、
     ことを特徴とする観察方法。
  7.  前記第2反射光の位相成分の一定時間当りの変化量の空間的分布を表示部により画像表示することを特徴とする請求項6に記載の観察方法。
  8.  前記観察対象物の複数のスライス面それぞれについて前記第2反射光の位相成分の一定時間当りの変化量を求めることを特徴とする請求項6に記載の観察方法。
  9.  前記光路長差を検出する光路長差検出手段を更に用い、
     前記光路長差検出手段による検出結果に基づいて前記光路長差調整手段により前記光路長差を調整する、
     ことを特徴とする請求項6に記載の観察方法。
  10.  前記光路長差調整手段が、前記観察対象物および前記ミラーのうち一方の第1対象物を移動させる第1移動手段と、前記観察対象物および前記ミラーのうち他方の第2対象物を移動させる第2移動手段とを含み、前記第1移動手段または前記第2移動手段による移動動作により前記光路長差を調整し、
     前記第1移動手段が、前記第2移動手段の作動範囲より狭い作動範囲を有するとともに、前記第2移動手段の位置精度より高い位置精度を有し、
     前記第2移動手段が、前記干渉光学系と前記第2対象物との間の光学系を維持したまま前記第2対象物を移動させ、
     前記制御部が、前記光路長差の各目標値において前記第1移動手段による移動量が前記作動範囲内の所定範囲内となるように前記第2移動手段による移動動作を連続的または断続的に行わせ、前記第2移動手段による移動動作の際にも前記光路長差が各目標値になるように前記第1移動手段による移動動作をフィードバック制御する、
     ことを特徴とする請求項6に記載の観察方法。
  11.  前記観察対象物が細胞を含むことを特徴とする請求項6に記載の観察方法。
  12.  光を出力する光源と、
     該光源から出力された光を2分岐して第1分岐光および第2分岐光として出力し、前記第1分岐光がミラーにより反射されて生じる第1反射光を入力するとともに、前記第2分岐光が観察対象物の表面または内部で反射されて生じる第2反射光を入力して、これら第1反射光と第2反射光とを干渉させて当該干渉光を出力する干渉光学系と、
     前記干渉光学系から出力される干渉光を結像する結像光学系と、
     前記結像光学系により結像された干渉光像を撮像する撮像部と、
     前記光源から前記観察対象物の基準位置を経て前記撮像部に到るまでの光路長と、前記光源から前記ミラーを経て前記撮像部に到るまでの光路長との、光路長差を調整する光路長差調整手段と、
     前記光路長差が各目標値に順次になるように前記光路長差調整手段による光路長差調整動作を制御する制御部と、
     位相シフト法により前記光路長差調整手段により前記光路長差が各目標値に順次に設定されて前記撮像部により撮像された干渉光像に基づいて、前記観察対象物の表面または内部で生じた前記第2反射光の強度成分および位相成分を求める解析部と、
     前記解析部により求められた前記第2反射光の位相成分を色相に反映させ、前記解析部により求められた前記第2反射光の強度成分を彩度または明度に反映させて、HSV色空間で前記第2反射光を画像表示する表示部と、
     を備えることを特徴とする観察装置。
  13.  前記解析部が、複数組の前記第2反射光の強度成分および位相成分を時系列に求め、
     前記表示部が、前記解析部により求められた複数組の前記第2反射光の強度成分および位相成分に基づいて、HSV色空間でこれらの第2反射光を時系列に画像表示する、
     ことを特徴とする請求項12に記載の観察装置。
  14.  前記解析部が、前記観察対象物の複数のスライス面それぞれについて前記第2反射光の強度成分および位相成分を求め、
     前記表示部が、前記解析部により求められた複数組の前記第2反射光の強度成分および位相成分に基づいて、HSV色空間でこれらの第2反射光を画像表示する、
     ことを特徴とする請求項12に記載の観察装置。
  15.  前記光路長差を検出する光路長差検出手段を更に備え、
     前記光路長差検出手段による検出結果に基づいて前記光路長差調整手段が前記光路長差を調整する、
     ことを特徴とする請求項12に記載の観察装置。
  16.  前記光路長差調整手段が、前記観察対象物および前記ミラーのうち一方の第1対象物を移動させる第1移動手段と、前記観察対象物および前記ミラーのうち他方の第2対象物を移動させる第2移動手段とを含み、前記第1移動手段または前記第2移動手段による移動動作により前記光路長差を調整し、
     前記第1移動手段が、前記第2移動手段の作動範囲より狭い作動範囲を有するとともに、前記第2移動手段の位置精度より高い位置精度を有し、
     前記第2移動手段が、前記干渉光学系と前記第2対象物との間の光学系を維持したまま前記第2対象物を移動させ、
     前記制御部が、前記光路長差の各目標値において前記第1移動手段による移動量が前記作動範囲内の所定範囲内となるように前記第2移動手段による移動動作を連続的または断続的に行わせ、前記第2移動手段による移動動作の際にも前記光路長差が各目標値になるように前記第1移動手段による移動動作をフィードバック制御する、
     ことを特徴とする請求項12に記載の観察装置。
  17.  光を出力する光源と、
     該光源から出力された光を2分岐して第1分岐光および第2分岐光として出力し、前記第1分岐光がミラーにより反射されて生じる第1反射光を入力するとともに、前記第2分岐光が観察対象物の表面または内部で反射されて生じる第2反射光を入力して、これら第1反射光と第2反射光とを干渉させて当該干渉光を出力する干渉光学系と、
     前記干渉光学系から出力される干渉光を結像する結像光学系と、
     前記結像光学系により結像された干渉光像を撮像する撮像部と、
     前記光源から前記観察対象物の基準位置を経て前記撮像部に到るまでの光路長と、前記光源から前記ミラーを経て前記撮像部に到るまでの光路長との、光路長差を調整する光路長差調整手段と、
     前記光路長差が各目標値に順次になるように前記光路長差調整手段による光路長差調整動作を制御する制御部と、
     を用い、
     位相シフト法により前記光路長差調整手段により前記光路長差が各目標値に順次に設定されて前記撮像部により撮像された干渉光像に基づいて、前記観察対象物の表面または内部で生じた前記第2反射光の強度成分および位相成分を求め、
     これら求めた前記第2反射光の位相成分を色相に反映させ、前記第2反射光の強度成分を彩度または明度に反映させて、HSV色空間で前記第2反射光を画像表示する、
     ことを特徴とする観察方法。
  18.  複数組の前記第2反射光の強度成分および位相成分を時系列に求め、
     これら求めた複数組の前記第2反射光の強度成分および位相成分に基づいて、HSV色空間でこれらの第2反射光を時系列に画像表示する、
     ことを特徴とする請求項17に記載の観察方法。
  19.  前記観察対象物の複数のスライス面それぞれについて前記第2反射光の強度成分および位相成分を求め、
     これら求めた複数組の前記第2反射光の強度成分および位相成分に基づいて、HSV色空間でこれらの第2反射光を画像表示する、
     ことを特徴とする請求項17に記載の観察方法。
  20.  前記光路長差を検出する光路長差検出手段を更に用い、
     前記光路長差検出手段による検出結果に基づいて前記光路長差調整手段により前記光路長差を調整する、
     ことを特徴とする請求項17に記載の観察方法。
  21.  前記光路長差調整手段が、前記観察対象物および前記ミラーのうち一方の第1対象物を移動させる第1移動手段と、前記観察対象物および前記ミラーのうち他方の第2対象物を移動させる第2移動手段とを含み、前記第1移動手段または前記第2移動手段による移動動作により前記光路長差を調整し、
     前記第1移動手段が、前記第2移動手段の作動範囲より狭い作動範囲を有するとともに、前記第2移動手段の位置精度より高い位置精度を有し、
     前記第2移動手段が、前記干渉光学系と前記第2対象物との間の光学系を維持したまま前記第2対象物を移動させ、
     前記制御部が、前記光路長差の各目標値において前記第1移動手段による移動量が前記作動範囲内の所定範囲内となるように前記第2移動手段による移動動作を連続的または断続的に行わせ、前記第2移動手段による移動動作の際にも前記光路長差が各目標値になるように前記第1移動手段による移動動作をフィードバック制御する、
     ことを特徴とする請求項17に記載の観察方法。
  22.  前記観察対象物が細胞を含むことを特徴とする請求項17に記載の観察方法。
PCT/JP2009/064520 2008-08-20 2009-08-19 観察装置および観察方法 WO2010021343A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112009002073.9T DE112009002073B4 (de) 2008-08-20 2009-08-19 Beobachtungsvorrichtung und Beobachtungsverfahren
US13/059,860 US9080861B2 (en) 2008-08-20 2009-08-19 Observation device, and observation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008211990A JP5038994B2 (ja) 2008-08-20 2008-08-20 観察装置および観察方法
JP2008212004A JP5261071B2 (ja) 2008-08-20 2008-08-20 観察装置および観察方法
JP2008-212004 2008-08-20
JP2008-211990 2008-08-20

Publications (1)

Publication Number Publication Date
WO2010021343A1 true WO2010021343A1 (ja) 2010-02-25

Family

ID=41707218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064520 WO2010021343A1 (ja) 2008-08-20 2009-08-19 観察装置および観察方法

Country Status (3)

Country Link
US (1) US9080861B2 (ja)
DE (1) DE112009002073B4 (ja)
WO (1) WO2010021343A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8004688B2 (en) * 2008-11-26 2011-08-23 Zygo Corporation Scan error correction in low coherence scanning interferometry

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028647A (ja) * 2002-06-21 2004-01-29 Fuji Photo Optical Co Ltd 低コヒーレント干渉縞解析方法
JP2005182143A (ja) * 2003-12-16 2005-07-07 N Tech:Kk キャップ天面の検査方法
JP2006084304A (ja) * 2004-09-15 2006-03-30 Topcon Corp 光画像計測装置
JP2009008393A (ja) * 2007-06-26 2009-01-15 Kowa Co 光画像計測装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818108A (en) * 1987-12-14 1989-04-04 Hughes Optical Products, Inc. Phase modulated ronchi testing of aspheric surfaces
JP3602925B2 (ja) 1995-12-08 2004-12-15 独立行政法人科学技術振興機構 光干渉法による測定対象物の屈折率と厚さの同時測定装置
JP3660185B2 (ja) * 2000-02-07 2005-06-15 独立行政法人科学技術振興機構 断層像形成方法及びそのための装置
JP3871309B2 (ja) * 2001-01-31 2007-01-24 フジノン株式会社 位相シフト縞解析方法およびこれを用いた装置
US7139081B2 (en) * 2002-09-09 2006-11-21 Zygo Corporation Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
WO2007002898A2 (en) * 2005-06-29 2007-01-04 University Of South Florida Variable tomographic scanning with wavelength scanning digital interface holography
GB0611807D0 (en) * 2006-06-14 2006-07-26 Univ Huddersfield A near common-path optical fibre interferometer for potentially fast on-line micro/nano scale surface measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028647A (ja) * 2002-06-21 2004-01-29 Fuji Photo Optical Co Ltd 低コヒーレント干渉縞解析方法
JP2005182143A (ja) * 2003-12-16 2005-07-07 N Tech:Kk キャップ天面の検査方法
JP2006084304A (ja) * 2004-09-15 2006-03-30 Topcon Corp 光画像計測装置
JP2009008393A (ja) * 2007-06-26 2009-01-15 Kowa Co 光画像計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISAO TAKAHASHI ET AL.: "Iso Soft Digital Holography o Mochiita Dansa no aru Buttai no Hen'i Keisoku", NIPPON JIKKENRYOKU GAKKAI KOEN RONBUNSHU, 2003, pages 89 - 91 *

Also Published As

Publication number Publication date
US9080861B2 (en) 2015-07-14
DE112009002073T5 (de) 2011-06-22
DE112009002073B4 (de) 2023-06-15
US20110205547A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
US10393500B2 (en) Interference observation device and interference observation method
JP4891261B2 (ja) 光画像計測装置
US8204300B2 (en) Image forming method and optical coherence tomograph apparatus using optical coherence tomography
JP4546209B2 (ja) 眼科装置
JP5627321B2 (ja) 光断層画像撮像装置及びその撮像方法
EP1705456A1 (en) Optical image measuring apparatus
WO2017221324A1 (ja) 音波伝搬映像化装置及び方法
EP1582142A1 (en) Optical interferometer for imaging at several depth regions of an object
JP2004028970A (ja) 偏光感受型光スペクトル干渉コヒーレンストモグラフィー装置及び該装置による試料内部の偏光情報の測定方法
JP2015226579A (ja) 光干渉断層撮影装置及び光干渉断層撮影装置の制御方法
WO2012110052A1 (en) Apparatus and method for optical coherence tomography
WO2016121249A1 (ja) 干渉光学装置、干渉観察装置および干渉観察方法
JP5038994B2 (ja) 観察装置および観察方法
JP5261071B2 (ja) 観察装置および観察方法
JP6887350B2 (ja) 光画像計測装置
JP5249739B2 (ja) 観察装置および観察方法
US10533838B2 (en) Visualization systems and methods for optimized optical coherence tomography
WO2010021343A1 (ja) 観察装置および観察方法
WO2019098005A1 (ja) 光測定装置及び光測定方法
WO2019150695A1 (ja) 光画像計測装置
JP2006064610A (ja) 同軸型空間光干渉断層画像計測装置
EP4439005A1 (en) A method for characterizing a scanning mirror in a scan control system, a scan control system, and an optical coherence tomography (oct) system comprising said scan control system
JP4367261B2 (ja) 顕微鏡観察方法、顕微鏡装置、及び画像処理装置
JP2005351727A (ja) 光画像計測方法及びそれを用いた光干渉断層イメージング装置
JP2024097725A (ja) Oct装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13059860

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

Effective date: 20110222

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase

Ref document number: 09808279

Country of ref document: EP

Kind code of ref document: A1