WO2010021231A1 - 燃料電池システムおよび電子機器 - Google Patents

燃料電池システムおよび電子機器 Download PDF

Info

Publication number
WO2010021231A1
WO2010021231A1 PCT/JP2009/063463 JP2009063463W WO2010021231A1 WO 2010021231 A1 WO2010021231 A1 WO 2010021231A1 JP 2009063463 W JP2009063463 W JP 2009063463W WO 2010021231 A1 WO2010021231 A1 WO 2010021231A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
power generation
generation unit
unit
voltage
Prior art date
Application number
PCT/JP2009/063463
Other languages
English (en)
French (fr)
Inventor
重輔 志村
芳明 井上
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008209873A external-priority patent/JP5344218B2/ja
Priority claimed from JP2008233116A external-priority patent/JP5344219B2/ja
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to RU2011106110/07A priority Critical patent/RU2477909C2/ru
Priority to BRPI0917951A priority patent/BRPI0917951A2/pt
Priority to US13/058,770 priority patent/US8846257B2/en
Priority to CN200980131258.2A priority patent/CN102119460B/zh
Priority to EP09808167.2A priority patent/EP2323208A4/en
Publication of WO2010021231A1 publication Critical patent/WO2010021231A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system that generates power by reaction of methanol or the like with an oxidant gas (oxygen), and an electronic device equipped with such a fuel cell system.
  • an oxidant gas oxygen
  • fuel cells have been put to practical use as industrial or household power generators or power sources for artificial satellites, spacecrafts, etc., because they have high power generation efficiency and do not emit harmful substances.
  • development as a power source for vehicles such as passenger cars, buses and trucks has been progressing.
  • Such fuel cells are classified into types such as alkaline aqueous solution type, phosphoric acid type, molten carbonate type, solid oxide type and direct type methanol.
  • DMFCs direct methanol solid polymer electrolyte fuel cells
  • DMFCs direct methanol solid polymer electrolyte fuel cells
  • MEA Membrane Electrode Assembly
  • MEA Membrane Electrode Assembly
  • one of the gas diffusion electrodes is used as a fuel electrode (negative electrode) and methanol as fuel is supplied to the surface of the gas diffusion electrode
  • the methanol is decomposed to generate hydrogen ions (protons) and electrons, and the hydrogen ions are converted into a solid polymer electrolyte.
  • the other of the gas diffusion electrodes is an oxygen electrode (positive electrode) and air as an oxidant gas is supplied to the surface thereof, oxygen in the air is combined with the hydrogen ions and electrons to generate water. . Due to such an electrochemical reaction, an electromotive force is generated from the DMFC.
  • fuel cells used for mobile applications are required to stably generate power in various environments, such as indoors, outdoors in midwinter, in hot cars in midsummer, and in bags that are difficult to dissipate heat.
  • the fuel cell has an appropriate fuel supply amount that varies depending on the temperature and humidity of the external environment. Therefore, detailed fuel supply control according to environmental fluctuations (fuel supply control that does not cause excess or deficiency in the fuel supply amount) ) Is required.
  • This crossover phenomenon is a phenomenon in which surplus fuel burns directly on the oxygen electrode, which not only reduces the use efficiency of the fuel but is wasted, and may cause burns to the user due to the temperature rise. is there. Conversely, if the fuel supply becomes insufficient, sufficient output cannot be obtained, and power supply to devices connected to the fuel cell may be stopped.
  • Patent Document 1 a control method of the fuel supply amount for the purpose of suppressing excess and deficiency in the fuel supply amount has been proposed (for example, Patent Document 1).
  • the secondary battery is charged with the generated voltage and generated current (generated power) by the fuel cell to drive the load. Therefore, in such a fuel cell system, it is desired to charge the secondary battery with the power generated by the fuel cell as efficiently as possible.
  • Patent Document 2 proposes using a DC / DC converter to control the power generation voltage value of the fuel cell to be kept constant.
  • this control method has a problem that, for example, when a crossover phenomenon occurs, the situation becomes worse. Specifically, for example, when fuel is insufficient during constant current control, the voltage drops and falls below the lower limit, but when the crossover phenomenon occurs, the voltage drops in the same way, so the voltage falls below the lower limit. End up. Here, the fuel must be supplied in the former (when fuel is insufficient), but the fuel supply must be stopped in the latter (when the crossover phenomenon occurs).
  • the conventional fuel supply control since only the voltage is seen, there is a problem that these differences cannot be distinguished.
  • a liquid supply type liquid fuel (methanol aqueous solution) is supplied to the fuel electrode as it is
  • a vaporization supply type in a state where the liquid fuel is vaporized.
  • the vaporization supply type cannot perform fuel supply control according to the fuel concentration as in the liquid supply type, and is in a fuel supply cycle (operation timing of the fuel supply pump, shutter opening / closing timing, etc.). The fuel supply is controlled accordingly. Therefore, in particular, in the vaporization supply type DMFC, it has been desired to realize a stable power generation operation independent of the external environment by suppressing excess and deficiency in the fuel supply amount.
  • a liquid supply type liquid fuel (methanol aqueous solution) is supplied to the fuel electrode as it is
  • a vaporization supply type in a state where the liquid fuel is vaporized.
  • the vaporization supply type cannot perform fuel supply control according to the fuel concentration as in the liquid supply type, and is intermittent fuel supply control according to the fuel supply cycle.
  • the vaporization supply type DMFC it is difficult to control the power generation voltage and power generation current due to intermittent fuel supply control, and it has been desired to realize a stable power generation operation.
  • the present invention has been made in view of such problems, and a first object thereof is a fuel cell system capable of generating power more stably than the conventional one without depending on the external environment, and such a fuel cell.
  • the object is to provide an electronic device equipped with a system.
  • a second object of the present invention is to provide a fuel cell system capable of performing more stable power generation than that of a conventional fuel cell of vaporization supply type, and an electronic device equipped with such a fuel cell system. It is in.
  • a first fuel cell system includes a power generation unit that generates power by supplying fuel and an oxidant gas, a fuel that supplies liquid fuel to the power generation unit side, and the supply amount of the liquid fuel is adjustable.
  • a supply unit a fuel vaporization unit for supplying gaseous fuel to the power generation unit by vaporizing the liquid fuel supplied by the fuel supply unit, a temperature detection unit for detecting the temperature of the power generation unit, and the temperature detection unit
  • a control unit that controls the temperature of the power generation unit to be constant by adjusting the amount of liquid fuel supplied by the fuel supply unit based on the detected temperature of the power generation unit.
  • the first electronic device of the present invention includes the first fuel cell system of the present invention.
  • the liquid fuel supplied from the fuel supply unit is vaporized in the fuel vaporization unit, whereby gaseous fuel is supplied to the power generation unit. And in a power generation part, electric power generation is performed by supply of this gaseous fuel and oxidant gas.
  • the temperature of the power generation unit corresponding to such power generation is detected by the temperature detection unit. Then, based on the detected temperature of the power generation unit, the supply amount of the liquid fuel by the fuel supply unit is adjusted, so that the temperature of the power generation unit is controlled to be constant.
  • the crossover phenomenon is avoided as compared with the conventional fuel supply control based on the generated voltage, generated current, or generated power. Or fuel supply control according to changes in the external environment. Further, since feedback control is performed so that the temperature of the power generation unit becomes constant, the temperature of the power generation unit is stabilized as compared with simple control by turning on (executing) and turning off (stopping) fuel supply.
  • a second fuel cell system of the present invention includes a power generation unit that generates power by supplying fuel and an oxidant gas, and a fuel supply unit that supplies liquid fuel to the power generation unit side and that can adjust the supply amount of the liquid fuel.
  • a fuel vaporization unit that vaporizes the liquid fuel supplied by the fuel supply unit to supply gas fuel to the power generation unit, a booster circuit that boosts the power generation voltage supplied from the power generation unit, and a predetermined control
  • a control unit that controls the load voltage and the load current supplied from the booster circuit to the load by controlling the operation of the booster circuit using the table is provided.
  • a second electronic device of the present invention includes the second fuel cell system of the present invention.
  • the liquid fuel supplied from the fuel supply unit is vaporized in the fuel vaporization unit, whereby gaseous fuel is supplied to the power generation unit. And in a power generation part, electric power generation is performed by supply of this gaseous fuel and oxidant gas. Further, the power generation voltage supplied from the power generation unit by such power generation is boosted by the booster circuit and supplied to the load as a load voltage. At this time, the operation of the booster circuit is controlled using a predetermined control table, whereby the load voltage and load current supplied from the booster circuit to the load are controlled.
  • the temperature of the power generation unit is adjusted by adjusting the amount of liquid fuel supplied by the fuel supply unit based on the detected temperature of the power generation unit. Since constant control is performed, for example, crossover phenomenon can be avoided or fuel supply control according to changes in the external environment can be facilitated, and the temperature of the power generation unit can be stabilized. Therefore, it is possible to generate power more stably than before without depending on the external environment.
  • the power generation voltage supplied from the power generation unit is boosted by the booster circuit, and the operation of the booster circuit is controlled using a predetermined control table.
  • the load voltage and load current supplied from the booster circuit to the load are controlled. Therefore, even when intermittent fuel supply is performed in the vaporization supply type fuel cell, the load voltage And efficient control over load current. Therefore, it is possible to perform more stable power generation than before in the vaporization supply type fuel cell.
  • FIG. 1 is a block diagram illustrating an overall configuration of a fuel cell system according to a first embodiment of the present invention. It is sectional drawing showing the structural example of the electric power generation part shown in FIG. It is a top view showing the structural example of the electric power generation part shown in FIG. It is a characteristic view for demonstrating the outline
  • FIG. It is a schematic characteristic diagram for demonstrating the power generation characteristic by the fuel supply control which concerns on the comparative example 2.
  • FIG. It is a schematic characteristic diagram for demonstrating the outline
  • FIG. 10 is a block diagram for explaining a detailed configuration of a control unit according to Comparative Example 4.
  • FIG. 10 is a characteristic diagram illustrating an example of power generation characteristics by fuel supply control according to Comparative Example 4.
  • FIG. 25 is a schematic diagram for explaining the operation of the booster circuit shown in FIG. 24. It is a timing waveform diagram for demonstrating the outline
  • FIG. 25 is a circuit diagram illustrating configurations of a booster circuit and a voltage divider circuit illustrated in FIG.
  • FIG. 6 is a timing waveform diagram for explaining a PWM signal generation operation.
  • FIG. 28 is a circuit diagram for explaining the operation of the booster circuit shown in FIG. 27. It is a timing waveform diagram for demonstrating the constant voltage operation
  • FIG. 1 shows the overall configuration of a fuel cell system (fuel cell system 5) according to a first embodiment of the present invention.
  • the fuel cell system 5 supplies power for driving the load 6 via the output terminals T2 and T3.
  • the fuel supply system 5 includes a fuel cell 1, a temperature detector 30, a current detector 31, a voltage detector 32, a booster circuit 33, a secondary battery 34, and a controller 35. .
  • the fuel cell 1 includes a power generation unit 10, a fuel tank 40, and a fuel pump 42. The detailed configuration of the fuel cell 1 will be described later.
  • the power generation unit 10 is a direct methanol type power generation unit that generates power by a reaction between methanol and an oxidant gas (for example, oxygen), and includes a plurality of unit cells having a positive electrode (oxygen electrode) and a negative electrode (fuel electrode). It consists of The detailed configuration of the power generation unit 10 will be described later.
  • an oxidant gas for example, oxygen
  • the fuel tank 40 contains liquid fuel (for example, methanol or aqueous methanol solution) necessary for power generation.
  • liquid fuel for example, methanol or aqueous methanol solution
  • the fuel pump 42 is a pump for pumping the liquid fuel accommodated in the fuel tank 40 and supplying (transporting) the liquid fuel to the power generation unit 10 side, and is capable of adjusting the fuel supply amount.
  • the operation of the fuel supply pump 42 (liquid fuel supply operation) is controlled by a control unit 35 described later.
  • the detailed configuration of the fuel pump 42 will be described later.
  • the temperature detection unit 30 detects the temperature T1 of the power generation unit 10 (specifically, the temperature at or near the power generation unit 10) T1, and is configured by a thermistor, for example.
  • the current detection unit 31 is arranged between the positive electrode side of the power generation unit 10 and the connection point P1 on the connection line L1H, and detects the power generation current I1 of the power generation unit 10.
  • the current detection unit 31 includes a resistor, for example. Such a current detection unit 31 may be disposed on the connection line L1L (between the negative electrode side of the power generation unit 10 and the connection point P2).
  • the voltage detector 32 is arranged between the connection point P1 on the connection line L1H and the connection point P2 on the connection line L1L, and detects the power generation voltage V1 of the power generation unit 10.
  • the voltage detection unit 32 includes, for example, a resistor.
  • the booster circuit 33 is disposed between the connection point P1 on the connection line L1H and the connection point P3 on the output line LO, and boosts the power generation voltage V1 (DC voltage) of the power generation unit 10 to generate a DC voltage. It is a voltage conversion part which produces
  • the booster circuit 33 is constituted by, for example, a DC / DC converter.
  • the secondary battery 34 is disposed between the connection point P3 on the output line LO and the connection point P4 on the ground line LG, and stores power based on the DC voltage V2 generated by the booster circuit 33. It is.
  • the secondary battery 34 is composed of, for example, a lithium ion secondary battery.
  • the control unit 35 includes a power generation unit temperature (detection temperature) T1 detected by the temperature detection unit 30, a power generation current (detection current) I1 detected by the current detection unit 31, and a power generation detected by the voltage detection unit 32.
  • the supply amount of the liquid fuel by the fuel pump 42 is adjusted based on the voltage (detection voltage) V1.
  • the temperature of the power generation unit 10 is kept constant (substantially approximately) by adjusting the amount of liquid fuel supplied by the fuel pump 42 based on the detected temperature T1 detected by the temperature detection unit 30.
  • the control is performed so as to be within a predetermined range.
  • the control unit 35 is configured by, for example, a microcomputer. The detailed configuration and detailed operation of the control unit 35 will be described later.
  • FIGS. 2 and 3 show configuration examples of the unit cells 10A to 10F in the power generation unit 10 in the fuel cell 1, and FIG. 2 corresponds to the cross-sectional configuration taken along the line II-II in FIG. To do.
  • the unit cells 10A to 10F are arranged in, for example, 3 rows ⁇ 2 columns in the in-plane direction, and have a planar stacked structure in which a plurality of connection members 20 are electrically connected in series.
  • a terminal 20A which is an extension of the connection member 20, is attached to the unit cells 10C and 10F.
  • a fuel tank 40, a fuel pump 42, a nozzle 43, and a fuel vaporization unit 44 are provided below the unit cells 10A to 10F.
  • Each of the unit cells 10A to 10F has a fuel electrode (a negative electrode, an anode electrode) 12 and an oxygen electrode 13 (a positive electrode, a cathode electrode) arranged to face each other with the electrolyte membrane 11 therebetween.
  • a fuel electrode a negative electrode, an anode electrode
  • an oxygen electrode 13 a positive electrode, a cathode electrode
  • the electrolyte membrane 11 is made of, for example, a proton conductive material having a sulfonic acid group (—SO 3 H).
  • proton conducting materials include polyperfluoroalkylsulfonic acid proton conducting materials (for example, “Nafion (registered trademark)” manufactured by DuPont), hydrocarbon proton conducting materials such as polyimide sulfonic acid, or fullerene proton conducting materials. Is mentioned.
  • the fuel electrode 12 and the oxygen electrode 13 have a configuration in which a catalyst layer containing a catalyst such as platinum (Pt) or ruthenium (Ru) is formed on a current collector made of, for example, carbon paper.
  • the catalyst layer is made of, for example, a dispersion in which a carrier such as carbon black carrying a catalyst is dispersed in a polyperfluoroalkylsulfonic acid proton conductive material or the like.
  • an air supply pump (not shown) may be connected to the oxygen electrode 13 or communicate with the outside through an opening (not shown) provided in the connection member 20 to supply air, that is, oxygen by natural ventilation. You may come to be.
  • the connecting member 20 has a bent portion 23 between the two flat portions 21 and 22.
  • the connecting member 20 is in contact with the fuel electrode 12 of one unit cell (for example, 10A) in one flat portion 21 and in the other flat portion 22.
  • Adjacent to the oxygen electrode 13 of the adjacent unit cell (for example, 10B), the two adjacent unit cells (for example, 10A and 10B) are electrically connected in series, and are generated in each of the unit cells 10A to 10F. It also has a function as a current collector for collecting electricity.
  • Such a connection member 20 has, for example, a thickness of 150 ⁇ m and is made of copper (Cu), nickel (Ni), titanium (Ti), or stainless steel (SUS), such as gold (Au) or platinum (Pt). It may be plated with.
  • the connecting member 20 has openings (not shown) for supplying fuel and air to the fuel electrode 12 and the oxygen electrode 13, respectively.
  • the connecting member 20 is made of mesh such as expanded metal, punching metal, or the like. It is configured.
  • the bent portion 23 may be bent in advance according to the thickness of the unit cells 10A to 10F, or in the manufacturing process when the connecting member 20 has flexibility such as a mesh having a thickness of 200 ⁇ m or less. It may be formed by bending.
  • Such a connecting member 20 is formed by, for example, screwing a sealing material (not shown) such as PPS (polyphenylene sulfide) or silicone rubber provided around the electrolyte membrane 11 to the connecting member 20. It is joined to the unit cells 10A to 10F.
  • the fuel tank 40 includes, for example, a container (for example, a plastic bag) whose volume changes without bubbles or the like even when the liquid fuel 41 increases or decreases, and a rectangular parallelepiped case (structure) that covers the container. Has been.
  • the fuel tank 40 is provided with a fuel pump 42 for sucking the liquid fuel 41 in the fuel tank 40 and discharging it from the nozzle 43 near the center.
  • the fuel pump 42 is, for example, a flow as a pipe connecting a piezoelectric body (not shown), a piezoelectric support resin portion (not shown) for supporting the piezoelectric body, and the fuel tank 40 to the nozzle 43. And a road (not shown).
  • the fuel pump 42 can adjust the fuel supply amount in accordance with the change in the fuel supply amount per operation or the fuel supply cycle ⁇ t. .
  • the fuel pump 42 corresponds to a specific example of “fuel supply unit” in the present invention.
  • the fuel vaporization unit 44 supplies gaseous fuel to the power generation unit 10 (unit cells 10A to 10F) by vaporizing the liquid fuel supplied by the fuel pump 42.
  • the fuel vaporization section 44 is used to promote the diffusion of fuel on a plate (not shown) made of a highly rigid resin material such as a metal or alloy including stainless steel, aluminum, or cycloolefin copolymer (COC).
  • the diffusion part (not shown) is provided.
  • an inorganic porous material such as alumina, silica, titanium oxide, or a resin porous material can be used.
  • the nozzle 43 is a fuel ejection port that is transported by a flow path (not shown) of the fuel pump 42, and ejects fuel toward a diffusion portion provided on the surface of the fuel vaporization portion 44. Yes. Thereby, the fuel transported to the fuel vaporization unit 44 is diffused and vaporized and supplied to the power generation unit 10 (unit cells 10A to 10F).
  • the nozzle 43 has a diameter of, for example, 0.1 mm to 0.5 mm.
  • FIG. 5 shows a detailed block configuration of the control unit 35.
  • the control unit 35 includes a subtraction unit (difference calculation unit) 350, a PID control unit 351, and a heat generation correction unit 352.
  • the subtraction unit 350 is set in advance in the control unit 35 or is input from the outside (target temperature (set temperature) Tsv (s)), and the temperature (detected temperature) T1 of the power generation unit 10 detected by the temperature detection unit 30.
  • the PID control unit 351 causes the difference of the difference value between the target temperature Tsv (s) and the detected temperature Tpv (s) obtained by the subtraction unit 350 to be proportional to the time integral value and the time differential value, thereby reducing the liquid fuel.
  • a supply amount (desired heat generation amount H (s)) is calculated, and the desired heat generation amount H (s) is output to the heat generation correction unit 352.
  • the PID control unit 351 calculates the desired heat generation amount H (s) using the following equations (1) and (2).
  • H (s) K P ⁇ T (s) + T I ⁇ T (s) ds + T D ⁇ d ⁇ T (s) / ds ⁇ (1)
  • ⁇ T (s) Tsv (s) ⁇ Tpv (s) (2)
  • H (s): Desired calorific value K P , T I , T D PID constant
  • the heat generation correction unit 352 calculates the energy conversion efficiency in the power generation unit 10 based on the power generation voltage (detection voltage) V1 detected by the voltage detection unit 32 and the power generation current (detection current) I1 detected by the current detection unit 31.
  • the fuel supply amount P (s) is calculated using the calculated energy conversion efficiency (the liquid fuel supply amount calculated by the PID control unit 351 is corrected).
  • Information on the fuel supply amount P (s) is output to the fuel pump 42 in the fuel cell 1. Thereby, although mentioned later for details, the temperature of the electric power generation part 10 becomes fixed.
  • the heat generation correction unit 352 calculates the fuel supply amount P (s) using the following equations (3) and (4).
  • the energy conversion efficiency ⁇ in the power generation unit 10 is calculated in consideration of the power generation current I1 of the power generation unit 10 in addition to the power generation voltage V1 of the power generation unit 10, but the fuel utilization rate By performing an approximation that E is approximately 1, the energy conversion efficiency ⁇ in the power generation unit 10 may be approximately calculated ( ⁇ V O / V T ). In actual control, even if such approximate calculation is performed, there is almost no influence on the control operation.
  • the fuel cell system 5 of the present embodiment can be manufactured as follows, for example.
  • the fuel electrode 12 and the oxygen electrode 13 are joined to the electrolyte membrane 11 by thermocompression bonding the electrolyte membrane 11 made of the above-described material between the fuel electrode 12 and the oxygen electrode 13 made of the above-described material, Unit cells 10A to 10F are formed.
  • a connecting member 20 made of the above-described material is prepared. As shown in FIGS. 6 and 7, six unit cells 10A to 10F are arranged in 3 rows ⁇ 2 columns, and electrically connected by the connecting member 20. Connect in series. A sealing material (not shown) made of the above-described material is provided around the electrolyte membrane 11, and the sealing material is fixed to the bent portion 23 of the connecting member 20 by screwing.
  • the fuel cell 1 Form.
  • the temperature detector 30, current detector 31, voltage detector 32, booster circuit 33, secondary battery 34, and controller 35 described above are electrically connected to the fuel cell 1 as shown in FIG. Install in parallel.
  • the fuel cell system 5 shown in FIGS. 1 to 3 is completed.
  • the liquid fuel 41 accommodated in the fuel tank 40 is pumped up by the fuel pump 42 and reaches the fuel vaporization section 44 through a flow path (not shown).
  • the fuel vaporization section 44 when the liquid fuel is ejected by the nozzle 43, it is diffused over a wide range by a diffusion section (not shown) provided on the surface thereof.
  • the liquid fuel is naturally vaporized, and the gaseous fuel is supplied to the power generation unit 10 (specifically, the fuel electrodes 12 of the unit cells 10A to 10F).
  • the generated current I1 a part of the chemical energy of the liquid fuel 41, that is, methanol, is converted into electric energy, collected by the connecting member 20, and taken out from the power generation unit 10 as a current (generated current I1).
  • the generated voltage (DC voltage) V1 based on the generated current I1 is boosted (voltage converted) by the booster circuit 33 to become a DC voltage V2.
  • the DC voltage V2 is supplied to the secondary battery 34 or a load (for example, an electronic device main body).
  • the DC voltage V2 is supplied to the secondary battery 34, the secondary battery 34 is charged based on this voltage, while the DC voltage V2 is supplied to the load 6 through the output terminals T2 and T3.
  • the load 6 is driven and a predetermined operation is performed.
  • the fuel supply amount is adjusted according to the change in the fuel supply amount per one operation or the fuel supply cycle ⁇ t by the control of the control unit 35.
  • the temperature (detected temperature) T1 of the power generation unit 10 is detected by the temperature detection unit 30, and this Based on the detected temperature T1, the supply amount of the liquid fuel by the fuel pump 42 is adjusted by the control unit 35.
  • the fuel supply amount and the temperature of the power generation unit are different from the above-described power generation voltage and the like, and have a monotonically increasing relationship as shown in FIG. 10, for example.
  • PID control is performed by the PID control unit 351 so that the temperature of the power generation unit 10 becomes constant. It has been made.
  • This PID control is one of the classic feedback control methods that can quickly bring the control amount close to the target value and stabilize it, and is a control method that makes it possible to approach the actual target value smoothly.
  • the calculated fuel supply amount is not supplied as it is, but a power generation test is performed by adding noise to the calculation result (noise). (Results of power generation when there is no noise ⁇ noise) From FIG. 14, it can be seen that even if noise is added, the power generation output is hardly affected and power generation continues stably. In a fuel cell system that uses a fuel pump as a fuel supply means, there is a possibility that the ejection amount changes due to deterioration with time or disturbance of the fuel pump. However, the results shown in FIG. 14 indicate that power generation continues stably even if the ejection amount of the fuel pump changes unexpectedly.
  • FIGS. 15A to 15D is a case where the fuel supply amount is suddenly and drastically changed (here, suddenly lowered). From FIG. 15, it can be seen that even if the fuel supply amount is suddenly and drastically changed, the fluctuation can be almost absorbed by the PID control.
  • FIGS. 16 (A) to 16 (C) is a case where bubbles are mixed into the liquid fuel.
  • FIG. 16 shows that even when some air is mixed into the fuel electrode, the fluctuation can be almost absorbed by the PID control.
  • the temperature T1 of the power generation unit 10 is adjusted by adjusting the amount of liquid fuel supplied by the fuel pump 42 based on the temperature T1 of the power generation unit 10 detected by the temperature detection unit 30. Since constant control is performed, for example, crossover phenomenon can be avoided or fuel supply control according to fluctuations in the external environment can be facilitated, and the temperature of the power generation unit 10 can be stabilized. . Therefore, it is possible to generate power more stably than in the past, regardless of the external environment (for example, deterioration with time or disturbance).
  • the supply amount of the liquid fuel is proportional to the time integral value and the time differential value of the difference value between the target temperature Tsv (s) and the detected temperature T1 (Tpv (s)).
  • the heat generation correction unit 352 calculates the energy conversion efficiency ⁇ in the power generation unit 10 based on the power generation voltage V1 detected by the voltage detection unit 32 and the power generation current I1 detected by the current detection unit 31. Since the supply amount of the liquid fuel is corrected using the energy conversion efficiency ⁇ , fuel supply control in consideration of the energy conversion efficiency ⁇ is possible, and it is possible to perform more stable power generation than in the past.
  • FIG. 17 shows a block configuration of the control unit 36 of the present embodiment.
  • the control unit 36 includes a subtraction unit (difference calculation unit) 350, a PID control unit 351, a heat generation correction unit 352, a utilization rate control unit 361, and a minimum value selection unit 362. That is, in the control unit 35 of the first embodiment shown in FIG. 5, a utilization rate control unit 361 and a minimum value selection unit 362 are further provided.
  • Calculated theoretical current value I T ) and the liquid fuel supply amount P E (s) is calculated so that the calculated fuel utilization rate E is maintained (so as to be constant).
  • the fuel utilization rate E means that the ratio of the measured current (here, the detected current I1) to the theoretical maximum current, calculated based on this relationship, is that 6e ⁇ charge is extracted per molecule of methanol. Means.
  • the utilization rate control unit 361 calculates the fuel supply amount P E (s) using the following equation (8).
  • P E (s) Kcell ⁇ Esv ⁇ Ipv (s) (8) (Kcell: proportional constant, Esv: set value of utilization rate, Ipv (s): current generated current value)
  • the minimum value selection unit 362 uses the PID control unit 351 and the heat generation correction unit 352 to calculate the fuel supply amount P PID (s) (first fuel supply amount) calculated based on the temperature T1 of the power generation unit 10 and the utilization rate.
  • the control unit 361 determines the final fuel supply amount P (s) in consideration of the fuel supply amount P E (s) (second fuel supply amount) calculated based on the fuel utilization rate E.
  • the fuel is supplied to the fuel pump 42 in the fuel cell 1. Specifically, the final fuel supply amount P (s) is determined by selecting one of the fuel supply amount P PID (s) and the fuel supply amount P E (s). Yes. More specifically, the final fuel supply amount P (s) is determined by selecting the smaller one of the fuel supply amount P PID (s) and the fuel supply amount P E (s). It comes to decide.
  • the selection method in the minimum value selection unit 36 instead of the selection method in the minimum value selection unit 36, another selection method may be used. For example, depending on the type of power generation mode in the power generation portion 10, by selecting one of the fuel supply amount P PID (s) and the fuel supply amount P E (s), the final fuel supply amount P ( s) may be determined.
  • the above-described utilization rate control unit 361 is provided in the control unit 106, and the liquid fuel is controlled so that the calculated utilization rate of fuel becomes constant. It is conceivable to adjust the supply amount P E (s). This is because, for example, even when sudden cooling or the like occurs, it is considered possible to follow environmental changes.
  • the PID control unit 351 and the heat generation correction unit 352 calculate the fuel supply amount P PID (s) calculated based on the temperature T1 of the power generation unit 10 and the utilization rate.
  • the final fuel supply amount P (s) is determined in consideration of both the fuel supply amount P E (s) calculated based on the fuel utilization rate. . That is, the advantage in the PID control in which the temperature of the heat generating unit 10 is constant and the advantage in the utilization rate control in which the utilization rate of the heat generating unit 10 is constant are combined, so that the respective disadvantages are offset.
  • the utilization rate E of the power generation unit 10 becomes constant, thereby avoiding a high heat generation phenomenon in the case of PID control and an upper limit on the temperature of the power generation unit 10. Since it is provided, the high temperature phenomenon in the case of utilization rate control is avoided.
  • the fuel supply amount P PID (s) calculated based on the temperature T1 of the power generation unit 10 and the utilization rate control unit 361 The final fuel supply amount P (s) is determined in consideration of both the fuel supply amount P E (s) calculated based on the fuel utilization rate E. A high heat generation phenomenon and a high temperature phenomenon in the case of utilization rate control can be avoided. Therefore, compared to the first embodiment, it is possible to generate power stably even under various changes in the external environment.
  • the minimum fuel supply amount P PID (s) and the fuel supply amount P E (s) are selected by the minimum value selector 362 to select the final fuel supply amount. Since P (s) is determined, the effects as described above can be obtained.
  • the PID control and the utilization rate control it is possible to define the upper limit value (Tmax) of the temperature of the power generation unit 10 and the lower limit value (Emin) of the utilization rate, which is safe against various disturbances. Thus, it is possible to realize a robust power generation operation.
  • the fuel is completely consumed every 10 minutes, and the actual value of the fuel utilization rate E in the past 10 minutes is calculated each time. Then, the lower limit value of the utilization rate E is automatically updated so that the calculated utilization rate E is maintained even in the next 10 minutes.
  • FIG. 24 shows the overall configuration of a fuel cell system (fuel cell system 5A) according to the third embodiment of the present invention.
  • the fuel cell system 5A supplies power for driving the load 6 via the output terminals T2 and T3.
  • the fuel cell system 5A includes a fuel cell 1, a current detector 31, a voltage detector 32, a booster circuit 33A, a voltage divider circuit 37, a secondary battery 34, and a controller 35A.
  • symbol is attached
  • the voltage detection unit 32 is disposed between the connection point P1 on the connection line L1H and the connection point P2 on the connection line L1L, and generates the power generation voltage V1 of the power generation unit 10 (the input voltage Vin of the booster circuit 33A). It is to detect.
  • the voltage detection unit 32 includes, for example, a resistor.
  • the booster circuit 33A is disposed between the connection point P1 on the connection line L1H and the connection point P5 on the output line LO, and boosts the power generation voltage V1 (DC input voltage Vin) of the power generation unit 10, It is a voltage conversion part which produces
  • the booster circuit 33A includes, for example, a DC / DC converter, and compares the potential between a divided voltage VFB generated by a voltage divider circuit 37 described later and a predetermined reference voltage (reference voltage Vref described later). Depending on the result, a boosting operation is performed. By such a boosting operation of the booster circuit 33A, for example, as shown in FIG.
  • the output voltage Vout can be made larger than the terminal voltage LiV of the secondary battery 34 to generate a potential difference ⁇ V. Can be charged. Further, the value of the output current Iout from the booster circuit 33A at this time is determined by the potential difference ⁇ V and the internal resistance value of the secondary battery 34. The detailed configuration and detailed operation of the booster circuit 33A will be described later.
  • the voltage dividing circuit 37 is disposed between a connection point P5 on the output line LO and a connection point P6 on the ground line LG, and is configured by resistors R3 and R4 and a variable resistor Rv. One end of the resistor R3 is connected to the connection point P5, and the other end is connected to one end of the variable resistor Rv. The other end of the variable resistor Rv is connected to one end of the resistor R4 at the connection point P7. The other end of the resistor R4 is connected to the connection point P6.
  • the voltage dividing circuit 37 feeds back the divided voltage V FB (feedback voltage) of the output voltage Vout from the booster circuit 33A generated between the connection points P7 and P6 to the booster circuit 33A. Yes. Details of this feedback operation will be described later.
  • the secondary battery 34 is disposed between the connection point P3 on the output line LO and the connection point P4 on the ground line LG, and a DC output voltage Vout (load voltage) generated by the booster circuit 33A; Electric storage is performed based on the output current Iout (load current) from the booster circuit 33A.
  • the secondary battery 34 is composed of, for example, a lithium ion secondary battery.
  • the control unit 35A controls the fuel pump 42 based on the generated current (detected current) I1 detected by the current detector 31 and the generated voltage (detected voltage) V1 (input voltage Vin) detected by the voltage detector 32. The amount of liquid fuel supplied by is adjusted. Further, the control unit 35A controls the boosting operation of the booster circuit 33A using a predetermined control table to be described later, whereby the output voltage supplied from the booster circuit 33A to the load (the secondary battery 34 and the load 6). Control is performed on Vout (load voltage) and output current Iout (load current).
  • a control unit 35A is configured by, for example, a microcomputer. Details of the control operation of the output voltage Vout and the output current Iout by the control unit 35A will be described later.
  • the fuel pump 42 is, for example, a flow as a pipe connecting a piezoelectric body (not shown), a piezoelectric support resin portion (not shown) for supporting the piezoelectric body, and the fuel tank 40 to the nozzle 43. And a road (not shown).
  • the fuel pump 42 adjusts the fuel supply amount in accordance with the change in the fuel supply amount per operation or the fuel supply cycle ⁇ t. Can be done.
  • the fuel pump 42 corresponds to a specific example of “fuel supply unit” in the present invention.
  • FIG. 27 shows detailed circuit configurations of the booster circuit 33A and the voltage divider circuit 37.
  • the step-up circuit 33A includes a DC / DC converter including an inductor 33L, a capacitor 33C, and two switching elements Tr1 and Tr2, a reference power supply (reference power supply) 331, an error amplifier 332, an oscillation circuit 333, and a PWM (Pulse Width Modulation). ; Pulse width modulation) signal generation unit 334.
  • a DC / DC converter including an inductor 33L, a capacitor 33C, and two switching elements Tr1 and Tr2, a reference power supply (reference power supply) 331, an error amplifier 332, an oscillation circuit 333, and a PWM (Pulse Width Modulation). ; Pulse width modulation) signal generation unit 334.
  • the DC / DC converter is a voltage conversion unit that boosts the power generation voltage V1 (DC input voltage Vin) of the power generation unit 10 to generate a DC output voltage Vout.
  • the inductor 33L is disposed on the connection line L1H.
  • the switching element Tr1 is disposed between the connection line L1H and the connection line L1L.
  • the switching element Tr2 is inserted and arranged on the connection line L1H and the output line LO.
  • the capacitor 33C is disposed between the output line LO and the ground line LG.
  • each of the switching elements Tr1 and Tr2 is configured by, for example, an N-channel MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor).
  • Control signals (PWM signals) S1 and S2 output from a PWM signal generation unit 334, which will be described later, are supplied to the gate terminals of the switching elements Tr1 and T2, and the respective switching operations are controlled. Yes.
  • the reference power supply (reference power supply) 331 is a power supply that supplies the reference voltage (reference voltage) Vref of the error amplifier 332.
  • the error amplifier 332 compares the potential difference between the divided voltage VFB supplied from the voltage dividing circuit 37 and the reference voltage Vref supplied from the reference power supply 331, and compares the result (“H (high)” or “L (low)” signal) is output to the PWM signal generator 334.
  • the oscillation circuit 333 generates a pulse signal used when the PWM signal generation unit 334 generates a PWM signal, and supplies the pulse signal to the PWM signal generation unit 334.
  • the PWM signal generation unit 334 generates control signals S1 and S2 of the switching elements Tr1 and Tr2 made of PWM signals based on the comparison result in the error amplifier 332 and the pulse signal supplied from the oscillation circuit 333. .
  • the pulse width has a period during that period.
  • a PWM signal (control signal S1) is generated.
  • the pulse width of the control signal S1 becomes smaller as the potential of the divided voltage VFB becomes larger.
  • the pulse width of the control signal S1 becomes larger.
  • the fuel cell system 5A of the present embodiment can be manufactured as follows, for example.
  • the fuel cell 1 is formed in the same manner as the method described in the first embodiment. Then, the current detector 31, voltage detector 32, booster circuit 33A, voltage divider circuit 37, secondary battery 34, and controller 35A described above are electrically connected to the fuel cell 1 as shown in FIG. Connect and install. Thus, the fuel cell system 5A shown in FIGS. 24 and 25 is completed.
  • the fuel cell 1 as a whole undergoes the reaction shown in the equation (7) as in the first embodiment, and generates power.
  • the generated voltage (DC voltage) V1 (input voltage Vin) based on the generated current I1 is boosted (voltage converted) by the booster circuit 33A to become a DC voltage (output voltage) Vout.
  • the output voltage Vout (load voltage) and the output current Iout (load current) from the booster circuit 33A are supplied to the secondary battery 34 or a load (for example, an electronic device main body).
  • the secondary battery 34 When the output voltage Vout and the output current Iout are supplied to the secondary battery 34, the secondary battery 34 is charged based on these voltages and currents, while being supplied to the load 6 via the output terminals T2 and T3. When the output voltage Vout and the output current Iout are supplied, the load 6 is driven and a predetermined operation is performed.
  • the fuel supply amount or fuel supply period ⁇ t per operation is controlled by the control unit 35A, and the fuel supply amount is adjusted accordingly.
  • FIGS. 29A to 29C show the boosting operation of the booster circuit 33A using circuit state diagrams.
  • the above-described DC / DC converter portion in the booster circuit 33A is extracted and shown. Yes.
  • the input voltage Vin is illustrated as a power source for convenience, and a load connected to the output side is illustrated as a load resistance RL for convenience.
  • the switching elements Tr1 and T2 are illustrated in the form of switches for convenience.
  • the current Ia having the current path shown in the drawing is supplied to the inductor 33L. Flows. At this time, the switching element Tr1 is in an off state and the switching element Tr2 is in an on state.
  • FIG. 29B and FIG. 29C are repeated to generate an output voltage Vout that is higher than the input voltage Vin (a boost operation is performed), and the load resistance R L is reached. Will be supplied.
  • the divided voltage VFB of the output voltage Vout as shown in FIG. 28A is fed back to the booster circuit 33A by the voltage divider circuit 37, for example.
  • the PWM signal generation unit 334 based on the comparison result in the error amplifier 332 and the pulse signal supplied from the oscillation circuit 333, for example, as shown in FIG. Control signals S1 and S2 for Tr2 are generated.
  • the pulse width of the control signal S1 in response to the potential of the divided voltage V FB becomes greater becomes smaller, depending on the potential of the opposite to the divided voltage V FB becomes smaller control
  • the pulse width of the signal S1 becomes larger.
  • the pulse width of the control signal S1 is increased and the output voltage Vout is increased.
  • the pulse width of the control signal S1 is decreased and the output voltage Vout is increased. It becomes operation to lower.
  • the divided voltage VFB is controlled to be equal to the reference voltage Vref, whereby the output voltage Vout (load voltage) is controlled to be constant (constant voltage operation).
  • the voltage corresponding to the generated current (input current) I1 is fed back to the booster circuit 33A, so that the output current Iout (load current) is constant. Operation control (constant current operation) is also possible.
  • the control unit 35A uses, for example, a control table as shown in FIGS. 34 (A) to (C).
  • the boosting operation of the boosting circuit 33A is controlled.
  • the set value of the reference voltage Vref becomes larger as the set value of the output voltage Vout (FC voltage, load voltage) increases.
  • the operation of the booster circuit 33A is controlled so as to increase. Thereby, a constant voltage operation or a constant current operation according to the set value of the FC voltage becomes possible.
  • the output current Iout (FC current, load current) decreases as the set value of the fuel conversion efficiency in the power generation unit 10 increases.
  • the operation of the booster circuit 33A is controlled. This makes it possible to optimize the fuel supply amount and the fuel conversion efficiency when performing constant voltage operation.
  • the generated voltage V1 (input voltage Vin) supplied from the power generation unit 10 is boosted by the booster circuit 33A, and the load (secondary battery 34 and load) is output as the output voltage Vout (load voltage). To 6).
  • the output voltage Vout (load voltage) and the output current Iout (load current) supplied from the booster circuit 33A to the load are controlled. Is done.
  • the output power (FC power) is increased even if the fuel supply amount (cc / h) per unit time is increased, as indicated by reference numeral P11 in the figure. ) Does not increase with increasing fuel, but is almost constant.
  • the output power (FC power) is increased by increasing the fuel supply amount (cc / h) per unit time as shown by the arrow P12 in the figure. ) Can be increased.
  • the FC voltage width (voltage region) ⁇ V1 in which the maximum power can be obtained also has a certain size.
  • the voltage value width ⁇ V2 at which the fuel conversion efficiency becomes the highest value is wide.
  • the FC power can also be changed according to the fuel supply amount per unit time. Therefore, by generating power with the FC voltage set to a constant value, the FC power and the fuel supply amount can be reduced. Simultaneously with the power generation in a state where the proportional relationship is established, it is possible to generate power with a high fuel conversion efficiency.
  • the fuel is particularly important.
  • the power generation state of the battery 1 can be improved.
  • the power generation voltage V1 (input voltage Vin) supplied from the power generation unit 10 is boosted by the booster circuit 33A, and the control unit 35A uses the predetermined control table to boost the circuit 33A.
  • the output voltage Vout (load voltage) and output current Iout (load current) supplied from the booster circuit 33A to the load (secondary battery 34 and load 6) are controlled by controlling the operation of Even when the fuel supply of the vaporization supply type fuel cell 1 is intermittently supplied with fuel, efficient control over the output voltage Vout and the output current Iout is realized. Therefore, it is possible to perform more stable power generation than before in the vaporization supply type fuel cell.
  • the power generation state of the fuel cell 1 is particularly changed. Can be good.
  • the supply amount of the liquid fuel is determined based on the time integral value and the time differential value of the difference value between the target temperature Tsv (s) and the detected temperature Tpv (s).
  • PID control proportionality with respect to
  • the control is performed so that the temperature of the power generation unit 10 becomes constant by performing proportionality with respect to (PID control) is described, for example, P control, PI control, fuzzy control, H ⁇ control, etc. You may make it control so that the temperature of the electric power generation part 10 may become fixed using other feedback control. Specifically, the control is performed so that the temperature of the power generation unit 10 becomes constant by making the supply amount of the liquid fuel proportional to the difference value between the target temperature Tsv (s) and the detected temperature Tpv (s).
  • P control is performed. Further, the supply amount of the liquid fuel is controlled to be proportional to the time integral value of the difference value between the target temperature Tsv (s) and the detected temperature Tpv (s) so that the temperature of the power generation unit 10 becomes constant. (PI control) may be performed. Further, the supply amount of the liquid fuel is proportional to the time differential value of the difference value between the target temperature Tsv (s) and the detected temperature Tpv (s), so that the temperature of the power generation unit 10 is controlled to be constant. (PD control) may be performed.
  • the heat generation correction unit 352 uses the power generation voltage (detected voltage) V1 detected by the voltage detection unit 32 to convert the energy conversion efficiency ⁇ in the power generation unit 10.
  • the energy conversion efficiency ⁇ in the power generation unit 10 may be calculated using a predetermined voltage (set voltage) set in advance instead of the power generation voltage V1.
  • circuit configurations of the booster circuit 33A and the voltage divider circuit 37 are not limited to those described in the third embodiment, and may be circuit configurations using other methods.
  • control table is not limited to the one described in the third embodiment (FIGS. 34A to 34C), and a table having another configuration may be used.
  • the power generation unit 10 includes six unit cells electrically connected in series to each other has been described, but the number of unit cells is not limited thereto.
  • the power generation unit 10 may be configured with one unit cell, or may be configured with two or more arbitrary unit cells.
  • the supply of air to the oxygen electrode 13 is natural ventilation, but it may be forcibly supplied using a pump or the like. In that case, oxygen or a gas containing oxygen may be supplied instead of air.
  • the fuel cell system of the present invention can be suitably used for portable electronic devices such as a mobile phone, an electrophotographic machine, an electronic notebook, or a PDA (Personal Digital Assistant).
  • portable electronic devices such as a mobile phone, an electrophotographic machine, an electronic notebook, or a PDA (Personal Digital Assistant).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fuel Cell (AREA)

Abstract

 外部環境によらずに従来よりも安定して発電を行うことが可能な燃料電池システムを提供する。温度検出部30によって検出された発電部10の温度T1に基づいて、燃料ポンプ42による液体燃料の供給量を調整することにより、発電部10の温度T1が一定となるような制御を行う。また、気化供給型の燃料電池において従来よりも安定した発電を行うことが可能な燃料電池システムを提供する。発電部10から供給される発電電圧V1(入力電圧Vin)を、昇圧回路33Aによって昇圧する。制御部35Aにおいて、所定の制御用テーブルを用いて昇圧回路33Aの動作を制御することにより、昇圧回路33Aから負荷(二次電池34および負荷6)へ供給される出力電圧Vout(負荷電圧)および出力電流Iout(負荷電流)に対する制御を行う。

Description

燃料電池システムおよび電子機器
 本発明は、メタノール等と酸化剤ガス(酸素)との反応により発電を行う燃料電池システムおよびそのような燃料電池システムを備えた電子機器に関する。
 従来、燃料電池は、発電効率が高く、有害物質を排出しないため、産業用や家庭用の発電装置として、あるいは人工衛星や宇宙船などの動力源として実用化されてきた。また、近年では、乗用車、バス、トラック等の車両用の動力源としての開発が進んでいる。このような燃料電池は、アルカリ水溶液型、リン酸型、溶融炭酸塩型、固体酸化物型および直接型メタノールなどの種類に分類される。中でも、ダイレクトメタノール固体高分子電解質型燃料電池(DMFC;Direct Methanol FuelCell)は、燃料水素源としてメタノールを用いることによって高エネルギー密度化することができ、また改質器が不要であり小型化が可能であることから、小型携帯用燃料電池向けに研究が進められている。
 DMFCでは、固体高分子電解質膜を2枚の電極で挟み、一体化させて接合した単位セルであるMEA(Membrane ElectrodeAssembly;膜電極接合体)が使用される。そしてガス拡散電極の一方を燃料電極(負極)とすると共に、その表面に燃料としてのメタノールを供給すると、メタノールが分解されて水素イオン(プロトン)と電子とが生じ、水素イオンが固体高分子電解質膜を透過する。また、ガス拡散電極の他方を酸素電極(正極)とすると共に、その表面に酸化剤ガスとしての空気を供給すると、空気中の酸素と上記水素イオンおよび電子とが結合し、水が生成される。このような電気化学反応により、DMFCから起電力が生じるようになっている。
 ところで、モバイル用途で用いられる燃料電池では、室内、真冬の屋外、真夏の高温の車内、放熱が困難なバッグの中など、あらゆる環境にて安定に発電動作することが求められている。また、暖かい室内から極寒の屋外へ突然持ち出されるなど、急激な環境変化にも追随することも求められている。このように、燃料電池は、外部環境の温度や湿度によって適切な燃料供給量が異なるため、環境変動に応じたきめ細やかな燃料供給制御(燃料供給量に過不足が生じないような燃料供給制御)が求められている。
 ここで、燃料の供給量が過剰になってしまった場合には、余った燃料が酸素電極にまで浸透して、クロスオーバーという現象が生じてしまう。このクロスオーバー現象は、余剰燃料が酸素電極上で直接燃焼してしまう現象であり、燃料の利用効率が低下して無駄となるばかりでなく、温度上昇によってユーザーに火傷を負わせてしまうおそれがある。また、逆に、燃料供給が不足になってしまった場合には、十分な出力を得ることができなくなり、燃料電池に接続された機器への電力供給がストップしてしまう可能性がある。
 そこで、従来より、燃料供給量における過不足を抑えることを目的とした燃料供給量の制御方法が、提案されている(例えば特許文献1)。
 一方、上記したような燃料電池を備えた燃料電池システムでは、燃料電池による発電電圧および発電電流(発電電力)を2次電池に充電させ、負荷を駆動するようにしたものがある。したがって、このような燃料電池システムでは、燃料電池による発電電力を、できるだけ効率的に2次電池へ充電させることが望まれる。
 そこで、例えば特許文献2には、DC/DCコンバータを用いて、燃料電池の発電電圧値が一定に保たれるように制御するようにしたものが提案されている。
特開2007-227336号公報 特表2006-501798号公報
 上記特許文献1における燃料供給制御では、電圧や電流に2つの閾値(上限値および下限値)を定め、上限値を超えたら燃料供給を停止する一方、下限値を下回ったら燃料供給を再開するようになっている。この制御方法によれば、定電流発電の際には電圧変動によって、また定電圧発電の際には電流変動によって、燃料供給を制御することができる。
 ところが、この制御方法では、例えばクロスオーバー現象が発生した際に、それをより一層悪い状況にしてしまうという問題点があった。具体的には、例えば定電流制御の際に燃料が不足していると、電圧が下がって下限値を下回るが、クロスオーバー現象が生じたときも同様に電圧が下がるため、下限値を下回ってしまう。ここで、前者(燃料不足の場合)では燃料を供給しなければならないが、後者(クロスオーバー現象が生じた場合)では燃料供給を停止しなければならない。しかしながら、従来の燃料供給制御では、単に電圧しか見ていないため、これらの違いを区別できないという問題があった。
 なお、上述したDMFCでは、燃料電極へメタノールを供給する方法として、液体供給型(液体燃料(メタノール水溶液)を、そのまま燃料電極へ供給するもの)と、気化供給型(液体燃料を気化した状態で、燃料電極へ供給するもの)とが提案されている。これらのうち、気化供給型では、液体供給型のような燃料の濃度に応じた燃料供給制御を行うことができず、燃料供給周期(燃料供給ポンプの動作タイミングや、シャッターの開閉タイミングなど)に応じた燃料供給制御となっている。そのため、特に気化供給型のDMFCでは、燃料供給量における過不足を抑えることにより、外部環境に依存しない安定した発電動作を実現することが望まれていた。
 一方、上記特許文献2には、DC/DCコンバータを用いた詳細な制御方法については記載されていないため、より効率的な制御方法の実現が望まれる。
 また、上述したDMFCでは、燃料電極へメタノールを供給する方法として、液体供給型(液体燃料(メタノール水溶液)を、そのまま燃料電極へ供給するもの)と、気化供給型(液体燃料を気化した状態で、燃料電極へ供給するもの)とが提案されている。これらのうち、気化供給型では、液体供給型のような燃料の濃度に応じた燃料供給制御を行うことができず、燃料供給周期に応じた断続的な燃料供給制御となっている。そのため、特に気化供給型のDMFCでは、断続的な燃料供給制御に起因して、発電電圧や発電電流を制御するのが困難であり、安定した発電動作を実現することが望まれていた。
 本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、外部環境によらずに従来よりも安定して発電を行うことが可能な燃料電池システム、およびそのような燃料電池システムを備えた電子機器を提供することにある。
 また、本発明の第2の目的は、気化供給型の燃料電池において従来よりも安定した発電を行うことが可能な燃料電池システム、およびそのような燃料電池システムを備えた電子機器を提供することにある。
 本発明の第1の燃料電池システムは、燃料および酸化剤ガスの供給により発電を行う発電部と、発電部側へ液体燃料を供給すると共にこの液体燃料の供給量が調節可能となっている燃料供給部と、この燃料供給部により供給された液体燃料を気化させることによって、気体燃料を発電部へ供給する燃料気化部と、発電部の温度を検出する温度検出部と、この温度検出部により検出された発電部の温度に基づいて燃料供給部による液体燃料の供給量を調整することにより、発電部の温度が一定となるように制御する制御部とを備えたものである。
 本発明の第1の電子機器は、上記本発明の第1の燃料電池システムを備えたものである。
 本発明の第1の燃料電池システムおよび第1の電子機器では、燃料気化部において、燃料供給部により供給された液体燃料が気化されることにより、気体燃料が発電部に供給される。そして発電部では、この気体燃料と酸化剤ガスとの供給により、発電が行われる。また、このような発電に応じた発電部の温度が、温度検出部により検出される。そして、検出された発電部の温度に基づいて、燃料供給部による液体燃料の供給量が調整されることにより、発電部の温度が一定となるように制御がなされる。ここで、燃料供給量と発電部の温度とは、互いに単調増加の関係であるため、従来のような発電電圧、発電電流または発電電力に基づく燃料供給制御と比べ、例えば、クロスオーバー現象を回避したり、外部環境の変動に応じた燃料供給制御が容易となる。また、発電部の温度が一定となるようなフィードバック制御であるため、燃料供給のオン(実行)・オフ(停止)による単純な制御と比べ、発電部の温度が安定化する。
 本発明の第2の燃料電池システムは、燃料および酸化剤ガスの供給により発電を行う発電部と、この発電部側へ液体燃料を供給すると共にこの液体燃料の供給量を調節可能な燃料供給部と、この燃料供給部により供給された液体燃料を気化させることによって、気体燃料を発電部へ供給する燃料気化部と、発電部から供給される発電電圧を昇圧する昇圧回路と、所定の制御用テーブルを用いて昇圧回路の動作を制御することにより、この昇圧回路から負荷へ供給される負荷電圧および負荷電流に対する制御を行う制御部とを備えたものである。
 本発明の第2の電子機器は、上記本発明の第2の燃料電池システムを備えたものである。
 本発明の第2の燃料電池システムおよび第2の電子機器では、燃料気化部において、燃料供給部により供給された液体燃料が気化されることにより、気体燃料が発電部に供給される。そして発電部では、この気体燃料と酸化剤ガスとの供給により、発電が行われる。また、このような発電により発電部から供給される発電電圧は、昇圧回路により昇圧され、負荷電圧として負荷へ供給される。その際、所定の制御用テーブルを用いて昇圧回路の動作が制御されることにより、この昇圧回路から負荷へ供給される負荷電圧および負荷電流が制御される。
 本発明の第1の燃料電池システムまたは第1の電子機器によれば、検出された発電部の温度に基づいて、燃料供給部による液体燃料の供給量を調整することにより、発電部の温度が一定となるような制御を行うようにしたので、従来と比べ、例えばクロスオーバー現象を回避したり外部環境の変動に応じた燃料供給制御が容易となると共に、発電部の温度が安定化する。よって、外部環境によらずに従来よりも安定して発電を行うことが可能となる。
 本発明の第2の燃料電池システムまたは第2の電子機器によれば、発電部から供給される発電電圧を昇圧回路によって昇圧すると共に、所定の制御用テーブルを用いて昇圧回路の動作を制御することにより、この昇圧回路から負荷へ供給される負荷電圧および負荷電流に対する制御を行うようにしたので、気化供給型の燃料電池において断続的な燃料供給がなされている場合であっても、負荷電圧や負荷電流に対する効率的な制御が実現される。よって、気化供給型の燃料電池において、従来よりも安定した発電を行うことが可能となる。
本発明の第1の実施の形態に係る燃料電池システムの全体構成を表すブロック図である。 図1に示した発電部の構成例を表す断面図である。 図1に示した発電部の構成例を表す平面図である。 気化型の燃料供給方式の概要を説明するための特性図である。 図1に示した制御部の詳細構成を説明するためのブロック図である。 図1に示した発電部の製造方法を説明するための断面図である。 図1に示した発電部の製造方法を説明するための平面図である。 比較例1に係る燃料供給制御による発電特性の一例を表す特性図である。 比較例2に係る燃料供給制御による発電特性について説明するための模式特性図である。 第1の実施の形態に係る燃料供給制御による発電特性の概要について説明するための模式特性図である。 比較例3に係る燃料供給制御による発電特性について説明するための模式特性図である。 第1の実施の形態に係る燃料供給制御による発電特性の詳細について説明するための模式特性図である。 第1の実施の形態に係る燃料供給制御による発電特性の一例を表す特性図である。 第1の実施の形態に係る燃料供給制御による発電特性の他の例を表す特性図である。 第1の実施の形態に係る燃料供給制御による発電特性の他の例を表す特性図である。 第1の実施の形態に係る燃料供給制御による発電特性の他の例を表す特性図である。 第2の実施の形態に係る制御部の詳細構成を説明するためのブロック図である。 第1の実施の形態に係る燃料供給制御において生じ得る高発熱について説明するための特性図である。 比較例4に係る制御部の詳細構成を説明するためのブロック図である。 比較例4に係る燃料供給制御による発電特性の一例を表す特性図である。 第2の実施の形態に係る燃料供給制御による発電特性の一例を表す特性図である。 第2の実施の形態に係る燃料供給制御による発電特性の他の例を表す特性図である。 第2の実施の形態の変形例に係る燃料供給制御による発電特性の一例を表す特性図である。 本発明の第3の実施の形態に係る燃料電池システムの全体構成を表す図である。 図24に示した昇圧回路の動作について説明するための模式図である。 気化型の燃料供給方式の概要を説明するためのタイミング波形図である。 図24に示した昇圧回路および分圧回路の構成を表す回路図である。 PWM信号の生成動作について説明するためのタイミング波形図である。 図27に示した昇圧回路の動作を説明するための回路図である。 第3の実施の形態に係る定電圧動作について説明するためのタイミング波形図である。 第3の実施の形態に係る定電圧動作の一例を表す特性図である。 第3の実施の形態に係る定電流動作について説明するためのタイミング波形図である。 第3の実施の形態に係る定電流動作の一例を表す特性図である。 第3の実施の形態に係る定電圧動作または定電流動作の際に用いる制御用テーブルの一例を表す図である。 第3の実施の形態に係る発電電力と定電圧動作または定電流動作との関係の一例を表す特性図である。 第3の実施の形態に係る燃料変換効率と定電圧動作または定電流動作との関係の一例を表す特性図である。
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
[第1の実施の形態]
 図1は、本発明の第1の実施の形態に係る燃料電池システム(燃料電池システム5)の全体構成を表すものである。燃料電池システム5は、負荷6を駆動するための電力を出力端子T2,T3を介して供給するものである。この燃料供給システム5は、燃料電池1と、温度検出部30と、電流検出部31と、電圧検出部32と、昇圧回路33と、二次電池34と、制御部35とから構成されている。
 燃料電池1は、発電部10と、燃料タンク40と、燃料ポンプ42とを含んで構成されている。なお、この燃料電池1の詳細構成については、後述する。
 発電部10は、メタノールと酸化剤ガス(例えば、酸素)との反応により発電を行う直接メタノール型の発電部であり、正極(酸素電極)および負極(燃料電極)を有する複数の単位セルを含んで構成されている。なお、この発電部10の詳細構成については、後述する。
 燃料タンク40は、発電に必要な液体燃料(例えば、メタノールまたはメタノール水溶液)を内蔵するものである。なお、この燃料タンク40の詳細構成については、後述する。
 燃料ポンプ42は、燃料タンク40に収容された液体燃料を汲み上げて、発電部10側へ供給(輸送)するためのポンプであり、燃料の供給量を調節することができるようになっている。また、このような燃料供給ポンプ42の動作(液体燃料の供給動作)は、後述する制御部35によって制御されるようになっている。なお、燃料ポンプ42の詳細構成については、後述する。
 温度検出部30は、発電部10の温度(具体的には、発電部10の周辺部または近傍の温度)T1を検出するものであり、例えばサーミスタなどにより構成されている。
 電流検出部31は、接続ラインL1H上において、発電部10の正極側と接続点P1との間に配置されており、発電部10の発電電流I1を検出するものである。この電流検出部31は、例えば抵抗器を含んで構成されている。なお、このような電流検出部31を、接続ラインL1L上(発電部10の負極側と接続点P2との間)に配置するようにしてもよい。
 電圧検出部32は、接続ラインL1H上の接続点P1と、接続ラインL1L上の接続点P2との間に配置されており、発電部10の発電電圧V1を検出するものである。この電圧検出部32は、例えば抵抗器を含んで構成されている。
 昇圧回路33は、接続ラインL1H上の接続点P1と、出力ラインLO上の接続点P3との間に配置されており、発電部10の発電電圧V1(直流電圧)を昇圧して、直流電圧V2を生成する電圧変換部である。この昇圧回路33は、例えばDC/DCコンバータにより構成されている。
 二次電池34は、出力ラインLO上の接続点P3と、接地ラインLG上の接続点P4との間に配置されており、昇圧回路33により生成された直流電圧V2に基づいて蓄電を行うものである。この二次電池34は、例えばリチウムイオン二次電池などにより構成されている。
 制御部35は、温度検出部30により検出された発電部の温度(検出温度)T1と、電流検出部31により検出された発電電流(検出電流)I1と、電圧検出部32により検出された発電電圧(検出電圧)V1とに基づいて、燃料ポンプ42による液体燃料の供給量を調整するものである。具体的には、本実施の形態では特に、温度検出部30により検出された検出温度T1に基づいて燃料ポンプ42による液体燃料の供給量を調整することにより、発電部10の温度が一定(略一定、所定の範囲内)となるように制御を行うようになっている。この制御部35は、例えばマイクロコンピュータなどにより構成されている。なお、制御部35の詳細構成および詳細動作については、後述する。
 次に、図2~図4を参照して、燃料電池1の詳細構成について説明する。図2および図3は、燃料電池1内の発電部10における単位セル10A~10Fの構成例を表すものであり、図2は、図3におけるII-II線に沿った矢視断面構成に対応する。単位セル10A~10Fは、面内方向に例えば3行×2列に配置されると共に、複数の接続部材20により電気的に直列に接続された平面積層構造とされている。単位セル10C,10Fには、接続部材20の延長部分である端子20Aが取り付けられている。また、単位セル10A~10Fの下方には、燃料タンク40と、燃料ポンプ42と、ノズル43と、燃料気化部44とが設けられている。
 単位セル10A~10Fは、それぞれ、電解質膜11を間にして対向配置された燃料電極(負極、アノード電極)12と酸素電極13(正極、カソード電極)とを有している。
 電解質膜11は、例えば、スルホン酸基(-SOH)を有するプロトン伝導材料により構成されている。プロトン伝導材料としては、ポリパーフルオロアルキルスルホン酸系プロトン伝導材料(例えば、デュポン社製「Nafion(登録商標)」)、ポリイミドスルホン酸などの炭化水素系プロトン伝導材料、またはフラーレン系プロトン伝導材料などが挙げられる。
 燃料電極12および酸素電極13は、例えば、カーボンペーパーなどよりなる集電体に、白金(Pt)あるいはルテニウム(Ru)などの触媒を含む触媒層が形成された構成を有している。触媒層は、例えば、触媒を担持させたカーボンブラックなどの担持体をポリパーフルオロアルキルスルホン酸系プロトン伝導材料などに分散させたものにより構成されている。なお、酸素電極13には図示しない空気供給ポンプが接続されていてもよいし、接続部材20に設けられた開口(図示せず)を介して外部と連通し、自然換気により空気すなわち酸素が供給されるようになっていてもよい。
 接続部材20は、二つの平坦部21,22の間に屈曲部23を有し、一方の平坦部21において一つの単位セル(例えば、10A)の燃料電極12に接し、他方の平坦部22において隣接する単位セル(例えば、10B)の酸素電極13に接しており、隣接する二つの単位セル(例えば、10A,10B)を電気的に直列に接続すると共に、各単位セル10A~10Fで発生した電気を集電する集電体としての機能も有している。このような接続部材20は、例えば、厚みが150μmであり、銅(Cu),ニッケル(Ni),チタン(Ti)またはステンレス鋼(SUS)により構成され、金(Au)または白金(Pt)等でめっきされていてもよい。また、接続部材20は、燃料電極12および酸素電極13に燃料および空気をそれぞれ供給するための開口(図示せず)を有しており、例えば、エキスパンドメタルなどのメッシュ類や、パンチングメタルなどにより構成されている。なお、屈曲部23は、予め単位セル10A~10Fの厚みに合わせて折曲加工されていてもよいし、接続部材20が厚み200μm以下のメッシュなど柔軟性を有している場合は製造工程においてたわむことにより形成されるようにしてもよい。このような接続部材20は、例えば、電解質膜11の周辺部に設けられたPPS(ポリフェニレンスルフィド)あるいはシリコーンゴム等の封止材(図示せず)が接続部材20にネジ締めされることにより、単位セル10A~10Fに接合されている。
 燃料タンク40は、例えば、液体燃料41の増減によっても内部に気泡などが入らずに体積が変化する容器(例えばビニール袋など)と、この容器を覆う直方体形状のケース(構造体)とにより構成されている。この燃料タンク40には、その中央付近の上方に、燃料タンク40内の液体燃料41を吸引してノズル43から排出させるための燃料ポンプ42が設けられている。
 燃料ポンプ42は、例えば、圧電体(図示せず)と、この圧電体を支持するための圧電体支持樹脂部(図示せず)と、燃料タンク40からノズル43までを接続する配管としての流路(図示せず)とを含んで構成されている。この燃料ポンプ42は、例えば図4に示したように、1回の動作当りの燃料供給量または燃料供給周期Δtの変化に応じて、燃料の供給量を調節することができるようになっている。なお、この燃料ポンプ42が、本発明における「燃料供給部」の一具体例に対応する。
 燃料気化部44は、燃料ポンプ42により供給された液体燃料を気化させることによって、気体燃料を発電部10(各単位セル10A~10F)へ供給するものである。この燃料気化部44は、例えばステンレス鋼、アルミニウムなどを含む金属や合金、シクロオレフィンコポリマー(COC)などの剛性の高い樹脂材料よりなるプレート(図示せず)上に、燃料の拡散を促進するための拡散部(図示せず)が設けられたものである。拡散部としては、アルミナ、シリカ、酸化チタンなどの無機多孔質材料や樹脂多孔質材料を用いることができる。
 ノズル43は、燃料ポンプ42の流路(図示せず)によって輸送される燃料の噴出口であり、燃料気化部44の表面に設けられた拡散部に向けて、燃料を噴出するようになっている。これにより、燃料気化部44へ輸送された燃料が拡散気化され、発電部10(各単位セル10A~10F)に向けて供給される。このノズル43は、例えば直径0.1mm~0.5mmの口径を有している。
 次に、図5を参照して、制御部35の詳細構成について説明する。図5は、制御部35の詳細なブロック構成を表したものである。
 制御部35は、減算部(差分算出部)350と、PID制御部351と、発熱補正部352とから構成されている。
 減算部350は、制御部35内で予め設定され、あるいは外部から入力された目標温度(設定温度)Tsv(s)と、温度検出部30により検出された発電部10の温度(検出温度)T1(Tpv(s))との差分値(=Tsv(s)-Tpv(s))を求め、この差分値をPID制御部351へ出力するものである。
 PID制御部351は、減算部350において求められた、目標温度Tsv(s)と検出温度Tpv(s)との差分値の時間積分値および時間微分値に対して比例させることにより、液体燃料の供給量(所望発熱量H(s))を算出し、この所望発熱量H(s)を発熱補正部352へ出力するものである。
 このPID制御部351は、具体的には、以下の(1)式および(2)式を用いて、所望発熱量H(s)を算出するようになっている。
H(s)=KΔT(s)+T∫ΔT(s)ds+T{dΔT(s)/ds}…(1)
ΔT(s)=Tsv(s)-Tpv(s)                 …(2)ここで、
H(s)   :所望発熱量
,T,T:PID定数
Tsv(s) :目標温度
ΔT(s)  :温度の差分
s      :時間
 発熱補正部352は、電圧検出部32により検出された発電電圧(検出電圧)V1および電流検出部31により検出された発電電流(検出電流)I1に基づいて、発電部10におけるエネルギー変換効率を算出すると共に、算出したこのエネルギー変換効率を用いて、燃料供給量P(s)を算出する(PID制御部351において算出された液体燃料の供給量を補正する)ものである。この燃料供給量P(s)の情報は、燃料電池1内の燃料ポンプ42へ出力されるようになっている。これにより、詳細は後述するが、発電部10の温度が一定となるようになっている。
 この発熱補正部352は、具体的には、以下の(3)式および(4)式を用いて、燃料供給量P(s)を算出するようになっている。なお、本実施の形態では、発電部10の発電電圧V1に加えて発電部10の発電電流I1をも考慮して、発電部10におけるエネルギー変換効率ηを算出しているが、燃料の利用率Eがほぼ1であるという近似を行うことにより、発電部10におけるエネルギー変換効率ηを近似的に算出する(η≒V/V)ようにしてもよい。実際の制御では、このように近似的な算出をしたとしても、制御動作にはほとんど影響がないからである。
P(s)(=PPID(s))=H(s)×(1-η)  ……(3)
η={(V)/(V)}=(V/V)×E ……(4)
:燃料供給量から見積もられる理論電流値
 本実施の形態の燃料電池システム5は、例えば次のようにして製造することができる。
 まず、上述した材料よりなる電解質膜11を、上述した材料よりなる燃料電極12および酸素電極13の間に挟んで熱圧着することにより、電解質膜11に燃料電極12および酸素電極13を接合し、単位セル10A~10Fを形成する。
 次いで、上述した材料よりなる接続部材20を用意し、図6および図7に示したように、6個の単位セル10A~10Fを3行×2列に配置し、接続部材20により電気的に直列に接続する。なお、電解質膜11の周辺部には上述した材料よりなる封止材(図示せず)を設け、この封止材を接続部材20の屈曲部23にネジ締めにより固定する。
 そののち、連結された単位セル10A~10Fの燃料電極12側に、液体燃料41が収容されると共に燃料ポンプ42およびノズル43等が設けられた燃料タンク40を配設することにより、燃料電池1を形成する。そしてこの燃料電池1に対し、上述した温度検出部30、電流検出部31、電圧検出部32、昇圧回路33、二次電池34および制御部35をそれぞれ、図1に示したように電気的に並列接続して取り付ける。以上により、図1~図3に示した燃料電池システム5が完成する。
 次に、本実施の形態の燃料電池システム5の作用および効果について、比較例と比較しつつ詳細に説明する。
 この燃料電池システム5では、燃料タンク40に収容される液体燃料41が、燃料ポンプ42によって汲み上げられ、流路(図示せず)を通って燃料気化部44に到達する。この燃料気化部44では、ノズル43によって液体燃料が噴出すると、その表面に設けられた拡散部(図示せず)によって広範囲に拡散される。これにより、液体燃料が自然気化され、気体燃料が発電部10(具体的には、各単位セル10A~10Fの燃料電極12)に供給される。
 一方、発電部10の酸素電極13へは、自然換気あるいは空気供給ポンプ(図示せず)によって空気(酸素)が供給される。すると、酸素電極13では、以下の(5)式に示した反応が起こり、水素イオンと電子とが生成される。この水素イオンは電解質膜11を通って燃料電極12へ到達し、燃料電極12では、以下の(6)式に示した反応が起こり、水と二酸化炭素が生成される。よって、燃料電池1全体としては、以下の(7)式に示した反応が生じ、発電が行われる。
CH3OH+H2O→ CO2+6H+6e-   ……(5)
6H+(3/2)O2+6e-→ 3H2     ……(6)
CH3OH+(3/2)O2→ CO2+2H2O   ……(7)
 これにより、液体燃料41すなわちメタノールの化学エネルギーの一部が電気エネルギーに変換され、接続部材20により集電されて、発電部10から電流(発電電流I1)として取り出される。この発電電流I1に基づく発電電圧(直流電圧)V1は、昇圧回路33によって昇圧(電圧変換)され、直流電圧V2となる。この直流電圧V2は、二次電池34または負荷(例えば、電子機器本体)へ供給される。そして、二次電池34へ直流電圧V2が供給された場合、この電圧に基づいて二次電池34に蓄電がなされる一方、出力端子T2,T3を介して負荷6へ直流電圧V2が供給された場合、負荷6が駆動され、所定の動作がなされる。このとき、燃料ポンプ42では、制御部35による制御によって、1回の動作当りの燃料供給量または燃料供給周期Δtの変化に応じて、燃料の供給量が調節される。
 ここで、比較例1に係る従来の燃料供給制御では、上記した燃料供給周期Δtが、常に一定となっている。この場合、「出力上昇→温度上昇→電解質膜11の乾燥→出力低下→温度低下→電解質膜11の湿潤→…」というループが、延々と繰り返えされてしまうことになる。したがって、例えば図8に示したように、燃料供給が一定間隔であるにも関わらず、発電出力や温度が大きく振動してしまうことになる。
 また、比較例2に係る従来の燃料供給制御では、定電流発電制御時における発電電圧や、定電圧発電制御時における発電電流に2つの閾値(上限値および下限値)を定め、上限値を超えたら燃料供給を停止する一方、下限値を下回ったら燃料供給を再開するようになっている。ところが、燃料供給量と、発電電圧、発電電流およびそれらの積である発電出力とは、例えば図9に示したように、互いに単調な変化を示さず、燃料供給量の増加に応じて発電電圧等が極大値を持つ山なりの曲線を描くようになっている。したがって、例えば発電電圧が低かった場合、その時点で極大値(閾値)を超えているかどうかを知る術がないため、燃料供給を増やすべきか減らすべきかを、正しく判定することができないのである。具体的には、例えばクロスオーバー現象が発生した際に、それをより一層悪い状況にしてしまうことになる。すなわち、例えば定電流制御の際に燃料が不足していると、電圧が下がって下限値を下回るが、クロスオーバー現象が生じたときも同様に電圧が下がるため、下限値を下回ってしまう。ここで、前者(燃料不足の場合)では燃料を供給しなければならないが、後者(クロスオーバー現象が生じた場合)では燃料供給を停止しなければならない。しかしながら、この比較例2の燃料供給制御では、単に電圧しか見ていないため、これらの違いを区別できないことになる。
 これに対して、本実施の形態の燃料電池システム5では、図1および図5に示したように、発電部10の温度(検出温度)T1が、温度検出部30により検出されると共に、この検出温度T1に基づいて、燃料ポンプ42による液体燃料の供給量が、制御部35により調整されるようになっている。ここで、燃料供給量と発電部の温度とは、上記した発電電圧等とは異なり、例えば図10に示したように互いに単調増加の関係となっている。
 これにより、比較例1のような発電電圧等に基づく燃料供給制御と比べ、例えば、クロスオーバー現象を回避したり、外部環境の変動に応じた燃料供給制御が容易となる(例えば図10中に示したような閾値を定義しやすくなる)。具体的には、検出温度T1が高すぎるときには、常に燃料供給を少なくすればよく、逆に、検出温度T1が低すぎるときには、常に燃料供給を増やせばよい。この原則によれば破綻を来す状況が存在しないため、安定性の高い堅牢な発電を続けることが可能となる。
 また、燃料電池はそもそも、化学反応によって発電している。燃料電極では燃料の酸化反応が進行し、酸素電極では酸化剤の還元反応が進行している。よって、発電を制御するということは、これらの化学反応そのものを制御することに他ならない。ここで、化学反応速度論によると、化学反応速度を決定するパラメーターは、頻度因子、活性化エネルギーおよび温度である。前者の2つがほぼ定数であることを考えると、燃料電池の化学反応を安定化させるには、温度を安定化させることが重要であることが分かる。したがって、このような観点からも、発電電流を決める根本の制御パラメーターである温度を安定化させることにより、安定な発電が実現されることになる。
 ただし、検出温度T1に基づいて燃料供給を行う際、上限温度を超えたら燃料供給を停止する一方、下限温度を下回ったら燃料供給を再開する、という単純な制御は、好適とは言えない。この場合、バイメタルを用いたサーモスタットによる温度制御と同様に、例えば図11(A),図11(B)に示した比較例3のように、温度が大きく振動してしまう可能性が高い。すなわち、上限温度を超えてから燃料供給を停止したのでは遅すぎ、発電部10の温度T1はさらに上昇してしまい、逆に下限温度を下回ってから燃料供給を再開したのでも遅すぎ、発電部10の温度T1はさらに低下してしまうことになる。
 そこで、本実施の形態の燃料電池システム5では、図5に示したように、PID制御部351により、発電部10の温度が一定となるようなフィードバック制御(具体的には、PID制御)がなされるようになっている。このPID制御は、制御量を目標値に迅速に近づけかつ安定化させることができる古典的なフィードバック制御法の1つであり、スムーズに実際の目標値に近づけることを可能とする制御法である。
 これにより、例えば図12(A),図12(B)に示したように、発電部10の温度におけるオーバーシュートおよびアンダーシュートが防止され、上記比較例3で説明した燃料供給のオン(実行)・オフ(停止)による単純な制御と比べ、発電部10の温度が安定化する。したがって、例えば図13に示したように、本実施の形態の燃料供給制御により、発電部10において安定に発電動作がなされることが分かった。
 また、例えば図14(A)~図14(D)に示した実施例では、算出された燃料供給量をそのまま供給するのではなく、計算結果にノイズを加えて発電試験を行っている(ノイズあり→ノイズなし→ノイズあり、と変化させたときの発電結果)。この図14により、ノイズを加えても発電出力にはほとんど影響がなく、安定に発電が続くことが分かる。燃料供給手段として燃料ポンプを用いる燃料電池システムでは、燃料ポンプの経時劣化や外乱によって噴出量が変化する可能性がある。しかし、図14に示した結果では、燃料ポンプの噴出量が不意に変化しても、発電が安定に続くことを示している。
 また、例えば図15(A)~図15(D)に示した実施例は、燃料供給量を突然大幅に変化させた場合(ここでは、突然低下させた場合)のものである。この図15により、燃料供給量を突然大幅に変化させても、PID制御によってその変動をほぼ吸収することが可能であることが分かる。
 さらに、例えば図16(A)~図16(C)に示した実施例は、液体燃料に気泡を混入させた場合のものである。この図16により、燃料電極に多少の空気が混入した場合であっても、PID制御によってその変動をほぼ吸収することが可能であることが分かる。
 以上のように本実施の形態では、温度検出部30によって検出された発電部10の温度T1に基づいて、燃料ポンプ42による液体燃料の供給量を調整することにより、発電部10の温度T1が一定となるような制御を行うようにしたので、従来と比べ、例えばクロスオーバー現象を回避したり外部環境の変動に応じた燃料供給制御が容易となると共に、発電部10の温度が安定化する。よって、外部環境(例えば、経時劣化や外乱)によらず、従来よりも安定して発電を行うことが可能となる。
 具体的には、PID制御部351において、液体燃料の供給量を、目標温度Tsv(s)と検出温度T1(Tpv(s))との差分値の時間積分値および時間微分値に対して比例させることにより、発電部10の温度が一定となるように制御を行うようにしたので、上記した効果を得ることが可能となる。
 また、発熱補正部352において、電圧検出部32により検出された発電電圧V1および電流検出部31により検出された発電電流I1に基づいて、発電部10におけるエネルギー変換効率ηを算出すると共に、算出したこのエネルギー変換効率ηを用いて液体燃料の供給量を補正するようにしたので、エネルギー変換効率ηを考慮した燃料供給制御が可能となり、従来よりもさらに安定した発電を行うことが可能となる。
 さらに、外部環境に依存しない安定した発電動作が特に望まれていた気化供給型のDMFCにおいても、燃料供給量における過不足を抑えることにより、従来よりも安定して発電を行うことが可能となる。
[第2の実施の形態]
 次に、本発明の第2の実施の形態について説明する。本実施の形態の燃料電池システムは、図1に示した第1の実施の形態の燃料電池システム5において、制御部35の代わりに、後述する制御部36を設けるようにしたものである。なお、第1の実施の形態における構成要素と同一のものには同一の符号を付し、適宜説明を省略する。
 図17は、本実施の形態の制御部36のブロック構成を表したものである。この制御部36は、減算部(差分算出部)350と、PID制御部351と、発熱補正部352と、利用率制御部361と、最小値選択部362とから構成されている。すなわち、図5に示した第1の実施の形態の制御部35において、利用率制御部361および最小値選択部362をさらに設けるようにしたものである。
 利用率制御部361は、電流検出部31により検出された発電電流(検出電流)I1に基づいて、発電部10における燃料の利用率E(=実際の発電電流値I/燃料供給量から見積もられる理論電流値I)を算出すると共に、算出したこの燃料の利用率Eが維持されるように(一定となるように)、液体燃料の供給量P(s)を算出するものである。なお、燃料の利用率Eとは、メタノール1分子当りで6eの電荷が取り出されることから、この関係に基づいて算出された、理論最大電流に対する実測電流(ここでは、検出電流I1)の比率を意味する。
 この利用率制御部361は、具体的には、以下の(8)式を用いて、燃料供給量P(s)を算出するようになっている。
(s)=Kcell×Esv×Ipv(s) ……(8)
(Kcell:比例定数、Esv:利用率の設定値、Ipv(s):現在の発電電流値)
 最小値選択部362は、PID制御部351および発熱補正部352において、発電部10の温度T1に基づいて算出された燃料供給量PPID(s)(第1の燃料供給量)と、利用率制御部361において、燃料の利用率Eに基づいて算出された燃料供給量P(s)(第2の燃料供給量)とを考慮して、最終的な燃料供給量P(s)を決定し、燃料電池1内の燃料ポンプ42へ供給するものである。具体的には、これら燃料供給量PPID(s)および燃料供給量P(s)のうちの一方を選択することにより、最終的な燃料供給量P(s)を決定するようになっている。より具体的には、これら燃料供給量PPID(s)および燃料供給量P(s)のうち、供給量値の小さいほうを選択することにより、最終的な燃料供給量P(s)を決定するようになっている。
 なお、最小値選択部36における選択方式の代わりに、他の選択方式を用いるようにしてもよい。例えば、発電部10における発電モードの種類などに応じて、燃料供給量PPID(s)および燃料供給量P(s)のうちの一方を選択することにより、最終的な燃料供給量P(s)を決定するようにしてもよい。
 次に、本実施の形態の燃料電池システムの作用および効果について、詳細に説明する。なお、燃料電池システムの基本動作は第1の実施の形態と同様であるので、制御部36による燃料供給の制御動作についてのみ説明する。
 まず、上記した第1の実施の形態の制御部35では、例えば発電中の燃料電池1を突然冷却した場合などには、例えば図18に示したように、大きな高発熱現象が生じてしまうことがありうる。これは、目標温度が常に一定であるため、外部から冷却され続けて目標温度に達せない場合には、過剰に燃料供給を行ってクロスオーバーを発生させてでも、目標温度に近づこうとしてしまうからである。すなわち、発電できない状況なのに、それを認識できていないことになる。
 そこで、例えば図19に示した制御部106(比較例4)のように、制御部106内に上記した利用率制御部361を設け、算出した燃料の利用率が一定となるように液体燃料の供給量P(s)を調整することが考えられる。これによれば、例えば突然の冷却等が生じた場合でも、環境変化に追随することが可能となると考えられるためである。
 この比較例4の燃料供給制御では、例えば図20(A)~図20(C)に示したように、発電中に発電部10の周囲に風を流して冷却させた場合(突然の冷却が生じた場合)でも、利用率が下がることなく(約50%に維持され)、発電が続いていることが分かる。しかしながら、図20(C)に示したように、発電部10の温度が最高で60℃近くまで上昇し、高温度現象が生じてしまっている。
 これに対して、本実施の形態の制御部36では、PID制御部351および発熱補正部352において、発電部10の温度T1に基づいて算出された燃料供給量PPID(s)と、利用率制御部361において、燃料の利用率に基づいて算出された燃料供給量P(s)との両方を考慮して、最終的な燃料供給量P(s)が決定されるようになっている。すなわち、発熱部10の温度を一定とするPID制御における利点と、発熱部10の利用率を一定とする利用率制御における利点とが兼用され、お互いの欠点が相殺されるようになっている。
 これにより、例えば突然の冷却等が生じた場合に、発電部10の利用率Eが一定となることにより、PID制御の場合の高発熱現象が回避されると共に、発電部10の温度に上限が設けられるため、利用率制御の場合の高温度現象が回避される。
 したがって、例えば図21(A)~図21(D)に示したように、発電部10の周りに風を流して冷却させた場合でも、クロスオーバーによる異常発熱が生じず、安全な発電がなされていることが分かる。また、例えば図22(A)~図22(D)に示したように、発電部10の底を直接冷却した場合でも、同様にクロスオーバーによる異常発熱が生じず、安全な発電がなされていることが分かる。
 以上のように本実施の形態では、PID制御部351および発熱補正部352において、発電部10の温度T1に基づいて算出された燃料供給量PPID(s)と、利用率制御部361において、燃料の利用率Eに基づいて算出された燃料供給量P(s)との両方を考慮して、最終的な燃料供給量P(s)を決定するようにしたので、PID制御の場合の高発熱現象や、利用率制御の場合の高温度現象を回避することができる。よって、第1の実施の形態と比べ、さらに様々な外部環境の変化の下でも、安定して発電を行うことが可能となる。
 具体的には、最小値選択部362において、燃料供給量PPID(s)および燃料供給量P(s)のうちの供給量値の小さいほうを選択することによって、最終的な燃料供給量P(s)を決定するようにしたので、上記したような効果を得ることが可能となる。
 また、PID制御と利用率制御とを組み合わせることにより、発電部10の温度の上限値(Tmax)と、利用率の下限値(Emin)とを規定することができ、様々な外乱に対し、安全でロバストな発電動作を実現することが可能となる。
(第2の実施の形態の変形例)
 なお、第2の実施の形態の燃料供給制御(PID制御と利用率制御との組み合わせ)では、利用率Eの下限値の設定が不適切である場合、十分な発電出力が得られなかったり、逆に無駄に燃料を消費してしまう可能性がある。なお、利用率Eの下限値の設定が不適切である場合とは、具体的には、利用率Eの下限値の設定が外部環境等に適合しなかった場合や、燃料供給系の不具合などに起因して、燃料ポンプ42の一動作当りの燃料供給量が変動してしまった場合などが挙げられる。そこで、燃料の利用率Eの設定値(ここでは、下限値)を、制御部36において、環境に応じて定期的に(ダイナミックに)更新するようにするのが好ましい。具体的には、例えば10分ごとに燃料を完全消費させると共に、過去10分間における燃料の利用率Eの実力値を、その都度計算するようにする。そして、その計算された利用率Eが、次の10分間においても維持されるよう、利用率Eの下限値を自動更新するようにする。
 このように構成した場合、例えば図23(A)~図23(F)に示したように、安全性だけでなく、エネルギー変換効率η(燃費)も最適化することが可能となる。
[第3の実施の形態]
 図24は、本発明の第3の実施の形態に係る燃料電池システム(燃料電池システム5A)の全体構成を表すものである。燃料電池システム5Aは、負荷6を駆動するための電力を出力端子T2,T3を介して供給するものである。この燃料電池システム5Aは、燃料電池1と、電流検出部31と、電圧検出部32と、昇圧回路33Aと、分圧回路37と、二次電池34と、制御部35Aとから構成されている。なお、第1,第2の実施の形態における構成要素と同一のものには同一の符号を付し、適宜説明を省略する。
 電圧検出部32は、接続ラインL1H上の接続点P1と、接続ラインL1L上の接続点P2との間に配置されており、発電部10の発電電圧V1(昇圧回路33Aの入力電圧Vin)を検出するものである。この電圧検出部32は、例えば抵抗器を含んで構成されている。
 昇圧回路33Aは、接続ラインL1H上の接続点P1と、出力ラインLO上の接続点P5との間に配置されており、発電部10の発電電圧V1(直流入力電圧Vin)を昇圧して、直流出力電圧Voutを生成する電圧変換部である。この昇圧回路33Aは、例えばDC/DCコンバータを含んで構成されており、後述する分圧回路37により生成される分圧電圧VFBと所定の基準電圧(後述する基準電圧Vref)との電位比較結果に応じて、昇圧動作を行うようになっている。このような昇圧回路33Aの昇圧動作により、例えば図25に示したように、出力電圧Voutを二次電池34の端子電圧LiVよりも大きくして電位差ΔVを生じさせることができ、二次電池34に対する充電動作が可能となっている。また、このときの昇圧回路33Aからの出力電流Ioutの値は、上記電位差ΔVと、二次電池34の内部抵抗値とによって定まるようになっている。なお、昇圧回路33Aの詳細構成および詳細動作については、後述する。
 分圧回路37は、出力ラインLO上の接続点P5と、接地ラインLG上の接続点P6との間に配置され、抵抗器R3,R4と、可変抵抗器Rvとにより構成されている。抵抗器R3の一端は接続点P5に接続され、他端は可変抵抗器Rvの一端に接続されている。また、可変抵抗器Rvの他端は、接続点P7において抵抗器R4の一端に接続されている。また、抵抗器R4の他端は接続点P6に接続されている。このような構成により分圧回路37では、接続点P7,P6間に生ずる、昇圧回路33Aからの出力電圧Voutの分圧電圧VFB(フィードバック電圧)を、昇圧回路33Aへフィードバックするようになっている。なお、このフィードバック動作の詳細については、後述する。
 二次電池34は、出力ラインLO上の接続点P3と、接地ラインLG上の接続点P4との間に配置されており、昇圧回路33Aにより生成された直流出力電圧Vout(負荷電圧)と、昇圧回路33Aからの出力電流Iout(負荷電流)とに基づいて蓄電を行うものである。この二次電池34は、例えばリチウムイオン二次電池などにより構成されている。
 制御部35Aは、電流検出部31により検出された発電電流(検出電流)I1と、電圧検出部32により検出された発電電圧(検出電圧)V1(入力電圧Vin)とに基づいて、燃料ポンプ42による液体燃料の供給量を調整するものである。また、制御部35Aは、後述する所定の制御用テーブルを用いて昇圧回路33Aの昇圧動作を制御することにより、この昇圧回路33Aから負荷(二次電池34および負荷6)へ供給される出力電圧Vout(負荷電圧)および出力電流Iout(負荷電流)に対する制御を行うようになっている。このような制御部35Aは、例えばマイクロコンピュータなどにより構成されている。なお、制御部35Aによる出力電圧Voutおよび出力電流Ioutの制御動作の詳細については、後述する。
 燃料ポンプ42は、例えば、圧電体(図示せず)と、この圧電体を支持するための圧電体支持樹脂部(図示せず)と、燃料タンク40からノズル43までを接続する配管としての流路(図示せず)とを含んで構成されている。この燃料ポンプ42は、例えば図26(A),(B)に示したように、1回の動作当りの燃料供給量または燃料供給周期Δtの変化に応じて、燃料の供給量を調節することができるようになっている。なお、この燃料ポンプ42が、本発明における「燃料供給部」の一具体例に対応する。
 次に、図27および図28を参照して、昇圧回路33Aおよび分圧回路37の詳細構成について説明する。図27は、昇圧回路33Aおよび分圧回路37の詳細な回路構成を表したものである。
 昇圧回路33Aは、インダクタ33L、コンデンサ33Cおよび2つのスイッチング素子Tr1,Tr2からなるDC/DCコンバータと、リファレンス電源(基準電源)331と、エラーアンプ332と、発振回路333と、PWM(Pulse Width Modulation;パルス幅変調)信号生成部334とから構成されている。
 DC/DCコンバータは、発電部10の発電電圧V1(直流入力電圧Vin)を昇圧して、直流出力電圧Voutを生成する電圧変換部である。このDC/DCコンバータにおいて、インダクタ33Lは、接続ラインL1H上に挿入配置されている。また、スイッチング素子Tr1は、接続ラインL1Hと接続ラインL1Lとの間に配置されている。スイッチング素子Tr2は、接続ラインL1Hおよび出力ラインLO上に挿入配置されている。コンデンサ33Cは、出力ラインLOと接地ラインLGとの間に配置されている。
 ここで、スイッチング素子Tr1,Tr2はそれぞれ、例えばNチャネルのMOS-FET(Metal OxideSemiconductor-Field Effect Transistor;電界効果型トランジスタ)により構成されている。これらスイッチング素子Tr1,T2のゲート端子には、後述するPWM信号生成部334から出力される制御信号(PWM信号)S1,S2が供給されており、各々のスイッチング動作が制御されるようになっている。
 リファレンス電源(基準電源)331は、エラーアンプ332のリファレンス電圧(基準電圧)Vrefを供給する電源である。
 エラーアンプ332は、分圧回路37により供給される分圧電圧VFBと、基準電源331から供給される基準電圧Vrefとの電位差の大小を比較し、その比較結果(「H(ハイ)」または「L(ロー)」の信号)をPWM信号生成部334へ出力するものである。
 発振回路333は、PWM信号生成部334においてPWM信号を生成する際に用いるパルス信号を生成し、PWM信号生成部334へ供給するものである。
 PWM信号生成部334は、エラーアンプ332における比較結果と、発振回路333から供給されるパルス信号とに基づいて、PWM信号からなるスイッチング素子Tr1,Tr2の制御信号S1,S2を生成するものである。具体的には、例えば図28(A),(B)に示したように、のこぎり波からなる基準電圧Vrefよりも分圧電圧VFBのほうが電位が大きい場合に、その期間にパルス幅を有するPWM信号(制御信号S1)が生成されるようになっている。また、この際、図中のパルス幅Δt1~Δt3で示したように、分圧電圧VFBの電位がより大きくなるのに応じて制御信号S1のパルス幅がより小さくなる一方、逆に分圧電圧VFBの電位がより小さくなるのに応じて制御信号S1のパルス幅がより大きくなるようになっている。
 本実施の形態の燃料電池システム5Aは、例えば次のようにして製造することができる。
 まず、上記第1の実施の形態において説明した方法と同様にして、燃料電池1を形成する。そしてこの燃料電池1に対し、上述した電流検出部31、電圧検出部32、昇圧回路33A、分圧回路37、二次電池34および制御部35Aをそれぞれ、図24に示したように電気的に接続して取り付ける。以上により、図24,図25に示した燃料電池システム5Aが完成する。
 次に、本実施の形態の燃料電池システム5Aの作用および効果について詳細に説明する。
 この燃料電池システム5Aでは、燃料電池1全体としては、上記第1の実施の形態と同様に(7)式に示した反応が生じ、発電が行われる。
 これにより、液体燃料41すなわちメタノールの化学エネルギーの一部が電気エネルギーに変換され、接続部材20により集電されて、発電部10から電流(発電電流I1)として取り出される。この発電電流I1に基づく発電電圧(直流電圧)V1(入力電圧Vin)は、昇圧回路33Aによって昇圧(電圧変換)され、直流電圧(出力電圧)Voutとなる。この出力電圧Vout(負荷電圧)および昇圧回路33Aからの出力電流Iout(負荷電流)は、二次電池34または負荷(例えば、電子機器本体)へ供給される。そして、二次電池34へ出力電圧Voutおよび出力電流Ioutが供給された場合、これらの電圧および電流に基づいて二次電池34に蓄電がなされる一方、出力端子T2,T3を介して負荷6へ出力電圧Voutおよび出力電流Ioutが供給された場合、負荷6が駆動され、所定の動作がなされる。
 このとき、燃料ポンプ42では、制御部35Aによって、1回の動作当りの燃料供給量または燃料供給周期Δtが制御され、それに応じて燃料の供給量が調節される。
 また、この際、本実施の形態の昇圧回路33Aでは、より具体的には、例えば図29(A)~図29(C)に示したような昇圧動作がなされる。図29(A)~図29(C)は、昇圧回路33Aの昇圧動作を回路状態図を用いて表したものであり、昇圧回路33A内の前述したDC/DCコンバータの部分を取り出して表している。ただし、入力電圧Vinを便宜的に電源として図示していると共に、出力側に接続される負荷を便宜的に負荷抵抗Rとして図示している。また、スイッチング素子Tr1,Tr2のオン・オフ状態を分かりやすくするため、これらスイッチング素子Tr1,T2を便宜的にスイッチの形状で図示している。
 この昇圧回路33A内のDC/DCコンバータでは、まず、図29(A)に示したように、入力電圧Vinが供給されると、インダクタ33Lに対し、図中に示した電流経路からなる電流Iaが流れる。なお、このとき、スイッチング素子Tr1はオフ状態であると共に、スイッチング素子Tr2はオン状態となっている。
 次に、図29(B)に示したように、スイッチング素子Tr1がオン状態になると、インダクタ33Lおよびスイッチング素子Tr1に流れる電流ILが、負荷抵抗Rに流れる出力電流Ioutよりも大きくなる。このように電流ILが増加することにより、インダクタ33Lには大きなエネルギーが蓄積される。
 次に、図29(C)に示したように、再びスイッチング素子Tr1がオフ状態になると、図中に示した電流経路からなる電流Iaが流れる。このとき、この電流Iaには、インダクタ33Lに蓄積されたエネルギーによる電流も重畳されるため、負荷抵抗Rに供給される出力電圧Voutは、インダクタ33Lで発生する電圧をVLとすると、以下の(9)式により表される。また、このとき同時にコンデンサ33Cには、両端間の電圧が出力電圧Voutとなるまで充電される。
Vout=Vin+VL ……(9)
 そして、その後は図29(B)および図29(C)の動作が繰り返されることにより、入力電圧Vinよりも高い電圧である出力電圧Voutが生成され(昇圧動作がなされ)、負荷抵抗Rへ供給されることになる。
 また、このとき、分圧回路37によって、例えば図28(A)に示したような出力電圧Voutの分圧電圧VFBが、昇圧回路33Aへフィードバックされる。そして、PWM信号生成部334において、エラーアンプ332における比較結果と、発振回路333から供給されるパルス信号とに基づき、例えば図28(B)に示したような、PWM信号からなるスイッチング素子Tr1,Tr2の制御信号S1,S2が生成される。また、この際、分圧電圧VFBの電位がより大きくなるのに応じて制御信号S1のパルス幅がより小さくなる一方、逆に分圧電圧VFBの電位がより小さくなるのに応じて制御信号S1のパルス幅がより大きくなる。
 したがって、出力電圧Voutが低いときには、制御信号S1のパルス幅が大きくなって出力電圧Voutを増加させる動作となる一方、出力電圧Voutが高いときには、制御信号S1のパルス幅が小さくなって出力電圧Voutを低下させる動作となる。このようにして、分圧電圧VFBが基準電圧Vrefと等しくなるように制御されることにより、出力電圧Vout(負荷電圧)が一定となるように制御される(定電圧動作)。
 具体的には、例えば図30(A)~(D)および図31に示したようにして、定電圧動作がなされる。すなわち、出力電圧Vout(FC電圧、発電電圧)が一定値に固定されている状態において、燃料ポンプ42によって液体燃料41が供給された直後から出力電流Iout(FC電流、発電電流)が増加し、液体燃料41の減少に伴ってFC電流は徐々に減少する。これは、一定量の液体燃料41により発電部10が発電可能な電力量も、一定の値になることによる。そのため、断続的に供給された液体燃料41が発電部10における発電によって消費されるにしたがって、発電部10からのFC電流が減少することになる。
 また、本実施の形態では、例えば発電電流(入力電流)I1に対応する電圧を昇圧回路33Aに対してフィードバックすることにより、出力電流Iout(負荷電流)が一定となるように、昇圧回路33Aの動作制御を行う(定電流動作)も可能である。
 この場合、具体的には例えば図32(A)~(D)および図33に示したようにして、定電流動作がなされる。すなわち、この場合、燃料ポンプ42によって液体燃料41が供給された直後から、液体燃料41が増加する。したがって、出力電流Iout(FC電流、発電電流)が一定値で固定されている状態では、液体燃料41の供給量に応じて出力電圧Vout(FC電圧、発電電圧)が上昇する一方、液体燃料41が減少するのに従い、FC電圧は減少することになる。
 ここで、本実施の形態では、このような定電圧動作や定電流動作の際に、制御部35Aにおいて、例えば図34(A)~(C)に示したような制御用テーブルを用いることにより、昇圧回路33Aの昇圧動作が制御される。
 具体的には、例えば図34(A)に示した制御用テーブルを用いた場合、出力電圧Vout(FC電圧、負荷電圧)の設定値が大きくなるのに応じて、基準電圧Vrefの設定値が大きくなるように、昇圧回路33Aの動作制御がなされる。これにより、FC電圧の設定値に応じた定電圧動作や定電流動作が可能となる。
 また、例えば図34(B)に示した制御用テーブルを用いた場合、燃料ポンプ42による液体燃料41の供給量が一定であるときに、負荷6の大きさに応じて出力電圧Vout(FC電圧、負荷電圧)および出力電流Iout(FC電流、負荷電流)の大きさの調整がなされる。これにより、単位時間あたりの燃料供給量を一定にした状態で、負荷状況に応じたFC電圧およびFC電流の設定が可能となる。
 また、例えば図34(C)に示した制御用テーブルを用いた場合、発電部10における燃料変換効率の設定値が大きくなるのに応じて、出力電流Iout(FC電流、負荷電流)が小さくなるように、昇圧回路33Aの動作制御がなされる。これにより、定電圧動作を行う場合において、燃料供給量および燃料変換効率を最適な状態にすることが可能となる。
 このようにして本実施の形態では、発電部10から供給される発電電圧V1(入力電圧Vin)は、昇圧回路33Aにより昇圧され、出力電圧Vout(負荷電圧)として負荷(二次電池34および負荷6)へ供給される。その際、所定の制御用テーブルを用いて昇圧回路33Aの動作が制御されることにより、この昇圧回路33Aから負荷へ供給される出力電圧Vout(負荷電圧)および出力電流Iout(負荷電流)が制御される。
 また、本実施の形態では、以下説明するように、定電流制御よりも定電圧制御を用いるようにするのが好ましい。
 最初に、図35を参照して、発電電力と定電圧動作または定電流動作との関係について説明する。
 まず、図35(A)に示した定電流動作の場合、図中の符号P11で示したように、単位時間あたりの燃料供給量(cc/h)を増加させても、出力電力(FC電力)は燃料増加に応じて増加せず、ほぼ一定値となっている。
 一方、図35(B)に示した定電圧動作の場合、図中の矢印P12で示したように、単位時間あたりの燃料供給量(cc/h)を増加させることにより、出力電力(FC電力)を増加させることができる。また、最大電力を得ることが可能なFC電圧の幅(電圧領域)ΔV1にも、ある程度の大きさがあることがわかった。この結果、FC電圧を一定値とした状態で発電させることにより、FC電力と燃料供給量との間で比例関係が成り立つ状態での発電が可能となる。
 次に、図36を参照して、燃料変換効率と定電圧動作または定電流動作との関係について説明する。
 まず、図36(A)に示した定電流動作の場合、図中の矢印P13で示したように、0.302(cc/h)の割合で燃料供給したとき(図示した中で最も燃料供給量が小さいとき)が、最も燃料変換効率が高くなっている。ただし、燃料変換効率が最も高い値となるときの電流値幅ΔI2が狭く、また、それを超えた場合、急激に燃料変換効率が悪化してしまっている。
 一方、図36(B)に示した定電圧動作の場合、燃料変換効率が最も高い値となる電圧値幅ΔV2が広くなっている。なお、この場合も、図中の矢印P14で示したように、0.302(cc/h)の割合で燃料供給したとき(図示した中で最も燃料供給量が小さいとき)が、最も燃料変換効率が高くなっている。また、前述したように、単位時間あたりの燃料供給量に応じてFC電力も変化させることができるため、FC電圧を一定値とした状態で発電させることにより、FC電力と燃料供給量との間の比例関係が成り立つ状態での発電と同時に、燃料変換効率が高い状態での発電が可能となる。
 このようにして、出力電圧Vout(負荷電圧、FC電圧)が一定となるように昇圧回路33Aの動作制御を行うようにした場合(定電圧動作を行うように制御した場合)には、特に燃料電池1の発電状態を良好にすることができる。
 以上のように本実施の形態では、発電部10から供給される発電電圧V1(入力電圧Vin)を昇圧回路33Aによって昇圧すると共に、制御部35Aにおいて、所定の制御用テーブルを用いて昇圧回路33Aの動作を制御することにより、この昇圧回路33Aから負荷(二次電池34および負荷6)へ供給される出力電圧Vout(負荷電圧)および出力電流Iout(負荷電流)に対する制御を行うようにしたので、気化供給型の燃料電池1において断続的な燃料供給がなされている場合であっても、出力電圧Voutや出力電流Ioutに対する効率的な制御が実現される。よって、気化供給型の燃料電池において、従来よりも安定した発電を行うことが可能となる。
 また、出力電圧Vout(負荷電圧)が一定となるように昇圧回路33Aの動作制御を行うようにした場合(定電圧動作を行うように制御した場合)には、特に燃料電池1の発電状態を良好にすることができる。
 以上、第1~第3の実施の形態および変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等に限定されるものではなく、種々の変形が可能である。
 例えば、上記第1,第2の実施の形態およびその変形例では、液体燃料の供給量を、目標温度Tsv(s)と検出温度Tpv(s)との差分値の時間積分値および時間微分値に対して比例させることにより、発電部10の温度が一定となるように制御を行う(PID制御を行う)場合について説明したが、例えば、P制御やPI制御、ファジー制御、H∞制御などの他のフィードバック制御を用いて、発電部10の温度が一定となるように制御を行うようにしてもよい。具体的には、液体燃料の供給量を、目標温度Tsv(s)と検出温度Tpv(s)との差分値に対して比例させることにより、発電部10の温度が一定となるように制御を行う(P制御を行う)ようにしてもよい。また、液体燃料の供給量を、目標温度Tsv(s)と検出温度Tpv(s)との差分値の時間積分値に対して比例させることにより、発電部10の温度が一定となるように制御を行う(PI制御を行う)ようにしてもよい。また、液体燃料の供給量を、目標温度Tsv(s)と検出温度Tpv(s)との差分値の時間微分値に対して比例させることにより、発電部10の温度が一定となるように制御を行う(PD制御を行う)ようにしてもよい。
 また、上記第1,第2の実施の形態およびその変形例では、発熱補正部352が、電圧検出部32により検出された発電電圧(検出電圧)V1を用いて発電部10におけるエネルギー変換効率ηを算出する場合について説明したが、そのような発電電圧V1の代わりに予め設定された所定の電圧(設定電圧)を用いて、発電部10におけるエネルギー変換効率ηを算出するようにしてもよい。
 更に、昇圧回路33Aおよび分圧回路37の回路構成は、上記第3の実施の形態で説明したものには限られず、他の方式を用いた回路構成としてもよい。また、制御用テーブルについても、上記第3の実施の形態で説明したもの(図34(A)~(C))には限られず、他の構成のものを用いるようにしてもよい。
 加えて、上記実施の形態等では、発電部10が、互いに電気的に直列接続された6つの単位セルを含む場合について説明したが、単位セルの数はこれには限られない。例えば、発電部10が1つの単位セルにより構成されていてもよく、また、2以上の任意の複数の単位セルにより構成されていてもよい。
 加えてまた、上記実施の形態等では、酸素電極13への空気の供給を自然換気とするようにしたが、ポンプなどを利用して強制的に供給するようにしてもよい。その場合、空気に代えて酸素または酸素を含むガスを供給するようにしてもよい。
 加えて更に、上記実施の形態等では、液体燃料41を収容する燃料タンク40を燃料電池システム5,5A内に内蔵させる場合で説明したが、そのような燃料タンクが、燃料電池システムに対して着脱可能な構成としてもよい。
 更にまた、上記実施の形態等では、ダイレクトメタノール型の燃料電池システムについて説明したが、本発明は、これ以外の種類の燃料電池システムについても適用することが可能である。
 本発明の燃料電池システムは、例えば、携帯電話、電子写真機、電子手帳またはPDA(PersonalDigital Assistants)等の携帯型の電子機器に好適に用いることが可能である。

Claims (20)

  1.  燃料および酸化剤ガスの供給により発電を行う発電部と、
     前記発電部側へ液体燃料を供給すると共に、この液体燃料の供給量が調節可能となっている燃料供給部と、
     前記燃料供給部により供給された液体燃料を気化させることによって、気体燃料を前記発電部へ供給する燃料気化部と、
     前記発電部の温度を検出する温度検出部と、
     前記温度検出部により検出された発電部の温度に基づいて、前記燃料供給部による液体燃料の供給量を調整することにより、前記発電部の温度が一定となるように制御する制御部と
     を備えた燃料電池システム。
  2.  前記制御部は、前記発電部の発電電圧または所定の設定電圧に基づいて、前記発電部におけるエネルギー変換効率を近似的に算出すると共に、算出したこのエネルギー変換効率を用いて、前記液体燃料の供給量を補正する
     請求項1に記載の燃料電池システム。
  3.  前記制御部は、前記発電部の発電電圧または所定の設定電圧に加え、前記発電部の発電電流をも考慮して、前記発電部におけるエネルギー変換効率を算出する
     請求項2に記載の燃料電池システム。
  4.  前記発電部の発電電流を検出する電流検出部を備え、
     前記制御部は、
     前記電流検出部により検出された発電電流に基づいて、前記発電部における燃料の利用率を算出すると共に、算出したこの燃料の利用率が一定となるように、前記液体燃料の供給量を算出し、
     前記発電部の温度に基づいて算出された第1の燃料供給量と、前記燃料の利用率に基づいて算出された第2の燃料供給量とを考慮して、最終的な液体燃料の供給量を決定する
     請求項1ないし請求項3のいずれか1項に記載の燃料電池システム。
  5.  前記制御部は、前記第1および第2の燃料供給量のうちの一方を選択することにより、前記最終的な液体燃料の供給量を決定する
     請求項4に記載の燃料電池システム。
  6.  前記制御部は、前記第1および第2の燃料供給量のうち、供給量値の小さいほうを選択することにより、前記最終的な液体燃料の供給量を決定する
     請求項5に記載の燃料電池システム。
  7.  前記制御部は、前記燃料の利用率の設定値を、定期的に更新する
     請求項4に記載の燃料電池システム。
  8.  前記制御部は、前記液体燃料の供給量を、設定温度と検出された発電部の温度との差分の時間積分値および時間微分値に対して比例させることにより、前記発電部の温度が一定となるように制御を行う
     請求項1ないし請求項3のいずれか1項に記載の燃料電池システム。
  9.  前記制御部は、前記液体燃料の供給量を、設定温度と検出された発電部の温度との差分値に対して比例させることにより、前記発電部の温度が一定となるように制御を行う
     請求項1ないし請求項3のいずれか1項に記載の燃料電池システム。
  10.  前記制御部は、前記液体燃料の供給量を、設定温度と検出された発電部の温度との差分の時間積分値に対して比例させることにより、前記発電部の温度が一定となるように制御を行う
     請求項1ないし請求項3のいずれか1項に記載の燃料電池システム。
  11.  前記制御部は、前記液体燃料の供給量を、設定温度と検出された発電部の温度との差分の時間微分値に対して比例させることにより、前記発電部の温度が一定となるように制御を行う
     請求項1ないし請求項3のいずれか1項に記載の燃料電池システム。
  12.  燃料電池システムを備え、
     前記燃料電池システムは、
     燃料および酸化剤ガスの供給により発電を行う発電部と、
     前記発電部側へ液体燃料を供給すると共に、この液体燃料の供給量が調節可能となっている燃料供給部と、
     前記燃料供給部により供給された液体燃料を気化させることによって、気体燃料を前記発電部へ供給する燃料気化部と、
     前記発電部の温度を検出する温度検出部と、
     前記温度検出部により検出された発電部の温度に基づいて、前記燃料供給部による液体燃料の供給量を調整することにより、前記発電部の温度が一定となるように制御する制御部とを有する
     電子機器。
  13.  燃料および酸化剤ガスの供給により発電を行う発電部と、
     前記発電部側へ液体燃料を供給すると共に、この液体燃料の供給量を調節可能な燃料供給部と、
     前記燃料供給部により供給された液体燃料を気化させることによって、気体燃料を前記発電部へ供給する燃料気化部と、
     前記発電部から供給される発電電圧を昇圧する昇圧回路と、
     所定の制御用テーブルを用いて前記昇圧回路の動作を制御することにより、この昇圧回路から負荷へ供給される負荷電圧および負荷電流に対する制御を行う制御部と
     を備えた燃料電池システム。
  14.  前記制御部は、前記負荷電圧が一定となるように、前記昇圧回路の動作制御を行う
     請求項13に記載の燃料電池システム。
  15.  前記昇圧回路は、前記負荷電圧に基づく電圧と所定の基準電圧との電位比較結果に応じて昇圧動作を行うものであり、
     前記制御部は、前記負荷電圧の設定値が大きくなるのに応じて前記基準電圧の設定値が大きくなるように、前記昇圧回路の動作制御を行う
     請求項14に記載の燃料電池システム。
  16.  前記制御部は、前記制御用テーブルを用いて、前記発電部における燃料変換効率の設定値が大きくなるのに応じて前記負荷電流が小さくなるように、前記昇圧回路の動作制御を行う
     請求項14に記載の燃料電池システム。
  17.  前記制御部は、前記負荷電流が一定となるように、前記昇圧回路の動作制御を行う
     請求項13に記載の燃料電池システム。
  18.  前記制御部は、前記燃料供給部による液体燃料の供給量が一定である場合に、前記制御用テーブルを用いて、前記負荷の大きさに応じて前記負荷電圧および負荷電流の大きさの調整を行う
     請求項13ないし請求項17のいずれか1項に記載の燃料電池システム。
  19.  前記昇圧回路が、DC/DCコンバータを含んで構成されている
     請求項13に記載の燃料電池システム。
  20.  燃料電池システムを備え、
     前記燃料電池システムは、
     燃料および酸化剤ガスの供給により発電を行う発電部と、
     前記発電部側へ液体燃料を供給すると共に、この液体燃料の供給量を調節可能な燃料供給部と、
     前記燃料供給部により供給された液体燃料を気化させることによって、気体燃料を前記発電部へ供給する燃料気化部と、
     前記発電部から供給される発電電圧を昇圧する昇圧回路と、
     所定の制御用テーブルを用いて前記昇圧回路の動作を制御することにより、この昇圧回路から負荷へ供給される負荷電圧および負荷電流に対する制御を行う制御部と
     を有する電子機器。
PCT/JP2009/063463 2008-08-18 2009-07-29 燃料電池システムおよび電子機器 WO2010021231A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2011106110/07A RU2477909C2 (ru) 2008-08-18 2009-07-29 Система топливного элемента и электронное устройство
BRPI0917951A BRPI0917951A2 (pt) 2008-08-18 2009-07-29 sistema de célula de combustível, e, dispositivo eletrônico.
US13/058,770 US8846257B2 (en) 2008-08-18 2009-07-29 Fuel cell system and electronic device
CN200980131258.2A CN102119460B (zh) 2008-08-18 2009-07-29 燃料电池系统和电子装置
EP09808167.2A EP2323208A4 (en) 2008-08-18 2009-07-29 FUEL CELL SYSTEM AND ELECTRONIC DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008209873A JP5344218B2 (ja) 2008-08-18 2008-08-18 燃料電池システムおよび電子機器
JP2008-209873 2008-08-18
JP2008-233116 2008-09-11
JP2008233116A JP5344219B2 (ja) 2008-09-11 2008-09-11 燃料電池システムおよび電子機器

Publications (1)

Publication Number Publication Date
WO2010021231A1 true WO2010021231A1 (ja) 2010-02-25

Family

ID=41707109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063463 WO2010021231A1 (ja) 2008-08-18 2009-07-29 燃料電池システムおよび電子機器

Country Status (7)

Country Link
US (1) US8846257B2 (ja)
EP (1) EP2323208A4 (ja)
KR (1) KR20110041508A (ja)
CN (1) CN102119460B (ja)
BR (1) BRPI0917951A2 (ja)
RU (1) RU2477909C2 (ja)
WO (1) WO2010021231A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024386A1 (ja) * 2009-08-31 2011-03-03 株式会社 東芝 燃料電池
WO2011052204A1 (ja) * 2009-10-28 2011-05-05 株式会社 東芝 燃料電池
US20110244351A1 (en) * 2010-04-01 2011-10-06 Jung-Kurn Park Operating method of fuel cell system
CN102263400A (zh) * 2010-05-28 2011-11-30 索尼公司 蓄电池保护电路和混合电源设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2668690T3 (da) * 2011-01-28 2019-07-08 Ird Fuel Cells As Fremgangsmåde og system til stabil direkte methanol-brændselscelledrift ved varierende belastninger og minustemperaturer
CN103413955B (zh) * 2013-08-07 2015-04-01 东南大学 一种防止固体氧化物燃料电池燃料利用率超限的控制方法
CN106898797B (zh) * 2015-12-21 2020-07-14 中国科学院大连化学物理研究所 一种直接甲醇燃料电池电堆进料控制方法
CN108615917B (zh) * 2018-04-11 2020-08-18 华中科技大学 一种固体氧化物燃料电池系统的故障检测系统及方法
CN110545601A (zh) * 2019-09-05 2019-12-06 山东建筑大学 一种采用燃料电池作为电源的路灯
JP7363674B2 (ja) * 2020-05-29 2023-10-18 トヨタ自動車株式会社 燃料電池システム

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151970A (ja) * 1984-12-25 1986-07-10 Shin Kobe Electric Mach Co Ltd 液体燃料電池の燃料供給装置
JPS63168971A (ja) * 1986-12-29 1988-07-12 Hitachi Ltd 燃料電池の燃料補給方法
JP2000106201A (ja) * 1998-09-30 2000-04-11 Toshiba Corp 燃料電池
JP2004071260A (ja) * 2002-08-02 2004-03-04 Toshiba Corp 燃料電池装置
JP2004152741A (ja) * 2002-06-12 2004-05-27 Toshiba Corp 直接型メタノール燃料電池システム、燃料カートリッジ及び燃料カートリッジ用メモリ
JP2004171813A (ja) * 2002-11-18 2004-06-17 Nec Corp 燃料電池システム、燃料電池を用いた携帯型電気機器、および燃料電池の運転方法
WO2005112172A1 (ja) * 2004-05-14 2005-11-24 Kabushiki Kaisha Toshiba 燃料電池
JP2005327583A (ja) * 2004-05-14 2005-11-24 Sony Corp 電気化学エネルギー生成装置及びこの装置の駆動方法
JP2005340174A (ja) * 2004-04-07 2005-12-08 Yamaha Motor Co Ltd 燃料電池システムおよびその制御方法
WO2006025321A1 (ja) * 2004-08-31 2006-03-09 Yamaha Hatsudoki Kabushiki Kaisha 燃料電池システムおよびその制御方法
JP2006286321A (ja) * 2005-03-31 2006-10-19 Ricoh Co Ltd 燃料電池システムならびにそのような燃料電池システムを備える電子機器および画像形成装置
JP2006286408A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd 燃料電池の最大電力点電圧特定方法および燃料電池制御システムならびに燃料電池制御システムに使用される電力制御装置
JP2007087736A (ja) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd 燃料電池発電装置の運転方法
JP2007165148A (ja) * 2005-12-14 2007-06-28 Toshiba Corp 燃料電池システム及びその制御方法
JP2007227336A (ja) * 2006-02-23 2007-09-06 Inst Nuclear Energy Research Rocaec 燃料電池の燃料供給制御方法
JP2008066275A (ja) * 2006-08-11 2008-03-21 Sony Corp 燃料電池、電子機器および燃料供給方法
JP2008078068A (ja) * 2006-09-25 2008-04-03 Ricoh Co Ltd 燃料電池システム、電子機器及び画像形成装置
JP2008146950A (ja) * 2006-12-08 2008-06-26 Ricoh Co Ltd 燃料電池システム、電子機器及び画像形成装置
JP2008210566A (ja) * 2007-02-23 2008-09-11 Toshiba Corp 燃料電池
JP2009016311A (ja) * 2007-07-09 2009-01-22 Toshiba Corp 燃料電池
JP2009054546A (ja) * 2007-08-29 2009-03-12 Toshiba Corp 燃料電池装置の駆動方法
JP2009134885A (ja) * 2007-11-28 2009-06-18 Casio Comput Co Ltd 燃料電池システム及びその制御方法
JP2009176483A (ja) * 2008-01-22 2009-08-06 Toshiba Corp 燃料電池システム
JP2009245641A (ja) * 2008-03-28 2009-10-22 Toshiba Corp 燃料電池システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329089B1 (en) * 1997-12-23 2001-12-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell
US6447941B1 (en) * 1998-09-30 2002-09-10 Kabushiki Kaisha Toshiba Fuel cell
JP3480451B2 (ja) * 2001-05-22 2003-12-22 日産自動車株式会社 燃料電池システム
RU2206939C1 (ru) * 2002-04-12 2003-06-20 Закрытое акционерное общество "Индепендент Пауэр Технолоджис" Электрохимический генератор на основе метанольных топливных элементов
US6590370B1 (en) 2002-10-01 2003-07-08 Mti Microfuel Cells Inc. Switching DC-DC power converter and battery charger for use with direct oxidation fuel cell power source
DE602005022699D1 (de) * 2004-04-07 2010-09-16 Yamaha Motor Co Ltd Brennstoffzellensystem und steuerverfahren dafür
JPWO2008020562A1 (ja) * 2006-08-17 2010-01-07 株式会社東芝 電子機器
JP4395621B2 (ja) * 2006-12-13 2010-01-13 カシオ計算機株式会社 電子機器

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151970A (ja) * 1984-12-25 1986-07-10 Shin Kobe Electric Mach Co Ltd 液体燃料電池の燃料供給装置
JPS63168971A (ja) * 1986-12-29 1988-07-12 Hitachi Ltd 燃料電池の燃料補給方法
JP2000106201A (ja) * 1998-09-30 2000-04-11 Toshiba Corp 燃料電池
JP2004152741A (ja) * 2002-06-12 2004-05-27 Toshiba Corp 直接型メタノール燃料電池システム、燃料カートリッジ及び燃料カートリッジ用メモリ
JP2004071260A (ja) * 2002-08-02 2004-03-04 Toshiba Corp 燃料電池装置
JP2004171813A (ja) * 2002-11-18 2004-06-17 Nec Corp 燃料電池システム、燃料電池を用いた携帯型電気機器、および燃料電池の運転方法
JP2005340174A (ja) * 2004-04-07 2005-12-08 Yamaha Motor Co Ltd 燃料電池システムおよびその制御方法
WO2005112172A1 (ja) * 2004-05-14 2005-11-24 Kabushiki Kaisha Toshiba 燃料電池
JP2005327583A (ja) * 2004-05-14 2005-11-24 Sony Corp 電気化学エネルギー生成装置及びこの装置の駆動方法
WO2006025321A1 (ja) * 2004-08-31 2006-03-09 Yamaha Hatsudoki Kabushiki Kaisha 燃料電池システムおよびその制御方法
JP2006286321A (ja) * 2005-03-31 2006-10-19 Ricoh Co Ltd 燃料電池システムならびにそのような燃料電池システムを備える電子機器および画像形成装置
JP2006286408A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd 燃料電池の最大電力点電圧特定方法および燃料電池制御システムならびに燃料電池制御システムに使用される電力制御装置
JP2007087736A (ja) * 2005-09-21 2007-04-05 Sanyo Electric Co Ltd 燃料電池発電装置の運転方法
JP2007165148A (ja) * 2005-12-14 2007-06-28 Toshiba Corp 燃料電池システム及びその制御方法
JP2007227336A (ja) * 2006-02-23 2007-09-06 Inst Nuclear Energy Research Rocaec 燃料電池の燃料供給制御方法
JP2008066275A (ja) * 2006-08-11 2008-03-21 Sony Corp 燃料電池、電子機器および燃料供給方法
JP2008078068A (ja) * 2006-09-25 2008-04-03 Ricoh Co Ltd 燃料電池システム、電子機器及び画像形成装置
JP2008146950A (ja) * 2006-12-08 2008-06-26 Ricoh Co Ltd 燃料電池システム、電子機器及び画像形成装置
JP2008210566A (ja) * 2007-02-23 2008-09-11 Toshiba Corp 燃料電池
JP2009016311A (ja) * 2007-07-09 2009-01-22 Toshiba Corp 燃料電池
JP2009054546A (ja) * 2007-08-29 2009-03-12 Toshiba Corp 燃料電池装置の駆動方法
JP2009134885A (ja) * 2007-11-28 2009-06-18 Casio Comput Co Ltd 燃料電池システム及びその制御方法
JP2009176483A (ja) * 2008-01-22 2009-08-06 Toshiba Corp 燃料電池システム
JP2009245641A (ja) * 2008-03-28 2009-10-22 Toshiba Corp 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2323208A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024386A1 (ja) * 2009-08-31 2011-03-03 株式会社 東芝 燃料電池
WO2011052204A1 (ja) * 2009-10-28 2011-05-05 株式会社 東芝 燃料電池
JP2011096459A (ja) * 2009-10-28 2011-05-12 Toshiba Corp 燃料電池
US9088022B2 (en) 2009-10-28 2015-07-21 Murata Manufacturing Co., Ltd. Fuel cell
US20110244351A1 (en) * 2010-04-01 2011-10-06 Jung-Kurn Park Operating method of fuel cell system
CN102263400A (zh) * 2010-05-28 2011-11-30 索尼公司 蓄电池保护电路和混合电源设备

Also Published As

Publication number Publication date
BRPI0917951A2 (pt) 2015-11-10
RU2011106110A (ru) 2012-08-27
US8846257B2 (en) 2014-09-30
CN102119460B (zh) 2014-05-14
KR20110041508A (ko) 2011-04-21
RU2477909C2 (ru) 2013-03-20
EP2323208A1 (en) 2011-05-18
US20110140547A1 (en) 2011-06-16
CN102119460A (zh) 2011-07-06
EP2323208A4 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
WO2010021231A1 (ja) 燃料電池システムおよび電子機器
WO2004093212A2 (en) Dual power source switching control
JP5439584B2 (ja) 燃料電池システム、及びその制御方法
JP5340484B2 (ja) 燃料電池の劣化判定方法
KR100844785B1 (ko) 펌프 구동 모듈 및 이를 구비한 연료전지 시스템
CN101438443B (zh) 充电装置
US20100181867A1 (en) Piezoelectric vibration device system and electronics apparatus
JP5344223B2 (ja) 燃料電池システムおよび電子機器
JP2007265840A (ja) 燃料電池システム
JP5344219B2 (ja) 燃料電池システムおよび電子機器
JP5344218B2 (ja) 燃料電池システムおよび電子機器
US20110136031A1 (en) Fuel cell system and electronic device
JP5228697B2 (ja) 燃料電池システムおよび電子機器
WO2010013709A1 (ja) 燃料電池システム及び電子機器
JP5154175B2 (ja) 給電装置
JP5496749B2 (ja) 燃料電池システム
US20090081503A1 (en) Fuel cell system and driving method thereof
JP5710863B2 (ja) 燃料電池システム
JP2005184970A (ja) 発電システム
JP2010033904A (ja) 燃料電池システム及び電子機器
JP2010170732A (ja) 燃料電池システム及び電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131258.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117003024

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13058770

Country of ref document: US

Ref document number: 1031/DELNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2009808167

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009808167

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011106110

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0917951

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110211