WO2010016351A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2010016351A1
WO2010016351A1 PCT/JP2009/062384 JP2009062384W WO2010016351A1 WO 2010016351 A1 WO2010016351 A1 WO 2010016351A1 JP 2009062384 W JP2009062384 W JP 2009062384W WO 2010016351 A1 WO2010016351 A1 WO 2010016351A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
hole
electrode
semiconductor device
manufacturing
Prior art date
Application number
PCT/JP2009/062384
Other languages
English (en)
French (fr)
Inventor
理 額賀
敏 山本
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN2009801302434A priority Critical patent/CN102113100A/zh
Priority to JP2010523808A priority patent/JPWO2010016351A1/ja
Priority to EP09804838A priority patent/EP2312619A4/en
Publication of WO2010016351A1 publication Critical patent/WO2010016351A1/ja
Priority to US13/020,534 priority patent/US20110129999A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device having a through electrode. More specifically, the present invention relates to a method for manufacturing a semiconductor device in which the etching selectivity of an insulating layer in a through hole is improved, the design freedom of the shape of the through electrode is increased, and the processing throughput is improved.
  • This application claims priority based on Japanese Patent Application No. 2008-204214 filed in Japan on August 7, 2008, the contents of which are incorporated herein by reference.
  • the semiconductor device includes a semiconductor substrate 100 having an insulating layer 103 formed on one surface; a functional element 108 and an electrode pad 102 disposed on the surface; and an electrical connection between the functional element 108 and the electrode pad 102. And a wiring section 104 to be configured.
  • a through hole 106 is formed to penetrate the semiconductor substrate 100 in the thickness direction so that the electrode pad 102 is exposed from the other surface side of the semiconductor substrate 100.
  • the semiconductor device includes an insulating layer 101 (101a, 101b) disposed on the other surface of the semiconductor substrate 100 and the inner peripheral surface of the through hole 106; on the insulating layer 101b in the through hole 106; And a rewiring layer 109 disposed on the electrode pad 102 exposed in 106.
  • the wiring portion 104 and the functional element 108, the wiring portion 104 and the electrode pad 102, and the electrode pad 102 and the part 109a of the rewiring layer 109 are electrically connected to each other. With such a connection structure, the functional element 108 can be electrically connected to the other surface side of the semiconductor substrate 100 through the wiring portion 104, the electrode pad 102, and the rewiring layer 109.
  • FIG. 14A a through hole 106 is formed in a semiconductor substrate 100 made of a Si substrate or the like. At this time, the through hole 106 is formed so that a part of the electrode pad (I / O pad) 102 provided on the device forming surface side of the semiconductor substrate 100 is exposed in the through hole 106.
  • an insulating layer 101 made of a silicon oxide film is formed on the surface of the semiconductor substrate 100 and the inner peripheral surface of the through hole 106 by CVD (Chemical Vapor Deposition) or the like in order to obtain insulation from the semiconductor substrate 100. To do. At this time, as shown in FIG.
  • the insulating layer 101c is also formed on the electrode pad 102 exposed in the through hole 106 (hereinafter also referred to as the bottom surface of the through hole 106). Therefore, in the next step, the insulating layer 101c is removed by a highly anisotropic etching method such as RIE (Reactive Ion Etching) (see FIG. 14B). Finally, as shown in FIG. 14C, the rewiring layer 109 is formed so as to be electrically connected to the electrode pad 102.
  • RIE Reactive Ion Etching
  • the insulating layer 101 c disposed on the bottom surface of the through hole 106 is etched, the insulating layer 101 a disposed on the surface of the semiconductor substrate 100 and the inner peripheral surface of the through hole 106 are disposed.
  • the formed insulating layer 101b is also etched in the same manner. That is, when the insulating layer 101c on the bottom surface of the through hole 106 is removed, the inner peripheral surface of the through hole 106 and the insulating layers 101a and 101b formed on the surface of the semiconductor substrate 100 are also removed. It was difficult to maintain insulation around the opening.
  • the insulating layers 101a and 101b are formed to be extremely thicker than the insulating layer 101c, the insulating layers 101a and 101b are also etched by a considerable amount, so that the insulating layer on the bottom surface of the through hole 106 is formed. It is necessary to remove 101c.
  • the thickness of the insulating layer 101 is determined by the insulating layer forming process and the etching process, it is difficult to set the thickness condition at each part of the insulating layers 101a, 101b, and 101c. In this case, since the formation time and the etching time of the insulating layer become long, there is a concern about a decrease in throughput during processing.
  • the inner peripheral surface of the through hole 106 is viewed in a cross section including the axis.
  • opening angle theta 1 is large (in other words, the at when viewed in the same cross-section, of the semiconductor substrate 100, the a surface of the insulating layer 103 is formed, is formed between the inner peripheral surface of the through hole 106
  • the opening angle theta 1 is large, since the insulating layer 101b formed on the inner peripheral surface of the through hole 106 is easily etched, according to the conventional method, to form a shape shown in FIG. 15 Have difficulty. It is also conceivable to open a resist on the through hole and etch the inside of the through hole using a photolithography technique (not shown). However, in this case, when the resist is removed, the resin component of the resist may remain in the through hole. Further, the surface of the semiconductor substrate may be etched due to the problem of the positional accuracy of the opening. Therefore, it is difficult to use a photolithography technique.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing a semiconductor device capable of forming a through electrode that is easy to process and has a high degree of design freedom regarding the shape.
  • a method of manufacturing a semiconductor device according to the present invention includes an electrode forming step of forming an electrode on one surface of a semiconductor substrate; and the position of the electrode on the one surface side of the other surface of the semiconductor substrate.
  • a first insulating layer forming step of forming a layer a modifying step of modifying the first portion of the first insulating layer formed in the bottom portion of the through hole to form a modified portion; Removing the modified portion to expose the electrode in the through hole; and forming the electrode on the electrode exposed in the through hole and the first insulating layer;
  • the method for manufacturing a semiconductor device according to (1) further includes a second insulating layer forming step of forming a second insulating layer on the one surface before the electrode forming step; In the through hole forming step, the second insulating layer may be removed simultaneously with the formation of the through hole.
  • the method for manufacturing a semiconductor device according to (1) further includes a second insulating layer forming step of forming a second insulating layer on the one surface before the electrode forming step; In the reforming step, the second portion corresponding to the first portion in the second insulating layer may be collectively reformed together with the first portion to form the modified portion; .
  • the modification step is performed by condensing and irradiating a laser beam having a pulse time width of picoseconds or less on the first part. May be.
  • the laser beam may have a pulse energy lower than energy at which ablation or transpiration of the first insulating layer occurs.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device. It is sectional drawing which shows typically the example which applied this invention with respect to the through-hole which has an inner wall surface perpendicular
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device. It is a figure which shows typically the semiconductor device manufactured with the manufacturing method of the semiconductor device which concerns on 3rd Embodiment of this invention, Comprising: It is sectional drawing at the time of seeing in the cross section along the plate
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 7C is a cross sectional view schematically showing a subsequent step in the method for manufacturing a semiconductor device.
  • FIG. 1 is a view showing a semiconductor device 1 manufactured by the method for manufacturing a semiconductor device according to the first embodiment of the present invention, and is a cross-sectional view when seen in a cross section along the plate thickness direction.
  • the semiconductor device 1 includes a semiconductor substrate 2 in which an insulating layer 3 is formed on the surface layer on the lower side of FIG. 1; and a functional element disposed on one surface 2a of the semiconductor substrate 2 via the insulating layer 3 4 and a plurality of electrode pads 5; and a plurality of wiring portions 6 that electrically connect the functional elements 4 and the electrode pads 5 to each other.
  • a plurality of through holes 7 extending from one surface 2 a of the semiconductor substrate 2 toward the other surface 2 b are formed in the semiconductor substrate 2, and the electrode pads 5 are respectively exposed in the through holes 7.
  • the semiconductor device 1 includes an insulating layer 8 formed at least on the inner peripheral surface of the through hole 7 and the periphery of the opening; on the insulating layer 8 and on each electrode pad 5 exposed in the through hole 7. And a plurality of conductive layers 9 formed on the substrate. Each conductive layer 9 is electrically connected to each electrode pad 5.
  • a through electrode 10 is formed by a conductive layer 9 formed inside and outside the through hole 7 via an insulating layer 8.
  • FIGS. 3A to 3C are cross-sectional views schematically showing the method of manufacturing the semiconductor device according to this embodiment in the order of steps.
  • the semiconductor device manufacturing method according to the present embodiment includes an electrode forming step of forming a plurality of electrode pads 5 on one surface 2a of the semiconductor substrate 2; and at least one of the electrode pads 5 from the other surface 2b of the semiconductor substrate 2.
  • the electrode pad 5 is formed on the one surface 2 a of the semiconductor substrate 2. That is, as shown in FIG. 2A, a semiconductor substrate 2 on which a functional element 4 is formed via an insulating layer 3 is prepared, and an insulating layer 3 forming one surface (a lower surface on the lower side of the drawing in FIG. 2) 2a. A plurality of electrode pads 5 (I / O pads) and a plurality of wiring portions 6 are formed thereon.
  • the insulating layer 3 is formed in advance by a step (second insulating layer forming step) of forming on the one surface 2a before this electrode forming step.
  • the semiconductor substrate 2 may be a semiconductor wafer such as a silicon wafer, or may be a semiconductor chip obtained by cutting (dicing) the semiconductor wafer into chip dimensions.
  • the semiconductor substrate 2 is a semiconductor chip, first, a plurality of sets of various semiconductor elements, ICs, functional elements 4 and the like are formed on a semiconductor wafer and then cut into chip dimensions to obtain a plurality of semiconductor chips. be able to.
  • the functional element 4 in the present embodiment is composed of, for example, a transistor or a photodiode.
  • the material of the electrode pad 5 for example, aluminum (Al), copper (Cu), aluminum-silicon (Al-Si) alloy, aluminum-silicon-copper (Al-Si-Cu) alloy and the like have excellent conductivity. Materials are preferably used.
  • the wiring part 6 forms a circuit by electrically connecting the electrode pads 5 and the functional elements 4 and the like.
  • the material of the wiring part 6 may be the same material as that of the electrode pad 5, and may be aluminum (Al), copper (Cu), aluminum-silicon (Al-Si) alloy, aluminum-silicon-copper (Al-Si-).
  • a material having excellent conductivity such as a Cu) alloy is preferred.
  • the wiring portion 6 can also be formed by doping the semiconductor substrate 2 with an impurity such as boron (B: boron).
  • each through-hole 7 is formed so that at least a part of the electrode pad 5 is exposed from the other surface 2 b of the semiconductor substrate 2. These through holes 7 are formed so that the electrode pads 5 are exposed from the upper surface side of the semiconductor substrate 2.
  • the diameter and cross-sectional shape of each through-hole 7 are not particularly limited, and are appropriately set according to the thickness of the semiconductor substrate 2 and a desired application, and according to the wiring formed on the semiconductor substrate 2. Can be determined as appropriate.
  • the vertical cross-sectional shape of each through-hole 7 is formed between one surface 2a of the semiconductor substrate 2 and the inner peripheral surface of each through-hole 7 when these through-holes 7 are viewed in a cross-section including their axes. is the angle theta 3 is but ideally be a 90 ° (vertical), may be about 80 ° ⁇ 100 °.
  • a DRIE (Deep-Reactive Ion Etching) method for the formation of the through-hole 7, for example, a DRIE (Deep-Reactive Ion Etching) method, a wet etching method, a machining method using a micro drill, a photoexcited electrolytic polishing method, or the like can be used.
  • a DRIE Deep-Reactive Ion Etching
  • an insulating layer 8 is formed on at least the inner peripheral surface of each through hole 7 and the periphery of the opening, and on each electrode pad 5 exposed in each through hole 7. That is, as shown in FIG. 2C, the insulating layer 8 is formed at least around the inner wall surface (inner circumferential surface and bottom surface) of the through hole 7 and the opening.
  • the insulating layer 8 can be formed, for example, by depositing silicon oxide (SiO 2 ) by plasma CVD or the like.
  • the material of the insulating layer 8 is not limited to a material that can be formed by CVD, but the structural change is caused by irradiation with a laser beam having a pulse width of picosecond or less so that a modification and removal process as described later is possible. Furthermore, it is preferable that the material be removable by dry etching, wet etching, or laser-assisted etching. Examples of such a material, in addition to the above SiO 2, for example, borosilicate glass.
  • the portion of the insulating layer 8 that covers each electrode pad 5 exposed in each through hole 7 is modified to form a modified portion. That is, as shown in FIG. 3A, only the insulating layer 8c covering the bottom surface (electrode pad 5) of the through-hole 7 is irradiated with a laser beam L having a pulse time width of picosecond order or less from the laser device LD. The light is irradiated to modify the insulating layer 8c.
  • the laser beam L used for the modification a laser beam having a wavelength range that transmits silicon (semiconductor substrate 2) is used.
  • an insulating layer (modified part 8d) having a changed structure is formed on the bottom surface.
  • structural change (modification) can be easily applied to the portion of the insulating layer 8c irradiated with the laser beam L.
  • the modification in this specification refers to a phenomenon in which a portion irradiated with a laser is structurally changed, and resistance to an etching gas is reduced as compared with a portion not irradiated with a laser.
  • a laser beam L used for the modification whose pulse energy is lower than the energy at which ablation or transpiration of the insulating layer 8 occurs.
  • the insulating layer 8c is ablated and removed by irradiating the insulating layer 8c with laser light having a pulse time width of picosecond order or less, laser light having a longer pulse time width, or CW laser light. Is also possible. However, in this case, damage to the electrode pad 5 is increased. As a result, the electrode pad 5 may be deformed, damaged, partially lost, or a residue may adhere to the through-hole 7.
  • the electrode pad 5 is not damaged, and only a pure structural change is caused in the insulating layer 8c.
  • the insulating layer 8c can be modified. In this way, processing that does not cause damage or the like to the electrode pad 5 by irradiating the pulsed laser light L with a pulse time width of the picosecond order or less to be less than the energy that causes ablation and transpiration of the insulating layer 8 is performed. It becomes possible.
  • the laser light L is condensed using, for example, a condensing unit such as an objective lens, a reflection lens, a spherical lens, and an aspheric lens, and irradiated while scanning the condensing unit.
  • a condensing unit such as an objective lens, a reflection lens, a spherical lens, and an aspheric lens
  • irradiated while scanning the condensing unit.
  • a condensing unit such as an objective lens, a reflection lens, a spherical lens, and an aspheric lens
  • a one-dimensional irradiation region may be formed using a cylindrical lens or the like (not shown)
  • the laser beam L may be irradiated.
  • the processing time can be shortened.
  • the laser beam L may be condensed and irradiated two-dimensionally by defocusing the condensing unit or using a holographic technique or the like.
  • the modified portion 8d can be
  • the angle of the inner peripheral surface when the through hole 7 is viewed in a cross section including the axis thereof is larger than the numerical aperture on which the laser light L is condensed (that is, viewed in the same cross section).
  • the angle ⁇ 4 formed between the surface of the semiconductor substrate 2 on which the insulating layer 3 is formed and the inner peripheral surface of the through hole 7 is the light of the laser light L incident on the through hole 7.
  • the angle ⁇ 4 is smaller than the maximum angle ⁇ 5 with respect to the axis Ax), or the angle ⁇ 4 of the inner peripheral surface of the through hole 7 is equal to or similar to the numerical aperture ( ⁇ 4 ⁇ 5 ) where the laser light L is condensed.
  • the laser light L is not applied to the inner peripheral surface of the through hole 7 in the semiconductor substrate 2. Therefore, it is not necessary to limit the wavelength of the laser beam L to the silicon transmission region. In this case, irradiation processing can be similarly performed using laser light in the visible and ultraviolet regions.
  • the laser light L is irradiated, for example, by providing a shutter (not shown) in the optical path of the laser light L, and only when the condensing part of the laser light L reaches the through hole 7 during the scanning of the laser light L. Do it by opening it.
  • a laser beam L having a pulse intensity that does not cause a structural change inside silicon and an energy intensity equal to or lower than an energy intensity at which ablation in the insulating layer 8, the wiring portion 6, and the semiconductor substrate 2 is suppressed Even if the shutter is not provided, it is possible to form the modified portion 8d only in the insulating layer 8c at the bottom of the through hole 7.
  • each modified portion 8d is removed by dry etching.
  • each modified portion 8d is dry-etched very quickly (at a speed several tens of times) faster than the non-modified portion (insulating layers 8a and 8b). Therefore, only each insulating layer 8c on the bottom surface of each through hole 7 can be easily selectively removed.
  • the insulating layers 8a and 8b formed on the surface of the semiconductor substrate 2 and the inner peripheral surface of the through hole 7 are also dry-etched in the same manner as in the prior art.
  • the dry etching of the insulating layer 8c (modified portion 8d) where the structural change (modified) has occurred progresses overwhelmingly, the insulating layers 8a and 8b are hardly affected by the dry etching and are not removed. .
  • the insulating properties of the portions where the insulating layers 8a and 8b are formed are maintained, and the contact portion of the through electrode 10 can be formed. Therefore, it becomes easy to set the thickness conditions in the insulating layers 8a, 8b, and 8c.
  • the degree of freedom in designing the shape of the through-hole 7 is increased, the processing throughput is expected to be improved, and the insulating layer 8c (modified portion 8d) can be effectively etched even for the through-hole 7 having a high aspect ratio. Can do.
  • dry etching examples include etching using ions such as RIE mode, which is anisotropic etching, etching using radicals, and the like.
  • RIE mode anisotropic etching
  • etching using radicals and the like.
  • the etching rate by dry etching largely depends on the irradiation condition of the laser beam. Therefore, the insulating layers 8a, 8b are similarly irradiated with pulsed laser light having a pulse time width of the order of picoseconds or less to control the etching rates of the insulating layers 8a, 8b, 8c.
  • the thickness of 8c can be controlled.
  • etching is not limited to dry etching.
  • the modified portion 8d can be removed also by a wet etching method.
  • wet etching using a hydrofluoric acid (HF) -based solution is possible.
  • the insulating layer is also formed by a so-called laser-assisted etching method in which the irradiated portion of the laser beam L is selectively removed by irradiating the laser beam L while immersing the through-hole 7 in the chemical solution 20. 8c can be removed.
  • a hydrofluoric acid (HF) -based solution can be similarly used.
  • a conductive material is formed on the insulating layer 8 formed in the through hole 7 and on the electrode pad 5 exposed in the through hole 7 so as to be electrically connected to the electrode pad 5.
  • Layer 9 is formed.
  • the conductive layer 9 can be formed by sputtering, CVD, plating, filling with molten metal, filling with metal paste, or the like. Thereby, the semiconductor device 1 having the through electrode 10 is manufactured.
  • the portion of the insulating layer 8 that covers the bottom surface of the through hole 7 (insulating layer 8c) is modified and then removed. Only the insulating layer 8c that covers the electrode pad 5 is selectively removed while leaving the insulating layer 8a formed around the opening of the hole 7 and the insulating layer 8b formed on the inner peripheral surface of the through hole 7. it can. Thereby, it becomes easy to set the thickness conditions of the insulating layers 8a, 8b, and 8c formed on the periphery, the inner peripheral surface, and the bottom surface of the through hole 7, respectively.
  • the inner peripheral surface of the through hole 7 is formed so as to form about 90 ° (substantially perpendicular) to the surface of the semiconductor substrate 2. Even if applicable.
  • the through hole 7 formed perpendicular to the semiconductor substrate 2 conventionally, when the insulating layer 8 c disposed on the electrode pad 5 is removed, only the insulating layer 8 c is selectively selected by anisotropic etching or the like. It was necessary to etch. At this time, there was a problem that the insulating layers 8a and 8b were also etched.
  • only the insulating layer 8c on the electrode pad 5 can be easily modified and removed.
  • the greater the inclination of the inner peripheral surface of the through-hole 7 (the smaller ⁇ 2 shown in FIG. 15), the more the processing is performed. It becomes easy.
  • the insulating layer 101b formed on the inner peripheral surface of the through hole 106 is more easily etched as the inclination of the inner peripheral surface of the through hole 106 is larger. Therefore, it is difficult to form a through electrode having such a shape.
  • the formation time of the insulating layer and the etching time of the insulating layer are shortened, an improvement in throughput during processing is expected.
  • the method for manufacturing a semiconductor device of the present embodiment it is possible to form a through electrode that is easy to process and has an improved shape design freedom.
  • the present invention is not limited to the removal of the insulating layer 8c, but may be applied when performing selective etching on the bottom surface of a through-hole having a similar structure and a high aspect ratio.
  • the structure changes when irradiated with laser light having a pulse width of picoseconds or less, and can be applied to materials that can be subjected to dry etching, wet etching, laser assisted etching, such as quartz and borosilicate glass. .
  • FIGS. 8A to 9C A second embodiment of the semiconductor device manufacturing method of the present invention will be described below with reference to FIGS. 8A to 9C.
  • the configuration of the semiconductor device manufactured by the semiconductor device manufacturing method of the present embodiment is almost the same as the configuration of the semiconductor device 1 of the first embodiment described with reference to FIG. Therefore, in the following description, the same components as those described in the first embodiment are denoted by the same reference numerals, and redundant description thereof is omitted. Hereinafter, each process in this embodiment is demonstrated in order.
  • the electrode pad 5 is formed on one surface of the semiconductor substrate 2. That is, as shown in FIG. 8A, a semiconductor substrate 2 on which a functional element 4 is formed via an insulating layer 3 is prepared, and an insulating layer 3 forming one surface (a lower surface on the lower side of the drawing in FIG. 8) 2a. A plurality of electrode pads 5 (I / O pads) and a plurality of wiring portions 6 are formed thereon.
  • each through hole 7 is formed so that the electrode pad 5 is exposed.
  • the insulating layer 3 is left as it is. That is, the insulating layer 3 is exposed at the bottom of each through-hole 7 but the electrode pad 5 is not exposed.
  • an insulating layer 8 is formed on at least the inner peripheral surface of each through hole 7 and the periphery of the opening, and on the insulating layer 3 exposed in each through hole 7. That is, as shown in FIG. 8C, the insulating layer 8 is formed at least around the inner wall surface (inner circumferential surface and bottom surface) of the through hole 7 and the opening.
  • a pulse of picosecond order or less from the laser device LD is applied only to the insulating layer 8c covering the bottom surface (electrode pad 5) of the through-hole 7 and the portion 3x of the insulating layer 3 just below the insulating layer 8c.
  • the laser beam L having a time width is irradiated and condensed, and the insulating layer 8c and the part 3x are collectively modified.
  • a laser beam having a wavelength range that transmits silicon is used as the laser beam L used for the modification.
  • the insulating layer (modified part 8d and modified part 3y) having a changed structure is formed on the bottom surface. Thereby, structural change (modification) can be easily applied to the insulating layer 8c and the portion 3x irradiated with the laser beam L.
  • a laser beam L used for modification whose pulse energy is lower than the energy at which ablation or transpiration of the insulating layer 8 and the insulating layer 3 occurs.
  • the insulating layer 8c and the part 3x are irradiated with laser light having a pulse time width of picosecond order or less, laser light having a longer pulse time width, CW laser light, or the like to the insulating layer 8c and the part 3x. It is also possible to ablate and remove. However, in this case, damage to the electrode pad 5 is increased. As a result, the electrode pad 5 may be deformed, damaged, partially lost, or a residue may adhere to the through-hole 7.
  • the electrode pad 5 is not damaged, and the insulating layer 8c and the part 3x are pure. Only the structural change is caused, and the insulating layer 8c and the portion 3x can be modified. In this way, by irradiating the pulsed laser light L having a pulse time width of picosecond order or less with energy that is less than the energy at which ablation and transpiration of the insulating layer 8 and the insulating layer 3 occur, damage to the electrode pad 5 is caused. Processing that does not occur is possible.
  • each modified portion 8d is removed together with each modified portion 3y by dry etching.
  • each modified portion 8d and each modified portion 3y are dry-etched very quickly (several times faster) than the non-modified portions (insulating layers 8a and 8b). Therefore, only each insulating layer 8c and each modified portion 3y on the bottom surface of each through hole 7 can be easily selectively removed.
  • the insulating layers 8a and 8b formed on the surface of the semiconductor substrate 2 and the inner peripheral surface of the through hole 7 are also dry-etched in the same manner as in the prior art.
  • the insulating layers 8a and 8b are hardly affected by the dry etching and are removed. Not. For this reason, the insulating properties of the portions where the insulating layers 8a and 8b are formed are maintained, and the contact portion of the through electrode 10 can be formed. Therefore, it becomes easy to set the thickness conditions in the insulating layers 8a, 8b, and 8c.
  • the modified portion 8d and the modified portions 3y are effectively combined even for the through hole 7 having a high aspect ratio. It can be etched.
  • dry etching examples include etching using ions such as RIE mode, which is anisotropic etching, etching using radicals, and the like.
  • RIE mode anisotropic etching
  • etching using radicals and the like.
  • the etching rate by dry etching largely depends on the irradiation condition of the laser beam. Therefore, the insulating layers 8a, 8b are similarly irradiated with pulsed laser light having a pulse time width of the order of picoseconds or less to control the etching rates of the insulating layers 8a, 8b, 8c.
  • the thickness of 8c can be controlled.
  • Etching is not limited to dry etching.
  • an arbitrary etchant that can etch the modified portion 8d and each modified portion 3y whose structure has been changed by laser light irradiation, the modified portion 8d and each modified portion 3y can be removed also by a wet etching method.
  • wet etching using a hydrofluoric acid (HF) -based solution is possible.
  • a conductive material is formed on the insulating layer 8 formed in the through hole 7 and on the electrode pad 5 exposed in the through hole 7 so as to be electrically connected to the electrode pad 5.
  • Layer 9 is formed.
  • the conductive layer 9 can be formed by sputtering, CVD, plating, filling with molten metal, filling with metal paste, or the like. Thereby, the semiconductor device 1 having the through electrode 10 is manufactured.
  • the portion of the insulating layer 8 that covers the bottom surface of the through hole 7 (insulating layer 8c) and the portion 3x are modified and then removed. Since the insulating layer 8a formed around the opening of the through hole 7 and the insulating layer 8b formed on the inner peripheral surface of the through hole 7 are left, the insulating layer 8c and the portion covering the electrode pad 5 remain. Only 3x can be selectively removed. Thereby, it becomes easy to set the thickness conditions of the insulating layers 8a, 8b, and 8c formed on the periphery, the inner peripheral surface, and the bottom surface of the through hole 7, respectively.
  • the through hole forming step In this case, the step of removing the portion 3x can be omitted. Moreover, the contamination accompanying opening can be suppressed.
  • FIGS. 10A to 12C A third embodiment of the semiconductor device manufacturing method of the present invention will be described below with reference to FIGS. 10A to 12C.
  • the configuration of the semiconductor device manufactured by the manufacturing method of the semiconductor device according to the present embodiment is partially different from the configuration of the semiconductor device 1 according to the first embodiment described with reference to FIG. To do.
  • the same components as those of the semiconductor device 1 according to the first embodiment are denoted by the same reference numerals, and redundant description thereof is omitted.
  • the semiconductor device 50 of this embodiment is formed in a state in which the functional element 4 is embedded in advance on one surface of the semiconductor substrate 2 (the surface on the lower side in the drawing). And the point that the wiring portion 6 electrically connects the functional element 4 and each electrode pad 5 through the pores 3p formed in the insulating layer 3. That is, as shown in FIG. 10A, in this embodiment, the functional element 4 is formed in a state of being embedded in one surface 2 a of the semiconductor substrate 2. The functional element 4 is disposed such that the lower surface 4f thereof is in a surface position with the one surface 2a, and the lower surface 4f is covered with the insulating layer 3.
  • a plurality of pores 3p are formed on the insulating layer 3 at positions corresponding to the functional elements 4.
  • the other end of the wiring part 6 electrically connected to the electrode pad 5 at one end is electrically connected to the lower surface 4f of the functional element 4 through the pore 3p.
  • the electrode pad 5 is formed on one surface 2a of the semiconductor substrate 2 on which the functional element 4 is formed in advance. That is, as shown in FIG. 11A, a semiconductor substrate 2 on which a functional element 4 is formed via an insulating layer 3 is prepared, and an insulating layer 3 forming one surface (a lower surface on the lower side of the drawing in FIG. 11) 2a. A plurality of electrode pads 5 (I / O pads) and a plurality of wiring portions 6 are formed thereon.
  • the insulating layer 3 is formed in advance by a step (second insulating layer forming step) of forming on the one surface 2a before this electrode forming step.
  • a plurality of through holes 7 are formed so that at least a part of the electrode pad 5 is exposed from the other surface 2 b of the semiconductor substrate 2. These through holes 7 are formed so that the electrode pads 5 are exposed from the upper surface side of the semiconductor substrate 2.
  • an insulating layer 8 is formed on at least the inner peripheral surface of each through hole 7 and the periphery of the opening, and on each electrode pad 5 exposed in each through hole 7. That is, as shown in FIG. 11C, the insulating layer 8 is formed at least around the inner wall surface (inner circumferential surface and bottom surface) of the through-hole 7 and the opening.
  • the insulating layer 8 can be formed, for example, by depositing silicon oxide (SiO 2 ) by plasma CVD or the like.
  • the portion of the insulating layer 8 that covers each electrode pad 5 exposed in each through hole 7 is modified to form a modified portion. That is, as shown in FIG. 12A, only the insulating layer 8c covering the bottom surface (electrode pad 5) of the through-hole 7 is irradiated with a laser beam L having a pulse time width of picosecond order or less from the laser device LD. The light is irradiated to modify the insulating layer 8c.
  • the laser beam L used for the modification a laser beam having a wavelength range that transmits silicon (semiconductor substrate 2) is used.
  • an insulating layer (modified part 8d) having a changed structure is formed on the bottom surface.
  • structural change (modification) can be easily applied to the portion of the insulating layer 8c irradiated with the laser beam L.
  • each modified portion 8d is removed by dry etching.
  • each modified portion 8d is dry-etched very quickly (at a speed several tens of times) faster than the non-modified portion (insulating layers 8a and 8b). Therefore, only each insulating layer 8c on the bottom surface of each through hole 7 can be easily selectively removed.
  • a conductive material is formed on the insulating layer 8 formed in the through hole 7 and on the electrode pad 5 exposed in the through hole 7 so as to be electrically connected to the electrode pad 5.
  • Layer 9 is formed.
  • the conductive layer 9 can be formed by sputtering, CVD, plating, filling with molten metal, filling with metal paste, or the like. Thereby, the semiconductor device 50 having the through electrode 10 is manufactured.
  • the portion of the insulating layer 8 that covers the bottom surface of the through hole 7 (insulating layer 8c) is modified and then removed. Only the insulating layer 8c that covers the electrode pad 5 is selectively removed while leaving the insulating layer 8a formed around the opening of the hole 7 and the insulating layer 8b formed on the inner peripheral surface of the through hole 7. it can. Thereby, it becomes easy to set the thickness conditions of the insulating layers 8a, 8b, and 8c formed on the periphery, the inner peripheral surface, and the bottom surface of the through hole 7, respectively.
  • the present invention is widely applicable to a method for manufacturing a semiconductor device provided with a through electrode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 本発明の半導体装置の製造方法は、半導体基板の一方の面に電極を形成する電極形成工程と;前記半導体基板の他方の面の、前記一方の面側にある前記電極の位置に対応した位置より、この半導体基板の厚み方向に貫通孔を形成する貫通孔形成工程と;少なくとも前記貫通孔の内周面および開口部周辺と、前記貫通孔の底部分とに、第1の絶縁層を形成する絶縁層形成工程と;前記第1の絶縁層の、前記貫通孔の前記底部分に形成された第1の部位を改質して改質部とする改質工程と;前記改質部を除去して前記貫通孔内に前記電極を露出させる改質部除去工程と;前記貫通孔内に露出した前記電極上と前記絶縁層上とに、前記電極に電気的に導通するように導電層を形成する導電層形成工程と;を備える。

Description

半導体装置の製造方法
 本発明は、貫通電極を備えた半導体装置の製造方法に関する。より具体的には、貫通孔内の絶縁層のエッチング選択性を向上させ、貫通電極の形状の設計自由度を高め、加工のスループットを向上させた半導体装置の製造方法に関する。
 本願は、2008年8月7日に、日本国に出願された特願2008-204214号に基づき優先権を主張し、その内容をここに援用する。
 イメージセンサーなどの光学素子のパッケージに使用されていたワイヤーボンディングに代わり、最近、素子との接続に貫通電極を用いたウエハレベルパッケージが提案されてきている。
 従来の半導体装置の一例を図13に示す。この半導体装置は、一方の表面に絶縁層103が形成された半導体基板100と;前記表面にそれぞれ配された機能素子108及び電極パッド102と;機能素子108及び電極パッド102間を電気的に接続する配線部104と;を備えて概略構成されている。そして、半導体基板100の他方の面側から電極パッド102が露出するように、貫通孔106が半導体基板100をその厚み方向に貫くように形成されている。さらに、この半導体装置は、半導体基板100の前記他方の面及び貫通孔106の内周面に配された絶縁層101(101a、101b)と;貫通孔106内の絶縁層101b上と、貫通孔106内に露出した電極パッド102上とに配された再配線層109と;を備える。
 配線部104と機能素子108、配線部104と電極パッド102、電極パッド102と再配線層109の一部109aとは、それぞれ互いに電気的に接続されている。このような接続構造により、機能素子108は、配線部104、電極パッド102及び再配線層109を介して、半導体基板100の前記他方の面側との導通が可能となっている。
 半導体基板100に貫通電極を形成する従来の方法を、図14A~図14Cを参照して説明する。
 まず、図14Aに示すように、Si基板等からなる半導体基板100に、貫通孔106を形成する。この際、半導体基板100のデバイス形成面側に設けられた電極パッド(I/Oパッド)102の一部が、貫通孔106内に露出するように貫通孔106を形成する。次いで、半導体基板100との間における絶縁を取るために、半導体基板100の表面と、貫通孔106の内周面とに、シリコン酸化膜からなる絶縁層101をCVD(Chemical Vapor Deposition)などによって形成する。
 この際、図14Aに示すように、貫通孔106内に露出した電極パッド102上(以下、貫通孔106の底面と言うことがある)にも、絶縁層101cが形成されてしまう。したがって、次の工程で、この絶縁層101cを、RIE(Reactive Ion Etching)などの異方性の高いエッチング方法により、除去する(図14B参照)。最後に、図14Cに示すように、電極パッド102と電気的に接続するように再配線層109を形成する。なお、この従来の方法は、例えば、特許文献1に開示されている。
 しかしながら、上記従来の方法では、貫通孔106の底面に配された絶縁層101cのエッチングを行う際に、半導体基板100の表面に配された絶縁層101aと、貫通孔106の内周面に配された絶縁層101bも同様にエッチングされてしまう。すなわち、貫通孔106の底面の絶縁層101cを除去した際に、貫通孔106の内周面や半導体基板100の表面に形成された絶縁層101a,101bも除去されてしまうため、貫通孔106内とその開口部周辺の絶縁性を保つのが困難であった。この絶縁性を保つためには、絶縁層101a、101bを絶縁層101cよりも極めて厚い膜厚で形成した後に、絶縁層101a、101bも相当量エッチングさせて、貫通孔106の底面にある絶縁層101cの除去を行う必要がある。このように、絶縁層101の厚さは、絶縁層形成プロセスおよびエッチングプロセスによって決定されるため、絶縁層101a、101b、101cの各部位での厚さの条件設定が困難である。また、この場合、絶縁層の形成時間やエッチング時間が長くなるため、加工時のスループットの低下が懸念される。
 また、一般的にスパッタ法、めっき法などを用いて貫通孔内への導体形成を行うときには、例えば図15に示すように、貫通孔106の内周面をその軸線を含む断面で見た場合の開き角度θが大きい(言い換えると、同断面で見た場合での、半導体基板100の、前記絶縁層103が形成されている面と、貫通孔106の内周面との間に形成される角度θが小さい)ほど、加工が容易になる。しかしながら、前記開き角度θが大きいほど、貫通孔106の内周面に形成された絶縁層101bがエッチングされやすくなるため、上記従来の方法によれば、図15に示す形状を形成することは困難である。
 また、フォトリソグラフィー技術を用いて、貫通孔上のレジストを開口し、貫通孔内をエッチングすることも考えられる(図示略)。しかしながら、この場合には、レジストを除去する際に、貫通孔内にレジストの樹脂成分が残留する虞がある。また、開口の位置精度の問題によって、半導体基板の表面がエッチングされる虞が有る。そのため、フォトリソグラフィー技術を用いることは難しい。
特開2007-294821号公報
 本発明は、上記事情に鑑みてなされたものであって、加工が容易であるとともに、形状に関する設計自由度を高めた貫通電極を形成することが可能な、半導体装置の製造方法の提供を目的とする。
 本発明は、上記課題を解決して係る目的を達成するために以下の手段を採用した。すなわち、
(1)本発明の半導体装置の製造方法は、半導体基板の一方の面に電極を形成する電極形成工程と;前記半導体基板の他方の面の、前記一方の面側にある前記電極の位置に対応した位置より、この半導体基板の厚み方向に貫通孔を形成する貫通孔形成工程と;少なくとも前記貫通孔の内周面および開口部周辺と、前記貫通孔の底部分とに、第1の絶縁層を形成する第1の絶縁層形成工程と;前記第1の絶縁層の、前記貫通孔の前記底部分に形成された第1の部位を改質させて改質部とする改質工程と;前記改質部を除去して前記貫通孔内に前記電極を露出させる改質部除去工程と;前記貫通孔内に露出した前記電極上と前記第1の絶縁層上とに、前記電極に電気的に導通するように導電層を形成する導電層形成工程と;を備える。
(2)上記(1)に記載の半導体装置の製造方法では、前記電極形成工程の前に、前記一方の面に第2の絶縁層を形成する第2の絶縁層形成工程をさらに備え;前記貫通孔形成工程で、前記貫通孔の形成と同時に前記第2の絶縁層を除去する;ようにしてもよい。
(3)上記(1)に記載の半導体装置の製造方法では、前記電極形成工程の前に、前記一方の面に第2の絶縁層を形成する第2の絶縁層形成工程をさらに備え;前記改質工程で、前記第2の絶縁層における前記第1の部位と対応する第2の部位を、前記第1の部位と共にまとめて改質して前記改質部とする;ようにしてもよい。
(4)上記(1)に記載の半導体装置の製造方法では、前記改質工程を、ピコ秒以下のパルス時間幅を有するレーザー光を前記第1の部位に集光させて照射することにより行ってもよい。
(5)上記(1)に記載の半導体装置の製造方法では、前記レーザー光として、そのパルスエネルギーが、前記第1の絶縁層のアブレーション又は蒸散が起きるエネルギーよりも低いものを用いてもよい。
 上記(1)に記載の半導体装置の製造方法では、第1の絶縁層の、貫通孔の底部分に形成された第1の部位を改質させて改質部とする改質工程と;前記改質部を除去して前記貫通孔内に電極を露出させる改質部除去工程と;を備えている。そのため、第1の絶縁層のうち、貫通孔の内周面と開口部周辺とに形成された絶縁部位を残したまま、電極を覆う第1の部位のみを選択的に除去できる。これにより、例えば貫通孔周辺における第1の絶縁層の厚みの条件設定が容易になる。その結果、本発明では、加工が容易であるとともに、形状の設計自由度を高めた貫通電極を形成できる。
本発明の第1実施形態に係る半導体装置の製造方法で製造された半導体装置を模式的に示す図であって、その板厚方向に沿った断面で見た場合の断面図である。 同半導体装置の製造方法の工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 半導体基板の表面に対して垂直な内壁面を有する貫通孔に対して本発明を適用した例を模式的に示す断面図である。 シリンドリカルレンズ等を用いてレーザー光を照射した様子を模式的に示す断面図である。 シリコン非透過のレーザー光を用いてレーザー光を照射した様子を模式的に示す断面図である。 レーザーアシストエッチングの様子を模式的に示す断面図である。 本発明の第2実施形態に係る半導体装置の製造方法の工程を模式的に示す図であって、半導体装置の板厚方向に沿った断面で見た場合の断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 本発明の第3実施形態に係る半導体装置の製造方法で製造された半導体装置を模式的に示す図であって、その板厚方向に沿った断面で見た場合の断面図である。 同半導体装置の一部を示す図であって、図10AのA部の拡大図である。 同半導体装置の製造方法の工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 同半導体装置の製造方法の続きの工程を模式的に示す断面図である。 従来の半導体装置の一例を示す図であって、その板厚方向に沿った断面で見た場合の断面図である。 従来の半導体装置の製造方法において、貫通孔の底面を覆う絶縁層を除去する工程を模式的に示す断面図である。 同工程の続きを示す図であって、貫通孔底面を覆う絶縁層を除去する工程を模式的に示す断面図である。 同工程の続きを示す図であって、再配線層を形成する工程を模式的に示す断面図である。 内周面の開き角度が大きい貫通孔を有する半導体基板を模式的に示す図であって、その板厚方向に沿った断面で見た場合の断面図である。
 以下、本発明に係る半導体装置の製造方法の各実施形態について、図面を参照しながら説明する。
[第1実施形態]
 図1は、本発明の第1実施形態に係る半導体装置の製造方法で製造された半導体装置1を示す図であって、その板厚方向に沿った断面で見た場合の断面図である。
 この半導体装置1は、同図1の紙面下側の表層に絶縁層3が形成された半導体基板2と;この半導体基板2の一方の面2a上に絶縁層3を介して配された機能素子4及び複数の電極パッド5と;これら機能素子4及び各電極パッド5間を電気的に接続する複数本の配線部6と;から概略構成されている。
 この半導体基板2には、半導体基板2の一方の面2aから他方の面2bに向かって広がる貫通孔7が複数形成され、これら貫通孔7内に、電極パッド5がそれぞれ露出している。また、この半導体装置1は、少なくとも前記貫通孔7の内周面及び開口部周辺に形成された絶縁層8と;この絶縁層8上と、貫通孔7内に露出した各電極パッド5上とに形成された複数の導電層9と;を更に備えている。各導電層9は、各電極パッド5に対して電気的に接続されている。貫通孔7の内外に絶縁層8を介して形成された導電層9により、貫通電極10が形成されている。
 続いて、上記構成を有する半導体装置1の製造方法について、図面を参照しながら以下に説明する。
 図2A~図2C及び図3A~図3Cは、本実施形態における半導体装置の製造方法を工程順に模式的に示す断面図である。
 本実施形態における半導体装置の製造方法は、半導体基板2の一方の面2aに複数の電極パッド5を形成する電極形成工程と;半導体基板2の他方の面2bより、各電極パッド5の少なくとも一部が露出するように複数の貫通孔7を形成する貫通孔形成工程と;各貫通孔7の少なくとも内周面および開口部周辺と、各貫通孔7内に露出した各電極パッド5上とに絶縁層8を形成する絶縁層形成工程と;絶縁層8の、各貫通孔7内に露出した各電極パッド5上を覆う各部位(絶縁層8cの部位)をそれぞれ改質して改質部8dとする改質工程と;これら改質部8dを除去する改質部除去工程と;電極パッド5と電気的に接続するように、貫通孔7内に露出した電極パッド5上と絶縁層8上とに導電層9を形成する導電層形成工程と;を順に備える。
 本実施形態では、絶縁層8の、各貫通孔7内に露出した電極(貫通孔7の底面)を覆う部位(絶縁層8cの部位)を改質した後、除去する。そのため、各貫通孔7の内周面に形成された絶縁層8を残したまま、各貫通孔7内に露出した各電極パッド5を覆う部位である絶縁層8cのみを選択的に除去できる。これにより、例えば各貫通電極10周辺における絶縁層8の厚さの条件設定が容易になる。その結果、本実施形態では、加工が容易であるとともに、形状の設計自由度を高めた貫通電極10を形成できる。
 以下、本実施形態における半導体装置の製造方法の各工程を順に説明する。
(電極形成工程)
 まず、半導体基板2の一方の面2aに電極パッド5を形成する。すなわち、図2Aに示すように、絶縁層3を介して機能素子4が形成された半導体基板2を用意し、その一方の面(同図の紙面下側にある下面)2aをなす絶縁層3上に、複数の電極パッド5(I/Oパッド)及び複数の配線部6を形成する。
 なお、絶縁層3は、この電極形成工程の前に、前記一方の面2aに形成する工程(第2の絶縁層形成工程)により予め形成されている。
 半導体基板2は、シリコンウエハ等の半導体ウエハでもよく、半導体ウエハをチップ寸法に切断(ダイシング)した半導体チップであってもよい。半導体基板2が半導体チップである場合は、まず、半導体ウエハの上に、各種半導体素子やIC、機能素子4等を複数組、形成した後、チップ寸法に切断することで複数の半導体チップを得ることができる。
 本実施形態における機能素子4は、例えばトランジスタや、フォトダイオード等からなる。
 電極パッド5の材質としては、例えばアルミニウム(Al)や銅(Cu)、アルミニウム-シリコン(Al-Si)合金、アルミニウム-シリコン-銅(Al-Si-Cu)合金等の、導電性に優れた材料が好適に用いられる。
 配線部6は、電極パッド5及び機能素子4間等を電気的に接続して回路を形成する。
 配線部6の材質としては、電極パッド5と同様の材質を用いれば良く、アルミニウム(Al)や銅(Cu)、アルミニウム-シリコン(Al-Si)合金、アルミニウム-シリコン-銅(Al-Si-Cu)合金等の導電性に優れる材料が好適である。また、配線部6は、半導体基板2にホウ素(B:ボロン)等の不純物をドーピングすることによっても形成できる。
(貫通孔形成工程)
 次いで、図2Bに示すように、半導体基板2の他方の面2bより、電極パッド5の少なくとも一部が露出するように複数の貫通孔7を形成する。
 これら貫通孔7は、半導体基板2の上面側から、電極パッド5が露出するように形成する。各貫通孔7の直径や断面形状は、特に限定されるものではなく、半導体基板2の厚さや所望の用途に応じて適宜設定され、また、半導体基板2上に形成される配線に応じてそれらの位置を適宜決めることができる。各貫通孔7の縦断面形状は、これら貫通孔7をそれらの軸線を含む断面で見た場合に、半導体基板2の一方の面2aと、各貫通孔7の内周面との間に形成される角度θが90°(垂直)であることが理想的だが、80°~100°程度であってもよい。
 貫通孔7の形成には、例えば、DRIE(Deep-Reactive Ion Etching)法、ウェットエッチング法、マイクロドリルなどによる機械加工法、光励起電解研磨法などを用いることができる。
(絶縁層形成工程(第1の絶縁層形成工程))
 続いて、各貫通孔7の少なくとも内周面および開口部周辺と、各貫通孔7内に露出した各電極パッド5上とに絶縁層8を形成する。すなわち、図2Cに示すように、少なくとも貫通孔7の内壁面(内周面と底面)および開口部周辺に絶縁層8を形成する。この絶縁層8は、例えば酸化シリコン(SiO)をプラズマCVD等により成膜することで形成できる。
 絶縁層8の材質は、CVDによって成膜できる材質に限定されないが、後述するような改質、除去の工程が可能なように、ピコ秒以下のパルス幅を有するレーザー光の照射により構造変化がおき、さらに、ドライエッチング、ウェットエッチング、レーザーアシストエッチングで除去可能な材質であることが好ましい。このような材質としては、上記のSiOの他に、例えばホウ珪酸ガラスなどが挙げられる。
(改質工程)
 続いて、絶縁層8の、各貫通孔7内に露出した各電極パッド5を覆う部位を改質して、改質部とする。すなわち、図3Aに示すように、貫通孔7の底面(電極パッド5)を覆う絶縁層8cのみに対し、レーザー装置LDよりピコ秒オーダー以下のパルス時間幅を有するレーザー光Lを照射して集光させ、絶縁層8cの改質を行う。改質に用いるレーザー光Lとしては、シリコン(半導体基板2)を透過する波長域を有するものを使用する。集光部を貫通孔7の底面で走査させることで、この底面に構造の変化した絶縁層(改質部8d)を形成する。これにより、レーザー光Lが照射された絶縁層8cの部分に、容易に構造変化(改質)を加えることができる。
 本明細書中における改質とは、レーザーが照射された部分が構造的に変化し、エッチングガスに対する耐性が、レーザーが照射されていない部分に比べて低下する現象を言う。
 改質に用いるレーザー光Lは、そのパルスエネルギーが、絶縁層8のアブレーション又は蒸散が起きるエネルギーよりも低いものを用いることが好ましい。
 ピコ秒オーダー以下のパルス時間幅を有するレーザー光や、これよりもパルス時間幅の長いレーザー光や、CWレーザー光などを絶縁層8cに照射して、この絶縁層8cをアブレーションさせ、除去することも可能である。しかしながら、この場合だと、電極パッド5へのダメージが大きくなる。その結果、電極パッド5に変形や、破損、一部損失などが生じたり、貫通孔7内に残留物が付着したりして問題となる。レーザー光Lとして、そのパルスエネルギーが、絶縁層8のアブレーション又は蒸散が起きるエネルギーよりも低いものを用いることで、電極パッド5にダメージを与えず、絶縁層8cに純粋な構造変化のみを生じさせ、絶縁層8cを改質できる。
 このように、パルス時間幅がピコ秒オーダー以下のパルスレーザー光Lを、絶縁層8のアブレーション及び蒸散が起きるエネルギー以下に抑えて照射することで、電極パッド5へのダメージ等が生じない加工が可能となる。
 レーザー光Lは、例えば、対物レンズ、反射レンズ、球面レンズ、非球面レンズなどの集光部を使用して集光し、前記集光部を走査させながら照射する。この際、図5に示すように、シリンドリカルレンズ等(図示略)を用いて1次元的な照射領域を形成し、レーザー光Lを照射しても良い。これにより、加工時間の短縮が図れる。
 また、前記集光部をデフォーカスにしたり、ホログラフィー技術等を用いたりすることにより、2次元的にレーザー光Lを集光させて照射してもよい。これにより、レーザー光Lを走査せずとも、一括で改質部8dを形成できる。
 また、図6に示すように、貫通孔7をその軸線を含む断面で見た場合における内周面の角度がレーザー光Lの集光する開口数よりも大きいとき(すなわち、同断面で見た場合での、半導体基板2の、絶縁層3が形成される面と、貫通孔7の内周面との間に形成される角度θが、貫通孔7に入射するレーザー光Lの、光軸Axに対する最大角度θよりも小さいとき)、または、貫通孔7の内周面の前記角度θがレーザー光Lの集光する開口数と同等もしくは同程度(θ≒θ)とみなせるときには、レーザー光Lが半導体基板2における貫通孔7の内周面に照射されることがない。そのため、レーザー光Lの波長をシリコンの透過領域に制限する必要がない。この場合、可視、紫外領域のレーザー光を用いても同様に照射加工できる。
 レーザー光Lの照射は、例えばレーザー光Lの光路にシャッター(図示略)を設け、レーザー光Lの走査中に貫通孔7上にレーザー光Lの集光部が到達したときのみ、このシャッターを開くことで行う。または、シリコン内部で構造変化が起きないパルス強度でかつ、絶縁層8及び配線部6及び半導体基板2でのアブレーションが抑えられるエネルギー強度以下のエネルギー強度を有するレーザー光Lを用いることにより、前記光路に前記シャッターを設けずとも、貫通孔7の底部の絶縁層8cのみに改質部8dを形成することが可能である。
(改質部除去工程)
 続いて、図3Bに示すように、ドライエッチングによって各改質部8dを除去する。このドライエッチングでは、各改質部8dが非改質部(絶縁層8a,8bの部分)に比べて非常に速く(数十倍の速さで)ドライエッチングされる。そのため、容易に各貫通孔7の底面にある各絶縁層8cのみを選択的に除去できる。
 ここで、半導体基板2の表面及び貫通孔7の内周面のそれぞれに形成された絶縁層8a,8bも、従来技術と同様にドライエッチングされる。しかしながら、構造変化(改質)の起きた絶縁層8c(改質部8d)のドライエッチングの方が圧倒的に速く進むため、絶縁層8a,8bではドライエッチングの影響を殆ど受けず、除去されない。そのため、これら絶縁層8a,8bが形成された部位の絶縁性が維持され、貫通電極10のコンタクト部の形成が可能となる。そのため、絶縁層8a,8b,8cでの厚さ条件の設定が容易になる。その結果、貫通孔7の形状の設計自由度が高まり、加工のスループット向上が期待され、高アスペクト比の貫通孔7に対しても効果的に絶縁層8c(改質部8d)をエッチングすることができる。
 ドライエッチングとしては、異方性エッチングとなるRIEモード等のイオンによるエッチングや、ラジカルによるエッチングなどが挙げられる。
 ドライエッチングによるエッチングレートは、レーザー光の照射条件に大きく依存している。そのため、絶縁層8a,8bにも同様に、パルス時間幅がピコ秒オーダー以下のパルスレーザー光を照射することにより、絶縁層8a,8b,8cのエッチングレートを制御し、絶縁層8a,8b,8cの厚さを制御できる。
 なお、エッチングはドライエッチングに限定されない。レーザー光の照射により構造変化した改質部8dをエッチングできる任意のエッチャントを用いることで、ウェットエッチング法によっても改質部8dを除去できる。例えば、フッ酸(HF)系の溶液を用いたウェットエッチングが可能である。
 また、図7に示すように、貫通孔7を薬液20に浸漬させながら、レーザー光Lを照射することでレーザー光Lの照射部を選択的に除去する、いわゆるレーザーアシストエッチング法によっても絶縁層8cを除去できる。この際、薬液20としては、同様にフッ酸(HF)系の溶液を用いることができる。
(導電層形成工程)
 続いて、図3Cに示すように、電極パッド5と電気的に接続するように、貫通孔7内に形成された絶縁層8上と貫通孔内7に露出した電極パッド5上とに、導電層9を形成する。
 導電層9の形成は、スパッタ、CVD、メッキ、溶融金属の充填、金属ペーストの充填などで行うことができる。これにより、貫通電極10を有する半導体装置1が作製される。
 以上説明のように、本実施形態の半導体装置の製造方法によれば、絶縁層8の、貫通孔7の底面を覆う部位(絶縁層8c)を改質した後、除去しているので、貫通孔7の開口部周辺に形成された絶縁層8aや、貫通孔7の内周面に形成された絶縁層8bを残したまま、電極パッド5を覆う部位の絶縁層8cのみを選択的に除去できる。これにより、貫通孔7の開口部周辺、内周面、底面にそれぞれ形成される絶縁層8a,8b,8cの厚さ条件の設定が容易となる。
 本実施形態の半導体装置の製造方法は、図4に示すように、貫通孔7の内周面が、半導体基板2の表面に対して約90°(略垂直)をなすように形成されている場合であっても、適用できる。
 この場合も同様に、まず、貫通孔7内の電極パッド5を覆っている絶縁層8cのみに、レーザー光Lを照射して改質部8dとする。その後、ドライエッチングにより改質部8dを除去する。
 半導体基板2に対して垂直に形成された貫通孔7の場合、従来では、電極パッド5上に配された絶縁層8cを除去する際に、異方性エッチングなどにより絶縁層8cのみを選択的にエッチングする必要があった。この際、同時に絶縁層8a,8bもエッチングされてしまう問題が生じた。一方、本実施形態の半導体装置の製造方法によれば、容易に電極パッド5上の絶縁層8cのみを改質して除去できる。
 また、一般的にスパッタ、めっきなどを用いて貫通孔7内に導体形成を行うときには、貫通孔7の内周面の傾斜が大きいほど(図15で示したθが小さいほど)、加工が容易になる。しかしながら前記貫通孔106の内周面に形成された前記絶縁層101bに関しては、貫通孔106の内周面の傾斜が大きいほどエッチングされやすくなる。そのため、このような形状の貫通電極を形成するのが困難であった。しかしながら、本実施形態の半導体装置の製造方法を用いることで、上記形状を形成することが容易となる。
 さらには、絶縁層の形成時間や絶縁層のエッチング時間が短縮化されるため、加工時のスループットの向上が期待される。その結果、本実施形態の半導体装置の製造方法によれば、加工が容易であるとともに、形状の設計自由度を向上させた貫通電極を形成することが可能となる。
 なお、本発明は、絶縁層8cの除去のみに限定されず、同様な構造で高アスペクト比を有する貫通孔底面に選択的なエッチングを行う際に適用してもよい。ピコ秒以下のパルス幅を有するレーザー光を照射した場合に構造変化がおき、ドライエッチング、ウェットエッチング、レーザーアシストエッチングが実施可能な材質、例えば、石英やホウ珪酸ガラスなどのエッチングに適用可能である。
[第2実施形態]
 本発明の半導体装置の製造方法の第2実施形態を、図8A~9Cを用いて以下に説明する。なお、本実施形態の半導体装置の製造方法により製造される半導体装置の構成は、図1を用いて説明した上記第1実施形態の半導体装置1の構成とほぼ同じである。よって、以下の説明では、上記第1実施形態で説明したものと同一構成要素には同一符号を付し、それらの重複する説明を省略する。以下、本実施形態における各工程を順に説明する。
(電極形成工程)
 まず、半導体基板2の一方の面に電極パッド5を形成する。すなわち、図8Aに示すように、絶縁層3を介して機能素子4が形成された半導体基板2を用意し、その一方の面(同図の紙面下側にある下面)2aをなす絶縁層3上に、複数の電極パッド5(I/Oパッド)及び複数の配線部6を形成する。
(貫通孔形成工程)
 次いで、図8Bに示すように、半導体基板2の他方の面2bより複数の貫通孔7を形成する。なお、上記第1実施形態では、電極パッド5が露出するように各貫通孔7を形成したが、本実施形態では、前記絶縁層3を残したままに止めておく。すなわち、各貫通孔7の底部には絶縁層3が露出するが、電極パッド5までは露出されない状態に止めておく。
(絶縁層形成工程)
 続いて、各貫通孔7の少なくとも内周面および開口部周辺と、各貫通孔7内に露出した絶縁層3上とに絶縁層8を形成する。すなわち、図8Cに示すように、少なくとも貫通孔7の内壁面(内周面と底面)および開口部周辺に絶縁層8を形成する。
(改質工程)
 続いて、図9Aに示すように、貫通孔7の底面(電極パッド5)を覆う絶縁層8c及びその真下にある絶縁層3の部位3xのみに対し、レーザー装置LDよりピコ秒オーダー以下のパルス時間幅を有するレーザー光Lを照射して集光させ、絶縁層8c及び部位3xを一括して改質させる。改質に用いるレーザー光Lとしては、シリコン(半導体基板2)を透過する波長域を有するものを使用する。集光部を貫通孔7の底面で走査させることで、この底面に構造の変化した絶縁層(改質部8d及び改質部3y)を形成する。これにより、レーザー光Lが照射された絶縁層8c及び部位3xに対し、容易に構造変化(改質)を加えることができる。
 改質に用いるレーザー光Lは、そのパルスエネルギーが、絶縁層8及び絶縁層3のアブレーション又は蒸散が起きるエネルギーよりも低いものを用いることが好ましい。
 ピコ秒オーダー以下のパルス時間幅を有するレーザー光や、これよりもパルス時間幅の長いレーザー光や、CWレーザー光などを絶縁層8c及び部位3xに照射して、この絶縁層8c及び部位3xをアブレーションさせ、除去することも可能である。しかしながら、この場合だと、電極パッド5へのダメージが大きくなる。その結果、電極パッド5に変形や、破損、一部損失などが生じたり、貫通孔7内に残留物が付着したりして問題となる。レーザー光Lとして、そのパルスエネルギーが、絶縁層8及び部位3xのアブレーション又は蒸散が起きるエネルギーよりも低いものを用いることで、電極パッド5にダメージを与えず、絶縁層8c及び部位3xに純粋な構造変化のみを生じさせ、絶縁層8c及び部位3xを改質できる。
 このように、パルス時間幅がピコ秒オーダー以下のパルスレーザー光Lを、絶縁層8及び絶縁層3のアブレーション及び蒸散が起きるエネルギー以下に抑えて照射することで、電極パッド5へのダメージ等が生じない加工が可能となる。
(改質部除去工程)
 続いて、図9Bに示すように、ドライエッチングによって各改質部8dを各改質部3yと共に除去する。このドライエッチングでは、各改質部8d及び各改質部3yが非改質部(絶縁層8a,8bの部分)に比べて非常に速く(数十倍の速さで)ドライエッチングされる。そのため、容易に各貫通孔7の底面にある各絶縁層8c及び各改質部3yのみを選択的に除去できる。
 ここで、半導体基板2の表面及び貫通孔7の内周面のそれぞれに形成された絶縁層8a,8bも、従来技術と同様にドライエッチングされる。しかしながら、構造変化(改質)の起きた改質部8d及び各改質部3yのドライエッチングの方が圧倒的に速く進むため、絶縁層8a,8bではドライエッチングの影響を殆ど受けず、除去されない。そのため、これら絶縁層8a,8bが形成された部位の絶縁性が維持され、貫通電極10のコンタクト部の形成が可能となる。そのため、絶縁層8a,8b,8cでの厚さ条件の設定が容易になる。その結果、貫通孔7の形状の設計自由度が高まり、加工のスループット向上が期待され、高アスペクト比の貫通孔7に対しても効果的に改質部8d及び各改質部3yをまとめてエッチングすることができる。
 ドライエッチングとしては、異方性エッチングとなるRIEモード等のイオンによるエッチングや、ラジカルによるエッチングなどが挙げられる。
 ドライエッチングによるエッチングレートは、レーザー光の照射条件に大きく依存している。そのため、絶縁層8a,8bにも同様に、パルス時間幅がピコ秒オーダー以下のパルスレーザー光を照射することにより、絶縁層8a,8b,8cのエッチングレートを制御し、絶縁層8a,8b,8cの厚さを制御できる。
 なお、エッチングはドライエッチングに限定されない。レーザー光の照射により構造変化した改質部8d及び各改質部3yをエッチングできる任意のエッチャントを用いることで、ウェットエッチング法によっても改質部8d及び各改質部3yを除去できる。例えば、フッ酸(HF)系の溶液を用いたウェットエッチングが可能である。
(導電層形成工程)
 続いて、図9Cに示すように、電極パッド5と電気的に接続するように、貫通孔7内に形成された絶縁層8上と貫通孔内7に露出した電極パッド5上とに、導電層9を形成する。
 導電層9の形成は、スパッタ、CVD、メッキ、溶融金属の充填、金属ペーストの充填などで行うことができる。これにより、貫通電極10を有する半導体装置1が作製される。
 以上説明のように、本実施形態の半導体装置の製造方法によれば、絶縁層8の、貫通孔7の底面を覆う部位(絶縁層8c)と部位3xとを改質した後、除去しているので、貫通孔7の開口部周辺に形成された絶縁層8aや、貫通孔7の内周面に形成された絶縁層8bを残したまま、電極パッド5を覆う部位の絶縁層8cと部位3xのみを選択的に除去できる。これにより、貫通孔7の開口部周辺、内周面、底面にそれぞれ形成される絶縁層8a,8b,8cの厚さ条件の設定が容易となる。
 しかも、絶縁層8の、貫通孔7の底面を覆う部位(絶縁層8c)と、絶縁層3の、電極パッド5を覆う部位3xとをまとめて改質しているので、貫通孔形成工程の際に前記部位3xを除去する工程を省くことができる。また、開口に伴う汚染を抑制することができる。
[第3実施形態]
 本発明の半導体装置の製造方法の第3実施形態を、図10A~12Cを用いて以下に説明する。本実施形態の半導体装置の製造方法により製造される半導体装置の構成は、図1を用いて説明した上記第1実施形態の半導体装置1の構成と一部異なるので、その相違点を中心に説明する。ただし、上記第1実施形態の半導体装置1と同一構成要素には同一符号を付し、それらの重複する説明を省略する。
 図10A及び図10Bに示すように、本実施形態の半導体装置50は、機能素子4が予め半導体基板2の一方の面(同図の紙面下側の面)に埋め込まれた状態に形成されている点と、絶縁層3に形成された細孔3pを介して配線部6が機能素子4及び各電極パッド5間を電気的に接続している点とが特に異なっている。
 すなわち、図10Aに示すように、本実施形態では、機能素子4が、半導体基板2の一方の面2a内に埋め込まれた状態で形成されている。この機能素子4は、その下面4fが前記一方の面2aと面位置になるように配されており、下面4fが絶縁層3により被覆されている。
 また、図10Bに示すように、絶縁層3上で、機能素子4に対応した位置に、複数の細孔3pが形成されている。そして、一方の端部において電極パッド5に電気的に接続された配線部6の他端が、細孔3pを介して機能素子4の下面4fに対して電気的に接続されている。
 以上説明の構成を有する本実施形態の半導体装置50の製造方法における各工程を以下に順に説明する。
(電極形成工程)
 まず、機能素子4が予め形成されている半導体基板2の一方の面2aに電極パッド5を形成する。すなわち、図11Aに示すように、絶縁層3を介して機能素子4が形成された半導体基板2を用意し、その一方の面(同図の紙面下側にある下面)2aをなす絶縁層3上に、複数の電極パッド5(I/Oパッド)及び複数の配線部6を形成する。
 なお、絶縁層3は、この電極形成工程の前に、前記一方の面2aに形成する工程(第2の絶縁層形成工程)により予め形成されている。
(貫通孔形成工程)
 次いで、図11Bに示すように、半導体基板2の他方の面2bより、電極パッド5の少なくとも一部が露出するように複数の貫通孔7を形成する。
 これら貫通孔7は、半導体基板2の上面側から、電極パッド5が露出するように形成する。
(絶縁層形成工程)
 続いて、各貫通孔7の少なくとも内周面および開口部周辺と、各貫通孔7内に露出した各電極パッド5上とに絶縁層8を形成する。すなわち、図11Cに示すように、少なくとも貫通孔7の内壁面(内周面と底面)および開口部周辺に絶縁層8を形成する。この絶縁層8は、例えば酸化シリコン(SiO)をプラズマCVD等により成膜することで形成できる。
(改質工程)
 続いて、絶縁層8の、各貫通孔7内に露出した各電極パッド5を覆う部位を改質して、改質部とする。すなわち、図12Aに示すように、貫通孔7の底面(電極パッド5)を覆う絶縁層8cのみに対し、レーザー装置LDよりピコ秒オーダー以下のパルス時間幅を有するレーザー光Lを照射して集光させ、絶縁層8cの改質を行う。改質に用いるレーザー光Lとしては、シリコン(半導体基板2)を透過する波長域を有するものを使用する。集光部を貫通孔7の底面で走査させることで、この底面に構造の変化した絶縁層(改質部8d)を形成する。これにより、レーザー光Lが照射された絶縁層8cの部分に、容易に構造変化(改質)を加えることができる。
(改質部除去工程)
 続いて、図12Bに示すように、ドライエッチングによって各改質部8dを除去する。このドライエッチングでは、各改質部8dが非改質部(絶縁層8a,8bの部分)に比べて非常に速く(数十倍の速さで)ドライエッチングされる。そのため、容易に各貫通孔7の底面にある各絶縁層8cのみを選択的に除去できる。
(導電層形成工程)
 続いて、図12Cに示すように、電極パッド5と電気的に接続するように、貫通孔7内に形成された絶縁層8上と貫通孔内7に露出した電極パッド5上とに、導電層9を形成する。
 導電層9の形成は、スパッタ、CVD、メッキ、溶融金属の充填、金属ペーストの充填などで行うことができる。これにより、貫通電極10を有する半導体装置50が作製される。
 以上説明のように、本実施形態の半導体装置の製造方法によれば、絶縁層8の、貫通孔7の底面を覆う部位(絶縁層8c)を改質した後、除去しているので、貫通孔7の開口部周辺に形成された絶縁層8aや、貫通孔7の内周面に形成された絶縁層8bを残したまま、電極パッド5を覆う部位の絶縁層8cのみを選択的に除去できる。これにより、貫通孔7の開口部周辺、内周面、底面にそれぞれ形成される絶縁層8a,8b,8cの厚さ条件の設定が容易となる。
 以上、本発明の半導体装置の製造方法の各実施形態について説明してきたが、本発明はこれらのみに限定されるものではなく、必要に応じて適宜変更しても構わない。
 本発明は、貫通電極を備えた半導体装置の製造方法に広く適用可能である。
 1,50 半導体装置
 2  半導体基板
 2a 一方の面
 5  電極パッド(電極)
 2b 他方の面
 7  貫通孔
 8  絶縁層(第1の絶縁層)
 8c 第1の部位
 8d,3y 改質部
 9  導電層
 3  絶縁層(第2の絶縁層)
 L  レーザー光
 

Claims (5)

  1.  半導体基板の一方の面に電極を形成する電極形成工程と;
     前記半導体基板の他方の面の、前記一方の面側にある前記電極の位置に対応した位置より、この半導体基板の厚み方向に貫通孔を形成する貫通孔形成工程と;
     少なくとも前記貫通孔の内周面および開口部周辺と、前記貫通孔の底部分とに、第1の絶縁層を形成する第1の絶縁層形成工程と;
     前記第1の絶縁層の、前記貫通孔の前記底部分に形成された第1の部位を改質させて改質部とする改質工程と;
     前記改質部を除去して前記貫通孔内に前記電極を露出させる改質部除去工程と;
     前記貫通孔内に露出した前記電極上と前記第1の絶縁層上とに、前記電極に電気的に導通するように導電層を形成する導電層形成工程と;
    を備えることを特徴とする半導体装置の製造方法。
  2.  前記電極形成工程の前に、前記一方の面に第2の絶縁層を形成する第2の絶縁層形成工程をさらに備え;
     前記貫通孔形成工程で、前記貫通孔の形成と同時に前記第2の絶縁層を除去する;
    ことを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記電極形成工程の前に、前記一方の面に第2の絶縁層を形成する第2の絶縁層形成工程をさらに備え;
     前記改質工程で、前記第2の絶縁層における前記第1の部位と対応する第2の部位を、前記第1の部位と共にまとめて改質して前記改質部とする;
    ことを特徴とする請求項1に記載の半導体装置の製造方法。
  4.  前記改質工程を、ピコ秒以下のパルス時間幅を有するレーザー光を前記第1の部位に集光させて照射することにより行うことを特徴とする請求項1に記載の半導体装置の製造方法。
  5.  前記レーザー光として、そのパルスエネルギーが、前記第1の絶縁層のアブレーション又は蒸散が起きるエネルギーよりも低いものを用いることを特徴とする請求項4に記載の半導体装置の製造方法。
     
PCT/JP2009/062384 2008-08-07 2009-07-07 半導体装置の製造方法 WO2010016351A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801302434A CN102113100A (zh) 2008-08-07 2009-07-07 半导体装置的制造方法
JP2010523808A JPWO2010016351A1 (ja) 2008-08-07 2009-07-07 半導体装置の製造方法
EP09804838A EP2312619A4 (en) 2008-08-07 2009-07-07 MANUFACTURING METHOD FOR SEMICONDUCTOR COMPONENT
US13/020,534 US20110129999A1 (en) 2008-08-07 2011-02-03 Method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-204214 2008-08-07
JP2008204214 2008-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/020,534 Continuation US20110129999A1 (en) 2008-08-07 2011-02-03 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2010016351A1 true WO2010016351A1 (ja) 2010-02-11

Family

ID=41663574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062384 WO2010016351A1 (ja) 2008-08-07 2009-07-07 半導体装置の製造方法

Country Status (5)

Country Link
US (1) US20110129999A1 (ja)
EP (1) EP2312619A4 (ja)
JP (1) JPWO2010016351A1 (ja)
CN (1) CN102113100A (ja)
WO (1) WO2010016351A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105628B1 (en) * 2012-03-29 2015-08-11 Valery Dubin Through substrate via (TSuV) structures and method of making the same
ITTO20120294A1 (it) 2012-04-03 2013-10-04 St Microelectronics Srl Sistema perfezionato di test elettrico di vie passanti nel silicio (tsv-through silicon vias) e relativo procedimento di fabbricazione
CN103367139B (zh) * 2013-07-11 2016-08-24 华进半导体封装先导技术研发中心有限公司 一种tsv孔底部介质层刻蚀方法
KR102391793B1 (ko) * 2014-10-03 2022-04-28 니혼 이타가라스 가부시키가이샤 관통 전극이 달린 유리 기판의 제조 방법 및 유리 기판
CN104465445B (zh) * 2014-12-10 2018-04-17 华进半导体封装先导技术研发中心有限公司 一种硅通孔底部衬垫露出的检测方法
US10854550B2 (en) 2017-09-28 2020-12-01 Advanced Semiconductor Engineering, Inc. Semiconductor package and method of manufacturing the same
US10424606B1 (en) 2018-04-05 2019-09-24 Corning Incorporated Systems and methods for reducing substrate surface disruption during via formation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095849A (ja) * 2002-08-30 2004-03-25 Fujikura Ltd 貫通電極付き半導体基板の製造方法、貫通電極付き半導体デバイスの製造方法
JP2004304130A (ja) * 2003-04-01 2004-10-28 Seiko Epson Corp 半導体装置の製造方法
JP2005223265A (ja) * 2004-02-09 2005-08-18 Sharp Corp 半導体装置の製造方法、半導体装置
JP2007294821A (ja) 2006-04-27 2007-11-08 Fujikura Ltd 配線基板およびその製造方法
JP2008010659A (ja) * 2006-06-29 2008-01-17 Disco Abrasive Syst Ltd ビアホールの加工方法
JP2008027956A (ja) * 2006-07-18 2008-02-07 Toshiba Corp 半導体装置の製造方法
JP2008204214A (ja) 2007-02-21 2008-09-04 Hitachi East Japan Solutions Ltd 信用リスク計算装置、および、信用リスク計算方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325182A (en) * 1980-08-25 1982-04-20 General Electric Company Fast isolation diffusion
US5310626A (en) * 1993-03-01 1994-05-10 Motorola, Inc. Method for forming a patterned layer using dielectric materials as a light-sensitive material
US5817580A (en) * 1996-02-08 1998-10-06 Micron Technology, Inc. Method of etching silicon dioxide
DE10163346A1 (de) * 2001-12-21 2003-07-10 Infineon Technologies Ag Resistloses Lithographieverfahren zur Herstellung feiner Strukturen
JP4329374B2 (ja) * 2002-07-29 2009-09-09 パナソニック電工株式会社 発光素子およびその製造方法
US6897148B2 (en) * 2003-04-09 2005-05-24 Tru-Si Technologies, Inc. Electroplating and electroless plating of conductive materials into openings, and structures obtained thereby
DE10319538B4 (de) * 2003-04-30 2008-01-17 Qimonda Ag Halbleitervorrichtung und Verfahren zur Herstellung einer Halbleitereinrichtung
DE10321494B4 (de) * 2003-05-13 2006-11-16 Infineon Technologies Ag Herstellungsverfahren für eine Halbleiterstruktur
US7608490B2 (en) * 2005-06-02 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2007180395A (ja) * 2005-12-28 2007-07-12 Sanyo Electric Co Ltd 半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095849A (ja) * 2002-08-30 2004-03-25 Fujikura Ltd 貫通電極付き半導体基板の製造方法、貫通電極付き半導体デバイスの製造方法
JP2004304130A (ja) * 2003-04-01 2004-10-28 Seiko Epson Corp 半導体装置の製造方法
JP2005223265A (ja) * 2004-02-09 2005-08-18 Sharp Corp 半導体装置の製造方法、半導体装置
JP2007294821A (ja) 2006-04-27 2007-11-08 Fujikura Ltd 配線基板およびその製造方法
JP2008010659A (ja) * 2006-06-29 2008-01-17 Disco Abrasive Syst Ltd ビアホールの加工方法
JP2008027956A (ja) * 2006-07-18 2008-02-07 Toshiba Corp 半導体装置の製造方法
JP2008204214A (ja) 2007-02-21 2008-09-04 Hitachi East Japan Solutions Ltd 信用リスク計算装置、および、信用リスク計算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2312619A4

Also Published As

Publication number Publication date
CN102113100A (zh) 2011-06-29
US20110129999A1 (en) 2011-06-02
EP2312619A4 (en) 2012-12-12
EP2312619A1 (en) 2011-04-20
JPWO2010016351A1 (ja) 2012-01-19

Similar Documents

Publication Publication Date Title
WO2010016351A1 (ja) 半導体装置の製造方法
JP3193863B2 (ja) 転写マスクの製造方法
KR100741864B1 (ko) 반도체장치의 제조방법
TWI384618B (zh) 半導體裝置及其製造方法
CN101785103B (zh) 低阻抗晶圆穿孔
US9613865B2 (en) Semiconductor die and die cutting method
US7814651B2 (en) Method for fabricating a through-hole interconnection substrate
JP2002373895A (ja) 半導体装置及びその製造方法
EP2634795A1 (en) Process for manufacture of through-type wiring substrate, and through-type wiring substrate
KR100840502B1 (ko) 반도체 장치 및 그 제조 방법
JP4586009B2 (ja) ウェハレベルパッケージングキャップ及びその製造方法
JP2002373957A (ja) 半導体装置及びその製造方法
JP2009176926A (ja) 貫通配線基板及びその製造方法
US8563416B2 (en) Coaxial solder bump support structure
US20140217577A1 (en) Semiconductor Device and Method for Manufacturing a Semiconductor Device
TW201007913A (en) Semiconductor device and method for manufacturing the device
JP2007318143A (ja) 半導体構造体及びその製造方法
EP3039710B1 (en) Wafer dicing method for improving die packaging quality
JP5873145B2 (ja) 貫通配線基板の製造方法
JP5460069B2 (ja) 半導体基板と半導体パッケージおよび半導体基板の製造方法
KR20230162099A (ko) 고급 패키징을 위한 마이크로 비아 형성 방법들
US20170213802A1 (en) Semiconductor structure and manufacturing method thereof
TWI717768B (zh) 半導體裝置之製造方法及半導體裝置
JP2010016255A (ja) 半導体装置
JP2007258233A (ja) 半導体装置の製造方法、半導体装置および回路基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130243.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523808

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009804838

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE