WO2010016176A1 - モータドライバー回路及び該モータドライバー回路を搭載した真空ポンプ - Google Patents

モータドライバー回路及び該モータドライバー回路を搭載した真空ポンプ Download PDF

Info

Publication number
WO2010016176A1
WO2010016176A1 PCT/JP2009/002442 JP2009002442W WO2010016176A1 WO 2010016176 A1 WO2010016176 A1 WO 2010016176A1 JP 2009002442 W JP2009002442 W JP 2009002442W WO 2010016176 A1 WO2010016176 A1 WO 2010016176A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
control element
regenerative resistor
voltage
Prior art date
Application number
PCT/JP2009/002442
Other languages
English (en)
French (fr)
Inventor
野村慎一
シュローダーウルリヒ
Original Assignee
エドワーズ株式会社
ソシエテ・ドゥ・メカニーク・マグネティーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社, ソシエテ・ドゥ・メカニーク・マグネティーク filed Critical エドワーズ株式会社
Priority to JP2010523724A priority Critical patent/JP5606315B2/ja
Priority to EP09804663.4A priority patent/EP2315349B1/en
Priority to US12/737,089 priority patent/US9093938B2/en
Publication of WO2010016176A1 publication Critical patent/WO2010016176A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a motor driver circuit and a vacuum pump equipped with the motor driver circuit.
  • the heat generation of the regenerative resistor is specified without employing a large capacity regenerative resistor or heat sink or using a FAN having a larger air volume.
  • the present invention relates to a compact and low-cost motor driver circuit that can be controlled within a temperature range and obtaining an appropriate brake time, and a vacuum pump equipped with the motor driver circuit.
  • a vacuum pump is generally used for evacuating the chamber, but a turbo molecular pump, which is one of the vacuum pumps, is often used because it has a small residual gas and is easy to maintain.
  • turbo molecular pump not only evacuates the chamber, but also exhausts these process gases from the chamber. Also used. Furthermore, turbo molecular pumps are also used in equipment such as electron microscopes to prevent the refraction of the electron beam due to the presence of dust, etc., so that the environment in the chamber of the electron microscope or the like is in a highly vacuum state. Yes.
  • Such a turbo molecular pump is composed of a turbo molecular pump main body for sucking and exhausting gas from a chamber of a semiconductor manufacturing apparatus or an electron microscope, and a control device for controlling the turbo molecular pump main body.
  • the turbo molecular pump main body 100 has an intake port 101 formed at the upper end of a cylindrical outer cylinder 127.
  • a rotating body 103 On the inner side of the outer cylinder 127, there is provided a rotating body 103 in which a plurality of rotating blades 102a, 102b, 102c,... As turbine blades for sucking and exhausting gas are formed radially and in multiple stages.
  • a rotor shaft 113 is attached to the center of the rotating body 103.
  • the rotor shaft 113 is levitated and supported by a so-called 5-axis control magnetic bearing, for example.
  • the upper radial electromagnet 104 forms a pair with an X axis and a Y axis in which four electromagnets are orthogonal to each other, and is disposed so as to sandwich the rotor shaft 113.
  • the X axis and the Y axis are assumed to be on a plane perpendicular to the axis of the rotor shaft 113 when the rotor shaft 113 is at the control target position of the magnetic bearing.
  • an upper radial sensor 107 composed of four coils corresponding to each electromagnet and arranged opposite to each other with the rotating body 103 interposed therebetween is provided. .
  • the upper radial direction sensor 107 is configured to detect the radial position of the rotating body 103 and send the signal to the control device.
  • the rotor shaft 113 is formed of a high permeability material (such as iron) and is attracted by the magnetic force of the upper radial electromagnet 104.
  • the lower radial electromagnet 105 and the lower radial sensor 108 are arranged in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107, and the lower radial sensor 108 has a lower diameter of the rotor shaft 113. It is configured to detect the directional position and send the signal to the control device. And the upper and lower radial positions of the rotor shaft 113 are adjusted by the magnetic bearing feedback control means of the control device.
  • axial electromagnets 106A and 106B are arranged with a disk-shaped metal disk 111 provided at the lower part of the rotor shaft 113 sandwiched vertically.
  • the metal disk 111 is made of a high permeability material such as iron.
  • An axial sensor 109 is provided to detect the axial position of the rotating body 103, and the axial position signal is sent to the control device.
  • the axial electromagnet 106A attracts the metal disk 111 upward by magnetic force, and the axial electromagnet 106B attracts the metal disk 111 downward.
  • the magnetic force exerted on the metal disk 111 by the axial electromagnets 106A and 106B is appropriately adjusted by the magnetic bearing feedback control means, the rotor shaft 113 is magnetically levitated in the axial direction, and is not in contact with the space. Hold.
  • the motor 121 includes a plurality of permanent magnet magnetic poles arranged circumferentially so as to surround the rotor shaft 113 on the rotor side. These permanent magnets are applied with torque for rotating the rotor shaft 113 from an electromagnet on the stator side of the motor 121, and the rotating body 103 is driven to rotate.
  • the motor 121 is provided with a rotation speed sensor and a motor temperature sensor (not shown). Upon receiving detection signals from the rotation speed sensor and the motor temperature sensor, the rotation of the rotor shaft 113 is controlled by the control device. Yes.
  • a plurality of fixed blades 123a, 123b, 123c,... are arranged with a small gap from the rotor blades 102a, 102b, 102c,.
  • the rotor blades 102a, 102b, 102c,... are each inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transfer exhaust gas molecules downward by collision.
  • the fixed blades 123 are also formed to be inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and are arranged alternately with the stages of the rotary blades 102 toward the inside of the outer cylinder 127. ing. And the one end of the fixed wing
  • the fixed blade spacer 125 is a ring-shaped member and is made of a metal such as a metal such as aluminum, iron, stainless steel, or copper, or an alloy containing these metals as components.
  • An outer cylinder 127 is fixed to the outer periphery of the fixed blade spacer 125 with a slight gap.
  • a base portion 129 is disposed at the bottom of the outer cylinder 127, and a threaded spacer 131 is disposed between the lower portion of the fixed blade spacer 125 and the base portion 129.
  • An exhaust port 133 is formed below the threaded spacer 131 in the base portion 129.
  • a dry pump passage (not shown) is connected to the exhaust port 133, and the exhaust port 133 is connected to a dry pump (not shown) via the dry pump passage.
  • the threaded spacer 131 is a cylindrical member made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals as a component, and a plurality of spiral thread grooves 131a are formed on the inner peripheral surface thereof. It is marked.
  • the direction of the spiral of the thread groove 131 a is a direction in which molecules of the exhaust gas move toward the exhaust port 133 when the molecules of the exhaust gas move in the rotation direction of the rotating body 103.
  • a cylindrical portion 102d is suspended from the lowermost part of the rotor 103 following the rotor blades 102a, 102b, 102c,.
  • the outer peripheral surface of the cylindrical portion 102d protrudes toward the inner peripheral surface of the threaded spacer 131, and is close to the inner peripheral surface of the threaded spacer 131 with a predetermined gap.
  • the base portion 129 is a disk-like member that forms the base portion of the turbo molecular pump main body 100, and is generally made of a metal such as iron, aluminum, or stainless steel. Since the base portion 129 physically holds the turbo molecular pump main body 100 and also has a function of a heat conduction path, a metal having rigidity such as iron, aluminum, and copper and high heat conductivity is used. Is desirable.
  • the base portion 129 is provided with a connector 160, and a cable for electrically connecting the turbo molecular pump main body 100 and the control device is connected to the connector 160.
  • FIG. 10 a block diagram of a motor driver circuit for driving the motor 121 is shown in FIG.
  • the motor driver circuit 200 flows three-phase currents according to the flowchart of FIG. 10 to the U phase winding, V phase winding, and W phase winding of the stator of the motor 121, respectively.
  • a three-phase bridge circuit 210 including six FET elements V22 and V23 is provided.
  • V18 and V21 are turned on, and a current flows from the U phase to the V phase.
  • section 2 V18 and V23 are turned on to pass a current from the U phase to the W phase.
  • the rotating magnetic field is generated by switching the FET elements in accordance with the flowchart in the sections 3 and thereafter.
  • One end of the three-phase bridge circuit 210 is connected to one end of the capacitor 203 via the short-circuit protection element 201.
  • the other end of the three-phase bridge circuit 210 is connected to the other end of the capacitor 203 via the motor current detection circuit 205.
  • One end of the capacitor 203 is further connected to one end of the regenerative resistor 207 and the positive electrode 209 of the power source.
  • the other end of the capacitor 203 is connected to the other end of the regenerative resistor 207 via the regenerative resistor drive FET 211 and also connected to the negative electrode 213 of the power source.
  • a diode 215 is connected to both ends of the regenerative resistor 207 in parallel with the regenerative resistor 207.
  • a driver control CPU PWM-controls each FET of the three-phase bridge circuit 210 so that the current value supplied to the motor 121 detected by the motor current detection circuit 205 becomes a predetermined constant current value.
  • each phase is commutated and controlled so as to have a predetermined rotational speed according to the timing of FIG. 10 by a rotational speed sensor (not shown).
  • the FET of the three-phase bridge circuit 210 is PWM controlled so as to have a predetermined current value, and the regenerative power from the motor 121 is converted to the regenerative resistor 207 while commutating each phase in the direction opposite to the acceleration timing.
  • the regenerative resistance driving FET 211 is turned ON / OFF to dissipate heat energy.
  • the regenerative resistor 207 uses a large-capacity (large) type, or is mounted on a heat sink and cooled by air-cooled FAN in order to consume more energy.
  • Patent Document 1 A technique that enables automatic selection of whether or not to perform is disclosed.
  • Patent Document 1 aims to control the regenerative braking from a plurality of motors so that energy consumption by the regenerative resistor is performed in a safe range, and suppresses heat generation of the regenerative resistor in each motor. It does not shorten the braking time.
  • the regenerative resistor 207 If the regenerative energy generated is constantly energized by the regenerative resistor 207 in order to shorten the braking time in each motor alone, the regenerative resistor 207 generates a large amount of heat and the temperature rises. Therefore, it is necessary to use a regenerative resistor 207 having a large heat capacity, attach a heat sink, and cool using a FAN having a large air volume. However, the use of these parts has the problem of increasing the cost and the size of the controller. On the other hand, by reducing the amount of current supplied to the regenerative resistor 207, heat generation of the regenerative resistor 207 can be suppressed, but a performance problem that the brake time increases occurs.
  • the present invention has been made in view of such a conventional problem.
  • the heat generation of the regenerative resistor can be performed within the specified temperature range without employing a regenerative resistor or a heat sink having a large capacity or using a FAN having a larger air volume. It is an object of the present invention to provide a compact and low-cost motor driver circuit and a vacuum pump equipped with the motor driver circuit, which can be suppressed to an appropriate level and can obtain an appropriate brake time.
  • the motor driver circuit of the present invention includes a motor, a motor drive circuit for driving the motor, motor speed detection means for detecting the motor speed of the motor, and a current flowing through the motor drive circuit.
  • the motor is driven based on this.
  • the consumption of regenerative energy can be reduced during high-speed rotation, and the consumption of regenerative energy can be increased as the speed is reduced.
  • the motor driver circuit of the present invention includes a regenerative resistor arranged in parallel to a power source through which a current regenerated from the motor drive circuit flows during braking operation of the motor, and the regenerative resistor
  • a control element that is connected in series and controls whether or not to pass a current, a voltage detection means that detects a voltage of the motor drive circuit, and the control element so that the voltage detected by the voltage detection means is less than or equal to a set voltage value
  • the drive current set value calculated by the motor drive current set value calculating means is set so that the initial current value at the maximum rated rotational speed of the motor is set small, and the speed is reduced. It is set to be large according to the motor speed to be performed.
  • the motor driver circuit of the present invention (Claim 4) is characterized in that the drive current set value is limited so as not to exceed a predetermined value.
  • the motor driver circuit of the present invention (Claim 5) is provided in parallel with a motor, a motor drive circuit for driving the motor, and a power source through which a current regenerated from the motor drive circuit is applied during the braking operation of the motor.
  • the drive current command value calculation means for calculating the motor drive current command value, the voltage detection means for detecting the voltage of the motor drive circuit, and the voltage detected by the voltage detection means are set such that Control element driving means for driving the control element ON and OFF so as to be equal to or lower than the voltage value is provided.
  • the regenerative resistor can be decelerated in a short time within the full range not exceeding the allowable temperature of the regenerative resistor.
  • the motor driver circuit of the present invention (Claim 6) is provided in parallel with a motor, a motor drive circuit that drives the motor, and a power source through which a current regenerated from the motor drive circuit flows during the braking operation of the motor.
  • a regenerative resistor arranged in series, a control element connected in series to the regenerative resistor and controlling whether or not to pass current, motor speed detecting means for detecting the motor speed of the motor, and current flowing through the motor drive circuit.
  • Current detection means to detect, a table that defines the relationship between the motor speed and the duty cycle of the ON / OFF signal of the control element, and the motor speed detected by the motor speed detection means during the braking operation of the motor from the table
  • a duty cycle calculating means for calculating a duty cycle of the ON / OFF signal of the control element in response, and the duty cycle ON the control element based on a duty cycle calculated in the cycle calculation unit, constructed by a control element control means for OFF control.
  • the motor driver circuit of the present invention includes a motor, a motor drive circuit that drives the motor, and a power source that receives a current regenerated from the motor drive circuit during a brake operation of the motor.
  • a regenerative resistor arranged in series, a control element connected in series to the regenerative resistor and controlling whether or not to pass current, a temperature detecting means for detecting the temperature of the regenerative resistor, and a temperature detected by the temperature detecting means
  • a control element ON / OFF control means for controlling the ON / OFF of the control element so as to be equal to or less than a predetermined value.
  • the duty cycle of the ON / OFF signal controlled by the control element ON / OFF control means is the energization interval when the temperature detected by the temperature detection means is high. Is set short and the energization time is set long when the temperature is low.
  • the motor driver circuit of the present invention (Claim 9) adjusts the drive current so that the voltage detected by the voltage detector and the voltage detected by the voltage detector are equal to or lower than the set voltage value. And the motor driving circuit drives the motor based on the driving current adjusted by the driving current adjusting means.
  • the vacuum pump of the present invention (Claim 10) is characterized by mounting the motor driver circuit according to any one of Claims 1 to 9.
  • the motor drive current set value is calculated according to the motor speed during the brake operation of the motor, the regenerative energy consumption is reduced and the vehicle is decelerated during high-speed rotation.
  • the regenerative energy consumption can be increased accordingly.
  • Block configuration diagram of the first embodiment of the present invention The relationship between the current value supplied to the motor and the motor speed and stop time, and the relationship between the current value supplied to the motor and the temperature of the regenerative resistor Relationship between motor current value, motor speed, stop time, regenerative resistance temperature
  • Block configuration diagram of the second embodiment of the present invention Operation flow of the second embodiment of the present invention
  • the block block diagram of 4th Embodiment of this invention Longitudinal section of turbo molecular pump body Motor driver circuit block diagram Motor drive flowchart
  • FIG. 1 A block diagram of the first embodiment of the present invention is shown in FIG. The same elements as those in FIG.
  • the motor current detected by the motor current detection circuit 205 is input to the microprocessor 221 and the three-phase bridge control circuit 225.
  • the motor speed is detected by the rotation speed sensor 223 and is input to the microprocessor 221.
  • the microprocessor 221 performs a predetermined calculation based on the input motor speed, and obtains a current command value.
  • PID compensation calculation or the like is performed so that the motor current detected by the motor current detection circuit 205 becomes the current command value, and each FET of the three-phase bridge circuit 210 is based on the compensated signal. Are controlled by PWM.
  • the driver unit DC voltage detection circuit 227 detects the voltage of the motor driver circuit 200 based on the voltage across the capacitor 203.
  • the regenerative resistance drive FET 211 is controlled to be turned on and off so that the direct current voltage value detected by the driver direct current voltage detection circuit 227 becomes a predetermined value (for example, 135 volts) or less.
  • FIG. 2 is a conceptual diagram showing the relationship between the current value supplied to the motor, the motor speed and the stop time, and the relationship between the current value supplied to the motor and the temperature of the regenerative resistor.
  • the motor speed increases almost linearly by setting the current value supplied to the motor to a predetermined value. Once the rated operation is reached, the pump is evacuated and the load is not so high that the current value is very small.
  • the brake region (right part in the figure) is entered.
  • the speed characteristic is As indicated by the middle a, the motor speed can be reduced ideally quickly.
  • the limit temperature as shown by d in the temperature characteristic of the regenerative resistor in FIG. It will exceed.
  • I set_brake_n0 for example, about 6 [A]
  • the regenerative energy is gradually consumed by the regenerative resistor 207, and thus the regenerative resistance of FIG.
  • regeneration can be performed that does not exceed the limit temperature, for example, 300 degrees, while the speed characteristics are long before the motor speed drops as shown by b in the figure. Is required.
  • the regenerative current is controlled so that the speed characteristic gradually approaches the inclination of a from the inclination of b in accordance with the motor speed in the initial stage of regeneration. is there.
  • the limit is set so that no more current flows. That is, in the brake region on the right side in the figure, current is regenerated while commutating each phase in the opposite direction to that during acceleration.
  • the regenerative energy at the time of the brake operation at this time is adjusted by decelerating the brake current set value I set_brake according to the motor speed as shown in Formula 1.
  • I set_brake_n0 is the initial brake current value
  • n 0 is the maximum rated rotational speed
  • n is the rotational speed.
  • the brake current set value I set_brake is set to an initial brake current value I set_brake_n0 when entering the brake region.
  • the motor speed gradually increases as the motor speed is decelerated based on Equation 1
  • the maximum brake current value Iset_brake_max is reached, a limit is set so that the current value does not become any larger.
  • the initial brake current value at the maximum rated speed is set low, and control is performed so that the brake current is increased in accordance with the speed of deceleration. That is, during high-speed rotation, energy consumption due to regenerative resistance is reduced, and energy consumption is increased as the vehicle is decelerated.
  • the microprocessor 221 when entering the brake region, calculates the magnitude of the motor current set value that is regenerated according to the deceleration rotational speed detected by the rotational speed sensor 223 based on the mathematical expression 1. And output.
  • the motor current set value is compared with the current value detected by the motor current detection circuit 205, and the gate of the three-phase bridge circuit 210 is ON / OFF controlled so that the deviation becomes zero.
  • the microprocessor 221 controls the three-phase bridge circuit 210 with current feedback, and controls the regenerative resistance drive FET 211 so that the DC voltage value detected by the driver DC voltage detection circuit 227 is, for example, 135 volts or less.
  • the energy of the regenerative resistor is adjusted according to the motor speed. Therefore, it is possible to perform deceleration in a short time within a full range that does not exceed the allowable temperature of the regenerative resistor 207.
  • the result of actual experiment based on the above model is shown in FIG.
  • the g line indicates the motor speed-stop time characteristic when the motor current set value is specified at a constant 15 [A]
  • the h line specifies the motor current set value at a constant 6 [A].
  • the characteristics of motor speed vs. stop time are shown.
  • the curve of i shows the motor speed-stop time characteristic when the motor current set value is designated according to the motor speed based on Equation (1).
  • the motor current set value is specified to be constant at 15 [A] as in g, the temperature of the regenerative resistor 207 rises rapidly as the stop time elapses as shown by j in FIG. Will be exceeded in a short time.
  • the motor current set value is specified as 6 [A] constant as in h, the temperature of the regenerative resistor 207 is gradual as indicated by k in the figure and 250 degrees even at the maximum temperature as the stop time elapses. Not exceed. However, it takes about 1400 seconds to stop the motor.
  • the temperature of the regenerative resistor 207 is about 280 degrees even at the maximum temperature as shown by l in the figure, and the allowable temperature of the regenerative resistor 207
  • the stop time can be shortened to about 800 seconds while being full.
  • FIG. 4 shows a block diagram of the second embodiment of the present invention. Note that the same elements as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the temperature detection circuit 231 detects the temperature of the regenerative resistor 207 and outputs it to the microprocessor 221.
  • the current command value is set so that the temperature becomes a predetermined value or less.
  • PID compensation calculation or the like is performed so that the motor current detected by the motor current detection circuit 205 becomes the current command value, and each FET of the three-phase bridge circuit 210 is based on the compensated signal. Are controlled by PWM.
  • step 1 (abbreviated as S ⁇ b> 1 in the figure; hereinafter the same)
  • the microprocessor 221 determines whether the temperature of the regenerative resistor 207 detected by the temperature detection circuit 231 is higher or lower than a predetermined value. If it is low, the current command value for the three-phase bridge control circuit 225 is increased in step 2. Based on this current command value, the three-phase bridge control circuit 225 issues ON and OFF signals to each FET of the three-phase bridge circuit 210. As a result, in step 3, the voltage of the motor driver circuit 200 increases.
  • step 4 the microprocessor 221 increases the energization time interval to the regenerative resistor 207 so that this voltage becomes a predetermined value or less.
  • step 5 the energy consumption of the regenerative resistor 207 increases and the temperature of the regenerative resistor 207 increases.
  • step 6 when the temperature of the regenerative resistor 207 detected by the temperature detection circuit 231 is higher than a predetermined value as in step 6, the current command value for the three-phase bridge control circuit 225 is decreased in step 7. As a result, in step 8, the voltage of the motor driver circuit 200 decreases. For this reason, in step 9, the microprocessor 221 decreases the energization time interval to the regenerative resistor 207. As a result, in step 10, the energy consumption of the regenerative resistor 207 is reduced and the temperature of the regenerative resistor 207 is lowered. As a result, the same effect as in the first embodiment can be obtained.
  • FIG. 6 shows a block configuration diagram of the third embodiment of the present invention. Note that the same elements as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • a preset lookup table is stored in a storage area (not shown). This look-up table defines the ON / OFF data cycle of the regenerative resistance drive FET 211 with respect to the motor speed.
  • the microprocessor 221 refers to the look-up table according to the motor speed detected by the rotation speed sensor 223, extracts the corresponding ON / OFF data cycle, and drives the regenerative resistor based on the ON / OFF data cycle. The gate signal of the FET 211 is driven.
  • the current command value is obtained so that the DC voltage value detected by the driver unit DC voltage detection circuit 227 is equal to or less than a predetermined value (for example, 135 volts).
  • a predetermined value for example, 135 volts.
  • PID compensation calculation or the like is performed so that the motor current detected by the motor current detection circuit 205 becomes the current command value, and each FET of the three-phase bridge circuit 210 is based on the compensated signal. Are controlled by PWM.
  • the operation of the third embodiment of the present invention will be described.
  • the energization pattern image of the regenerative resistor 207 for example, as in the first embodiment, when the motor speed is high, the energization time of the gate signal of the regenerative resistance drive FET 211 is shortened, while when the motor speed is low, the energization time Lengthen.
  • the DC voltage detected by the driver unit DC voltage detection circuit 227 falls below a predetermined value (for example, 125 V)
  • the driving of the gate signal of the regenerative resistance drive FET 211 is turned off.
  • the current command value is obtained so that the DC voltage value detected by the driver unit DC voltage detection circuit 227 is not more than a predetermined value (for example, 135 volts).
  • a predetermined value for example, 135 volts.
  • PID compensation calculation or the like is performed so that the motor current detected by the motor current detection circuit 205 becomes the current command value, and each FET of the three-phase bridge circuit 210 is based on the compensated signal.
  • PWM pulse width
  • the same effect as in the first embodiment can be obtained.
  • FIG. 7 shows a block diagram of the fourth embodiment of the present invention. Note that the same elements as those in FIG. In FIG. 7, the microprocessor 221 drives the gate signal of the regenerative resistance drive FET 211 so that the temperature detected by the temperature detection circuit 231 becomes a predetermined value or less.
  • the current command value is obtained so that the DC voltage value detected by the driver unit DC voltage detection circuit 227 is equal to or less than a predetermined value (for example, 135 volts).
  • a predetermined value for example, 135 volts.
  • PID compensation calculation or the like is performed so that the motor current detected by the motor current detection circuit 205 becomes the current command value, and each FET of the three-phase bridge circuit 210 is based on the compensated signal. Are controlled by PWM.
  • the operation of the fourth embodiment of the present invention will be described. Specifically, in the microprocessor 221, when the detected temperature is high, the energization time interval to the regenerative resistor 207 is shortened, and when the detected temperature is low, the energization time interval to the regenerative resistor 207 is lengthened. However, when the DC voltage detected by the driver unit DC voltage detection circuit 227 falls below a predetermined value (for example, 125 V), the driving of the gate signal of the regenerative resistance drive FET 211 is turned off. As a result, the same effect as in the first embodiment can be obtained.
  • a predetermined value for example, 125 V

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

 容量の大きな回生抵抗やヒートシンクを採用したり、より風量の大きなFANを使用しなくても、回生抵抗の発熱を仕様温度範囲に抑制でき、適正なブレーキ時間を得つつ、コンパクトで低コストなモータドライバー回路及び該モータドライバー回路を搭載した真空ポンプを提供する。  回生の初期段階ではモータ速度に応じて速度特性がbの傾斜から少しずつaの傾斜に近づくように回生電流を制御する。そして、この一方で回生電流が最大ブレーキ電流値Iset_brake_maxに至った場合には、それ以上の電流を流さないようにリミットをかける。このように、ブレーキ動作時、最大定格回転数での初期ブレーキ電流値を低く設定し、減速していく回転速度に応じブレーキ電流を増加させるように制御する。

Description

モータドライバー回路及び該モータドライバー回路を搭載した真空ポンプ
 本発明はモータドライバー回路及び該モータドライバー回路を搭載した真空ポンプに係わり、特に容量の大きな回生抵抗やヒートシンクを採用したり、より風量の大きなFANを使用しなくても、回生抵抗の発熱を仕様温度範囲に抑制でき、適正なブレーキ時間を得つつ、コンパクトで低コストなモータドライバー回路及び該モータドライバー回路を搭載した真空ポンプに関する。
 近年のエレクトロニクスの発展に伴い、メモリーや集積回路といった半導体の需要が急激に増大している。
 これらの半導体は、極めて純度の高い半導体基板に不純物をドープして電気的性質を与えたり、半導体基板上に微細な回路パターンを形成し、これを積層するなどして製造される。
 そして、これらの作業は空気中の塵等による影響を避けるため高真空状態のチャンバ内で行われる必要がある。このチャンバの排気には、一般に真空ポンプが用いられているが、特に残留ガスが少なく、保守が容易である等の点から真空ポンプの中の一つであるターボ分子ポンプが多用されている。
 また、半導体の製造工程では、さまざまなプロセスガスを半導体の基板に作用させる工程が数多くあり、ターボ分子ポンプはチャンバ内を真空にするのみならず、これらのプロセスガスをチャンバ内から排気するのにも使用される。
 更に、ターボ分子ポンプは、電子顕微鏡等の設備において、粉塵等の存在による電子ビームの屈折等を防止するため、電子顕微鏡等のチャンバ内の環境を高度の真空状態にするのにも用いられている。
 このようなターボ分子ポンプは、半導体製造装置や電子顕微鏡等のチャンバからガスを吸引排気するためのターボ分子ポンプ本体と、このターボ分子ポンプ本体を制御する制御装置とから構成されている。
 ここで、ターボ分子ポンプ本体の縦断面図を図8に示す。
 図8において、ターボ分子ポンプ本体100は、円筒状の外筒127の上端に吸気口101が形成されている。外筒127の内方には、ガスを吸引排気するためのタービンブレードとしての複数の回転翼102a、102b、102c、・・・を周部に放射状かつ多段に形成した回転体103を備える。
 この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば、いわゆる5軸制御の磁気軸受により浮上支持かつ位置制御されている。
 上側径方向電磁石104は、4個の電磁石が互いに直行するX軸とY軸とに対をなしロータ軸113を挟んで対向配置されている。このX軸とY軸は、ロータ軸113が磁気軸受の制御目標の位置にあるときのロータ軸113の軸芯に対して直角な平面上に想定されている。また、この上側径方向電磁石104の4個の電磁石の近傍には、それぞれの電磁石に対応し回転体103を挟んで対向配置された4個のコイルからなる上側径方向センサ107が備えられている。この上側径方向センサ107は回転体103の径方向位置を検出し、その信号を制御装置に送るように構成されている。
 ロータ軸113は、高透磁率材(鉄など)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。
 また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、下側径方向センサ108が、ロータ軸113の下側の径方向位置を検出し、その信号を制御装置に送るように構成されている。そして、ロータ軸113の上側と下側の径方向位置が、制御装置の磁気軸受フィードバック制御手段により調整されている。
 更に、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。回転体103の軸方向位置を検出するために軸方向センサ109が備えられ、その軸方向位置信号が制御装置に送られるように構成されている。
 軸方向電磁石106Aは、磁力により金属ディスク111を上方に吸引し、軸方向電磁石106Bは、金属ディスク111を下方に吸引する。
 このように、制御装置では、磁気軸受フィードバック制御手段により、軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持する。
 モータ121は、その回転子側にロータ軸113を取り囲むように周状に配置された複数の永久磁石の磁極を備えている。そして、これらの永久磁石は、モータ121の固定子側である電磁石から、ロータ軸113を回転させるトルクが加えられるようになっており、回転体103が回転駆動されるようになっている。
 また、モータ121には、図示しない回転数センサ及びモータ温度センサが取り付けられており、これらの回転数センサ及びモータ温度センサの検出信号を受けて、制御装置においてロータ軸113の回転が制御されている。
 回転翼102a、102b、102c、・・・とわずかの空隙を隔てて複数枚の固定翼123a、123b、123c、・・・が配設されている。回転翼102a、102b、102c、・・・は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。
 また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。
 そして、固定翼123の一端は、複数の段積みされた固定翼スペーサ125a、125b、125c、・・・の間に嵌挿された状態で支持されている。
 固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。
 固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設され、固定翼スペーサ125の下部とベース部129の間にはネジ付きスペーサ131が配設されている。
 このベース部129中のネジ付きスペーサ131の下部には排気口133が形成されている。そして、排気口133には、図示しないドライポンプ通路が接続されており、排気口133は、このドライポンプ通路を介して、図示しないドライポンプと接続されている。
 ネジ付きスペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。
 ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。
 回転体103の回転翼102a、102b、102c、・・・に続く最下部には円筒部102dが垂下されている。この円筒部102dの外周面は、ネジ付きスペーサ131の内周面に向かって張り出されており、このネジ付きスペーサ131の内周面と所定の隙間を隔てて近接されている。
 ベース部129は、ターボ分子ポンプ本体100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。ベース部129はターボ分子ポンプ本体100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。
 また、ベース部129には、コネクタ160が配設されており、このコネクタ160には、ターボ分子ポンプ本体100と制御装置とを電気的に接続するケーブルが接続されている。
 かかる構成において、回転翼102がロータ軸113と共にモータ121により駆動されて回転すると、回転翼102と固定翼123の作用により、吸気口101を通じて、図示しないチャンバから排気ガスが吸気される。
 吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。そして、ベース部129に移送されてきた排気ガスは、ネジ付きスペーサ131のネジ溝131aに案内されつつ排気口133へと送られる。
 ここで、図9にモータ121を駆動するモータドライバー回路のブロック図を示す。モータドライバー回路200は、モータ121のステータのU相巻線、V相巻線、W相巻線に対しそれぞれ図10のフローチャートに従った三相電流を流すため、V18、V19、V20、V21、V22、V23の6つのFET素子からなる三相ブリッジ回路210を備えている。そして、例えばセクション1では、V18とV21とをONしてU相からV相方向に電流を流す。また、セクション2では、V18とV23とをONしてU相からW相方向に電流を流す。以下、セクション3以降も順次フローチャートに従ってFET素子を切り替えることで回転磁界を生ずるようになっている。
 この三相ブリッジ回路210の一端は短絡保護素子201を介してコンデンサ203の一端と接続されている。一方、三相ブリッジ回路210の他端はモータ電流検出回路205を介してコンデンサ203の他端と接続されている。コンデンサ203の一端は更に回生抵抗207の一端及び電源の正極209に接続されている。コンデンサ203の他端は回生抵抗駆動FET211を介して回生抵抗207の他端に接続されると共に電源の負極213に接続されている。回生抵抗207の両端にはこの回生抵抗207と並列にダイオード215が接続されている。
 ポンプ加速時、図示しないドライバー制御用CPUは、モータ電流検出回路205によって検出されたモータ121に通電される電流値が所定の一定電流値になるように三相ブリッジ回路210の各FETをPWM制御しつつ、図示しない回転数センサにより図10のタイミングに従って、各相を転流させて所定の回転数になるように制御する。またブレーキ時は、所定の電流値になるように三相ブリッジ回路210のFETをPWM制御し、上記加速タイミングと逆方向に各相を転流させつつ、モータ121からの回生電力を回生抵抗207によって熱エネルギー消費させるため、回生抵抗駆動FET211をON・OFFさせる。
 また回生抵抗207は、より大きなエネルギー消費をさせるため、大容量(大型)なタイプを用いたり、ヒートシンク上に実装し、空冷FANで冷却している。
 ところで、従来、この回生抵抗でのエネルギー消費が安全な範囲で行われるようにするため、回生エネルギーを計算し、所定の回生エネルギーを超えることが無いように複数台のモータに対しそれぞれ回生制動を行うか否かを自動選択できるようにした技術が開示されている(特許文献1)。
特開2006-194094号公報
 しかしながら、特許文献1では複数台のモータからの回生制動を制御することで回生抵抗でのエネルギー消費が安全な範囲で行われることを目的としており、各モータそれぞれにおける回生抵抗の発熱を抑制したりブレーキ時間を短縮するものではない。
 この各モータ単体において、ブレーキ時間を短くするため、発生する回生エネルギーを、回生抵抗207で仮に常時通電させると、回生抵抗207の発熱が大となり、その温度が上昇する。このため、熱容量の大きな回生抵抗207を使用したり、ヒートシンクを付け、風量の大きいFANを使用して冷却する必要がある。しかしこれら部品の使用は、コストアップを招くほか、コントローラの寸法が大きくなる問題があった。
 一方、回生抵抗207への通電量を小さくすることにより、回生抵抗207の発熱を抑制できるが、ブレーキ時間が増大するという性能上の問題が発生する。
 本発明はこのような従来の課題に鑑みてなされたもので、特に容量の大きな回生抵抗やヒートシンクを採用したり、より風量の大きなFANを使用しなくても、回生抵抗の発熱を仕様温度範囲に抑制でき、適正なブレーキ時間を得つつ、コンパクトで低コストなモータドライバー回路及び該モータドライバー回路を搭載した真空ポンプを提供することを目的とする。
 このため本発明(請求項1)のモータドライバー回路は、モータと、該モータを駆動するモータ駆動回路と、前記モータのモータ速度を検出するモータ速度検出手段と、前記モータ駆動回路に流れる電流を検出する電流検出手段と、前記モータのブレーキ動作時に前記モータ速度検出手段で検出したモータ速度に応じて前記モータの駆動電流設定値を演算するモータ駆動電流設定値演算手段と、前記電流検出手段で検出した電流が該モータ駆動電流設定値演算手段で演算した駆動電流設定値となるように駆動電流を調整する駆動電流調整手段と、前記モータ駆動回路では該駆動電流調整手段で調整した駆動電流に基づき前記モータが駆動されることを特徴とする。
 モータのブレーキ動作時にモータ速度に応じてモータの駆動電流設定値を演算することで、高速回転時は回生エネルギーの消費を小さくし、減速するに従って回生エネルギーの消費を大きくできる。
 また、本発明(請求項2)のモータドライバー回路は、前記モータのブレーキ動作時に前記モータ駆動回路から回生された電流が流される電源に対し並列に配置された回生抵抗と、該回生抵抗に対し直列接続され、電流を流すか否か制御する制御素子と、前記モータ駆動回路の電圧を検出する電圧検出手段と、該電圧検出手段で検出した電圧が設定電圧値以下となるように前記制御素子をON、OFF駆動する制御素子駆動手段とを備えて構成した。
 更に、本発明(請求項3)のモータドライバー回路は、前記モータ駆動電流設定値演算手段で演算される駆動電流設定値は、前記モータの最大定格回転数における初期電流値が小さく設定され、減速していくモータ速度に応じて大きく設定されることを特徴とする。
 これにより回生抵抗のエネルギーがモータ速度に応じて調節される。従って、回生抵抗の許容温度を超えない目一杯の範囲で短時間での減速ができるようになる。従って、容量の大きな回生抵抗やヒートシンクを採用したり、より風量の大きなFANを使用しなくても、回生抵抗の発熱を仕様温度範囲に抑制でき、適正なブレーキ時間を得ることができる。
 更に、本発明(請求項4)のモータドライバー回路は、前記駆動電流設定値は所定値以上にならないようにリミットがかけられたことを特徴とする。
 更に、本発明(請求項5)のモータドライバー回路は、モータと、該モータを駆動するモータ駆動回路と、前記モータのブレーキ動作時に該モータ駆動回路から回生された電流が流される電源に対し並列に配置された回生抵抗と、該回生抵抗に対し直列接続され、電流を流すか否か制御する制御素子と、前記回生抵抗の温度を検出する温度検出手段と、該温度検出手段で検出した温度が所定値以下になるように前記モータの駆動電流指令値を演算する駆動電流指令値演算手段と、前記モータ駆動回路の電圧を検出する電圧検出手段と、該電圧検出手段で検出した電圧が設定電圧値以下となるように前記制御素子をON、OFF駆動する制御素子駆動手段とを備えて構成した。
 回生抵抗の温度を直接検出しつつ、この回生抵抗の発熱を仕様温度範囲に抑制するため、回生抵抗の許容温度を超えない目一杯の範囲で短時間での減速ができる。
 更に、本発明(請求項6)のモータドライバー回路は、モータと、該モータを駆動するモータ駆動回路と、前記モータのブレーキ動作時に該モータ駆動回路から回生された電流が流される電源に対し並列に配置された回生抵抗と、回生抵抗に対し直列接続され、電流を流すか否か制御する制御素子と、前記モータのモータ速度を検出するモータ速度検出手段と、前記モータ駆動回路に流れる電流を検出する電流検出手段と、モータ速度と前記制御素子のON、OFF信号のデューティサイクルとの関連を規定したテーブルと、該テーブルより前記モータのブレーキ動作時に前記モータ速度検出手段で検出したモータ速度に応じた前記制御素子のON、OFF信号のデューティサイクルを算出するデューティサイクル算出手段と、該デューティサイクル算出手段で算出したデューティサイクルに基づき前記制御素子をON、OFF制御する制御素子制御手段とを備えて構成した。
 テーブルに基づきモータ速度に応じた制御素子のON、OFF信号のデューティサイクルを算出可能なので、制御が容易に行える。
 更に、本発明(請求項7)のモータドライバー回路は、モータと、該モータを駆動するモータ駆動回路と、前記モータのブレーキ動作時に該モータ駆動回路から回生された電流が流される電源に対し並列に配置された回生抵抗と、該回生抵抗に対し直列接続され、電流を流すか否か制御する制御素子と、前記回生抵抗の温度を検出する温度検出手段と、該温度検出手段で検出した温度が所定値以下になるように前記制御素子をON、OFF制御する制御素子ON、OFF制御手段とを備えて構成した。
 更に、本発明(請求項8)のモータドライバー回路は、前記制御素子ON、OFF制御手段で制御されるON、OFF信号のデューティサイクルは、前記温度検出手段で検出した温度が高いときに通電間隔が短く設定され、温度が低いときに通電時間が長く設定されることを特徴とする。
 更に、本発明(請求項9)のモータドライバー回路は、前記モータ駆動回路の電圧を検出する電圧検出手段と、該電圧検出手段で検出した電圧が設定電圧値以下となるように駆動電流を調整する駆動電流調整手段と、前記モータ駆動回路では該駆動電流調整手段で調整した駆動電流に基づき前記モータが駆動されることを特徴とする。
 更に、本発明(請求項10)の真空ポンプは、請求項1~9に記載のモータドライバー回路を搭載したことを特徴とする。
 以上説明したように本発明によれば、モータのブレーキ動作時にモータ速度に応じてモータの駆動電流設定値を演算するように構成したので、高速回転時は回生エネルギーの消費を小さくし、減速するに従って回生エネルギーの消費を大きくできる。
本発明の第1実施形態のブロック構成図 モータに供給する電流値とモータ速度及び停止時間の関係、並びにモータに供給する電流値と回生抵抗の温度の関係 モータ電流値とモータ速度、停止時間、回生抵抗の温度の関係 本発明の第2実施形態のブロック構成図 本発明の第2実施形態の動作フロー 本発明の第3実施形態のブロック構成図 本発明の第4実施形態のブロック構成図 ターボ分子ポンプ本体の縦断面図 モータドライバー回路のブロック図 モータ駆動フローチャート
 以下、本発明の実施形態について説明する。本発明の第1実施形態のブロック構成図を図1に示す。なお、図9と同一要素のものについては同一符号を付して説明は省略する。
 図1において、モータ電流検出回路205で検出したモータ電流はマイクロプロセッサ221及び三相ブリッジ制御回路225に入力されるようになっている。また、回転数センサ223によりモータ速度が検出され、マイクロプロセッサ221に入力されるようになっている。マイクロプロセッサ221では、入力されたモータ速度に基づき所定の演算が行われ、電流指令値が求められるようになっている。三相ブリッジ制御回路225では、モータ電流検出回路205で検出したモータ電流がこの電流指令値となるようにPID補償演算等が行われ、この補償された信号に基づき三相ブリッジ回路210の各FETがPWM制御されるようになっている。
 また、ドライバ部直流電圧検出回路227では、モータドライバー回路200の電圧をコンデンサ203の両端の電圧を基に検出するようになっている。そして、このドライバ部直流電圧検出回路227で検出された直流電圧値が所定値(例えば135ボルト)以下になるように、回生抵抗駆動FET211がON、OFF制御されるようになっている。
 次に、本発明の第1実施形態の動作を説明する。
 図2には、モータに供給する電流値とモータ速度及び停止時間の関係、並びにモータに供給する電流値と回生抵抗の温度の関係を概念図として示す。図2の左部のモータ加速領域においては、モータに供給する電流値を所定値に設定することでモータ速度がほぼ線形に増加する。そして、一旦定格運転に至ったときには、ポンプが真空引きで負荷が余り掛からないことから電流値もほんのわずかの値で済む。
 その後、ブレーキ領域(図中右部)に入るが、このとき回生電流を最大ブレーキ電流値Iset_brake_max(例えば15[A]程度)でこのブレーキ領域中継続して流すと仮定すると、速度特性は図中aで示すようにモータ速度は理想的に素早く落とすことができる。しかしながら、その一方で、回生エネルギーは回生抵抗207で急激に消費されるため、図2の回生抵抗の温度特性中にdで示すように限界温度である例えば300度を短時間の内にはるかに超えてしまう。
 また、ブレーキ領域に入った時点でIset_brake_n0(例えば6[A]程度)をブレーキ期間中継続して流すと仮定すると、回生エネルギーは回生抵抗207で徐々に消費されるため、図2の回生抵抗の温度特性中にeで示すように限界温度である例えば300度を超えない回生を行うことができるが、その一方で、速度特性は図中bで示すようにモータ速度が落ちるまでに長時間を要してしまう。
 そこで、かかる不都合を回避するため、本実施形態では、回生の初期段階ではモータ速度に応じて速度特性がbの傾斜から少しずつaの傾斜に近づくように回生電流を制御することにしたものである。そして、この一方で回生電流が最大ブレーキ電流値Iset_brake_maxに至った場合には、それ以上の電流を流さないようにリミットをかけることにしたものである。
 即ち、図中右側部のブレーキ領域では、加速時とは逆方向に各相を転流させつつ電流を回生させる。このときのブレーキ動作時の回生エネルギーは、ブレーキ電流設定値Iset_brakeを数1に示すようにモータ速度に応じて減速させることで調節する。
Figure JPOXMLDOC01-appb-M000001
 ここに、Iset_brake_n0は初期ブレーキ電流値であり、n0は最大定格回転速度、nは回転速度である。
 ブレーキ電流設定値Iset_brakeは、図2に示すように、ブレーキ領域に入った時点では初期ブレーキ電流値Iset_brake_n0が設定される。その後、数1に基づきモータ速度が減速されるに連れて次第に大きくなり、最大ブレーキ電流値Iset_brake_maxに至った場合にそれ以上大きな電流値とならないようにリミットがかけられる。このように、ブレーキ動作時、最大定格回転数での初期ブレーキ電流値を低く設定し、減速していく回転速度に応じブレーキ電流を増加させるように制御する。
 即ち高速回転時は、回生抵抗によるエネルギー消費を小さくし、減速するに従ってエネルギー消費を増加させるようにする。
 図1のブロック図に基づき説明すると、ブレーキ領域に入ったときマイクロプロセッサ221では、回転数センサ223で検出した減速回転数に応じて回生されるモータ電流設定値の大きさを数1に基づき演算し出力する。三相ブリッジ制御回路225では、このモータ電流設定値をモータ電流検出回路205で検出した電流値と比較し、偏差が0となるように三相ブリッジ回路210のゲートをON、OFF制御する。このように、マイクロプロセッサ221は三相ブリッジ回路210を電流フィードバックで制御しつつ、ドライバ部直流電圧検出回路227で検出された直流電圧値が例えば135ボルト以下になるように、回生抵抗駆動FET211をON、OFFさせる。これにより回生抵抗のエネルギーがモータ速度に応じて調節される。従って、回生抵抗207の許容温度を超えない目一杯の範囲で短時間での減速ができるようになる。
 なお、以上のモデルに基づき実際に実験した結果を図3に示す。図3において、gの線はモータ電流設定値を15[A]一定で指定したときのモータ速度-停止時間の特性を示し、hの線はモータ電流設定値を6[A]一定で指定したときのモータ速度-停止時間の特性を示す。そして、iの曲線は数1に基づきモータ速度に応じてモータ電流設定値を指定したときのモータ速度-停止時間の特性を示す。
 gのように、モータ電流設定値を15[A]一定で指定したときには、停止時間の経過に伴い回生抵抗207の温度は図中jで示すように急激に立ち上がるため、回生抵抗207の許容温度を短時間の内に超えてしまう。一方、hのように、モータ電流設定値を6[A]一定で指定したときには、停止時間の経過に伴い回生抵抗207の温度は図中kで示すようにゆるやかで、かつ最大温度でも250度を超えない。しかしながら、モータ停止までに1400秒程要してしまう。これに対し、iのように数1に基づきブレーキ電流設定値Iset_brakeを指定したときには回生抵抗207の温度は図中lで示すようにほぼ最大温度でも280度程度となり、回生抵抗207の許容温度一杯内でありつつ停止時間は800秒程に短縮できる。
 このことにより、容量の大きな回生抵抗やヒートシンクを採用したり、より風量の大きなFANを使用しなくても、回生抵抗の発熱を仕様温度範囲に抑制できる。また、適正なブレーキ時間を得つつ、コンパクトで低コストなモータドライバー回路を実現できる。
 次に、本発明の第2実施形態について説明する。本発明の第2実施形態のブロック構成図を図4に示す。なお、図1と同一要素のものについては同一符号を付して説明は省略する。
 図4において、温度検出回路231は回生抵抗207の温度を検出しマイクロプロセッサ221に出力するようになっている。マイクロプロセッサ221では、この温度が所定値以下になるように電流指令値を設定するようになっている。三相ブリッジ制御回路225では、モータ電流検出回路205で検出したモータ電流がこの電流指令値となるようにPID補償演算等が行われ、この補償された信号に基づき三相ブリッジ回路210の各FETがPWM制御されるようになっている。
 次に、本発明の第2実施形態の動作フローを図5を基に説明する。
 図5において、ステップ1(図中S1と略す。以下同旨)では、マイクロプロセッサ221が温度検出回路231で検出した回生抵抗207の温度が所定値より高いか、低いかを判断する。そして、低かった場合には、ステップ2で三相ブリッジ制御回路225に対する電流指令値を増加させる。この電流指令値に基づき三相ブリッジ制御回路225では三相ブリッジ回路210の各FETに対しON、OFF信号を発する。この結果、ステップ3でモータドライバー回路200の電圧が増加する。このため、ステップ4では、マイクロプロセッサ221はこの電圧が所定値以下になるように回生抵抗207への通電時間間隔を増加させる。このことにより、ステップ5では、回生抵抗207のエネルギー消費が増加し回生抵抗207の温度が高くなる。
 一方、ステップ6のように、温度検出回路231で検出した回生抵抗207の温度が所定値より高い場合、ステップ7で三相ブリッジ制御回路225に対する電流指令値を減少させる。この結果、ステップ8でモータドライバー回路200の電圧が減少する。このため、ステップ9では、マイクロプロセッサ221は回生抵抗207への通電時間間隔を減少させる。このことにより、ステップ10では、回生抵抗207のエネルギー消費が減少し回生抵抗207の温度が低くなる。
 このことにより、第1実施形態と同様の効果を得ることができる。
 次に、本発明の第3実施形態について説明する。本発明の第3実施形態のブロック構成図を図6に示す。なお、図1と同一要素のものについては同一符号を付して説明は省略する。
 図6において、マイクロプロセッサ221では、図示しない記憶領域に予め設定されたルックアップテーブルが保存されている。このルックアップテーブルはモータ速度に対する回生抵抗駆動FET211のON/OFFデーティサイクルを規定したものである。そして、マイクロプロセッサ221は回転数センサ223で検出したモータ速度に応じてルックアップテーブルを参照し、該当するON/OFFデーティサイクルを抽出して、このON/OFFデーティサイクルに基づき回生抵抗駆動FET211のゲート信号を駆動するようになっている。
 一方、マイクロプロセッサ221では、ドライバ部直流電圧検出回路227で検出された直流電圧値が所定値(例えば135ボルト)以下になるように、電流指令値が求められるようになっている。三相ブリッジ制御回路225では、モータ電流検出回路205で検出したモータ電流がこの電流指令値となるようにPID補償演算等が行われ、この補償された信号に基づき三相ブリッジ回路210の各FETがPWM制御されるようになっている。
 次に、本発明の第3実施形態の動作を説明する。
 ルックアップテーブルを設定するに際しては、回生抵抗207の温度が仕様以下で最適なエネルギー消費をする駆動パターンを事前に実験等により評価・決定する必要がある。
 回生抵抗207の通電パターンイメージの例としては例えば第1実施形態のように、モータ速度が高いときには、回生抵抗駆動FET211のゲート信号の通電時間を短くし、一方、モータ速度が低いときには、通電時間を長くする。但し、ドライバ部直流電圧検出回路227で検出した直流電圧が所定値(例えば125V)以下になった場合は回生抵抗駆動FET211のゲート信号の駆動をOFFする。
 また、マイクロプロセッサ221では、ドライバ部直流電圧検出回路227で検出された直流電圧値が所定値(例えば135ボルト)以下になるように、電流指令値が求められるようになっている。三相ブリッジ制御回路225では、モータ電流検出回路205で検出したモータ電流がこの電流指令値となるようにPID補償演算等が行われ、この補償された信号に基づき三相ブリッジ回路210の各FETがPWM制御されるようになっている。
 このことにより、第1実施形態と同様の効果を得ることができる。
 次に、本発明の第4実施形態について説明する。本発明の第4実施形態のブロック構成図を図7に示す。なお、図4と同一要素のものについては同一符号を付して説明は省略する。
 図7において、マイクロプロセッサ221では、温度検出回路231で検出した温度が所定値以下になるように回生抵抗駆動FET211のゲート信号を駆動するようになっている。
 一方、マイクロプロセッサ221では、ドライバ部直流電圧検出回路227で検出された直流電圧値が所定値(例えば135ボルト)以下になるように、電流指令値が求められるようになっている。三相ブリッジ制御回路225では、モータ電流検出回路205で検出したモータ電流がこの電流指令値となるようにPID補償演算等が行われ、この補償された信号に基づき三相ブリッジ回路210の各FETがPWM制御されるようになっている。
 次に、本発明の第4実施形態の動作を説明する。
 マイクロプロセッサ221では、具体的には、検出した温度が高いときには、回生抵抗207への通電時間間隔を短くし、一方、検出した温度が低いときには、回生抵抗207への通電時間間隔を長くする。但し、ドライバ部直流電圧検出回路227で検出した直流電圧が所定値(例えば125V)以下になった場合は回生抵抗駆動FET211のゲート信号の駆動をOFFする。
 このことにより、第1実施形態と同様の効果を得ることができる。
 121  モータ
 200  モータドライバー回路
 205  モータ電流検出回路
 207  回生抵抗
 210  三相ブリッジ回路
 211  回生抵抗駆動FET
 221  マイクロプロセッサ
 223  回転数センサ
 225  三相ブリッジ制御回路
 227  ドライバ部直流電圧検出回路
 231  温度検出回路

Claims (10)

  1.  モータ(121)と、
    該モータ(121)を駆動するモータ駆動回路(210)と、
    前記モータ(121)のモータ速度を検出するモータ速度検出手段(223)と、
    前記モータ駆動回路(210)に流れる電流を検出する電流検出手段(205)と、
    前記モータ(121)のブレーキ動作時に前記モータ速度検出手段(223)で検出したモータ速度に応じて前記モータ(121)の駆動電流設定値を演算するモータ駆動電流設定値演算手段(221)と、
    前記電流検出手段(205)で検出した電流が該モータ駆動電流設定値演算手段(221)で演算した駆動電流設定値となるように駆動電流を調整する駆動電流調整手段(225)と、
    前記モータ駆動回路(210)では該駆動電流調整手段(225)で調整した駆動電流に基づき前記モータ(121)が駆動されることを特徴とするモータドライバー回路。
  2.  前記モータ(121)のブレーキ動作時に前記モータ駆動回路(210)から回生された電流が流される電源に対し並列に配置された回生抵抗(207)と、
    該回生抵抗(207)に対し直列接続され、電流を流すか否か制御する制御素子(211)と、
    前記モータ駆動回路(210)の電圧を検出する電圧検出手段(227)と、
    該電圧検出手段(227)で検出した電圧が設定電圧値以下となるように前記制御素子(211)をON、OFF駆動する制御素子駆動手段(221)とを備えたことを特徴とする請求項1記載のモータドライバー回路。
  3.  前記モータ駆動電流設定値演算手段(221)で演算される駆動電流設定値は、前記モータ(121)の最大定格回転数における初期電流値Iset_brake_n0が小さく設定され、減速していくモータ速度に応じて大きく設定されることを特徴とする請求項1又は請求項2記載のモータドライバー回路。
  4.  前記駆動電流設定値は所定値以上にならないようにリミットIset_brake_maxがかけられたことを特徴とする請求項1、2又は3記載のモータドライバー回路。
  5.  モータ(121)と、
    該モータ(121)を駆動するモータ駆動回路(210)と、
    前記モータ(121)のブレーキ動作時に該モータ駆動回路(210)から回生された電流が流される電源に対し並列に配置された回生抵抗(207)と、
    該回生抵抗(207)に対し直列接続され、電流を流すか否か制御する制御素子(211)と、
    前記回生抵抗(207)の温度を検出する温度検出手段(231)と、
    該温度検出手段(231)で検出した温度が所定値以下になるように前記モータ(121)の駆動電流指令値を演算する駆動電流指令値演算手段(221)と、
    前記モータ駆動回路(210)の電圧を検出する電圧検出手段(227)と、
    該電圧検出手段(227)で検出した電圧が設定電圧値以下となるように前記制御素子(211)をON、OFF駆動する制御素子駆動手段(221)とを備えたことを特徴とするモータドライバー回路。
  6.  モータ(121)と、
    該モータ(121)を駆動するモータ駆動回路(210)と、
    前記モータ(121)のブレーキ動作時に該モータ駆動回路(210)から回生された電流が流される電源に対し並列に配置された回生抵抗(207)と、
    該回生抵抗(207)に対し直列接続され、電流を流すか否か制御する制御素子(211)と、
    前記モータ(121)のモータ速度を検出するモータ速度検出手段(223)と、
    前記モータ駆動回路(210)に流れる電流を検出する電流検出手段(205)と、
    モータ速度と前記制御素子(211)のON、OFF信号のデューティサイクルとの関連を規定したテーブル(221)と、
    該テーブル(221)より前記モータ(121)のブレーキ動作時に前記モータ速度検出手段(223)で検出したモータ速度に応じた前記制御素子(211)のON、OFF信号のデューティサイクルを算出するデューティサイクル算出手段(221)と、
    該デューティサイクル算出手段(221)で算出したデューティサイクルに基づき前記制御素子(211)をON、OFF制御する制御素子制御手段(221)とを備えたことを特徴とするモータドライバー回路。
  7.  モータ(121)と、
    該モータ(121)を駆動するモータ駆動回路(210)と、
    前記モータ(121)のブレーキ動作時に該モータ駆動回路(210)から回生された電流が流される電源に対し並列に配置された回生抵抗(207)と、
    該回生抵抗(207)に対し直列接続され、電流を流すか否か制御する制御素子(211)と、
    前記回生抵抗(207)の温度を検出する温度検出手段(231)と、
    該温度検出手段(231)で検出した温度が所定値以下になるように前記制御素子(211)をON、OFF制御する制御素子ON、OFF制御手段(221)とを備えたことを特徴とするモータドライバー回路。
  8.  前記制御素子ON、OFF制御手段(221)で制御されるON、OFF信号のデューティサイクルは、前記温度検出手段(231)で検出した温度が高いときに通電間隔が短く設定され、温度が低いときに通電時間が長く設定されることを特徴とする請求項7記載のモータドライバー回路。
  9.  前記モータ駆動回路(210)の電圧を検出する電圧検出手段(227)と、
    該電圧検出手段(227)で検出した電圧が設定電圧値以下となるように駆動電流を調整する駆動電流調整手段(225)と、
    前記モータ駆動回路(210)では該駆動電流調整手段(225)で調整した駆動電流に基づき前記モータ(121)が駆動されることを特徴とする請求項6、7又は8記載のモータドライバー回路。
  10.  請求項1~9に記載のモータドライバー回路を搭載したことを特徴とする真空ポンプ。
PCT/JP2009/002442 2008-08-05 2009-06-01 モータドライバー回路及び該モータドライバー回路を搭載した真空ポンプ WO2010016176A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010523724A JP5606315B2 (ja) 2008-08-05 2009-06-01 磁気軸受装置及び該磁気軸受装置を搭載した真空ポンプ
EP09804663.4A EP2315349B1 (en) 2008-08-05 2009-06-01 Motor driver circuit and vacuum pump equipped with motor driver circuit
US12/737,089 US9093938B2 (en) 2008-08-05 2009-06-01 Motor driver circuit and vacuum pump having the motor driver circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-202344 2008-08-05
JP2008202344 2008-08-05

Publications (1)

Publication Number Publication Date
WO2010016176A1 true WO2010016176A1 (ja) 2010-02-11

Family

ID=41663405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002442 WO2010016176A1 (ja) 2008-08-05 2009-06-01 モータドライバー回路及び該モータドライバー回路を搭載した真空ポンプ

Country Status (5)

Country Link
US (1) US9093938B2 (ja)
EP (1) EP2315349B1 (ja)
JP (1) JP5606315B2 (ja)
KR (1) KR101552747B1 (ja)
WO (1) WO2010016176A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071258A1 (en) * 2010-05-21 2013-03-21 Edwards Japan Limited Deposition detection device for exhaust pump and exhaust pump having the same
JP2016538463A (ja) * 2013-11-14 2016-12-08 オーリコン レイボルド バキューム ゲーエムベーハー 制御デバイスの入力電流を制限する、真空ポンプの加速のための制御方法
EP2626568A4 (en) * 2010-10-07 2018-01-24 Edwards Japan Limited Vacuum pump control device and vacuum pump
US20220073284A1 (en) * 2020-09-07 2022-03-10 Daifuku Co., Ltd. Article Transport Facility

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5864219B2 (ja) * 2011-11-08 2016-02-17 平田機工株式会社 制御方法及び制御装置
GB2503671B (en) * 2012-07-03 2014-12-17 Dyson Technology Ltd Control of a brushless motor
JP6004374B2 (ja) * 2012-12-28 2016-10-05 パナソニックIpマネジメント株式会社 モータ制御装置及びモータ制御方法
JP6394229B2 (ja) * 2014-09-24 2018-09-26 株式会社島津製作所 ターボ分子ポンプ
CN108691149A (zh) * 2017-04-10 2018-10-23 台达电子工业股份有限公司 无感测器的直流无刷马达负载测量方法以及其装置
EP3952099B1 (en) * 2020-08-06 2024-01-24 Schneider Toshiba Inverter Europe SAS Backspinning motor control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240869A (ja) * 1985-04-16 1986-10-27 Matsushita Electric Ind Co Ltd モ−タ減速装置
JPH06225458A (ja) * 1993-01-20 1994-08-12 Hitachi Ltd 電力変換装置及び制御方法
JPH09182474A (ja) * 1995-12-20 1997-07-11 Sanyo Electric Co Ltd モータ駆動装置
JPH1118464A (ja) * 1997-06-23 1999-01-22 Sanyo Denki Co Ltd モータ制御装置
JP2005094852A (ja) * 2003-09-12 2005-04-07 Boc Edwards Kk モータ制御システム及び該モータ制御システムを搭載した真空ポンプ
JP2006194094A (ja) 2005-01-11 2006-07-27 Shimadzu Corp 真空ポンプ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900002784B1 (ko) * 1985-04-30 1990-04-30 미쓰비시전기주식회사 교류엘리베이터의 제어장치
US5053632A (en) * 1987-02-18 1991-10-01 Hino Jidosha Kogyo Kabushiki Kaisha Electric braking and auxiliary engine mechanism for a motor vehicle
JP3751736B2 (ja) 1998-01-21 2006-03-01 ヤマハ発動機株式会社 電動車両の運転制御装置
JP2000006878A (ja) * 1998-06-22 2000-01-11 Sanyo Electric Co Ltd 電動自転車の回生電流制御方法
ATE218253T1 (de) * 1999-08-18 2002-06-15 Holtz Joachim Prof Dr Ing Verfahren zur bremsung eines feldorientiertbetriebenen asynchronmotors, regelungsvorrichtung zur verfahrensausführung und speichermedium
JP3634270B2 (ja) * 2001-02-02 2005-03-30 株式会社豊田中央研究所 モータ駆動回路
JP3791375B2 (ja) * 2001-09-27 2006-06-28 株式会社明電舎 電動車両の制御方法と装置
CN1251394C (zh) * 2002-02-25 2006-04-12 大金工业株式会社 电动机控制方法及其装置
JP2004154961A (ja) * 2002-11-01 2004-06-03 Toshiba Mach Co Ltd 回生機能を有する電動射出成形機の駆動制御装置
JP4145126B2 (ja) 2002-11-21 2008-09-03 三洋電機株式会社 モータ制御装置
CN1985432B (zh) * 2004-07-06 2010-09-08 株式会社安川电机 逆变器装置和交流电机的减速方法
WO2007013141A1 (ja) * 2005-07-26 2007-02-01 Mitsubishi Denki Kabushiki Kaisha エレベーターの制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240869A (ja) * 1985-04-16 1986-10-27 Matsushita Electric Ind Co Ltd モ−タ減速装置
JPH06225458A (ja) * 1993-01-20 1994-08-12 Hitachi Ltd 電力変換装置及び制御方法
JPH09182474A (ja) * 1995-12-20 1997-07-11 Sanyo Electric Co Ltd モータ駆動装置
JPH1118464A (ja) * 1997-06-23 1999-01-22 Sanyo Denki Co Ltd モータ制御装置
JP2005094852A (ja) * 2003-09-12 2005-04-07 Boc Edwards Kk モータ制御システム及び該モータ制御システムを搭載した真空ポンプ
JP2006194094A (ja) 2005-01-11 2006-07-27 Shimadzu Corp 真空ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2315349A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071258A1 (en) * 2010-05-21 2013-03-21 Edwards Japan Limited Deposition detection device for exhaust pump and exhaust pump having the same
US11149737B2 (en) * 2010-05-21 2021-10-19 Edwards Japan Limited Deposition detection device for exhaust pump and exhaust pump having the same
EP2626568A4 (en) * 2010-10-07 2018-01-24 Edwards Japan Limited Vacuum pump control device and vacuum pump
US10215191B2 (en) 2010-10-07 2019-02-26 Edwards Japan Limited Vacuum pump control device and vacuum pump
JP2016538463A (ja) * 2013-11-14 2016-12-08 オーリコン レイボルド バキューム ゲーエムベーハー 制御デバイスの入力電流を制限する、真空ポンプの加速のための制御方法
US20220073284A1 (en) * 2020-09-07 2022-03-10 Daifuku Co., Ltd. Article Transport Facility
US11897698B2 (en) * 2020-09-07 2024-02-13 Daifuku Co., Ltd. Article transport facility

Also Published As

Publication number Publication date
KR20110031422A (ko) 2011-03-28
JPWO2010016176A1 (ja) 2012-01-12
JP5606315B2 (ja) 2014-10-15
EP2315349B1 (en) 2016-05-04
EP2315349A4 (en) 2013-11-27
US20110121767A1 (en) 2011-05-26
EP2315349A1 (en) 2011-04-27
KR101552747B1 (ko) 2015-09-11
US9093938B2 (en) 2015-07-28

Similar Documents

Publication Publication Date Title
JP5606315B2 (ja) 磁気軸受装置及び該磁気軸受装置を搭載した真空ポンプ
KR102106659B1 (ko) 전자 회전 장치 및 그 전자 회전 장치를 구비한 진공 펌프
JP2004286045A (ja) 磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置
KR102589086B1 (ko) 진공 펌프 및 제어 장치
JP2005083316A (ja) モータ制御システム及び該モータ制御システムを搭載した真空ポンプ
JP5682157B2 (ja) 真空ポンプ用モータ駆動装置およびポンプシステム
JP4502667B2 (ja) 磁気軸受装置及び該磁気軸受装置を搭載したターボ分子ポンプ
KR20040082954A (ko) 자기 베어링 장치 및 이 자기 베어링 장치를 탑재한 터보분자 펌프
KR20230169091A (ko) 터보 분자 펌프
JP2023081876A (ja) 真空ポンプ
JP4376645B2 (ja) 磁気軸受装置及び該磁気軸受装置を搭載したターボ分子ポンプ
WO2024203989A1 (ja) 真空ポンプ、磁気軸受制御装置、および圧縮解凍方法
WO2022186075A1 (ja) 真空ポンプ
JP2005094852A (ja) モータ制御システム及び該モータ制御システムを搭載した真空ポンプ
JP7531313B2 (ja) 真空ポンプおよび真空ポンプの回転体
WO2022163341A1 (ja) 真空ポンプ及びスペーサ
WO2022264925A1 (ja) 真空ポンプ
WO2023027084A1 (ja) 真空ポンプおよび固定部品
TW202328565A (zh) 真空泵、真空泵之軸承保護構造、及真空泵之旋轉體
JP2024129334A (ja) 真空ポンプ
CN116097003A (zh) 真空泵及真空泵具备的旋转圆筒体
CN116783391A (zh) 真空泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804663

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523724

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107027521

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009804663

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12737089

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE