WO2010016176A1 - モータドライバー回路及び該モータドライバー回路を搭載した真空ポンプ - Google Patents
モータドライバー回路及び該モータドライバー回路を搭載した真空ポンプ Download PDFInfo
- Publication number
- WO2010016176A1 WO2010016176A1 PCT/JP2009/002442 JP2009002442W WO2010016176A1 WO 2010016176 A1 WO2010016176 A1 WO 2010016176A1 JP 2009002442 W JP2009002442 W JP 2009002442W WO 2010016176 A1 WO2010016176 A1 WO 2010016176A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- current
- control element
- regenerative resistor
- voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P3/00—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
- H02P3/06—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
- H02P3/18—Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D25/0606—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
Definitions
- the present invention relates to a motor driver circuit and a vacuum pump equipped with the motor driver circuit.
- the heat generation of the regenerative resistor is specified without employing a large capacity regenerative resistor or heat sink or using a FAN having a larger air volume.
- the present invention relates to a compact and low-cost motor driver circuit that can be controlled within a temperature range and obtaining an appropriate brake time, and a vacuum pump equipped with the motor driver circuit.
- a vacuum pump is generally used for evacuating the chamber, but a turbo molecular pump, which is one of the vacuum pumps, is often used because it has a small residual gas and is easy to maintain.
- turbo molecular pump not only evacuates the chamber, but also exhausts these process gases from the chamber. Also used. Furthermore, turbo molecular pumps are also used in equipment such as electron microscopes to prevent the refraction of the electron beam due to the presence of dust, etc., so that the environment in the chamber of the electron microscope or the like is in a highly vacuum state. Yes.
- Such a turbo molecular pump is composed of a turbo molecular pump main body for sucking and exhausting gas from a chamber of a semiconductor manufacturing apparatus or an electron microscope, and a control device for controlling the turbo molecular pump main body.
- the turbo molecular pump main body 100 has an intake port 101 formed at the upper end of a cylindrical outer cylinder 127.
- a rotating body 103 On the inner side of the outer cylinder 127, there is provided a rotating body 103 in which a plurality of rotating blades 102a, 102b, 102c,... As turbine blades for sucking and exhausting gas are formed radially and in multiple stages.
- a rotor shaft 113 is attached to the center of the rotating body 103.
- the rotor shaft 113 is levitated and supported by a so-called 5-axis control magnetic bearing, for example.
- the upper radial electromagnet 104 forms a pair with an X axis and a Y axis in which four electromagnets are orthogonal to each other, and is disposed so as to sandwich the rotor shaft 113.
- the X axis and the Y axis are assumed to be on a plane perpendicular to the axis of the rotor shaft 113 when the rotor shaft 113 is at the control target position of the magnetic bearing.
- an upper radial sensor 107 composed of four coils corresponding to each electromagnet and arranged opposite to each other with the rotating body 103 interposed therebetween is provided. .
- the upper radial direction sensor 107 is configured to detect the radial position of the rotating body 103 and send the signal to the control device.
- the rotor shaft 113 is formed of a high permeability material (such as iron) and is attracted by the magnetic force of the upper radial electromagnet 104.
- the lower radial electromagnet 105 and the lower radial sensor 108 are arranged in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107, and the lower radial sensor 108 has a lower diameter of the rotor shaft 113. It is configured to detect the directional position and send the signal to the control device. And the upper and lower radial positions of the rotor shaft 113 are adjusted by the magnetic bearing feedback control means of the control device.
- axial electromagnets 106A and 106B are arranged with a disk-shaped metal disk 111 provided at the lower part of the rotor shaft 113 sandwiched vertically.
- the metal disk 111 is made of a high permeability material such as iron.
- An axial sensor 109 is provided to detect the axial position of the rotating body 103, and the axial position signal is sent to the control device.
- the axial electromagnet 106A attracts the metal disk 111 upward by magnetic force, and the axial electromagnet 106B attracts the metal disk 111 downward.
- the magnetic force exerted on the metal disk 111 by the axial electromagnets 106A and 106B is appropriately adjusted by the magnetic bearing feedback control means, the rotor shaft 113 is magnetically levitated in the axial direction, and is not in contact with the space. Hold.
- the motor 121 includes a plurality of permanent magnet magnetic poles arranged circumferentially so as to surround the rotor shaft 113 on the rotor side. These permanent magnets are applied with torque for rotating the rotor shaft 113 from an electromagnet on the stator side of the motor 121, and the rotating body 103 is driven to rotate.
- the motor 121 is provided with a rotation speed sensor and a motor temperature sensor (not shown). Upon receiving detection signals from the rotation speed sensor and the motor temperature sensor, the rotation of the rotor shaft 113 is controlled by the control device. Yes.
- a plurality of fixed blades 123a, 123b, 123c,... are arranged with a small gap from the rotor blades 102a, 102b, 102c,.
- the rotor blades 102a, 102b, 102c,... are each inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to transfer exhaust gas molecules downward by collision.
- the fixed blades 123 are also formed to be inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and are arranged alternately with the stages of the rotary blades 102 toward the inside of the outer cylinder 127. ing. And the one end of the fixed wing
- the fixed blade spacer 125 is a ring-shaped member and is made of a metal such as a metal such as aluminum, iron, stainless steel, or copper, or an alloy containing these metals as components.
- An outer cylinder 127 is fixed to the outer periphery of the fixed blade spacer 125 with a slight gap.
- a base portion 129 is disposed at the bottom of the outer cylinder 127, and a threaded spacer 131 is disposed between the lower portion of the fixed blade spacer 125 and the base portion 129.
- An exhaust port 133 is formed below the threaded spacer 131 in the base portion 129.
- a dry pump passage (not shown) is connected to the exhaust port 133, and the exhaust port 133 is connected to a dry pump (not shown) via the dry pump passage.
- the threaded spacer 131 is a cylindrical member made of metal such as aluminum, copper, stainless steel, iron, or an alloy containing these metals as a component, and a plurality of spiral thread grooves 131a are formed on the inner peripheral surface thereof. It is marked.
- the direction of the spiral of the thread groove 131 a is a direction in which molecules of the exhaust gas move toward the exhaust port 133 when the molecules of the exhaust gas move in the rotation direction of the rotating body 103.
- a cylindrical portion 102d is suspended from the lowermost part of the rotor 103 following the rotor blades 102a, 102b, 102c,.
- the outer peripheral surface of the cylindrical portion 102d protrudes toward the inner peripheral surface of the threaded spacer 131, and is close to the inner peripheral surface of the threaded spacer 131 with a predetermined gap.
- the base portion 129 is a disk-like member that forms the base portion of the turbo molecular pump main body 100, and is generally made of a metal such as iron, aluminum, or stainless steel. Since the base portion 129 physically holds the turbo molecular pump main body 100 and also has a function of a heat conduction path, a metal having rigidity such as iron, aluminum, and copper and high heat conductivity is used. Is desirable.
- the base portion 129 is provided with a connector 160, and a cable for electrically connecting the turbo molecular pump main body 100 and the control device is connected to the connector 160.
- FIG. 10 a block diagram of a motor driver circuit for driving the motor 121 is shown in FIG.
- the motor driver circuit 200 flows three-phase currents according to the flowchart of FIG. 10 to the U phase winding, V phase winding, and W phase winding of the stator of the motor 121, respectively.
- a three-phase bridge circuit 210 including six FET elements V22 and V23 is provided.
- V18 and V21 are turned on, and a current flows from the U phase to the V phase.
- section 2 V18 and V23 are turned on to pass a current from the U phase to the W phase.
- the rotating magnetic field is generated by switching the FET elements in accordance with the flowchart in the sections 3 and thereafter.
- One end of the three-phase bridge circuit 210 is connected to one end of the capacitor 203 via the short-circuit protection element 201.
- the other end of the three-phase bridge circuit 210 is connected to the other end of the capacitor 203 via the motor current detection circuit 205.
- One end of the capacitor 203 is further connected to one end of the regenerative resistor 207 and the positive electrode 209 of the power source.
- the other end of the capacitor 203 is connected to the other end of the regenerative resistor 207 via the regenerative resistor drive FET 211 and also connected to the negative electrode 213 of the power source.
- a diode 215 is connected to both ends of the regenerative resistor 207 in parallel with the regenerative resistor 207.
- a driver control CPU PWM-controls each FET of the three-phase bridge circuit 210 so that the current value supplied to the motor 121 detected by the motor current detection circuit 205 becomes a predetermined constant current value.
- each phase is commutated and controlled so as to have a predetermined rotational speed according to the timing of FIG. 10 by a rotational speed sensor (not shown).
- the FET of the three-phase bridge circuit 210 is PWM controlled so as to have a predetermined current value, and the regenerative power from the motor 121 is converted to the regenerative resistor 207 while commutating each phase in the direction opposite to the acceleration timing.
- the regenerative resistance driving FET 211 is turned ON / OFF to dissipate heat energy.
- the regenerative resistor 207 uses a large-capacity (large) type, or is mounted on a heat sink and cooled by air-cooled FAN in order to consume more energy.
- Patent Document 1 A technique that enables automatic selection of whether or not to perform is disclosed.
- Patent Document 1 aims to control the regenerative braking from a plurality of motors so that energy consumption by the regenerative resistor is performed in a safe range, and suppresses heat generation of the regenerative resistor in each motor. It does not shorten the braking time.
- the regenerative resistor 207 If the regenerative energy generated is constantly energized by the regenerative resistor 207 in order to shorten the braking time in each motor alone, the regenerative resistor 207 generates a large amount of heat and the temperature rises. Therefore, it is necessary to use a regenerative resistor 207 having a large heat capacity, attach a heat sink, and cool using a FAN having a large air volume. However, the use of these parts has the problem of increasing the cost and the size of the controller. On the other hand, by reducing the amount of current supplied to the regenerative resistor 207, heat generation of the regenerative resistor 207 can be suppressed, but a performance problem that the brake time increases occurs.
- the present invention has been made in view of such a conventional problem.
- the heat generation of the regenerative resistor can be performed within the specified temperature range without employing a regenerative resistor or a heat sink having a large capacity or using a FAN having a larger air volume. It is an object of the present invention to provide a compact and low-cost motor driver circuit and a vacuum pump equipped with the motor driver circuit, which can be suppressed to an appropriate level and can obtain an appropriate brake time.
- the motor driver circuit of the present invention includes a motor, a motor drive circuit for driving the motor, motor speed detection means for detecting the motor speed of the motor, and a current flowing through the motor drive circuit.
- the motor is driven based on this.
- the consumption of regenerative energy can be reduced during high-speed rotation, and the consumption of regenerative energy can be increased as the speed is reduced.
- the motor driver circuit of the present invention includes a regenerative resistor arranged in parallel to a power source through which a current regenerated from the motor drive circuit flows during braking operation of the motor, and the regenerative resistor
- a control element that is connected in series and controls whether or not to pass a current, a voltage detection means that detects a voltage of the motor drive circuit, and the control element so that the voltage detected by the voltage detection means is less than or equal to a set voltage value
- the drive current set value calculated by the motor drive current set value calculating means is set so that the initial current value at the maximum rated rotational speed of the motor is set small, and the speed is reduced. It is set to be large according to the motor speed to be performed.
- the motor driver circuit of the present invention (Claim 4) is characterized in that the drive current set value is limited so as not to exceed a predetermined value.
- the motor driver circuit of the present invention (Claim 5) is provided in parallel with a motor, a motor drive circuit for driving the motor, and a power source through which a current regenerated from the motor drive circuit is applied during the braking operation of the motor.
- the drive current command value calculation means for calculating the motor drive current command value, the voltage detection means for detecting the voltage of the motor drive circuit, and the voltage detected by the voltage detection means are set such that Control element driving means for driving the control element ON and OFF so as to be equal to or lower than the voltage value is provided.
- the regenerative resistor can be decelerated in a short time within the full range not exceeding the allowable temperature of the regenerative resistor.
- the motor driver circuit of the present invention (Claim 6) is provided in parallel with a motor, a motor drive circuit that drives the motor, and a power source through which a current regenerated from the motor drive circuit flows during the braking operation of the motor.
- a regenerative resistor arranged in series, a control element connected in series to the regenerative resistor and controlling whether or not to pass current, motor speed detecting means for detecting the motor speed of the motor, and current flowing through the motor drive circuit.
- Current detection means to detect, a table that defines the relationship between the motor speed and the duty cycle of the ON / OFF signal of the control element, and the motor speed detected by the motor speed detection means during the braking operation of the motor from the table
- a duty cycle calculating means for calculating a duty cycle of the ON / OFF signal of the control element in response, and the duty cycle ON the control element based on a duty cycle calculated in the cycle calculation unit, constructed by a control element control means for OFF control.
- the motor driver circuit of the present invention includes a motor, a motor drive circuit that drives the motor, and a power source that receives a current regenerated from the motor drive circuit during a brake operation of the motor.
- a regenerative resistor arranged in series, a control element connected in series to the regenerative resistor and controlling whether or not to pass current, a temperature detecting means for detecting the temperature of the regenerative resistor, and a temperature detected by the temperature detecting means
- a control element ON / OFF control means for controlling the ON / OFF of the control element so as to be equal to or less than a predetermined value.
- the duty cycle of the ON / OFF signal controlled by the control element ON / OFF control means is the energization interval when the temperature detected by the temperature detection means is high. Is set short and the energization time is set long when the temperature is low.
- the motor driver circuit of the present invention (Claim 9) adjusts the drive current so that the voltage detected by the voltage detector and the voltage detected by the voltage detector are equal to or lower than the set voltage value. And the motor driving circuit drives the motor based on the driving current adjusted by the driving current adjusting means.
- the vacuum pump of the present invention (Claim 10) is characterized by mounting the motor driver circuit according to any one of Claims 1 to 9.
- the motor drive current set value is calculated according to the motor speed during the brake operation of the motor, the regenerative energy consumption is reduced and the vehicle is decelerated during high-speed rotation.
- the regenerative energy consumption can be increased accordingly.
- Block configuration diagram of the first embodiment of the present invention The relationship between the current value supplied to the motor and the motor speed and stop time, and the relationship between the current value supplied to the motor and the temperature of the regenerative resistor Relationship between motor current value, motor speed, stop time, regenerative resistance temperature
- Block configuration diagram of the second embodiment of the present invention Operation flow of the second embodiment of the present invention
- the block block diagram of 4th Embodiment of this invention Longitudinal section of turbo molecular pump body Motor driver circuit block diagram Motor drive flowchart
- FIG. 1 A block diagram of the first embodiment of the present invention is shown in FIG. The same elements as those in FIG.
- the motor current detected by the motor current detection circuit 205 is input to the microprocessor 221 and the three-phase bridge control circuit 225.
- the motor speed is detected by the rotation speed sensor 223 and is input to the microprocessor 221.
- the microprocessor 221 performs a predetermined calculation based on the input motor speed, and obtains a current command value.
- PID compensation calculation or the like is performed so that the motor current detected by the motor current detection circuit 205 becomes the current command value, and each FET of the three-phase bridge circuit 210 is based on the compensated signal. Are controlled by PWM.
- the driver unit DC voltage detection circuit 227 detects the voltage of the motor driver circuit 200 based on the voltage across the capacitor 203.
- the regenerative resistance drive FET 211 is controlled to be turned on and off so that the direct current voltage value detected by the driver direct current voltage detection circuit 227 becomes a predetermined value (for example, 135 volts) or less.
- FIG. 2 is a conceptual diagram showing the relationship between the current value supplied to the motor, the motor speed and the stop time, and the relationship between the current value supplied to the motor and the temperature of the regenerative resistor.
- the motor speed increases almost linearly by setting the current value supplied to the motor to a predetermined value. Once the rated operation is reached, the pump is evacuated and the load is not so high that the current value is very small.
- the brake region (right part in the figure) is entered.
- the speed characteristic is As indicated by the middle a, the motor speed can be reduced ideally quickly.
- the limit temperature as shown by d in the temperature characteristic of the regenerative resistor in FIG. It will exceed.
- I set_brake_n0 for example, about 6 [A]
- the regenerative energy is gradually consumed by the regenerative resistor 207, and thus the regenerative resistance of FIG.
- regeneration can be performed that does not exceed the limit temperature, for example, 300 degrees, while the speed characteristics are long before the motor speed drops as shown by b in the figure. Is required.
- the regenerative current is controlled so that the speed characteristic gradually approaches the inclination of a from the inclination of b in accordance with the motor speed in the initial stage of regeneration. is there.
- the limit is set so that no more current flows. That is, in the brake region on the right side in the figure, current is regenerated while commutating each phase in the opposite direction to that during acceleration.
- the regenerative energy at the time of the brake operation at this time is adjusted by decelerating the brake current set value I set_brake according to the motor speed as shown in Formula 1.
- I set_brake_n0 is the initial brake current value
- n 0 is the maximum rated rotational speed
- n is the rotational speed.
- the brake current set value I set_brake is set to an initial brake current value I set_brake_n0 when entering the brake region.
- the motor speed gradually increases as the motor speed is decelerated based on Equation 1
- the maximum brake current value Iset_brake_max is reached, a limit is set so that the current value does not become any larger.
- the initial brake current value at the maximum rated speed is set low, and control is performed so that the brake current is increased in accordance with the speed of deceleration. That is, during high-speed rotation, energy consumption due to regenerative resistance is reduced, and energy consumption is increased as the vehicle is decelerated.
- the microprocessor 221 when entering the brake region, calculates the magnitude of the motor current set value that is regenerated according to the deceleration rotational speed detected by the rotational speed sensor 223 based on the mathematical expression 1. And output.
- the motor current set value is compared with the current value detected by the motor current detection circuit 205, and the gate of the three-phase bridge circuit 210 is ON / OFF controlled so that the deviation becomes zero.
- the microprocessor 221 controls the three-phase bridge circuit 210 with current feedback, and controls the regenerative resistance drive FET 211 so that the DC voltage value detected by the driver DC voltage detection circuit 227 is, for example, 135 volts or less.
- the energy of the regenerative resistor is adjusted according to the motor speed. Therefore, it is possible to perform deceleration in a short time within a full range that does not exceed the allowable temperature of the regenerative resistor 207.
- the result of actual experiment based on the above model is shown in FIG.
- the g line indicates the motor speed-stop time characteristic when the motor current set value is specified at a constant 15 [A]
- the h line specifies the motor current set value at a constant 6 [A].
- the characteristics of motor speed vs. stop time are shown.
- the curve of i shows the motor speed-stop time characteristic when the motor current set value is designated according to the motor speed based on Equation (1).
- the motor current set value is specified to be constant at 15 [A] as in g, the temperature of the regenerative resistor 207 rises rapidly as the stop time elapses as shown by j in FIG. Will be exceeded in a short time.
- the motor current set value is specified as 6 [A] constant as in h, the temperature of the regenerative resistor 207 is gradual as indicated by k in the figure and 250 degrees even at the maximum temperature as the stop time elapses. Not exceed. However, it takes about 1400 seconds to stop the motor.
- the temperature of the regenerative resistor 207 is about 280 degrees even at the maximum temperature as shown by l in the figure, and the allowable temperature of the regenerative resistor 207
- the stop time can be shortened to about 800 seconds while being full.
- FIG. 4 shows a block diagram of the second embodiment of the present invention. Note that the same elements as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
- the temperature detection circuit 231 detects the temperature of the regenerative resistor 207 and outputs it to the microprocessor 221.
- the current command value is set so that the temperature becomes a predetermined value or less.
- PID compensation calculation or the like is performed so that the motor current detected by the motor current detection circuit 205 becomes the current command value, and each FET of the three-phase bridge circuit 210 is based on the compensated signal. Are controlled by PWM.
- step 1 (abbreviated as S ⁇ b> 1 in the figure; hereinafter the same)
- the microprocessor 221 determines whether the temperature of the regenerative resistor 207 detected by the temperature detection circuit 231 is higher or lower than a predetermined value. If it is low, the current command value for the three-phase bridge control circuit 225 is increased in step 2. Based on this current command value, the three-phase bridge control circuit 225 issues ON and OFF signals to each FET of the three-phase bridge circuit 210. As a result, in step 3, the voltage of the motor driver circuit 200 increases.
- step 4 the microprocessor 221 increases the energization time interval to the regenerative resistor 207 so that this voltage becomes a predetermined value or less.
- step 5 the energy consumption of the regenerative resistor 207 increases and the temperature of the regenerative resistor 207 increases.
- step 6 when the temperature of the regenerative resistor 207 detected by the temperature detection circuit 231 is higher than a predetermined value as in step 6, the current command value for the three-phase bridge control circuit 225 is decreased in step 7. As a result, in step 8, the voltage of the motor driver circuit 200 decreases. For this reason, in step 9, the microprocessor 221 decreases the energization time interval to the regenerative resistor 207. As a result, in step 10, the energy consumption of the regenerative resistor 207 is reduced and the temperature of the regenerative resistor 207 is lowered. As a result, the same effect as in the first embodiment can be obtained.
- FIG. 6 shows a block configuration diagram of the third embodiment of the present invention. Note that the same elements as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
- a preset lookup table is stored in a storage area (not shown). This look-up table defines the ON / OFF data cycle of the regenerative resistance drive FET 211 with respect to the motor speed.
- the microprocessor 221 refers to the look-up table according to the motor speed detected by the rotation speed sensor 223, extracts the corresponding ON / OFF data cycle, and drives the regenerative resistor based on the ON / OFF data cycle. The gate signal of the FET 211 is driven.
- the current command value is obtained so that the DC voltage value detected by the driver unit DC voltage detection circuit 227 is equal to or less than a predetermined value (for example, 135 volts).
- a predetermined value for example, 135 volts.
- PID compensation calculation or the like is performed so that the motor current detected by the motor current detection circuit 205 becomes the current command value, and each FET of the three-phase bridge circuit 210 is based on the compensated signal. Are controlled by PWM.
- the operation of the third embodiment of the present invention will be described.
- the energization pattern image of the regenerative resistor 207 for example, as in the first embodiment, when the motor speed is high, the energization time of the gate signal of the regenerative resistance drive FET 211 is shortened, while when the motor speed is low, the energization time Lengthen.
- the DC voltage detected by the driver unit DC voltage detection circuit 227 falls below a predetermined value (for example, 125 V)
- the driving of the gate signal of the regenerative resistance drive FET 211 is turned off.
- the current command value is obtained so that the DC voltage value detected by the driver unit DC voltage detection circuit 227 is not more than a predetermined value (for example, 135 volts).
- a predetermined value for example, 135 volts.
- PID compensation calculation or the like is performed so that the motor current detected by the motor current detection circuit 205 becomes the current command value, and each FET of the three-phase bridge circuit 210 is based on the compensated signal.
- PWM pulse width
- the same effect as in the first embodiment can be obtained.
- FIG. 7 shows a block diagram of the fourth embodiment of the present invention. Note that the same elements as those in FIG. In FIG. 7, the microprocessor 221 drives the gate signal of the regenerative resistance drive FET 211 so that the temperature detected by the temperature detection circuit 231 becomes a predetermined value or less.
- the current command value is obtained so that the DC voltage value detected by the driver unit DC voltage detection circuit 227 is equal to or less than a predetermined value (for example, 135 volts).
- a predetermined value for example, 135 volts.
- PID compensation calculation or the like is performed so that the motor current detected by the motor current detection circuit 205 becomes the current command value, and each FET of the three-phase bridge circuit 210 is based on the compensated signal. Are controlled by PWM.
- the operation of the fourth embodiment of the present invention will be described. Specifically, in the microprocessor 221, when the detected temperature is high, the energization time interval to the regenerative resistor 207 is shortened, and when the detected temperature is low, the energization time interval to the regenerative resistor 207 is lengthened. However, when the DC voltage detected by the driver unit DC voltage detection circuit 227 falls below a predetermined value (for example, 125 V), the driving of the gate signal of the regenerative resistance drive FET 211 is turned off. As a result, the same effect as in the first embodiment can be obtained.
- a predetermined value for example, 125 V
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Stopping Of Electric Motors (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Abstract
Description
これらの半導体は、極めて純度の高い半導体基板に不純物をドープして電気的性質を与えたり、半導体基板上に微細な回路パターンを形成し、これを積層するなどして製造される。
更に、ターボ分子ポンプは、電子顕微鏡等の設備において、粉塵等の存在による電子ビームの屈折等を防止するため、電子顕微鏡等のチャンバ内の環境を高度の真空状態にするのにも用いられている。
図8において、ターボ分子ポンプ本体100は、円筒状の外筒127の上端に吸気口101が形成されている。外筒127の内方には、ガスを吸引排気するためのタービンブレードとしての複数の回転翼102a、102b、102c、・・・を周部に放射状かつ多段に形成した回転体103を備える。
この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば、いわゆる5軸制御の磁気軸受により浮上支持かつ位置制御されている。
ロータ軸113は、高透磁率材(鉄など)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。
軸方向電磁石106Aは、磁力により金属ディスク111を上方に吸引し、軸方向電磁石106Bは、金属ディスク111を下方に吸引する。
また、モータ121には、図示しない回転数センサ及びモータ温度センサが取り付けられており、これらの回転数センサ及びモータ温度センサの検出信号を受けて、制御装置においてロータ軸113の回転が制御されている。
そして、固定翼123の一端は、複数の段積みされた固定翼スペーサ125a、125b、125c、・・・の間に嵌挿された状態で支持されている。
固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。
このベース部129中のネジ付きスペーサ131の下部には排気口133が形成されている。そして、排気口133には、図示しないドライポンプ通路が接続されており、排気口133は、このドライポンプ通路を介して、図示しないドライポンプと接続されている。
ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。
また、ベース部129には、コネクタ160が配設されており、このコネクタ160には、ターボ分子ポンプ本体100と制御装置とを電気的に接続するケーブルが接続されている。
吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。そして、ベース部129に移送されてきた排気ガスは、ネジ付きスペーサ131のネジ溝131aに案内されつつ排気口133へと送られる。
また回生抵抗207は、より大きなエネルギー消費をさせるため、大容量(大型)なタイプを用いたり、ヒートシンク上に実装し、空冷FANで冷却している。
一方、回生抵抗207への通電量を小さくすることにより、回生抵抗207の発熱を抑制できるが、ブレーキ時間が増大するという性能上の問題が発生する。
図1において、モータ電流検出回路205で検出したモータ電流はマイクロプロセッサ221及び三相ブリッジ制御回路225に入力されるようになっている。また、回転数センサ223によりモータ速度が検出され、マイクロプロセッサ221に入力されるようになっている。マイクロプロセッサ221では、入力されたモータ速度に基づき所定の演算が行われ、電流指令値が求められるようになっている。三相ブリッジ制御回路225では、モータ電流検出回路205で検出したモータ電流がこの電流指令値となるようにPID補償演算等が行われ、この補償された信号に基づき三相ブリッジ回路210の各FETがPWM制御されるようになっている。
図2には、モータに供給する電流値とモータ速度及び停止時間の関係、並びにモータに供給する電流値と回生抵抗の温度の関係を概念図として示す。図2の左部のモータ加速領域においては、モータに供給する電流値を所定値に設定することでモータ速度がほぼ線形に増加する。そして、一旦定格運転に至ったときには、ポンプが真空引きで負荷が余り掛からないことから電流値もほんのわずかの値で済む。
即ち、図中右側部のブレーキ領域では、加速時とは逆方向に各相を転流させつつ電流を回生させる。このときのブレーキ動作時の回生エネルギーは、ブレーキ電流設定値Iset_brakeを数1に示すようにモータ速度に応じて減速させることで調節する。
ブレーキ電流設定値Iset_brakeは、図2に示すように、ブレーキ領域に入った時点では初期ブレーキ電流値Iset_brake_n0が設定される。その後、数1に基づきモータ速度が減速されるに連れて次第に大きくなり、最大ブレーキ電流値Iset_brake_maxに至った場合にそれ以上大きな電流値とならないようにリミットがかけられる。このように、ブレーキ動作時、最大定格回転数での初期ブレーキ電流値を低く設定し、減速していく回転速度に応じブレーキ電流を増加させるように制御する。
即ち高速回転時は、回生抵抗によるエネルギー消費を小さくし、減速するに従ってエネルギー消費を増加させるようにする。
図4において、温度検出回路231は回生抵抗207の温度を検出しマイクロプロセッサ221に出力するようになっている。マイクロプロセッサ221では、この温度が所定値以下になるように電流指令値を設定するようになっている。三相ブリッジ制御回路225では、モータ電流検出回路205で検出したモータ電流がこの電流指令値となるようにPID補償演算等が行われ、この補償された信号に基づき三相ブリッジ回路210の各FETがPWM制御されるようになっている。
図5において、ステップ1(図中S1と略す。以下同旨)では、マイクロプロセッサ221が温度検出回路231で検出した回生抵抗207の温度が所定値より高いか、低いかを判断する。そして、低かった場合には、ステップ2で三相ブリッジ制御回路225に対する電流指令値を増加させる。この電流指令値に基づき三相ブリッジ制御回路225では三相ブリッジ回路210の各FETに対しON、OFF信号を発する。この結果、ステップ3でモータドライバー回路200の電圧が増加する。このため、ステップ4では、マイクロプロセッサ221はこの電圧が所定値以下になるように回生抵抗207への通電時間間隔を増加させる。このことにより、ステップ5では、回生抵抗207のエネルギー消費が増加し回生抵抗207の温度が高くなる。
このことにより、第1実施形態と同様の効果を得ることができる。
図6において、マイクロプロセッサ221では、図示しない記憶領域に予め設定されたルックアップテーブルが保存されている。このルックアップテーブルはモータ速度に対する回生抵抗駆動FET211のON/OFFデーティサイクルを規定したものである。そして、マイクロプロセッサ221は回転数センサ223で検出したモータ速度に応じてルックアップテーブルを参照し、該当するON/OFFデーティサイクルを抽出して、このON/OFFデーティサイクルに基づき回生抵抗駆動FET211のゲート信号を駆動するようになっている。
ルックアップテーブルを設定するに際しては、回生抵抗207の温度が仕様以下で最適なエネルギー消費をする駆動パターンを事前に実験等により評価・決定する必要がある。
回生抵抗207の通電パターンイメージの例としては例えば第1実施形態のように、モータ速度が高いときには、回生抵抗駆動FET211のゲート信号の通電時間を短くし、一方、モータ速度が低いときには、通電時間を長くする。但し、ドライバ部直流電圧検出回路227で検出した直流電圧が所定値(例えば125V)以下になった場合は回生抵抗駆動FET211のゲート信号の駆動をOFFする。
このことにより、第1実施形態と同様の効果を得ることができる。
図7において、マイクロプロセッサ221では、温度検出回路231で検出した温度が所定値以下になるように回生抵抗駆動FET211のゲート信号を駆動するようになっている。
マイクロプロセッサ221では、具体的には、検出した温度が高いときには、回生抵抗207への通電時間間隔を短くし、一方、検出した温度が低いときには、回生抵抗207への通電時間間隔を長くする。但し、ドライバ部直流電圧検出回路227で検出した直流電圧が所定値(例えば125V)以下になった場合は回生抵抗駆動FET211のゲート信号の駆動をOFFする。
このことにより、第1実施形態と同様の効果を得ることができる。
200 モータドライバー回路
205 モータ電流検出回路
207 回生抵抗
210 三相ブリッジ回路
211 回生抵抗駆動FET
221 マイクロプロセッサ
223 回転数センサ
225 三相ブリッジ制御回路
227 ドライバ部直流電圧検出回路
231 温度検出回路
Claims (10)
- モータ(121)と、
該モータ(121)を駆動するモータ駆動回路(210)と、
前記モータ(121)のモータ速度を検出するモータ速度検出手段(223)と、
前記モータ駆動回路(210)に流れる電流を検出する電流検出手段(205)と、
前記モータ(121)のブレーキ動作時に前記モータ速度検出手段(223)で検出したモータ速度に応じて前記モータ(121)の駆動電流設定値を演算するモータ駆動電流設定値演算手段(221)と、
前記電流検出手段(205)で検出した電流が該モータ駆動電流設定値演算手段(221)で演算した駆動電流設定値となるように駆動電流を調整する駆動電流調整手段(225)と、
前記モータ駆動回路(210)では該駆動電流調整手段(225)で調整した駆動電流に基づき前記モータ(121)が駆動されることを特徴とするモータドライバー回路。 - 前記モータ(121)のブレーキ動作時に前記モータ駆動回路(210)から回生された電流が流される電源に対し並列に配置された回生抵抗(207)と、
該回生抵抗(207)に対し直列接続され、電流を流すか否か制御する制御素子(211)と、
前記モータ駆動回路(210)の電圧を検出する電圧検出手段(227)と、
該電圧検出手段(227)で検出した電圧が設定電圧値以下となるように前記制御素子(211)をON、OFF駆動する制御素子駆動手段(221)とを備えたことを特徴とする請求項1記載のモータドライバー回路。 - 前記モータ駆動電流設定値演算手段(221)で演算される駆動電流設定値は、前記モータ(121)の最大定格回転数における初期電流値Iset_brake_n0が小さく設定され、減速していくモータ速度に応じて大きく設定されることを特徴とする請求項1又は請求項2記載のモータドライバー回路。
- 前記駆動電流設定値は所定値以上にならないようにリミットIset_brake_maxがかけられたことを特徴とする請求項1、2又は3記載のモータドライバー回路。
- モータ(121)と、
該モータ(121)を駆動するモータ駆動回路(210)と、
前記モータ(121)のブレーキ動作時に該モータ駆動回路(210)から回生された電流が流される電源に対し並列に配置された回生抵抗(207)と、
該回生抵抗(207)に対し直列接続され、電流を流すか否か制御する制御素子(211)と、
前記回生抵抗(207)の温度を検出する温度検出手段(231)と、
該温度検出手段(231)で検出した温度が所定値以下になるように前記モータ(121)の駆動電流指令値を演算する駆動電流指令値演算手段(221)と、
前記モータ駆動回路(210)の電圧を検出する電圧検出手段(227)と、
該電圧検出手段(227)で検出した電圧が設定電圧値以下となるように前記制御素子(211)をON、OFF駆動する制御素子駆動手段(221)とを備えたことを特徴とするモータドライバー回路。 - モータ(121)と、
該モータ(121)を駆動するモータ駆動回路(210)と、
前記モータ(121)のブレーキ動作時に該モータ駆動回路(210)から回生された電流が流される電源に対し並列に配置された回生抵抗(207)と、
該回生抵抗(207)に対し直列接続され、電流を流すか否か制御する制御素子(211)と、
前記モータ(121)のモータ速度を検出するモータ速度検出手段(223)と、
前記モータ駆動回路(210)に流れる電流を検出する電流検出手段(205)と、
モータ速度と前記制御素子(211)のON、OFF信号のデューティサイクルとの関連を規定したテーブル(221)と、
該テーブル(221)より前記モータ(121)のブレーキ動作時に前記モータ速度検出手段(223)で検出したモータ速度に応じた前記制御素子(211)のON、OFF信号のデューティサイクルを算出するデューティサイクル算出手段(221)と、
該デューティサイクル算出手段(221)で算出したデューティサイクルに基づき前記制御素子(211)をON、OFF制御する制御素子制御手段(221)とを備えたことを特徴とするモータドライバー回路。 - モータ(121)と、
該モータ(121)を駆動するモータ駆動回路(210)と、
前記モータ(121)のブレーキ動作時に該モータ駆動回路(210)から回生された電流が流される電源に対し並列に配置された回生抵抗(207)と、
該回生抵抗(207)に対し直列接続され、電流を流すか否か制御する制御素子(211)と、
前記回生抵抗(207)の温度を検出する温度検出手段(231)と、
該温度検出手段(231)で検出した温度が所定値以下になるように前記制御素子(211)をON、OFF制御する制御素子ON、OFF制御手段(221)とを備えたことを特徴とするモータドライバー回路。 - 前記制御素子ON、OFF制御手段(221)で制御されるON、OFF信号のデューティサイクルは、前記温度検出手段(231)で検出した温度が高いときに通電間隔が短く設定され、温度が低いときに通電時間が長く設定されることを特徴とする請求項7記載のモータドライバー回路。
- 前記モータ駆動回路(210)の電圧を検出する電圧検出手段(227)と、
該電圧検出手段(227)で検出した電圧が設定電圧値以下となるように駆動電流を調整する駆動電流調整手段(225)と、
前記モータ駆動回路(210)では該駆動電流調整手段(225)で調整した駆動電流に基づき前記モータ(121)が駆動されることを特徴とする請求項6、7又は8記載のモータドライバー回路。 - 請求項1~9に記載のモータドライバー回路を搭載したことを特徴とする真空ポンプ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010523724A JP5606315B2 (ja) | 2008-08-05 | 2009-06-01 | 磁気軸受装置及び該磁気軸受装置を搭載した真空ポンプ |
EP09804663.4A EP2315349B1 (en) | 2008-08-05 | 2009-06-01 | Motor driver circuit and vacuum pump equipped with motor driver circuit |
US12/737,089 US9093938B2 (en) | 2008-08-05 | 2009-06-01 | Motor driver circuit and vacuum pump having the motor driver circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-202344 | 2008-08-05 | ||
JP2008202344 | 2008-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010016176A1 true WO2010016176A1 (ja) | 2010-02-11 |
Family
ID=41663405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/002442 WO2010016176A1 (ja) | 2008-08-05 | 2009-06-01 | モータドライバー回路及び該モータドライバー回路を搭載した真空ポンプ |
Country Status (5)
Country | Link |
---|---|
US (1) | US9093938B2 (ja) |
EP (1) | EP2315349B1 (ja) |
JP (1) | JP5606315B2 (ja) |
KR (1) | KR101552747B1 (ja) |
WO (1) | WO2010016176A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130071258A1 (en) * | 2010-05-21 | 2013-03-21 | Edwards Japan Limited | Deposition detection device for exhaust pump and exhaust pump having the same |
JP2016538463A (ja) * | 2013-11-14 | 2016-12-08 | オーリコン レイボルド バキューム ゲーエムベーハー | 制御デバイスの入力電流を制限する、真空ポンプの加速のための制御方法 |
EP2626568A4 (en) * | 2010-10-07 | 2018-01-24 | Edwards Japan Limited | Vacuum pump control device and vacuum pump |
US20220073284A1 (en) * | 2020-09-07 | 2022-03-10 | Daifuku Co., Ltd. | Article Transport Facility |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5864219B2 (ja) * | 2011-11-08 | 2016-02-17 | 平田機工株式会社 | 制御方法及び制御装置 |
GB2503671B (en) * | 2012-07-03 | 2014-12-17 | Dyson Technology Ltd | Control of a brushless motor |
JP6004374B2 (ja) * | 2012-12-28 | 2016-10-05 | パナソニックIpマネジメント株式会社 | モータ制御装置及びモータ制御方法 |
JP6394229B2 (ja) * | 2014-09-24 | 2018-09-26 | 株式会社島津製作所 | ターボ分子ポンプ |
CN108691149A (zh) * | 2017-04-10 | 2018-10-23 | 台达电子工业股份有限公司 | 无感测器的直流无刷马达负载测量方法以及其装置 |
EP3952099B1 (en) * | 2020-08-06 | 2024-01-24 | Schneider Toshiba Inverter Europe SAS | Backspinning motor control |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61240869A (ja) * | 1985-04-16 | 1986-10-27 | Matsushita Electric Ind Co Ltd | モ−タ減速装置 |
JPH06225458A (ja) * | 1993-01-20 | 1994-08-12 | Hitachi Ltd | 電力変換装置及び制御方法 |
JPH09182474A (ja) * | 1995-12-20 | 1997-07-11 | Sanyo Electric Co Ltd | モータ駆動装置 |
JPH1118464A (ja) * | 1997-06-23 | 1999-01-22 | Sanyo Denki Co Ltd | モータ制御装置 |
JP2005094852A (ja) * | 2003-09-12 | 2005-04-07 | Boc Edwards Kk | モータ制御システム及び該モータ制御システムを搭載した真空ポンプ |
JP2006194094A (ja) | 2005-01-11 | 2006-07-27 | Shimadzu Corp | 真空ポンプ |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR900002784B1 (ko) * | 1985-04-30 | 1990-04-30 | 미쓰비시전기주식회사 | 교류엘리베이터의 제어장치 |
US5053632A (en) * | 1987-02-18 | 1991-10-01 | Hino Jidosha Kogyo Kabushiki Kaisha | Electric braking and auxiliary engine mechanism for a motor vehicle |
JP3751736B2 (ja) | 1998-01-21 | 2006-03-01 | ヤマハ発動機株式会社 | 電動車両の運転制御装置 |
JP2000006878A (ja) * | 1998-06-22 | 2000-01-11 | Sanyo Electric Co Ltd | 電動自転車の回生電流制御方法 |
ATE218253T1 (de) * | 1999-08-18 | 2002-06-15 | Holtz Joachim Prof Dr Ing | Verfahren zur bremsung eines feldorientiertbetriebenen asynchronmotors, regelungsvorrichtung zur verfahrensausführung und speichermedium |
JP3634270B2 (ja) * | 2001-02-02 | 2005-03-30 | 株式会社豊田中央研究所 | モータ駆動回路 |
JP3791375B2 (ja) * | 2001-09-27 | 2006-06-28 | 株式会社明電舎 | 電動車両の制御方法と装置 |
CN1251394C (zh) * | 2002-02-25 | 2006-04-12 | 大金工业株式会社 | 电动机控制方法及其装置 |
JP2004154961A (ja) * | 2002-11-01 | 2004-06-03 | Toshiba Mach Co Ltd | 回生機能を有する電動射出成形機の駆動制御装置 |
JP4145126B2 (ja) | 2002-11-21 | 2008-09-03 | 三洋電機株式会社 | モータ制御装置 |
CN1985432B (zh) * | 2004-07-06 | 2010-09-08 | 株式会社安川电机 | 逆变器装置和交流电机的减速方法 |
WO2007013141A1 (ja) * | 2005-07-26 | 2007-02-01 | Mitsubishi Denki Kabushiki Kaisha | エレベーターの制御装置 |
-
2009
- 2009-06-01 WO PCT/JP2009/002442 patent/WO2010016176A1/ja active Application Filing
- 2009-06-01 EP EP09804663.4A patent/EP2315349B1/en active Active
- 2009-06-01 JP JP2010523724A patent/JP5606315B2/ja active Active
- 2009-06-01 US US12/737,089 patent/US9093938B2/en active Active
- 2009-06-01 KR KR1020107027521A patent/KR101552747B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61240869A (ja) * | 1985-04-16 | 1986-10-27 | Matsushita Electric Ind Co Ltd | モ−タ減速装置 |
JPH06225458A (ja) * | 1993-01-20 | 1994-08-12 | Hitachi Ltd | 電力変換装置及び制御方法 |
JPH09182474A (ja) * | 1995-12-20 | 1997-07-11 | Sanyo Electric Co Ltd | モータ駆動装置 |
JPH1118464A (ja) * | 1997-06-23 | 1999-01-22 | Sanyo Denki Co Ltd | モータ制御装置 |
JP2005094852A (ja) * | 2003-09-12 | 2005-04-07 | Boc Edwards Kk | モータ制御システム及び該モータ制御システムを搭載した真空ポンプ |
JP2006194094A (ja) | 2005-01-11 | 2006-07-27 | Shimadzu Corp | 真空ポンプ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2315349A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130071258A1 (en) * | 2010-05-21 | 2013-03-21 | Edwards Japan Limited | Deposition detection device for exhaust pump and exhaust pump having the same |
US11149737B2 (en) * | 2010-05-21 | 2021-10-19 | Edwards Japan Limited | Deposition detection device for exhaust pump and exhaust pump having the same |
EP2626568A4 (en) * | 2010-10-07 | 2018-01-24 | Edwards Japan Limited | Vacuum pump control device and vacuum pump |
US10215191B2 (en) | 2010-10-07 | 2019-02-26 | Edwards Japan Limited | Vacuum pump control device and vacuum pump |
JP2016538463A (ja) * | 2013-11-14 | 2016-12-08 | オーリコン レイボルド バキューム ゲーエムベーハー | 制御デバイスの入力電流を制限する、真空ポンプの加速のための制御方法 |
US20220073284A1 (en) * | 2020-09-07 | 2022-03-10 | Daifuku Co., Ltd. | Article Transport Facility |
US11897698B2 (en) * | 2020-09-07 | 2024-02-13 | Daifuku Co., Ltd. | Article transport facility |
Also Published As
Publication number | Publication date |
---|---|
KR20110031422A (ko) | 2011-03-28 |
JPWO2010016176A1 (ja) | 2012-01-12 |
JP5606315B2 (ja) | 2014-10-15 |
EP2315349B1 (en) | 2016-05-04 |
EP2315349A4 (en) | 2013-11-27 |
US20110121767A1 (en) | 2011-05-26 |
EP2315349A1 (en) | 2011-04-27 |
KR101552747B1 (ko) | 2015-09-11 |
US9093938B2 (en) | 2015-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5606315B2 (ja) | 磁気軸受装置及び該磁気軸受装置を搭載した真空ポンプ | |
KR102106659B1 (ko) | 전자 회전 장치 및 그 전자 회전 장치를 구비한 진공 펌프 | |
JP2004286045A (ja) | 磁気軸受装置及び該磁気軸受装置を搭載したポンプ装置 | |
KR102589086B1 (ko) | 진공 펌프 및 제어 장치 | |
JP2005083316A (ja) | モータ制御システム及び該モータ制御システムを搭載した真空ポンプ | |
JP5682157B2 (ja) | 真空ポンプ用モータ駆動装置およびポンプシステム | |
JP4502667B2 (ja) | 磁気軸受装置及び該磁気軸受装置を搭載したターボ分子ポンプ | |
KR20040082954A (ko) | 자기 베어링 장치 및 이 자기 베어링 장치를 탑재한 터보분자 펌프 | |
KR20230169091A (ko) | 터보 분자 펌프 | |
JP2023081876A (ja) | 真空ポンプ | |
JP4376645B2 (ja) | 磁気軸受装置及び該磁気軸受装置を搭載したターボ分子ポンプ | |
WO2024203989A1 (ja) | 真空ポンプ、磁気軸受制御装置、および圧縮解凍方法 | |
WO2022186075A1 (ja) | 真空ポンプ | |
JP2005094852A (ja) | モータ制御システム及び該モータ制御システムを搭載した真空ポンプ | |
JP7531313B2 (ja) | 真空ポンプおよび真空ポンプの回転体 | |
WO2022163341A1 (ja) | 真空ポンプ及びスペーサ | |
WO2022264925A1 (ja) | 真空ポンプ | |
WO2023027084A1 (ja) | 真空ポンプおよび固定部品 | |
TW202328565A (zh) | 真空泵、真空泵之軸承保護構造、及真空泵之旋轉體 | |
JP2024129334A (ja) | 真空ポンプ | |
CN116097003A (zh) | 真空泵及真空泵具备的旋转圆筒体 | |
CN116783391A (zh) | 真空泵 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09804663 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010523724 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107027521 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009804663 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12737089 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |