WO2010015341A1 - Hochporöse schaumkeramiken als katalysatorträger zur dehydrierung von alkanen - Google Patents

Hochporöse schaumkeramiken als katalysatorträger zur dehydrierung von alkanen Download PDF

Info

Publication number
WO2010015341A1
WO2010015341A1 PCT/EP2009/005440 EP2009005440W WO2010015341A1 WO 2010015341 A1 WO2010015341 A1 WO 2010015341A1 EP 2009005440 W EP2009005440 W EP 2009005440W WO 2010015341 A1 WO2010015341 A1 WO 2010015341A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
dioxide
iii
ceramic
mixture
Prior art date
Application number
PCT/EP2009/005440
Other languages
English (en)
French (fr)
Inventor
Muhammad Iqbal Mian
Max Heinritz-Adrian
Oliver Noll
Domenico Pavone
Sascha Wenzel
Original Assignee
Uhde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde Gmbh filed Critical Uhde Gmbh
Priority to CA2733278A priority Critical patent/CA2733278A1/en
Priority to MX2011001403A priority patent/MX2011001403A/es
Priority to BRPI0911935A priority patent/BRPI0911935A2/pt
Priority to US13/057,937 priority patent/US20110144400A1/en
Priority to CN2009801306204A priority patent/CN102112224A/zh
Priority to JP2011521459A priority patent/JP2011529781A/ja
Priority to EP09777473A priority patent/EP2331256A1/de
Priority to RU2011105458/04A priority patent/RU2486007C2/ru
Publication of WO2010015341A1 publication Critical patent/WO2010015341A1/de
Priority to ZA2011/01039A priority patent/ZA201101039B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/40
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0093Other features
    • C04B38/0096Pores with coated inner walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/20Carbon compounds
    • C07C2527/22Carbides
    • C07C2527/224Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a material which is suitable as a catalyst for the dehydrogenation of alkanes and which consists of a carrier made of ceramic foam, which is impregnated with a catalytically active material.
  • a process can be carried out, are dehydrogenated by the alkanes in admixture with steam at elevated temperature, so as to obtain hydrogen, alkenes and unreacted alkanes in a mixture with steam.
  • the invention also relates to a process for the preparation of the material according to the invention.
  • the allothermic dehydrogenation is carried out in a reforming reactor suitable for this purpose.
  • the reaction gas is heated indirectly by means of a burner heated.
  • the heat requirement of the reaction is not only compensated in the rule, but the reaction gas leaves the reactor at a higher temperature.
  • the product gas which still contains unused alkane, is fed into the selective hydrogen combustion reactor. There it heats up again through the combustion reaction and is subsequently returned to the allothermal process of dehydrogenation after separation of the alkenes and by-products.
  • This reaction procedure can contain any intermediate steps.
  • WO 2004039920 A2 describes a process for the preparation of unsaturated hydrocarbons in which in a first stage a hydrocarbon, in particular alkanes containing mixture, which may have water vapor and substantially no oxygen, is passed in a continuous mode of operation through a first catalyst bed having conventional dehydrogenation conditions, and subsequently admixing both the water and steam and an oxygen-containing gas to the reaction mixture obtained from the first stage, and subsequently the resulting reaction mixture in a second stage through another catalyst bed for the oxidation of hydrogen and the further dehydrogenation of Hydrocarbons is passed.
  • the alkene can be separated from the product mixture by suitable process steps.
  • a catalyst which is suitable for both the dehydrogenation and for the oxidative hydrogen combustion.
  • a suitable catalyst is described in US 5151401 A.
  • a support of a zinc aluminate compound is impregnated with a chlorine-containing platinum compound and the platinum compound is fixed on the support by a calcination step.
  • the carrier is then freed of chloride ions by a subsequent washing step, which can be released in the process and have highly corrosive properties.
  • the carrier can be mixed with the compounds zinc oxide, tin oxide, stearic acid and graphite.
  • the process of dehydration usually proceeds at a temperature of 450 to 820 0 C.
  • a temperature of 450 to 820 0 C In order to set a suitable temperature, the process before the dehydrogenation steam and before the oxidative hydrogen combustion water vapor, hydrogen or a mixture of water vapor and Hydrogen added.
  • the addition of water vapor also reduces deposition of carbon on the catalyst.
  • Suitable shaped bodies are, for example, cylindrical shaped bodies, pellets or spheres, each with an equivalent diameter of 0.1 mm to 30 mm with respect to a sphere.
  • the disadvantage of this geometry is a deteriorated accessibility of the reaction gas in the Form redesignin- nere.
  • the pressure loss, especially at very dense beds of catalyst is still significant.
  • the filling of the shaped catalyst bodies in the reactor can, due to the geometry of the shaped bodies, sometimes be associated with a high outlay. Finally, the moldings may also break, thereby adversely affecting the flow characteristics of the bed.
  • the catalyst should be sufficiently mechanically stable and temperature stable even at elevated flow rate.
  • the invention solves this problem by a foam ceramic, which is composed of a specific combination of substances.
  • the foam ceramic can be based on open-cell polyurethane foams (PUR). Open-cell foam structures can be produced by subsequently destroying the cell walls (so-called reticulation).
  • the substances originate from the group of oxidic ceramics, such as aluminum oxide, calcium oxide, silicon dioxide, tin dioxide, zinc oxide and zinc aluminate, or else from non-oxidic ceramics, such as, for example, silicon carbide, boron nitride and others. These substances can also be used in combination.
  • the foamed ceramic which serves as a carrier.
  • the foamed ceramic is impregnated with one or more suitable catalytically active materials.
  • This is typically metallic platinum.
  • other and additionally catalytically active materials can be used for impregnation, if they are suitable for the reaction of the desired reaction.
  • Claimed is in particular a material for the catalytic conversion of gas mixtures which may contain C2 to C6 alkanes and hydrogen, oxygen or hydrogen and oxygen in the mixture, wherein mainly alkenes and hydrogen and additionally water vapor are obtained, and
  • the material consists of ceramic foams composed of simple components or of a mixture of oxidic or non-oxidic ceramic materials or of a mixture of oxidic and non-oxidic ceramic materials, and
  • the material for obtaining the catalytic activity is impregnated with at least one catalytically active substance.
  • the oxide ceramics are, in particular, the ceramic materials aluminum (III) oxide, calcium oxide, calcium aluminate, zirconium dioxide, magnesium oxide, silicon dioxide, tin dioxide, zinc dioxide or zinc aluminate. These substances can be used as single components or as a mixture.
  • the non-oxide ceramic materials are, in particular, the ceramic materials silicon carbide or boron nitride. These substances can also be used as single components or as a mixture. Finally, oxidic and non-oxidic materials can be used in the mixture for the preparation of the support material.
  • the carrier material may additionally comprise a substance from the group consisting of chromium (III) oxide, iron (III) oxide, hafnium dioxide, magnesium dioxide, titanium dioxide, yttrium (III) oxide, calcium aluminate, ceria, scandium oxide or zeolite.
  • chromium (III) oxide iron (III) oxide, hafnium dioxide, magnesium dioxide, titanium dioxide, yttrium (III) oxide, calcium aluminate, ceria, scandium oxide or zeolite.
  • zirconia in combination with calcium oxide, ceria, magnesia, yttrium (III) oxide, scandium oxide or ytterbium oxide may also be used as stabilizers.
  • a typical method for the production of ceramic foams teaches the EP 260826 B1.
  • ⁇ -alumina as a suitable ceramic raw material is mixed by way of example with titanium dioxide as a stabilizer and an aqueous solution of a polymer is added.
  • polyurethane foam pellets are added and the mixture is mixed. This is followed by the drying and sintering step. This takes place at a temperature up to 1600 0 C and can burn the polyurethane foam matrix.
  • the scaffolding, a sintered ceramic foam remains behind.
  • a simpler possibility is to preform the polyurethane foam in the form of a suitable structure, which typically has the geometry of the application form.
  • the geometry in question may be, for example, a block or a cell bar.
  • This form is provided with a suspension of ceramic particles and with suitable excipients for sintering. These are, for example, thickeners.
  • suitable excipients for sintering are, for example, thickeners.
  • the material is then subjected to a drying or sintering step at a temperature of up to 1600 0 C, wherein the polyurethane foam burns and leaves a framework of ceramic foam.
  • Macroporous ceramic materials as supports for catalysts in dehydrogenation reactions for alkanes are known.
  • US 6072097 A describes a macroporous ceramic material of ⁇ -alumina and other suitable oxidic materials. The ceramic foam thus produced is impregnated with platinum and tin or copper as the catalytically active material.
  • US 4088607 A describes a ceramic foam of zinc aluminate and a noble metal-containing catalytically active material which is applied to the foam. The catalyst thus prepared is useful, for example, as an exhaust gas purifying catalyst in automobiles.
  • the porosity of the ceramic foam can be adjusted precisely. As a result, it can be optimally adjusted to the various flow properties in the corresponding application methods.
  • the porosity of the foam can be characterized by the BET inner surface. Typical specific surface areas of the foams produced by the process according to the invention are up to 200 m 2 * g -1 . Typical pore densities of the foams produced by the process according to the invention are from 5 to 150 PPI (PPI: "Pores per linear inch ").
  • the catalytically active material on the support may be of any kind. It will in any case be such that it catalyses the desired reaction.
  • the catalytically active material is a platinum-containing compound. This can be applied for example by impregnation in the form of chlorine-containing compounds on the support.
  • the chloride ions can be washed out of the foam ceramic by another washing process, as described by way of example in US Pat. No. 5,151,401 A.
  • the material of the invention is particularly suitable as a catalyst for alkane dehydrogenation.
  • starting compound can be used any alkane.
  • the material according to the invention is preferably used as a catalyst for the dehydrogenation of propane and r-butane, in order to prepare propene and n-butene therefrom.
  • possible starting hydrocarbons are also n-butene or ethylbenzene, whereby butadiene or styrene are obtained by dehydrogenation.
  • alkane mixtures can be used.
  • the alkanes are preferably hydrogen, water vapor, oxygen or any other
  • the material according to the invention can be used as a catalyst for dehydrogenation in the conditions usually used for dehydrogenation.
  • Typical conditions for dehydrogenation are temperatures of 450 ° C. to 820 ° C. Particular preference is given to temperatures of 500 to 650 ° C.
  • the material according to the invention is suitable in the form of a ceramic foam as a carrier for catalytically active materials which are dehydrogenated or ozone-depleted. allow xidative dehydrogenation of alkanes.
  • the flow resistance in reactors for alkane dehydrogenation can be substantially improved.
  • the active use of the catalyst mass and the pore utilization rate can be significantly improved.
  • the pore size and the distribution of the pores can be adjusted better.
  • the thermal and mechanical stability of the catalyst in Alkandehydr michen can also be significantly improved. Due to the improved heat transfer in the radial direction and the resulting lower radial temperature gradient within the tubular reactor, an optimized use of the catalyst is achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Erfindung betrifft ein Material, das sich als Träger für Katalysatoren in Alkandehydrierungen und in oxidativen Alkandehydrierungen eignet, und das als oxid- und nichtoxidisch keramischer Schaum gearbeitet ist, und das die Stoffe Aluminiumoxid, Calciumoxid, Siliciumdioxid, Zinnoxid, Zirkondioxid, Calciumaluminat, Zinkaluminat, Siliciumcarbid und Bornitrid in Kombination enthalten kann, und das mit einem oder mehreren geeigneten katalytisch aktiven Material imprägniert ist, wodurch sich der Strömungswiderstand des Katalysators wesentlich verringert und die Zugänglichkeit des katalytisch aktiven Materials erheblich verbessert und die thermische und mechanische Stabilität des Materials erhöht wird. Die Erfindung betrifft auch ein Verfahren zur Herstellung des Materials und ein Verfahren zur Alkandehydrierung mit dem erfindungsgemäßen Material.

Description

Hochporöse Schaumkeramiken als Katalysatorträger zur Dehydrierung von Al- kanen
[0001] Die Erfindung betrifft ein Material, das als Katalysator zur Dehydrierung von Alkanen geeignet ist und das aus einem Träger aus Schaumkeramik besteht, die mit einem katalytisch aktiven Material imprägniert ist. Mit dem erfindungsgemäßen Material kann ein Verfahren durchgeführt werden, durch das Alkane im Gemisch mit Wasserdampf bei erhöhter Temperatur dehydriert werden, so dass man Wasserstoff, Alkene und unumgesetzte Alkane im Gemisch mit Wasserdampf erhält. Es ist auch möglich, mit dem erfindungsgemäßen Material ein Verfahren durchzuführen, durch das Alkane im Gemisch mit Wasserdampf und Sauerstoff bei erhöhter Temperatur oxidativ dehydriert werden, so dass man Alkene, Wasserstoff, nicht umgesetzte Alkane und Reaktionswasserdampf im Gemisch mit Wasserdampf erhält. Die Erfindung betrifft auch ein Verfahren zur Herstellung des erfindungsgemäßen Materials.
[0002] Die technisch durchgeführte Dehydrierung von Alkanen bietet die Möglich- keit, ausgehend von preiswerten Paraffinen Olefine zu erhalten, die aufgrund der erhöhten Reaktivität teurer sind und für die ein erhöhter Bedarf besteht. Die technische Dehydrierung von Paraffinen kann in Anwesenheit von Wasserdampf als Moderatorgas durchgeführt werden, wobei das Paraffin dehydriert wird, so dass man das Alken und Wasserstoff erhält. Dieser Prozessschritt ist endotherm, so dass sich das Reaktions- gemisch ohne Wärmezufuhr abkühlt. Dieser Prozessschritt wird deshalb entweder adiabatisch, wobei man ein zuvor erhitztes Reaktionsgemisch durch einen wärmeisolierten Reaktor strömen lässt, oder allotherm in einem von außen beheizten Rohrreaktor durchgeführt.
[0003] Es ist möglich, diesen Prozessschritt mit einem nachfolgenden Oxidations- schritt zu kombinieren, durch den der im ersten Schritt entstehende Wasserstoff selektiv verbrannt wird. Dadurch wird einerseits Wärme erzeugt, die für die weitere Prozessführung genutzt werden kann. Andererseits wird durch die Verbrennung des Wasserstoffs der Partialdruck des Wasserstoffs gesenkt, wodurch das Gleichgewicht der Dehydrierung zugunsten der Alkenbildung verschoben werden kann. Um eine bessere Verfahrensführung zu ermöglichen, werden die Verfahrensschritte der Dehydrierung und der selektiven Wasserstoffverbrennung in der Regel nacheinander durchgeführt.
[0004] Die allotherme Dehydrierung wird in einem hierfür geeigneten Reformierreaktor durchgeführt. Das Reaktionsgas wird durch indirekte Erwärmung mittels Brenner aufgeheizt. Der Wärmebedarf der Reaktion wird in der Regel nicht nur kompensiert, sondern das Reaktionsgas verlässt den Reaktor mit einer höheren Temperatur. Nach der Reaktion wird das Produktgas, das noch unverbrauchtes Alkan enthält, in den Reaktor zur selektiven Wasserstoffverbrennung geführt. Dort heizt es sich durch die Verbrennungsreaktion wieder auf und wird nachfolgend, nach Abtrennung der Alkene und Nebenprodukte, wieder in den allothermen Prozess der Dehydrierung zurückgeführt. Diese Reaktionsführung kann beliebige Zwischenschritte enthalten.
[0005] Die WO 2004039920 A2 beschreibt ein Verfahren zur Herstellung von ungesättigten Kohlenwasserstoffen, bei dem in einer ersten Stufe ein Kohlenwasserstoff, insbesondere Alkane enthaltendes Gemisch, welches Wasserdampf aufweisen kann und im Wesentlichen keinen Sauerstoff aufweist, in kontinuierlicher Fahrweise durch ein erstes Katalysatorbett geleitet wird, welches übliche Dehydrierungsbedingungen aufweist, und nachfolgend dem aus der ersten Stufe erhaltenen Reaktionsgemisch sowohl Wasser als auch Wasserdampf und ein Sauerstoff enthaltendes Gas beigemischt werden, und nachfolgend das erhaltene Reaktionsgemisch in einer zweiten Stufe durch ein weiteres Katalysatorbett zur Oxidation von Wasserstoff und der weiteren Dehydrierung von Kohlenwasserstoffen geleitet wird. Dabei erhält man Alkene im Gemisch mit nicht umgesetzten Alkanen, Wasserstoff, Nebenprodukten und Wasserdampf. Das Alken kann durch geeignete Verfahrensschritte von dem Produktgemisch abgetrennt werden.
[0006] Es ist möglich, für dieses Verfahren einen Katalysator zu nutzen, der sowohl für die Dehydrierung als auch für die oxidative Wasserstoffverbrennung geeignet ist. Einen geeigneten Katalysator beschreibt die US 5151401 A. Zur Herstellung dieses Katalysators wird ein Träger aus einer Zinkaluminatverbindung mit einer chlorhaltigen Platinverbindung imprägniert und die Platinverbindung durch einen Kalzinierungsschritt auf dem Träger fixiert. Der Träger wird dann durch einen nachfolgenden Waschschritt von Chloridionen befreit, die in dem Prozess freigesetzt werden können und stark korrosive Eigenschaften besitzen. Zur Verbesserung der Trägereigenschaften kann der Träger mit den Verbindungen Zinkoxid, Zinnoxid, Stearinsäure und Graphit versetzt werden.
[0007] Der Prozess der Dehydrierung läuft üblicherweise bei einer Temperatur von 450 bis 820 0C ab. Um eine geeignete Temperatur einstellen zu können, wird dem Prozess vor der Dehydrierung Wasserdampf und vor der oxidativen Wasserstoffverbrennung Wasserdampf, Wasserstoff oder ein Gemisch von Wasserdampf und Wasserstoff zugegeben. Durch die Zugabe von Wasserdampf wird außerdem eine Ablagerung von Kohlenstoff auf dem Katalysator gemindert.
[0008] Um genügend große Strömungsgeschwindigkeiten der durchströmenden Gase zu ermöglichen, und um eine genügend große Temperaturbeständigkeit des Ka- talysators zu gewährleisten, wird der geträgerte Katalysator durch einen Kalzinierungs- oder Sinterprozess in Formkörper gepresst. Geeignete Formkörper sind beispielsweise zylindrische Formkörper, Pellets oder Kugeln, jeweils mit einem gegenüber einer Kugel äquivalenten Durchmesser von 0,1 mm bis 30 mm. Der Nachteil dieser Geometrie ist jedoch eine verschlechterte Zugänglichkeit des Reaktionsgases in das Formkörperin- nere. Auch ist der Druckverlust, insbesondere bei sehr dichten Schüttungen des Katalysators, immer noch erheblich. Die Befüllung der Katalysatorformkörper in den Reaktor kann, bedingt durch die Geometrie der Formkörper, mitunter mit einem hohen Aufwand verbunden sein. Schließlich können die Formkörper auch brechen, wodurch sich die Strömungseigenschaft der Schüttung nachteilig ändert.
[0009] Es besteht deshalb die Aufgabe, eine Katalysatorgeometrie zu finden, die eine genügend große Strömungsgeschwindigkeit bei einer guten Zugänglichkeit des Katalysators unter möglichst geringem Druckverlust gewährleistet. Der Katalysator soll auch bei erhöhter Strömungsgeschwindigkeit genügend mechanisch stabil und temperaturstabil sein.
[0010] Die Erfindung löst diese Aufgabe durch eine Schaumkeramik, die sich aus einer bestimmten Kombination von Stoffen zusammensetzt. Basis für die Schaumkeramik können offenzellige Polyurethanschäume (PUR) sein. Offenzellige Schaumstrukturen lassen sich durch ein nachträgliches Zerstören der Zellwände (sogenanntes Reti- kulieren) herstellen. Die Stoffe stammen dabei aus der Gruppe der oxidischen Kerami- ken, wie Aluminiumoxid, Calciumoxid, Siliciumdioxid, Zinndioxid, Zinkoxid und Zinka- luminat, oder aber auch aus nichtoxidischen Keramiken wie beispielsweise Silicium- carbid, Bornitrid und andere mehr. Diese Stoffe können auch in Kombination verwendet werden. Durch die Tränkung des PUR-Schaumes in einer Aufschlämmung aus diesen Stoffen erhält man nach Trocknung und Sinterung die Schaumkeramik, die als Träger dient. Zur Erlangung der katalytischen Aktivität wird die Schaumkeramik mit einem oder mehreren geeigneten katalytisch aktiven Materialien imprägniert. Dies ist typischerweise metallisches Platin. Es können jedoch auch andere und zusätzlich katalytisch aktive Materialien zur Imprägnierung verwendet werden, wenn diese sich zur Umsetzung der gewünschten Reaktion eignen. [0011] Beansprucht wird insbesondere ein Material zur katalytischen Umsetzung von Gasgemischen, die C2- bis C6-Alkane und die Wasserstoff, Sauerstoff oder Wasserstoff und Sauerstoff im Gemisch enthalten können, wobei hauptsächlich Alkene und Wasserstoff sowie zusätzlich Wasserdampf erhalten werden, und
• das Material aus keramischen Schäumen besteht, die sich aus Einfachkomponenten oder aus einem Gemisch von oxidischen oder nichtoxidischen keramischen Materialien oder aus einem Gemisch von oxidischen und nichtoxidischen keramischen Materialien zusammensetzen, und
• das Material zur Erlangung der katalytischen Aktivität mit mindestens einer ka- talytisch aktiven Substanz imprägniert ist.
[0012] Bei den oxidischen Keramiken handelt es sich insbesondere um die keramischen Materialien Aluminium(lll)-oxid, Calciumoxid, Calciumaluminat, Zirkondioxid, Magnesiumoxid, Siliciumdioxid, Zinndioxid, Zinkdioxid oder Zinkaluminat. Diese Stoffe können als Einfachkomponenten oder im Gemisch eingesetzt werden. Bei den nichto- xidischen keramischen Materialien handelt es sich insbesondere um die keramischen Materialien Siliciumcarbid oder Bornitrid. Auch diese Stoffe können als Einfachkomponenten oder im Gemisch eingesetzt werden. Schliesslich können zur Herstellung des Trägermaterials auch oxidische und nichtoxidische Materialien im Gemisch eingesetzt werden.
[0013] Zur Verbesserung der Trägereigenschaften kann das Trägermaterial zusätzlich einen Stoff aus der Gruppe der Stoffe Chrom(lll)-oxid, Eisen(lll)-oxid, Hafniumdioxid, Magnesiumdioxid, Titandioxid, Yttrium(lll)-oxid, Calciumaluminat, Cerdioxid, Scandiumoxid oder auch Zeolith enthalten. Zusätzlich kann auch Zirkondioxid in Kombination mit Calciumoxid, Cerdioxid, Magnesiumoxid, Yttrium(lll)-oxid, Scandiumoxid oder Ytterbiumoxid als Stabilisatoren zum Einsatz kommen.
[0014] Ein typisches Verfahren zur Herstellung von keramischen Schäumen lehrt die EP 260826 B1. Zur Herstellung des keramischen Schaumes wird beispielhaft α- Aluminiumoxid als ein geeignetes keramisches Rohmaterial mit Titandioxid als Stabilisator gemischt und eine wässrige Lösung eines Polymeren zugegeben. Nach Verrüh- ren dieser Mischung werden Polyurethanschaumpellets zugegeben und die Mischung vermischt. Danach folgt der Trocknungs- und Sinterungsschritt. Dieser erfolgt bei einer Temperatur bis zu 1600 0C und lässt die Polyurethanschaummatrix verbrennen. Dabei bleibt das Gerüst, ein gesinterter Keramikschaum, zurück. [0015] Eine einfachere Möglichkeit besteht darin, den Polyurethanschaum in Form einer geeigneten Struktur, die typischerweise die Geometrie der Anwendungsform besitzt, vorzuformen. Die betreffende Geometrie kann beispielsweise ein Block oder ein Zellsteg sein. Diese Form wird mit einer Suspension aus keramischen Partikeln und mit geeigneten Hilfsstoffen zur Sinterung versehen. Dies sind beispielsweise Verdickungsmittel. Das Material wird dann einem Trocknungs- bzw. Sinterungsschritt bei einer Temperatur von bis zu 1600 0C unterzogen, wobei der Polyurethanschaum verbrennt und ein Gerüst aus keramischem Schaum hinterlässt.
[0016] Makroporöse keramische Materialien als Träger für Katalysatoren in De- hydrierungsreaktionen für Alkane sind bekannt. Die US 6072097 A beschreibt ein makroporöses keramisches Material aus α-Aluminiumoxid und weiteren geeigneten oxidischen Materialien. Der so hergestellte keramische Schaum wird mit Platin und Zinn oder Kupfer als katalytisch aktivem Material imprägniert. Die US 4088607 A beschreibt einen keramischen Schaum aus Zinkaluminat und einem edelmetallhaltigen katalytisch aktiven Material, das auf den Schaum aufgetragen wird. Der so hergestellte Katalysator eignet sich beispielsweise als Abgasreinigungskatalysator in Automobilen.
[0017] Alle bekannten keramischen Schäume haben den Nachteil, dass sie noch Verbesserungsbedarf bezüglich der thermischen und mechanischen Stabilität besitzen. Viele keramische Schäume, die genügend stabil sind, haben als Katalysatorträger ei- nen nachteiligen Einfluss auf die katalytischen Eigenschaften des imprägnierten Materials. Dies ist bei der vorliegenden Stoffkombination, aus dem das geträgerte Material gefertigt ist, nicht der Fall.
[0018] Es ist möglich, weitere geeignete Hilfsmittel in das vorgefertigte Material einzugeben. Dies können beispielsweise Sägespäne sein. Diese werden in das Mate- rial inkorporiert und verbrennen bei dem Sinterungsprozess, wodurch Poren hinterlassen werden. Statt Sägespänen können aber auch andere beliebige Materialien verwendet werden, die bei dem Sinterungsprozess Poren hinterlassen, so dass man einen keramischen Schaum erhält.
[0019] Dies gilt insbesondere für Katalysatoren, die für eine Alkandehydrierung oder eine selektive Wasserstoffverbrennung geeignet sind. Die erfindungsgemäße Stoffkombination als Basis für einen keramischen Schaum als Trägermaterial für Katalysatoren wird auch in anderen Anwendungen beansprucht. Beispiele sind katalytische Reformierverfahren, Gasphasenoxidationen oder Hydrierungen. [0020] Die Träger, die aus einem keramischen Schaum aus dem erfindungsgemäßen Material gefertigt sind, sind mechanisch als auch thermisch sehr stabil und ü- ben keinen negativen Einfluss auf das imprägnierte katalytische Material aus.
[0021] Bedingt durch den Herstellungsprozess lässt sich die Porosität des kerami- sehen Schaumes genau einstellen. Dadurch kann dieser optimal auf die verschiedenen Strömungseigenschaften in den entsprechenden Anwendungsverfahren eingestellt werden. Die Porosität des Schaumes kann durch die innere Oberfläche nach BET charakterisiert werden. Typische spezifische Oberflächen der Schäume, die nach dem erfindungsgemäßen Verfahren hergestellt werden, betragen bis 200 m2 * g"1. Typische Porendichten der Schäume, die nach dem erfindungsgemäßen Verfahren hergestellt werden, betragen 5 bis 150 PPI (PPI: „Pores per linear inch").
[0022] Das katalytisch aktive Material auf dem Träger kann beliebig geartet sein. Es wird in jedem Fall so geartet sein, dass es die gewünschte Reaktion katalysiert. Üblicherweise ist das katalytisch aktive Material eine platinhaltige Verbindung. Diese kann beispielsweise durch eine Imprägnierung in Form von chlorhaltigen Verbindungen auf den Träger aufgebracht werden. Die Chloridionen können durch einen weiteren Waschprozess aus der Schaumkeramik ausgewaschen werden, wie es beispielhaft beschrieben wird in der US 5151401 A.
[0023] Das erfindungsgemäße Material eignet sich insbesondere als Katalysator für die Alkandehydrierung. Als Ausgangsverbindung kann dabei jedes beliebige Alkan eingesetzt werden. Bevorzugt wird das erfindungsgemäße Material als Katalysator für die Dehydrierung von Propan und r?-Butan eingesetzt, um daraus Propen und n-Buten herzustellen. Mögliche Ausgangskohlenwasserstoffe sind aber auch n-Buten oder E- thylbenzen, wobei durch eine Dehydrierung Butadien beziehungsweise Styren erhalten werden. Selbstverständlich können auch Alkangemische eingesetzt werden. Die Alka- ne werden bevorzugt mit Wasserstoff, Wasserdampf, Sauerstoff oder einem beliebigen
Gemisch dieser Gase eingesetzt, können aber auch in Reinform eingesetzt werden.
[0024] Das erfindungsgemäße Material kann als Katalysator für eine Dehydrierung bei den üblicherweise für eine Dehydrierung angewendeten Bedingungen eingesetzt werden. Typische Bedingungen für eine Dehydrierung sind Temperaturen von 450 0C bis 820 0C. Besonders bevorzugt sind Temperaturen von 500 bis 650 0C.
[0025] Das erfindungsgemäße Material eignet sich in Form eines keramischen Schaumes als Träger für katalytisch aktive Materialien, die eine Dehydrierung oder o- xidative Dehydrierung von Alkanen ermöglichen. Durch das erfindungsgemäße Verfahren kann der Strömungswiderstand in Reaktoren zur Alkandehydrierung wesentlich verbessert werden. Die aktive Nutzung der Katalysatormasse und der Porennutzungsgrad können wesentlich verbessert werden. Die Porengröße und die Verteilung der Poren lassen sich so besser einstellen. Die thermische und mechanische Stabilität des Katalysators in Alkandehydrierungen kann so ebenfalls wesentlich verbessert werden. Durch den verbesserten Wärmeübergang in radialer Richtung und den daraus resultierenden geringeren radialen Temperaturgradienten innerhalb des Rohrreaktors wird eine optimierte Nutzung des Katalysators erreicht.

Claims

Patentansprüche
1. Material zur katalytischen Dehydrierung von Gasgemischen, die C2- bis C6- Alkane enthalten und Wasserstoff, Wasserdampf, Sauerstoff oder ein beliebiges Gemisch dieser Gase enthalten können, wobei hauptsächlich Alkene und Wasserstoff erhalten werden sowie zusätzlich Wasserdampf erhalten werden kann,
dadurch gekennzeichnet, dass
• das Material aus keramischen Schäumen besteht, die sich aus Einfachkomponenten oder aus einem Gemisch von oxidischen oder nichtoxidischen kerami- sehen Materialien oder aus einem Gemisch von oxidischen und nichtoxidischen keramischen Materialien zusammensetzen, und
• das Material zur Erlangung der katalytischen Aktivität mit mindestens einer ka- talytisch aktiven Substanz imprägniert ist.
2. Material nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den o- xidischen keramischen Materialien um die Stoffe Aluminium(lll)-oxid, Calcium- oxid, Calciumaluminat, Zirkondioxid, Magnesiumoxid, Siliciumdioxid, Zinndioxid, Zinkoxid oder Zinkaluminat oder einem Gemisch dieser Stoffe handelt.
3. Material nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den nichtoxidischen keramischen Materialien um die Stoffe Siliciumcarbid oder Bor- nitrid oder ein Gemisch dieser Stoffe handelt.
4. Material zur katalytischen Umsetzung von Gasgemischen nach Anspruch 1 , dadurch gekennzeichnet, dass das Material aus Schaumkeramik besteht, die aus einem Gemisch der Stoffe Aluminium(lll)-oxid, Calciumoxid, Siliciumdioxid, Zinndioxid, Zinkoxid, Zinkaluminat, Siliciumcarbid oder Bornitrid hergestellt ist und die zusätzlich einen Stoff aus der Gruppe der Stoffe Chrom(lll)-oxid, Ei- sen(lll)-oxid, Hafniumdioxid, Magnesiumoxid, Titandioxid, Yttrium(lll)-oxid, Calciumaluminat, Cerdioxid, Scandiumoxid oder Zeolith enthält.
5. Material zur katalytischen Umsetzung von Gasgemischen nach Anspruch 1 , dadurch gekennzeichnet, dass das Material aus Schaumkeramik besteht, die aus einem Gemisch der Stoffe Aluminium(lll)-oxid, Calciumoxid, Siliciumdioxid, Zinndioxid, Zinkoxid, Zinkaluminat, Siliciumcarbid oder Bornitrid hergestellt ist und die zusätzlich einen Stoff aus der Gruppe der Stoffe Chrom(lll)-oxid, Ei- sen(lll)-oxid, Hafniumdioxid, Magnesiumoxid, Titandioxid, Yttrium(lll)-oxid, CaI- ciumaluminat, Cerdioxid, Scandiumoxid oder Zeolith und Zirkondioxid in Kombination mit Calciumoxid, Cerdioxid, Magnesiumoxid, Yittrium(lll)-oxid, Scandiumoxid oder Ytterbiumoxid als Stabilisator enthält.
6. Material zur katalytischen Umsetzung von Alkane enthaltenden Gasgemischen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schaumkeramik mittels offenzelligen Polyurethanschäumen oder mittels anderen offenporigen Kunststoffschäumen, deren Offenporigkeit durch beliebige Herstellungsverfahren realisiert werden kann, hergestellt wird, wobei der Schaum mit einer Suspension aus keramischen Partikeln und geeigneten Additiven versehen wird und der erhaltene Schaum einem Sinterprozess unterzogen wird, so dass man eine Schaumkeramik erhält, die bedingt durch den Herstel- lungsprozess in ihrer Form und Porosität genau einstellbar ist und die Schaumkeramik mit mindestens einem katalytisch aktiven Material imprägniert wird.
7. Verfahren zur Herstellung eines Materials nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein keramischer Grundstoff, dem geeignete Additive als Hilfsmittel zur Herstellung beigegeben wurden, als Aufschlämmung auf ein vorgefertigtes Grundmaterial aus Polyurethanschaum aufgetragen wird, wonach das erhaltene Material einem Sinterprozess bis 1600 0C unterzogen wird, wodurch man einen keramischen Schaum erhält, der mit einem katalytisch aktiven Material imprägniert wird.
8. Verfahren zur Herstellung eines Materials nach Anspruch 7, dadurch gekennzeichnet, dass es sich bei den Hilfsmitteln um feinverteilte brennbare Materialien handelt, die bei dem Sinterprozess verbrennen und in dem keramischen Schaum Poren hinterlassen.
9. Verfahren zur Herstellung eines Materials nach Anspruch 8, dadurch gekenn- zeichnet, dass es sich bei den Hilfsmitteln um Sägespäne handelt.
10. Material zur katalytischen Umsetzung von Alkane enthaltenden Gasgemischen nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Schaumkeramik eine spezifische Porenoberfläche bis 200 m2 * g"1 besitzt.
1 1. Material zur katalytischen Umsetzung von Alkane enthaltenden Gasgemischen nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das kata- lytisch aktive Material Platin, Zinn oder Chrom oder Mischungen daraus enthält.
12. Verfahren zur katalytischen Umsetzung von Alkane enthaltenden Gasgemischen, dadurch gekennzeichnet, dass die Alkane in einem Gasgemisch, das Wasserstoff, Wasserdampf, Sauerstoff oder ein Gemisch dieser Gase enthalten kann, über einen Katalysator geleitet werden, der auf einer porösen Schaumkeramik geträgert ist, die aus einem Gemisch der Stoffe Aluminiumoxid, Calcium- oxid, Siliciumdioxid, Zinndioxid, Zirkondioxid, Calciumaluminat, Zinkaluminat, Siliciumcarbid oder Bornitrid hergestellt ist, und die mit einem katalytisch aktiven Material imprägniert ist.
13. Verfahren zur katalytischen Umsetzung von Alkane enthaltenden Gasgemischen, dadurch gekennzeichnet, dass die Alkane in einem Gasgemisch, das Wasserstoff, Wasserdampf, Sauerstoff oder ein Gemisch dieser Gase enthalten kann, über einen Katalysator geleitet werden, der auf einer porösen Schaumkeramik geträgert ist, die aus einem Gemisch der Stoffe Aluminiumoxid, Calcium- oxid, Siliciumdioxid, Zinndioxid, Zirkondioxid, Calciumaluminat, Zinkaluminat,
Siliciumcarbid oder Bornitrid hergestellt ist, und die zusätzlich einen Stoff aus der Gruppe der Stoffe Chrom(lll)-oxid, Eisen(lll)-oxid, Hafniumdioxid, Magnesiumoxid, Titandioxid, Yttrium(lll)-oxid, Calciumaluminat, Cerdioxid, Scandium- oxid, oder Zeolith enthält, und die mit einem katalytisch aktiven Material im- prägniert ist.
14. Verfahren zur katalytischen Umsetzung von Alkane enthaltenden Gasgemischen, dadurch gekennzeichnet, dass die Alkane in einem Gasgemisch, das Wasserstoff, Wasserdampf, Sauerstoff oder ein Gemisch dieser Gase enthalten kann, über einen Katalysator geleitet werden, der auf einer porösen Schaumke- ramik geträgert ist, die aus einem Gemisch der Stoffe Aluminiumoxid, Calcium- oxid, Siliciumdioxid, Zinndioxid, Zirkondioxid, Calciumaluminat, Zinkaluminat, Siliciumcarbid oder Bornitrid hergestellt ist, und die zusätzlich einen Stoff aus der Gruppe der Stoffe Chrom(lll)-oxid, Eisen(lll)-oxid, Hafniumdioxid, Magnesiumoxid, Titandioxid, Yttrium(lll)-oxid, Calciumaluminat, Cerdioxid, Scandium- oxid, oder Zeolith und Zirkondioxid in Kombination mit Calciumoxid, Cerdioxid, Magnesiumoxid, Yttrium(lll)-oxid, Scandiumoxid oder Ytterbiumoxid als Stabili- sator enthält, und die mit einem katalytisch aktiven Material imprägniert ist.
15. Verfahren zur katalytischen Dehydrierung von Alkane enthaltenden Gasgemischen nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Dehydrierung bei einer Temperatur von 450 °C bis 820 0C durchgeführt wird, besonders bevorzugt bei 500 bis 650 °C.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass es sich bei dem zu dehydrierenden Alkan um n-Propan oder n-Butan handelt.
17. Verfahren nach einem der Ansprüche 1 bis 15 dadurch gekennzeichnet, dass es sich bei dem zu dehydrierenden Kohlenwasserstoff um n-Buten oder Ethyl- benzen handelt.
PCT/EP2009/005440 2008-08-07 2009-07-28 Hochporöse schaumkeramiken als katalysatorträger zur dehydrierung von alkanen WO2010015341A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2733278A CA2733278A1 (en) 2008-08-07 2009-07-28 High-porosity foam ceramics as catalyst carriers used for the dehydrogenation of alkanes
MX2011001403A MX2011001403A (es) 2008-08-07 2009-07-28 Espumas ceramicas altamente porosas como portadoras de catalizador para la deshigrogenacion de alcanos.
BRPI0911935A BRPI0911935A2 (pt) 2008-08-07 2009-07-28 "material para a desidrogenação catalítica de misturas de gases, material para a conversão catalítica de misturas de gases e processo para a fabricação de um material"
US13/057,937 US20110144400A1 (en) 2008-08-07 2009-07-28 Highly porous foam ceramics as catalyst carriers for the dehydrogenation of alkanes
CN2009801306204A CN102112224A (zh) 2008-08-07 2009-07-28 作为烷烃脱氢催化剂的载体的高度多孔的泡沫陶瓷
JP2011521459A JP2011529781A (ja) 2008-08-07 2009-07-28 アルカンの脱水素化用触媒担体としての高空隙率セラミックス発泡体
EP09777473A EP2331256A1 (de) 2008-08-07 2009-07-28 Hochporöse schaumkeramiken als katalysatorträger zur dehydrierung von alkanen
RU2011105458/04A RU2486007C2 (ru) 2008-08-07 2009-07-28 Высокопористые пенокерамики как носители катализатора для дегидрирования алканов
ZA2011/01039A ZA201101039B (en) 2008-08-07 2011-02-09 Highly porous foam ceramics as catalyst carriers for the dehydrogenation of alkanes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008036724A DE102008036724A1 (de) 2008-08-07 2008-08-07 Hochporöse Schaumkeramiken als Katalysatorträger zur Dehydrierung von Alkanen
DE102008036724.9 2008-08-07

Publications (1)

Publication Number Publication Date
WO2010015341A1 true WO2010015341A1 (de) 2010-02-11

Family

ID=41112833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/005440 WO2010015341A1 (de) 2008-08-07 2009-07-28 Hochporöse schaumkeramiken als katalysatorträger zur dehydrierung von alkanen

Country Status (13)

Country Link
US (1) US20110144400A1 (de)
EP (1) EP2331256A1 (de)
JP (1) JP2011529781A (de)
KR (1) KR20110038178A (de)
CN (1) CN102112224A (de)
AR (1) AR073188A1 (de)
BR (1) BRPI0911935A2 (de)
CA (1) CA2733278A1 (de)
DE (1) DE102008036724A1 (de)
MX (1) MX2011001403A (de)
RU (1) RU2486007C2 (de)
WO (1) WO2010015341A1 (de)
ZA (1) ZA201101039B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2712674A1 (de) 2012-09-27 2014-04-02 Saudi Basic Industries Corporation Katalysatorzusammensetzung zur Alkandehydrierung
CN105435856A (zh) * 2014-08-27 2016-03-30 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃催化剂载体及其用途

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941109A (zh) * 2012-11-16 2013-02-27 浙江大学 一种含有泡沫碳化硅的贵金属催化剂
JP6068512B2 (ja) * 2012-12-28 2017-01-25 日揮触媒化成株式会社 成型体用改質酸化チタン系微粒子粉末および成型体用組成物ならびに成型体
JP6426711B2 (ja) * 2014-03-31 2018-11-21 三井化学株式会社 不飽和炭化水素の製造方法
CN103977797B (zh) * 2014-05-20 2015-09-16 南开大学 一种用于丙烷脱氢制丙烯的催化剂的制备方法和应用
KR101644695B1 (ko) * 2014-07-28 2016-08-01 롯데케미칼 주식회사 탈수소 촉매 및 그 제조방법
EP3347332B1 (de) * 2015-09-09 2022-04-27 Wisconsin Alumni Research Foundation Heterogene katalysatoren zur oxidativen dehydrierung von alkanen oder oxidativer kupplung von methan
CN106552657B (zh) * 2015-09-28 2019-05-14 中国石化扬子石油化工有限公司 一种SiC载体限域的铂基催化剂及其制备方法
US9914678B2 (en) 2015-11-04 2018-03-13 Exxonmobil Chemical Patents Inc. Fired tube conversion system and process
CN105948790B (zh) * 2016-05-04 2018-08-14 山东理工大学 一种轻质多孔磷酸铝—铝酸锌陶瓷球的制备方法
US9878305B2 (en) * 2016-06-14 2018-01-30 King Fahd University Of Petroleum And Minerals Fluidizable vanadium catalyst for oxidative dehydrogenation of alkanes to olefins in a gas phase oxygen free environment
CN107537462A (zh) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 丁烷脱氢制丁烯/丁二烯催化剂及用途
CN107537534A (zh) * 2016-06-29 2018-01-05 中国石油化工股份有限公司 正丁烷脱氢制丁烯/丁二烯催化剂及用途
KR102239677B1 (ko) 2017-04-12 2021-04-13 주식회사 엘지화학 산화적 탈수소화 반응용 촉매, 이의 제조방법 및 이를 이용한 산화적 탈수소화방법
CN107469856B (zh) * 2017-10-12 2019-11-26 浙江师范大学 一种用于丙烷完全燃烧的催化剂及其制备方法
CN109289896A (zh) * 2018-11-01 2019-02-01 大连理工大学 一种整体式氮化硼催化剂及应用
CN114471648B (zh) * 2020-10-27 2023-09-01 中国石油化工股份有限公司 一种整体式焦油裂解用载体、催化剂及其制法
CN112608134B (zh) * 2020-12-10 2023-03-24 南昌大学 一种多孔陶瓷球催化剂的制备方法及应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083905A (en) * 1975-04-25 1978-04-11 Champion Spark Plug Company Open mesh, random fiber, ceramic structure, monolithic catalyst support
US4088607A (en) 1974-01-19 1978-05-09 Kali-Chemie Aktiengessellschaft Catalyst and method of preparing same
US4774217A (en) * 1985-06-13 1988-09-27 Nippondenso Co., Ltd. Catalytic structure for cleaning exhaust gas
EP0297657A1 (de) * 1987-06-29 1989-01-04 Shell Internationale Researchmaatschappij B.V. Dehydrierungskatalysator
EP0260826B1 (de) 1986-09-10 1990-10-03 Imperial Chemical Industries Plc Katalysatoren
US5151401A (en) 1990-11-19 1992-09-29 Phillips Petroleum Company Preparation of dehydrogenating catalyst
US6072097A (en) 1996-01-22 2000-06-06 Regents Of The University Of Minnesota Catalytic oxidative dehydrogenation process and catalyst
WO2004039920A2 (de) 2002-10-31 2004-05-13 Uhde Gmbh Verfahren zur katalytischen dehydrierung von kohlenwasserstoffen
EP1533029A1 (de) * 2003-11-18 2005-05-25 Rohm And Haas Company Katalytisches System und Verfahren zur Umsetzung von Alkanen zu Alkenen und zu den entsprechenden sauerstoffhaltigen Verbindungen
WO2007021705A2 (en) * 2005-08-09 2007-02-22 Porvair Plc Improved ceramic foam filter for better filtration of molten iron

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790473A (en) * 1969-03-17 1974-02-05 Universal Oil Prod Co Tetrametallic hydrocarbon conversion catalyst and uses thereof
US4169815A (en) * 1973-11-15 1979-10-02 Phillips Petroleum Company Catalyst for dehydrogenation process
CA1260909A (en) * 1985-07-02 1989-09-26 Koichi Saito Exhaust gas cleaning catalyst and process for production thereof
KR100331021B1 (ko) * 1993-01-04 2002-11-27 셰브론케미칼컴파니 탈수소화방법
JPH10101451A (ja) * 1996-10-01 1998-04-21 Bridgestone Corp セラミック連通多孔体の製造方法
WO2000043336A1 (en) * 1999-01-25 2000-07-27 University Of Delaware Oxidative dehydrogenation process and catalyst
RU2178399C1 (ru) * 2000-12-09 2002-01-20 Институт катализа им. Г.К. Борескова СО РАН Способ каталитического дегидрирования углеводородов
DE10219879A1 (de) * 2002-05-03 2003-11-20 Basf Ag Katalysatorträger und Verfahren zu seiner Herstellung
GB0312966D0 (en) * 2003-06-05 2003-07-09 Bp Chem Int Ltd Process for the production of olefins
EP1533302A1 (de) * 2003-11-21 2005-05-25 Newron Pharmaceuticals S.p.A. Histidinderivate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088607A (en) 1974-01-19 1978-05-09 Kali-Chemie Aktiengessellschaft Catalyst and method of preparing same
US4083905A (en) * 1975-04-25 1978-04-11 Champion Spark Plug Company Open mesh, random fiber, ceramic structure, monolithic catalyst support
US4774217A (en) * 1985-06-13 1988-09-27 Nippondenso Co., Ltd. Catalytic structure for cleaning exhaust gas
EP0260826B1 (de) 1986-09-10 1990-10-03 Imperial Chemical Industries Plc Katalysatoren
EP0297657A1 (de) * 1987-06-29 1989-01-04 Shell Internationale Researchmaatschappij B.V. Dehydrierungskatalysator
US5151401A (en) 1990-11-19 1992-09-29 Phillips Petroleum Company Preparation of dehydrogenating catalyst
US6072097A (en) 1996-01-22 2000-06-06 Regents Of The University Of Minnesota Catalytic oxidative dehydrogenation process and catalyst
WO2004039920A2 (de) 2002-10-31 2004-05-13 Uhde Gmbh Verfahren zur katalytischen dehydrierung von kohlenwasserstoffen
EP1533029A1 (de) * 2003-11-18 2005-05-25 Rohm And Haas Company Katalytisches System und Verfahren zur Umsetzung von Alkanen zu Alkenen und zu den entsprechenden sauerstoffhaltigen Verbindungen
WO2007021705A2 (en) * 2005-08-09 2007-02-22 Porvair Plc Improved ceramic foam filter for better filtration of molten iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2712674A1 (de) 2012-09-27 2014-04-02 Saudi Basic Industries Corporation Katalysatorzusammensetzung zur Alkandehydrierung
WO2014049569A1 (en) 2012-09-27 2014-04-03 Saudi Basic Industries Corporation Catalyst composition for the dehydrogenation of alkanes
CN105435856A (zh) * 2014-08-27 2016-03-30 中国石油化工股份有限公司 低碳烷烃脱氢制低碳烯烃催化剂载体及其用途

Also Published As

Publication number Publication date
EP2331256A1 (de) 2011-06-15
DE102008036724A1 (de) 2010-02-11
RU2011105458A (ru) 2012-09-20
BRPI0911935A2 (pt) 2015-10-06
RU2486007C2 (ru) 2013-06-27
US20110144400A1 (en) 2011-06-16
JP2011529781A (ja) 2011-12-15
CN102112224A (zh) 2011-06-29
AR073188A1 (es) 2010-10-20
MX2011001403A (es) 2011-05-30
KR20110038178A (ko) 2011-04-13
CA2733278A1 (en) 2010-02-11
ZA201101039B (en) 2011-11-30

Similar Documents

Publication Publication Date Title
WO2010015341A1 (de) Hochporöse schaumkeramiken als katalysatorträger zur dehydrierung von alkanen
US5935898A (en) Monomodal and polymodal catalyst supports and catalysts having narrow pore size distributions and their production
US5935897A (en) Monomodal and polymodal catalyst supports and catalysts having narrow pore size distributions and their production
US7790650B2 (en) Catalyst comprising nanocarbon structures for the production of unsaturated hydrocarbons
KR100584112B1 (ko) 적어도 철, 알칼리 금속 및 귀금속을 포함하는 탈수소 촉매
DE60129569T2 (de) Verfahren zur herstellung von synthesegas mit lanthanid-dotierter rhodiumkatalysatoren
EP2506963A1 (de) Reaktor zur durchführung von autothermen gasphasendehydrierungen
JPH0433769B2 (de)
CN108435242B (zh) 用于邻苯二甲酸酯选择性加氢反应的催化剂及其制备方法
US6365259B1 (en) High strength/high surface area alumina ceramics
EP2654941A1 (de) Reaktor zur durchführung einer autothermen gasphasendehydrierung
CZ293593B6 (cs) Způsob přípravy katalyzátorů a katalyzátorových nosičů
WO2008135581A1 (de) Iridium-katalysatoren für umsetzung von kohlenwasserstoffen in gegenwart von wasserdampf und insbesondere für die dampfdealkylierung von alkyl-substituierten aromatischen kohlenwasserstoffen
EP1442000B1 (de) Verfahren zur dehydrierung von c 2-c 30-alkanen
US3432443A (en) Catalyst for steam reforming of hydrocarbons
DE10237514A1 (de) Isothermes Verfahren zur Dehydrierung von Alkanen
DE102005053229A1 (de) Verfahren zur Herstellung von Benzol und Alkylaromaten durch autotherme Steamdealkylierung
RU2412758C1 (ru) Катализатор для конверсии углеводородов, способ его приготовления и способ получения синтез-газа
JP4790356B2 (ja) 低級炭化水素改質触媒
US6222085B1 (en) Catalyst for dehydrogenation of alkylaromatic hydrocarbon, process for producing the catalyst, and process for producing vinylaromatic hydrocarbon by using the catalyst
JP2005255605A (ja) 触媒を用いた低級炭化水素の転化方法
CN113546614B (zh) 一种具有梯度微观形貌结构的催化剂氧化铝载体材料及其制备方法
JP2006263682A (ja) 低級炭化水素直接改質触媒の製造方法
CN117342917A (zh) 一种甲苯歧化的方法
JP2005254121A (ja) 低級炭化水素直接改質触媒の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130620.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09777473

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2011521459

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/001403

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011020181

Country of ref document: EG

ENP Entry into the national phase

Ref document number: 2733278

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13057937

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009777473

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1487/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117005289

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011105458

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0911935

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110203