WO2010013707A1 - 無線通信端末及び通信制御方法 - Google Patents

無線通信端末及び通信制御方法 Download PDF

Info

Publication number
WO2010013707A1
WO2010013707A1 PCT/JP2009/063417 JP2009063417W WO2010013707A1 WO 2010013707 A1 WO2010013707 A1 WO 2010013707A1 JP 2009063417 W JP2009063417 W JP 2009063417W WO 2010013707 A1 WO2010013707 A1 WO 2010013707A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
communication terminal
wireless communication
decoding
distance
Prior art date
Application number
PCT/JP2009/063417
Other languages
English (en)
French (fr)
Inventor
直久 松本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008196727A external-priority patent/JP4773488B2/ja
Priority claimed from JP2008196697A external-priority patent/JP4773487B2/ja
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/056,587 priority Critical patent/US20110179330A1/en
Publication of WO2010013707A1 publication Critical patent/WO2010013707A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • H04L1/0051Stopping criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding

Definitions

  • the present invention relates to a wireless communication terminal and a communication control method.
  • turbo codes and LDPC Low Density Parity : Check
  • the turbo code is obtained by inputting data to be transmitted in different bit orders to a plurality of encoders on the transmission side.
  • the receiving side includes a plurality of decoders, decodes the received data, feeds back the output of the decoder to the input, and performs iterative decoding. By performing iterative decoding in this way, the error correction accuracy of received data can be improved.
  • the reachable decoding characteristics are limited. That is, there is a number of times that the decoding characteristics do not improve any more even if decoding is repeated a certain number of times or more. Therefore, in the prior art, the number of iterative decodings (hereinafter referred to as “convergence number”) at which the decoding characteristic sufficiently converges is obtained in advance, and the number of times of iterative decoding is performed.
  • FIG. 11 is a schematic block diagram of a wireless communication terminal that controls the number of times of repeated decoding according to the prior art.
  • channel quality calculation section 230 calculates (estimates) reception quality from the pilot signal received by reception section 210 via antenna ANT3, and transmits the calculation result to repetition count calculation section 240.
  • the iteration number calculation unit 240 controls the number of iteration decoding in the iterative decoder 220 according to the reception quality (channel quality). That is, when it is estimated that the channel quality is good and the received signal has few errors, the number of repetitive decoding is set to be more than the number of convergence with the recognition that good decoding characteristics can be obtained even if the number of times of decoding is small. Less.
  • the reception quality channel quality
  • the number of repetitive decoding is set to be more than the number of convergence with the recognition that good decoding characteristics can be obtained even if the number of times of decoding is small. Less.
  • a load is applied to calculate the channel quality and power consumption, that is, battery consumption increases. Therefore, it is not ideal to perform the number of decoding iterations according to the conventional technique when the remaining battery level (power that can be supplied to the terminal and the remaining battery level) is low.
  • spatial diversity utilizes the fact that when signals are received using a plurality of antennas that are spatially separated from each other, the correlation between the received signals generally decreases and the received signals fluctuate independently. . Therefore, the reliability of the received signal is improved by combining a plurality of received signals received by a plurality of antennas by a predetermined process or selecting a received signal with the best reception level.
  • the relative positional relationship between the plurality of antennas may vary.
  • a mobile phone terminal in a foldable type in which two cases are connected by a hinge, or in a slide type consisting of two cases in which one case slides relative to the other case
  • Some housings each have an antenna. Since the distance between antennas fluctuates by moving the casing, the diversity effect obtained differs depending on the shape of the casing. That is, when the distance between the antennas is large and the correlation between the antennas is small, the received signal quality is better than when the distance between the antennas is small and the signal is received by a single antenna.
  • the object of the present invention is to solve the above-described problems, control the number of repetitions of decoding according to the distance between antennas, that is, the reception quality, or according to the remaining amount of power that can be supplied to the terminal itself.
  • An object of the present invention is to provide a technique (wireless communication terminal and communication control method) for reducing delay and power consumption due to decoding processing by controlling the number of decoding iterations.
  • a wireless communication terminal (which can receive diversity) according to the present invention having a plurality of antennas with variable relative distances combines a plurality of received signals received by the plurality of antennas. Or a receiving unit to select) a decoder (turbo decoder) that repeatedly decodes a received signal including an error correction code received by the plurality of antennas, and an inter-antenna distance detecting unit that detects a distance between the plurality of antennas.
  • a storage unit storing a table of the number of repetitions of decoding at the decoder corresponding to the distance between the antennas), and controlling the number of repetitions of decoding at the decoder according to the detected distance between the antennas
  • a control unit storing a table of the number of repetitions of decoding at the decoder corresponding to the distance between the antennas
  • control unit in a wireless communication terminal including a plurality of antennas with variable relative distances (allowing diversity reception), the control unit may The number of repetitions of decoding is reduced as compared with a case where the distance between antennas is less than a predetermined value.
  • a wireless communication terminal having a plurality of antennas with variable relative distances (capable of diversity reception) calculates communication channel quality from received signals received by the plurality of antennas.
  • a channel quality calculation unit, and the control unit controls the number of repetitions of decoding according to the quality of the communication channel calculated by the channel quality calculation unit when the distance between the antennas is less than a predetermined value. It is characterized by.
  • a wireless communication terminal (which can receive diversity) having a plurality of antennas with variable relative distances according to another embodiment of the present invention can buffer received signals including error correction codes received by the plurality of antennas.
  • a determination unit (detection unit) that determines whether there is an error in the data decoded by the decoding unit, and a retransmission request unit that requests retransmission of data based on a determination result by the determination unit
  • the control unit further controls the number of decoding iterations in the decoder according to the number of retransmission requests of the retransmission request unit.
  • a wireless communication terminal (which can receive diversity) having a plurality of antennas with variable relative distances according to another embodiment of the present invention further includes a detection unit that detects a remaining amount of power that can be supplied to the terminal. And when the remaining amount of power detected by the detection unit is less than a predetermined value, the control unit performs decoding by the decoder according to the inter-antenna distance detected by the inter-antenna distance detection unit. It is characterized by controlling the number of repetitions.
  • a wireless communication terminal having a plurality of antennas with variable relative distances (capable of diversity reception) calculates the quality of a communication channel from received signals received by the plurality of antennas.
  • a channel quality calculation unit wherein the control unit determines the number of repetitions of the decoding according to the quality of the communication channel calculated by the channel quality calculation unit according to the remaining amount of power detected by the detection unit. Switching between the control and the control according to the distance between the antennas detected by the inter-antenna distance detection unit.
  • a wireless communication terminal including a decoder that repeatedly decodes a received signal including an error correction code includes a detection unit that detects a remaining amount of power that can be supplied to the terminal, and the detection unit And a control unit that controls the number of decoding iterations in the decoder according to the remaining amount of power.
  • the solution of the present invention has been described as an apparatus.
  • the present invention can be realized as a method, a program, and a storage medium that stores the program substantially corresponding to these, and the scope of the present invention. It should be understood that these are also included.
  • each step of the method or program uses an arithmetic processing unit such as a CPU or a DSP as necessary in data processing, and the input data, processed / generated data, etc. are stored in an HDD, memory, etc. Is stored in the storage device.
  • a communication control method for a wireless communication terminal (which can perform diversity reception) provided with a plurality of antennas with variable relative distances implemented as a method of the present invention is a method of combining a plurality of received signals received by the plurality of antennas. Or detecting, detecting a distance between the plurality of antennas, detecting the distance between the plurality of antennas, and detecting the received signal including the error correction code received by the plurality of antennas. Controlling the number of decoding iterations in the decoder according to the distance between the antennas.
  • a communication control method for a wireless communication terminal provided with a decoder that repeatedly decodes a received signal including an error correction code realized as a method of the present invention includes a detection step of detecting a remaining amount of power that can be supplied to the terminal. And controlling the number of decoding iterations in the decoder in accordance with the remaining amount of power detected in the detecting step.
  • the present invention in a wireless communication terminal having a plurality of antennas, it is possible to control the number of repetitions of decoding in accordance with the distance between antennas, that is, the reception quality, thereby reducing delay and power consumption due to decoding processing. It becomes possible.
  • 1 is a schematic diagram of a wireless communication terminal according to an embodiment of the present invention.
  • 1 is a schematic block diagram of a wireless communication terminal according to a first embodiment of the present invention. It is a flowchart which shows an example of the process of the radio
  • FIG. 6 is a diagram showing a relationship between a remaining battery mode and a maximum number of decoding iterations set by the iterative decoder 120.
  • FIG. It is a schematic block diagram of the radio
  • the wireless communication terminal is a portable electronic device such as a mobile phone terminal, a notebook computer, a PDA (personal digital assistance), a portable game machine, a portable audio player, a portable video player, a portable electronic dictionary, and a portable electronic book viewer. be able to.
  • a portable electronic device such as a mobile phone terminal, a notebook computer, a PDA (personal digital assistance), a portable game machine, a portable audio player, a portable video player, a portable electronic dictionary, and a portable electronic book viewer.
  • FIG. 1 is a schematic diagram of a wireless communication terminal according to an embodiment of the present invention.
  • the wireless communication terminal 100 is a foldable mobile phone terminal including two housings, and two antennas ANT1 and ANT2 are positioned in each housing.
  • the wireless communication terminal can open and close two housings, and a state where the housings are separated from each other as shown in FIG. 1 is an open state, and a state where the housings (not shown) are in close contact with each other is a closed state.
  • the two antennas ANT1 and ANT2 have a sufficiently long relative distance when the wireless communication terminal 100 is in an open state, have a small correlation between the antennas, and can obtain a sufficient diversity effect. .
  • the wireless communication terminal 100 when the wireless communication terminal 100 is in the closed state, the relative distance between the two antennas ANT1 and ANT2 is short and substantially operates as one antenna.
  • the present invention is not limited to a foldable mobile phone terminal, and can be applied to all wireless communication terminals that include a plurality of antennas and whose relative distances are variable.
  • the number of antennas is two, the present invention is not limited to this and may have three or more antennas.
  • FIG. 2 is a schematic block diagram of a radio communication terminal according to the first embodiment of the present invention.
  • the wireless communication terminal 100 includes a receiving unit 110, an iterative decoder 120, an iterative number control unit 130, an inter-antenna distance detection unit 140, a storage unit 150, and two antennas ANT1 and ANT2.
  • the receiving unit 110 performs predetermined processing on the signals received from the two antennas ANT1 and ANT2.
  • the receiving unit 110 includes a demodulating unit, a switch (not shown), and the like, and selects a signal having a strong reception level from signals received from the two antennas ANT1 and ANT2.
  • the receiving part 110 synthesize
  • the signals received by the antennas ANT1 and ANT2 include a turbo code (error correction code) for error correction.
  • receiving section 110 transmits the processed data to iterative decoder 120.
  • the iterative decoder 120 performs decoding using an error correction code included in the data transmitted from the receiving unit 110.
  • the iterative decoder 120 includes two decoders, an interleaver and a deinterleaver, for example, similarly to a general turbo decoder, and performs iterative decoding based on an error correction method. Since iterative decoding using a turbo code is a known technique, details are omitted here.
  • the inter-antenna distance detector 140 detects the distance between the two antennas ANT1 and ANT2. For example, in the case of a foldable mobile phone terminal, the inter-antenna distance detector 140 detects the distance between the antennas based on the opening angle of the housing (angle ⁇ in FIG. 1). Alternatively, when the mobile phone terminal is a slide type mobile phone and each of the two housings is provided with an antenna, the inter-antenna distance detection unit 140 detects the distance between the antennas depending on the sliding state.
  • the iteration count control unit 130 determines the number of iterations of decoding in the iterative decoder 120 based on the inter-antenna distance detected by the inter-antenna distance detection unit 140. The number of repetitions is set according to the distance between the antennas, and the storage unit 150 stores a table of the number of repetitions with respect to the distance between the antennas.
  • FIG. 3 is a flowchart showing an example of processing of the wireless communication terminal 100 according to the first embodiment of the present invention.
  • the inter-antenna distance detection unit 140 detects the inter-antenna distance between the two antennas ANT1 and ANT2, and transmits the detected inter-antenna distance to the repetition number control unit 130.
  • the iteration count control unit 130 sets (controls) the decoding iteration count based on a table stored in the storage unit 150 and indicating the relationship between the iteration count and the distance between the antennas.
  • An example of the table stored in the storage unit 150 is shown below.
  • the repetition count control unit 130 sets the repetition count to “N2”. If the distance between the antennas is equal to or greater than the threshold A, the repetition count control unit 130 sets the repetition count to “N1” (steps S12 to S14).
  • the threshold A is set to such a value that there is little correlation between the antennas ANT1 and ANT2 and signals can be received by two antennas. The number of repetitions is N2 ⁇ N1. This is based on the recognition that when the correlation between the antennas ANT1 and ANT2 is small, the quality of the received signal is improved.
  • the number of repetitions of decoding can be reduced as compared with a state in which the distance between antennas is short and reception is substantially performed by one antenna.
  • the reception quality becomes good, and therefore the number of repetitions N1 can be set to be smaller than the number of convergence times (the number of repetitions N2).
  • the advantage of the diversity method is utilized.
  • the number of decoding iterations is reduced, so that the time and power consumption required for the decoding process can be reduced compared to the conventional case.
  • FIG. 4 is a schematic block diagram of a radio communication terminal according to the second embodiment of the present invention. 4, the same reference numerals are given to the same functional units as those of the wireless communication terminal 100 of FIG. 2, and the description thereof is omitted.
  • the radio communication terminal 100A further includes a channel quality calculation unit 160.
  • Channel quality calculation section 160 calculates reception quality (channel quality) from signals received by antennas ANT1 and ANT2. The reception quality is calculated by, for example, calculating a SIR (Signal-to-Interference Ratio) using a pilot signal included in the received signal.
  • SIR Signal-to-Interference Ratio
  • the repetition count control unit 130A sets the number of decoding iterations based on the inter-antenna distance detected by the inter-antenna distance detection unit 140 and the channel quality calculated by the channel quality calculation unit 160.
  • Storage unit 150A stores a table of the number of repetitions for the distance between antennas and channel quality.
  • FIGS. 5A and 5B are flowcharts showing an example of processing of the wireless communication terminal 100A according to the second embodiment of the present invention.
  • the inter-antenna distance detecting unit 140 detects the inter-antenna distance between the two antennas ANT1 and ANT2, and transmits the detected inter-antenna distance to the repetition number control unit 130A.
  • the iteration count control unit 130A sets the decoding iteration count based on a table stored in the storage unit 150 and indicating the relationship between the iteration count and the inter-antenna distance. An example of the table stored in the storage unit 150 is shown below.
  • FIG. 5B is a flowchart of an example of a process for setting the number of repetitions according to reception quality.
  • channel quality calculation section 160 determines whether or not reception quality is acquired, that is, whether or not data (pilot signal or the like) capable of calculating reception quality (channel quality) is acquired.
  • step S33 the repetition count control unit 130A sets the repetition count to “N5”.
  • N5 is the number of times of convergence described above.
  • the process proceeds to step S32, and the repetition count control unit 130A sets the repetition count according to the reception quality. This is performed based on the table shown in Table 2. That is, when the reception quality is equal to or higher than a certain threshold value C, repetition count control unit 130A sets the repetition count to “N2”.
  • the repetition count control unit 130A sets the repetition count to “N3”.
  • the repetition count control unit 130A sets the repetition count to “N4”.
  • the threshold of reception quality has a relationship of C> D
  • the number of repetitions has a relationship of N4 ⁇ N3 ⁇ N2 ⁇ N1. This is also based on the recognition that the quality of the received signal is good when the correlation between the antennas ANT1 and ANT2 is small, as in the first embodiment.
  • the process returns to step S25 in FIG. 5A, and the receiving unit 110 receives data. Thereafter, the iterative decoder 120 decodes the received data for the set number of times (step S26).
  • the number of decoding iterations depends on the reception quality. And the time and power consumption required for the decoding process can be reduced.
  • FIG. 6 is a schematic block diagram of a radio communication terminal according to the third embodiment of the present invention.
  • the wireless communication terminal 100B further includes a remaining battery level detection unit 180.
  • the remaining battery level detection unit 180 detects the remaining battery level (power that can be supplied to the terminal and remaining battery level).
  • the storage unit 150B stores a table of the number of repetitions of decoding for the distance between antennas, the remaining battery level, and the channel quality.
  • FIG. 7 is a flowchart showing an example of processing of the wireless communication terminal 100B according to the third embodiment of the present invention.
  • the remaining battery level detection unit 180 measures (detects) the remaining battery level.
  • repetition count control unit 130B determines whether the remaining battery level is equal to or greater than a predetermined threshold value X. If it is determined that the remaining battery level is equal to or greater than the predetermined threshold value X, the process proceeds to step T13, and the iteration count control unit 130B sets the iteration count of decoding to “N0”.
  • a case where the remaining battery level is equal to or greater than a predetermined threshold value X is referred to as “mode 1”. If it is determined in step T12 that the remaining battery level is less than the predetermined threshold value X, the process proceeds to step T14, and the repetition count control unit 130B determines whether the remaining battery level is equal to or greater than the predetermined threshold value Y. To do. When it is determined that the remaining battery level is equal to or greater than the predetermined threshold Y, the process proceeds to step T15, and the repetition count control unit 130B performs a repetition count setting process based on the reception quality. A case where the remaining battery level is lower than the threshold value X and equal to or higher than the threshold value Y is referred to as “mode 2”.
  • step T14 When it is determined in step T14 that the remaining battery level is lower than the threshold value Y, the process proceeds to step T16, and the repetition count control unit 130B performs a repetition count setting process based on the distance between the antennas.
  • mode 3 The case where the remaining battery level is below the threshold Y is referred to as “mode 3”.
  • FIG. 8 is a diagram showing the relationship between the remaining battery mode and the maximum number of decoding iterations set by the iteration number control unit 130B.
  • the horizontal axis indicates the remaining battery level, and the vertical axis indicates the maximum number of repetitions.
  • repetition count control unit 130B sets the maximum number of repetitions to the above convergence number (here, “N0”). The purpose of this is to perform decoding for the number of times of convergence at which high-quality decoding characteristics can be obtained even if the power consumption is increased by the decoding process because the remaining battery capacity is sufficient.
  • repetition count control section 130B sets the repetition count to N1 to N3 according to the channel quality. This is because the remaining battery power is decreasing, so the number of repetitions is reduced to reduce power consumption.At that time, if the channel quality is good, there is little error in the received data, An object of the present invention is to reduce the number of repetitions, and conversely, when channel quality is not good and an error of received data may occur, the purpose is to increase the number of repetitions and improve error correction accuracy.
  • repetition number control unit 130B sets the number of repetitions to a number smaller than the number of repetitions in modes 1 and 2. At this time, the number of repetitions is set to N4 and N5 according to the distance between the antennas. As in mode 2, the repetition number control unit 130B reduces the number of repetitions to reduce power consumption and sets the number of repetitions according to the reception quality. At this time, the reception quality depends only on the distance between the antennas. Therefore, an object of the present invention is to improve error correction accuracy as much as possible without generating power consumption due to calculation of channel quality.
  • FIG. 7B is a flowchart of an example of a process for setting the number of repetitions according to reception quality.
  • channel quality calculation section 160 determines whether or not reception quality is acquired, that is, whether or not data (pilot signal or the like) capable of calculating reception quality (channel quality) is acquired. If it is determined that the channel quality calculation unit 160 has not acquired the channel quality calculation unit 160, the process proceeds to step T23, and the iteration number control unit 130B sets the iteration number to “N1”.
  • N1 is the maximum value of the number of repetitions that can be set in mode 2, and when the reception quality is unknown, it is set to the number of times that the decoding characteristics sufficiently converge. If it is determined in step T21 that the reception quality is acquired, the process proceeds to step T22, and the repetition count control unit 130B sets the repetition count according to the reception quality. This is performed based on the table shown in Table 3 below stored in the storage unit 150B.
  • the repetition count control unit 130B sets the repetition count to “N1”.
  • the repetition count control unit 130B sets the repetition count to “N2”.
  • the repetition count control unit 130B sets the repetition count to “N3”.
  • the reception quality threshold has a relationship of C ⁇ D, and the number of repetitions has a relationship of N1 ⁇ N2 ⁇ N3. This is because when the reception quality is good, the number of repetitions can be reduced compared to when the reception quality is not good.
  • FIG. 7C is a flowchart of an example of a process for setting the number of repetitions according to the distance between the antennas.
  • the inter-antenna distance detecting unit 140 detects the inter-antenna distance between the two antennas ANT1 and ANT2, and transmits the detected inter-antenna distance to the repetition number control unit 130B.
  • the iteration count control unit 130B sets (controls) the decoding iteration count based on a table stored in the storage unit 150 and indicating the relationship between the iteration count and the inter-antenna distance. An example of the table stored in the storage unit 150 is shown below.
  • the repetition count control unit 130B sets the repetition count to “N4”. If the distance between the antennas is equal to or greater than the threshold value A, the repetition count control unit 130B sets the repetition count to “N5” (steps T32 to S34).
  • the threshold A is set to such a value that there is little correlation between the antennas ANT1 and ANT2 and signals can be received by two antennas. The number of repetitions is N4 ⁇ N5. This is based on the recognition that when the correlation between the antennas ANT1 and ANT2 is small, the quality of the received signal is good.
  • step T17 the receiving unit 100 receives data including an error correction code (step T17), and the iterative decoder 120 decodes the received data for the set number of times (step T18).
  • the remaining battery level detection unit 180 continues to monitor the remaining battery level during data reception and switches between modes 1 to 3. Further, when the remaining battery level rapidly decreases, the number of repetitions of decoding may be controlled only by the distance between the antennas without performing the remaining battery level determination process thereafter.
  • the battery level is low, for example, using a display unit, a vibration unit, a speaker, or a light emitting unit provided in the wireless communication terminal 100B, a message display, a dedicated icon display, or vibration, sound, light It is preferable to notify by blinking.
  • the number of repetitions of the decoder is controlled so as not to deteriorate the decoding characteristic while suppressing the power consumption according to the remaining power (battery remaining) that can be supplied to the terminal.
  • the delay and power consumption due to the decoding process can be reduced.
  • the number of decoding iterations is reduced, so that the time and power consumption required for decoding processing can be reduced compared to the conventional case. .
  • FIG. 9 is a schematic block diagram of a radio communication terminal according to the fourth embodiment of the present invention.
  • the wireless communication terminal 100C further includes a packet combining unit 170, a buffer 172, a CRC detection unit 174, and a retransmission request generation unit 176.
  • the radio communication terminal 100B performs error correction using a known HARQ (Hybrid Automatic Repeat reQuest) technique.
  • HARQ Hybrid Automatic Repeat reQuest
  • HARQ is an ARQ (Automatic Repeat reQuest) that is a control requesting the transmitting side to retransmit the data (wrong packet) when the receiving side receives wrong data (packet).
  • ARQ Automatic Repeat reQuest
  • the packet combining technique is a technique for combining packets of previously received data and newly received data retransmitted from a communication partner apparatus (for example, a base station).
  • the number of iterations in HARQ is changed according to the distance between antennas and the number of retransmission requests.
  • HARQ using the chase combining method will be described as an example, but the present invention is not limited to this. Also, since HARQ is publicly known, details are omitted.
  • the repetition number control unit 130C in the wireless communication terminal 100C sets the number of repetitions of decoding based on the number of retransmission requests by the retransmission request generation unit 176 and the inter-antenna distance detected by the inter-antenna distance detection unit 140.
  • the storage unit 150C stores a table of the number of retransmission requests by the retransmission request generation unit 176 and the number of repetitions for the distance between the antennas.
  • FIG. 10 is a flowchart showing an example of processing of the wireless communication terminal 100C according to the fourth embodiment of the present invention.
  • the inter-antenna distance detection unit 140 detects the inter-antenna distance between the two antennas ANT1 and ANT2, and transmits the detected inter-antenna distance to the repetition count control unit 130C.
  • the iteration count control unit 130C sets the decoding iteration count based on a table stored in the storage unit 150C and indicating the relationship between the iteration count and the inter-antenna distance. This table can be, for example, the table shown in Table 1 above.
  • the repetition count control unit 130C sets the repetition count to “N2”. If the distance between the antennas is equal to or greater than the threshold value A, the repeat count control unit 130 sets the repeat count to “N1” (steps S42 to S44). Note that the number of times of setting is the same as that in the first embodiment, and a description thereof will be omitted.
  • the receiving unit 110 receives data. Thereafter, the repetition count control unit 130C decreases the number of repetitions according to the previous number of retransmission requests stored in the storage unit 150C (step S46). In HARQ, previously received data stored in the buffer 172 and newly retransmitted data are combined by the packet combining unit 170.
  • the iterative decoder 120 repeats decoding for the set number of times.
  • the CRC detection unit 174 detects a CRC (Cyclic Redundancy Check) code of the data processed by the iterative decoder 120 and determines whether or not there is an error (step S48). If an error is detected, a retransmission request is transmitted by the retransmission request generation unit 176, and the process returns to step S41. If no error is detected, the process ends.
  • CRC Cyclic Redundancy Check
  • the advantages of the present invention will be described again.
  • the advantage of the diversity method is When the reception quality is good with little correlation between antennas, the number of decoding iterations is reduced, so that the time and power consumption required for the decoding process can be reduced compared to the conventional case. Even when the distance between the antennas is short and reception is performed with substantially one antenna, the number of decoding iterations can be reduced according to the reception quality.
  • the number of repetitions of the decoder is controlled so as not to deteriorate the decoding characteristic while suppressing the power consumption according to the remaining electric power (battery remaining amount) that can be supplied to the terminal. It becomes possible to reduce the delay and power consumption due to. Also, taking advantage of the diversity method, when the reception quality is good with little correlation between antennas, the number of decoding iterations is reduced, so that the time and power consumption required for decoding processing can be reduced compared to the conventional case. .
  • each component each means, etc. can be rearranged so as not to be logically contradictory, and a plurality of components can be combined into one or divided.
  • the number of repetitions N1 to N4 shown in the table in each embodiment may be different in each embodiment.
  • the reception quality threshold values are two, C and D, but further threshold values may be provided.
  • the wireless communication terminal is not limited to the foldable type shown in FIG.
  • the present invention can be applied to any wireless communication terminal that includes a plurality of antennas and whose relative distance changes between the antennas.
  • the power that can be supplied to the terminal is not limited to the battery built in the terminal, but includes an external charger.
  • the embodiment using the turbo code has been described in the above-described embodiment, the present invention is not limited to this, and can be applied to an error correction system that performs iterative decoding such as LDPC.
  • Wireless communication terminal 110 Receiving unit 120 Iterative decoder 130, 130A, 100B, 130C Iteration number control unit 140 Inter-antenna distance detection unit 150, 150A, 150B, 150C Storage unit 160 Channel quality calculation unit 170 packet Combining unit 172 Buffer 174 CRC detecting unit 176 Retransmission request generating unit 180 Battery remaining amount detecting unit ANT1 to ANT3 Antenna 200 Radio communication terminal 210 Receiving unit 220 Iterative decoder 230 Channel quality calculating unit 240 Iteration number calculating unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 相対距離が可変の複数のアンテナ(ANT1,ANT2)を備えた無線通信端末(100)は、複数のアンテナ(ANT1,ANT2)で受信した誤り訂正符号を含む受信信号を繰返し復号する復号器(120)、複数のアンテナ間の距離を検出するアンテナ間距離検出部(140)検出されたアンテナ間距離に応じて復号器(120)で復号の繰返し回数を制御する制御部(130)とを備える。

Description

無線通信端末及び通信制御方法 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2008-196697号(2008年7月30日出願)及び日本国特許出願2008-196727号(2008年7月30日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本発明は、無線通信端末及び通信制御方法に関する。
 一般に、移動体通信等の無線通信では、フェージングやマルチパスの影響を受け、通信路においてデータ(信号)の誤りが発生する。この誤りを訂正するための手法として、近年、ターボ符号やLDPC(Low Density Parity Check:低密度パリティ検査)が採用されている。ターボ符号は、送信側で、複数の符号化器に異なるビット順で送信するデータを入力することで得られる。受信側(端末側)は、複数の復号器を備えて受信したデータを復号し、復号器の出力を入力にフィードバックして、繰返し復号を行なう。このように繰返し復号を行なうことで、受信データの誤り訂正精度を向上することができる。
 上述のように、ターボ符号やLDPCによる誤り訂正方式では繰返し復号を行なう必要があり、この回数が多いほど、データの復号特性を高めることができる。しかしながら、到達可能な復号特性には限界がある。すなわち、ある一定回数以上復号を繰返しても復号特性がそれ以上改善しない回数が存在する。従って、従来では、復号特性が十分に収束する繰返し復号回数(これ以降、「収束回数」と称する。)を予め求めておき、その回数の繰返し復号を行っている。
 しかしながら、繰返し復号回数の増加に伴い、復号処理に要する時間が増え遅延が大きくなり、さらに消費電力が増加するという問題がある。この問題を解決する手法として、従来技術に、受信パイロット信号から測定した受信品質(通信チャネルの状態)に応じて、繰返し復号回数を変動させる技法が提案されている(特許文献1,2を参照されたい。)。図11に、従来技術による繰返し復号回数の制御を行なう無線通信端末の概略ブロック図を示す。図11において、チャネル品質計算部230は、アンテナANT3を介して受信部210で受信したパイロット信号から、受信品質を計算(推定)し、計算結果を、繰返し回数計算部240へ送信する。繰返し回数計算部240は、受信品質(チャネル品質)に応じて、繰返し復号器220における繰返し復号回数を制御する。すなわち、チャネル品質が良好であり受信信号に誤りが少ないと推定される場合は、復号を繰返す回数が少なくても良好な復号特性が得られるという認識のもとに、繰返し復号回数を収束回数よりも少なくする。しかしながら、チャネル品質を計算して繰返し回数を制御する従来技術では、チャネル品質を計算するため負荷がかかり、消費電力すなわちバッテリーの消費が大きくなるという問題がある。従って、バッテリー残量(自端末に供給可能な電力・電池残量)が少ない場合に従来技術により復号の繰返し回数を行なうことは理想的でない。
 なお、近年の無線通信端末では、複数のアンテナを備えてダイバーシチ方式で通信を行なうものが主流である。例えば空間ダイバーシチでは、空間的に離れた場所にある複数のアンテナを用いて受信すると、受信信号の相関が一般に小さくなり、それらの受信信号が独立して変動するようになることを利用している。従って、複数のアンテナで受信した複数の受信信号を所定の処理によって合成するか、または受信レベルが最良な受信信号を選択することで、受信信号の信頼性を向上させている。
 なお、上述のような複数のアンテナを備える無線通信端末において、複数のアンテナの相対位置関係が変動する場合がある。例えば携帯電話端末を例に挙げると、2つの筐体をヒンジで連結して可動にした折り畳み型や、一方の筐体が他方の筐体に対してスライドする2つの筐体から成るスライド型において、各筐体にそれぞれアンテナを備えるものがある。これらは、筐体を移動させることでアンテナ間の距離が変動するため、筐体の形状によって得られるダイバーシチの効果が異なる。すなわち、アンテナ間の距離が大きくアンテナ間の相関が小さい場合は、アンテナ間の距離が小さく実質的に単体のアンテナで受信する場合と比べ、受信信号の品質が良好となる。しかしながら、このような複数のアンテナを備える無線通信端末に上述の繰返し復号による誤り訂正を用いる場合に、複数のアンテナ間の相対距離の違いにより得られる受信品質に応じて繰返し復号する回数を制御する技法は提案されていない。
特開2001-230679号公報 特開2002-152056号公報
 従って、本発明の目的は、上述のような諸問題を解消し、アンテナ間距離、すなわち受信品質に応じて復号の繰返し回数を制御したり、自端末に供給可能な電力の残量に応じて復号の繰返し回数を制御することにより、復号処理による遅延や消費電力を低減する技法(無線通信端末及び通信制御方法)を提供することにある。
 上述した諸課題を解決すべく、本発明による、相対距離が可変の複数のアンテナを備えた(ダイバーシチ受信が可能な)無線通信端末は、(前記複数のアンテナで受信した複数の受信信号を合成または選択する受信部と、)前記複数のアンテナで受信した誤り訂正符号を含む受信信号を繰返し復号する復号器(ターボ復号器)と、前記複数のアンテナ間の距離を検出するアンテナ間距離検出部と、(前記アンテナ間距離に対応する前記復号器での復号の繰返し回数のテーブルを格納する記憶部と、)前記検出されたアンテナ間距離に応じて前記復号器での復号の繰返し回数を制御する制御部とを備えることを特徴とする。
 また、本発明の一実施態様による相対距離が可変の複数のアンテナを備えた(ダイバーシチ受信が可能な)無線通信端末は、前記制御部は、前記アンテナ間距離が所定値を上回る場合は、前記アンテナ間距離が所定値を下回る場合と比べて前記復号の繰返し回数を少なくすることを特徴とする。
 さらに、本発明の他の実施態様による相対距離が可変の複数のアンテナを備えた(ダイバーシチ受信が可能な)無線通信端末は、前記複数のアンテナで受信した受信信号から通信チャネルの品質を計算するチャネル品質計算部をさらに備え、前記制御部は、前記アンテナ間距離が所定値を下回る場合に、前記チャネル品質計算部により計算された通信チャネルの品質に応じて前記復号の繰返し回数を制御することを特徴とする。
 さらに、本発明の別の実施態様による相対距離が可変の複数のアンテナを備えた(ダイバーシチ受信が可能な)無線通信端末は、(前記複数のアンテナで受信した誤り訂正符号を含む受信信号をバッファするバッファと、)前記復号部により復号されたデータに誤りがあるか否かを判定する判定部(検出部)と、前記判定部による判定結果に基づきデータの再送を要求する再送要求部とをさらに備え、前記制御部は、前記再送要求部の再送要求回数に応じて前記復号器での復号の繰返し回数をさらに制御することを特徴とする。
 さらに、本発明の別の実施態様による相対距離が可変の複数のアンテナを備えた(ダイバーシチ受信が可能な)無線通信端末は、自端末に供給可能な電力の残量を検出する検出部をさらに備え、前記制御部が、前記検出部で検出された電力の残量が所定値を下回る場合は、前記アンテナ間距離検出部により検出されたアンテナ間距離に応じて、前記復号器での復号の繰返し回数を制御することを特徴とする。
 さらに、本発明の別の実施態様による相対距離が可変の複数のアンテナを備えた(ダイバーシチ受信が可能な)無線通信端末は、前記複数のアンテナで受信した受信信号から通信チャネルの品質を計算するチャネル品質計算部をさらに備え、前記制御部が、前記検出部で検出された電力の残量に応じて、前記復号の繰返し回数を、前記チャネル品質計算部により計算された通信チャネルの品質に応じて制御するか、前記アンテナ間距離検出部により検出されたアンテナ間距離に応じて制御するかを切り替えることを特徴とする。
 また、本発明の一実施態様による誤り訂正符号を含む受信信号を繰返し復号する復号器を備えた無線通信端末は、自端末に供給可能な電力の残量を検出する検出部と、前記検出された電力の残量に応じて、前記復号器での復号の繰返し回数を制御する制御部と、を備えることを特徴とする。
 上述したように本発明の解決手段を装置として説明してきたが、本発明はこれらに実質的に相当する方法、プログラム、プログラムを記録した記憶媒体としても実現し得るものであり、本発明の範囲にはこれらも包含されるものと理解されたい。なお、方法やプログラムの各ステップは、データの処理においては必要に応じて、CPU、DSPなどの演算処理装置を使用するものであり、入力したデータや加工・生成したデータなどをHDD、メモリなどの記憶装置に格納するものである。
 例えば、本発明を方法として実現した相対距離が可変の複数のアンテナを備えた(ダイバーシチ受信が可能な)無線通信端末の通信制御方法は、(前記複数のアンテナで受信した複数の受信信号を合成または選択するステップと、)前記複数のアンテナで受信した誤り訂正符号を含む受信信号を復号器で繰返し復号するステップと、前記複数のアンテナ間の距離を検出するステップと、前記検出するステップで検出されたアンテナ間距離に応じて前記復号器での復号の繰返し回数を制御するステップとを含むことを特徴とする。
 また、本発明を方法として実現した誤り訂正符号を含む受信信号を繰返し復号する復号器を備えた無線通信端末の通信制御方法¥は、自端末に供給可能な電力の残量を検出する検出ステップと、前記検出ステップにて検出された電力の残量に応じて、前記復号器での復号の繰返し回数を制御するステップと、含むことを特徴とする。
 このように、本発明によれば、複数のアンテナを備える無線通信端末において、アンテナ間距離、すなわち受信品質に応じて復号の繰返し回数を制御し、復号処理による遅延や消費電力を低減することが可能となる。
本発明の一実施例による無線通信端末の概略図である。 本発明の第1の実施例による無線通信端末の概略ブロック図である。 本発明の第1の実施例による無線通信端末100の処理の一例を示すフローチャートである。 本発明の第2の実施例による無線通信端末の概略ブロック図である。 本発明の第2の実施例による無線通信端末100Aの処理の一例を示すフローチャートである。 本発明の第3の実施例による無線通信端末の概略ブロック図である。 本発明の第3の実施例による無線通信端末100Bの処理の一例を示すフローチャートである。 電池残量のモードと、繰返し復号器120で設定される復号の最大繰返し回数との関係を示す図である。 本発明の第4の実施例による無線通信端末の概略ブロック図である。 本発明の第4の実施例による無線通信端末100Cの処理の一例を示すフローチャートである。 従来技術による繰返し復号回数の制御を行なう無線通信端末の概略ブロック図である。
 以下に、諸図面を参照しながら、本発明の一実施態様による無線通信端末を詳細に説明する。なお、無線通信端末としては、携帯電話端末、ノートパソコン、PDA(パーソナルデジタルアシスタンス)、携帯ゲーム機、携帯オーディオプレーヤー、携帯ビデオプレイヤー、携帯電子辞書、携帯電子書籍ビューワーなどの携帯電子機器等とすることができる。
 図1は、本発明の一実施例による無線通信端末の概略図である。無線通信端末100は、例えば図1のように、2つの筐体から成る折り畳み式の携帯電話端末であり、2つのアンテナANT1及びANT2が、各筐体に位置付けられている。この無線通信端末は2つの筐体を開閉することができ、図1のように筐体同士が離れている状態を開状態、図示しない筐体同士が密接している状態を閉状態とする。図1の例において、2つのアンテナANT1及びANT2は、無線通信端末100が開状態のときに相対距離が十分に長く互いに離間し、アンテナ間の相関が少なく、十分なダイバーシチ効果を得ることができる。反対に、無線通信端末100が閉状態のときには、2つのアンテナANT1及びANT2の相対距離が短く、実質的に1本のアンテナとして動作する。なお、本発明は、折り畳み式の携帯電話端末に限られるものではなく、複数のアンテナを備え、それらの相対距離が可変であるような無線通信端末全てに適用可能であることに留意されたい。また、アンテナ数が2本の態様を示しているが、本発明はこれに限られるものではなく、3本以上のアンテナを有してもよい。
 まず、本発明の第1の実施例について説明する。図2は、本発明の第1の実施例による無線通信端末の概略ブロック図である。無線通信端末100は、受信部110、繰返し復号器120、繰返し回数制御部130、アンテナ間距離検出部140、記憶部150及び2つのアンテナANT1,ANT2を備える。受信部110は、2つのアンテナANT1,ANT2から受信した信号に対して所定の処理を行なう。例えば、受信部110は、復調部やスイッチ(図示せず)等を含み、2つのアンテナANT1及びANT2から受信した信号のうち受信レベルの強い信号を選択する。又は、無線通信端末100が3本以上のアンテナを有する場合、受信部110は、受信信号を例えば最大比合成方式等で合成し、最良の受信信号を得る。なお、アンテナANT1及びANT2で受信する信号には、誤り訂正のためのターボ符号(誤り訂正符合)が含まれる。そして、受信部110は、処理後のデータを繰返し復号器120へ送信する。繰返し復号器120は、受信部110から送信されたデータに含まれる誤り訂正符号を用いて復号を行なう。繰返し復号器120は、例えば一般のターボ復号器と同様に、2つの復号器、インタリーバ及びデインタリーバを備え、誤り訂正方式に基づいて繰返し復号を行なう。ターボ符号を用いた繰返し復号については公知の技術であるため、ここでは詳細を省略する。
 アンテナ間距離検出部140は、2つのアンテナANT1とANT2との間の距離を検出する。アンテナ間距離検出部140は、例えば、折り畳み式の携帯電話端末の場合は、筐体の開き角(図1における角度α)によってアンテナ間の距離を検出する。又は、スライド式の携帯電話端末であって2つの筐体にそれぞれアンテナが備えられている場合は、アンテナ間距離検出部140は、スライド状態によってアンテナ間の距離を検出する。繰返し回数制御部130は、アンテナ間距離検出部140により検出されたアンテナ間距離に基づき、繰返し復号器120での復号の繰返し回数を判定する。繰返し回数は、アンテナ間距離に応じて設定され、記憶部150は、アンテナ間距離に対する繰返し回数のテーブルを格納する。
 次に、フローチャートを用いて本発明による無線通信端末100の処理について説明する。図3は、本発明の第1の実施例による無線通信端末100の処理の一例を示すフローチャートである。まず、ステップS11にて、アンテナ間距離検出部140は、2つのアンテナANT1とANT2との間のアンテナ間距離を検出し、検出したアンテナ間距離を繰返し回数制御部130へ送信する。繰返し回数制御部130は、記憶部150に格納されている、繰返し回数とアンテナ間距離との関係を示すテーブルに基づき、復号の繰返し回数を設定(制御)する。以下に、記憶部150に格納されているテーブルの一例を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すテーブルに基づき、アンテナ間距離がある閾値Aを下回る場合は、繰返し回数制御部130は、繰返し回数を「N2」と設定する。また、アンテナ間距離が閾値A以上である場合は、繰返し回数制御部130は、繰返し回数を「N1」と設定する(ステップS12~S14)。ここで、閾値Aは、アンテナ間距離がこの閾値A以上であれば、アンテナANT1及びANT2の相関が少なく実質的に2本のアンテナで信号を受信できるような値とする。なお、繰返し回数はN2≧N1とする。これは、アンテナANT1及びANT2の相関が少ない場合は、受信信号の品質が良好になるという認識に基づく。すなわち、この状態では、アンテナ間距離が短く実質的に1本のアンテナで受信する状態よりも、復号の繰返し回数を少なくできることによる。また、アンテナ間距離が閾値Aを上回る場合は受信品質が良好となるため、繰返し回数N1を、上述の収束回数(繰返し回数N2)よりも少なく設定することができる。ステップS13又はS14にて繰返し回数が設定された後、受信部100は、データを受信し(ステップS15)、繰返し復号器120は、設定された回数にて受信データを復号する(ステップS16)。
 上述の第1の実施例によれば、受信品質が良好であり復号特性が早く収束する場合でも無駄に予め設定された収束回数だけ復号を繰返す従来技術と異なり、ダイバーシチ方式の利点を生かし、アンテナ間の相関が少なく受信品質が良好である場合は復号の繰返し回数を減少させるため、復号処理に要する時間及び消費電力を、従来と比べ低減することができる。
 次に、本発明の第2の実施例について説明する。図4は、本発明の第2の実施例による無線通信端末の概略ブロック図である。図4において、図2の無線通信端末100と同様の機能部には同じ符号を付し、説明を省略する。無線通信端末100Aは、チャネル品質計算部160をさらに備える。チャネル品質計算部160は、アンテナANT1及びANT2で受信した信号から受信品質(チャネル品質)を計算する。この受信品質の計算には、例えば、受信信号に含まれるパイロット信号を用いて、SIR(Signal to Interference Ratio:信号対干渉比)を計算することで行なう。又は、RSSI(Received Signal Strength Indicator:受信信号強度)や、CIR(Carrier To Interference Ratio:搬送波対干渉波比)、CINR(Carrier to Interference plus Noise Ratio:搬送波対干渉波・雑音比)、SINR(Signal to Interference plus Noise Ratio:信号対干渉波・雑音比)等を用いることができる。繰返し回数制御部130Aは、アンテナ間距離検出部140により検出されたアンテナ間距離とチャネル品質計算部160により計算されたチャネル品質とに基づき、復号の繰返し回数を設定する。記憶部150Aは、アンテナ間距離及びチャネル品質に対する繰返し回数のテーブルを格納する。
 次に、本発明の第2の実施例による無線通信端末の処理を、フローチャートを用いて説明する。図5(a),(b)は、本発明の第2の実施例による無線通信端末100Aの処理の一例を示すフローチャートである。まず、ステップS21にて、アンテナ間距離検出部140は、2つのアンテナANT1とANT2との間のアンテナ間距離を検出し、検出したアンテナ間距離を繰返し回数制御部130Aへ送信する。繰返し回数制御部130Aは、記憶部150に格納されている、繰返し回数とアンテナ間距離との関係を示すテーブルに基づき、復号の繰返し回数を設定する。以下に、記憶部150に格納されているテーブルの一例を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すテーブルに基づき、アンテナ間距離がある閾値A以上である場合は、繰返し回数制御部130Aは、繰返し回数を「N1」と設定する(ステップS23)。アンテナ間距離がある閾値Aを下回る場合は、繰返し回数制御部130Aは、ステップS24へ進み、受信品質による繰返し回数の設定処理を行なう。図5(b)は、受信品質による繰返し回数の設定処理の一例のフローチャートである。まず、ステップS31にて、チャネル品質計算部160は、受信品質を取得しているか、すなわち受信品質(チャネル品質)を計算可能なデータ(パイロット信号等)を取得しているか否かを判定する。チャネル品質計算部160により取得していないと判定された場合は、ステップS33へ進み、繰返し回数制御部130Aは、繰返し回数を「N5」に設定する。この「N5」は、上述の収束回数であり、アンテナ間距離が短く実質的に1本のアンテナで受信する状態となって受信品質が良好でない場合には、復号特性が十分に収束する回数に設定される。ステップS31にて受信品質を取得していると判定された場合は、ステップS32へ進み、繰返し回数制御部130Aは、受信品質に応じた繰返し回数に設定する。これは、表2に示すテーブルに基づいて行われる。すなわち、受信品質がある閾値C以上である場合は、繰返し回数制御部130Aは、繰返し回数を「N2」に設定する。受信品質がある閾値D以上でありかつ閾値Cを下回る場合は、繰返し回数制御部130Aは、繰返し回数を「N3」に設定する。また、受信品質が閾値D以下である場合は、繰返し回数制御部130Aは、繰返し回数を「N4」に設定する。ここで、受信品質の閾値はC>Dの関係、繰返し回数はN4≧N3≧N2≧N1の関係を有する。これも、第1の実施例と同様、アンテナANT1及びANT2の相関が少ない場合は、受信信号の品質が良好になるという認識に基づく。さらに、アンテナ間距離が短く実質的に1本のアンテナで受信する状態において、受信品質が良好である場合は、受信品質が良好でない場合よりも繰返し回数を少なくする。なお、アンテナ間距離が閾値Aを超える場合は受信品質が良好となるため、繰返し回数N1を、上述の収束回数よりも少なく設定することができる。ステップS32又はS33にて繰返し回数を設定した後は、図5(a)のステップS25へ戻り、受信部110は、データを受信する。その後、繰返し復号器120は、設定された回数にて受信データを復号する(ステップS26)。
 第2の実施例によれば、第1の実施例の利点に加え、アンテナ間距離が短く、アンテナが実質的に1本の状態で受信する場合にも、受信品質に応じて復号の繰返し回数を減少させ、さらに復号処理に要する時間及び消費電力を低減することができるという利点を有する。
 次に、本発明の第3の実施例について説明する。図6は、本発明の第3の実施例による無線通信端末の概略ブロック図である。図6において、図2の無線通信端末100と同様の機能部には同じ符号を付し、説明を省略する。無線通信端末100Bは、電池残量検出部180をさらに備える。電池残量検出部180は、電池残量(自端末に供給可能な電力・バッテリー残量)を検出する。記憶部150Bは、アンテナ間距離、電池残量及びチャネル品質に対する復号の繰返し回数のテーブルを格納する。
 次に、フローチャートを用いて本発明による無線通信端末100Bの処理について説明する。図7は、本発明の第3の実施例による無線通信端末100Bの処理の一例を示すフローチャートである。まず、ステップT11にて、電池残量検出部180は、電池残量を測定(検出)する。ステップT12にて、繰返し回数制御部130Bは、電池残量が所定の閾値X以上であるか否かを判定する。電池残量が所定の閾値X以上であると判定された場合は、ステップT13へ進み、繰返し回数制御部130Bは、復号の繰返し回数を「N0」に設定する。なお、電池残量が所定の閾値X以上である場合を、「モード1」とする。ステップT12にて、電池残量が所定の閾値Xを下回ると判定された場合は、ステップT14へ進み、繰返し回数制御部130Bは、電池残量が所定の閾値Y以上であるか否かを判定する。電池残量が所定の閾値Y以上であると判定された場合は、ステップT15へ進み、繰返し回数制御部130Bは、受信品質による繰返し回数の設定処理を行なう。なお、電池残量が閾値Xを下回り、かつ閾値Y以上である場合を、「モード2」とする。ステップT14にて、電池残量が閾値Yを下回ると判定された場合は、ステップT16へ進み、繰返し回数制御部130Bは、アンテナ間距離による繰返し回数の設定処理を行なう。なお、電池残量が閾値Yを下回る場合を、「モード3」とする。
 ここで、電池残量のモード1~3の状態と、モードに応じて設定される復号の繰返し回数について説明する。図8は、電池残量のモードと、繰返し回数制御部130Bで設定される復号の最大繰返し回数との関係を示す図である。横軸が電池残量、縦軸が最大繰返し回数を示す。繰返し回数制御部130Bは、電池残量が十分に多い場合(モード1)は、上述の収束回数(ここでは「N0」)に最大繰返し回数を設定する。これは、電池残量に余裕があるため、復号処理により消費電力が増加したとしても、高品質の復号特性が得られる収束回数だけ復号を行なうことを目的とする。また、電池残量がやや減少している場合(モード2)は、収束回数「N0」よりも少ない回数で復号が繰返えされる。また、詳細は後述するが、モード2では、繰返し回数制御部130Bは、チャネル品質に応じて繰返し回数をN1~N3に設定する。これは、電池残量が減少しているため、繰返し回数を少なくして消費電力を低減させるが、その際、チャネル品質が良好な場合には受信データの誤りが少ないという認識のもとに、繰返し回数をより少なくし、反対に、チャネル品質が良好でなく受信データの誤りが発生するおそれがある場合には、繰返し回数を多くして誤り訂正の精度を向上させることを目的とする。さらに、電池残量が少ない場合(モード3)は、繰返し回数制御部130Bは、モード1,2における繰返し回数よりもさらに少ない回数に繰返し回数を設定する。この際に、アンテナ間の距離に応じて繰返し回数をN4,N5に設定する。これは、モード2と同様に、繰返し回数制御部130Bは、繰返し回数を少なくして消費電力を低減させ受信品質に応じて繰返し回数を設定するが、その際に、アンテナ間距離によってのみ受信品質を推定するため、チャネル品質の計算による消費電力の消費を発生させずに、できるだけ誤り訂正の精度を向上させることを目的とする。
 図7のフローチャートに戻り説明を継続する。まず、ステップT15の受信品質による繰返し回数の設定処理(モード2における繰返し回数の設定処理)について説明する。図7(b)は、受信品質による繰返し回数の設定処理の一例のフローチャートである。まず、ステップT21にて、チャネル品質計算部160は、受信品質を取得しているか、すなわち受信品質(チャネル品質)を計算可能なデータ(パイロット信号等)を取得しているか否かを判定する。チャネル品質計算部160により取得していないと判定された場合は、ステップT23へ進み、繰返し回数制御部130Bは、繰返し回数を「N1」に設定する。この「N1」は、モード2で設定可能な繰返し回数のうちの最大値であり、受信品質が不明である場合には、復号特性が十分に収束する回数に設定する。ステップT21にて受信品質を取得していると判定された場合は、ステップT22へ進み、繰返し回数制御部130Bは、受信品質に応じた繰返し回数に設定する。これは、記憶部150Bに格納されている、以下の表3に示すテーブルに基づいて行われる。
Figure JPOXMLDOC01-appb-T000003
 受信品質がある閾値Cを下回る場合は、繰返し回数制御部130Bは、繰返し回数を「N1」に設定する。受信品質がある閾値C以上でありかつ閾値Dを下回る場合は、繰返し回数制御部130Bは、繰返し回数を「N2」に設定する。また、受信品質が閾値D以上である場合は、繰返し回数制御部130Bは、繰返し回数を「N3」に設定する。ここで、受信品質の閾値はC<Dの関係、繰返し回数はN1≧N2≧N3の関係を有する。これは、受信品質が良好である場合は、受信品質が良好でない場合よりも繰返し回数を少なくできるためである。ステップT22又はS23にて繰返し回数を設定した後は、図7(a)のステップT17へ戻る。
 次に、ステップT16のアンテナ間距離による繰返し回数の設定処理(モード3における繰返し回数の設定処理)について説明する。図7(c)は、アンテナ間距離による繰返し回数の設定処理の一例のフローチャートである。まず、ステップT31にて、アンテナ間距離検出部140は、2つのアンテナANT1とANT2との間のアンテナ間距離を検出し、検出したアンテナ間距離を繰返し回数制御部130Bへ送信する。繰返し回数制御部130Bは、記憶部150に格納されている、繰返し回数とアンテナ間距離との関係を示すテーブルに基づき、復号の繰返し回数を設定(制御)する。以下に、記憶部150に格納されているテーブルの一例を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すテーブルに基づき、アンテナ間距離がある閾値Aを下回る場合は、繰返し回数制御部130Bは、繰返し回数を「N4」と設定する。また、アンテナ間距離が閾値A以上である場合は、繰返し回数制御部130Bは、繰返し回数を「N5」と設定する(ステップT32~S34)。ここで、閾値Aは、アンテナ間距離がこの閾値A以上であれば、アンテナANT1及びANT2の相関が少なく実質的に2本のアンテナで信号を受信できるような値とする。なお、繰返し回数はN4≧N5とする。これは、アンテナANT1及びANT2の相関が少ない場合は、受信信号の品質が良好になるという認識に基づくもので、アンテナ間距離が短く実質的に1本のアンテナで受信する状態よりも、復号の繰返し回数を少なくできることによる。ステップT33又はS34にて繰返し回数を設定した後、図7(a)のステップT17へ進む。ステップT13~S16の処理後、受信部100は、誤り訂正符号を含むデータを受信し(ステップT17)、繰返し復号器120は、設定された回数にて受信データを復号する(ステップT18)。
 なお、電池残量検出部180は、データの受信間に電池残量の監視を継続し、モード1~3の切替を行う。また、電池残量が急激に減少した場合は、それ以降電池残量の判定処理を行わずに、アンテナ間距離のみで復号の繰返し回数を制御してもよい。なお、電池残量が少ないことを、例えば無線通信端末100Bに設けられた表示部、振動部、スピーカまたは発光部などを用いて、メッセージの表示、専用アイコンの表示、或いは、バイブレーション、音、光の明滅などで知らせるのが好適である。
 このように、第3の実施例によれば、自端末に供給可能な電力残量(バッテリー残量)に応じて消費電力を抑えつつ、復号特性を劣化させないように復号器の繰返し回数を制御し、復号処理による遅延や消費電力を低減することが可能となる。また、ダイバーシチ方式の利点を生かし、アンテナ間の相関が少なく受信品質が良好である場合は復号の繰返し回数を減少させるため、復号処理に要する時間及び消費電力を、従来と比べ低減することができる。
 次に、本発明の第4の実施例について説明する。図9は、本発明の第4の実施例による無線通信端末の概略ブロック図である。図において、図2の無線通信端末100と同様の機能部には同じ符号を付し、説明を省略する。無線通信端末100Cは、パケット合成部170、バッファ172、CRC検出部174、再送要求生成部176をさらに備える。無線通信端末100Bは、公知のHARQ(Hybrid Automatic Repeat reQuest:ハイブリッドARQ)技術を用いて誤り訂正を行なう。HARQは、受信側が誤ったデータ(パケット)を受信した場合に、送信側に対しそのデータ(誤ったパケット)を再度送信するように要求する制御であるARQ(Automatic Repeat reQuest:自動再送要求)に、たとえば、パケット合成技術を適用した技術である。パケット合成技術は、以前に受信したデータと、新たに通信相手装置(例えば、基地局)から再送され受信したデータとをパケット合成する技術である。第4の実施例では、HARQにおける繰返し復号の回数を、アンテナ間距離および再送要求回数に応じて変化させる。なお、本実施例では、チェイス合成法を用いるHARQを例として説明するが、本発明はこれに限られるものではない。また、HARQについては公知のため、詳細を省略する。
 無線通信端末100Cにおける繰返し回数制御部130Cは、再送要求生成部176による再送要求回数及びアンテナ間距離検出部140により検出されたアンテナ間距離に基づいて、復号の繰返し回数を設定する。記憶部150Cは、再送要求生成部176による再送要求回数と、アンテナ間距離に対する繰返し回数のテーブルを格納する。
 次に、本発明の第4の実施例による無線通信端末の処理を、フローチャートを用いて説明する。図10は、本発明の第4の実施例による無線通信端末100Cの処理の一例を示すフローチャートである。まず、ステップS41にて、アンテナ間距離検出部140は、2つのアンテナANT1とANT2との間のアンテナ間距離を検出し、検出したアンテナ間距離を繰返し回数制御部130Cへ送信する。繰返し回数制御部130Cは、記憶部150Cに格納されている、繰返し回数とアンテナ間距離との関係を示すテーブルに基づき、復号の繰返し回数を設定する。このテーブルは、例えば上述の表1に示すテーブルとすることができる。アンテナ間距離がある閾値Aを下回る場合は、繰返し回数制御部130Cは、繰返し回数を「N2」と設定する。また、アンテナ間距離が閾値A以上である場合は、繰返し回数制御部130は、繰返し回数を「N1」と設定する(ステップS42~S44)。なお、この設定回数については、第1の実施例と同様であるため説明を省略する。次に、ステップS45にて、受信部110はデータを受信する。その後、繰返し回数制御部130Cは、記憶部150Cに格納されているこれ以前の再送要求回数に応じて、繰返し回数を減少させる(ステップS46)。HARQでは、バッファ172に格納されている以前に受信したデータと、新たに再送されたデータとが、パケット合成部170にて合成される。従って、再送回数が多くなれば、データの絶対量が増えることにより繰返し復号器120に送信されるデータの品質が向上するため、本実施例では、再送された回数が多くなるにつれて復号の繰返し回数を減少させる。その後、ステップS47にて、繰返し復号器120は、設定した回数にて復号を繰返す。CRC検出部174は、繰返し復号器120により処理されたデータのCRC(Cyclic Redundancy Check)符号を検出して、誤りがあるか否かを判定する(ステップS48)。誤りが検出された場合は、再送要求生成部176によって再送要求が送信され、ステップS41へ戻る。誤りが検出されない場合は、処理を終了する。
 本発明の利点を再度述べる。上述したように、本発明による無線通信端末によれば、受信品質が良好であり復号特性が早く収束する場合にでも無駄に予め設定された回数だけ復号を繰返す従来技術と異なり、ダイバーシチ方式の利点を生かし、アンテナ間の相関が少なく受信品質が良好である場合は復号の繰返し回数を減少させるため、復号処理に要する時間及び消費電力を、従来と比べ低減することができる。また、アンテナ間距離が短く、アンテナが実質的に1本の状態で受信する場合にも、受信品質に応じて復号の繰返し回数を減少することができる。
 また、チャネル品質を計算して繰返し回数を制御する従来技術では、チャネル品質を計算するため負荷がかかり、消費電力すなわちバッテリーの消費が大きくなるという問題がある。従って、自端末に供給可能な電力残量(バッテリー残量・電池残量)が少ない場合に従来技術により復号の繰返し回数を行なうことは理想的でない。それに対し、本発明によれば、自端末に供給可能な電力残量(バッテリー残量)に応じて消費電力を抑えつつ、復号特性を劣化させないように復号器の繰返し回数を制御し、復号処理による遅延や消費電力を低減することが可能となる。また、ダイバーシチ方式の利点を生かし、アンテナ間の相関が少なく受信品質が良好である場合は復号の繰返し回数を減少させるため、復号処理に要する時間及び消費電力を、従来と比べ低減することができる。
 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行なうことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各構成部、各手段等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部を1つに組み合わせたり、或いは分割したりすることが可能である。例えば、各実施例においてテーブルに示された繰返し回数N1~N4は、それぞれの実施例で異なるものとしてもよい。また、実施例2において、受信品質の閾値をC及びDの2つとしたが、さらに閾値を設けてもよい。また、無線通信端末としては、図1に示す折り畳み式のものに限らず、複数のアンテナを備え、それらのアンテナ間の相対距離が変化する無線通信端末であれば、本発明を適用可能である。また、自端末に供給可能な電力としては、自端末に内蔵されている電池に限らず、外付けの充電器等も含まれる。さらに、上述の実施例ではターボ符号を用いる態様を説明したが、本発明はこれに限られるものではなく、LDPC等の繰返し復号を行なう誤り訂正方式に適用可能である。
 100,100A,100B,100C 無線通信端末
 110 受信部
 120 繰返し復号器
 130,130A,100B,130C 繰返し回数制御部
 140 アンテナ間距離検出部
 150,150A,150B,150C 記憶部
 160 チャネル品質計算部
 170 パケット合成部
 172 バッファ
 174 CRC検出部
 176 再送要求生成部
 180 電池残量検出部
 ANT1~ANT3 アンテナ
 200 無線通信端末
 210 受信部
 220 繰返し復号器
 230 チャネル品質計算部
 240 繰返し回数計算部

Claims (9)

  1.  相対距離が可変の複数のアンテナを備えた無線通信端末において、
     前記複数のアンテナで受信した誤り訂正符号を含む受信信号を繰返し復号する復号器と、
     前記複数のアンテナ間の距離を検出するアンテナ間距離検出部と、
     前記検出されたアンテナ間距離に応じて前記復号器での復号の繰返し回数を制御する制御部と、
    を備えることを特徴とする無線通信端末。
  2.  請求項1に記載の無線通信端末において、
     前記制御部は、
    前記アンテナ間距離が所定値を上回る場合は、前記アンテナ間距離が所定値を下回る場合と比べて前記復号の繰返し回数を少なくする、
    ことを特徴とする無線通信端末。
  3.  請求項1又は2に記載の無線通信端末において、
     前記複数のアンテナで受信した受信信号から通信チャネルの品質を計算するチャネル品質計算部をさらに備え、
     前記制御部は、
    前記アンテナ間距離が所定値を下回る場合に、前記チャネル品質計算部により計算された通信チャネルの品質に応じて前記復号の繰返し回数を制御する、
    ことを特徴とする無線通信端末。
  4.  請求項1~3のいずれか一項に記載の無線通信端末において、
     前記復号部により復号されたデータに誤りがあるか否かを判定する判定部と、
     前記判定部による判定結果に基づきデータの再送を要求する再送要求部とをさらに備え、
     前記制御部は、
    前記再送要求部の再送要求回数に応じて前記復号器での復号の繰返し回数をさらに制御する、
    ことを特徴とする無線通信端末。
  5.  請求項1~4のいずれか一項に記載の無線通信端末において、
     自端末に供給可能な電力の残量を検出する検出部をさらに備え、
     前記制御部が、
    前記検出部で検出された電力の残量が所定値を下回る場合は、前記アンテナ間距離検出部により検出されたアンテナ間距離に応じて、前記復号器での復号の繰返し回数を制御する、
    ことを特徴とする無線通信端末。
  6.  請求項5に記載の無線通信端末において、
     前記複数のアンテナで受信した受信信号から通信チャネルの品質を計算するチャネル品質計算部をさらに備え、
     前記制御部が、
    前記検出部で検出された電力の残量に応じて、前記復号の繰返し回数を、前記チャネル品質計算部により計算された通信チャネルの品質に応じて制御するか、前記アンテナ間距離検出部により検出されたアンテナ間距離に応じて制御するかを切り替える、
    ことを特徴とする無線通信端末。
  7.  誤り訂正符号を含む受信信号を繰返し復号する復号器を備えた無線通信端末において、
     自端末に供給可能な電力の残量を検出する検出部と、
     前記検出された電力の残量に応じて、前記復号器での復号の繰返し回数を制御する制御部と、
    を備えることを特徴とする無線通信端末。
  8.  相対距離が可変の複数のアンテナを備えた無線通信端末の通信制御方法において、
     前記複数のアンテナで受信した誤り訂正符号を含む受信信号を復号器で繰返し復号するステップと、
     前記複数のアンテナ間の距離を検出するステップと、
     前記検出するステップで検出されたアンテナ間距離に応じて前記復号器での復号の繰返し回数を制御するステップと、
    を含むことを特徴とする通信制御方法。
  9.  誤り訂正符号を含む受信信号を繰返し復号する復号器を備えた無線通信端末の通信制御方法において、
     自端末に供給可能な電力の残量を検出する検出ステップと、
     前記検出ステップにて検出された電力の残量に応じて、前記復号器での復号の繰返し回数を制御するステップと、
    を含むことを特徴とする通信制御方法。
PCT/JP2009/063417 2008-07-30 2009-07-28 無線通信端末及び通信制御方法 WO2010013707A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/056,587 US20110179330A1 (en) 2008-07-30 2009-07-28 Wireless communication terminal and communication control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008196727A JP4773488B2 (ja) 2008-07-30 2008-07-30 無線通信端末及び通信制御方法
JP2008196697A JP4773487B2 (ja) 2008-07-30 2008-07-30 無線通信端末及び通信制御方法
JP2008-196727 2008-07-30
JP2008-196697 2008-07-30

Publications (1)

Publication Number Publication Date
WO2010013707A1 true WO2010013707A1 (ja) 2010-02-04

Family

ID=41610407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063417 WO2010013707A1 (ja) 2008-07-30 2009-07-28 無線通信端末及び通信制御方法

Country Status (3)

Country Link
US (1) US20110179330A1 (ja)
KR (1) KR20110030650A (ja)
WO (1) WO2010013707A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8355410B2 (en) 2007-08-17 2013-01-15 At&T Intellectual Property I, L.P. Location-based mobile gaming application and method for implementing the same using a scalable tiered geocast protocol
KR100906332B1 (ko) * 2006-11-03 2009-07-06 삼성전자주식회사 중계기를 사용하는 광대역 무선통신 시스템에서 협력 복합자동 재전송 기법수행 장치 및 방법
US8533496B1 (en) * 2009-11-10 2013-09-10 Marvell International Ltd. Power management of iterative data processing systems
JP5557340B2 (ja) * 2011-03-28 2014-07-23 パナソニック株式会社 無線通信装置
US9319842B2 (en) 2011-06-27 2016-04-19 At&T Intellectual Property I, L.P. Mobile device configured point and shoot type weapon
US9161158B2 (en) 2011-06-27 2015-10-13 At&T Intellectual Property I, L.P. Information acquisition using a scalable wireless geocast protocol
US8744419B2 (en) * 2011-12-15 2014-06-03 At&T Intellectual Property, I, L.P. Media distribution via a scalable ad hoc geographic protocol
US9071451B2 (en) 2012-07-31 2015-06-30 At&T Intellectual Property I, L.P. Geocast-based situation awareness
US9357417B2 (en) * 2012-08-17 2016-05-31 Telefonaktiebolaget L M Ericsson Methods, systems and devices for obtaining system information in a wireless network
US9660745B2 (en) 2012-12-12 2017-05-23 At&T Intellectual Property I, L.P. Geocast-based file transfer
US9130595B1 (en) * 2013-11-07 2015-09-08 The United States Of America As Represented By The Secretary Of The Navy System and method for acceleration effect correction using turbo-encoded data with cyclic redundancy check
US9578601B2 (en) * 2013-11-12 2017-02-21 Qualcomm Incorporated Methods and apparatus for reducing modem power based on a present state of charge of battery
JP6059837B1 (ja) * 2016-03-22 2017-01-11 日本電信電話株式会社 アンテナ制御装置、アンテナ制御プログラムおよびアンテナ制御システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100995A (ja) * 2000-09-22 2002-04-05 Sony Corp 復号装置及び方法、並びにデータ受信装置及び方法
JP2002152056A (ja) * 2000-10-23 2002-05-24 Korea Telecommun ターボコード復号化装置、復号化方法および記録媒体
JP2005237033A (ja) * 2001-02-20 2005-09-02 Ntt Docomo Inc ターボ受信方法及びその受信機
JP2007036683A (ja) * 2005-07-27 2007-02-08 Nec Corp ターボ復号器および復号方法並びにそれを用いた無線通信端末、無線基地局および無線通信システム
JP2008011260A (ja) * 2006-06-29 2008-01-17 Kyocera Corp 無線通信方法、無線送信装置及び無線受信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100897893B1 (ko) * 2004-11-09 2009-05-18 가부시키가이샤 엔.티.티.도코모 이동 통신 시스템, 이동국, 무선 기지국 및 무선 네트워크제어국
EP1906560A4 (en) * 2005-07-19 2012-01-04 Nec Corp TURBO DECODING SYSTEM, TRANSMITTER PROCEDURE AND CDMA MOBILE COMMUNICATION DEVICE
US7570975B2 (en) * 2005-10-26 2009-08-04 Motorola, Inc. Method and apparatus for management of low-battery mobile stations
WO2008016024A1 (fr) * 2006-07-31 2008-02-07 Panasonic Corporation Dispositif récepteur à plusieurs antennes
KR100961080B1 (ko) * 2007-12-10 2010-06-08 한국전자통신연구원 시분할 듀플렉스 타이밍 신호를 생성하여 양방향 무선 채널측정을 하는 다중 안테나 무선 채널 측정 시스템 및 방법
US20100302930A1 (en) * 2009-05-31 2010-12-02 Qualcomm Incorporated Low Power Quality-Energy Scalable OFDMA Baseband Design

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100995A (ja) * 2000-09-22 2002-04-05 Sony Corp 復号装置及び方法、並びにデータ受信装置及び方法
JP2002152056A (ja) * 2000-10-23 2002-05-24 Korea Telecommun ターボコード復号化装置、復号化方法および記録媒体
JP2005237033A (ja) * 2001-02-20 2005-09-02 Ntt Docomo Inc ターボ受信方法及びその受信機
JP2007036683A (ja) * 2005-07-27 2007-02-08 Nec Corp ターボ復号器および復号方法並びにそれを用いた無線通信端末、無線基地局および無線通信システム
JP2008011260A (ja) * 2006-06-29 2008-01-17 Kyocera Corp 無線通信方法、無線送信装置及び無線受信装置

Also Published As

Publication number Publication date
US20110179330A1 (en) 2011-07-21
KR20110030650A (ko) 2011-03-23

Similar Documents

Publication Publication Date Title
WO2010013707A1 (ja) 無線通信端末及び通信制御方法
JP4719247B2 (ja) 送信装置および無線通信方法
US10389487B2 (en) Adaptive downlink control channel structure for 5G or other next generation networks
CN109075799B (zh) 极化Polar码的编译码方法及装置
KR102148155B1 (ko) 반복 응답 결합 메커니즘을 가진 통신 시스템 및 그 동작 방법
US20080112517A1 (en) Apparatus, methods, and computer program products providing reduced interference in a multi-antenna system
WO2006080317A1 (ja) 送信装置及び送信方法
JP5139222B2 (ja) 無線通信装置
US7076720B1 (en) Encoding apparatus and decoding apparatus
KR102103716B1 (ko) 반복 검출기 및 디코더를 사용하는 통신 시스템 및 그 동작 방법
JP2008011329A (ja) 携帯通信機およびアンテナ制御方法
US8897399B2 (en) Communication system with signal-to-noise ratio adjustment mechanism and method of operation thereof
US20140066114A1 (en) Communication system with repeat-response processing mechanism and method of operation thereof
US9203659B2 (en) Computing system with interference classification mechanism and method of operation thereof
JP2005006194A (ja) 通信装置及び通信装置の誤り検出訂正方法
JP2010109405A (ja) 基地局装置、無線通信端末、無線通信システムおよび無線通信方法
JP4773487B2 (ja) 無線通信端末及び通信制御方法
US9602236B2 (en) Computing system with decoding adjustment mechanism and method of operation thereof
US8325859B2 (en) Communication device and control method
JP4773488B2 (ja) 無線通信端末及び通信制御方法
JP2002111565A (ja) アレーアンテナ通信装置および無線通信方法
US20140274092A1 (en) Wireless communication system with interference mitigation mechanism and method of operation thereof
US10742284B2 (en) Beamformer and wireless communication method thereof for improving communication quality
JP2010109429A (ja) 基地局装置、無線通信端末、無線通信システムおよび無線通信方法
JP3286289B2 (ja) Cdma受信装置及び誤り訂正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117002141

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13056587

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802950

Country of ref document: EP

Kind code of ref document: A1