WO2010013590A1 - ヒートポンプシステム - Google Patents

ヒートポンプシステム Download PDF

Info

Publication number
WO2010013590A1
WO2010013590A1 PCT/JP2009/062469 JP2009062469W WO2010013590A1 WO 2010013590 A1 WO2010013590 A1 WO 2010013590A1 JP 2009062469 W JP2009062469 W JP 2009062469W WO 2010013590 A1 WO2010013590 A1 WO 2010013590A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
refrigerant
heat
heat source
secondary refrigerant
Prior art date
Application number
PCT/JP2009/062469
Other languages
English (en)
French (fr)
Inventor
邦明 川村
敏和 寒風澤
赤星 信次郎
Original Assignee
株式会社前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前川製作所 filed Critical 株式会社前川製作所
Priority to EP09802833.5A priority Critical patent/EP2320158B1/en
Priority to JP2010522670A priority patent/JP5246891B2/ja
Priority to NO09802833A priority patent/NO2320158T3/no
Publication of WO2010013590A1 publication Critical patent/WO2010013590A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • the present invention relates to a heat pump system using NH 3 secondary refrigerant.
  • a heat pump system source comprising a compressor, a condenser, and an evaporator is combined with a heat cycle system that performs a desired heat exchange.
  • the target heat transfer to the system is via a relay heat exchanger (cascade condenser), and the heat cycle system does not incorporate a compressor, either the liquid head difference of the heat medium or the pumping by the circulation pump
  • Patent Document 1 A system in which the heat medium is circulated by one or both is disclosed in Patent Document 1.
  • Patent Document 1 does not specify the refrigerant used for the heat cycle.
  • CO 2 refrigerant (brine) can not be used with existing equipment because of the high pressures than generally refrigerant at ambient atmospheric temperature, equipment cost consuming because the order CO 2 pressure complimentary become established, including piping system, Nature Despite the benefits of reducing the environmental impact of refrigerants, the renewal update from existing facilities is difficult.
  • the cooling capacity may be insufficient.
  • the present invention has been made in view of the above circumstances, has excellent safety, high heat transfer efficiency, enables effective use of existing facilities, can easily manage oil, and can minimize the amount of refrigerant.
  • An object is to provide a heat pump system.
  • the heat pump system includes a compressor, a condenser, an expansion means, and a cascade condenser, and is connected directly or indirectly to the heat source cycle using NH 3 refrigerant as a heat source, and the heat source cycle of the heat source cycle.
  • a heat pump system comprising a secondary NH 3 refrigerant cycle to cool the object loaded by the secondary NH 3 refrigerant condensed is directly or indirectly endothermic by cascade condenser, the secondary NH 3 refrigerant cycle, the heat source
  • An endothermic part in which the NH 3 secondary refrigerant is condensed directly or indirectly by the cascade condenser of the cycle, and evaporation for cooling the target load by the NH 3 secondary refrigerant condensed in the endothermic part Is disposed between the heat absorber and the evaporator and circulates the NH 3 secondary refrigerant.
  • a circulation pump, a bypass pipe bypassing the circulation pump, and a flow rate adjusting valve disposed in the bypass pipe.
  • NH 3 refrigerant having a large latent heat of vaporization and superior characteristics compared with general refrigerants is used in the heat source cycle and the NH 3 secondary refrigerant cycle, so that the power necessary for circulating the refrigerant is increased.
  • the heat transfer performance is good, so the temperature approach in the evaporator is reduced and the performance is improved.
  • the circulating by NH 3 secondary refrigerant head difference portion and the circulation pump of the NH 3 in the secondary refrigerant cycle for cooling the object load, in the cascade condenser between the NH 3 heat source cycle and secondary NH 3 refrigerant cycle By completely separating the refrigerant system, it is possible to prevent the lubricating oil resulting from the compressor of the NH 3 heat source cycle from entering the NH 3 secondary refrigerant cycle. Therefore, the maintenance work of the lubricating oil can be limited only to the machine room (NH 3 heat source cycle), and safety can be ensured by simple maintenance management.
  • the secondary refrigerant is a pure NH 3 refrigerant separated by an NH 3 heat source cycle and a cascade condenser, there is no contamination, there is no secular change, and the efficiency on the evaporator side is good.
  • the refrigerant amount of the NH 3 secondary refrigerant cycle is used as the cooling load. It can be set appropriately. Thereby, the refrigerant quantity of the NH 3 secondary refrigerant cycle can be minimized.
  • the heat source cycle and the NH 3 secondary refrigerant cycle are directly connected via the cascade condenser, and the NH 3 refrigerant of the heat source cycle and the NH 3 secondary refrigerant cycle are connected.
  • the NH 3 secondary refrigerant may be separated from each other in the cascade condenser.
  • the heat source cycle and the NH 3 secondary refrigerant cycle may be indirectly connected via a second secondary refrigerant cycle. That is, a second secondary refrigerant cycle (for example, the secondary refrigerant is not limited to NH 3) and a CO 2 refrigerant may be used between the NH 3 heat source cycle and the NH 3 secondary refrigerant cycle. If only the second secondary refrigerant cycle is newly installed, the existing system can be used).
  • a second secondary refrigerant cycle for example, the secondary refrigerant is not limited to NH 3
  • CO 2 refrigerant may be used between the NH 3 heat source cycle and the NH 3 secondary refrigerant cycle. If only the second secondary refrigerant cycle is newly installed, the existing system can be used).
  • the heat source cycle may be an NH 3 liquid pump system or an NH 3 direct expansion system using the NH 3 refrigerant as a refrigerant.
  • NH 3 refrigerant having a large latent heat of vaporization and superior characteristics as compared with a general refrigerant is used in the heat source cycle and the NH 3 secondary refrigerant cycle, and therefore is necessary for circulating the refrigerant.
  • the heat transfer performance is good and the temperature approach in the evaporator is reduced, thus improving the performance.
  • the circulating by NH 3 secondary refrigerant head difference portion and the circulation pump of the NH 3 in the secondary refrigerant cycle for cooling the object load, in the cascade condenser between the NH 3 heat source cycle and secondary NH 3 refrigerant cycle By completely separating the refrigerant system, it is possible to prevent the lubricating oil resulting from the compressor of the NH 3 heat source cycle from entering the NH 3 secondary refrigerant cycle. Therefore, the maintenance work of the lubricating oil can be limited only to the machine room (NH 3 heat source cycle), and safety can be ensured by simple maintenance management.
  • the secondary refrigerant is a pure NH 3 refrigerant separated by an NH 3 heat source cycle and a cascade condenser, there is no contamination, there is no secular change, and the efficiency on the evaporator side is good.
  • the refrigerant amount of the NH 3 secondary refrigerant cycle is used as the cooling load. It can be set appropriately. Thereby, the refrigerant quantity of the NH 3 secondary refrigerant cycle can be minimized.
  • NH 3 and the heat source cycle and the secondary NH 3 refrigerant cycle is a diagram illustrating a configuration example of a heat pump system combined.
  • NH 3 is a diagram showing a further configuration example of the second heat pump system with an interposed secondary refrigerant cycle between the heat source cycle and secondary NH 3 refrigerant cycle.
  • FIG. 1 is a diagram illustrating a configuration example of a heat pump system in which an NH 3 heat source cycle and an NH 3 secondary refrigerant cycle are combined.
  • A is a heat source cycle using NH 3 refrigerant as a heat source
  • B is an NH 3 secondary refrigerant cycle including an evaporator 8 for cooling a target load
  • the heat source cycle A and NH 3 secondary refrigerant cycle B are: It is thermally connected by a cascade condenser. That is, the heat source cycle A and the NH 3 secondary refrigerant cycle B are directly connected via the cascade condenser 4.
  • NH 3 heat source cycle A of the refrigerant to the heat source is a cascade condenser 4 is interposed which acts as a compressor 1 to the NH 3 refrigerant circulation cycle B and the condenser 2 and the expansion means 3 (such as an expansion valve or Capital tube) evaporator Then, the NH 3 refrigerant is compressed, condensed, expanded, and evaporated, and absorbs heat from the NH 3 secondary refrigerant cycle B side through the cascade condenser 4.
  • the expansion means 3 such as an expansion valve or Capital tube
  • the NH 3 secondary refrigerant cycle B includes a cascade condenser 4 that functions as a heat absorber and an evaporator 8 that cools a target load.
  • a liquid head difference portion H and a circulation pump 6 are provided between the evaporator 8 and the heat absorption portion (the cascade condenser 4 in the example of FIG. 1) of the NH 3 heat medium upstream thereof.
  • a flow rate adjustment valve 5 is arranged in a bypass pipe that bypasses the circulation pump 6 so as to be in parallel with the circulation pump 6.
  • the flow rate of the NH 3 refrigerant flowing into the evaporator 8 is insufficient, the NH 3 refrigerant having a flow rate necessary for the evaporator 8 is obtained by performing pumping by the circulation pump 6 in addition to the liquid head difference portion H. Can be supplied.
  • a flow rate control valve 7 is provided at the subsequent stage of the circulation pump 6 and the flow rate control valve 5.
  • the flow rate adjusting valves 5 and 7 are controlled manually or automatically, and the opening degree is adjusted so that the flow rate of the NH 3 refrigerant flowing into the evaporator 8 is maintained in an appropriate range.
  • the flow rate of the NH 3 refrigerant flowing into the evaporator 8 may be measured by a flow meter, or may be estimated from the temperature of the NH 3 refrigerant at the inlet / outlet of the evaporator 8.
  • the heat source cycle A may be an NH 3 liquid pump system or an NH 3 direct expansion system using NH 3 refrigerant as a refrigerant.
  • the existing equipment can be maximized by adding the NH 3 secondary refrigerant cycle that cools the target load while using the NH 3 liquid pump system and NH 3 direct expansion system that have been used conventionally as the heat source cycle It can be used effectively.
  • FIG. 2 shows a heat pump system in which a second secondary refrigerant (for example, a secondary refrigerant using NH 3 or CO 2 refrigerant) cycle is further interposed between the NH 3 heat source cycle and the NH 3 secondary refrigerant cycle.
  • a second secondary refrigerant for example, a secondary refrigerant using NH 3 or CO 2 refrigerant
  • A is a heat source cycle using NH 3 refrigerant as a heat source, and has the same configuration as FIG. B is NH 3 secondary refrigerant cycle including an evaporator for cooling the object load, along with being thermally connected to the heat source cycle A via the second secondary refrigerant cycle C, forming the same configuration as FIG.
  • the second secondary refrigerant cycle C is a cycle in which the second secondary refrigerant condensed by receiving heat absorbed from the cascade condenser 4 of the heat source cycle A circulates, and the second secondary refrigerant cycle C is the above-mentioned A cascade condenser 4 that functions as a heat absorber and a cascade condenser (evaporator) 9 that supplies a heat source to the NH 3 secondary refrigerant cycle B are configured.
  • the refrigerant circulating in the second secondary refrigerant cycle C is not particularly limited, but it is preferable to use a natural refrigerant such as CO 2 or NH 3 , for example.
  • a liquid head difference portion H and a circulation pump 10 are provided between the cascade condenser (evaporator) 9 and the heat absorption section on the upstream side (cascade condenser 4 in the example shown in FIG. 2).
  • a flow rate control valve 11 is arranged in parallel with the circulation pump 10.
  • the flow rate adjusting valve 11 allows the second secondary refrigerant in the second secondary refrigerant cycle C to circulate only by the liquid head difference portion H, or the liquid head difference portion H and the circulation pump 10 are used in combination. Thus, it is possible to select whether to circulate the second secondary refrigerant in the second secondary refrigerant cycle C.
  • a flow rate control valve 12 is provided downstream of the circulation pump 10 and the flow rate control valve 11, and the flow rate control valve 12 controls the second secondary refrigerant inflow amount of the cascade condenser (evaporator) 9. However, the refrigerant is circulated.
  • the refrigerant cycle that provides the cold source to the NH 3 secondary refrigerant cycle B is dispersed in a plurality of refrigerant cycles (A, C) (dispersion method).
  • the refrigerant amount can be optimized according to the cooling load. Therefore, it is possible to further promote the minimum amount of refrigerant.
  • NH 3 refrigerant having a large latent heat of vaporization and superior characteristics as compared with a general refrigerant is used in the heat source cycle A and the NH 3 secondary refrigerant cycle B. Therefore, the power required to circulate the refrigerant can be reduced as compared with other brines, and since the heat transfer performance is good, the temperature approach in the evaporator is reduced and the performance is improved.
  • the NH 3 secondary refrigerant in the NH 3 secondary refrigerant cycle B for cooling the target load is circulated by the head difference portion H and the circulation pump 6, and the NH 3 heat source cycle A and the NH 3 secondary refrigerant cycle B are
  • the lubricating oil resulting from the compressor 1 of the NH 3 heat source cycle A is mixed into the NH 3 secondary refrigerant cycle B by completely separating the refrigerant system in the cascade condenser 4 (or cascade condensers 4 and 9) Can be prevented. Therefore, the maintenance work of the lubricating oil can be limited only to the machine room (NH 3 heat source cycle A), and safety can be ensured by simple maintenance management.
  • the NH 3 The amount of refrigerant in the secondary refrigerant cycle B can be appropriately set according to the cooling load. Thereby, the refrigerant quantity of the NH 3 secondary refrigerant cycle B can be minimized.
  • FIG. 2 an example of a heat pump system in which the NH 3 heat source cycle A and the NH 3 secondary refrigerant cycle B are indirectly connected through one secondary refrigerant cycle (second secondary refrigerant cycle C).
  • second secondary refrigerant cycle C the NH 3 heat source cycle A and the NH 3 secondary refrigerant cycle B may be indirectly connected through two or more secondary refrigerant cycles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 熱源サイクルAは、圧縮機1、凝縮器2、膨張手段3及びカスケードコンデンサー4を含み、NH冷媒を熱源とする。一方、NH二次冷媒サイクルBは、熱源サイクルAに連結され、熱源サイクルAのカスケードコンデンサー4により吸熱されて凝縮されるNH二次冷媒によって目的負荷を冷却する。このNH二次冷媒サイクルBは、熱源サイクルAのカスケードコンデンサー4により吸熱されて、NH二次冷媒が凝縮される吸熱部4と、吸熱部4において凝縮されたNH二次冷媒によって目的負荷を冷却する蒸発器8と、吸熱部4と蒸発器8との間に配置され、NH二次冷媒を循環させるヘッド差部Hおよび循環ポンプ6と、循環ポンプ6をバイパスするバイパス管路と、このバイパス管路に配置される流量調節弁5とを含む。

Description

ヒートポンプシステム
 本発明は、NH二次冷媒を用いたヒートポンプシステムに関する。
 従来よりヒートポンプサイクルを利用した冷却(加熱)システムでは、熱媒体たる冷媒は必ず圧縮機による圧縮を受けながら循環するものであり、このため圧縮機の作動に不可欠な潤滑油が微量ずつではあるが、冷媒中に混入してしまうことは免れ得ない。
 かかる技術を改良するために、圧縮機と凝縮器と蒸発器とを具えて成るヒートポンプシステム源と、目的とする熱交換を行うヒートサイクルシステムとが組み合わされて成り、前記ヒートポンプシステム源からヒートサイクルシステムへは、中継熱交換器(カスケードコンデンサー)を介して目的とする熱伝達がされ、且つヒートサイクルシステムには圧縮機を組み込まず、熱媒体の液ヘッド差と循環ポンプによる圧送とのいずれか一方または双方により熱媒体の循環が行われるシステムが特許文献1にて開示されている。
特開2005-140349号公報
 しかしながら特許文献1には、ヒートサイクルに使用する冷媒が特定されていない。
 この点、自然冷媒を用いる観点より、例えば前記ヒートポンプシステム源の冷媒にNH、前記ヒートサイクルシステムの冷媒としてCOを用いることも考えられる。このように、冷媒を冷却し液化するための高元側にアンモニアを使い、対象物を冷やすための低元側には二酸化炭素を使用する二元冷凍方式は、環境負荷低減と高い安全性をもつとともに、高元側にNH3熱源を、中継熱交換器(カスケードコンデンサー)による間接冷却により低元(二次)側のCO2冷媒側に直接NH3が混入しないというメリットも有する。このため、自然冷媒を用いたNH3・CO2ブラインシステムを、冷凍設備等に導入することが検討されている。
 しかしCO2冷媒(ブライン)は周囲雰囲気温度において一般冷媒より圧力が高いため既存設備が使用できず、この為CO2圧力対応の設備を配管系も含めて新設となるので設備費がかかり、自然冷媒が環境負荷低減上有利にもかかわらず、既存設備よりのリニューアル更新がなかなか進まない状況にある。
 また、より大きな冷却負荷に対応するためには、CO冷媒を用いると、冷却能力が不十分な場合がある。
 さらに、自然冷媒を用いた既存のNH冷凍システムは液ポンプ方式や直膨システムを採用しているが、経時変化に伴い蒸発器側に冷凍機油が同伴されることによる性能低下を防ぐためのオイル管理が煩雑である。
 本発明は上述の事情に鑑みてなされたものであり、安全性に優れ、伝熱効率が高く、既存設備の有効利用が可能であり、容易にオイル管理を行いうるとともに、冷媒量をミニマム化しうるヒートポンプシステムを提供することを目的とする。
 本発明に係るヒートポンプシステムは、圧縮機、凝縮器、膨張手段及びカスケードコンデンサーを含み、NH冷媒を熱源とする熱源サイクルと、前記熱源サイクルと直接又は間接的に連結され、前記熱源サイクルの前記カスケードコンデンサーにより直接又は間接的に吸熱されて凝縮したNH二次冷媒によって目的負荷を冷却するNH二次冷媒サイクルとを備えるヒートポンプシステムであって、前記NH二次冷媒サイクルは、前記熱源サイクルの前記カスケードコンデンサーにより直接又は間接的に吸熱されて、前記NH二次冷媒が凝縮される吸熱部と、前記吸熱部において凝縮された前記NH二次冷媒によって前記目的負荷を冷却する蒸発器と、前記吸熱部と前記蒸発器との間に配置され、前記NH二次冷媒を循環させるヘッド差部および循環ポンプと、前記循環ポンプをバイパスするバイパス管路と、前記バイパス管路に配置される流量調節弁とを含むことを特徴とする。
 上記ヒートポンプシステムによれば、蒸発潜熱が大きく一般冷媒と比較して優れた特性を有するNH冷媒が熱源サイクル及びNH二次冷媒サイクルで用いられるため、冷媒を循環させるのに必要な動力を他のブラインと比べても少なくでき、伝熱性能も良好のため蒸発器での温度アプローチが減少して、性能も向上する。
 また、目的負荷を冷却する二次冷媒サイクルにCO冷媒を使用すると、既存設備を利用できず新設することになってしまうが、上記ヒートポンプシステムでは、二次冷媒サイクルにNH冷媒を用いるので、既存設備をそのまま利用することができる。
 また、目的負荷を冷却するNH二次冷媒サイクル内のNH二次冷媒をヘッド差部および循環ポンプにより循環させるとともに、NH熱源サイクルとNH二次冷媒サイクルとの間のカスケードコンデンサーにおいて冷媒系統を完全に分離することで、NH熱源サイクルの圧縮機に起因する潤滑油がNH二次冷媒サイクルに混入することを防止することができる。したがって、潤滑油のメンテナンス作業を機械室(NH熱源サイクル)だけに限定することができ、簡素な保守管理で安全性を確保することができる。
 また、二次冷媒はNH熱源サイクルとカスケードコンデンサーで分離されピュアなNH冷媒を使うので、汚れも無く、経年変化も無く、蒸発器側の効率が良い。
 さらに、NH熱源サイクルと、目的負荷を冷却するNH二次冷媒サイクルとの間のカスケードコンデンサーにおいて、冷媒系統が完全に分離されるため、NH二次冷媒サイクルの冷媒量を冷却負荷に応じて適切に設定することができる。これにより、NH二次冷媒サイクルの冷媒量をミニマム化することができる。
 上記ヒートポンプシステムにおいて、前記熱源サイクルと前記NH二次冷媒サイクルとが、前記カスケードコンデンサーを介して直接的に連結されており、前記熱源サイクルの前記NH冷媒と、前記NH二次冷媒サイクルの前記NH二次冷媒とが、前記カスケードコンデンサーにおいて互いに分離されていてもよい。
 あるいは、上記ヒートポンプシステムにおいて、前記熱源サイクルと前記NH二次冷媒サイクルとが、第2の二次冷媒サイクルを介して間接的に連結されていてもよい。すなわち、NH熱源サイクルとNH二次冷媒サイクルとの間にさらに第2の二次冷媒サイクル(例えば二次冷媒はNHに限定することなくCO冷媒を用いてもよい。この場合は第2の二次冷媒サイクルのみ新設すれば既存システムを利用可能である。)を介在させてシステムの構成を行ってもよい。
 また、上記ヒートポンプシステムにおいて、前記熱源サイクルは、前記NH冷媒を冷媒とするNH液ポンプシステム又はNH直膨システムであってもよい。
 このように、従来から使用されてきたNH液ポンプシステムやNH直膨システムを、熱源サイクルとして利用するとともに、目的負荷を冷却するNH二次冷媒サイクルを追加することで、既存設備を最大限に有効利用することができる。
 本発明に係るヒートポンプシステムによれば、蒸発潜熱が大きく一般冷媒と比較して優れた特性を有するNH冷媒が熱源サイクル及びNH二次冷媒サイクルで用いられるため、冷媒を循環させるのに必要な動力を他のブラインと比べても少なくでき、伝熱性能も良好のため蒸発器での温度アプローチが減少して、性能も向上する。
 また、目的負荷を冷却する二次冷媒サイクルにCO冷媒を使用すると、既存設備を仕様できず新設することになってしまうが、本発明に係るヒートポンプシステムでは、二次冷媒サイクルにNH冷媒を用いるので、既存設備をそのまま利用することができる。
 また、目的負荷を冷却するNH二次冷媒サイクル内のNH二次冷媒をヘッド差部および循環ポンプにより循環させるとともに、NH熱源サイクルとNH二次冷媒サイクルとの間のカスケードコンデンサーにおいて冷媒系統を完全に分離することで、NH熱源サイクルの圧縮機に起因する潤滑油がNH二次冷媒サイクルに混入することを防止することができる。したがって、潤滑油のメンテナンス作業を機械室(NH熱源サイクル)だけに限定することができ、簡素な保守管理で安全性を確保することができる。
 また、二次冷媒はNH熱源サイクルとカスケードコンデンサーで分離されピュアなNH冷媒を使うので、汚れも無く、経年変化も無く、蒸発器側の効率が良い。
 さらに、NH熱源サイクルと、目的負荷を冷却するNH二次冷媒サイクルとの間のカスケードコンデンサーにおいて、冷媒系統が完全に分離されるため、NH二次冷媒サイクルの冷媒量を冷却負荷に応じて適切に設定することができる。これにより、NH二次冷媒サイクルの冷媒量をミニマム化することができる。
NH熱源サイクルとNH二次冷媒サイクルとが組み合わされたヒートポンプシステムの構成例を示す図である。 NH熱源サイクルとNH二次冷媒サイクルの間にさらに第2の二次冷媒サイクルを介在させたヒートポンプシステムの構成例を示す図である。
 以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
 図1は、NH3熱源サイクルとNH3二次冷媒サイクルとが組み合わされたヒートポンプシステムの構成例を示す図である。
 図1において、AはNH3冷媒を熱源とする熱源サイクル、Bは目的負荷を冷却する蒸発器8を含むNH3二次冷媒サイクルであり、熱源サイクルA及びNH3二次冷媒サイクルBは、カスケードコンデンサーによって熱連結されている。すわなち、熱源サイクルAとNH3二次冷媒サイクルBとは、カスケードコンデンサー4を介して、直接的に連結されている。
 NH3冷媒を熱源とする熱源サイクルAは、NH3冷媒循環サイクルBに圧縮機1と凝縮器2と膨張手段3(膨張弁若しくはキャピタルチューブ等)と蒸発器として機能するカスケードコンデンサー4が介装されて、NH3冷媒の圧縮、凝縮、膨張、及び蒸発を行い、カスケードコンデンサー4を介してNH3二次冷媒サイクルB側から吸熱する。
 NH3二次冷媒サイクルBは、吸熱器として機能するカスケードコンデンサー4と、目的負荷を冷却する蒸発器8とにより構成される。前記蒸発器8と、その上流側のNH3熱媒体の吸熱部(図1の例ではカスケードコンデンサー4)との間には、液ヘッド差部Hおよび循環ポンプ6が設けられている。
 また、循環ポンプ6をバイパスするバイパス配管には、循環ポンプ6と並列するように流量調節弁5が配置されている。この流量調節弁5により、液ヘッド差部HだけでNH3冷媒循環サイクルB内のNH冷媒を循環させるか、あるいは、液ヘッド差部Hと循環ポンプ6とを併用してNH冷媒を循環させるかを選択できるようになっている。これにより、蒸発器8に流入するNH冷媒の流量が不足する場合には、液ヘッド差部Hに加えて循環ポンプ6による圧送を行うことで、蒸発器8に必要な流量のNH冷媒を供給しうるようになっている。
 さらに、循環ポンプ6及び流量調節弁5の後段には流量調節弁7が設けられている。
 流量調節弁5及び7は、手動又は自動で制御され、蒸発器8に流入するNH冷媒の流量が適切な範囲に維持されるように開度が調節される。ここで、蒸発器8に流入するNH冷媒の流量は、流量計により測定してもよいし、蒸発器8の出入口におけるNH冷媒の温度から見積もってもよい。
 なお、熱源サイクルAは、NH冷媒を冷媒とするNH液ポンプシステム又はNH直膨システムであってもよい。この場合、従来から使用されてきたNH液ポンプシステムやNH直膨システムを、熱源サイクルとして利用するとともに、目的負荷を冷却するNH二次冷媒サイクルを追加することで、既存設備を最大限に有効利用することができる。
 図2は、NH3熱源サイクルとNH3二次冷媒サイクルの間にさらに第2の二次冷媒(例えばNH3若しくはCO冷媒を用いた二次冷媒)サイクルを介在させたヒートポンプシステムを示す。
 図2において、AはNH3冷媒を熱源とする熱源サイクルで図1と同様な構成をなす。Bは目的負荷を冷却する蒸発器を含むNH3二次冷媒サイクルで、第2の二次冷媒サイクルCを介して熱源サイクルAと熱連結されているとともに、図1と同様な構成をなす。
 第2の二次冷媒サイクルCは、前記熱源サイクルAのカスケードコンデンサー4よりの吸熱を受けて凝縮される第2の二次冷媒が循環するサイクルであり、第2の二次冷媒サイクルCは前記吸熱器として機能するカスケードコンデンサー4と、NH3二次冷媒サイクルBに熱源を供給するカスケードコンデンサー(蒸発器)9とにより構成される。
 第2の二次冷媒サイクルC内を循環させる冷媒(第2の二次冷媒)は特に限定されないが、例えばCOやNH等の自然冷媒を用いることが好ましい。
 カスケードコンデンサー(蒸発器)9と、その上流側の吸熱部(図2に示す例ではカスケードコンデンサー4)との間には、液ヘッド差部Hおよび循環ポンプ10が設けられている。
 また、循環ポンプ10をバイパスするバイパス配管には、循環ポンプ10と並列するように流量調節弁11が配置されている。この流量調節弁11により、液ヘッド差部Hだけで第2の二次冷媒サイクルC内の第2の二次冷媒を循環させるか、あるいは、液ヘッド差部Hと循環ポンプ10とを併用して第2の二次冷媒サイクルC内の第2の二次冷媒を循環させるかを選択できるようになっている。
 さらに、循環ポンプ10及び流量調節弁11の後段には流量調節弁12が設けられており、この流量調節弁12により、カスケードコンデンサー(蒸発器)9の第2の二次冷媒流入量を制御しながら該冷媒の循環が行われるようになっている。
 このように、図2に示すヒートポンプシステムによれば、NH3二次冷媒サイクルBに冷熱源を提供する冷媒サイクルが、複数の冷媒サイクル(A、C)に分散しているため(分散方式)、一括集中方式の冷却システムに比べて、冷却負荷に応じて冷媒量を最適化することができる。したがって、冷媒量のミニマム化をより一層推し進めることができる。
 図1及び2の例を用いて説明したヒートポンプシステムによれば、蒸発潜熱が大きく一般冷媒と比較して優れた特性を有するNH冷媒が熱源サイクルA及びNH二次冷媒サイクルBで用いられるため、冷媒を循環させるのに必要な動力を他のブラインと比べても少なくでき、伝熱性能も良好のため蒸発器での温度アプローチが減少して、性能も向上する。
 また、目的負荷を冷却する二次冷媒サイクルBにCO冷媒を使用すると、既存設備を仕様できず新設することになってしまうが、上記ヒートポンプシステムでは、二次冷媒サイクルBにNH冷媒を用いるので、既存設備をそのまま利用することができる。
 また、目的負荷を冷却するNH二次冷媒サイクルB内のNH二次冷媒をヘッド差部Hおよび循環ポンプ6により循環させるとともに、NH熱源サイクルAとNH二次冷媒サイクルBとの間のカスケードコンデンサー4(又はカスケードコンデンサー4及び9)において冷媒系統を完全に分離することで、NH熱源サイクルAの圧縮機1に起因する潤滑油がNH二次冷媒サイクルBに混入することを防止することができる。したがって、潤滑油のメンテナンス作業を機械室(NH熱源サイクルA)だけに限定することができ、簡素な保守管理で安全性を確保することができる。
 また、二次冷媒として、NH熱源サイクルAとカスケードコンデンサー4(又はカスケードコンデンサー9)で分離されピュアなNH冷媒を使うので、汚れも無く、経年変化も無く、蒸発器8の効率が良い。
 さらに、NH熱源サイクルAと、目的負荷を冷却するNH二次冷媒サイクルBとの間のカスケードコンデンサー4(又はカスケードコンデンサー4及び9)において、冷媒系統が完全に分離されるため、NH二次冷媒サイクルBの冷媒量を冷却負荷に応じて適切に設定することができる。これにより、NH二次冷媒サイクルBの冷媒量をミニマム化することができる。
 以上、本発明の実施形態について詳細に説明したが、本発明はこの例に限定されず、本発明の要旨を逸脱しない範囲において、各種の改良や変形を行ってもよいのはいうまでもない。
 例えば、図2では、NH熱源サイクルAおよびNH二次冷媒サイクルBが一つの二次冷媒サイクル(第2の二次冷媒サイクルC)を介して間接的に連結されたヒートポンプシステムの例について説明したが、2以上の二次冷媒サイクルを介して、NH熱源サイクルAおよびNH二次冷媒サイクルBを間接的に連結してもよい。
 また図1及び2では、カスケードコンデンサー(4、9)の後段に、流量調節弁(5、11)ないし循環ポンプ(6、10)を直接設けた例について説明したが、カスケードコンデンサー(4、9)の後段に冷媒を溜める液溜槽を設けてもよい。これにより、冷媒の液面を安定して得ることができるため、液ヘッド差部Hの大きさを正確に制御することができる。

Claims (4)

  1.  圧縮機、凝縮器、膨張手段及びカスケードコンデンサーを含み、NH冷媒を熱源とする熱源サイクルと、前記熱源サイクルに直接又は間接的に連結され、前記熱源サイクルの前記カスケードコンデンサーにより直接又は間接的に吸熱されて凝縮されるNH二次冷媒によって目的負荷を冷却するNH二次冷媒サイクルとを備えるヒートポンプシステムであって、
     前記NH二次冷媒サイクルは、
     前記熱源サイクルの前記カスケードコンデンサーにより直接又は間接的に吸熱されて、前記NH二次冷媒が凝縮される吸熱部と、
     前記吸熱部において凝縮された前記NH二次冷媒によって前記目的負荷を冷却する蒸発器と、
     前記吸熱部と前記蒸発器との間に配置され、前記NH二次冷媒を循環させるヘッド差部および循環ポンプと、
     前記循環ポンプをバイパスするバイパス管路と、
     前記バイパス管路に配置される流量調節弁とを含むことを特徴とするヒートポンプシステム。
  2.  前記熱源サイクルと前記NH二次冷媒サイクルとが、前記カスケードコンデンサーを介して直接的に連結されており、
     前記熱源サイクルの前記NH冷媒と、前記NH二次冷媒サイクルの前記NH二次冷媒とが、前記カスケードコンデンサーにおいて互いに分離されていることを特徴とする請求項1に記載のヒートポンプシステム。
  3.  前記熱源サイクルと前記NH二次冷媒サイクルとが、第2の二次冷媒サイクルを介して間接的に連結されていることを特徴とする請求項1に記載のヒートポンプシステム。
  4.  前記熱源サイクルは、前記NH冷媒を冷媒とするNH液ポンプシステム又はNH直膨システムであることを特徴とする請求項1乃至3のいずれか一項に記載のヒートポンプシステム。
PCT/JP2009/062469 2008-07-28 2009-07-08 ヒートポンプシステム WO2010013590A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09802833.5A EP2320158B1 (en) 2008-07-28 2009-07-08 Heat pump system
JP2010522670A JP5246891B2 (ja) 2008-07-28 2009-07-08 ヒートポンプシステム
NO09802833A NO2320158T3 (ja) 2008-07-28 2009-07-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8406508P 2008-07-28 2008-07-28
US61/084,065 2008-07-28

Publications (1)

Publication Number Publication Date
WO2010013590A1 true WO2010013590A1 (ja) 2010-02-04

Family

ID=41610289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062469 WO2010013590A1 (ja) 2008-07-28 2009-07-08 ヒートポンプシステム

Country Status (4)

Country Link
EP (1) EP2320158B1 (ja)
JP (1) JP5246891B2 (ja)
NO (1) NO2320158T3 (ja)
WO (1) WO2010013590A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086089A1 (ja) 2010-12-24 2012-06-28 株式会社前川製作所 ヒートポンプ装置の運転制御方法及び装置
JP2013155970A (ja) * 2012-01-31 2013-08-15 Mayekawa Mfg Co Ltd 冷凍装置の監視システム
KR101327818B1 (ko) * 2011-12-16 2013-11-08 부경대학교 산학협력단 하이브리드형 캐스케이드 냉동장치
JP2016017696A (ja) * 2014-07-08 2016-02-01 株式会社前川製作所 アイスリンクの冷却設備及び冷却方法
WO2017195275A1 (ja) * 2016-05-10 2017-11-16 三菱電機株式会社 ヒートポンプシステム
CN112460863A (zh) * 2020-12-10 2021-03-09 珠海格力电器股份有限公司 一种冷水机组及其制冷控制方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539963A (ja) * 1991-08-02 1993-02-19 Sanki Eng Co Ltd 冷暖房装置
JP2005030622A (ja) * 2003-07-07 2005-02-03 Mayekawa Mfg Co Ltd アイスクリームフリーザ
JP2005140349A (ja) 2003-11-04 2005-06-02 Hachiyo Engneering Kk 潤滑油混入に起因する不具合を排除したヒートポンプシステム
WO2006038354A1 (ja) * 2004-09-30 2006-04-13 Mayekawa Mfg. Co., Ltd アンモニア/co2冷凍システム
JP2006214611A (ja) * 2005-02-01 2006-08-17 Nissin Kogyo Kk 冷凍装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539963A (ja) * 1991-08-02 1993-02-19 Sanki Eng Co Ltd 冷暖房装置
JP2005030622A (ja) * 2003-07-07 2005-02-03 Mayekawa Mfg Co Ltd アイスクリームフリーザ
JP2005140349A (ja) 2003-11-04 2005-06-02 Hachiyo Engneering Kk 潤滑油混入に起因する不具合を排除したヒートポンプシステム
WO2006038354A1 (ja) * 2004-09-30 2006-04-13 Mayekawa Mfg. Co., Ltd アンモニア/co2冷凍システム
JP2006214611A (ja) * 2005-02-01 2006-08-17 Nissin Kogyo Kk 冷凍装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086089A1 (ja) 2010-12-24 2012-06-28 株式会社前川製作所 ヒートポンプ装置の運転制御方法及び装置
KR101327818B1 (ko) * 2011-12-16 2013-11-08 부경대학교 산학협력단 하이브리드형 캐스케이드 냉동장치
JP2013155970A (ja) * 2012-01-31 2013-08-15 Mayekawa Mfg Co Ltd 冷凍装置の監視システム
JP2016017696A (ja) * 2014-07-08 2016-02-01 株式会社前川製作所 アイスリンクの冷却設備及び冷却方法
WO2017195275A1 (ja) * 2016-05-10 2017-11-16 三菱電機株式会社 ヒートポンプシステム
JPWO2017195275A1 (ja) * 2016-05-10 2018-11-22 三菱電機株式会社 ヒートポンプシステム
CN112460863A (zh) * 2020-12-10 2021-03-09 珠海格力电器股份有限公司 一种冷水机组及其制冷控制方法和装置

Also Published As

Publication number Publication date
JPWO2010013590A1 (ja) 2012-01-12
EP2320158A4 (en) 2014-05-07
EP2320158B1 (en) 2017-11-15
JP5246891B2 (ja) 2013-07-24
NO2320158T3 (ja) 2018-04-14
EP2320158A1 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US9156333B2 (en) System for the heating, ventilation, and/or air conditioning of a vehicle, comprising at least one heat exchanger through which a heat-transfer fluid flows
JP5246891B2 (ja) ヒートポンプシステム
CA2995951C (en) Integrated refrigeration and air conditioning system
KR100867619B1 (ko) 히트펌프를 이용한 냉난방 및 급탕장치
JP2006329601A (ja) 冷却器及びその運転方法
JP2011080736A (ja) 熱交換装置
JP5202726B2 (ja) 負荷側中継ユニット及びそれを搭載した空調給湯複合システム
US8037709B2 (en) Heat pump with pressure reducer
JP4334818B2 (ja) 冷却装置
JP2007218466A (ja) 二次冷媒式冷凍装置
WO2017051532A1 (ja) 冷却システムおよび冷却方法
KR102185416B1 (ko) 냉방 시스템
US20220333834A1 (en) Chiller system with multiple compressors
JP2008051495A (ja) 冷却装置
JP2013167368A (ja) 空気調和装置
JP5627559B2 (ja) 空気調和機
JP2007333342A (ja) 多重効用吸収冷凍機
JP2008057974A (ja) 冷却装置
JP2003336917A (ja) 冷却装置
KR102561069B1 (ko) 브라인 칠러 및 이를 포함하는 이산화탄소 복합 사이클 시스템
JP3918980B2 (ja) 冷凍装置
EP3982059B1 (en) Heat management system
CN112524830B (zh) 一种复合超低温制冷系统
KR101103439B1 (ko) 히트펌프 시스템
US20240011690A1 (en) Refrigeration system with heat pump compression

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802833

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010522670

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009802833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009802833

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE