WO2010013400A1 - 難燃性熱可塑性樹脂組成物 - Google Patents

難燃性熱可塑性樹脂組成物 Download PDF

Info

Publication number
WO2010013400A1
WO2010013400A1 PCT/JP2009/003293 JP2009003293W WO2010013400A1 WO 2010013400 A1 WO2010013400 A1 WO 2010013400A1 JP 2009003293 W JP2009003293 W JP 2009003293W WO 2010013400 A1 WO2010013400 A1 WO 2010013400A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
resin composition
thermoplastic resin
general formula
Prior art date
Application number
PCT/JP2009/003293
Other languages
English (en)
French (fr)
Inventor
福島充
畑中知幸
八巻章浩
金田崇良
大坪史明
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN2009801298848A priority Critical patent/CN102112539B/zh
Priority to US13/056,781 priority patent/US8735473B2/en
Priority to EP09802650.3A priority patent/EP2311908B8/en
Publication of WO2010013400A1 publication Critical patent/WO2010013400A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/302Polyurethanes or polythiourethanes; Polyurea or polythiourea
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate

Definitions

  • the present invention relates to a thermoplastic resin composition mainly comprising a thermoplastic polyurethane elastomer and an ethylene (co) polymer, and in particular, a thermoplastic resin composition excellent in compatibility, workability and flame retardancy thereof, And an electric wire or cable using the same.
  • Thermoplastic polyurethane-based elastomers have been used in various fields such as hoses, belts, electric wires, cables, pipes, shoe soles, various molded products, etc., taking advantage of their excellent mechanical strength and wear resistance.
  • an ethylene copolymer such as an ethylene-vinyl acetate copolymer (EVA) and a thermoplastic polyurethane elastomer are alloyed to improve resin moldability and water resistance and use.
  • EVA ethylene-vinyl acetate copolymer
  • thermoplastic polyurethane elastomers consist of a long-chain part called a soft segment, which is easy to move, and a part with extremely high crystallinity called a hard segment, and is not compatible with other resins.
  • the compatibility with the ethylene polymer or the ethylene copolymer is insufficient.
  • thermoplastic resin composition mainly composed of a thermoplastic polyurethane elastomer and an ethylene copolymer has a drawback of poor flame retardancy. This defect is improved by adding a metal hydrate such as magnesium hydroxide (Patent Document 2).
  • a metal hydrate such as magnesium hydroxide
  • a resin composition in which flame retardancy is imparted by adding a compound containing nitrogen and / or phosphorus such as melamine phosphate, melamine polyphosphate, and condensed phosphate ester to a thermoplastic polyurethane elastomer is also known.
  • Patent Document 3 the flame retardant mechanism in this case does not exhibit flame retardancy by forming a surface expansion layer (Intumescent) at the time of combustion, and suppressing the diffusion and heat transfer of decomposition products. There is no description suggesting that the compatibility of the resin composition is improved.
  • Patent Document 4 an invention in which a specific phosphate compound and a phosphate ester flame retardant are added in combination to a thermoplastic polyurethane elastomer is also disclosed (Patent Document 4).
  • the present invention relates to a fireproof sealant that is completely different from applications such as electric wires and cables, and is compatible and flame retardant of a resin composition mainly composed of a thermoplastic polyurethane elastomer and an ethylene-based copolymer. There is no description that suggests improving the performance.
  • chlorine-containing flame retardant resins and molecules are used as coating materials for electric / electronic equipment, electric wires, insulated wires, cables, cabtire cables, optical cords, optical fiber cables, etc. It is well known to use a resin composition mainly composed of an ethylene copolymer, which contains a so-called halogen flame retardant containing a bromine atom or a chlorine atom.
  • a resin composition mainly composed of an ethylene copolymer which contains a so-called halogen flame retardant containing a bromine atom or a chlorine atom.
  • the flame retardant resin or the resin containing the flame retardant as described above is discarded without appropriate treatment, not only the heavy metal stabilizer mixed in the coating material may be eluted, but also combustion In such a case, the corrosive gas may be discharged.
  • antimony trioxide when used to make the chlorine-containing resin more flame retardant, antimony trioxide contains lead and arsenic derived from the raw ore as impurities. It is also a problem that it will contain simultaneously. Therefore, in recent years, there has been a demand for the development of a technique for coating an electric wire with a halogen-free non-halogen flame retardant material that does not cause the elution of harmful heavy metals or the generation of halogen-based gases.
  • the non-halogen flame retardant material is a material that exhibits flame retardancy by blending a flame retardant containing no halogen with a resin.
  • the flame retardant include metal hydrates such as magnesium hydroxide and aluminum hydroxide. used.
  • the flame retardancy of these flame retardants is not sufficient, when used as a flame retardant, it must be blended in large quantities. When such large-scale use is unavoidable, the compatibility and dispersibility of the flame retardant with the resin becomes a problem, and the workability tends to be inferior, so the physical properties required for electric wires and cables are insufficient. There was a drawback of becoming something.
  • the resulting resin composition may be used for manufacturing electric wires or the like.
  • attempts have been made to improve the processability by using a lubricant in combination, because of the poor processing and the poor dispersion of each component blended in the composition.
  • the flame retardancy is lowered, so even in the incompatible system as described above, flame retardancy having good processability and dispersibility without impairing the flame retardancy.
  • Development of a functional resin composition has been demanded.
  • a first object of the present invention is to provide a thermoplastic resin composition comprising a thermoplastic polyurethane elastomer and an ethylene copolymer as main components, which are excellent in compatibility, dispersibility, processability and flame retardancy.
  • the second object of the present invention is to provide an electric wire or cable excellent in flame retardancy, surface properties and physical properties.
  • the inventors of the present invention use two specific types of (poly) phosphate compounds as flame retardants, as well as thermoplastic polyurethane elastomers and ethylene copolymers.
  • a compatibility / dispersibility improver that improves the compatibility and dispersibility of other additives in the composition, good results can be obtained by using a phosphate ester compound in combination.
  • this invention mix
  • n in the formula (1) represents a number of 1 to 100
  • X 1 is ammonia or a triazine derivative represented by the following general formula (2)
  • p satisfies a relationship of 0 ⁇ p ⁇ n + 2. Is a number.
  • Z 1 and Z 2 in the formula (2) may be the same or different, and —NR 5 R 6 group [wherein R 5 and R 6 are each independently a hydrogen atom, a carbon number of 1 to 6 Linear or branched alkyl group or methylol group], hydroxyl group, mercapto group, linear or branched alkyl group having 1 to 10 carbon atoms, linear or branched alkoxy group having 1 to 10 carbon atoms, phenyl group And a group selected from the group consisting of vinyl groups.
  • r in the formula (3) represents a number of 1 to 100
  • Y 1 is [R 1 R 2 N (CH 2 ) mNR 3 R 4 ], a piperazine or a diamine containing a piperazine ring
  • R 1 , R 2 , R 3 and R 4 are each a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 1 , R 2 , R 3 and R 4 may be the same group.
  • M may be different
  • m is an integer of 1 to 10
  • q is a number satisfying a relationship of 0 ⁇ q ⁇ r + 2.
  • R 7 , R 8 , R 10 and R 11 in the formula (4) may be the same or different and are represented by an alkyl group having 1 to 10 carbon atoms or the following general formula (5) Represents an aromatic group.
  • R 9 represents a divalent aromatic group represented by the following general formula (6) or (7), and s is a number from 0 to 30.
  • a 1 and A 2 in the above general formula each independently represent a hydrogen atom, a hydroxy group or an alkyl group having 1 to 10 carbon atoms.
  • a 3 , A 4 , A 5 , A 6 , A 7 and A 8 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an aryl group, an alkoxy group, a nitro group, a halogen atom or Represents a cyano group.
  • G represents a direct bond, a divalent sulfur atom, a sulfone group, an alkylidene group having 1 to 5 carbon atoms or an alkylene group.
  • the flame-retardant thermoplastic resin composition of the present invention preferably further contains zinc oxide as the component (F).
  • component (C) n in the general formula (1) is 2, and p is 2, It is preferable to use melamine pyrophosphate in which X 1 is melamine (Z 1 and Z 2 in the general formula (2) are —NH 2 ).
  • the component (D) it is preferable to use piperazine polyphosphate in which q in the general formula (3) is 1 and Y 1 is piperazine, and it is particularly preferable to use piperazine pyrophosphate.
  • the ethylene copolymer that is the component (B) used in the present invention it is preferable to use an ethylene-vinyl acetate copolymer.
  • the flame-retardant thermoplastic resin composition of the present invention is a thermoplastic resin composition having excellent compatibility, dispersibility, processability, and flame retardancy, mainly composed of a thermoplastic polyurethane elastomer and an ethylene copolymer. Therefore, it is particularly suitable as a coating material for electric wires or cables.
  • thermoplastic polyurethane elastomer (TPU) as the component (A) used in the thermoplastic resin composition of the present invention is generally prepared using a polyol, a diisocyanate, and a chain extender.
  • the polyol include polyester polyol, polyester ether polyol, polycarbonate polyol, and polyether polyol.
  • polyester polyol examples include aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid; aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid.
  • At least one selected from alicyclic dicarboxylic acids such as hexahydrophthalic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid; or acid esters or acid anhydrides thereof; and ethylene glycol 1,3-propylene glycol, 1,2-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5 -Pentanediol, neopentyl glycol, 1,3-octane
  • a polyester polyol obtained by an esterification reaction with at least one selected from a polyol, 1,9-nonanediol, and the like; and a polylactone diol obtained by ring-opening polymerization of a lactone monomer such as ⁇ -caprolactone Etc.
  • polyester ether polyol examples include aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid; aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid; At least one selected from alicyclic dicarboxylic acids such as hexahydrophthalic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid; or acid esters or acid anhydrides thereof; and diethylene glycol or propylene oxide Examples thereof include a compound obtained by an esterification reaction with at least one selected from glycols such as adducts.
  • aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and azelaic acid
  • aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid, and
  • examples of the polycarbonate polyol include ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1, One or more polyhydric alcohols such as 6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, diethylene glycol, and diethylene
  • the polycarbonate polyol obtained by making carbonate, dimethyl carbonate, diethyl carbonate, etc. react is mentioned. Further, it may be a copolymer of polycaprolactone polyol (PCL) and polyhexamethylene carbonate (PHL).
  • examples of the polyether polyol include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, and the like obtained by polymerizing cyclic ethers such as ethylene oxide, propylene oxide, and tetrahydrofuran, and copolyethers thereof.
  • diisocyanate examples include tolylene diisocyanate (TDI), 4,4′-diphenylmethane diisocyanate (MDI), 1,5-naphthylene diisocyanate (NDI), tolidine diisocyanate, 1,6-hexamethylene diisocyanate (HDI).
  • TDI tolylene diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • NDI 1,5-naphthylene diisocyanate
  • HDI 1,6-hexamethylene diisocyanate
  • IPDI Isophorone diisocyanate
  • XDI xylylene diisocyanate
  • hydrogenated XDI triisocyanate, tetramethylxylene diisocyanate (TMXDI), 1,6,11-undecane triisocyanate, 1,8-diisocyanate methyloctane, lysine ester Triisocyanate, 1,3,6-hexamethylene triisocyanate, bicycloheptane triisocyanate, dicyclohexylmethane diisocyanate (hydrogenated MDI HMDI), and the like.
  • MDI 4,4'-diphenylmethane diisocyanate
  • HDI 1,6-hexamethylene diisocyanate
  • a low molecular weight polyol is used as the chain extender used for the preparation of the thermoplastic polyurethane elastomer (TPU).
  • TPU thermoplastic polyurethane elastomer
  • the low molecular weight polyol include ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6 -Aliphatic polyols such as hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, diethylene glycol, 1,4-cyclohexanedimethanol, glycerol, And aromatic glycols such as 1,4-dimethylolbenzene, bisphenol A, and ethylene oxide or propylene oxide adducts
  • ester (lactone) polyurethane copolymers include Elastollan C80A10 (manufactured by BASF Japan), Elastollan C80A50 (manufactured by BASF Japan), and Resamine P-4000 series (Daiichi Seisen).
  • ester (adipate) polyurethane copolymers include Pandex T-5000V (D IC Bayer Polymer Co., Ltd.), Pandex TR-3080 (DIC Bayer Polymer Co., Ltd.), Resamine P-1000 Series (Daiichi Seika Kogyo Co., Ltd.), Resamine P-7000 Series (Daiichi Seika) (Manufactured by Kogyo Co., Ltd.), etc .; specific commercial products of ether-based polyurethane copolymers include Tran 1180A50 (manufactured by BASF Japan Ltd.), Pandex T-8180 (manufactured by DIC Bayer Polymer Ltd.), Pandex T-8283 (manufactured by DIC Bayer Polymer Ltd.), Pandex T-1190 (Dee ICS Bayer Polyurethane copolymers).
  • the blending amount of the component (A) is preferably 5 to 80% by mass, more preferably 10 to 60% by mass, most preferably 100% by mass of the sum of the components (A) and (B). Is 20 to 40% by mass. If the blending amount is less than 5% by mass, the scratch resistance and mechanical strength characteristic of the thermoplastic polyurethane elastomer tend to be insufficient. If the blending amount exceeds 80% by mass, the compatibility, workability, and resin surface It tends to be insufficient in terms of sex.
  • the ethylene polymer as the component (B) used in the present invention is a polymer having a structure in which ethylene is polymerized. Specific examples thereof include high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low A density polyethylene (LLDPE) etc. are mentioned.
  • HDPE high-density polyethylene
  • LDPE low-density polyethylene
  • LLDPE linear low A density polyethylene
  • Examples of the ethylene-based copolymer (B) used in the present invention include ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-acrylic acid copolymer. And ethylene-based copolymers such as ethylene-methacrylic acid copolymer. Further, an ethylene-vinyl acetate-vinyl alcohol copolymer obtained by saponifying an ethylene-vinyl acetate copolymer by a known method or grafting ethylene, vinyl acetate, vinyl alcohol by a known method, An ethylene-vinyl alcohol copolymer or the like can also be used.
  • ethylene-vinyl acetate copolymer used as the component (B) described above, from the viewpoint of dispersibility and a remarkable improvement in oil resistance when mixed with a thermoplastic polyurethane elastomer.
  • the content of vinyl acetate in the ethylene-vinyl acetate copolymer is preferably 25 to 85% by mass (10 to 65% by mol), more preferably about 30 to 85% by mass (12 to 65% by mol). Most preferably, it is about 40 to 85 mass% (18 to 65 mol%).
  • these ethylene polymers and ethylene copolymers may be used alone or in combination of two or more.
  • the type, blending ratio, type of polymerization catalyst and the like may be appropriately selected.
  • the blending amount of the component (B) is preferably 20 to 95% by mass, more preferably 40 to 90% by mass, most preferably 100% by mass of the sum of the components (A) and (B). Is 60 to 80% by mass. If the blending amount is less than 20% by mass, it tends to be unsatisfactory in terms of compatibility, workability, and resin surface properties. If it exceeds 95% by mass, not only scratch resistance and mechanical strength but also compatibility, It tends to be unsatisfactory in terms of processability and resin surface properties.
  • component and (D) component which are used for the flame-retardant thermoplastic resin composition of this invention are demonstrated.
  • Component (C) and component (D) are flame retardant components, and are components that exhibit flame retardancy by forming a surface expansion layer (Intumescent) during combustion of the flame retardant thermoplastic resin composition of the present invention.
  • the (poly) phosphate compound represented by the following general formula (1) used as the component (C) in the flame-retardant thermoplastic resin composition of the present invention is a salt of phosphoric acid and ammonia or a triazine derivative. .
  • n in the formula (1) represents a number of 1 to 100
  • X 1 is ammonia or a triazine derivative represented by the following general formula (2)
  • p is a number satisfying 0 ⁇ p ⁇ n + 2.
  • Z 1 and Z 2 in the formula (2) may be the same or different, and —NR 5 R 6 group [wherein R 5 and R 6 are each independently a hydrogen atom, a carbon number of 1 to 6 Linear or branched alkyl group or methylol group], hydroxyl group, mercapto group, linear or branched alkyl group having 1 to 10 carbon atoms, linear or branched alkoxy group having 1 to 10 carbon atoms, phenyl group And a group selected from the group consisting of vinyl groups.
  • Examples of the linear or branched alkyl group having 1 to 10 carbon atoms represented by Z 1 and Z 2 in the general formula (2) include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tertiary Butyl, isobutyl, amyl, isoamyl, tert-amyl, hexyl, cyclohexyl, heptyl, isoheptyl, tert-heptyl, n-octyl, isooctyl, tert-octyl, 2-ethylhexyl, nonyl, decyl, etc.
  • Examples of the linear or branched alkoxy group of ⁇ 10 include groups derived from these alkyl groups.
  • triazine derivative examples include melamine, acetoguanamine, benzoguanamine, acrylic guanamine, 2,4-diamino-6-nonyl-1,3,5-triazine, 2,4-diamino-6-hydroxy-1 , 3,5-triazine, 2-amino-4,6-dihydroxy-1,3,5-triazine, 2,4-diamino-6-methoxy-1,3,5-triazine, 2,4-diamino- 6-ethoxy-1,3,5-triazine, 2,4-diamino-6-propoxy-1,3,5-triazine, 2,4-diamino-6-isopropoxy-1,3,5-triazine, 2 , 4-diamino-6-mercapto-1,3,5-triazine, 2-amino-4,6-dimercapto-1,3,5-triazine and the like.
  • Examples of the (poly) phosphate compound preferably used as the component (C) in the present invention include a salt of phosphoric acid and melamine, or an ammonium polyphosphate compound.
  • Examples of the salt of phosphoric acid and melamine that are preferably used include melamine orthophosphate, melamine pyrophosphate, and melamine polyphosphate. In the present invention, among these, it is particularly preferable to use melamine pyrophosphate in which n in the general formula (1) is 2, p is 2, and X 1 is melamine.
  • the salt of phosphoric acid and melamine can be obtained by the following method.
  • hydrochloric acid is added to and reacted with a mixture of sodium pyrophosphate and melamine having an arbitrary reaction ratio, and neutralized with sodium hydroxide to obtain melamine pyrophosphate.
  • the ammonium polyphosphate compound is a compound containing ammonium polyphosphate alone or ammonium polyphosphate as a main component. A commercial item can be used as this ammonium polyphosphate simple substance.
  • a compound containing ammonium polyphosphate as a main component can also be used.
  • such compounds include those in which ammonium polyphosphate is coated or microencapsulated with a thermosetting resin, those in which the surface of ammonium polyphosphate is coated with a melamine monomer or other nitrogen-containing organic compound, a surfactant or silicon.
  • a melamine monomer or other nitrogen-containing organic compound such as a melamine monomer or other nitrogen-containing organic compound, a surfactant or silicon.
  • those that have been made slightly soluble by adding melamine or the like in the process of producing ammonium polyphosphate can be mentioned.
  • Exolit-462 manufactured by Clariant Co.
  • Sumisafe-PM manufactured by Sumitomo Chemical Co., Ltd.
  • Terrage-C60 manufactured by Chisso Co., Ltd.
  • Terrage-C70 For example, Terrage-C80.
  • the (poly) phosphate compound represented by the following general formula (3) used as the component (D) in the flame-retardant thermoplastic resin composition of the present invention is a salt of phosphoric acid and diamine or piperazine.
  • r represents 1 to 100
  • Y 1 is [R 1 R 2 N (CH 2 ) mNR 3 R 4 ], a piperazine or a diamine containing a piperazine ring
  • R 1 , R 2 , R 3 and R 4 are each a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, and R 1 , R 2 , R 3 and R 4 may be the same group or different.
  • M is an integer of 1 to 10
  • q is a number satisfying 0 ⁇ q ⁇ r + 2.
  • diamine represented by Y 1 in the general formula (3) include N, N, N ′, N′-tetramethyldiaminomethane, ethylenediamine, N, N′-dimethylethylenediamine, N, N′— Diethylethylenediamine, N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-diethylethylenediamine, tetramethylenediamine, 1, 2-propanediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane Piperazine, trans-2,5-dimethylpiperazine, 1,
  • Examples of the (poly) phosphate compound preferably used as the component (D) include salts of phosphoric acid and piperazine.
  • Specific examples of the salt of phosphoric acid and piperazine include piperazine orthophosphate, piperazine pyrophosphate, and piperazine polyphosphate.
  • piperazine polyphosphate particularly piperazine pyrophosphate, in which q in the above general formula (3) is 1 and Y 1 is piperazine.
  • the salt of phosphoric acid and piperazine can be obtained by a known method.
  • piperazine pyrophosphate piperazine and pyrophosphoric acid can be easily reacted with water or an aqueous methanol solution to obtain a hardly water-soluble precipitate.
  • piperazine polyphosphate it may be a salt obtained from orthophosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, a mixture of other polyphosphoric acids and piperazine, and the composition of the starting polyphosphoric acid is particularly limited. It is not something.
  • the blending amount of the component (C) is preferably 5 to 60 parts by weight, more preferably 10 to 35 parts per 100 parts by weight of the thermoplastic resin composition containing the components (A) and (B) as main components. Part by mass.
  • the blending amount of the component (D) is preferably 10 to 90 parts by mass, more preferably 15 to 50 parts per 100 parts by mass of the thermoplastic resin composition mainly composed of the components (A) and (B). Part by mass.
  • the total blending amount of the component (C) and the component (D) that are flame retardant components is preferably 100 parts by mass of the thermoplastic resin composition containing the components (A) and (B) as the main components.
  • the amount is 15 to 150 parts by mass, more preferably 25 to 85 parts by mass. If it is less than 15 parts by mass, a sufficient flame retarding effect may not be obtained, and if it exceeds 150 parts by mass, the properties as a resin may be reduced.
  • the component (E) used in the present invention improves the compatibility of the thermoplastic polyurethane elastomer of the component (A) and the ethylene copolymer of the component (B) used in the present invention. It is a component that acts as a compatibilizer / dispersant that improves the compatibility and dispersibility of the component D) as well as other additive components in the composition.
  • the (E) component condensed phosphate ester is represented by the following general formula (4).
  • R 7 , R 8 , R 10 and R 11 in the formula (4) may be the same or different and are represented by an alkyl group having 1 to 10 carbon atoms or the following general formula (5) Represents an aromatic group.
  • R 9 represents a divalent aromatic group represented by the following general formula (6) or (7), and s represents a number from 0 to 30.
  • a 1 and A 2 in the formula (5) each independently represent a hydrogen atom, a hydroxy group or an alkyl group having 1 to 10 carbon atoms
  • a 3 in the formulas (6) and (7), A 4 , A 5 , A 6 , A 7 and A 8 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, an aryl group, an alkoxy group, a nitro group, a halogen atom or a cyano group.
  • G represents a direct bond, a divalent sulfur atom, a sulfone group, an alkylidene group having 1 to 5 carbon atoms or an alkylene group.
  • Examples of the alkyl group having 1 to 10 carbon atoms represented by R 7 , R 8 , R 10 , R 11 , A 1 and A 2 in the general formulas (4) to (7) include methyl, ethyl, propyl, Examples include isopropyl, butyl, isobutyl, secondary butyl, tertiary butyl, amyl, tertiary amyl, hexyl, 2-ethylhexyl, n-octyl, nonyl, decyl and the like.
  • Examples of the alkyl group having 1 to 4 carbon atoms represented by A 3 , A 4 , A 5 , A 6 , A 7 and A 8 include methyl, ethyl, propyl, butyl, isobutyl, secondary butyl and tertiary butyl.
  • Examples of the cycloalkyl group include cyclohexyl and the like.
  • Examples of the aryl group include phenyl, cresyl, xylyl, 2,6-xylyl, 2,4,6-trimethylphenyl, butylphenyl, nonylphenyl and the like.
  • Examples of the alkoxy group include methoxy, ethoxy, propoxy, butoxy and the like.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • Examples of the aromatic group represented by the general formula (5) include phenyl, cresyl, xylyl, 2,6-xylyl, butylphenyl, nonylphenyl and the like.
  • Examples of the alkylidene group having 1 to 5 carbon atoms represented by G include ethylidene and isopropylidene.
  • Examples of the alkylene group having 1 to 5 carbon atoms include methylene, ethylene, trimethylene and tetramethylene.
  • s is 0 to 30, preferably 1 to 10.
  • the phosphoric acid ester compound used as the component (E) in the flame retardant thermoplastic resin composition of the present invention include the following compound Nos.
  • the compound No. 1-6 is particularly preferable because the compatibility / dispersibility improvement effect is high. It is preferred to use 2 compounds.
  • the blending amount of the component (E) in the flame retardant thermoplastic resin composition of the present invention is preferably 0 with respect to 100 parts by mass of the thermoplastic resin composition mainly composed of the components (A) and (B). 0.01 to 15 parts by mass, more preferably 0.1 to 10 parts by mass, and most preferably 0.5 to 5 parts by mass. If it is less than 0.01 part by mass, the effect of improving the compatibility and dispersibility may not be obtained, and if it is 15 parts by mass or more, it may be economically disadvantageous.
  • the flame retardant thermoplastic resin composition of the present invention further contains zinc oxide, which is a flame retardant aid, as the component (F).
  • the zinc oxide may be surface-treated.
  • commercially available zinc oxide can be used. Examples of commercially available zinc oxide include, for example, one type of zinc oxide (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.), partially coated zinc oxide (manufactured by Mitsui Kinzoku Kogyo Co., Ltd.), and Nanofine 50 (average particle size of 0.02 ⁇ m).
  • the blending amount of zinc oxide as the component (F) is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the thermoplastic resin composition mainly composed of the components (A) and (B). The amount is preferably 0.1 to 5 parts by mass.
  • the flame-retardant thermoplastic resin composition of the present invention comprises a component (C), a component (D) and a component (E) with respect to the thermoplastic resin composition mainly composed of the component (A) and the component (B).
  • blending is essential, it is preferable to further contain the component (F).
  • the timing of blending the components (C) to (F) into the thermoplastic resin composition There is no particular limitation on the timing of blending the components (C) to (F) into the thermoplastic resin composition.
  • two or more types selected from the components (C) to (F) may be pre-packed into a thermoplastic resin composition containing the components (A) and (B) as main components.
  • the individual components may be blended with the thermoplastic resin composition mainly composed of the component (A) and the component (B).
  • each of the components (A) to (F) may be blended to form a flame retardant thermoplastic resin composition.
  • each component When making one pack, each component may be pulverized and mixed, or mixed and then pulverized. Moreover, you may mix
  • MFR melt flow rate
  • fluorine-based anti-drip agent examples include, for example, fluorine-based resins such as polytetrafluoroethylene, polyvinylidene fluoride, and polyhexafluoropropylene, sodium perfluoromethanesulfonate, and perfluoro-n-butanesulfonic acid.
  • fluorine-based resins such as polytetrafluoroethylene, polyvinylidene fluoride, and polyhexafluoropropylene, sodium perfluoromethanesulfonate, and perfluoro-n-butanesulfonic acid.
  • Perfluoroalkanesulfonic acid alkali metal salt compound such as potassium salt, perfluoro-t-butanesulfonic acid potassium salt, perfluorooctanesulfonic acid sodium salt, perfluoro-2-ethylhexanesulfonic acid calcium salt or perfluoroalkanesulfonic acid Examples include alkaline earth metal
  • the flame retardant thermoplastic resin composition of the present invention may be blended with silicone oil in order to suppress secondary aggregation at the time of blending and improve water resistance. It is preferable to use a silicone oil having a siloxane structure. Silicone oil having a methylpolysiloxane structure consists of a dimethylpolysiloxane structure alone, a structure containing both a dimethylpolysiloxane structure and a methylhydrogenpolysiloxane structure, and a methylhydrogenpolysiloxane structure only. Things can be raised.
  • the silicone oil may be epoxy-modified, carboxyl-modified, carbinol-modified and / or amino-modified.
  • silicone oil examples include: KF-99 (manufactured by Shin-Etsu Chemical Co., Ltd.) for a 100% methyl hydrogen structure, and HMS-151 (some for a methyl hydrogen structure). Gelest), HMS-071 (Gelest), HMS-301 (Gelest), DMS-H21 (Gelest) and the like, and epoxy modified products include, for example, X-22-2000 (Shin-Etsu).
  • KF-102 manufactured by Shin-Etsu Chemical Co., Ltd.
  • carboxyl modified products for example, X-22-4015 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • carbinol modified products for example, Examples of X-22-4015 (manufactured by Shin-Etsu Chemical Co., Ltd.) and amino-modified products include KF-393 (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like.
  • a synthetic resin other than the components (A) and (B) may be blended as the resin component.
  • synthetic resins include ⁇ -olefin polymers such as polypropylene, polybutene, poly-3-methylpentene, and copolymers thereof, polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, chlorinated polypropylene, Polyvinylidene fluoride, rubber chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride- Halogen-containing resins such as acrylic ester copolymers, vinyl chloride-maleic ester copolymers, vinyl chloride-cyclohexyl maleimide copolymers, petroleum resins, coumarone resins, poly
  • Linear polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as polyphenylene oxide, polycaprolactam and polyhexamethylene adipamide, polycarbonate, polycarbonate / ABS resin, branched polycarbonate, polyacetal, polyphenylene sulfide, polyurethane, and fibrous resin
  • Thermoplastic resins such as these and their blends or phenol resins, urea resins, melamine resins, epoxy resins, unsaturated It can be exemplified thermosetting resins such as Riesuteru resin. Further, it may be an elastomer such as isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber.
  • a lubricant with the flame-retardant thermoplastic resin composition of this invention as needed.
  • Such lubricants include pure hydrocarbon lubricants such as liquid paraffin, natural paraffin, micro wax, synthetic paraffin and low molecular weight polyethylene; halogenated hydrocarbon lubricants; fatty acid lubricants such as higher fatty acids and oxy fatty acids; fatty acid amides , Fatty acid amide-based lubricants such as bis-fatty acid amides; ester-based lubricants such as lower alcohol esters of fatty acids, polyhydric alcohol esters of fatty acids such as glycerides, polyglycol esters of fatty acids, fatty alcohol esters of fatty acids (ester waxes); metal soaps , Fatty alcohol, polyhydric alcohol, polyglycol, polyglycerol, partial ester of fatty acid and polyhydric alcohol, fatty acid and polyglycol, partial ester based lubricant of poly
  • the flame retardant thermoplastic resin composition of the present invention may be added with a phenolic antioxidant, a phosphorus antioxidant, a thioether antioxidant, an ultraviolet absorber, a hindered amine light stabilizer, etc., as necessary. It is preferable to stabilize.
  • a phenolic antioxidant include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-ditert-butyl-4).
  • Examples of the phosphorus antioxidant include trisnonylphenyl phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl].
  • Phosphite tridecyl phosphite, octyl diphenyl phosphite, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-di Tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-ditert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tritert-butylphenyl) pentaerythritol diphosphite Phosphite, bis (2,4-dicumylphenyl) pe Taerythritol diphosphite, tetra (tridecyl) isopropylidene diphenol diphosphit
  • thioether-based antioxidant examples include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and pentaerythritol tetra ( ⁇ -alkylmercaptopropionate). These are 0.001 to 10 parts by weight, preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the thermoplastic resin composition containing the components (A) and (B) as main components. Part by mass is used.
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-Hydroxybenzophenones such as 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-ditert-butylphenyl) -5-chloro Benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-5′-tert.
  • Octylphenyl) benzotriazole 2- (2′-hydroxy-3 ′, 5′-dicumylphenyl) benzotriazole, 2 2- (methylenebis (4-tert-octyl-6- (benzotriazolyl) phenol), 2- (2′-hydroxy-3′-tert-butyl-5′-carboxyphenyl) benzotriazole and the like 2- ( 2'-hydroxyphenyl) benzotriazoles; phenyl salicylate, resorcinol monobenzoate, 2,4-ditertiarybutylphenyl-3,5-ditertiarybutyl-4-hydroxybenzoate, 2,4-ditertiary amylphenyl Benzoates such as 3,5-ditert-butyl-4-hydroxybenzoate and hexadecyl-3,5-ditert-butyl-4-hydroxybenzoate; 2-ethyl-2′-ethoxyoxanilide, 2-ethoxy Substitute
  • hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-tetramethyl-4-piperidyl) Sebacate, bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4 -Butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2 , 6,6-tetramethyl-4-piperidyl) -di (tridec
  • thermoplastic resin composition of the present invention p-tert-butylaluminum benzoate, aromatic phosphate metal salt, dibenzylidene sorbitols and the like are included as long as the effects of the present invention are not impaired.
  • Nucleating agent, antistatic agent, metal soap, hydrotalcite, triazine ring-containing compound, metal hydroxide, inorganic phosphorus flame retardant, silicon flame retardant, other inorganic flame retardant aid, other organic may add a flame retardant, a filler, a pigment, a foaming agent, etc.
  • triazine ring-containing compound examples include melamine, ammelin, benzguanamine, acetoguanamine, phthalodiguanamine, melamine cyanurate, melamine pyrophosphate, butylenediguanamine, norbornene diguanamine, methylene diguanamine, ethylene dimelamine, trimethylene Dimelamine, tetramethylene dimelamine, hexamethylene dimelamine, 1,3-hexylene dimelamine and the like can be mentioned.
  • metal hydroxide examples include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, Kismer 5A (magnesium hydroxide: manufactured by Kyowa Chemical Industry Co., Ltd.) and the like.
  • Examples of the other inorganic flame retardant aids include inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, and surface-treated products thereof.
  • inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, and surface-treated products thereof.
  • TIPAQUE R-680 titanium oxide: manufactured by Ishihara Sangyo Co., Ltd.
  • Kyowa Mag 150 magnesium oxide: manufactured by Kyowa Chemical Industry Co., Ltd.
  • DHT-4A hydrotalcite: manufactured by Kyowa Chemical Industry Co., Ltd.
  • Alkamizer 4 Various commercially available products such as (Zinc-modified hydrotalcite: manufactured by Kyowa Chemical Industry Co., Ltd.) can be used.
  • the flame-retardant thermoplastic resin composition of the present invention includes additives that are usually used in synthetic resins as necessary, for example, crosslinking agents, antistatic agents, antifogging agents, plate-out preventing agents, surface treatments.
  • additives that are usually used in synthetic resins as necessary, for example, crosslinking agents, antistatic agents, antifogging agents, plate-out preventing agents, surface treatments.
  • a flame-retardant synthetic resin molding can be obtained by molding the flame-retardant thermoplastic resin composition of the present invention by a known method.
  • the molding method is not particularly limited, and examples thereof include extrusion molding, calendering molding, injection molding, roll molding, compression molding, and blow molding.
  • extrusion molding calendering molding
  • injection molding roll molding
  • compression molding compression molding
  • blow molding blow molding
  • the flame-retardant thermoplastic resin composition of the present invention and the molded product thereof are electric / electronic / communication, agriculture, forestry and fisheries, mining, construction, food, textile, clothing, medical, coal, petroleum, rubber, leather, automobile, It can be used in a wide range of industrial fields such as precision equipment, wood, building materials, civil engineering, furniture, printing, and musical instruments. More specifically, printers, personal computers, word processors, keyboards, PDAs (small information terminals), telephones, copiers, facsimiles, ECRs (electronic cash registers), calculators, electronic notebooks, cards, holders, stationery, etc.
  • AV equipment such as liquid crystal displays, connectors, relays, capacitors, switches, printed boards, coil bobbins, semiconductor sealing materials, LED sealing materials, electric wires, cables, transformers, deflection yokes, distribution boards, watches, etc. It is used for applications such as communication equipment.
  • the flame retardant thermoplastic resin composition and the molded product thereof include a seat (filling, outer material, etc.), belt, ceiling, compatible top, armrest, door trim, rear package tray, carpet, mat, sun visor, Foil cover, mattress cover, airbag, insulation material, suspension hand, suspension band, electric wire coating material, electrical insulation material, paint, coating material, upholstery material, flooring, corner wall, carpet, wallpaper, wall covering, Exterior materials, interior materials, roofing materials, deck materials, wall materials, pillar materials, floorboards, eaves materials, frames and repetitive shapes, window and door shapes, slabs, siding, terraces, balconies, soundproofing plates, heat insulation plates Automobiles, vehicles, ships, aircraft, buildings, housing and building materials, civil engineering materials, clothing, curtains, sheets, plywood, synthetic fibers, carpets, doormats, sheets, buckets, hoses, containers , Glasses, bags, cases, goggles, skis, rackets, tents, household goods of the musical instrument or the like, and is used in sporting
  • Example 1 to Comparative Example 1 to 20 parts by mass of a thermoplastic polyurethane elastomer (Daiichi Seika Kogyo Co., Ltd .: Resamine P-1078F) and 40 parts by mass of an ethylene-vinyl acetate copolymer (manufactured by Tosoh Co., Ltd .: Ultrasen 635) were mixed with calcium stearate ( Lubricant) 0.1 parts by mass, tetrakis [3- (3,5-ditert-butyl-4-hydroxyphenyl) propionate methyl] methane (phenolic antioxidant) 0.1 parts by mass, Tris (2,4 -Di-tert-butylphenyl) phosphite (phosphorus antioxidant) 0.1 part by mass, glycerin monostearate (lubricant) (manufactured by Riken Vitamin Co., Ltd .: S-100) 0.3 part by mass, and silicone A thermoplastic resin composition obtained by blending
  • test piece was obtained in the same manner using 40 parts by mass of low-density polyethylene (manufactured by Nippon Unicar Co., Ltd .: PES-120) instead of the ethylene-vinyl acetate copolymer used in the preparation of the test piece.
  • low-density polyethylene manufactured by Nippon Unicar Co., Ltd .: PES-120
  • the workability test, the flame retardance test, and the compatibility test were done and evaluated on the following conditions. The results are shown in Table 1.
  • ⁇ Processability test evaluation> The processability was evaluated by visually checking the surface of the strand during the extrusion process and evaluating it according to the following criteria. ⁇ : The surface of the strand is smooth and excellent in smoothness. ⁇ : Some irregularities are observed on the surface of the strand. X: The surface of the strand has irregularities and is not smooth.
  • ⁇ Compatibility test> The cross section of the test piece was confirmed using an electron microscope (manufactured by JEOL Ltd .: JSM-6390LA). Cross-sectional photographs are shown in FIGS. From the photograph, compatibility was judged according to the following criteria. ⁇ : Compatible and excellent in compatibility and dispersibility. ⁇ : Slightly incompatible part, slightly incompatible and dispersible. X: Incompatible and inferior in compatibility and dispersibility.
  • (C) component and (D) component which were described in Table 1 were manufactured with the following method.
  • [Production Example 1] (C) Component: Melamine pyrophosphate Pyrophosphate and melamine were reacted at 1: 1.
  • [Production Example 2] (D) Component: Piperazine pyrophosphate Pyrophosphate and piperazine were reacted at 1: 1.
  • Examples 1 and 2 of the present invention achieved V-0 in the UL-94V test and were excellent in workability, compatibility, and dispersibility.
  • Comparative Examples 1 and 2 V-0 was achieved in the UL-94V test, but it was confirmed that the processability, compatibility, and dispersibility were inferior.
  • the flame-retardant thermoplastic resin composition of the present invention is composed of a thermoplastic polyurethane elastomer excellent in mechanical strength and abrasion resistance and a thermoplastic resin composition mainly composed of an ethylene-based copolymer.
  • a thermoplastic polyurethane elastomer excellent in mechanical strength and abrasion resistance
  • a thermoplastic resin composition mainly composed of an ethylene-based copolymer.
  • it since it is excellent in compatibility, dispersibility, workability and flame retardancy, it is particularly suitable as a coating material for electric wires or cables.
  • halogen since halogen is not used, it is excellent in environmental suitability and is extremely useful in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)

Abstract

 (A)成分である熱可塑性ポリウレタン系エラストマー及び(B)成分であるエチレン重合体及び/又はエチレン系共重合体を主成分とする熱可塑性樹脂組成物に対して、下記、(C)成分、(D)成分及び(E)成分を配合してなる難燃性熱可塑性樹脂組成物; (C)成分:下記一般式(1)で表される(ポリ)リン酸塩化合物;但し、(1)式中のX1はアンモニア又は下記一般式(2)で表されるトリアジン誘導体、(D)成分:下記一般式(3)で表される(ポリ)リン酸塩化合物、(E)成分:下記一般式(4)で表されるリン酸エステル化合物。

Description

難燃性熱可塑性樹脂組成物
 本発明は、熱可塑性ポリウレタン系エラストマーとエチレン(共)重合体を主成分とする熱可塑性樹脂組成物に関し、特に、それらの相溶性、加工性、難燃性に優れた熱可塑性樹脂組成物、及びこれを用いてなる電線又はケーブルに関する。
 熱可塑性ポリウレタン系エラストマーは、その優れた機械的強度及び耐磨耗性を生かして、ホース、ベルト、電線、ケーブル、パイプ、靴底、各種成形品等、従来から種々の分野に用いられている。特に、エチレン-酢酸ビニル共重合体(EVA)等のエチレン系共重合体と熱可塑性ポリウレタン系エラストマーをアロイ化することにより、樹脂の成形性や耐水性を向上させ、使用することが行われている(特許文献1)。しかしながら、熱可塑性ポリウレタン系エラストマーは、ソフトセグメントと称される、動きやすい長鎖部分と、ハードセグメントと称される極めて結晶性の高い部分とからなり、他の樹脂との相溶性が良くないために、エチレン重合体やエチレン系共重合体との相溶性が不十分であるという欠点があった。
 また、熱可塑性ポリウレタン系エラストマーとエチレン系共重合体を主成分とする熱可塑性樹脂組成物は、難燃性に乏しいという欠点がある。この欠点は、水酸化マグネシウム等の金属水和物を添加することによって改善される(特許文献2)。しかしながら、熱可塑性ポリウレタン系エラストマーとエチレン(共)重合体を主成分とする熱可塑性樹脂組成物は、それ自体が非相溶もしくは相溶性に乏しいため、金属水和物等の無機物を大量に使用することによってさらに相溶性が悪くなるだけでなく、加工性、樹脂の表面性、物性等が低下し、その難燃性も充分であると言えるものではなかった。
 更に、熱可塑性ポリウレタン系エラストマーに、リン酸メラミン、ポリリン酸メラミン、縮合リン酸エステル等の窒素及び/又はリンを含有する化合物を添加して難燃性を付与した樹脂組成物も知られている(特許文献3)。しかしながらこの場合の難燃機構は、燃焼時に表面膨張層(Intumescent)を形成し、分解生成物の拡散や伝熱を抑制することによって難燃性を発揮させるものではない上、明細書には前記樹脂組成物の相溶性が向上することを示唆する記載もない。
 一方、熱可塑性ポリウレタン系エラストマーに、特定のリン酸塩化合物とリン酸エステル系難燃剤を組み合わせて添加する発明も開示されている(特許文献4)。しかしながら、この発明は電線やケーブル等の用途とは全く異なる防火性シーリング剤に関するものである上、熱可塑性ポリウレタンエラストマーとエチレン系共重合体を主成分とする樹脂組成物の、相溶性や難燃性を向上させることを示唆する記載も全くない。
特開平3-97750号公報 特開2004-51903号公報 特開2001-49053号公報 特開2004-137316号公報
 従来、電気・電子機器、伝送装置の内部および外部配線に使用される電線、絶縁電線、ケーブル、キャブタイヤケーブルや光コード、光ファイバケーブル等の被覆材料として、塩素含有難燃性樹脂や、分子中に臭素原子や塩素原子を含有する所謂ハロゲン系難燃剤を配合した、エチレン系共重合体を主成分とする樹脂組成物を使用することがよく知られている。しかしながら、上記したような難燃性樹脂や難燃剤を含有する樹脂を、適切な処理をせずに廃棄すると、被覆材料に配合されている重金属安定剤が溶出する場合があるだけでなく、燃焼した場合には腐食性ガスが排出されることがあるという欠点があった。又、塩素含有樹脂を更に難燃化するために三酸化アンチモンを使用した場合には、三酸化アンチモンが、原鉱石に由来する鉛と砒素を不純物として含んでいるために、これらの有毒な成分を同時に含有することになるということも問題となっている。そこで近年、有害な重金属の溶出やハロゲン系ガスなどの発生の恐れがない、ハロゲンを含有しないノンハロゲン難燃材料で電線を被覆する技術の開発が求められるようになった。
 ノンハロゲン難燃材料は、ハロゲンを含有しない難燃剤を樹脂に配合することによって難燃性を発現させるものであり、難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウムなどの金属水和物が使用される。しかしながら、これらの難燃剤の難燃性は充分ではないので、難燃剤として使用する場合には、それを大量に配合しなければならない。このような大量使用が余儀なくされる場合には、難燃剤の樹脂に対する相溶性や分散性が問題となるだけでなく加工性が劣る傾向となるので、電線やケーブルに求められる物性も不十分なものとなるという欠点があった。
 また、熱可塑性ポリウレタン系エラストマーとエチレン系共重合体を主成分とする、非相溶系の樹脂組成物に難燃剤を配合した場合には、得られた樹脂組成物の、電線等を製造する際における加工不良、及び、該組成物中に配合された各成分の分散不良が問題となるので、従来は、滑剤を併用して上記加工性を改良することが試みられていた。しかしながら、滑剤を併用した場合には難燃性が低下するという欠点があるため、上記したような非相溶系においても、難燃性を損なうことなく、良好な加工性及び分散性を有する難燃性樹脂組成物の開発が求められていた。
 従って本発明の第1の目的は、相溶性、分散性、加工性及び難燃性に優れた、熱可塑性ポリウレタンエラストマーとエチレン系共重合体を主成分とする、熱可塑性樹脂組成物を提供することにある。
 本発明の第2の目的は、難燃性、表面性及び物性に優れた電線又はケーブルを提供することにある。
 本発明者らは、上記の諸目的を達成すべく鋭意検討した結果、難燃剤として、特定の二種類の(ポリ)リン酸塩化合物を使用すると共に、熱可塑性ポリウレタンエラストマーとエチレン系共重合体の相溶性、及び、組成物中における他の添加成分の相溶性と分散性を改良する、相溶性・分散性改良剤として、更にリン酸エステル化合物を組み合わせて使用することにより、良好な結果を得ることができることを見出し、本発明に到達した。
 すなわち本発明は、下記、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物に対して、下記(C)成分、(D)成分及び(E)成分を配合してなることを特徴とする難燃性熱可塑性樹脂組成物、及び、それを用いた電線又はケーブルである。
(A)成分:熱可塑性ポリウレタン系エラストマー
(B)成分:エチレン重合体及び/又はエチレン系共重合体
(C)成分:下記一般式(1)で表される(ポリ)リン酸塩化合物
(D)成分:下記一般式(3)で表される(ポリ)リン酸塩化合物
(E)成分:下記一般式(4)で表されるリン酸エステル化合物
Figure JPOXMLDOC01-appb-I000001
但し、(1)式中のnは1~100の数を表し、Xはアンモニア又は下記一般式(2)で表されるトリアジン誘導体であり、pは、0<p≦n+2の関係を満たす数である。
Figure JPOXMLDOC01-appb-I000002
但し、(2)式中のZ及びZは同一でも異なっていてもよく、-NR基〔ここでR及びRはそれぞれ独立に、水素原子、炭素原子数1~6の直鎖又は分岐のアルキル基もしくはメチロール基〕、水酸基、メルカプト基、炭素原子数1~10の直鎖又は分岐のアルキル基、炭素原子数1~10の直鎖又は分岐のアルコキシ基、フェニル基及びビニル基からなる群より選ばれる基である。
Figure JPOXMLDOC01-appb-I000003
但し、(3)式中のrは1~100の数を表し、Yは〔RN(CH)mNR〕、ピペラジン又はピペラジン環を含むジアミンであり、R、R、R及びRはそれぞれ、水素原子、炭素原子数1~5の直鎖又は分岐のアルキル基であり、R、R、R及びRは同一の基であっても異なってもよく、mは1~10の整数であり、qは0<q≦r+2の関係を満たす数である。
Figure JPOXMLDOC01-appb-I000004
但し、(4)式中のR、R、R10及びR11は、同一でも異なっていてもよく、炭素原子数1~10のアルキル基、又は下記一般式(5)で表される芳香族基を表す。Rは下記一般式(6)又は(7)で表される2価の芳香族基を表し、sは0~30の数である。
Figure JPOXMLDOC01-appb-I000005
但し、上記一般式中のA及びAは、各々独立に水素原子、ヒドロキシ基又は炭素原子数1~10のアルキル基を表す。A、A、A、A、A及びAは各々独立に水素原子、炭素原子数1~4のアルキル基、シクロアルキル基、アリール基、アルコキシ基、ニトロ基、ハロゲン原子又はシアノ基を表す。Gは直接結合、2価のイオウ原子、スルホン基又は炭素原子数1~5のアルキリデン基もしくはアルキレン基を表す。
 本発明の難燃性熱可塑性樹脂組成物には、更に(F)成分として、酸化亜鉛を含有させることが好ましく、前記(C)成分として、前記一般式(1)におけるnが2、pが2、Xがメラミン(前記一般式(2)におけるZ及びZが-NH)であるピロリン酸メラミンを用いることが好ましい。
 更に、本発明においては、前記(D)成分として、前記一般式(3)におけるqが1、Yがピペラジンであるポリリン酸ピペラジンを用いることが好ましく、特に、ピロリン酸ピペラジンを用いることが好ましい。
 また本発明で使用する前記(B)成分であるエチレン系共重合体としては、エチレン-酢酸ビニル共重合体を使用することが好ましい。
 本発明の難燃性熱可塑性樹脂組成物は、相溶性、分散性、加工性及び難燃性に優れた、熱可塑性ポリウレタンエラストマーとエチレン系共重合体を主成分とする熱可塑性樹脂組成物であるので、特に電線又はケーブルの被覆材料として好適である。
実施例1の相溶性試験のSEM写真対応図である 比較例1の相溶性試験のSEM写真対応図である 実施例2の相溶性試験のSEM写真対応図である 比較例2の相溶性試験のSEM写真対応図である
 以下、本発明の難燃性熱可塑性樹脂組成物について詳述する。
 本発明の熱可塑性樹脂組成物で用いる(A)成分の熱可塑性ポリウレタン系エラストマー(TPU)は、一般に、ポリオール、ジイソシアネート、及び鎖延長剤を用いて調製される。ポリオールとしては、ポリエステルポリオール、ポリエステルエーテルポリオール、ポリカーボネートポリオール及びポリエーテルポリオールが挙げられる。
 ここで、ポリエステルポリオールとしては、脂肪族ジカルボン酸、例えば、コハク酸、アジピン酸、セバシン酸、及びアゼライン酸等;芳香族ジカルボン酸、例えば、フタル酸、テレフタル酸、イソフタル酸、及びナフタレンジカルボン酸等;脂環族ジカルボン酸、例えば、ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸、及びヘキサヒドロイソフタル酸等;又は、これらの酸エステルもしくは酸無水物;の中から選択された少なくとも1種と、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,3-オクタンジオール、1,9-ノナンジオール等、の中から選択された少なくとも1種との、エステル化反応で得られるポリエステルポリオール;及びε-カプロラクトン等のラクトンモノマーの開環重合で得られるポリラクトンジオール等が挙げられる。
 前記ポリエステルエーテルポリオールとしては、脂肪族ジカルボン酸、例えば、コハク酸、アジピン酸、セバシン酸、及びアゼライン酸等;芳香族ジカルボン酸、例えば、フタル酸、テレフタル酸、イソフタル酸、及びナフタレンジカルボン酸等;脂環族ジカルボン酸、例えば、ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸、及びヘキサヒドロイソフタル酸等;又はこれらの酸エステルもしくは酸無水物;の中から選択された少なくとも1種と、ジエチレングリコール又はプロピレンオキサイド付加物等のグリコール等、の中から選択された少なくとも1種との、エステル化反応で得られる化合物等が挙げられる。
 更に、前記ポリカーボネートポリオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、ジエチレングリコール等の多価アルコールの1種又は2種以上と、ジエチレンカーボネート、ジメチルカーボネート、又はジエチルカーボネート等とを反応させて得られるポリカーボネートポリオールが挙げられる。
 また、ポリカプロラクトンポリオール(PCL)とポリヘキサメチレンカーボネート(PHL)との共重合体であっても良い。
 また、前記ポリエーテルポリオールとしては、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等の環状エーテルをそれぞれ重合させて得られるポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等、及び、これらのコポリエーテルが挙げられる。
 前記ジイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)、1,5-ナフチレンジイソシアネート(NDI)、トリジンジイソシネート、1,6-ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)、水添XDI、トリイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネートメチルオクタン、リジンエステルトリイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、ジシクロヘキシルメタンジイソシアネート(水素添加MDI;HMDI)等が挙げられる。本発明においては、これらの中でも、4,4’-ジフェニルメタンジイソシアネート(MDI)及び1,6-ヘキサメチレンジイソシアネート(HDI)が好ましく用いられる。
 熱可塑性ポリウレタン系エラストマー(TPU)の調製に使用される前記鎖延長剤としては、低分子量ポリオールが使用される。この低分子量ポリオールとしては、例えば、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、グリセリン等の脂肪族ポリオール、及び、1,4-ジメチロールベンゼン、ビスフェノールA、並びにビスフェノールAのエチレンオキサイド又はプロピレンオキサイド付加物等の、芳香族グリコールが挙げられる。
 エステル(ラクトン)系ポリウレタン共重合体の具体的な市販品としては、エラストランC80A10(BASFジャパン(株)製)、エラストランC80A50(BASFジャパン(株)製)、レザミンP-4000シリーズ(大日精化工業(株)製)、レザミンP-4500シリーズ(大日精化工業(株)製)等;エステル(アジペート)系ポリウレタン共重合体の具体的な市販品としては、パンデックスT-5000V(ディーアイシーバイエルポリマー(株)製)、パンデックスTR-3080(ディーアイシーバイエルポリマー(株)製)、レザミンP-1000シリーズ(大日精化工業(株)製)、レザミンP-7000シリーズ(大日精化工業(株)製)等;エーテル系ポリウレタン共重合体の具体的な市販品としては、エラストラン1180A50(BASFジャパン(株)製)、パンデックスT-8180(ディーアイシーバイエルポリマー(株)製)、パンデックスT-8283(ディーアイシーバイエルポリマー(株)製)、パンデックスT-1190(ディーアイシーバイエルポリマー社製)、レザミンP-2000シリーズ(大日精化工業(株)製)等;カーボネート系ポリウレタン共重合体の具体的な市販品としては、パンデックスT-7890N(ディーアイシーバイエルポリマー(株)製)等;エーテル・エステル系ポリウレタン共重合体の具体的な市販品としては、デスモパンDesKU2-88586(ディーアイシーバイエルポリマー(株)製)、レザミンP-800シリーズ(大日精化工業(株)製)等が挙げられる。
 これらの熱可塑性ポリウレタン系エラストマー(TPU)は、単独で用いても、組み合わせて用いてもよい。
 (A)成分の配合量は、(A)成分及び(B)成分の合計を100質量%として、5~80質量%であることが好ましく、より好ましくは10~60質量%であり、最も好ましくは20~40質量%である。配合量が5質量%未満では、熱可塑性ポリウレタン系エラストマーの特徴である耐傷性及び機械強度が不十分なものとなる傾向があり、80質量%を超えると、相溶性、加工性及び樹脂の表面性の点で不十分なものとなる傾向がある。
 次に、本発明の熱可塑性樹脂組成物における(B)成分である、エチレン重合体及び/又はエチレン系共重合体について説明する。
 本発明で使用する(B)成分であるエチレン重合体は、エチレンが重合した構造を持つ高分子であり、具体例としては、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン(LLDPE)などが挙げられる。
 本発明で使用する(B)成分であるエチレン系共重合体としては、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体等のエチレン系共重合体を挙げることができる。また、エチレン-酢酸ビニル共重合体を公知の方法によってケン化し、あるいは、エチレン、酢酸ビニル、ビニルアルコールを公知の方法によりグラフト化することによって得られる、エチレン-酢酸ビニル-ビニルアルコール共重合体、エチレン-ビニルアルコール共重合体等も使用することができる。
 上記した(B)成分として使用するエチレン重合体及びエチレン系共重合体の中でも、分散性の観点や、熱可塑性ポリウレタンエラストマーと混合した場合に顕著な耐油性の向上が得られるという観点から、本発明においては、エチレン-酢酸ビニル共重合体を使用することが好ましい。またエチレン-酢酸ビニル共重合体における酢酸ビニルの含有量は、25~85質量%(10~65モル%)であることが好ましく、更に好ましくは約30~85質量%(12~65モル%)、最も好ましくは約40~85質量%(18~65モル%)である。酢酸ビニル含有量を25質量%より高くする事によって力学的強度を保つことが出来、これによって、耐油性や難燃特性を維持することが可能となる。本発明においては、これらのエチレン重合体及びエチレン系共重合体を、それぞれ単独で使用しても、2種以上を併用しても良い。
 本発明で使用するエチレン重合体及び/またはエチレン系共重合体の、分子量、密度、軟化点、溶媒への不溶分の割合、立体規則性の程度、触媒残渣の有無、原料となる単量体の種類や配合比率、重合触媒の種類等は、適宜選択すればよい。
 (B)成分の配合量は、(A)成分及び(B)成分の合計を100質量%として、20~95質量%であることが好ましく、より好ましくは40~90質量%であり、最も好ましくは60~80質量%である。配合量が20質量%未満では、相溶性、加工性、樹脂の表面性の点で不満足なものとなる傾向があり、95質量%を超えると、耐傷性や機械強度のみならず、相溶性、加工性、及び樹脂の表面性の点で不満足なものとなる傾向がある。
 次に、本発明の難燃性熱可塑性樹脂組成物に使用する(C)成分と(D)成分について説明する。
 (C)成分と(D)成分は難燃剤成分であり、本発明の難燃性熱可塑性樹脂組成物の燃焼時に、表面膨張層(Intumescent)を形成して難燃性を発現する成分である。
 本発明の難燃性熱可塑性樹脂組成物において(C)成分として用いられる下記一般式(1)で表される(ポリ)リン酸塩化合物は、リン酸とアンモニアまたはトリアジン誘導体との塩である。
Figure JPOXMLDOC01-appb-I000006
但し、(1)式中のnは1~100の数を表し、Xはアンモニアまたは下記一般式(2)で表されるトリアジン誘導体であり、pは、0<p≦n+2を満たす数である。
Figure JPOXMLDOC01-appb-I000007
但し、(2)式中のZ及びZは同一でも異なっていてもよく、-NR基〔ここでR及びRはそれぞれ独立に、水素原子、炭素原子数1~6の直鎖又は分岐のアルキル基もしくはメチロール基〕、水酸基、メルカプト基、炭素原子数1~10の直鎖又は分岐のアルキル基、炭素原子数1~10の直鎖又は分岐のアルコキシ基、フェニル基及びビニル基からなる群より選ばれる基である。
 上記一般式(2)における、Z及びZで表される炭素原子数1~10の直鎖又は分岐のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、イソブチル、アミル、イソアミル、第三アミル、ヘキシル、シクロヘキシル、ヘプチル、イソヘプチル、第三ヘプチル、n-オクチル、イソオクチル、第三オクチル、2-エチルヘキシル、ノニル、デシル等が挙げられ、炭素原子数1~10の直鎖又は分岐のアルコキシ基としては、これらアルキル基から誘導される基が挙げられる。
 前記トリアジン誘導体の具体的な例としては、メラミン、アセトグアナミン、ベンゾグアナミン、アクリルグアナミン、2,4-ジアミノ-6-ノニル-1,3,5-トリアジン、2,4-ジアミノ-6-ハイドロキシ-1,3,5-トリアジン、2-アミノ-4,6-ジハイドロキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-エトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-プロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-イソプロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メルカプト-1,3,5-トリアジン、2-アミノ-4,6-ジメルカプト-1,3,5-トリアジン等が挙げられる。
 本発明において(C)成分として好ましく使用される(ポリ)リン酸塩化合物としては、リン酸とメラミンとの塩、又はポリリン酸アンモニウム化合物が挙げられる。好ましく使用されるリン酸とメラミンとの塩としては、例えば、オルトリン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン等が挙げられる。本発明においては、これらの中でも前記一般式(1)におけるnが2、pが2、Xがメラミンであるピロリン酸メラミンを使用することが特に好ましい。
 上記リン酸とメラミンとの塩は次の方法によって得ることができる。例えばピロリン酸メラミンの場合には、任意の反応比率のピロリン酸ナトリウムとメラミン混合物に塩酸を加えて反応させ、水酸化ナトリウムで中和してピロリン酸メラミンを得る。
 また、前記ポリリン酸アンモニウム化合物は、ポリリン酸アンモニウム単体若しくはポリリン酸アンモニウムを主成分とする化合物である。このポリリン酸アンモニウム単体としては、市販品を使用することができる。市販品としては、クラリアント社製のエキソリット-422、エキソリット-700、モンサント社製のフォスチェク-P/30、フォスチェク-P/40、住友化学(株)製のスミセーフ-P、チッソ(株)製のテラージュ-S10、テラージュ-S20等を挙げることができる。
 本発明においては、ポリリン酸アンモニウムを主成分とする化合物を使用することもできる。このような化合物としては、ポリリン酸アンモニウムを熱硬化性樹脂で被覆若しくはマイクロカプセル化したものや、メラミンモノマーや他の含窒素有機化合物等でポリリン酸アンモニウム表面を被覆したもの、界面活性剤やシリコン処理を行ったものの他、ポリリン酸アンモニウムを製造する過程でメラミン等を添加して難溶化したもの等が挙げられる。
 上記のポリリン酸アンモニウムを主成分とする化合物の市販品としては、クラリアント社製のエキソリット-462、住友化学(株)製のスミセーフ-PM、チッソ(株)製のテラージュ-C60、テラージュ-C70、テラージュ-C80等が挙げられる。
 本発明の難燃性熱可塑性樹脂組成物における(D)成分として用いられる下記一般式(3)で表される(ポリ)リン酸塩化合物は、リン酸とジアミンまたはピペラジンとの塩である。
Figure JPOXMLDOC01-appb-I000008
但し、(3)式中のrは1~100を表し、Yは〔RN(CH)mNR〕、ピペラジンまたはピペラジン環を含むジアミンであり、R、R、R及びRは、それぞれ水素原子、炭素原子数1~5の直鎖又は分岐のアルキル基であり、R、R、R及びRは同一の基であっても異なってもよく、mは1~10の整数であり、qは、0<q≦r+2を満足する数である。
 上記一般式(3)におけるYで表されるジアミンの具体例としては、N,N,N’,N’-テトラメチルジアミノメタン、エチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-ジエチルエチレンジアミン、テトラメチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1、7-ジアミノへプタン、1,8-ジアミノオクタン、1,9ージアミノノナン、1,10-ジアミノデカン、ピペラジン、trans-2,5-ジメチルピペラジン、1,4-ビス(2-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン等が挙げられ、全て、市販品を用いることができる。
 (D)成分として好ましく使用される(ポリ)リン酸塩化合物としては、リン酸とピペラジンとの塩が挙げられる。リン酸とピペラジンとの塩としては、具体的には、オルトリン酸ピペラジン、ピロリン酸ピペラジン、ポリリン酸ピペラジン等が挙げられる。本発明においては、これらの中でも、上記一般式(3)におけるqが1、Yがピペラジンであるポリリン酸ピペラジン、特にピロリン酸ピペラジンを使用することが好ましい。
 リン酸とピペラジンの塩は、公知の方法によって得ることができる。例えばピロリン酸ピペラジンの場合には、ピペラジンとピロリン酸とを水中又はメタノール水溶液中で反応させ、水難溶性の沈殿として容易に得ることができる。ただし、ポリリン酸ピペラジンの場合には、オルトリン酸、ピロリン酸、トリポリリン酸、その他のポリリン酸の混合物からなるポリリン酸とピペラジンとから得られた塩でもよく、原料のポリリン酸の構成は特に限定されるものではない。
 上記(C)成分の配合量は、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、好ましくは5~60質量部、さらに好ましくは10~35質量部である。一方(D)成分の配合量は、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、好ましくは10~90質量部、さらに好ましくは15~50質量部である。
 難燃剤成分である上記(C)成分と(D)成分との合計配合量は、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、好ましくは15~150質量部、さらに好ましくは25~85質量部である。15質量部未満では十分な難燃化効果が得られない場合があり、150質量部を超えて配合すると、樹脂としての特性を低下させる場合がある。また、上記(C)成分と上記(D)成分との配合比率(質量基準)は、(C)/(D)=20/80~50/50であることが好ましく、(C)/(D)=30/70~50/50であることが更に好ましい。
 次に、本発明の難燃性熱可塑性組成物の(E)成分のリン酸エステル化合物について説明する。
 本発明で使用する(E)成分は、本発明で使用する(A)成分の熱可塑性ポリウレタンエラストマーと(B)成分のエチレン系共重合体の相溶性を改良し、更に(C)成分と(D)成分のみならず、他の添加成分の組成物中における相溶性と分散性を改良する相溶化剤・分散剤として働く成分である。
(E)成分の縮合リン酸エステルは、下記一般式(4)で表される。
Figure JPOXMLDOC01-appb-I000009
但し、(4)式中のR、R、R10及びR11は、同一でも異なっていてもよく、炭素原子数1~10のアルキル基、又は下記一般式(5)で表される芳香族基を表す。Rは下記一般式(6)又は(7)で表される2価の芳香族基を表し、sは0~30の数を表す。
Figure JPOXMLDOC01-appb-I000010
但し、(5)式中のA及びAは、各々独立に水素原子、ヒドロキシ基又は炭素原子数1~10のアルキル基を表し、(6)式及び(7)式中のA、A、A、A、A及びAは、各々独立に水素原子、炭素原子数1~4のアルキル基、シクロアルキル基、アリール基、アルコキシ基、ニトロ基、ハロゲン原子又はシアノ基を表す。Gは直接結合、2価のイオウ原子、スルホン基又は炭素原子数1~5のアルキリデン基もしくはアルキレン基を表す。
 上記一般式(4)~(7)におけるR、R、R10、R11、A、Aで表される炭素原子数1~10のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、第2ブチル、第3ブチル、アミル、第3アミル、ヘキシル、2-エチルヘキシル、n-オクチル、ノニル、デシル等が挙げられる。A、A、A、A、A及びAで表される炭素原子数1~4のアルキル基としては、メチル、エチル、プロピル、ブチル、イソブチル、第2ブチル、第3ブチル等が挙げられ、シクロアルキル基としてはシクロヘキシル等が挙げられる。アリール基としては、フェニル、クレジル、キシリル、2,6-キシリル、2,4,6-トリメチルフェニル、ブチルフェニル、ノニルフェニル等が挙げられる。アルコキシ基としては、メトキシ、エトキシ、プロポキシ、ブトキシ等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられる。また、一般式(5)で表される芳香族基としては、フェニル、クレジル、キシリル、2,6-キシリル、ブチルフェニル、ノニルフェニル等が挙げられる。Gで表される炭素原子数1~5のアルキリデン基としては、エチリデン、イソプロピリデン等が挙げられ、炭素原子数1~5のアルキレン基としては、メチレン、エチレン、トリメチレン、テトラメチレン等が挙げられる。
 また、(E)成分であるリン酸エステル化合物を表す、上記一般式(4)におけるsは0~30であり、好ましくは1~10である。
 本発明の難燃性熱可塑性樹脂組成物において(E)成分として使用されるリン酸エステル化合物の具体例としては、下記化合物No.1~6の化合物が挙げられ、特に相溶性・分散性の向上効果が高いことから、本発明においては化合物No.2の化合物を使用することが好ましい。
Figure JPOXMLDOC01-appb-I000011
 
Figure JPOXMLDOC01-appb-I000012
 これらのリン酸エステル化合物は単独で使用しても、2種以上を併用してもよい。本発明の難燃性熱可塑性樹脂組成物における(E)成分の配合量は、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、好ましくは0.01~15質量部、より好ましくは0.1~10質量部、最も好ましくは0.5~5質量部である。0.01質量部未満では、相溶性や分散性の向上効果が得られないことがあり、15質量部以上では、経済的に不利となる場合がある。
 本発明の難燃性熱可塑性樹脂組成物は、さらに(F)成分として、難燃助剤である、酸化亜鉛を含有することが好ましい。該酸化亜鉛は表面処理されていてもよい。本発明においては、市販されている酸化亜鉛を使用することができる。市販されている酸化亜鉛としては、例えば、酸化亜鉛1種(三井金属工業(株)製)、部分被膜型酸化亜鉛(三井金属工業(株)製)、ナノファイン50(平均粒径0.02μmの超微粒子酸化亜鉛:堺化学工業(株)製)、ナノファインK(平均粒径0.02μmの珪酸亜鉛被覆した超微粒子酸化亜鉛:堺化学工業(株)製)等があげられる。
(F)成分としての酸化亜鉛の配合量は、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、好ましくは0.01~10質量部、さらに好ましくは0.1~5質量部である。
 本発明の難燃性熱可塑性樹脂組成物は、(A)成分と(B)成分を主成分とする熱可塑性樹脂組成物に対し、(C)成分、(D)成分及び(E)成分を配合することを必須とするが、さらに(F)成分を含有することが好ましい。(C)~(F)成分を熱可塑性樹脂組成物に配合するタイミングは特に制限されることはない。例えば、予め、(C)~(F)成分の中から選択される2種以上をワンパック化して(A)成分と(B)成分を主成分とする熱可塑性樹脂組成物に配合しても、個々の成分を(A)成分と(B)成分を主成分とする熱可塑性樹脂組成物に対して配合してもよい。もちろん、(A)~(F)成分を各々配合して難燃性熱可塑性樹脂組成物としてもよい。
 ワンパック化する場合、各成分を各々粉砕してから混合しても、混合してから粉砕してもよい。
 また、本発明の難燃性熱可塑性樹脂組成物には、フッ素系のドリップ防止剤を配合してもよい。ただしこれらのフッ素系ドリップ防止剤を配合した場合には、樹脂のメルトフローレート(MFR)の低下を引き起こす傾向が顕著であるため、注意が必要である。
 上記フッ素系のドリップ防止剤の具体例としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等のフッ素系樹脂やパーフルオロメタンスルホン酸ナトリウム塩、パーフルオロ-n-ブタンスルホン酸カリウム塩、パーフルオロ-t-ブタンスルホン酸カリウム塩、パーフルオロオクタンスルホン酸ナトリウム塩、パーフルオロ-2-エチルヘキサンスルホン酸カルシウム塩等のパーフルオロアルカンスルホン酸アルカリ金属塩化合物またはパーフルオロアルカンスルホン酸アルカリ土類金属塩等が挙げられる。これらは単独で使用しても、2種類以上を混合して用いることできる。また同様に、その他のドリップ防止剤としてシリコンゴム類を配合することも可能である。
 本発明の難燃性熱可塑性樹脂組成物には、配合時における二次凝集の抑制や耐水性を改良するためにシリコーンオイルを配合してもよく、このようなシリコーンオイルとしては、特にメチルポリシロキサン構造を有するシリコーンオイルを使用することが好ましい。
 メチルポリシロキサン構造のシリコーンオイルには、ジメチルポリシロキサン構造のみからなるものと、ジメチルポリシロキサン構造とメチルハイドロジェンポリシロキサン構造の両者を含む構造からなるものと、メチルハイドロジェンポリシロキサン構造のみからなるものがあげられる。また、上記シリコーンオイルは、エポキシ変性、カルボキシル変性、カルビノール変性及び/又はアミノ変性されたものでもよい。
 上記シリコーンオイルの具体例をあげると、メチルハイドロジェン構造が100%のものとしては、KF-99(信越化学(株)製)、一部がメチルハイドロジェン構造のものとしては、HMS-151(Gelest社製)、HMS-071(Gelest社製)、HMS-301(Gelest社製)、DMS-H21(Gelest社製)などがあり、エポキシ変性品としては、例えば、X-22-2000(信越化学(株)製)、KF-102(信越化学(株)製)、カルボキシル変性品としては、例えば、X-22-4015(信越化学(株)製)、カルビノール変性品としては、例えば、X-22-4015(信越化学(株)製)、アミノ変性品としては、例えば、KF-393(信越化学(株)製)などがあげられる。
 本発明の難燃性熱可塑性樹脂組成物には、樹脂成分として、(A)成分と(B)成分以外の合成樹脂を配合してもよい。このような合成樹脂の例としては、ポリプロピレン、ポリブテン、ポリ-3-メチルペンテン等のα-オレフィン重合体及びこれらの共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂、石油樹脂、クマロン樹脂、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、スチレン及び/又はα-メチルスチレンと他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、AS樹脂、ABS樹脂、MBS樹脂、耐熱ABS樹脂等)、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール、ポリエチレンテレフタレート及びポリブチレンテレフタレート等の直鎖ポリエステル、ポリフェニレンオキサイド、ポリカプロラクタム及びポリヘキサメチレンアジパミド等のポリアミド、ポリカーボネート、ポリカーボネート/ABS樹脂、分岐ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂等の熱可塑性樹脂及びこれらのブレンド物あるいはフェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂を挙げることができる。さらに、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム等のエラストマーであってもよい。
 さらに本発明の難燃性熱可塑性樹脂組成物には、必要に応じて、滑剤を配合することも好ましい。
 このような滑剤としては、流動パラフィン、天然パラフィン、マイクロワックス、合成パラフィン、低分子量ポリエチレン等の純炭化水素系滑剤;ハロゲン化炭化水素系滑剤;高級脂肪酸、オキシ脂肪酸等の脂肪酸系滑剤;脂肪酸アミド、ビス脂肪酸アミド等の脂肪酸アミド系滑剤;脂肪酸の低級アルコールエステル、グリセリド等の脂肪酸の多価アルコールエステル、脂肪酸のポリグリコールエステル、脂肪酸の脂肪アルコールエステル(エステルワックス)等のエステル系滑剤;金属石鹸、脂肪アルコール、多価アルコール、ポリグリコール、ポリグリセロール、脂肪酸と多価アルコールの部分エステル、脂肪酸とポリグリコール、ポリグリセロールの部分エステル系の滑剤や、(メタ)アクリル酸エステル系共重合体、シリコーンオイル等が挙げられる。
 滑剤の好ましい配合量は、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、0.01~5質量部、好ましくは、0.1~1質量部である。
 本発明の難燃性熱可塑性樹脂組成物は、必要に応じて、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤等を添加することにより安定化することが好ましい。
上記フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6―ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス〔3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル〕メタン、チオジエチレングリコールビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらは、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、0.001~10質量部、好ましくは、0.05~5質量部用いられる。
 前記リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。これらは、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、0.001~10質量部、好ましくは、0.05~5質量部用いられる。
 前記チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、及びペンタエリスリトールテトラ(β-アルキルメルカプトプロピオン酸エステル類が挙げられる。これらは、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、0.001~10質量部、好ましくは、0.05~5質量部用いられる。
 前記紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-第三オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ第三アミルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β,β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。これらは、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、0.001~30質量部、好ましくは、0.05~10質量部用いられる。
 上記ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン等のヒンダードアミン化合物が挙げられる。これらは、(A)成分及び(B)成分を主成分とする熱可塑性樹脂組成物100質量部に対して、0.001~30質量部、好ましくは、0.05~10質量部用いられる。
 本発明の難燃性熱可塑性樹脂組成物には、本発明の効果を損なわない範囲で、必要に応じてp-第三ブチル安息香酸アルミニウム、芳香族リン酸エステル金属塩、ジベンジリデンソルビトール類等の造核剤、帯電防止剤、金属石鹸、ハイドロタルサイト、トリアジン環含有化合物、金属水酸化物、無機リン系難燃剤、シリコン系難燃剤、その他の無機系難燃助剤、その他の有機系難燃剤、充填剤、顔料、発泡剤等を添加してもよい。
 上記トリアジン環含有化合物としては、例えば、メラミン、アンメリン、ベンズグアナミン、アセトグアナミン、フタロジグアナミン、メラミンシアヌレート、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3-ヘキシレンジメラミン等が挙げられる。
 前記金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化バリウム、水酸化亜鉛、キスマー5A(水酸化マグネシウム:協和化学工業(株)製)等が挙げられる。
 前記、その他の無機系難燃助剤としては、例えば、酸化チタン、酸化アルミニウム、酸化マグネシウム、ハイドロタルサイトなどの無機化合物、およびその表面処理品が挙げられ、例えば、TIPAQUE
R-680(酸化チタン:石原産業(株)製)、キョーワマグ150(酸化マグネシウム:協和化学工業(株)製)、DHT-4A(ハイドロタルサイト:協和化学工業(株)製)、アルカマイザー4(亜鉛変性ハイドロタルサイト:協和化学工業(株)製)、などの種々の市販品を用いることができる。
 前記、その他の有機系難燃助剤としては、例えばペンタエリスリトールがあげられる。その他、本発明の難燃性熱可塑性樹脂組成物には、必要に応じて通常合成樹脂に使用される添加剤、例えば、架橋剤、帯電防止剤、防曇剤、プレートアウト防止剤、表面処理剤、可塑剤、滑剤、難燃剤、蛍光剤、防黴剤、殺菌剤、発泡剤、金属不活性剤、離型剤、顔料、加工助剤、酸化防止剤、光安定剤等を、本発明の効果を損なわない範囲で、配合することができる。
 本発明の難燃性熱可塑性樹脂組成物を公知の方法によって成形することにより、難燃性合成樹脂成形体を得ることができる。成形方法は特に限定されるものではなく、押し出し加工成形、カレンダー加工成形、射出成形、ロール成形、圧縮成形、ブロー成形等を例示することができる。これらの成型方法によって、樹脂板、シート、フィルム、異形品等の、種々の形状の成形品を製造することができる。
 又、本発明の難燃性熱可塑性樹脂組成物及びその成形体は、電気・電子・通信、農林水産、鉱業、建設、食品、繊維、衣類、医療、石炭、石油、ゴム、皮革、自動車、精密機器、木材、建材、土木、家具、印刷、楽器等の幅広い産業分野に使用することができる。より具体的には、プリンター、パソコン、ワープロ、キーボード、PDA(小型情報端末機)、電話機、複写機、ファクシミリ、ECR(電子式金銭登録機)、電卓、電子手帳、カード、ホルダー、文具等の事務、OA機器、洗濯機、冷蔵庫、掃除機、電子レンジ、照明器具、ゲーム機、アイロン、コタツ等の家電機器、TV、VTR、ビデオカメラ、ラジカセ、テープレコーダー、ミニディスク、CDプレーヤー、スピーカー、液晶ディスプレー等のAV機器、コネクター、リレー、コンデンサー、スイッチ、プリント基板、コイルボビン、半導体封止材料、LED封止材料、電線、ケーブル、トランス、偏向ヨーク、分電盤、時計等の電気・電子部品及び通信機器等の用途に用いられる。
 更に、本発明の難燃性熱可塑性樹脂組成物及びその成形体は、座席(詰物、表地等)、ベルト、天井張り、コンパーチブルトップ、アームレスト、ドアトリム、リアパッケージトレイ、カーペット、マット、サンバイザー、ホイルカバー、マットレスカバー、エアバック、絶縁材、吊り手、吊り手帯、電線被覆材、電気絶縁材、塗料、コーティング材、上張り材、床材、隅壁、カーペット、壁紙、壁装材、外装材、内装材、屋根材、デッキ材、壁材、柱材、敷板、塀の材料、骨組及び繰形、窓及びドア形材、こけら板、羽目、テラス、バルコニー、防音板、断熱板、窓材等の、自動車、車両、船舶、航空機、建物、住宅及び建築用材料や、土木材料、衣料、カーテン、シーツ、合板、合繊板、絨毯、玄関マット、シート、バケツ、ホース、容器、眼鏡、鞄、ケース、ゴーグル、スキー板、ラケット、テント、楽器等の生活用品、スポーツ用品、等の各種用途に使用される。
 これらの用途の中でも、特に、ノンハロゲンの電線、電線被覆材、ケーブル等の用途に適している。ハロゲンを使用しないので、廃棄が従来より容易になるという利点がある。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらによって何ら制限されるものではない。なお、表1の配合は、すべて質量部基準である。
〔実施例1~ 及び比較例1~〕
 熱可塑性ポリウレタン系エラストマー(大日精化工業(株)製:レザミンP-1078F)20質量部及びエチレン-酢酸ビニル共重合体(東ソー(株)製:ウルトラセン635)40質量部に、ステアリン酸カルシウム(滑剤)0.1質量部、テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル]メタン(フェノール系酸化防止剤)0.1質量部、トリス(2,4-ジ-第三ブチルフェニル)ホスファイト(リン系酸化防止剤)0.1質量部、グリセリンモノステアレート(滑剤)(理研ビタミン(株)製:S-100)0.3質量部、及びシリコーンオイル(滑剤)(信越化学工業((株):KF-96)を配合して得られた熱可塑性樹脂組成物と、下記表1に記載した成分を配合した。次いで、下記の加工条件で押し出してペレットを製造し、これを使用して190℃で射出成型し、1.6mm×12.7mm×127mmの難燃性試験用試験片とし、相溶性を評価するための電子顕微鏡(SEM)用試験片を得た。
 上記試験片の調製時に使用したエチレン-酢酸ビニル共重合体の替わりに、低密度ポリエチレン(日本ユニカー(株)製:PES-120)40質量部を用い、同様にして、試験片を得た。
 得られた各試験片について、下記条件で加工性試験、難燃性試験、及び相溶性試験を行って評価した。結果を表1に示す。
<加工性試験条件>
押し出し機:ラボプラストミル押出機(東洋精機(株)製)
温度:190℃
スクリュー:コニカル(二軸)
回転数:75rpm
ダイス:1mm×19mm
フィード:70~85g/分
<加工性試験評価>
加工性の評価は、上記押し出し加工時のストランドの表面を目視で確認し、以下の基準で評価することによって行った。
○:ストランドの表面が滑らかで、平滑性に優れる。
△:ストランドの表面に、少し凹凸が見られる。
×:ストランドの表面に、凹凸があり、平滑でない。
<難燃性UL-94V試験方法>
 長さ127mm、幅12.7mm、厚さ1.6mmの試験片を垂直に保ち、下端にバーナーの火を10秒間接炎させた後で炎を取り除き、試験片に着火した火が消えるまでの時間を測定した。次に、火が消えると同時に2回目の接炎を10秒間行ない、1回目と同様にして着火した火が消えるまでの時間を測定した。また、落下する火種により試験片の下の綿が着火するか否かについても同時に評価した。
 1回目と2回目の燃焼時間、及び綿着火の有無等から、UL-94V規格にしたがって燃焼ランクをつけた。燃焼ランクはV-0が最高のものであり、V-1、V-2となるにしたがって難燃性は低下する。但し、V-0~V-2のランクの何れにも該当しないものはNRとした。
<相溶性試験>
 電子顕微鏡(日本電子(株)製:JSM-6390LA)を用いて試験片の断面を確認した。断面の写真を図1~4に示す。
 その写真から相溶性を以下の基準で判定した。
○:相溶しており、相溶性・分散性に優れている。
△:やや非相溶の部分があり、相溶性・分散性にやや劣る。
×:非相溶であり、相溶性・分散性に劣る。
 また、表1に記載した(C)成分と(D)成分は、以下の方法で製造した。
〔製造例1〕
(C)成分:ピロリン酸メラミン
 ピロリン酸とメラミンを1:1で反応させて製造した。
〔製造例2〕
(D)成分:ピロリン酸ピペラジン
 ピロリン酸とピペラジンを1:1で反応させて製造した。
 表1に記載した(E)成分のリン酸エステル化合物としては、下記の、前記した化合物No.2を使用した。
化合物No.2
Figure JPOXMLDOC01-appb-I000013

 
Figure JPOXMLDOC01-appb-T000001
 
 本発明の実施例1と2は、UL-94V試験においてV-0を達成している上、加工性と相溶性、及び分散性に優れることが確認された。これに対し、比較例1及び2の場合にも、UL-94V試験においてV-0が達成されているが、加工性と相溶性、及び分散性には劣っていることが確認された。
 本発明の難燃性熱可塑性樹脂組成物は、機械的強度及び耐磨耗性に優れた熱可塑性ポリウレタンエラストマーと、エチレン系共重合体を主成分とする熱可塑性樹脂組成物からなるにもかかわらず、相溶性、分散性、加工性及び難燃性に優れているので、特に電線又はケーブルの被覆材料として好適である。また、ハロゲンを使用していないので環境適性にも優れており、産業上極めて有益である。
 
 

Claims (8)

  1.  (A)成分である熱可塑性ポリウレタン系エラストマー及び(B)成分であるエチレン重合体及び/またはエチレン系共重合体を主成分とする熱可塑性樹脂組成物に対して、下記、(C)成分、(D)成分及び(E)成分を配合してなることを特徴とする難燃性熱可塑性樹脂組成物;
    (C)成分:
    下記一般式(1)で表される(ポリ)リン酸塩化合物。
    Figure JPOXMLDOC01-appb-I000014
    但し、(1)式中のnは1~100の数を表し、Xはアンモニアまたは下記一般式(2)で表されるトリアジン誘導体であり、pは、0<p≦n+2を満たす数である。
    Figure JPOXMLDOC01-appb-I000015
    但し、(2)式中のZ及びZは同一でも異なっていてもよく、-NR基〔ここでR及びRはそれぞれ独立に、水素原子、炭素原子数1~6の直鎖又は分岐のアルキル基もしくはメチロール基〕、水酸基、メルカプト基、炭素原子数1~10の直鎖又は分岐のアルキル基、炭素原子数1~10の直鎖又は分岐のアルコキシ基、フェニル基及びビニル基からなる群より選ばれる基である。
    (D)成分:
    下記一般式(3)で表される(ポリ)リン酸塩化合物。
    Figure JPOXMLDOC01-appb-I000016
    但し、(3)式中のrは1~100を表し、Yは〔RN(CH)mNR〕、ピペラジンまたはピペラジン環を含むジアミンであり、R、R、R及びRは、それぞれ水素原子、炭素原子数1~5の直鎖又は分岐のアルキル基であり、R、R、R及びRは同一の基であっても異なってもよく、mは1~10の整数であり、qは、0<q≦r+2を満足する数である。
    (E)成分:
    下記一般式(4)で表されるリン酸エステル化合物。
    Figure JPOXMLDOC01-appb-I000017
    但し、(4)式中のR、R、R10及びR11は、同一でも異なっていてもよく、炭素原子数1~10のアルキル基、または下記一般式(5)で表される芳香族基を表す。Rは下記一般式(6)または(7)で表される2価の芳香族基を表し、sは0~30の数である
    Figure JPOXMLDOC01-appb-I000018
    但し、上式中のA及びAは各々独立に、水素原子、ヒドロキシ基または炭素原子数1~10のアルキル基を表す。A、A、A、A、A及びAは各々独立に、水素原子、炭素原子数1~4のアルキル基、シクロアルキル基、アリール基、アルコキシ基、ニトロ基、ハロゲン原子又はシアノ基を表す。Gは直接結合、2価のイオウ原子、スルホン基または炭素原子数1~5のアルキリデン基又はアルキレン基を表す。
  2.  (F)成分として、更に酸化亜鉛を配合してなる、請求項1に記載された難燃性熱可塑性樹脂組成物。
  3.  前記(C)成分として、前記一般式(1)におけるnが2、pが2、Xがメラミン(前記一般式(2)におけるZ及びZが-NH)であるピロリン酸メラミンを用いる、請求項1又は2に記載された難燃性熱可塑性樹脂組成物。
  4.  前記(D)成分として、前記一般式(3)におけるqが1、Yがピペラジンであるポリリン酸ピペラジンを用いる、請求項1~3の何れかに記載された難燃性熱可塑性樹脂組成物。
  5.  前記ポリリン酸ピペラジンがピロリン酸ピペラジンである、請求項4に記載された難燃性熱可塑性樹脂組成物。
  6.  前記(B)成分であるエチレン系共重合体がエチレン-酢酸ビニル共重合体である、請求項1~5の何れかに記載された、難燃性熱可塑性樹脂組成物。
  7.  前記(A)成分の配合量が、(A)成分及び(B)成分の合計100質量%中の5~80質量%である、請求項1~6の何れかに記載された難燃性熱可塑性樹脂組成物。
  8.  請求項1~7の何れかに記載された難燃性熱可塑性樹脂組成物を用いてなる、電線またはケーブル。
PCT/JP2009/003293 2008-08-01 2009-07-14 難燃性熱可塑性樹脂組成物 WO2010013400A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801298848A CN102112539B (zh) 2008-08-01 2009-07-14 阻燃热塑性树脂组合物
US13/056,781 US8735473B2 (en) 2008-08-01 2009-07-14 Flame-retardant thermoplastic resin composition
EP09802650.3A EP2311908B8 (en) 2008-08-01 2009-07-14 Flame-retardant thermoplastic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-200049 2008-08-01
JP2008200049A JP5344742B2 (ja) 2008-08-01 2008-08-01 難燃性熱可塑性樹脂組成物

Publications (1)

Publication Number Publication Date
WO2010013400A1 true WO2010013400A1 (ja) 2010-02-04

Family

ID=41610116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003293 WO2010013400A1 (ja) 2008-08-01 2009-07-14 難燃性熱可塑性樹脂組成物

Country Status (6)

Country Link
US (1) US8735473B2 (ja)
EP (1) EP2311908B8 (ja)
JP (1) JP5344742B2 (ja)
KR (1) KR101584832B1 (ja)
CN (1) CN102112539B (ja)
WO (1) WO2010013400A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147068A1 (en) * 2010-05-24 2011-12-01 Dow Global Technologies Llc HALOGEN-FREE, FLAME RETARDANT COMPOSITION COMPRISING CROSSLINKED SILANE-g-EVA
US8249379B2 (en) 2008-12-22 2012-08-21 Mitsubishi Electric Corporation Image processing apparatus and method and image display apparatus
US20120316269A1 (en) * 2011-06-10 2012-12-13 Advachem Sa Method of manufacturing of flame retardant panels
US20120316268A1 (en) * 2011-06-10 2012-12-13 Advachem Sa Method of reducing the emission of formaldehyde from formaldehyde laden wood products
CN103298884A (zh) * 2010-11-16 2013-09-11 路博润高级材料公司 非卤素阻燃热塑性聚氨酯
CN104540924A (zh) * 2012-06-18 2015-04-22 路博润先进材料公司 具有非常高loi的无卤素阻燃tpu
KR20160149196A (ko) 2014-04-25 2016-12-27 가부시키가이샤 아데카 난연성 열가소성 폴리우레탄 엘라스토머 조성물
US10099455B1 (en) * 2011-05-02 2018-10-16 Polymeric Ireland, LTD Multifaceted coating system

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5536205B2 (ja) * 2009-06-26 2014-07-02 ダウ グローバル テクノロジーズ エルエルシー エポキシ化ノボラックを含む熱可塑性組成物
US8987597B2 (en) * 2009-07-31 2015-03-24 Dow Global Technologies Llc Flame retardant thermoplastic elastomer
CN103154137A (zh) * 2010-06-16 2013-06-12 联合碳化化学及塑料技术有限责任公司 具有改善的应变发白和刮擦发白性能的聚氨酯/聚烯烃共混物
JP5616197B2 (ja) * 2010-11-12 2014-10-29 アイカ工業株式会社 難燃性水性樹脂組成物
CN104487513B (zh) * 2012-07-27 2018-09-11 巴斯夫欧洲公司 基于金属氢氧化物和聚酯醇的阻燃热塑性聚氨酯
TWI644975B (zh) * 2012-09-21 2018-12-21 日商Adeka股份有限公司 聚胺基甲酸酯樹脂水分散液、使用它之難燃性聚酯系纖維、及該纖維之製造方法
JP5742034B2 (ja) * 2012-11-19 2015-07-01 日立金属株式会社 ノンハロゲン多層絶縁電線
EP2933311B1 (en) * 2012-12-17 2019-06-19 Adeka Corporation Flame retardant composition and flame-retardant synthetic resin composition
CN103113705A (zh) * 2013-02-01 2013-05-22 广东聚石化学股份有限公司 一种透明耐寒阻燃聚丙烯材料及其制备方法
BR112016005630B1 (pt) * 2013-10-02 2021-09-21 Dow Global Technologies Llc Composição polimérica, revestimento para um fio ou cabo e fio ou cabo
AT515261A1 (de) * 2014-01-14 2015-07-15 Holcim Technology Ltd Verfahren zur Verbesserung der Mahleffizienz von Petrolkoks
EP3130641B1 (en) * 2014-04-07 2018-10-24 Kaneka Corporation Thermoplastic polyurethane resin composition, conductor covering material, and manufacturing method of these
CN103932543B (zh) * 2014-04-17 2015-11-25 宁波东方席业有限公司 一种阻燃席子及其制备方法
CN103992293A (zh) * 2014-05-07 2014-08-20 金发科技股份有限公司 一种无卤阻燃剂的制备方法及其阻燃聚烯烃组合物
JP6448370B2 (ja) * 2015-01-08 2019-01-09 株式会社Adeka 難燃剤組成物及び難燃性合成樹脂組成物
CN105037678B (zh) * 2015-06-26 2019-02-01 西安理工大学 一种耐热性聚氨酯弹性体及其制备方法
CN105280288A (zh) * 2015-10-21 2016-01-27 上犹县龙泰塑料制品有限公司 溴系阻燃填充绳及其制作方法
CN105237712A (zh) * 2015-11-12 2016-01-13 淄博德信联邦化学工业有限公司 聚氨酯护目镜及其制备方法
US10738159B2 (en) * 2016-03-14 2020-08-11 Adeka Corporation Flame retardant thermoplastic polyurethane resin composition
FR3062390B1 (fr) * 2017-01-27 2020-11-06 Arkema France Compositions thermoplastiques souples a haute tenue thermomecanique et ignifugees a vieillissement thermique ameliore
EP3612589A4 (en) * 2017-04-19 2021-01-13 Fine Organic Industries Ltd. GLYCEROL DERIVATIVE FOR POLYMER APPLICATIONS
CN107716119B (zh) * 2017-09-26 2020-04-10 中国科学院青海盐湖研究所 一种氯化钠浮选剂的制备方法
CN108178912A (zh) * 2017-12-29 2018-06-19 上海至正道化高分子材料股份有限公司 一种充电桩电缆用125℃热塑性高性能阻燃环保聚氨酯护套料及制备方法
CN110591299A (zh) * 2019-09-30 2019-12-20 上海化工研究院有限公司 一种新能源汽车充电电缆用无卤阻燃电缆料及制备方法
KR102488725B1 (ko) * 2020-07-31 2023-01-16 롯데케미칼 주식회사 열가소성 수지 조성물 및 이로부터 제조된 성형품
CN113845725B (zh) * 2021-10-19 2023-03-21 青岛塑科高分子科技有限公司 一种具有良好耐水性的阻燃聚丙烯材料及其制备方法
CN115678103B (zh) * 2022-11-18 2023-07-07 衡阳师范学院 一种长链烷烃环三磷腈阻燃剂及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178559A (ja) * 1998-12-14 2000-06-27 Kyowa Co Ltd 建設工事現場に展張するメッシュシート用難燃剤とこれを用いた建設工事現場に展張する防炎メッシュシート
JP2001049053A (ja) * 1999-08-06 2001-02-20 Dainippon Ink & Chem Inc 樹脂組成物及びその成形体
JP2001055515A (ja) * 1999-08-20 2001-02-27 Tosoh Corp 難燃剤錠剤、それによる難燃化方法、並びにそれを配合してなる難燃性樹脂組成物及びその成形品
JP2001261855A (ja) * 2000-03-14 2001-09-26 Sumitomo Bakelite Co Ltd 難燃性シート
JP2004137316A (ja) * 2002-10-16 2004-05-13 Asahi Denka Kogyo Kk 防火性シーリング材

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030232933A1 (en) * 2002-06-17 2003-12-18 Didier Lagneaux Reactive blend ploymer compositions with thermoplastic polyurethane
US20050256234A1 (en) * 2002-06-24 2005-11-17 Asahi Denka Co., Ltd Flame retardant composition and flame retardant resin composition containing the composition
JP5414168B2 (ja) 2007-11-14 2014-02-12 株式会社Adeka 加工性の改善された難燃剤組成物、難燃性合成樹脂組成物及びその成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178559A (ja) * 1998-12-14 2000-06-27 Kyowa Co Ltd 建設工事現場に展張するメッシュシート用難燃剤とこれを用いた建設工事現場に展張する防炎メッシュシート
JP2001049053A (ja) * 1999-08-06 2001-02-20 Dainippon Ink & Chem Inc 樹脂組成物及びその成形体
JP2001055515A (ja) * 1999-08-20 2001-02-27 Tosoh Corp 難燃剤錠剤、それによる難燃化方法、並びにそれを配合してなる難燃性樹脂組成物及びその成形品
JP2001261855A (ja) * 2000-03-14 2001-09-26 Sumitomo Bakelite Co Ltd 難燃性シート
JP2004137316A (ja) * 2002-10-16 2004-05-13 Asahi Denka Kogyo Kk 防火性シーリング材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2311908A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8249379B2 (en) 2008-12-22 2012-08-21 Mitsubishi Electric Corporation Image processing apparatus and method and image display apparatus
WO2011147068A1 (en) * 2010-05-24 2011-12-01 Dow Global Technologies Llc HALOGEN-FREE, FLAME RETARDANT COMPOSITION COMPRISING CROSSLINKED SILANE-g-EVA
US9318240B2 (en) 2010-05-24 2016-04-19 Dow Global Technologies Llc Halogen-free, flame retardant composition comprising crosslinked silane-g-EVA
EP2576694A4 (en) * 2010-05-24 2014-03-12 Dow Global Technologies Llc HALOGEN-FREE FLAME RETARDANT COMPOSITION COMPRISING RETICULATED SILANE-G-EVA
EP2576694A1 (en) * 2010-05-24 2013-04-10 Dow Global Technologies LLC HALOGEN-FREE, FLAME RETARDANT COMPOSITION COMPRISING CROSSLINKED SILANE-g-EVA
CN103261324A (zh) * 2010-05-24 2013-08-21 陶氏环球技术有限责任公司 包含交联的硅烷-g-EVA的无卤阻燃组合物
CN103298884A (zh) * 2010-11-16 2013-09-11 路博润高级材料公司 非卤素阻燃热塑性聚氨酯
US10099455B1 (en) * 2011-05-02 2018-10-16 Polymeric Ireland, LTD Multifaceted coating system
US20120316268A1 (en) * 2011-06-10 2012-12-13 Advachem Sa Method of reducing the emission of formaldehyde from formaldehyde laden wood products
US20120316269A1 (en) * 2011-06-10 2012-12-13 Advachem Sa Method of manufacturing of flame retardant panels
CN104540924A (zh) * 2012-06-18 2015-04-22 路博润先进材料公司 具有非常高loi的无卤素阻燃tpu
CN104540924B (zh) * 2012-06-18 2019-11-12 路博润先进材料公司 具有非常高loi的无卤素阻燃tpu
KR20160149196A (ko) 2014-04-25 2016-12-27 가부시키가이샤 아데카 난연성 열가소성 폴리우레탄 엘라스토머 조성물
US9926434B2 (en) 2014-04-25 2018-03-27 Adeka Corporation Fire-resistant thermoplastic polyurethane elastomer composition

Also Published As

Publication number Publication date
JP5344742B2 (ja) 2013-11-20
EP2311908A1 (en) 2011-04-20
CN102112539A (zh) 2011-06-29
EP2311908B8 (en) 2017-03-15
US20110130491A1 (en) 2011-06-02
CN102112539B (zh) 2013-07-31
KR20110030651A (ko) 2011-03-23
KR101584832B1 (ko) 2016-01-12
EP2311908A4 (en) 2011-09-07
EP2311908B1 (en) 2017-01-04
JP2010037393A (ja) 2010-02-18
US8735473B2 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
JP5344742B2 (ja) 難燃性熱可塑性樹脂組成物
JP5424444B2 (ja) 難燃性熱可塑性樹脂組成物
JP6611706B2 (ja) 難燃性熱可塑性ポリウレタンエラストマー組成物
JP6328564B2 (ja) 難燃剤組成物及び難燃性合成樹脂組成物
US9240260B2 (en) Flame-retardant resin composition and electric wire using same
EP3431550B1 (en) Flame retardant thermoplastic polyurethane resin composition
JP5363195B2 (ja) 成形加工性に優れた難燃性合成樹脂組成物
JP4204342B2 (ja) 難燃性合成樹脂組成物
CN111094514A (zh) 组合物及阻燃性树脂组合物
JP7479406B2 (ja) 難燃性樹脂組成物およびその成形品
JP2011168760A (ja) ジウレタン構造を有する化合物、該化合物からなる帯電防止剤及び該化合物を含有してなる熱可塑性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129884.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117002260

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13056781

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009802650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009802650

Country of ref document: EP