WO2010007915A1 - ポジ型レジスト組成物及びマイクロレンズの製造方法 - Google Patents

ポジ型レジスト組成物及びマイクロレンズの製造方法 Download PDF

Info

Publication number
WO2010007915A1
WO2010007915A1 PCT/JP2009/062379 JP2009062379W WO2010007915A1 WO 2010007915 A1 WO2010007915 A1 WO 2010007915A1 JP 2009062379 W JP2009062379 W JP 2009062379W WO 2010007915 A1 WO2010007915 A1 WO 2010007915A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
component
integer
unit structure
Prior art date
Application number
PCT/JP2009/062379
Other languages
English (en)
French (fr)
Inventor
昇志郎 湯川
高広 岸岡
崇洋 坂口
浩之 荘田
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to EP09797841.5A priority Critical patent/EP2302456B1/en
Priority to CN200980126272.3A priority patent/CN102089710B/zh
Priority to JP2010520832A priority patent/JP5387861B2/ja
Priority to US12/996,684 priority patent/US9348222B2/en
Priority to KR1020117003508A priority patent/KR101668833B1/ko
Publication of WO2010007915A1 publication Critical patent/WO2010007915A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a positive resist composition containing a copolymer having vinyl biphenyl, and a microlens and a planarizing film formed therefrom.
  • a microlens for an image sensor such as a charge coupled device (CCD) is capable of producing a high-definition image sensor mainly by forming a fine pattern, and is manufactured using a method of forming a pattern with a photoresist. Yes.
  • a resist composition containing a polymer resin and a photosensitive agent is applied onto a substrate, formed into a film, patterned by a photolithography method, and subsequently developed to form a single pattern, Make a microlens.
  • the formed microlens pattern is required to have high transparency and heat resistance because it is exposed to high temperature conditions in the soldering process.
  • the microlens pattern is required to have a desired radius of curvature and a high refractive index from the viewpoint of resolution.
  • a planarizing film that planarizes the substrate surface such as a color filter and the surface of the solid-state image sensor is used.
  • the planarizing film is required to have planarity, adhesion to the substrate and element surface, and light transmission (transparency), and to prevent the substrate and element surface from being exposed to heat during the manufacturing process.
  • a protective film having heat resistance.
  • a resist composition for forming a microlens as described above a polymer having hydroxystyrene, hydroxyvinylnaphthalene, or hydroxyanthracene in which a hydrogen atom of a hydroxyl group is partially substituted with an acid labile group as a repeating unit.
  • the resist composition used has been reported (for example, Patent Document 1). However, a pattern formed from such a resist composition does not have sufficient heat resistance for imaging device applications.
  • a high refractive index resin for optical materials having high heat resistance an optical material comprising a copolymer obtained by copolymerizing 4-vinylbiphenyl with a single or plural kinds of radically polymerizable vinyl monomers.
  • High refractive index resins have been reported. (For example, patent document 2).
  • this high refractive index resin for optical materials has high heat resistance and high refractive index, it does not have sufficient resolution for image sensor applications.
  • the present invention has been made based on the circumstances as described above, and the purpose thereof is a positive resist composition for forming a microlens and a flattened film, which is excellent in transparency, heat resistance and refractive index, And a microlens formed therefrom and a planarizing film.
  • component (A), component (B), and component (C) (A) component: an alkali-soluble polymer containing a unit structure having a biphenyl structure; (B) component: a compound having an organic group that undergoes photolysis and generates an alkali-soluble group at that time, (C) component: solvent,
  • A) component an alkali-soluble polymer containing a unit structure having a biphenyl structure
  • B) component a compound having an organic group that undergoes photolysis and generates an alkali-soluble group at that time
  • component solvent
  • the present invention relates to a positive resist composition containing
  • the alkali-soluble polymer (A) is represented by the formula (1):
  • R 1 represents a halogen atom, an alkyl group, an alkoxy group, a thiol group, a cyano group, an amino group, an amide group, an alkylcarbonyl group, a thioalkyl group, or a combination thereof
  • R 2 represents a carboxyl group.
  • R 3 represents a hydrogen atom or a methyl group
  • Q 1 represents a single bond or a divalent linking group
  • m2 represents an integer of 0 to 5
  • m4 represents an integer of 0 to 4.
  • (M2 + m4) is an integer from 1 to 9.
  • n1 is an integer satisfying 0 ⁇ m1 ⁇ (5-m2)
  • m3 is an integer satisfying 0 ⁇ m3 ⁇ (4-m4).
  • the ratio n1 of the unit structure represented by the formula (1) constituting the polymer (A) is 0 when the total number of the unit structures constituting the polymer (A) is 1.0 including the unit structure represented ..3 ⁇ n1 ⁇ 1.0 It relates to a positive resist composition according to the first aspect.
  • the alkali-soluble polymer of component (A) is represented by the formula (2):
  • R 1 represents a halogen atom, an alkyl group, an alkoxy group, a thiol group, a cyano group, an amino group, an amide group, an alkylcarbonyl group, a thioalkyl group, or a combination thereof
  • R 2 represents a carboxyl group.
  • R 3 represents a hydrogen atom or a methyl group
  • Q 1 represents a single bond or a divalent linking group
  • m2 represents an integer of 0 to 5
  • m4 represents an integer of 0 to 4.
  • (M2 + m4) is an integer from 0 to 9.
  • m1 is an integer satisfying 0 ⁇ m1 ⁇ (5-m2)
  • m3 is an integer satisfying 0 ⁇ m3 ⁇ (4-m4).
  • the positive resist composition according to the first aspect is a polymer that satisfies ⁇ n3 ⁇ 0.7 and satisfies 0.3 ⁇ n2 + n3 ⁇ 1.0.
  • the alkali-soluble polymer of component (A) is a unit structure represented by the formula (1) described in the second aspect, formula (4): (In the formula (4), R6 and R7 each represent a hydrogen atom, a methyl group, a carboxyl group, or an alkylene carboxyl group having 1 to 3 carbon atoms, and R8 represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms.
  • R 9 and R 10 each represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a hydroxyl group, a halogen group, a carboxyl group, or an alkoxy group having 1 to 10 carbon atoms.
  • the ratio n1 of the unit structure represented by the formula (4), the ratio n5 of the unit structure represented by the formula (5) satisfies 0.3 ⁇ n1 ⁇ 0.7, and 0 ⁇ n4 ⁇ 0. .4, 0 ⁇ n5 ⁇ 0.4, and 0.3 ⁇ n1 + n4 + n5 ⁇ 1.0, the positive resist composition according to the first aspect.
  • the alkali-soluble polymer of the component (A) has a unit structure represented by the formula (2) described in the third viewpoint and a unit structure represented by the formula (3) described in the third viewpoint.
  • the unit structure represented by the formula (4) described in the four viewpoints and / or the unit structure represented by the formula (5) described in the fourth viewpoint, and the total number of all the unit structures constituting the polymer (A) When 1.0, the ratio n2 of the unit structure represented by the formula (2) constituting the polymer (A), the ratio n3 of the unit structure represented by the formula (3), and the formula (4)
  • the unit structure ratio n4 and the unit structure ratio n5 represented by the formula (5) satisfy 0.2 ⁇ n2 ⁇ 0.8, 0.1 ⁇ n3 ⁇ 0.7, and 0 ⁇ n4.
  • the component (B) is represented by the formula (6): [In formula (6), R 11 represents a hydrogen atom or formula (7): (In Formula (7), R 13 represents a single bond or —SO 3 — group, R 14 represents an alkyl group having 1 to 10 carbon atoms, and m8 is an integer of 0 to 3).
  • R 12 represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a halogen group, or an alkoxy group having 1 to 10 carbon atoms, and m5 is an integer of 0 or 1.
  • R 11 represents a group in which 10 to 100 mol% of the whole is represented by the above formula (7). ] It relates to the positive resist composition as described in the 1st viewpoint which has a structure represented by these.
  • the component (B) is represented by the formula (8):
  • R 11 and R 12 are the same as those represented by the formula (6), R 15 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and Q 4 represents carbon.
  • M9 is an integer of 0 to 10, m12 is an integer of 0 to 1, and m13 is an integer of 0 to 5.
  • R 11 is 10 to 100 mol% of the total. It represents the group represented by Formula (7) described in 6 viewpoints.), And relates to the positive resist composition described in the 1st viewpoint.
  • the present invention relates to the positive resist composition according to the first aspect including the component (A) according to the second aspect to the fifth aspect and the component (B) according to the sixth aspect or the seventh aspect.
  • the present invention relates to the positive resist composition according to the eighth aspect, which further contains, as the component (D), a crosslinkable compound having two or more substituents capable of being thermally crosslinked with the component (A).
  • the present invention further relates to the positive resist composition according to the eighth aspect, which contains a surfactant as the component (E).
  • the cured coating film has a refractive index of 1.55 or more for light having a wavelength of 633 nm, and a transmittance of 80% or more when the film thickness is 1 ⁇ m for light having a wavelength of 400 to 730 nm.
  • the positive resist composition according to the first aspect is 1.55 or more for light having a wavelength of 633 nm, and a transmittance of 80% or more when the film thickness is 1 ⁇ m for light having a wavelength of 400 to 730 nm.
  • the present invention relates to a microlens formed from the positive resist composition described in the eighth aspect to the eleventh aspect.
  • the present invention relates to a solid-state imaging device including the microlens described in the twelfth aspect.
  • the present invention relates to a planarization film formed from the positive resist composition described in the eighth aspect to the eleventh aspect.
  • the present invention relates to a liquid crystal display device including the planarizing film according to the fourteenth aspect.
  • the present invention relates to an LED display device including the planarizing film according to the fourteenth aspect.
  • the present invention relates to a pattern forming method including the steps of applying the positive resist composition according to any one of the eighth to eleventh aspects on a substrate, drying, exposing, and developing.
  • the positive resist composition of the present invention uses a polymer having a unit structure of biphenyl or a derivative thereof to form a coating film excellent in heat resistance, transparency, and refractive index and a cured film obtained by heat-treating the coating film. it can. Moreover, it can use suitably as a material for a micro lens and a planarization film
  • the cured film obtained from the present invention has a coating film property of a refractive index of 1.55 or more for light having a wavelength of 633 nm and a transmittance of 80% or more for light having a wavelength of 400 to 730 nm when the film thickness is 1 ⁇ m.
  • microlens formed from the positive resist composition of the present invention can be suitably used as a constituent member for a solid-state imaging device, and the planarizing film can be suitably used as a constituent member for a liquid crystal display device and an LED display device.
  • One of the present invention includes the following component (A), component (B), and component (C):
  • (C) component: solvent
  • the present invention relates to a positive resist composition containing Furthermore, (D) component: a crosslinkable compound, (E) component: surfactant, (F) component: adhesion promoter can be contained as needed.
  • component is described in detail below.
  • the component (A) is an alkali-soluble polymer (hereinafter referred to as polymer (A)) containing a unit structure having a biphenyl structure.
  • polymer (A) an alkali-soluble polymer
  • a unit structure having a biphenyl structure may have an alkali-soluble chemical group
  • a unit structure having a biphenyl structure may have an alkali-soluble chemical group.
  • the polymer (A) used in the present invention has a polystyrene-equivalent number average molecular weight of 2,000 to 30,000, preferably 2,500 to 15,000, more preferably 3,500 to 10,000.
  • the number average molecular weight of the polymer (A) is less than 2,000, the pattern formability, remaining film rate, and heat resistance of the resulting cured film may be reduced.
  • the solubility of the polymer (A) in an organic solvent is lowered, the applicability of the positive resist composition containing the polymer (A) is lowered, and the microlens pattern. In some cases, the positive resist composition may remain between the microlens patterns after molding, resulting in a decrease in resolution.
  • the polymer (A) of the present invention includes a unit structure represented by the following formula (1).
  • R 1 represents a halogen atom, an alkyl group, an alkoxy group, a thiol group, a cyano group, an amino group, an amide group, an alkylcarbonyl group, a thioalkyl group, or a combination thereof
  • R 2 represents a carboxyl group, Alternatively, it represents a hydroxyl group
  • R 3 represents a hydrogen atom or a methyl group.
  • m2 is an integer from 0 to 5
  • m4 is an integer from 0 to 4
  • (m2 + m4) is an integer from 1 to 9.
  • m1 is an integer that satisfies 0 ⁇ m1 ⁇ (5-m2)
  • m3 is an integer that satisfies 0 ⁇ m3 ⁇ (4-m4).
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group is, for example, an alkyl group having 1 to 10 carbon atoms, and is a methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i-butyl group, s- Butyl group, t-butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group , Cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group,
  • alkoxy group examples include an alkoxy group having 1 to 10 carbon atoms, and include a methoxy group, an ethoxy group, an n-propoxy group, an i-propoxy group, an n-butoxy group, an i-butoxy group, an s-butoxy group, t -Butoxy group, n-pentoxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1-dimethyl-n-propoxy group, 1,2 -Dimethyl-n-propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group, n-hexyloxy group, 1-methyl-n-pentyloxy group, 2-methyl-n- Pentyloxy group, 3-methyl-n-pentyloxy group, 4-methyl-n-pentyloxy group, 1,1-dimethyl-n-butoxy group, 1,2-dimethyl-n-butoxy group,
  • an amino group having 1 to 10 carbon atoms can be used.
  • an amide group having 1 to 10 carbon atoms can be used, and examples thereof include a hexaneamide group, a succinamide group, a benzenesulfonamide group, and an N-hydroxyacetamide group.
  • alkylcarbonyl group examples include alkylcarbonyl groups having 1 to 10 carbon atoms, such as a methylcarbonyl group, an ethylcarbonyl group, an n-propylcarbonyl group, an i-propylcarbonyl group, a cyclopropylcarbonyl group, and an n-butylcarbonyl group.
  • Examples of the thioalkyl group include a thioalkyl group having 1 to 10 carbon atoms, and examples thereof include an ethylthio group, a butylthio group, a hexylthio group, and an octylthio group.
  • Q 1 represents a single bond or a divalent linking group.
  • the divalent linking group is an alkylene group, an ester group, an ether group, an amide group, or a combination thereof.
  • an alkylene group the bivalent organic group corresponding to the said alkyl group can be mentioned, for example.
  • Q 1 is preferably a single bond.
  • the monomer for introducing the unit structure represented by the formula (1) for example, vinyl biphenyl and derivatives thereof can be used.
  • the ratio of the number n1 of unit structures represented by the formula (1) is 0.3 ⁇ n1 ⁇ 1.
  • a polymer (A-1) that becomes 0 can be used.
  • the polymer (A) of the present invention can include a unit structure represented by the following formula (2) and a unit structure represented by the following formula (3).
  • R 1 , R 2 , R 3 , m1, m2, m3, and m4 can use the same examples as in Formula (1).
  • Examples of the monomer component for introducing the unit structure represented by the formula (2) include vinyl biphenyl and derivatives thereof.
  • R 4 and R 5 each represent a hydrogen atom, a methyl group, a carboxyl group, an alkylene carboxyl group having 1 to 3 carbon atoms, or the like.
  • alkylene carboxyl group include a methylene carboxyl group (—CH 2 COOH), an ethylene carboxyl group (—C 2 H 4 COOH), a propylene carboxyl group (—C 3 H 6 COOH), and an isopropylene carboxyl group (—CH 2 CH ( CH 3 ) COOH) and the like.
  • Q2 includes a single bond, an alkylene group having 1 to 3 carbon atoms, or an arylene group having 6 to 20 carbon atoms.
  • alkylene group having 1 to 3 carbon atoms examples include a methylene group, an ethylene group, a propylene group, and an isopropylene group.
  • Arylene groups include phenylene, o-methylphenylene, m-methylphenylene, p-methylphenylene, o-chlorophenylene, m-chlorophenylene, p-chlorophenylene, o-fluorophenylene, p -Fluorophenylene group, o-methoxyphenylene group, p-methoxyphenylene group, p-nitrophenylene group, p-cyanophenylene group, ⁇ -naphthylene group, ⁇ -naphthylene group, 1-anthrylene group, 2-anthrylene group, 9 -Anthrylene group and the like.
  • the monomer component for introducing the unit structure represented by the formula (3) examples include acrylic acid, methacrylic acid, ita
  • the ratio n2 of the unit structure represented by the formula (2) constituting the polymer (A) when the total number of all unit structures constituting the polymer (A) is 1.0, the ratio n2 of the unit structure represented by the formula (2) constituting the polymer (A), the formula The ratio n3 of the unit structure represented by (3) satisfies 0.2 ⁇ n2 ⁇ 0.8, 0.1 ⁇ n3 ⁇ 0.7, and 0.3 ⁇ n2 + n3 ⁇ 1.0.
  • a polymer (A-2) can be used. Since the unit structure represented by the formula (3) has a carboxyl group that is alkali-crosslinkable, (m2 + m4) in the unit structure represented by the formula (2) is an integer of 0 to 9, The case where it has a group and the case where it does not have can be mentioned.
  • the polymer (A) of the present invention includes a unit structure represented by the above formula (1), a unit structure represented by the following formula (4), and / or a unit structure represented by the following formula (5). it can.
  • R 6 and R 7 each represent a hydrogen atom, a methyl group, a carboxyl group, or an alkylene carboxyl group having 1 to 3 carbon atoms.
  • R 8 represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an epoxy group having 3 to 6 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a combination thereof.
  • Examples of the alkyl group can include the above-mentioned examples.
  • Examples of the epoxy group having 3 to 6 carbon atoms include glycidyl group, ⁇ methyl glycidyl group, ⁇ methyl glycidyl group, ⁇ ethyl glycidyl group, ⁇ propyl glycidyl group and the like.
  • the aryl group having 6 to 20 carbon atoms the aryl group includes a phenyl group, an o-methylphenyl group, an m-methylphenyl group, a p-methylphenyl group, an o-chlorophenyl group, and an m-chlorophenyl group.
  • Q 3 represents a single bond, an alkylene group having 1 to 3 carbon atoms, or an arylene group having 6 to 20 carbon atoms. These can be exemplified by the same Q 2.
  • alkyl esters such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, methyl acrylate, isopropyl acrylate, etc.
  • Alkyl esters cyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, dicyclopentanyloxyethyl methacrylate, cyclic alkyl esters such as isobornyl methacrylate, aryl esters such as phenyl methacrylate, benzyl methacrylate, diethyl maleate, fumaric acid Dicarboxylic acid diesters such as diethyl and diethyl itaconate, 2-hydroxyethyl methacrylate, 2-hydroxypropiyl Hydroxyalkyl esters such as methacrylate and 2-hydroxyethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, glycidyl ⁇ -ethyl acrylate, glycidyl ⁇ -n-propyl acrylate, glycidyl ⁇ -n-butyl acrylate, acrylic acid 3,4-epoxybutyl
  • R 9 and R 10 are each a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, a hydroxyl group, a halogen group, a carboxyl group, or a carbon atom.
  • the alkyl group having 1 to 6 carbon atoms and the alkoxy group having 1 to 10 carbon atoms those similar to those described in the above formula (1) can be used.
  • the ratio n1 of the unit structure represented by the formula (1) constituting the polymer (A) when the total number of all unit structures constituting the polymer (A) is 1.0, the ratio n1 of the unit structure represented by the formula (1) constituting the polymer (A), the formula The ratio n4 of the unit structure represented by (4) and the ratio n5 of the unit structure represented by formula (5) satisfy 0.3 ⁇ n1 ⁇ 0.7 and satisfy 0 ⁇ n4 ⁇ 0.4. , 0 ⁇ n5 ⁇ 0.4 and 0.3 ⁇ n1 + n4 + n5 ⁇ 1.0 can be used (A-3).
  • the polymer (A) of the present invention has a unit structure represented by the above formula (2) and a unit structure represented by the above formula (3), a unit structure represented by the above formula (4) and / or the above unit structure.
  • the unit structure represented by Formula (5) can be included.
  • the polymer (A) when the total number of all unit structures constituting the polymer (A) is 1.0, the ratio n2 of the unit structure represented by the formula (2) constituting the polymer (A), the formula The ratio n3 of the unit structure represented by (3), the ratio n4 of the unit structure represented by Formula (4), and the ratio n5 of the unit structure represented by Formula (5) are 0.2 ⁇ n2 ⁇ 0.
  • the polymer (A) used in the present invention can be copolymerized with any unsaturated monomer other than the above.
  • unsaturated monomer include acrylamide compounds, methacrylamide compounds, styrene compounds, maleimide compounds, and the like.
  • the acrylamide compound include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-benzylacrylamide, N-phenylacrylamide, and N, N-dimethylacrylamide.
  • methacrylic acid amide compounds include methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, N-benzyl methacrylamide, N-phenyl methacrylamide, N, N-dimethyl methacrylamide and the like.
  • styrene compound examples include styrene, methyl styrene, chlorostyrene, bromostyrene, and hydroxystyrene.
  • maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, and the like.
  • the method for obtaining the polymer (A) used in the present invention is not particularly limited. Generally, it manufactures by radical-polymerizing the monomer used in order to obtain the said polymer (A) in a polymerization solvent. Further, if necessary, these may be polymerized in a state where the functional group of the monomer is protected, and then deprotection treatment may be performed.
  • an azo initiator such as azobisisobutyronitrile and dimethyl azobisisobutyrate can be used.
  • the initiator can be used in the range of, for example, 0.1 mol% to 20 mol% with respect to the total amount of monomers.
  • ⁇ (B) component As the component (B), a compound having an organic group that undergoes photolysis and generates an alkali-soluble group at that time, a 1,2-naphthoquinonediazide compound having a partial structure of the formula (6) can be used.
  • a coating film formed from a positive resist composition containing a 1,2-naphthoquinonediazide compound as component (B) is exposed and developed using a photomask, the 1,2-naphthoquinonediazide group in the exposed area is irradiated with light. And converted to ketene. The resulting ketene is highly reactive and thus reacts with moisture to produce a carboxyl group. That is, a coating film containing a 1,2-naphthoquinonediazide compound in the exposed area becomes soluble in an alkaline developer because 1,2-naphthoquinonediazide groups generate indenecarboxylic acid groups upon exposure.
  • PEB Post-exposure heating
  • the component (B) can have a partial structure represented by the formula (6).
  • R 11 represents a hydrogen atom or a group represented by the following formula (7).
  • R 12 represents a substituent bonded to the ring, and represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a halogen group, or an alkoxy group having 1 to 10 carbon atoms, and these are the same as those exemplified above Can be represented.
  • m5 is 0 or 1. When m5 is 0, it represents a benzene ring, and when m5 is 1, it represents a naphthalene ring.
  • m6 is an integer from 1 to 5
  • m7 is an integer that satisfies 0 ⁇ m7 ⁇ (5-m6)
  • m6 is an integer from 1 to 7.
  • M7 is an integer satisfying 0 ⁇ m7 ⁇ (7 ⁇ m6).
  • R 13 represents a single bond or —SO 3 — group
  • R 14 represents an alkyl group having 1 to 10 carbon atoms, and the same ones as described above can be used.
  • m8 is an integer of 0 to 3.
  • R 13 represents a single bond, for example, 1,2-naphthoquinonediazide.
  • R 13 represents a —SO 3 — group.
  • R 11 is a 1,2-naphthoquinonediazide group represented by the above formula (7) or a derivative thereof, preferably 20 to 95 mol% of the total R 11. .
  • a compound represented by the formula (8) can be used as the compound (B).
  • R 11 and R 12 are the same as those represented by formula (6), R 15 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and Q 4 represents 1 carbon atom.
  • M10 is an integer of 1 to 5
  • m11 is an integer satisfying 0 ⁇ m11 ⁇ (5-m10), and m14 satisfies 0 ⁇ m14 ⁇ (5-m12 ⁇ m13).
  • M9 is an integer from 0 to 10
  • m12 is an integer from 0 to 1
  • m13 is an integer from 0 to 5.
  • R 11 is a 1,2-naphthoquinonediazide group represented by the formula (7), wherein 10 to 100 mol% of the total is A derivative thereof, preferably 50 to 100 mol%.
  • the alkylene group having 1 to 10 carbon atoms of Q 4 represents a divalent hydrocarbon group corresponding to the above-described alkyl group, and a linear or branched alkylene group is used. For example, what is illustrated below can be used.
  • D that is, R 11
  • R 11 represents a hydrogen atom, a 1,2-naphthoquinonediazide group represented by the formula (7) or a derivative thereof.
  • the content of the component (B) in the solid content of the positive resist composition of the present invention is 1 to 90% by mass, preferably 5 to 50% by mass, and more preferably 10 to 30% by mass.
  • the content of the component (B) is less than 1% by mass, the difference in solubility between the exposed portion and the unexposed portion of the cured film formed from the positive resist composition in an alkaline developer is reduced, and patterning by development is difficult. It may become.
  • the component (B) for example, 1,2-naphthoquinonediazide compound
  • the component (B) may not be sufficiently decomposed by a short exposure, and the sensitivity may decrease. May be absorbed and the transparency of the cured film may be reduced.
  • ⁇ (C) component> (C)
  • the solvent of the component dissolves the (A) component and the (B) component, and is added as required.
  • the adhesion promoter and other additives that are components are dissolved, and the type and structure are not particularly limited as long as the solvent has such a dissolving ability.
  • Examples of such a solvent for component (C) include alcohols such as methanol, ethanol, propanol and butanol, cyclic ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbons such as benzene, toluene and xylene, N, N -Polar solvents such as dimethylformamide and N-methyl-2-pyrrolidone, esters such as ethyl acetate, butyl acetate and ethyl lactate, methyl 3-methoxypropionate, methyl 2-methoxypropionate, ethyl 3-methoxypropionate, Alkoxy esters such as ethyl 2-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 2-ethoxypropionate, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol Ethers such as methyl methyl
  • the component (D) is a crosslinkable compound having two or more substituents that can be crosslinked with respect to the component (A), and is not limited as long as there is no problem in compatibility.
  • a crosslinkable compound having two or more, preferably 2 to 6, groups capable of crosslinking reaction such as isocyanate group, epoxy group, hydroxymethylamino group, alkoxymethylamino group is used. can do.
  • crosslinkable compound the following compounds can be used.
  • m15 is an integer of 2 to 10
  • m16 is an integer of 0 to 4
  • R 15 represents an m15-valent organic group.
  • a compound having a cyclohexene oxide structure represented by the formula (D-1) in which m15 is 2 is preferable.
  • Specific examples thereof include compounds represented by the following formulas (D-2) and (D-3).
  • Commercial item shown below etc. are mentioned.
  • Commercially available products include Epolide GT-401, GT-403, GT-301, GT-302, Celoxide 2021, Celoxide 3000 (trade name, manufactured by Daicel Chemical Industries, Ltd.), and alicyclic epoxy resins.
  • a Denacol EX-252 (trade name, manufactured by Nagase ChemteX Corp.), CY175, CY177, CY179 (trade name, manufactured by CIBA-GEIGY A.G), Araldite CY-182, CY-192, CY -184 (trade name, manufactured by CIBA-GEIGY AG), Epicron 200, 400 (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Epicoat 871, 872 (trade name, oiled shell) Epoxy Co., Ltd.), etc.
  • Preferred compounds are Epolide GT-401, GT-403, GT-301, GT-302, Celoxide 2021, and Celoxide 3000 (trade names, manufactured by Daicel Chemical Industries, Ltd.).
  • crosslinkable compound of the component (D) a compound having a partial structure represented by the following formula (D-4) can be used.
  • m17 is an integer from 2 to 10
  • R 16 represents a m17-valent organic group.
  • the compound is not particularly limited as long as it is a compound having an oxirane structure represented by the formula (D-4).
  • Examples thereof include a compound represented by the following formula (D-5), And the following commercially available products.
  • Commercially available products for example, “Epicoat 828”, “Epicoat 834”, “Epicoat 1001”, “Epicoat 1004” (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), “Epicron 850”, “Epicron 860”, “Epicron 4055” (trade name, manufactured by Dainippon Ink & Chemicals, Inc.) and the like can be mentioned.
  • Examples of the bisphenol F type epoxy resin include “Epicoat 807” (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), “Epicron 830” (trade name, manufactured by Dainippon Ink and Chemicals, Inc.), and the like.
  • Examples of the phenol novolac type epoxy resin include “Epicron N-740”, “Epicron N-770”, “Epicron N-775” (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), “Epicoat 152”, "Epikote 154" (trade name, manufactured by Japan epoxy Resins Co., Ltd.) and the like can be mentioned up.
  • cresol novolac type epoxy resin examples include “Epicron N-660”, “Epicron N-665”, “Epicron N-670”, “Epicron N-673”, “Epicron N-680”, “Epicron N-695”. ”,“ Epicron N-665-EXP ”,“ Epicron N-672-EXP ”(trade name, manufactured by Dainippon Ink & Chemicals, Inc.), and the like.
  • Examples of the glycidylamine type epoxy resin include “Epicron 430”, “Epicron 430-L” (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), TETRAD-C ”,“ TETRAD-X ”(trade name, (Mitsubishi Gas Chemical Co., Ltd.), “Epicoat 604”, “Epicoat 630” (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), “Sumiepoxy ELM120”, “Sumiepoxy ELM100”, “Sumiepoxy ELM434”, “Sumiepoxy ELM434HV” (Trade name, manufactured by Sumitomo Chemical Co., Ltd.), “Epototo YH-434”, “Epototo YH-434L” (trade name, manufactured by Toto Kasei Co., Ltd.), “Araldite MY-720” (trade name, Asahi Ciba) For example).
  • R 16 represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom.
  • examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, and a hexyl group.
  • the compound is not particularly limited as long as it has a chemical group represented by the formula (D-6), but particularly preferably a compound in which a monovalent organic group such as a hydroxymethyl group or an alkoxymethyl group is bonded to a nitrogen atom, that is, N— A compound containing a hydroxymethyl group or an N-alkoxymethyl group.
  • a monovalent organic group such as a hydroxymethyl group or an alkoxymethyl group
  • N— A compound containing a hydroxymethyl group or an N-alkoxymethyl group.
  • Specific examples thereof include compounds represented by the following formula (D-7), the following formula (D-8), and commercially available products shown below. Specific examples include hexamethoxymethylmelamine (D-7), tetramethoxymethylbenzoguanamine, 1,3,4,6-tetrakis (methoxymethyl) glycoluril (D-8), 1,3,4,6-tetrakis.
  • Examples of the butoxymethyl type melamine compound include Mycoat 506 and Mycoat 508 (manufactured by Mitsui Cytec Co., Ltd.).
  • Examples of the glycoluril compound include Cymel 1170 and Powder Link 1174 (manufactured by Mitsui Cytec Co., Ltd.).
  • Examples of the methylated urea resin include UFR65, and examples of the butylated urea resin include UFR300, U-VAN10S60, U-VAN10R, U-VAN11HV (manufactured by Mitsui Cytec Co., Ltd.).
  • Examples of urea / formaldehyde resins include becamine J-300S, becamine P-955, becamine N (manufactured by Dainippon Ink & Chemicals, Inc.), and the like.
  • crosslinkable compound of component (D) it was substituted with a hydroxymethyl group or alkoxymethyl group such as N-hydroxymethylacrylamide, N-methoxymethylmethacrylamide, N-ethoxymethylacrylamide and N-butoxymethylmethacrylamide.
  • a polymer produced using an acrylamide compound or a methacrylamide compound can be used. Examples of such a polymer include poly (N-butoxymethylacrylamide), a copolymer of N-butoxymethylacrylamide and styrene, a copolymer of N-hydroxymethylmethacrylamide and methylmethacrylate, and N-ethoxymethylmethacrylamide.
  • the said crosslinkable compound can be used combining only 1 type or 2 or more types of compounds.
  • the addition amount of the crosslinkable compound as the component (D) is 3 to 50 parts by mass, preferably 7 to 40 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the polymer (A). .
  • the content of the crosslinkable compound is less than 3 parts by mass, the crosslink density formed by the crosslinkable compound is not sufficient, so that the heat resistance after the pattern formation, solvent resistance, long-term baking resistance, etc. The effect of improving the processability may not be sufficiently obtained.
  • the amount exceeds 50 parts by mass there is an uncrosslinked crosslinkable compound, so that the resolution decreases, the heat resistance of the cured film after pattern formation, the solvent resistance, the process resistance such as the long-term baking resistance, etc. And the storage stability of the positive resist composition may be reduced.
  • Component (E) is a surfactant.
  • a surfactant may be added for the purpose of improving coatability.
  • a surfactant is not particularly limited, such as a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
  • the component (E) one or more of the surfactants can be used in combination.
  • a fluorosurfactant is preferable because of its high coating property improving effect.
  • fluorosurfactant examples include FP TOP EF301, EF303, EF352 (trade name, manufactured by Tochem Products Co., Ltd.), Megafac F171, F173, R-30, R-08, R-90, BL-20.
  • F-482 trade name, manufactured by Dainippon Ink & Chemicals, Inc.
  • Florard FC430, FC431 trade name, manufactured by Sumitomo 3M
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (trade name, manufactured by Asahi Glass Co., Ltd.) and the like can be mentioned, but are not limited thereto.
  • the addition amount of the component (E) in the positive resist composition of the present invention is 0.01 to 5 parts by weight, preferably 0.01 to 3 parts by weight, more preferably 100 parts by weight of the component (A). 0.01 to 2 parts by mass.
  • the addition amount of the surfactant is more than 5 parts by mass, unevenness is likely to occur in the coating film, and when it is less than 0.01 part by mass, striation or the like is likely to occur in the coating film.
  • Component (F) is an adhesion promoter.
  • an adhesion promoter may be added for the purpose of improving the adhesion to the substrate after development.
  • adhesion promoters include chlorosilanes such as trimethylchlorosilane, dimethylvinylchlorosilane, methyldiphenylchlorosilane, chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylvinylethoxysilane, and diphenyldimethoxy.
  • Alkoxysilanes such as silane and phenyltriethoxysilane, hexamethyldisilazane, N, N′-bis (trimethylsilyl) urea, silazanes such as dimethyltrimethylsilylamine, trimethylsilylimidazole, vinyltrichlorosilane, ⁇ -chloropropyltrimethoxy Silane, ⁇ -aminopropyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxy Lan, silanes such as ⁇ - (N-piperidinyl) propyltrimethoxysilane, benzotriazole, benzimidazole, indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urazole, thiouracil, Examples include heterocyclic compounds such as
  • one or two or more of the adhesion promoters can be used as the component (F).
  • the addition amount of these adhesion promoters is usually 20 parts by mass or less, preferably 0.01 to 10 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polymer (A). is there. If it is used in an amount of more than 20 parts by mass, the heat resistance of the coating film may be lowered, and if it is less than 0.1 part by mass, a sufficient effect of the adhesion promoter may not be obtained.
  • pigments, dyes, storage stabilizers, antifoaming agents, dissolution accelerators such as polyphenols and polycarboxylic acids may be added as necessary.
  • the positive resist composition of the present invention comprises (A) an alkali-soluble polymer containing a unit structure having a biphenyl structure, (B) a compound having an organic group that undergoes photolysis to produce an alkali-soluble group, and (C) component. And optionally, one or more of a crosslinkable compound of component (D), a surfactant of component (E), an adhesion promoter of component (F), and other additives. Can be contained.
  • the positive resist composition of the present invention are as follows. [1]: The solid content in the positive resist composition is 3 to 50% by mass, the content of the component (A) is 10 to 90 parts by mass in the solid content, and the content of the component (B) is A positive resist composition having a solid content of 1 to 90% by mass and dissolved in the component (C). [2]: The positive resist composition further comprising 3 to 50 parts by mass of component (D) based on 100 parts by mass of component (A) in the composition of [1] above. [3] A positive resist composition further comprising 0.01 to 5 parts by mass of the component (E) based on 100 parts by mass of the component (A) in the composition according to the above [1] or [2]. [4] A positive resist composition further comprising 20 parts by mass or less of the component (F) based on 100 parts by mass of the component (A) in the composition of the above [1], [2] or [3].
  • the ratio of the solid content in the positive resist composition of the present invention is not particularly limited as long as each component is uniformly dissolved in the solvent, but for example, 3 to 50% by mass, preferably 5 to 35% by mass. %, More preferably 7 to 30% by mass.
  • the solid content is the ratio of the remaining component obtained by removing the solvent of component (C) from the positive resist composition.
  • the content of the component (A) in the solid content is 10 to 90% by mass, preferably 40 to 90% by mass, and more preferably 50 to 80% by mass.
  • the content of the component (A) is less than 10 parts by mass, the coating film and the cured film formed from the positive resist composition may not have sufficient strength to function as a film.
  • it may not contain (B) component which can perform sufficient patterning when exposed and developed.
  • the method for preparing the positive resist composition of the present invention is not particularly limited.
  • the component (A) is dissolved in the component (C), and the component (B) is added to the solution in a predetermined ratio.
  • (D) component, (E) component, (F) component and other additives are added as necessary at the appropriate stage of the preparation method.
  • the method of mixing is mentioned.
  • the solution of the polymer (A) obtained by the polymerization reaction in the component (C) can be used as it is.
  • the solution of the polymer (A) Similarly to the above, when the component (B) is added to obtain a uniform solution, the component (C) may be further added for the purpose of adjusting the concentration.
  • the component (C) used in the process of forming the polymer (A) and the component (C) used for concentration adjustment when preparing the positive resist composition may be the same or different. good.
  • an interlayer insulating layer is formed on a photodiode (photosensitive device) formed on a substrate, a protective film is formed thereon, and R / G / B is formed thereon.
  • a color filter layer is formed, a planarizing film is formed on the color filter layer, and a microlens is further formed thereon.
  • the positive resist composition of the present invention can be used for forming the planarizing film and the microlens.
  • a CMOS image sensor which is a kind of image sensor, is composed of a photodiode that senses the irradiated light and a portion that converts it into an electrical signal.
  • One condensing technique for increasing the amount of received light is a method using a microlens. By installing a convex microlens with a material having high light transmittance above the photodiode and refracting the path of incident light by the microlens, it is possible to collect a large amount of light on the photodiode. In this case, light parallel to the optical axis of the microlens is refracted by the microlens and focused at a predetermined position on the optical axis, and the obtained optical image is converted into an electrical signal.
  • the microlens used for the image sensor is required to have a material with high transparency and a high refractive index.
  • the microlens adjusts factors such as curvature and formed height in consideration of the focus of the focused light in order to increase the light collection rate.
  • a positive resist composition is used to form such a microlens. That is, a positive resist composition is applied on the planarizing film, dried, a positive resist layer is formed, and development is performed after exposure to form a positive resist pattern. Thereafter, a convex microlens is formed by a curing process such as heating.
  • the flattening film existing under the microlens of the solid-state imaging device and the image sensor plays an important role for forming a uniform optical axis of the microlens by forming a uniform surface.
  • membrane excellent in transparency and refractive index is calculated
  • a planarizing film that also serves as a protective film is formed on the color filter or black matrix resin layer of the substrate.
  • the positive resist composition of the present invention is spin-coated, flow-coated, roll-coated on a substrate such as a glass substrate, a silicon wafer, an oxide film, a nitride film, a substrate coated with a metal such as aluminum, molybdenum or chromium, After coating by slit coating, spin coating following slit coating, ink jet coating, etc., it can be pre-dried in a hot plate or oven to form a coating film. At this time, the preliminary drying is preferably performed at a temperature of 80 ° C. to 130 ° C. for 30 to 600 seconds, but the conditions can be appropriately selected as necessary.
  • a mask having a predetermined pattern is mounted, irradiated with light such as ultraviolet rays, and developed with an alkali developer, so that the exposed portion is washed out and a sharp relief pattern on the end face Is obtained.
  • the developer used is not particularly limited as long as it is an alkaline aqueous solution.
  • alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, potassium carbonate and sodium carbonate
  • quaternary ammonium hydroxides such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline.
  • aqueous amine solutions such as ethanolamine, propylamine, and ethylenediamine.
  • the alkaline developer is generally an aqueous solution of 10% by mass or less, and preferably an aqueous solution of 0.1 to 3.0% by mass is used. Furthermore, alcohols and surfactants can be added to the developer, and the amount added is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the developer. Among these, a 0.1 to 2.38 mass% aqueous solution of tetramethylammonium hydroxide is generally used as an alkaline developer of a photoresist, and the coating film obtained from the positive resist composition of the present invention is Using this solution, development can be performed without causing problems such as swelling.
  • any generally used method such as a liquid piling method, a dipping method, or a rocking dipping method may be used.
  • the development time is usually 15 to 180 seconds.
  • washing with running water is performed for 20 to 90 seconds and air-dried with compressed air, compressed nitrogen, or spin to remove moisture on the substrate and obtain a coating film on which a pattern is formed.
  • the coating film on which this pattern is formed is irradiated with light such as ultraviolet rays using a high-pressure mercury lamp or the like to completely remove the component (B) remaining in the coating film (1,2-naphthoquinonediazide compound).
  • the transparency of the coating film is improved by decomposing.
  • the coating film is cured (hereinafter referred to as post-bake), and a microlens having a good relief pattern can be obtained.
  • the post-baking conditions are as follows: heat treatment at a predetermined temperature, for example, 140 ° C. to 250 ° C., for a predetermined time, for example, 3 to 30 minutes on the hot plate, and 30 to 90 minutes in the oven, using a heating device such as a hot plate or oven. The method is taken.
  • microlens having a desired good relief pattern obtained in this way is excellent in heat resistance, solvent resistance and transparency, and is particularly suitably used for a solid-state imaging device or the like.
  • a cured film can be obtained by post-baking the coating film before forming the above pattern.
  • Post bake conditions are the same as in the case where the microlenses are formed.
  • the cured film thus obtained is excellent in heat resistance, solvent resistance, and transparency, and can be suitably used for a planarizing film, an interlayer insulating film, various insulating films, and various protective films.
  • the obtained cured film is suitably used as a planarizing film for liquid crystal display devices, LED display devices and the like.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the copolymer obtained according to the following synthesis example were eluted using a GPC apparatus (Shodex (registered trademark) columns KF803L and KF804L) manufactured by JASCO Corporation. The measurement was performed under the condition that the solvent THF was eluted at a flow rate of 1 mL / min through a column (temperature 40 ° C.). The following Mn and Mw are expressed in terms of polystyrene.
  • 4-dioxane (34.9 g) the polymerization reaction was carried out by heating at reflux temperature with stirring for 10 hours. After the reaction, the reaction solution is cooled to room temperature, poured into a large amount of n-hexane to precipitate a polymer, and the obtained precipitate is heated and dried at 50 ° C. to form a white powder having Mn 5,200 and Mw 9,600.
  • 4-dioxane (34.9 g) the polymerization reaction was carried out by heating at reflux temperature with stirring for 10 hours. After the reaction, the reaction solution is cooled to room temperature, poured into a large amount of n-hexane to precipitate a polymer, and the resulting precipitate is heated and dried at 50 ° C. to form a white powder having Mn 5,100 and Mw 9,500.
  • dioxane (34.9 g) the polymerization reaction was carried out by heating at reflux temperature with stirring for 10 hours. After the reaction, the reaction solution is cooled to room temperature, poured into a large amount of n-hexane to precipitate a polymer, and the resulting precipitate is heated and dried at 50 ° C. to form a white powder having Mn 6,600 and Mw 14,700.
  • the polymerization reaction was carried out in 4-dioxane (27.8 g) by heating to reflux with heating at reflux temperature for 10 hours. After the reaction, the reaction solution is cooled to room temperature, poured into a large amount of n-hexane to precipitate a polymer, and the resulting precipitate is heated and dried at 50 ° C. to form a white powder having Mn2,900 and Mw4,400.
  • the polymerization reaction was carried out in 4-dioxane (22.1 g) by heating to reflux with heating at reflux temperature for 10 hours. After the reaction, the reaction solution is cooled to room temperature, poured into a large amount of n-hexane to precipitate a polymer, and the obtained precipitate is heated and dried at 50 ° C. to form a white powder having Mn 3,000 and Mw 5,900.
  • Example 1 (A) component: 2.5 g of polymer (P-1), (B) component: 0.75 g of QD1, (C) component: a mixed solvent of 8.88 g of PGME and 8.88 g of PGMEA, (D) Ingredient: 0.38 g of GT-401 and (E) ingredient: 0.01 g of Megafac R30 were mixed and stirred at room temperature for 1 hour to obtain a uniform solution.
  • Example 2 (A) component: 2.5 g of polymer (P-1), (B) component: 0.75 g of QD1, (C) component: a mixed solvent of 8.88 g of PGME and 8.88 g of PGMEA, (D) Ingredient: 0.38 g of Cymel 303 and (E) ingredient: 0.01 g of Kume Fax R30 were mixed and stirred at room temperature for 1 hour to obtain a uniform solution.
  • Example 3 (A) component: 2.5 g of polymer (P-1), (B) component: 0.75 g of QD2, (C) component: mixed solvent of 8.88 g of PGME and 8.88 g of PGMEA, (D) Ingredient: 0.38 g of Epolide GT-401 and (E) ingredient: 0.01 g of Megafac R30 were mixed and stirred at room temperature for 1 hour to obtain a uniform solution.
  • Example 4 (A) component: 2.5 g of polymer (P-2), (B) component: 0.75 g of QD3, (C) component: a mixed solvent of 8.88 g of PGME and 8.88 g of PGMEA, (D) Ingredient: 0.38 g of GT-401 and (E) ingredient: 0.01 g of Megafac R30 were mixed and stirred at room temperature for 1 hour to obtain a uniform solution.
  • Example 5 (A) component: 2.5 g of polymer (P-3), (B) component: 0.75 g of QD3, (C) component: a mixed solvent of 8.88 g of PGME and 8.88 g of PGMEA, (D) Ingredient: 0.38 g of GT-401 and (E) ingredient: 0.01 g of Megafac R30 were mixed and stirred at room temperature for 1 hour to obtain a uniform solution.
  • Example 6 Component (A): 2.5 g of polymer (P-4), Component (B): 0.75 g of QD1, Component (C): Mixed solvent of 8.88 g of PGME and 8.88 g of PGMEA, (D) Ingredient: 0.38 g of GT-401 and (E) ingredient: 0.01 g of Megafac R30 were mixed and stirred at room temperature for 1 hour to obtain a uniform solution.
  • the cured films formed from the positive resist compositions of the obtained examples and comparative examples were each measured for resolution, light transmittance after baking, and refractive index, and evaluated.
  • This coating film was irradiated with ultraviolet rays having a wavelength of 365 nm through a test mask by an i-line stepper NSR2205i12D (manufactured by Nikon Corporation). Then, after performing post-exposure baking at 80 ° C. for 2 minutes, developing with a TMAH aqueous solution having a predetermined concentration (0.2 or 1.0% by mass) at 23 ° C. for 50 seconds, and further washing with ultrapure water, A positive pattern was formed. The obtained pattern was observed with a scanning electron microscope S4100 (manufactured by Hitachi High-Technologies Corporation). A case in which a 2 ⁇ m dot pattern was formed in a rectangular shape without peeling was expressed as ( ⁇ ) because the resolution was good, and a case where the pattern shape was not rectangular was expressed as ( ⁇ ).
  • Example 1 The positive resist compositions obtained in Example 1 and Comparative Example 1 were applied on a silicon wafer using a spin coater, respectively, and then prebaked on a hot plate at 80 ° C. for 4 minutes to form a coating film. Thereafter, the entire surface of the obtained coating film was irradiated with ultraviolet light having an irradiation amount of 500 mJ / cm 2 at a wavelength of 365 nm using an ultraviolet irradiation apparatus PLA-501 (F) (manufactured by Canon Inc.) at 160 ° C. Was post-baked by heating for 5 minutes at 200 ° C. for 5 minutes to form a resist having a thickness of 0.1 ⁇ m.
  • the refractive index of the obtained coating film with respect to light having a wavelength of 633 nm was measured using an automatic ellipsometer DVA-FLVW (manufactured by Mizojiri Optical Co., Ltd.).
  • Example 1 A positive resist composition obtained in Example 1 and Comparative Example 1 was applied on a quartz substrate using a spin coater, and then prebaked by heating on a hot plate at 80 ° C. for 4 minutes to form a film. A coating film having a thickness of 1.0 ⁇ m was formed. Thereafter, the entire surface of the obtained coating film was irradiated with ultraviolet light having an irradiation amount of 500 mJ / cm 2 at a wavelength of 365 nm using an ultraviolet irradiation apparatus PLA-501 (F) (manufactured by Canon Inc.) at 160 ° C. For 5 minutes, at 200 ° C. for 5 minutes, and at 250 ° C. for 30 minutes for post-baking. About the coating film after ultraviolet light irradiation and post-baking, the light transmittance with respect to the light of wavelength 400nm was measured using the ultraviolet visible spectrophotometer UV-2550 (made by Shimadzu Corporation).
  • each of the cured films formed from the positive resist compositions of Examples 1 to 6 has high resolution, a high refractive index, and high light transmission after exposure and post-baking. Showed the rate.
  • the resist formed from the composition of Comparative Example 1 showed high resolution and a high refractive index, but the coating film that was transparent after ultraviolet light irradiation was colored after post-baking and the light transmittance was reduced. did. Further, development was not possible with a 0.2% by mass developer, and a 1.0% by mass developer with a high concentration was used.
  • the resist formed from the composition of Comparative Example 2 has a high resolution, a high light transmittance even after post-baking, and an excellent refractive index of 1.55 or more, but the compositions of Examples 1 to 6 It was a low value compared to things.
  • the transparent coating film after irradiation with ultraviolet light was colored after post-baking, and a decrease in light transmittance was observed. It can be used when post-baking is not performed.
  • the composition of Reference Example 2 showed high light transmittance even after post-baking, but the resolution after development was inferior to that of Examples. Further, the refractive index was lower than those of the compositions of Examples 1 to 6.
  • Reference Example 3 had a high refractive index and high light transmittance even after post-baking, but the resolution after development was inferior to that of the Examples.
  • the cured film formed from the positive resist composition according to the present invention is excellent in terms of transparency, heat resistance and refractive index, and is a flat surface used for microlenses, liquid crystal display devices, LED display devices, and the like used for solid-state imaging devices. It is suitable as a material for forming a chemical film. Further, the solid-state imaging device using the microlens of the present invention can be miniaturized and is a material corresponding to weather resistance such as mounting on a vehicle.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 透明性、耐熱性及び屈折率に優れた特にマイクロレンズ形成用並びに平坦化膜形成用のポジ型レジスト組成物、及びそれから形成されるマイクロレンズ並びに平坦化膜を提供する。 【解決手段】 下記(A)成分、(B)成分、及び(C)成分: (A)成分:ビフェニル構造を有する単位構造を含むアルカリ可溶性ポリマー、 (B)成分:光分解しアルカリ可溶性基を生ずる有機基を有する化合物、 (C)成分:溶剤、を含むポジ型レジスト組成物。  (A)成分のアルカリ可溶性ポリマーが式(1): で表される単位構造を含み、ポリマー(A)を構成する単位構造の総数を1.0とした時に、ポリマー(A)を構成する式(1)で表される単位構造の割合n1が0.3≦n1≦1.0を満たすポリマーである上記ポジ型レジスト組成物である。

Description

ポジ型レジスト組成物及びマイクロレンズの製造方法
 本発明は、ビニルビフェニルを有する共重合体を含有するポジ型レジスト組成物及びそれから形成されるマイクロレンズ及び平坦化膜に関する。
 電荷結合素子(CCD)等の撮像素子用マイクロレンズは、主に微細なパターン形成により高精細な撮像素子を作製することが可能であり、フォトレジストによりパターンを形成する方法を用いて作製されている。この方法においては、高分子樹脂と感光剤とを含むレジスト組成物を基板上に塗布し、製膜した後、フォトリソグラフィー法でパターニングし、続いて現像することにより一つのパターンを形成して、マイクロレンズを作製する。形成されたマイクロレンズパターンは、高い透明性及び半田付け工程において高温条件に曝されるため耐熱性が求められる。さらに、マイクロレンズパターンは解像度の観点から、所望の曲率半径、及び高い屈折率を有することが求められている。
 また、液晶表示装置、LED表示装置、固体撮像素子などの光デバイスでは、カラーフィルタ等の基板表面及び固体撮像素子表面を平坦化する平坦化膜が使用される。この平坦化膜には、平坦化性、基板及び素子表面への密着性及び、光透過性(透明性)が求められ、更に基板及び素子表面が製造工程中に熱に晒されるのを防ぐため、耐熱性を有する保護膜としての働きも求められている。
 上記のようなマイクロレンズを形成するためのレジスト組成物として、ヒドロキシル基の水素原子が部分的に酸不安定基で置換されたヒドロキシスチレン、ヒドロキシビニルナフタレン又はヒドロキシアントラセンを繰り返し単位として有する重合体を用いたレジスト組成物が報告されている(例えば、特許文献1)。しかしながら、このようなレジスト組成物から形成されるパターンは、撮像素子用途において十分な耐熱性を有していない。
 一方、耐熱性の高い光学材料用高屈折率樹脂としては、4-ビニルビフェニルとラジカル重合可能なビニル系単量体の単独もしくは複数種を共重合させることにより得られる共重合体からなる光学材料用高屈折率樹脂が報告されている。(例えば、特許文献2)。しかしながら、この光学材料用高屈折率樹脂は高耐熱性、高屈折率を有しているものの、撮像素子用途において十分な解像度を有していない。
特開2005-114968号 特開平8-48725号
 本発明は以上のような事情に基づいてなされたものであり、その目的は、透明性、耐熱性及び屈折率に優れた特にマイクロレンズ形成用並びに平坦化膜形成用のポジ型レジスト組成物、及びそれから形成されるマイクロレンズ並びに平坦化膜を提供することである。
 本発明は第1観点として、下記(A)成分、(B)成分、及び(C)成分:
(A)成分:ビフェニル構造を有する単位構造を含むアルカリ可溶性ポリマー、
(B)成分:光分解し、その際アルカリ可溶性基を生ずる有機基を有する化合物、
(C)成分:溶剤、
を含むポジ型レジスト組成物に関する。
 第2観点として、(A)成分のアルカリ可溶性ポリマーが式(1):
Figure JPOXMLDOC01-appb-C000009
(式(1)中、R1はハロゲン原子、アルキル基、アルコキシ基、チオール基、シアノ基、アミノ基、アミド基、アルキルカルボニル基、チオアルキル基、又はこれらの組み合わせを表し、R2はカルボキシル基、又はヒドロキシル基を表し、R3は水素原子又はメチル基を表す。Q1は単結合、又は2価の連結基を表す。m2は0乃至5の整数、m4は0乃至4の整数であり、且つ(m2+m4)は1乃至9の整数である。m1は0≦m1≦(5-m2)を満たす整数であり、m3は0≦m3≦(4-m4)を満たす整数である。)で表される単位構造を含み、ポリマー(A)を構成する単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(1)で表される単位構造の割合n1が0.3≦n1≦1.0を満たすポリマーである第1観点に記載のポジ型レジスト組成物に関する。
 第3観点として、(A)成分のアルカリ可溶性ポリマーが式(2):
Figure JPOXMLDOC01-appb-C000010
(式(2)中、R1はハロゲン原子、アルキル基、アルコキシ基、チオール基、シアノ基、アミノ基、アミド基、アルキルカルボニル基、チオアルキル基、又はこれらの組み合わせを表し、R2はカルボキシル基、又はヒドロキシル基を表し、R3は水素原子又はメチル基を表す。Q1は単結合、又は2価の連結基を表す。m2は0乃至5の整数、m4は0乃至4の整数であり、且つ(m2+m4)は0乃至9の整数である。m1は0≦m1≦(5-m2)を満たす整数であり、m3は0≦m3≦(4-m4)を満たす整数である。)で表される単位構造、及び式(3):
Figure JPOXMLDOC01-appb-C000011
(式(3)中、R4、R5はそれぞれ水素原子、メチル基、カルボキシル基、又は炭素原子数1乃至3のアルキレンカルボキシル基を表し、Q2は単結合又は炭素原子数1乃至3のアルキレン基、又は炭素原子数6乃至20のアリーレン基を表す。)で表される単位構造を含み、ポリマー(A)を構成する全ての単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(2)で表される単位構造の割合n2、及び式(3)で表される単位構造の割合n3が、0.2≦n2≦0.8を満たし、0.1≦n3≦0.7を満たし、且つ0.3≦n2+n3≦1.0を満たすポリマーである第1観点に記載のポジ型レジスト組成物に関する。
 第4観点として、(A)成分のアルカリ可溶性ポリマーが第2観点記載の式(1)で表される単位構造、式(4):
Figure JPOXMLDOC01-appb-C000012
(式(4)中、R6及びR7はそれぞれ水素原子、メチル基、カルボキシル基、又は炭素原子数1乃至3のアルキレンカルボキシル基を表し、R8は炭素原子数1乃至10の置換又は未置換のアルキル基、炭素原子数3乃至6のエポキシ基、炭素原子数6乃至20のアリール基、又はそれらの組み合わせを表し、Q3は単結合又は炭素原子数1乃至3のアルキレン基、又は炭素原子数6乃至20のアリーレン基を表す。)で表される単位構造、及び/又は式(5):
Figure JPOXMLDOC01-appb-C000013
(式(5)中、R9及びR10はそれぞれ炭素原子数1乃至10の置換又は未置換のアルキル基、ヒドロキシル基、ハロゲン基、カルボキシル基、又は炭素原子数1乃至10のアルコキシ基を表す。)で表される単位構造を含み、ポリマー(A)を構成する全ての単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(1)で表される単位構造の割合n1、式(4)で表される単位構造の割合n4、式(5)で表される単位構造の割合n5が、0.3≦n1≦0.7を満たし、0≦n4≦0.4を満たし、0≦n5≦0.4を満たし、且つ0.3≦n1+n4+n5≦1.0を満たすポリマーである第1観点に記載のポジ型レジスト組成物に関する。
 第5観点として、(A)成分のアルカリ可溶性ポリマーが、第3観点記載の式(2)で表される単位構造と第3観点記載の式(3)で表される単位構造に、更に第4観点記載の式(4)で表される単位構造、及び/又は第4観点記載の式(5)で表される単位構造を含み、ポリマー(A)を構成する全ての単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(2)で表される単位構造の割合n2、式(3)で表される単位構造の割合n3、式(4)で表される単位構造の割合n4、及び式(5)で表される単位構造の割合n5が、0.2≦n2≦0.8を満たし、0.1≦n3≦0.7を満たし、0≦n4≦0.4を満たし、0≦n5≦0.4を満たし、且つ0.3≦n2+n3+n4+n5≦1.0を満たすポリマーである第1観点に記載のポジ型レジスト組成物に関する。
 第6観点として、(B)成分が、式(6):
Figure JPOXMLDOC01-appb-C000014
〔式(6)中、R11は水素原子又は式(7):
Figure JPOXMLDOC01-appb-C000015
(式(7)中、R13は単結合、又は-SO3-基を表し、R14は炭素原子数1乃至10のアルキル基を表し、m8は0乃至3の整数である。)で表される基を表し、R12は炭素原子数1乃至10の置換又は未置換のアルキル基、ハロゲン基、又は炭素原子数1乃至10のアルコキシ基を表し、m5は0又は1の整数である。m5が0のときは、m6は1乃至5の整数であり、m7は0≦m7≦(5-m6)を満たす整数であり、m5が1のときは、m6は1乃至7の整数であり、m7は0≦m7≦(7-m6)を満たす整数である。R11は全体のうち10乃至100モル%が上記式(7)で表される基を表す。〕で表される構造を有するものである第1観点に記載のポジ型レジスト組成物に関する。
 第7観点として、(B)成分が式(8):
Figure JPOXMLDOC01-appb-C000016
(式(8)中、R11、R12は上記式(6)で表されるものと同一であり、R15は水素原子又は炭素原子数1乃至10のアルキル基を表し、Q4は炭素原子数1乃至10のアルキレン基を表し、m10は1乃至5の整数を表し、m11は0≦m11≦(5-m10)を満たす整数であり、m14は0≦m14≦(5-m12-m13)を満たす整数であり、m9は0乃至10の整数であり、m12は0乃至1の整数であり、m13は0乃至5の整数である。R11は全体のうち10乃至100モル%が第6観点記載の式(7)で表される基を表す。)である第1観点に記載のポジ型レジスト組成物に関する。
 第8観点として、第2観点乃至第5観点記載の成分(A)及び第6観点又は第7観点に記載の成分(B)を含む第1観点に記載のポジ型レジスト組成物に関する。
 第9観点として、更に(D)成分として、(A)成分と熱架橋可能な置換基を2つ以上有する架橋性化合物を含有する第8観点に記載のポジ型レジスト組成物に関する。
 第10観点として、更に(E)成分として、界面活性剤を含有する第8観点に記載のポジ型レジスト組成物に関する。
 第11観点として、硬化後の塗膜物性が、波長633nmの光に対して屈折率1.55以上であり、波長400乃至730nmの光に対して膜厚1μmのときに透過率が80%以上である、第1観点に記載のポジ型レジスト組成物に関する。
 第12観点として、第8観点乃至第11観点に記載のポジ型レジスト組成物から形成されたマイクロレンズに関する。
 第13観点として、第12観点に記載のマイクロレンズを含む固体撮像素子に関する。
 第14観点として、第8観点乃至第11観点に記載のポジ型レジスト組成物から形成された平坦化膜に関する。
 第15観点として、第14観点に記載の平坦化膜を含む液晶表示装置に関する。
 第16観点として、第14観点に記載の平坦化膜を含むLED表示装置に関する。
 第17観点として、第8観点乃至第11観点のいずれか一つに記載のポジ型レジスト組成物を基板上に塗布し、乾燥し、露光し、そして現像する工程を含むパターン形成方法に関する。
 本発明のポジ型レジスト組成物は、ビフェニル又はその誘導体の単位構造を有するポリマーを用いることにより、耐熱性、透明性、及び屈折率の優れた塗膜及びその塗膜を熱処理した硬化膜を形成できる。また、マイクロレンズ及び平坦化膜用の材料として好適に用いることができる。
 本発明から得られる硬化膜は波長633nmの光に対して屈折率1.55以上であり、膜厚1μmのときに波長400乃至730nmの光に対して透過率80%以上である塗膜物性を有する。
 本発明のポジ型レジスト組成物より形成されるマイクロレンズは固体撮像素子の構成部材として、及び平坦化膜は液晶表示装置及びLED表示装置用の構成部材として好適に用いることができる。
 本発明の一つには、下記(A)成分、(B)成分、及び(C)成分:
(A)成分:ビフェニル構造を有する単位構造を含むアルカリ可溶性ポリマー、
(B)成分:光分解し、その際アルカリ可溶性基を生ずる有機基を有する化合物、
(C)成分:溶剤、
を含むポジ型レジスト組成物に関する。
 更に必要に応じて(D)成分:架橋性化合物、(E)成分:界面活性剤、(F)成分:密着促進剤を含有することができる。
 以下に各成分について詳述する。
<(A)成分>
 (A)成分はビフェニル構造を有する単位構造を含むアルカリ可溶性ポリマー(以下、ポリマー(A))である。
 ポリマー(A)ではビフェニル構造を有する単位構造の中にアルカリ可溶な化学基を有する場合と、ビフェニル構造を有する単位構造とは別の単位構造にアルカリ可溶な化学基を有する場合がある。
 本発明に用いられるポリマー(A)はポリスチレン換算数平均分子量が2,000乃至30,000、好ましくは2,500乃至15,000、より好ましくは3,500乃至10,000である。
 ポリマー(A)の数平均分子量が2,000未満の場合には、得られる硬化膜のパターン形成性、残膜率、及び耐熱性が低下する場合がある。一方、数平均分子量が30,000を超える場合には、ポリマー(A)の有機溶媒への溶解性の低下、ポリマー(A)を含むポジ型レジスト組成物の塗付性の低下、マイクロレンズパターン成形後にポジ型レジスト組成物がマイクロレンズパターン間に残存し解像度の低下が生じる場合がある。
 本発明のポリマー(A)は下記式(1)で表される単位構造を含む。
Figure JPOXMLDOC01-appb-C000017
 式(1)中、R1はハロゲン原子、アルキル基、アルコキシ基、チオール基、シアノ基、アミノ基、アミド基、アルキルカルボニル基、チオアルキル基、又はこれらの組み合わせを表し、R2はカルボキシル基、又はヒドロキシル基を表し、R3は水素原子又はメチル基を表す。m2は0乃至5の整数、m4は0乃至4の整数であり、且つ(m2+m4)は1乃至9の整数である。m1は0≦m1≦(5-m2)を満たす整数であり、m3は0≦m3≦(4-m4)を満たす整数である。
 ハロゲン原子としてはフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 アルキル基としては、例えば炭素原子数1乃至10のアルキル基であり、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 アルコキシ基としては、例えば炭素原子数1乃至10のアルコキシ基であり、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペントキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシルオキシ基、1-メチル-n-ペンチルオキシ基、2-メチル-n-ペンチルオキシ基、3-メチル-n-ペンチルオキシ基、4-メチル-n-ペンチルオキシ基、1,1-ジメチル-n-ブトキシ基、1,2-ジメチル-n-ブトキシ基、1,3-ジメチル-n-ブトキシ基、2,2-ジメチル-n-ブトキシ基、2,3-ジメチル-n-ブトキシ基、3,3-ジメチル-n-ブトキシ基、1-エチル-n-ブトキシ基、2-エチル-n-ブトキシ基、1,1,2-トリメチル-n-プロポキシ基、1,2,2,-トリメチル-n-プロポキシ基、1-エチル-1-メチル-n-プロポキシ基、及び1-エチル-2-メチル-n-プロポキシ基等が挙げられる。
 アミノ基としては-NH2、以外に例えば炭素原子数1乃至10を有するアミノ基を用いることが可能であり、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基、i-プロピルアミノ基、シクロプロピルアミノ基、n-ブチルアミノ基、i-ブチルアミノ基、s-ブチルアミノ基、t-ブチルアミノ基、シクロブチルアミノ基、1-メチル-シクロプロピルアミノ基、2-メチル-シクロプロピルアミノ基、n-ペンチルアミノ基、1-メチル-n-ブチルアミノ基、2-メチル-n-ブチルアミノ基、3-メチル-n-ブチルアミノ基、及び1,1-ジメチル-n-プロピルアミノ基等が挙げられる。
 アミド基としては、例えば炭素原子数1乃至10を有するアミド基を用いることが可能であり、ヘキサンアミド基、スクシンアミド基、ベンゼンスルホンアミド基、N-ヒドロキシアセトアミド基等が挙げられる。
 アルキルカルボニル基としては、例えば炭素原子数1乃至10のアルキルカルボニル基であり、メチルカルボニル基、エチルカルボニル基、n-プロピルカルボニル基、i-プロピルカルボニル基、シクロプロピルカルボニル基、n-ブチルカルボニル基、i-ブチルカルボニル基、s-ブチルカルボニル基、t-ブチルカルボニル基、シクロブチルカルボニル基、1-メチル-シクロプロピルカルボニル基、2-メチル-シクロプロピルカルボニル基、n-ペンチルカルボニル基、1-メチル-n-ブチルカルボニル基、2-メチル-n-ブチルカルボニル基、3-メチル-n-ブチルカルボニル基、1,1-ジメチル-n-プロピルカルボニル基、1,2-ジメチル-n-プロピルカルボニル基、2,2-ジメチル-n-プロピルカルボニル基、1-エチル-n-プロピルカルボニル基、シクロペンチルカルボニル基、1-メチル-シクロブチルカルボニル基、2-メチル-シクロブチルカルボニル基、3-メチル-シクロブチルカルボニル基、1,2-ジメチル-シクロプロピルカルボニル基、2,3-ジメチル-シクロプロピルカルボニル基、1-エチル-シクロプロピルカルボニル基、2-エチル-シクロプロピルカルボニル基、n-ヘキシルカルボニル基、1-メチル-n-ペンチルカルボニル基、2-メチル-n-ペンチルカルボニル基、3-メチル-n-ペンチルカルボニル基、4-メチル-n-ペンチルカルボニル基、1,1-ジメチル-n-ブチルカルボニル基、1,2-ジメチル-n-ブチルカルボニル基、1,3-ジメチル-n-ブチルカルボニル基、2,2-ジメチル-n-ブチルカルボニル基、2,3-ジメチル-n-ブチルカルボニル基、3,3-ジメチル-n-ブチルカルボニル基、1-エチル-n-ブチルカルボニル基、2-エチル-n-ブチルカルボニル基、1,1,2-トリメチル-n-プロピルカルボニル基、1,2,2-トリメチル-n-プロピルカルボニル基、1-エチル-1-メチル-n-プロピルカルボニル基、1-エチル-2-メチル-n-プロピルカルボニル基、シクロヘキシルカルボニル基、1-メチル-シクロペンチルカルボニル基、2-メチル-シクロペンチルカルボニル基、3-メチル-シクロペンチルカルボニル基、1-エチル-シクロブチルカルボニル基、2-エチル-シクロブチルカルボニル基、3-エチル-シクロブチルカルボニル基、1,2-ジメチル-シクロブチルカルボニル基、1,3-ジメチル-シクロブチルカルボニル基、2,2-ジメチル-シクロブチルカルボニル基、2,3-ジメチル-シクロブチルカルボニル基、2,4-ジメチル-シクロブチルカルボニル基、3,3-ジメチル-シクロブチルカルボニル基、1-n-プロピル-シクロプロピルカルボニル基、2-n-プロピル-シクロプロピルカルボニル基、1-i-プロピル-シクロプロピルカルボニル、2-i-プロピル-シクロプロピルカルボニル基、1,2,2-トリメチル-シクロプロピルカルボニル基、1,2,3-トリメチル-シクロプロピルカルボニル基、2,2,3-トリメチル-シクロプロピルカルボニル基、1-エチル-2-メチル-シクロプロピルカルボニル基、2-エチル-1-メチル-シクロプロピルカルボニル基、2-エチル-2-メチル-シクロプロピルカルボニル基及び2-エチル-3-メチル-シクロプロピルカルボニル基等が挙げられる。
 チオアルキル基としては、例えば炭素原子数1乃至10のチオアルキル基であり、エチルチオ基、ブチルチオ基、ヘキシルチオ基、オクチルチオ基等が挙げられる。
 式(1)においてQ1は単結合、又は2価の連結基を表す。2価の連結基としてはアルキレン基、エステル基、エーテル基、アミド基、又はこれらの組み合わせである。アルキレン基としては、例えば上記アルキル基に対応する2価の有機基を挙げることができる。Q1は単結合であることが好ましい。
 式(1)で表される単位構造を導入するモノマーとしては例えばビニルビフェニル、及びその誘導体を用いることができる。
 ポリマー(A)として、ポリマー(A)を構成する単位構造の総数を1.0としたときに、式(1)で表される単位構造の数n1の割合が0.3≦n1≦1.0となるポリマー(A-1)を用いることができる。
 本発明のポリマー(A)として下記式(2)で表される単位構造及び下記式(3)で表される単位構造を含むことができる。
Figure JPOXMLDOC01-appb-C000018
 式(2)中、R1、R2、R3、m1、m2、m3、及びm4は式(1)と同一の例示を用いることができる。
 式(2)で表される単位構造を導入するためのモノマー成分として、ビニルビフェニル、及びその誘導体等が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式(3)中、R4、R5はそれぞれ水素原子、メチル基、カルボキシル基、又は炭素原子数1乃至3のアルキレンカルボキシル基等を表す。
 アルキレンカルボキシル基としては、メチレンカルボキシル基(-CH2COOH)、エチレンカルボキシル基(-C24COOH)、プロピレンカルボキシル基(-C36COOH)、イソプロピレンカルボキシル基(-CH2CH(CH3)COOH)等が挙げられる。
 Q2としては単結合又は炭素原子数1乃至3のアルキレン基、又は炭素原子数6乃至20のアリーレン基が挙げられる。
 炭素原子数1乃至3のアルキレン基としてはメチレン基、エチレン基、プロピレン基、イソプロピレン基が挙げられる。
 アリーレン基としてはフェニレン基、o-メチルフェニレン基、m-メチルフェニレン基、p-メチルフェニレン基、o-クロルフェニレン基、m-クロルフェニレン基、p-クロルフェニレン基、o-フルオロフェニレン基、p-フルオロフェニレン基、o-メトキシフェニレン基、p-メトキシフェニレン基、p-ニトロフェニレン基、p-シアノフェニレン基、α-ナフチレン基、β-ナフチレン基、1-アントリレン基、2-アントリレン基、9-アントリレン基等が挙げられる。
 式(3)で表される単位構造を導入するためのモノマー成分として、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、ビニル安息香酸等が挙げられる。
 ポリマー(A)として、ポリマー(A)を構成する全ての単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(2)で表される単位構造の割合n2、式(3)で表される単位構造の割合n3が、0.2≦n2≦0.8を満たし、0.1≦n3≦0.7を満たし、且つ0.3≦n2+n3≦1.0を満たすポリマー(A-2)を用いることができる。式(3)で表される単位構造がアルカリ架橋性であるカルボキシル基を有しているため、式(2)で表される単位構造中の(m2+m4)は0乃至9の整数であり、カルボキシル基を有する場合と有しない場合を挙げることができる。
 本発明のポリマー(A)は上記式(1)で表される単位構造、下記式(4)で表される単位構造、及び/又は下記式(5)で表される単位構造を含むことができる。
Figure JPOXMLDOC01-appb-C000020
 式(4)中、R6及びR7はそれぞれ水素原子、メチル基、カルボキシル基、又は炭素原子数1乃至3のアルキレンカルボキシル基を表す。炭素原子数1乃至3のアルキレンカルボキシル基は上述の例示を用いることができる。
 R8は炭素原子数1乃至10の置換又は未置換のアルキル基、炭素原子数3乃至6のエポキシ基、炭素原子数6乃至20のアリール基、又はそれらの組み合わせを表す。アルキル基は上述の例示を挙げることができる。
 炭素原子数3乃至6のエポキシ基としてはグリシジル基、αメチルグリシジル基、βメチルグリシジル基、βエチルグリシジル基、βプロピルグリシジル基等が挙げられる。
 炭素原子数6乃至20のアリール基としては、アリ-ル基としては、フェニル基、o-メチルフェニル基、m-メチルフェニル基、p-メチルフェニル基、o-クロルフェニル基、m-クロルフェニル基、p-クロルフェニル基、o-フルオロフェニル基、p-フルオロフェニル基、o-メトキシフェニル基、p-メトキシフェニル基、p-ニトロフェニル基、p-シアノフェニル基、α-ナフチル基、β-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基及び9-フェナントリル基が挙げられる。
 Q3は単結合又は炭素原子数1乃至3のアルキレン基、又は炭素原子数6乃至20のアリーレン基を表す。これらはQ2と同一のものを例示することができる。
 式(4)で表される単位構造を導入するためのモノマーとして、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、sec-ブチルメタクリレート、t-ブチルメタクリレートなどのアルキルエステル類、メチルアクリレート、イソプロピルアクリレートなどのアルキルエステル類、シクロヘキシルメタクリレート、2-メチルシクロヘキシルメタクリレート、ジシクロペンタニルオキシエチルメタクリレート、イソボロニルメタクリレートなどの環状アルキルエステル類、フェニルメタクリレート、ベンジルメタクリレートなどのアリールエステル類、マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチルなどのジカルボン酸ジエステル、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシエチルメタクリレートなどのヒドロキシアルキルエステル類、アクリル酸グリシジル、メタクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、アクリル酸-3,4-エポキシブチル、メタクリル酸-3,4-エポキシブチル、アクリル酸-6,7-エポキシヘプチル、メタクリル酸-6,7-エポキシヘプチル、α-エチルアクリル酸-6,7-エポキシヘプチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル等が挙げられる。
Figure JPOXMLDOC01-appb-C000021
 式(5)中、R9及びR10はそれぞれ炭素原子数1乃至10の置換又は未置換のアルキル基、炭素原子数1乃至6のヒドロキシアルキル基、ヒドロキシル基、ハロゲン基、カルボキシル基、炭素原子数1乃至10のアルコキシ基を表す。炭素原子数1乃至6のアルキル基及び炭素原子数1乃至10のアルコキシ基は上記式(1)に記載と同様のものを用いることができる。
 式(5)で表される単位構造を導入するためのモノマーとして、ビシクロ[2.2.1]ヘプト-2-エン、5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシメチルビシクロ[2.2.1]ヘプト-2-エン、5-(2’-ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-2-エン、5-メトキシビシクロ[2.2.1]ヘプト-2-エン、5-エトキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジヒドロキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(ヒドロキシメチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(2’-ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジメトキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジエトキシビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシ-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシ-5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシメチル-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-6-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-6-エチルビシクロ[2.2.1]ヘプト-2-エン、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン無水物(ハイミック酸無水物)、5-t-ブトキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-シクロヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-フェノキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(t-ブトキシカルボニル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(シクロヘキシルオキシカルボニル)ビシクロ[2.2.1]ヘプト-2-エン等のビシクロ不飽和化合物類が挙げられる。
 ポリマー(A)として、ポリマー(A)を構成する全ての単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(1)で表される単位構造の割合n1、式(4)で表される単位構造の割合n4、及び式(5)で表される単位構造の割合n5が、0.3≦n1≦0.7を満たし、0≦n4≦0.4を満たし、0≦n5≦0.4を満たし、且つ0.3≦n1+n4+n5≦1.0を満たすポリマー(A-3)を用いることができる。
 本発明のポリマー(A)が、上記式(2)で表される単位構造と上記式(3)で表される単位構造に、更に上記式(4)で表される単位構造及び/又は上記式(5)で表される単位構造を含むことができる。ポリマー(A)として、ポリマー(A)を構成する全ての単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(2)で表される単位構造の割合n2、式(3)で表される単位構造の割合n3、式(4)で表される単位構造の割合n4、及び式(5)で表される単位構造の割合n5が、0.2≦n2≦0.8を満たし、0.1≦n3≦0.7を満たし、0≦n4≦0.4を満たし、0≦n5≦0.4を満たし、且つ0.3≦n2+n3+n4+n5≦1.0を満たすポリマー(A-4)を用いることができる。
 本発明に用いられるポリマー(A-1)の具体例としては、例えば以下に例示される。
Figure JPOXMLDOC01-appb-C000022
 本発明に用いられるポリマー(A-2)の具体例としては、例えば以下に例示される。
Figure JPOXMLDOC01-appb-C000023
 本発明に用いられるポリマー(A-3)の具体例としては、例えば以下に例示される。
Figure JPOXMLDOC01-appb-C000024
 本発明に用いられるポリマー(A-4)の具体例としては例えば以下に例示される。
Figure JPOXMLDOC01-appb-C000025
 本発明に用いられるポリマー(A)は、上記以外に任意の不飽和モノマーを共重合させることができる。その不飽和モノマーとしては、例えばアクリルアミド化合物、メタクリル酸アミド化合物、スチレン化合物、マレイミド化合物等が挙げられる。
 アクリルアミド化合物としては、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-ベンジルアクリルアミド、N-フェニルアクリルアミド、及びN,N-ジメチルアクリルアミド等が挙げられる。
 メタクリル酸アミド化合物としては、メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、N-ベンジルメタクリルアミド、N-フェニルメタクリルアミド、及びN,N-ジメチルメタクリルアミド等が挙げられる。
 スチレン化合物としては、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン、及びヒドロキシスチレン等が挙げられる。
 マレイミド化合物としては、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。
 本発明に用いるポリマー(A)を得る方法は特には限定されない。一般的には、前記ポリマー(A)を得るために用いるモノマーを重合溶媒中でラジカル重合することにより製造される。また、必要に応じて、モノマーの官能基を保護した状態でこれらを重合し、その後、脱保護処理を行ってもよい。
 ラジカル重合触媒としては例えばアゾビスイソブチロニトリル、アゾビスイソ酪酸ジメチル等のアゾ系開始剤を用いることができる。開始剤はモノマーの全量に対して例えば0.1モル%乃至20モル%の範囲で用いることができる。
 上記の重合溶媒としては、詳しくは下記<(C)成分>にあげられた溶媒をもちいることができる。
 <(B)成分>
 (B)成分である光分解し、その際アルカリ可溶性基を生ずる有機基を有する化合物としては、式(6)の部分構造を有する1,2-ナフトキノンジアジド化合物を用いることができる。
 (B)成分として1,2-ナフトキノンジアジド化合物を含むポジ型レジスト組成物から形成された塗膜をフォトマスクを用いて露光し現像した際、露光部の1,2-ナフトキノンジアジド基は光照射を受けてケテンに変換される。生じたケテンは反応性が高いため、水分と反応し、カルボキシル基を生成する。即ち、露光部において1,2-ナフトキノンジアジド化合物を含む塗膜は、1,2-ナフトキノンジアジド基が露光によりインデンカルボン酸基を生じるために、アルカリ現像液に可溶になる。そのため、露光部の塗膜と未露光部の塗膜とではアルカリ現像液に対する溶解性に差異が生じるため、パターンを形成することができる。また、パターン形状に対する定在波の影響を抑制するため、又は後述する架橋性化合物(D)とポリマー(A)、1,2-ナフトキノンジアジド化合物(B)との架橋度合いを調節するために、露光後加熱(PEB)を行うことも出来る。
 (B)成分は式(6)で表される部分構造を有することができる。
Figure JPOXMLDOC01-appb-C000026
 式(6)中、
 R11は水素原子又は下記式(7)で表される基を表す。R12は環に結合する置換基を表し、炭素原子数1乃至10の置換又は未置換のアルキル基、ハロゲン基、又は炭素原子数1乃至10のアルコキシ基を表し、これらは上述の例示と同様のものを表すことができる。m5は0又は1である。m5が0のときはベンゼン環を表し、m5が1のときはナフタレン環を表す。m5が0のときは、m6は1乃至5の整数であり、m7は0≦m7≦(5-m6)を満たす整数であり、m5が1のときは、m6は1乃至7の整数であり、m7は0≦m7≦(7-m6)を満たす整数である。
Figure JPOXMLDOC01-appb-C000027
 式(7)中、R13は単結合、又は-SO3-基を表し、R14は炭素原子数1乃至10のアルキル基を表し、上述のものと同様のものを使用できる。m8は0乃至3の整数である。
 また、式(7)で表される基を導入する化合物として、例えば5-ヒドロキシ-1,2-ナフトキノンジアジドを用いた場合には、R13は単結合を表し、例えば1,2-ナフトキノンジアジド-5-スルホニルクロライド又は1,2-ナフトキノンジアジド-4-スルホニルクロライドを用いた場合には、R13は-SO3-基を表す。
 上記化合物(B)において、R11は全体のうち10乃至100モル%が上記式(7)で表される1,2-ナフトキノンジアジド基又はその誘導体であり、好ましくは20乃至95モル%である。
 また、化合物(B)としては、式(8)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000028
 式(8)中、R11、R12は式(6)であらわされるものと同一であり、R15は水素原子又は炭素原子数1乃至10のアルキル基を表し、Q4は炭素原子数1乃至10のアルキレン基を表し、m10は1乃至5の整数であり、m11は0≦m11≦(5-m10)を満たす整数であり、m14は0≦m14≦(5-m12-m13)を満たす整数であり、m9は0乃至10の整数であり、m12は0乃至1の整数であり、m13は0乃至5の整数である。
 式(8)で表される化合物中に存在する全ての-OR11基中で、R11は全体のうち10乃至100モル%が式(7)で表される1,2-ナフトキノンジアジド基又はその誘導体であり、好ましくは50乃至100モル%である。
 Q4の炭素原子数1乃至10のアルキレン基は上述のアルキル基に対応する2価の炭化水素基を表し、直鎖又は分岐鎖のアルキレン基が用いられる。例えば以下に例示されるものを用いることができる。
Figure JPOXMLDOC01-appb-C000029
 以下に化合物(B)の具体例を例示する。ただし、式中D(即ちR11)は水素原子又は式(7)で表される1,2-ナフトキノンジアジド基又はその誘導体を表す。
Figure JPOXMLDOC01-appb-C000030
 本発明のポジ型レジスト組成物の固形分中における(B)成分の含有量は、1乃至90質量%、好ましくは5乃至50質量%、更に好ましくは10乃至30質量%である。(B)成分の含有量が1質量%未満の場合、ポジ型レジスト組成物より形成された硬化膜の露光部と未露光部のアルカリ現像液への溶解度差が小さくなり、現像によるパターニングが困難になる場合がある。また、90質量%を超える場合には短時間の露光で(B)成分(例えば1,2-ナフトキノンジアジド化合物)が充分に分解されないため感度が低下する場合があり、また(B)成分が光を吸収してしまい硬化膜の透明性が低下してしまう場合がある。
 <(C)成分>
 (C)成分の溶剤は、(A)成分及び(B)成分を溶解し、且つ所望により添加される後述の(D)成分である架橋性化合物、(E)成分である界面活性剤、(F)成分である密着促進剤及びその他の添加剤を溶解するものであり、斯様な溶解能を有する溶剤であれば、その種類及び構造などは特に限定されるものではない。
 斯様な(C)成分の溶剤としては、例えばメタノール、エタノール、プロパノール、ブタノール等のアルコール類、テトラヒドロフラン、ジオキサン等の環状エーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン等の極性溶媒、酢酸エチル、酢酸ブチル、乳酸エチル等のエステル類、3-メトキシプロピオン酸メチル、2-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、2-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、2-エトキシプロピオン酸エチル等のアルコキシエステル類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル等のエーテル類、グリコールジアルキルエステル類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル等のグリコールモノアルキルエーテル類、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート、エチルセロソルブアセテート等のグリコールモノアルキルエーテルエステル類、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン、2-ヘプタノン等のケトン類を挙げることができる。
 これらの溶媒は単独で、又は2種類以上を組み合わせて用いることもできる。
 これらの中でも作業環境への安全性観点から、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチルが好ましい。
<(D)成分>
 (D)成分は、(A)成分に対して架橋可能な置換基を2つ以上有する架橋性化合物であり、相溶性に問題がない限り限定されるものではない。(D)成分の架橋剤としては、イソシアネート基、エポキシ基、ヒドロキシメチルアミノ基、アルコキシメチルアミノ基等の架橋反応可能な基を二つ以上、好ましくは2乃至6個、有する架橋性化合物を使用することができる。
 架橋性化合物として、下記で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000031
 式(D-1)中、m15は2乃至10の整数、m16は0乃至4の整数であり、R15はm15価の有機基を表す。
 特に、m15が2である式(D-1)で表される、シクロヘキセンオキサイド構造を有する化合物が好ましい。その具体例としては、下記式(D-2)及び式(D-3)で表される化合物
Figure JPOXMLDOC01-appb-C000032
及び、以下に示す市販品等が挙げられる。
 市販品としては、エポリードGT-401、同GT-403、同GT-301、同GT-302、セロキサイド2021、セロキサイド3000(商品名、以上ダイセル化学工業(株)製)、脂環式エポキシ樹脂であるデナコールEX-252(商品名、ナガセケムッテクス(株)製)、CY175、CY177、CY179(商品名、以上CIBA-GEIGY A.G製)、アラルダイトCY-182、同CY-192、同CY-184(商品名、以上CIBA-GEIGY A.G製)、エピクロン200、同400(商品名、以上大日本インキ化学工業(株)製)、エピコート871、同872(商品名、以上油化シェルエポキシ(株)製)、等を挙げることができる。
 これらのうち、耐熱性、耐溶剤性、耐長時間焼成耐性等の耐プロセス性、および透明性の観点からシクロヘキセンオキサイド構造を有する、例えば、式(D-2)及び式(D-3)で表される化合物、エポリードGT-401、同GT-403、同GT-301、同GT-302、セロキサイド2021、セロキサイド3000(商品名、以上ダイセル化学工業(株)製)が好ましい。
 また、(D)成分の架橋性化合物として、下記式(D-4)の部分構造を有する化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000033
 式中、m17は2乃至10の整数であり、R16はm17価の有機基を表す。式(D-4)で表されるオキシラン構造を有する化合物であれば特に限定されない。
 その具体例としては、下記式(D-5)で表される化合物、
Figure JPOXMLDOC01-appb-C000034
及び以下の市販品等があげられる。
 市販品としては、ビスフェノールA型エポキシ樹脂としては、例えば、「エピコート828」、「エピコート834」、「エピコート1001」、「エピコート1004」(商品名、ジャパンエポキシレジン社製)、「エピクロン850」、「エピクロン860」、「エピクロン4055」(商品名、大日本インキ化学工業(株)製)等が挙げられる。ビスフェノールF型エポキシ樹脂としては、例えば、「エピコート807」(商品名、ジャパンエポキシレジン(株)製)、「エピクロン830」(商品名、大日本インキ化学工業(株)製)等が挙げられる。フェノールノボラック型エポキシ樹脂としては、例えば、「エピクロンN-740」、「エピクロンN-770」、「エピクロンN-775」(商品名、大日本インキ化学工業(株)製)、「エピコート152」、「エピコート154」(商品名、ジャパンエポキシレジン(株)製)等がげられる。クレゾールノボラック型エポキシ樹脂としては、例えば、「エピクロンN-660」、「エピクロンN-665」、「エピクロンN-670」、「エピクロンN-673」、「エピクロンN-680」、「エピクロンN-695」、「エピクロンN-665-EXP」、「エピクロンN-672-EXP」(商品名、大日本インキ化学工業(株)製)等が挙げられる。グリシジルアミン型エポキシ樹脂としては、例えば、「エピクロン430」、「エピクロン430-L」(商品名、大日本インキ化学工業(株)製)、TETRAD-C」、「TETRAD-X」(商品名、三菱ガス化学(株)製)、「エピコート604」、「エピコート630」(商品名、ジャパンエポキシレジン(株)製)、「スミエポキシELM120」、「スミエポキシELM100」、「スミエポキシELM434」、「スミエポキシELM434HV」(商品名、住友化学工業(株)製)、「エポトートYH-434」、「エポトートYH-434L」(商品名、東都化成(株)製)、「アラルダイトMY-720」(商品名、旭チバ(株)製)等を挙げることができる。
 また、(D)成分の架橋性化合物として、下記式(D-6)で表される化学基を有する化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000035
式中、R16は炭素原子数が1乃至6のアルキル基又は水素原子を表す。
 炭素原子数が1乃至6のアルキル基としてメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基等を挙げることができる。
 式(D-6)で表される化学基を有する化合物であれば特に限定されないが、特に好ましくはヒドロキシメチル基又はアルコキシメチル基等の1価有機基が窒素原子に結合する化合物、すなわちN-ヒドロキシメチル基又はN-アルコキシメチル基を含有する化合物である。その具体例としては、下記式(D-7)、下記式(D-8)で表される化合物、及び以下に示す市販品等が挙げられる。
Figure JPOXMLDOC01-appb-C000036
 具体例としては、ヘキサメトキシメチルメラミン(D-7)、テトラメトキシメチルベンゾグアナミン、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(D-8)、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素、1,1,3,3-テトラキス(メトキシメチル)尿素、1,3-ビス(ヒドロキシメチル)-4,5-ジヒドロキシ-2-イミダゾリノン、及び1,3-ビス(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリノン等が挙げられる。
 市販品としては、メトキシメチルタイプメラミン化合物としては、例えばサイメル300、サイメル301、サイメル303、サイメル350(三井サイテック(株)製)が挙げられる。ブトキシメチルタイプメラミン化合物としては、例えばマイコート506、マイコート508(三井サイテック(株)製)が挙げられる。グリコールウリル化合物としては、例えばサイメル1170、パウダーリンク1174(三井サイテック(株)製)が挙げられる。メチル化尿素樹脂としてUFR65、ブチル化尿素樹脂としては、例えばUFR300、U-VAN10S60、U-VAN10R、U-VAN11HV(三井サイテック(株)製)が挙げられる。尿素/ホルムアルデヒド系樹脂としては、例えばベッカミンJ-300S、ベッカミンP-955、ベッカミンN(大日本インキ化学工業(株)製)等が挙げられる。
 また、(D)成分の架橋性化合物として、N-ヒドロキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド、N-エトキシメチルアクリルアミド及びN-ブトキシメチルメタクリルアミド等のヒドロキシメチル基又はアルコキシメチル基で置換されたアクリルアミド化合物又はメタクリルアミド化合物を使用して製造されるポリマーを用いることができる。
 そのようなポリマーとしては、例えば、ポリ(N-ブトキシメチルアクリルアミド)、N-ブトキシメチルアクリルアミドとスチレンの共重合体、N-ヒドロキシメチルメタクリルアミドとメチルメタクリレートの共重合体、N-エトキシメチルメタクリルアミドとベンジルメタクリレートの共重合体、及びN-ブトキシメチルアクリルアミドとベンジルメタクリレートと2-ヒドロキシプロピルメタクリレートの共重合体等を挙げることができる。
 上記架橋性化合物は、一種のみ又は二種以上の化合物を組み合わせて用いることができる。
 上記(D)成分である架橋性化合物の添加量は、ポリマー(A)の100質量部に対して3乃至50質量部、好ましくは7乃至40質量部、より好ましくは10乃至30質量部である。架橋性化合物の含有量が3質量部より少ない場合には、架橋性化合物によって形成される架橋の密度が十分ではないため、パターン形成後の耐熱性、耐溶剤性、長時間焼成耐性等の耐プロセス性を向上させる効果が十分に得られない場合がある。一方、50質量部を超える場合には、未架橋の架橋性化合物が存在するために、解像度の低下、パターン形成後の硬化膜の耐熱性、耐溶剤性、長時間焼成耐性等の耐プロセス性の低下、また、ポジ型レジスト組成物の保存安定性の低下が生じる場合がある。
 <(E)成分>
 (E)成分は界面活性剤である。本発明では塗布性を向上させる目的で界面活性剤を添加しても良い。このような界面活性剤は、フッ素系界面活性剤、シリコーン系界面活性剤、ノニオン系界面活性剤など特に限定されない。
(E)成分として、前記界面活性剤のうち1種又は2種類以上を組み合わせて用いることができる。
 これらの界面活性剤の中で、塗布性改善効果の高さからフッ素系界面活性剤が好ましい。フッ素系界面活性剤の具体例としては、エフトツプEF301、EF303、EF352(商品名、(株)トーケムプロダクツ製)、メガフアツクF171、F173、R-30、R-08、R-90、BL-20、F-482(商品名、大日本インキ化学工業(株)製)、フロラードFC430、FC431(商品名、住友スリーエム(株)製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(商品名、旭硝子(株)製)等が挙げられるが、これらに限定されるものではない。
 本発明のポジ型レジスト組成物における(E)成分の添加量は、(A)成分100質量部に対して、0.01乃至5質量部、好ましくは0.01乃至3質量部、より好ましくは0.01乃至2質量部である。界面活性剤の添加量が5質量部よりも多いと塗膜にムラが起こり易く、0.01質量部よりも少ない場合には、塗膜にストリエーション等が発生し易くなる。
 <(F)成分>
 (F)成分は密着促進剤である。本発明のポジ型レジスト組成物において、現像後の基板との密着性を向上させる目的で、密着促進剤を添加しても良い。
 このような密着促進剤としてはトリメチルクロロシラン、ジメチルビニルクロロシラン、メチルジフエニルクロロシラン、クロロメチルジメチルクロロシラン等のクロロシラン類、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルビニルエトキシシラン、ジフエニルジメトキシシラン、フエニルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、N,N’-ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール等のシラザン類、ビニルトリクロロシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-(N-ピペリジニル)プロピルトリメトキシシラン等のシラン類、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2-メルカプトベンズイミダゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン等の複素環状化合物、1,1-ジメチルウレア、1,3-ジメチルウレア等の尿素、又はチオ尿素化合物を挙げることができる。
 (F)成分として、前記密着促進剤のうち1種又は2種類以上を組み合わせて用いることができる。これらの密着促進剤の添加量は、ポリマー(A)の100質量部に対して、通常、20質量部以下、好ましくは0.01乃至10質量部、より好ましくは0.5乃至10質量部である。20質量部より多く用いると塗膜の耐熱性が低下する場合があり、また、0.1質量部未満では密着促進剤の十分な効果を得られない場合がある。
 その他の添加剤として、更に必要に応じて顔料、染料、保存安定剤、消泡剤や多価フェノール、多価カルボン酸等の溶解促進剤等を添加しても良い。
 <ポジ型レジスト組成物>
 本発明のポジ型レジスト組成物は、(A)成分のビフェニル構造を有する単位構造を含むアルカリ可溶性ポリマー、(B)成分の光分解しアルカリ可溶性基を生ずる有機基を有する化合物及び(C)成分の溶剤を含有し、且つ、それぞれ所望により、(D)成分の架橋性化合物、(E)成分の界面活性剤、(F)成分の密着促進剤及びその他の添加剤のうち1種以上を更に含有することができる。
 就中、本発明のポジ型レジスト組成物の好ましい例は、以下のとおりである。
 [1]:ポジ型レジスト組成物中の固形分が3乃至50質量%であって、(A)成分の含有量が固形分中10乃至90質量部であり、(B)成分の含有量が固形分中1乃至90質量%であり、これらが(C)成分に溶解されたポジ型レジスト組成物。
 [2]:上記[1]の組成物において、更に(D)成分を(A)成分100質量部に基づいて、3乃至50質量部含有するポジ型レジスト組成物。
 [3]:上記[1]又は[2]の組成物において、更に(E)成分を(A)成分100質量部に基づいて、0.01乃至5質量部含有するポジ型レジスト組成物。
 [4]:上記[1]、[2]又は[3]の組成物において、更に(F)成分を(A)成分100質量部に基づいて、20質量部以下含有するポジ型レジスト組成物。
 本発明のポジ型レジスト組成物における固形分の割合は、各成分が均一に溶剤に溶解している限り、特に限定されるものではないが、例えば3乃至50質量%、好ましくは5乃至35質量%、更に好ましくは7乃至30質量%である。固形分とはポジ型レジスト組成物より(C)成分の溶剤を除去した残りの成分の割合である。
 また、固形分中で(A)成分の含有量は、10乃至90質量%、好ましくは40乃至90質量%、更に好ましくは50乃至80質量%である。(A)成分の含有量が10質量部未満だと、ポジ型レジスト組成物より形成された塗膜及び硬化膜が膜として機能するのに十分な強度を有さない場合がある。また、(A)成分の含有量が90質量%より多いと、露光及び現像した際に十分なパターニングを行えるだけの(B)成分を含有できない場合がある。
 本発明のポジ型レジスト組成物の調製方法は、特に限定されないが、その調製方法としては、例えば、(A)成分を(C)成分に溶解し、この溶液に(B)成分を所定の割合で混合し、均一な溶液とする方法、あるいは、この調製方法の適当な段階において、必要に応じて(D)成分、(E)成分、(F)成分及びその他の添加剤を更に添加して混合する方法が挙げられる。
 本発明のポジ型レジスト組成物の調製にあたっては、(C)成分中における重合反応によって得られるポリマー(A)の溶液をそのまま使用することができ、この場合、このポリマー(A)の溶液に、前記と同様に(B)成分などを入れて均一な溶液とする際に、濃度調整を目的として更に(C)成分を追加投入してもよい。このとき、ポリマー(A)の形成過程で用いられる(C)成分と、ポジ型レジスト組成物の調製時に濃度調整のために用いられる(C)成分とは同一であっても、異なっていても良い。
 <マイクロレンズ及び平坦化膜>
 本発明では、固体撮像素子において、基板上に形成されたフォトダイオード(光感知素子)に、層間絶縁層が形成され、その上に保護膜が形成され、その上にR/G/Bからなるカラーフィルタ層が形成され、このカラーフィルタ層上に平坦化膜が形成され、さらにその上にマイクロレンズが形成される。
 本発明のポジ型レジスト組成物は前記平坦化膜及びマイクロレンズの形成のために使用できる。
 撮像素子の1種であるCMOSイメージセンサーは照射される光を感知するフォトダイオードと、それを電気信号に変換する部分とから構成される。フォトダイオードの受光量が大きいほど、CMOSイメージセンサーの光に対する感度は良くなる。この受光量を高める集光技術の一つにマイクロレンズを使用する方法がある。フォトダイオードの上部に光透過率の高い物質で凸状マイクロレンズを設置し、そのマイクロレンズにより入射光の経路を屈折させることで多くの光をフォトダイオード上に集光させることが可能となる。この場合、マイクロレンズの光軸と平行な光がマイクロレンズにより屈折し光軸上の所定位置で焦点を結び、得られた光学映像を電気信号に変換する。
 撮像素子に使用されるマイクロレンズには透明性が高く、屈折率の高い材料が求められる。また、マイクロレンズは集光率を高めるために、集束された光の焦点を考慮して曲率、形成された高さなどの因子を調節する。このようなマイクロレンズの形成にはポジ型レジスト組成物を用いる。即ち、平坦化膜上にポジ型レジスト組成物を塗布して、乾燥させ、ポジ型レジスト層を形成し、露光後に現像することによりポジ型レジストパターンを形成する。その後、加熱等の硬化処理により凸状マイクロレンズが形成される。
 また、固体撮像素子及びイメージセンサーのマイクロレンズの下層に存在する平坦化膜も、均一な面を形成する事によりマイクロレンズの均一な光軸形成にとって重要な役割を担う。そしてよりフォトダイオードに集光させるために、透明性及び屈折率の優れた平坦化膜が求められている。
 また、液晶表示装置及びLED表示装置において、基板のカラーフィルタあるいはブラックマトリックス樹脂層上に保護膜の役割も果たす平坦化膜が形成される。
 本発明のポジ型レジスト組成物を、ガラス基板、シリコンウェハー、酸化膜、窒化膜、アルミニウムやモリブデンやクロムなどの金属が被覆された基板などの基材上に回転塗布、流し塗布、ロール塗布、スリット塗布、スリット塗布に続く回転塗布、インクジェット塗布などによって塗布した後、ホットプレートやオーブン等で予備乾燥して塗膜を形成することができる。その際、予備乾燥は、温度80℃乃至130℃で30乃至600秒間の条件とすることが好ましいが、必要に応じて適宜条件を選択することができる。
 上記で得られた塗膜上に、所定のパターンを有するマスクを装着して紫外線等の光を照射し、アルカリ現像液で現像することで、露光部が洗い出されて端面のシャープなレリーフパターンが得られる。
 この際、使用される現像液はアルカリ水溶液であれば特に限定されない。その具体例としては、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウムなどのアルカリ金属水酸化物の水溶液、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、コリンなどの水酸化四級アンモニウムの水溶液、エタノールアミン、プロピルアミン、エチレンジアミンなどのアミン水溶液を挙げることができる。
 前記アルカリ現像液は10質量%以下の水溶液であることが一般的で、好ましくは0.1乃至3.0質量%の水溶液などが用いられる。さらに上記現像液にアルコール類や界面活性剤を添加して使用することもでき、添加量はそれぞれ、現像液100質量部に対して、好ましくは0.05乃至10質量部である。
 この中で、水酸化テトラメチルアンモニウム0.1乃至2.38質量%水溶液は、フォトレジストのアルカリ現像液として一般的に使用されており、本発明のポジ型レジスト組成物から得られる塗膜はこの溶液を用いて、膨潤などの問題を起こすことなく現像することができる。
 また、現像方法としては液盛り法、ディッピング法、揺動浸漬法などの一般的に使用されているいずれの方法を用いても良い。その際、現像時間は、通常15乃至180秒間である。現像後、流水洗浄を20乃至90秒間行い、圧縮空気や圧縮窒素、又はスピン等により風乾させることによって、基板上の水分を除去し、パターンが形成された塗膜が得られる。その後、このパターンが形成された塗膜に、高圧水銀灯などを用いた紫外線等の光を全面に照射し、塗膜中に残存する(B)成分(1,2-ナフトキノンジアジド化合物)を完全に分解させることにより、塗膜の透明性を向上させる。続いて、ホットプレート、オーブンなどを用いて加熱することにより、塗膜の硬化処理(以下、ポストベークと称す。)を行い、良好なレリーフパターンを有するマイクロレンズを得ることができる。
 ポストベークの条件は、ホットプレート、オーブンなどの加熱装置により、所定温度、例えば140℃乃至250℃で、所定時間、例えばホットプレート上では3乃至30分間、オーブン中では30乃至90分間加熱処理するという方法がとられる。
 このようにして得られた、目的とする良好なレリーフパターンを有するマイクロレンズは耐熱性、耐溶剤性、透明性に優れ、特に、固体撮像素子等に好適に用いられる。
 また、上記のパターンを形成する前の塗膜にポストベークを行うことで、硬化膜が得られる。ポストベークの条件は、前記マイクロレンズを形成した場合と同じ条件及び方法で行われる。
 このようにして得られた硬化膜は耐熱性、耐溶剤性、透明性に優れ、平坦化膜、層間絶縁膜、各種絶縁膜、各種保護膜に好適に用いることができる。特に得られた硬化膜は液晶表示装置、LED表示装置等の平坦化膜として好適に用いられる。
 以下、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例に限定されるものではない。
[実施例で用いる略記号]
 以下の実施例で用いる略記号の意味は、次の通りである。
 MAA:メタクリル酸、MAIB:2,2´-アゾビスイソ酪酸ジメチル、Mn:数平均分子量、Mw:重量平均分子量、QD1:感光剤(上記式B-5の化合物1molに対し、式中Dのうち1.5molが1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド、1.5molが水素原子で置換された化合物)、QD2:感光剤(上記式B-2の化合物1molに対し、式中Dのうち2molが1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリド、1molが水素原子で置換された化合物)、QD3:感光剤(上記式B-5の化合物1molに対し、式中Dのうち3.0molが1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリドで置換された化合物)、QD4:感光剤(上記式B-10の化合物1molに対し、式中Dのうち3.0molが1,2-ナフトキノン-2-ジアジド-5-スルホニルクロリドで置換された化合物)、エポリードGT-401:架橋性化合物(商品名、ダイセル化学工業(株)製、上記式D-3)、サイメル303:架橋性化合物(商品名、三井サイテック(株)製、上記式D-7)、PGME:プロピレングリコールモノメチルエーテル、PGMEA:プロピレングリコールモノメチルエーテルアセテート、メガファックR30:界面活性剤(商品名、大日本インキ化学工業(株)製)、THF:テトラヒドロフラン、TMAH:テトラメチルアンモニウムヒドロキシド、ARC-XHRiC-16:レジスト下層に用いる反射防止膜を形成するための組成物(商品名、日産化学工業(株)製)。
[数平均分子量及び重量平均分子量の測定]
 以下の合成例に従い得られた共重合体の数平均分子量(Mn)及び重量平均分子量(Mw)を、日本分光(株)製GPC装置(Shodex(登録商標)カラムKF803LおよびKF804L)を用い、溶出溶媒THFを1mL/分でカラム(温度40℃)中に流して溶離させるという条件で測定した。なお、下記のMn及びMwは、ポリスチレン換算値にて表される。
<合成例1>
 (A)成分を構成するモノマー成分として、4-ビニルビフェニル(5.0g)、MAA(3.0g)を使用し、ラジカル重合開始剤としてMAIB(0.4g)を使用し、これらを1,4-ジオキサン(34.9g)中において10時間、攪拌下に加熱還流温度で加熱還流し重合反応を行った。反応後、反応溶液を室温まで冷却し、多量のn-ヘキサンに投入してポリマーを沈殿させ、得られた沈殿を50℃で加熱乾燥をしてMn5,200、Mw9,600である白色粉末状の(A)成分:ポリマー(P-1)を得た。
<合成例2>
 (A)成分を構成するモノマー成分として、4-ビニルビフェニル(5.0g)、MAA(3.0g)を使用し、ラジカル重合開始剤としてMAIB(0.4g)を使用し、これらを1,4-ジオキサン(34.9g)中において10時間、攪拌下に加熱還流温度で加熱還流し重合反応を行った。反応後、反応溶液を室温まで冷却し、多量のn-ヘキサンに投入してポリマーを沈殿させ、得られた沈殿を50℃で加熱乾燥をしてMn5,100、Mw9,500である白色粉末状の(A)成分:ポリマー(P-2)を得た。
<合成例3>
 (A)成分を構成するモノマー成分として、4-ビニルビフェニル(3.8g)、MAA(2.9g)、スチレン(0.9g)を使用し、ラジカル重合開始剤としてMAIB(0.4g)を使用し、これらを1,4-ジオキサン(34.9g)中において10時間、攪拌下に加熱還流温度で加熱還流し重合反応を行った。反応後、反応溶液を室温まで冷却し、多量のn-ヘキサンに投入してポリマーを沈殿させ、得られた沈殿を50℃で加熱乾燥をしてMn5,200、Mw11,100である白色粉末状の(A)成分:ポリマー(P-3)を得た。
<合成例4>
 (A)成分を構成するモノマー成分として、4-ビニルビフェニル(3.9g)、4-ビニル安息香酸(3.9g)を使用し、ラジカル重合開始剤としてMAIB(0.4g)を使用し、これらを1,4-ジオキサン(34.9g)中において10時間、攪拌下に加熱還流温度で加熱還流し重合反応を行った。反応後、反応溶液を室温まで冷却し、多量のn-ヘキサンに投入してポリマーを沈殿させ、得られた沈殿を50℃で加熱乾燥をしてMn7,200、Mw16,000である白色粉末状の(A)成分:ポリマー(P-4)を得た。
<合成例5>
 (A)成分を構成するモノマー成分として、スチレン(5.6g)、MAA(2.0g)、を使用し、ラジカル重合開始剤としてMAIB(0.4g)を使用し、これらを1,4-ジオキサン(34.9g)中において10時間、攪拌下に加熱還流温度で加熱還流し重合反応を行った。反応後、反応溶液を室温まで冷却し、多量のn-ヘキサンに投入してポリマーを沈殿させ、得られた沈殿を50℃で加熱乾燥をしてMn6,600、Mw14,700である白色粉末状の(A)成分:ポリマー(P-5)を得た。
<合成例6>
 (A)成分を構成するモノマー成分として、4-ビニルビフェニル(1.0g)、MAA(4.3g)を使用し、ラジカル重合開始剤としてMAIB(0.3g)を使用し、これらを1,4-ジオキサン(27.8g)中において10時間、攪拌下に加熱還流温度で加熱還流し重合反応を行った。反応後、反応溶液を室温まで冷却し、多量のn-ヘキサンに投入してポリマーを沈殿させ、得られた沈殿を50℃で加熱乾燥をしてMn2,900、Mw4,400である白色粉末状の(A)成分:ポリマー(P-6)を得た。
<合成例7>
 (A)成分を構成するモノマー成分として、4-ビニルビフェニル(4.0g)、MAA(0.2g)を使用し、ラジカル重合開始剤としてMAIB(0.2g)を使用し、これらを1,4-ジオキサン(22.1g)中において10時間、攪拌下に加熱還流温度で加熱還流し重合反応を行った。反応後、反応溶液を室温まで冷却し、多量のn-ヘキサンに投入してポリマーを沈殿させ、得られた沈殿を50℃で加熱乾燥をしてMn3,000、Mw5,900である白色粉末状の(A)成分:ポリマー(P-7)を得た。
(実施例1)
 (A)成分:2.5gのポリマー(P-1)、(B)成分:0.75gのQD1、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのGT-401、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
(実施例2)
 (A)成分:2.5gのポリマー(P-1)、(B)成分:0.75gのQD1、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのサイメル303、及び(E)成分:0.01gのクメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
(実施例3)
 (A)成分:2.5gのポリマー(P-1)、(B)成分:0.75gのQD2、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのエポリードGT-401、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
(実施例4)
 (A)成分:2.5gのポリマー(P-2)、(B)成分:0.75gのQD3、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのGT-401、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
(実施例5)
 (A)成分:2.5gのポリマー(P-3)、(B)成分:0.75gのQD3、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのGT-401、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
(実施例6)
 (A)成分:2.5gのポリマー(P-4)、(B)成分:0.75gのQD1、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのGT-401、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
(比較例1)
 (A)成分のポリマーとしてポリ(4-ビニルフェノール)(シグマ アルドリッチ ジャパン(株)製)、Mn6,000、Mw11,400)を準備し、ポリマー(P-8)とした。
 (A)成分:2.5gのポリマー(P-8)、(B)成分:0.75gのQD1、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのGT-401、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
(比較例2)
 (A)成分:2.5gのポリマー(P-5)、(B)成分:0.75gのQD3、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのGT-401、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
(参考例1)
 (A)成分:2.5gのポリマー(P-2)、(B)成分:0.75gのQD4、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのGT-401、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
(参考例2)
 (A)成分:2.5gのポリマー(P-6)、(B)成分:0.75gのQD1、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのGT-401、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
(参考例3)
 (A)成分:2.5gのポリマー(P-7)、(B)成分:0.75gのQD1、(C)成分:8.88gのPGMEと8.88gのPGMEAの混合溶媒、(D)成分:0.38gのGT-401、及び(E)成分:0.01gのメガファックR30を混合し、室温で1時間攪拌して均一な溶液とした。
 得られた実施例及び比較例の各ポジ型レジスト組成物から形成される硬化膜について、それぞれ解像度、ベーク後の光透過率、屈折率を各々測定し、それらの評価を行った。
[解像度の評価]
 以下の露光以外の工程は、全て自動塗付現像装置ACT-8(東京エレクトロン(株)製)を用いて行った。シリコンウェハー上にARC-XHRiC-16をスピンコーターを用いて塗布した後、175℃で60秒間のベークを行い反射防止膜を形成した。この膜上に実施例1乃至6及び比較例1及び2、参考例1乃至3で得られたポジ型レジスト組成物をそれぞれスピンコーターを用いて塗付した後、80℃で2分間のプリベークを行い膜厚0.6μmの塗膜を形成した。この塗膜にテストマスクを通して、i線ステッパーNSR2205i12D((株)ニコン製)により、波長365nmの紫外線を照射した。その後、80℃で2分間の露光後ベークを行った後、23℃の所定の濃度(0.2又は1.0質量%)のTMAH水溶液で50秒間現像し、さらに超純水洗浄を行い、ポジ型のパターンを形成した。得られたパターンを走査型電子顕微鏡S4100((株)日立ハイテクノロジーズ製)により観察した。2μmのドットパターンが剥離なく矩形に形成されているものを解像性が良好として(○)と表し、パターン形状が矩形でない場合を(△)と表した。
[屈折率の評価]
 シリコンウェハー上に実施例1及び比較例1で得られたポジ型レジスト組成物をそれぞれスピンコーターを用いて塗付した後、80℃で4分間ホットプレート上でプリベークを行い塗膜を形成した。その後、得られた塗膜の全面に紫外線照射装置PLA-501(F)(キヤノン(株)製)を用いて波長365nmでの照射量が500mJ/cm2である紫外光を照射し、160℃で5分間、200℃で5分間加熱することによりポストベークを行い、膜厚0.1μmのレジストを形成した。得られた塗膜の波長633nmの光に対する屈折率を、自動エリプソメータ DVA-FLVW((株)溝尻光学工業所製)を用いて測定した。
[透明性の評価]
 石英基板上に実施例1及び比較例1で得られたポジ型レジスト組成物をそれぞれスピンコーターを用いて塗付した後、80℃で4分間ホットプレート上で加熱を行うことによりプリベークを行い膜厚1.0μmの塗膜を形成した。その後、得られた塗膜の全面に紫外線照射装置PLA-501(F)(キヤノン(株)製)を用いて波長365nmでの照射量が500mJ/cm2である紫外光を照射し、160℃で5分間、200℃で5分間、250℃で30分間加熱することによりポストベークを行った。紫外光照射後及びポストベーク後の塗膜について、波長400nmの光に対する光透過率を紫外線可視分光光度計UV-2550((株)島津製作所製)を用いて測定した。

 測定結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000037
 表1に示す結果より判るように、実施例1~6のポジ型レジスト組成物から形成された硬化膜はいずれも高解像度であり、屈折率が高く、露光後及びポストベーク後にも高い光透過率を示した。
 比較例1の組成物から形成されたレジストについては、高解像度であり高い屈折率も示したが、紫外光照射後には透明であった塗膜がポストベーク後には着色し、光透過率が低下した。また、0.2質量%の現像液では現像できず、1.0質量%の高濃度の現像液を使用した。
 比較例2の組成物から形成されたレジストについては、高解像度であり、ポストベーク後にも高い光透過率を示し、1.55以上の優れた屈折率を示すが、実施例1~6の組成物に比べて低い数値であった。
 参考例1の組成物については、高解像度であり屈折率も高いものの、紫外光照射後には透明であった塗膜がポストベーク後には着色し、光透過率の低下が見られた。ポストベークを行わない場合は用いることができる。
 参考例2の組成物については、ポストベーク後にも高い光透過率を示したが、現像後の解像度が実施例に比べれば劣るものであった。また、実施例1~6の組成物に比べ低い屈折率を示した。
 参考例3の組成物については、屈折率が高く、ポストベークを行った後にも高い光透過率を示したが、現像後の解像度が実施例に比べれば劣るものであった。
 本発明によるポジ型レジスト組成物から形成された硬化膜は透明性、耐熱性及び屈折率の点で優れ、固体撮像素子などに用いられるマイクロレンズ及び液晶表示装置並びにLED表示装置等に用いられる平坦化膜を形成する材料として好適である。また、本発明のマイクロレンズを用いた固体撮像素子は微細化が可能であり、車両搭載などの耐候性に対応した材料である。

Claims (17)

  1. 下記(A)成分、(B)成分、及び(C)成分:
    (A)成分:ビフェニル構造を有する単位構造を含むアルカリ可溶性ポリマー、
    (B)成分:光分解し、その際アルカリ可溶性基を生ずる有機基を有する化合物、
    (C)成分:溶剤、
    を含むポジ型レジスト組成物。
  2. (A)成分のアルカリ可溶性ポリマーが式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1はハロゲン原子、アルキル基、アルコキシ基、チオール基、シアノ基、アミノ基、アミド基、アルキルカルボニル基、チオアルキル基、又はこれらの組み合わせを表し、R2はカルボキシル基、又はヒドロキシル基を表し、R3は水素原子又はメチル基を表す。Q1は単結合、又は2価の連結基を表す。m2は0乃至5の整数、m4は0乃至4の整数であり、且つ(m2+m4)は1乃至9の整数である。m1は0≦m1≦(5-m2)を満たす整数であり、m3は0≦m3≦(4-m4)を満たす整数である。)で表される単位構造を含み、ポリマー(A)を構成する単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(1)で表される単位構造の割合n1が0.3≦n1≦1.0を満たすポリマーである請求項1に記載のポジ型レジスト組成物。
  3. (A)成分のアルカリ可溶性ポリマーが式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R1はハロゲン原子、アルキル基、アルコキシ基、チオール基、シアノ基、アミノ基、アミド基、アルキルカルボニル基、チオアルキル基、又はこれらの組み合わせを表し、R2はカルボキシル基、又はヒドロキシル基を表し、R3は水素原子又はメチル基を表す。Q1は単結合、又は2価の連結基を表す。m2は0乃至5の整数であり、m4は0乃至4の整数であり、且つ(m2+m4)は0乃至9の整数である。m1は0≦m1≦(5-m2)を満たす整数であり、m3は0≦m3≦(4-m4)を満たす整数である。)で表される単位構造、及び式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R4、R5はそれぞれ水素原子、メチル基、カルボキシル基、又は炭素原子数1乃至3のアルキレンカルボキシル基を表し、Q2は単結合又は炭素原子数1乃至3のアルキレン基、又は炭素原子数6乃至20のアリーレン基を表す。)で表される単位構造を含み、ポリマー(A)を構成する全ての単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(2)で表される単位構造の割合n2、及び式(3)で表される単位構造の割合n3が、0.2≦n2≦0.8を満たし、0.1≦n3≦0.7を満たし、且つ0.3≦n2+n3≦1.0を満たすポリマーである請求項1に記載のポジ型レジスト組成物。
  4. (A)成分のアルカリ可溶性ポリマーが請求項2に記載の式(1)で表される単位構造、式(4):
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、R6及びR7はそれぞれ水素原子、メチル基、カルボキシル基、又は炭素原子数1乃至3のアルキレンカルボキシル基を表し、R8は炭素原子数1乃至10の置換又は未置換のアルキル基、炭素原子数3乃至6のエポキシ基、炭素原子数6乃至20のアリール基、又はそれらの組み合わせを表し、Q3は単結合又は炭素原子数1乃至3のアルキレン基、又は炭素原子数6乃至20のアリーレン基を表す。)で表される単位構造、及び/又は式(5):
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、R9及びR10はそれぞれ炭素原子数1乃至10の置換又は未置換のアルキル基、炭素原子数1乃至6のヒドロキシアルキル基、ヒドロキシル基、ハロゲン基、カルボキシル基、又は炭素原子数1乃至10のアルコキシ基を表す。)で表される単位構造を含み、ポリマー(A)を構成する全ての単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(1)で表される単位構造の割合n1、式(4)で表される単位構造の割合n4、及び式(5)で表される単位構造の割合n5が、0.3≦n1≦0.7を満たし、0≦n4≦0.4を満たし、0≦n5≦0.4を満たし、且つ0.3≦n1+n4+n5≦1.0を満たすポリマーである請求項1に記載のポジ型レジスト組成物。
  5. (A)成分のアルカリ可溶性ポリマーが、請求項3に記載の式(2)で表される単位構造と請求項3に記載の式(3)で表される単位構造に、更に請求項4に記載の式(4)で表される単位構造、及び/又は請求項4に記載の式(5)で表される単位構造を含み、ポリマー(A)を構成する全ての単位構造の総数を1.0としたときに、ポリマー(A)を構成する式(2)で表される単位構造の割合n2、式(3)で表される単位構造の割合n3、式(4)で表される単位構造の割合n4、及び式(5)で表される単位構造の割合n5が、0.2≦n2≦0.8を満たし、0.1≦n3≦0.7を満たし、0≦n4≦0.4を満たし、0≦n5≦0.4を満たし、且つ0.3≦n2+n3+n4+n5≦1.0を満たすポリマーである請求項2に記載のポジ型レジスト組成物。
  6. (B)成分が、式(6):
    Figure JPOXMLDOC01-appb-C000006
    〔式(6)中、R11は水素原子又は式(7):
    Figure JPOXMLDOC01-appb-C000007
    (式(7)中、R13は単結合、又は-SO3-基を表し、R14は炭素原子数1乃至10のアルキル基を表し、m8は0乃至3の整数である。)で表される基を表し、R12は炭素原子数1乃至10の置換又は未置換のアルキル基、ハロゲン基、又は炭素原子数1乃至10のアルコキシ基を表し、m5は0又は1の整数である。m5が0のときは、m6は1乃至5の整数であり、m7は0≦m7≦(5-m6)を満たす整数であり、m5が1のときは、m6は1乃至7の整数であり、m7は0≦m7≦(7-m6)を満たす整数である。R11全体のうち10乃至100モル%が上記式(7)で表される基を表す。〕の構造を有するものである請求項1に記載のポジ型レジスト組成物。
  7. (B)成分が式(8):
    Figure JPOXMLDOC01-appb-C000008
    (式(8)中、R11、R12、m11及びm12は請求項6に記載の式(6)で表されるものと同一であり、R15は水素原子又は炭素原子数1乃至10のアルキル基を表し、Q4は炭素原子数1乃至10のアルキレン基を表し、m10は1乃至5の整数であり、m11は0≦m11≦(5-m10)を満たす整数であり、m14は0≦m14≦(5-m12-m13)を満たす整数であり、m9は0乃至10の整数であり、m12は0乃至1の整数であり、m13は0乃至5の整数である。R11は全体のうち10乃至100モル%が請求項7に記載の式(7)で表される基を表す。)である請求項1に記載のポジ型レジスト組成物。
  8. 請求項2乃至請求項5いずれか1項に記載の(A)成分と請求項6又は請求項7に記載の(B)成分とを含む請求項1に記載のポジ型レジスト組成物。
  9. 更に(D)成分として、(A)成分と熱架橋可能な置換基を2つ以上有する架橋性化合物を含有する請求項8に記載のポジ型レジスト組成物。
  10. 更に(E)成分として、界面活性剤を含有する請求項9に記載のポジ型レジスト組成物。
  11. 硬化後の塗膜物性が、波長633nmの光に対して屈折率1.55以上であり、波長400乃至730nmの光に対して膜厚1μmのときに透過率80%以上である、請求項1に記載のポジ型レジスト組成物。
  12. 請求項8乃至請求項11のいずれか1項に記載のポジ型レジスト組成物から形成されたマイクロレンズ。
  13. 請求項12に記載のマイクロレンズを含む固体撮像素子。
  14. 請求項8乃至請求項11のいずれか1項に記載のポジ型レジスト組成物から形成された平坦化膜。
  15. 請求項14に記載の平坦化膜を含む液晶表示装置。
  16. 請求項14に記載の平坦化膜を含むLED表示装置。
  17. 請求項8乃至請求項11のいずれか1項に記載のポジ型レジスト組成物を基板上に塗布し、乾燥し、露光し、そして現像する工程を含むパターン形成方法。
PCT/JP2009/062379 2008-07-16 2009-07-07 ポジ型レジスト組成物及びマイクロレンズの製造方法 WO2010007915A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09797841.5A EP2302456B1 (en) 2008-07-16 2009-07-07 Positive resist composition;patttern forming method; microlens and planarization film therefrom; solid-state imaging device, liquid crystal display device and led display device comprising the same
CN200980126272.3A CN102089710B (zh) 2008-07-16 2009-07-07 正型抗蚀剂组合物以及微透镜的制造方法
JP2010520832A JP5387861B2 (ja) 2008-07-16 2009-07-07 ポジ型レジスト組成物、マイクロレンズ、固体撮像素子、平坦化膜、液晶表示素子、led表示装置及びパターン形成方法
US12/996,684 US9348222B2 (en) 2008-07-16 2009-07-07 Positive resist composition and method for production of microlens
KR1020117003508A KR101668833B1 (ko) 2008-07-16 2009-07-07 포지티브형 레지스트 조성물 및 마이크로렌즈의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-184524 2008-07-16
JP2008184524 2008-07-16

Publications (1)

Publication Number Publication Date
WO2010007915A1 true WO2010007915A1 (ja) 2010-01-21

Family

ID=41550321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062379 WO2010007915A1 (ja) 2008-07-16 2009-07-07 ポジ型レジスト組成物及びマイクロレンズの製造方法

Country Status (7)

Country Link
US (1) US9348222B2 (ja)
EP (2) EP2749946B1 (ja)
JP (1) JP5387861B2 (ja)
KR (1) KR101668833B1 (ja)
CN (1) CN102089710B (ja)
TW (1) TWI476528B (ja)
WO (1) WO2010007915A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105288A1 (ja) * 2011-01-31 2012-08-09 日産化学工業株式会社 マイクロレンズ形成用感光性樹脂組成物
CN102725691A (zh) * 2010-01-26 2012-10-10 日产化学工业株式会社 正型抗蚀剂组合物及微透镜的制造方法
JPWO2015115155A1 (ja) * 2014-01-30 2017-03-23 日産化学工業株式会社 マイクロレンズ形成用樹脂組成物

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9348224B2 (en) * 2012-03-27 2016-05-24 Nissan Chemical Industries, Ltd. Photosensitive resin composition
US9696623B2 (en) 2013-04-26 2017-07-04 Promerus, Llc Photosensitive compositions and applications thereof
JP6299389B2 (ja) * 2013-04-26 2018-03-28 住友ベークライト株式会社 感光性接着剤組成物および半導体装置
US9746776B2 (en) * 2014-11-25 2017-08-29 E I Du Pont De Nemours And Company Low surface energy photoresist composition and process
JP6697222B2 (ja) * 2015-03-04 2020-05-20 太陽インキ製造株式会社 エッチングレジスト組成物およびドライフィルム
CN105353555B (zh) * 2015-12-08 2018-08-14 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
KR102411927B1 (ko) * 2016-07-28 2022-06-22 닛산 가가쿠 가부시키가이샤 수지 조성물
US20180305512A1 (en) * 2017-04-25 2018-10-25 Exxonmobil Chemical Patents Inc. Styrenic Copolymers and Articles Therefrom
KR102149966B1 (ko) * 2018-03-09 2020-08-31 삼성에스디아이 주식회사 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 전자 소자
FR3084207B1 (fr) * 2018-07-19 2021-02-19 Isorg Systeme optique et son procede de fabrication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165846A (ja) * 1986-12-27 1988-07-09 Terumo Corp レジスト材料の露光方法
US5401614A (en) * 1992-03-03 1995-03-28 International Business Machines Corporation Mid and deep-UV antireflection coatings and methods for use thereof
JPH0848725A (ja) 1994-08-04 1996-02-20 Nippon Steel Chem Co Ltd 耐熱性に優れた光学材料用高屈折率樹脂
JP2005091479A (ja) * 2003-09-12 2005-04-07 Fuji Photo Film Co Ltd 感光性組成物
JP2005114968A (ja) 2003-10-07 2005-04-28 Shin Etsu Chem Co Ltd レジスト材料及びパターン形成方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL247588A (ja) * 1959-01-21
DE3528930A1 (de) * 1985-08-13 1987-02-26 Hoechst Ag Polymere verbindungen und diese enthaltendes strahlungsempfindliches gemisch
EP0252716B1 (en) * 1986-07-08 1993-01-07 Suntory Limited Process for production of bishomo- gamma-linolenic acid and eicosapentaenoic acid
DE3837500A1 (de) * 1988-11-04 1990-05-23 Hoechst Ag Neue, strahlungsempfindliche verbindungen, hiermit hergestelltes strahlungsempfindliches gemisch und aufzeichnungsmaterial
JP3067114B2 (ja) * 1991-06-04 2000-07-17 ソニー株式会社 マイクロレンズ形成方法
US5362599A (en) * 1991-11-14 1994-11-08 International Business Machines Corporations Fast diazoquinone positive resists comprising mixed esters of 4-sulfonate and 5-sulfonate compounds
DE4400975C2 (de) * 1993-01-14 2001-11-29 Toshiba Kawasaki Kk Verfahren zum Ausbilden von Mustern
JP4040216B2 (ja) 1999-07-27 2008-01-30 住友ベークライト株式会社 ポジ型感光性樹脂組成物及びそれを用いた半導体装置
US6540940B1 (en) 1999-08-23 2003-04-01 Fuji Photo Film Co., Ltd. Orientation layer containing (meth) acrylic copolymer having hydrophobic repeating units
JP2002083691A (ja) * 2000-09-06 2002-03-22 Sharp Corp アクティブマトリックス駆動型有機led表示装置及びその製造方法
US6534235B1 (en) * 2000-10-31 2003-03-18 Kansai Research Institute, Inc. Photosensitive resin composition and process for forming pattern
JP3895945B2 (ja) * 2001-04-24 2007-03-22 ソニーケミカル&インフォメーションデバイス株式会社 樹脂組成物及び樹脂組成物製造方法
JP4049258B2 (ja) 2002-12-27 2008-02-20 富士フイルム株式会社 赤外線感光性平版印刷版
JP2005077737A (ja) * 2003-08-29 2005-03-24 Fuji Photo Film Co Ltd 平版印刷版原版
TWI424270B (zh) * 2004-05-26 2014-01-21 Nissan Chemical Ind Ltd 正型感光性樹脂組成物及所得層間絕緣膜以及微透鏡
US7916263B2 (en) * 2004-12-02 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Display device
JP5034269B2 (ja) * 2005-03-31 2012-09-26 大日本印刷株式会社 パターン形成材料、及びポリイミド前駆体樹脂組成物
US8828651B2 (en) 2005-07-25 2014-09-09 Nissan Chemical Industries, Ltd. Positive-type photosensitive resin composition and cured film manufactured therefrom
JP4771466B2 (ja) 2005-11-10 2011-09-14 パナソニック株式会社 固体撮像装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165846A (ja) * 1986-12-27 1988-07-09 Terumo Corp レジスト材料の露光方法
US5401614A (en) * 1992-03-03 1995-03-28 International Business Machines Corporation Mid and deep-UV antireflection coatings and methods for use thereof
JPH0848725A (ja) 1994-08-04 1996-02-20 Nippon Steel Chem Co Ltd 耐熱性に優れた光学材料用高屈折率樹脂
JP2005091479A (ja) * 2003-09-12 2005-04-07 Fuji Photo Film Co Ltd 感光性組成物
JP2005114968A (ja) 2003-10-07 2005-04-28 Shin Etsu Chem Co Ltd レジスト材料及びパターン形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2302456A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102725691A (zh) * 2010-01-26 2012-10-10 日产化学工业株式会社 正型抗蚀剂组合物及微透镜的制造方法
CN102725691B (zh) * 2010-01-26 2014-06-11 日产化学工业株式会社 正型抗蚀剂组合物及图案形成方法、固体摄像元件
JP5673963B2 (ja) * 2010-01-26 2015-02-18 日産化学工業株式会社 ポジ型レジスト組成物及びマイクロレンズの製造方法
EP2530524A4 (en) * 2010-01-26 2015-03-04 Nissan Chemical Ind Ltd POSITIVE TYPE RESERVE COMPOSITION AND METHOD FOR PRODUCING MICROLENGTH
TWI548943B (zh) * 2010-01-26 2016-09-11 日產化學工業股份有限公司 正型光阻組成物及微透鏡之製造方法
KR101852523B1 (ko) * 2010-01-26 2018-04-27 닛산 가가쿠 고교 가부시키 가이샤 포지티브형 레지스트 조성물 및 마이크로 렌즈의 제조 방법
WO2012105288A1 (ja) * 2011-01-31 2012-08-09 日産化学工業株式会社 マイクロレンズ形成用感光性樹脂組成物
US9052437B2 (en) 2011-01-31 2015-06-09 Nissan Chemical Industries, Ltd. Photosensitive resin composition for forming microlens
JP5867735B2 (ja) * 2011-01-31 2016-02-24 日産化学工業株式会社 マイクロレンズ形成用感光性樹脂組成物
TWI557141B (zh) * 2011-01-31 2016-11-11 日產化學工業股份有限公司 形成微透鏡用之感光性樹脂組成物
JPWO2015115155A1 (ja) * 2014-01-30 2017-03-23 日産化学工業株式会社 マイクロレンズ形成用樹脂組成物

Also Published As

Publication number Publication date
EP2302456A4 (en) 2012-01-04
EP2749946B1 (en) 2015-09-09
KR101668833B1 (ko) 2016-10-25
CN102089710B (zh) 2016-12-07
EP2302456B1 (en) 2015-09-02
CN102089710A (zh) 2011-06-08
EP2749946A1 (en) 2014-07-02
JP5387861B2 (ja) 2014-01-15
US9348222B2 (en) 2016-05-24
TW201007362A (en) 2010-02-16
TWI476528B (zh) 2015-03-11
KR20110031238A (ko) 2011-03-24
JPWO2010007915A1 (ja) 2012-01-05
US20110086310A1 (en) 2011-04-14
EP2302456A1 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP5387861B2 (ja) ポジ型レジスト組成物、マイクロレンズ、固体撮像素子、平坦化膜、液晶表示素子、led表示装置及びパターン形成方法
JP5673963B2 (ja) ポジ型レジスト組成物及びマイクロレンズの製造方法
KR101366147B1 (ko) 저분자 용해 촉진제를 포함하는 레지스트 하층막 형성 조성물
JP5093525B2 (ja) 感光性樹脂及びマイクロレンズの製造方法
JP5896176B2 (ja) 感光性樹脂組成物
TW201805723A (zh) 包含具有藉由碳原子間之不飽和鍵之光交聯基之化合物的段差基板被覆組成物
KR20140018930A (ko) 아크릴아미드 구조를 포함하는 폴리머를 포함하는 리소그래피용 유기 하드마스크층 형성용 조성물
JPWO2009128513A1 (ja) 芳香族縮合環を含有する樹脂を含むリソグラフィー用レジスト下層膜形成組成物
KR102327783B1 (ko) 락톤구조함유 폴리머를 포함하는 전자선 레지스트 하층막 형성 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126272.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797841

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010520832

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12996684

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009797841

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117003508

Country of ref document: KR

Kind code of ref document: A