WO2010007107A1 - Phosphoreszente metallkomplexverbindung, verfahren zur herstellung dazu und strahlungsemittierendes bauelement - Google Patents

Phosphoreszente metallkomplexverbindung, verfahren zur herstellung dazu und strahlungsemittierendes bauelement Download PDF

Info

Publication number
WO2010007107A1
WO2010007107A1 PCT/EP2009/059092 EP2009059092W WO2010007107A1 WO 2010007107 A1 WO2010007107 A1 WO 2010007107A1 EP 2009059092 W EP2009059092 W EP 2009059092W WO 2010007107 A1 WO2010007107 A1 WO 2010007107A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound according
compound
alkyl radicals
fully
ligand
Prior art date
Application number
PCT/EP2009/059092
Other languages
English (en)
French (fr)
Inventor
Luisa De Cola
David Hartmann
Wiebke Sarfert
Günter Schmid
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN200980128096.7A priority Critical patent/CN102099365B/zh
Priority to JP2011517921A priority patent/JP5653352B2/ja
Priority to US12/737,466 priority patent/US9012038B2/en
Priority to EP20090780655 priority patent/EP2307430B1/de
Publication of WO2010007107A1 publication Critical patent/WO2010007107A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/16Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • C07D249/18Benzotriazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/135OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising mobile ions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • Phosphorescent metal complex compound Phosphorescent metal complex compound, process for the preparation thereof, and radiation emitting device
  • the invention relates to a phosphorescent metal complex compound, a process for the preparation thereof and a radiation-emitting component, in particular a light-emitting organic electrochemical cell (organic light-emitting electrochemical cell OLEEC).
  • a radiation-emitting component in particular a light-emitting organic electrochemical cell (organic light-emitting electrochemical cell OLEEC).
  • organic electroluminescent elements have at least one organic layer located between two electrodes. As voltage is applied to the electrodes, electrons are injected from the cathode into the lowest unoccupied molecular orbitals of the organic light emitting layer and migrate toward the anode. Correspondingly, holes from the anode are injected into the uppermost occupied molecular orbitals of the organic layer and migrate accordingly to the cathode. In cases where the traveling hole and the traveling electron meet within the organic light-emitting layer on a light emitting material, an exciton is formed, which is decomposed under light emission.
  • At least one electrode must be transparent, in most cases the one electrode is indium tin oxide, which is used as the anode.
  • the ITO layer is usually deposited on a glass slide.
  • OLEDs organic light emitting diodes
  • a so-called multilayer structure is realized, in particular in the OLEDs constructed with so-called small molecules, because in addition to the light-emitting layer also efficiency-increasing layers such as hole and / or electron injection layers between the Electrodes are arranged for better transfer of the charge carriers.
  • efficiency-increasing layers such as hole and / or electron injection layers between the Electrodes are arranged for better transfer of the charge carriers.
  • the encapsulation plays a crucial role for the life of the light-emitting element, since it protects the auxiliary layers from decomposition.
  • OLEECs organic light-emitting electrochemical cells
  • the active layer of an OLEEC is typically made of a material that is a mixture of an ion conductor / electrolyte or even a completely inert matrix (insulator) with an emitting species.
  • ionic transition metal complexes ionized transition metal complexes, in short: iTMC
  • iTMC ruthenium tris-bipyridine-hexafluorophosphate in polymeric matrices.
  • suitable materials in particular, there is a lack of materials that emit blue.
  • the subject matter of the invention is a phosphorescent metal complex compound which comprises at least one metallic central atom M and at least one ligand coordinated by the metallic central atom which contains a bidentate ligand having a triazole unit.
  • the subject matter of the invention is a radiation-emitting construction electronic device comprising a substrate, a first electrode layer on the substrate, at least one organic emissive layer on the first electrode layer, and a second electrode layer on the organic emissive layer, the organic emissive layer comprising a phosphorescent metal complex compound.
  • the invention relates to a process for the preparation of a phosphorescent metal complex compound with the process steps
  • the complex has two known ligands L (shown on the left), which can be selected independently of one another and can be identical or different and preferably complex bidentate, in particular via a carbon and a nitrogen atom, these known ligands L being added.
  • L the classical and also commercially available emitters with phenylpyridine ligands, for example, substituted with blue fluorine for blue shift.
  • Known complexes with iridium as the central atom are 2, 4-difluorophenyl-2-pyridyl-iridium (III) -picoli- nate (FIrPic) or FIr 6 .
  • the two ligands L known from the left and left of the metal atom are preferably selected from the following documents: WO 2005/097942 A1, WO 2006/013738 A1, WO 2006 / 098120A1, WO 2006/008976 A1 WO 2005/097943 A1, WO 2006/008976 A1 (Konica Minolta) or US Pat. No. 6,902,830, US Pat. No. 7,001,536, US Pat. No. 6,830,828, WO 2007/095118 A2, US Pat. No. 2007 0 190 359 A1 (UDC), EP 1 486 552 Bl be it the 2-phenyl-pyridine or the 2-phenyl-imidazole and related and similar structures, such as phenanthridine.
  • the two known ligands L may have a carbene functionality, for example, which serves as a source of deep blue emission.
  • a carbene functionality for example, which serves as a source of deep blue emission. Examples of these ligands L can be found in the publications WO 2005/19373 or EP 1 692 244 Bl.
  • ligands L are known from publications EP 1 904 508 A2, WO 2007/004113 A2, WO 2007/004113 R4A3, these ligands L also being used in the context of charged metal complexes which contain at least one phenylpyridine ligand with corresponding donor groups such as methylamino have been shown. These compounds show an increased LUMO level of the complex, with acceptor groups such as 2,4-difluoro being introduced into the phenyl ring to lower the HOMO orbital level. It is shown that by varying the ligands and their substituents, the emission color can vary throughout the visible spectrum.
  • the metal complex according to structural formula I has at least one triazole ligand, either a 1,2,3- or a 1,2,4-triazole.
  • the triazole moiety has a heteroaromatic or an aromatic substituent ortho to the two adjacent triazole nitrogens.
  • the ring-numbering system was developed on the basis of the 1,2,3-triazoles and is used in the sense of the present description as shown.
  • the 1,2,4-triazoles are obtained from the 1,2,3-triazoles by exchanging the C and N substituents Z.
  • the carbon atom which is the substituent which brings about the double-ligandness of the entire ligand, and which is preferably an aryl substituent, is numbered 4.
  • M iridium.
  • metals such as Re, Ru, Rh, Os, Pd, Pt, Au, Hg and Cu are also possible.
  • the stoichiometry of the corresponding complexes will then vary depending on the coordination sphere of the respective central atom, in particular because not all metals form octahedral complexes such as iridium.
  • Y is nitrogen.
  • the heterotriazole ligands are neutral with respect to the inner coordination sphere.
  • Charged substituents or substituents capable of stabilizing charge, that is, “chargeable”, can be placed in the outer positions
  • the heteroaromatic ring contains, in ortho position to the bridging carbon atom, a nitrogen atom adjacent to the nitrogen atom 2 in the triazole moiety second chelating atom of the
  • both aromatic units may still be linked via a second bridge.
  • the material class Ri and / or R 2 are connected to other radicals R 1 ' and / or R 2 ' of another metal complex.
  • the connecting group can be taken from the examples below. If higher functional linkers are chosen, one has access to more highly crosslinked complexes to polymer complexes. On the other hand, a bridge can also be formed via one of the known ligands L to one or more further complexes with ligands and central atoms. Also on this page access to oligomeric and polymeric compounds is possible.
  • M can also be Re, Os, Pt, Au, Hg and Ru, Rh, Pd and Ag, Cu.
  • the metal complex compound according to the invention preferably comprises a group of structural formula II in which
  • M Ir, Re, Os, Pt, Au, Hg, Ru, Rh, Pd, Ag, Cu
  • ring structure of the heteroaromatic for example a 6-membered ring, ortho to the two adjacent nitrogens of the triazole ring.
  • it is a pyridine ring or a derivative thereof: abcd
  • X is either the radical -C-R, where R is one of the substituents listed below or a nitrogen atom having a lone pair of electrons.
  • Examples of the substituent "a” on the triazole are: pyridine derivatives, where Xi, X 2 , X 3 , X 4 are all radicals -C - R, where all R are independent of one another and one of the substituents below.
  • Phthalazine derivatives wherein Xi N and all other radicals are of the -C-R type.
  • Examples of the substituent "c" on the triazole are: isoquinoline derivatives which are structural isomers of the isoquinoline derivatives of the derivatives mentioned above for the substituents "b" on the triazole.
  • Higher condensed systems can be prepared analogously, for example, pteridine, acridine, phenazine, phenanthridine and / or purine and derivatives thereof, as well as compounds having additional heteroatoms such as oxygen or sulfur in the condensed ring bearing the coordinating nitrogen atom.
  • ring structure of the heteroaromatic in ortho position to the two adjacent nitrogens of the triazole ring for example a 5-membered ring:
  • the 6-membered ring is again a pyridine ring.
  • hetero-five-membered substituted triazoles are given:
  • Isothiazole derivatives, wherein Xi S, and all other residues of type -CR.
  • Imidazole derivatives wherein Xi, X 2 are residues of type -CR and X 3 is a residue of type NR.
  • Pyrazole derivatives wherein X 2 , X 3 radicals of the type CR and Xi is a radical of the type NR.
  • Benzimidazole derivatives wherein X 5 of the type NR and Xi, X 2 , X 3 , X 4 are radicals of the type -CR. Further nitrogen atoms may be included in the attached benzene ring, thus forming benzimidazole analog pyridine, pyrimidine, pyrazine or pyrimidazine ring, by substitution of CR with nitrogen.
  • purine derivatives are: X 5 is a radical of the type NR and Xi, X 3 , are of the type N and X 4 are of the type -CR.
  • R can independently of one another be H, methyl, ethyl or in general linear or branched, condensed (decahydronaphthyl, adamantyl), cyclic (cyclohexyl) or completely or partially substituted alkyl radicals (Cl - C20).
  • the alkyl groups may be functional groups such as ethers (ethoxy, methoxy, etc.), esters, amides, carbonates etc. or halogens, preferably F.
  • R is not limited to alkyl type radicals but may have substituted or unsubstituted aromatic systems such as phenyl, biphenyl, naphthyl, phenanthryl, etc., and benzyl, etc.
  • the radical R can be of organometallic nature, for example ferrocenyl, phthaloalanyl or metal cation. surrounded, for example, by a functionalized crown ether, as shown below.
  • the R group can also be charged, thus either bringing charge into a hitherto uncharged complex, which is advantageous for OLEEC applications, or neutralizing a charged complex, making it accessible for OLED applications.
  • a copper (I) catalyzed three-component reaction of amines with propargyl halides and azides leads to 1-substituted-lH-l, 2, 3-triazol-4-ylmethyl) -dialkylamines in water.
  • a sysnthetic advantage is, in addition to the high selectivity, the low environmental impact, a broad field of substrate (substrate scope) as well as mild reaction conditions and good yields.
  • 1, 2, 3-triazoles were prepared in moderate to good yields by the cycloaddition of alkyl azides onto enol ethers under solvent-free conditions. This reaction may open access to ring-donated triazoles inaccessible via alkyne-azide cycloadditions. In addition, the reaction can be easily scaled up from the laboratory scale. The 1, 2, 3-triazoles thus prepared can be easily derivatized.
  • Triazoles were prepared by a three-component coupling reaction with an inactivated terminal alkyne, an allylic carbonate, and a trimethylsilyl azide under palladium (O) and copper (I) bimetallic catalysis. The dealylation of the obtained triazoles is also described. Kamij, T., Jin, Z. Huo, Y. Yamamoto, J. Am. Chem. Soc., 2003, 125, 7786-7787.
  • triazole-based monophosphine ligands were synthesized.
  • Palladium complexes are very effective catalysts for the Suzuki-Miyaura coupling reaction and the amination reactions of aryl chlorides.
  • R 'N ' N '" NR Bn 1 Ar, alkyl NMP, 100 ° C, 2 -24 h R 1 H 1 Ar, alkyl
  • FIG. 1 shows the 1 H proton spectrum of the compound.
  • Figures 2 to 5 show the respective NMR spectra of
  • FIGS. 6 to 8 show the NMR spectra of the tetrafluoroborate.
  • FIG. 11 shows the light-current-voltage characteristic of the compound [F2 (ppy) Ir (adamantyltryazolylpyridine)] PF 6.
  • FIG. 12 shows an electroluminescence spectrum of the tetrafluoroborate compound [F2 (ppy) Ir (adamantyltryazolylpyridine)] BF4.
  • Figure 14 shows the 1-H NMR for the compound bis (2,4-di-fluorophenyl-pyridyl) (4-pyridyl-1-phenyl-triazole) iridium (III) tetrafluorobrate.
  • Figure 15 shows an absorption spectrum of a bridged iridium (III) triazole compound.
  • Figure 16 shows a photoluminescence spectrum of the bridged iridium (III) compound as described above, at a temperature of 77 Kelvin and
  • FIG. 17 shows a further photoluminescence spectrum of the bridged iridium (III) compound at room temperature.
  • the present invention describes a triazole ligand system which can be used to produce blue and green emitters which can be used in OLEEC organic light-emitting electrochemical cells. Some of them here first shown blue emitter, in particular the here presented class of iridium complex compounds, are the blueest emitters that currently exist at all.
  • the invention relates to a phosphorescent metal complex compound, a process for the preparation thereof and a radiation-emitting component, in particular a light-emitting organic electrochemical cell (organic light-emitting electrochemical cell OLEEC).
  • a radiation-emitting component in particular a light-emitting organic electrochemical cell (organic light-emitting electrochemical cell OLEEC).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

Die Erfindung betrifft eine phosphoreszente Metallkomplexverbindung, Verfahren zur Herstellung dazu und ein strahlungsemittierendes Bauelement, insbesondere eine lichtemittierende organische elektrochemische Zelle (organic light emitting electrochemical cell OLEEC). Einige der hier erstmals gezeigten blauen Emitter, insbesondere die hier vorgestellte Klasse der Iridium-Komplexverbindungen, sind die blauesten Emitter, die zurzeit überhaupt existieren.

Description

Beschreibung
Phosphoreszente Metallkomplexverbindung, Verfahren zur Herstellung dazu und Strahlungsemittierendes Bauelement
Die Erfindung betrifft eine phosphoreszente Metallkomplexverbindung, Verfahren zur Herstellung dazu und ein strahlungs- emittierendes Bauelement, insbesondere eine lichtemittierende organische elektrochemische Zelle (organic light emitting electrochemical cell OLEEC) .
Ganz generell haben organische elektrolumineszente Elemente zumindest eine organische Schicht, die sich zwischen zwei Elektroden befindet. Sobald Spannung an die Elektroden ange- legt wird, werden Elektronen von der Kathode in die untersten unbesetzten Molekülorbitale der organischen Licht emittierenden Schicht injiziert und wandern auf die Anode zu. Korrespondierend dazu werden Löcher von der Anode in die obersten besetzten Molekülorbitale der organischen Schicht injiziert und wandern entsprechend zur Kathode. In den Fällen, wo sich wanderndes Loch und wanderndes Elektron innerhalb der organischen Licht emittierenden Schicht auf einem lichtemitterenden Stoff treffen, entsteht ein Exciton, das unter Lichtemission zerfällt. Damit das Licht überhaupt aus dem elektrolumines- zierenden Element austreten kann, muss zumindest eine Elektrode transparent sein, in den meisten Fällen ist das eine Elektrode aus Indium-Zinn-Oxid, die als Anode eingesetzt wird. Die ITO-Schicht wird normalerweise auf einem Glasträger abgeschieden .
In den organischen Licht emittierenden Dioden (OLEDs) wird, insbesondere bei den mit so genannten small molecules aufgebauten OLEDs, ein so genannter Multilayer-Aufbau realisiert, weil zusätzlich zu der Licht emittierenden Schicht auch noch effizienzerhöhende Schichten wie Loch- und/oder Elektroneninjektionsschichten zwischen den Elektroden zum besseren Übergang der Ladungsträger angeordnet werden. Oftmals werden da- bei hochreaktive Materialien eingesetzt, so dass für die Lebensdauer des licht emittierenden Elements unter anderem die Verkapselung eine entscheidende Rolle spielt, da sie die Hilfsschichten vor Zersetzung bewahrt.
Alternativ dazu gibt es die so genannten organischen Licht emittierenden elektrochemischen Zellen (OLEECs) die einfacher als die OLEDs aufgebaut sind und die in den meisten Fällen durch ein einfaches Einbringen einer organischen Schicht zwi- sehen zwei Elektroden und nachfolgendes Verkapseln realisierbar ist. Die aktive Schicht einer OLEEC ist in der Regel aus einem Material, das eine Mischung aus einem Ionenleiter/Elektrolyten oder auch einer völlig inerten Matrix (Isolator) mit einer emittierenden Spezies ist. Dafür geeignet sind ionische Übergangsmetallkomplexe (ionisized transistion metal comple- xes, kurz: iTMC) , wie beispielsweise Ruthenium-tris-bipyri- din-hexafluorophosphate in polymeren Matrizen. Es gibt jedoch noch keine ausreichende Auswahl an geeigneten Materialien, insbesondere mangelt es an Materialien, die blau emittieren.
Aufgabe der vorliegenden Erfindung ist es daher, eine Materialklasse zu schaffen, die für den Einsatz in OLEEC-Zellen geeignet ist, sowie eine Synthese dazu anzugeben, des weiteren ist es Aufgabe der Erfindung eine OLEEC-Zelle anzugeben, die unter Verwendung der Materialklasse aufgebaut ist sowie die Verwendung der Materialklasse in OLEEC-Zellen.
Der Gegenstand der Erfindung und die Lösung der Aufgabe werden durch die Ansprüche, die Beschreibung, und die Figuren offenbart.
Entsprechend ist Gegenstand der Erfindung eine phosphoreszen- te Metallkomplexverbindung, die zumindest ein metallisches Zentralatom M und zumindest einen durch das metallisches Zentralatom koordinierten Liganden umfasst, der einen zweizähnigen Liganden mit einer Triazoleinheit enthält. Außerdem ist Gegenstand der Erfindung ein Strahlungsemittierendes Bau- element, umfassend -ein Substrat, eine erste Elektrodenschicht auf dem Substrat, zumindest eine organische emittierende Schicht auf der ersten Elektrodenschicht und eine zweite Elektrodenschicht auf der organischen emittierenden Schicht, wobei die organische emittierende Schicht eine phosphoreszente Metallkomplexverbindung umfasst. Schließlich ist Gegenstand der Erfindung ein Verfahren zur Herstellung einer phosphoreszenten Metallkomplexverbindung mit den Verfahrensschritten
A) Bereitstellen einer Zentralatomverbindung eines metallischen Zentralatoms, aufweisend an das Zentralatom koordinierte Austauschliganden,
B) Mischen der Zentralatomverbindung und eines in einem ersten Lösungsmittel gelösten Liganden zur Bildung der Metallkomplexverbindung, wobei der Austauschligand durch den Liganden, der zweizähnig am Zentralatom koordiniert und eine Triazoleinheit umfasst, ersetzt wird.
Insbesondere handelt es sich um eine Materialklasse eines Me- tallkomplexes der folgenden allgemeinen Struktur I:
Figure imgf000005_0001
Dabei hat der Komplex zwei bekannte Liganden L (links dargestellt) , die unabhängig voneinander ausgewählt werden können und gleich oder ungleich sein können und vorzugsweise zweizähnig komplexieren, insbesondere über einen Kohlenstoff und ein Stickstoffatom, wobei diese bekannten Liganden L bei- spielsweise nach einer Ausführungsform der Erfindung die klassischen und auch handelsüblichen Emitter mit Phenylpyri- dinliganden, zum Blaushift beispielsweise mit Fluor substituiert, sind. Bekannte Komplexe mit Iridium als Zentralatom sind das 2, 4-difluorophenyl-2-pyridyl-Iridium (III) -picoli- nate (FIrPic) oder FIr6.
Nach einer weiteren Ausführungsform der Materialklasse sind die beiden links vom Metallatom gezeigten und bereits Litera- tur bekannten Liganden L vorzugsweise ausgewählt aus den folgenden Dokumenten: WO 2005/097942 Al, WO 2006/013738 Al, WO 2006/098120A1, WO 2006/008976 Al, WO 2005/097943 Al, WO 2006/008976 Al (Konica Minolta) oder US 6,902,830, US 7,001,536, US 6,830,828, WO 2007/095118 A2, US 2007 0 190 359 Al (UDC), EP 1 486 552 Bl, beispielhaft genannt seien dabei das 2-Phenyl-pyridin oder das 2-Phenyl- imidazol sowie verwandte und ähnliche Strukturen, wie beispielsweise das Phenanthridin .
Nach weiteren vorteilhaften Ausführungsformen können die beiden bekannten Liganden L beispielsweise über eine Carbenfunk- tionalität verfügen, die als Quelle tiefer blauer Emission dient. Beispiele für diese Liganden L sind in den Veröffentlichungen WO 2005/19373 or EP 1 692 244 Bl zu finden.
Weitere Beispiele möglicher Liganden L sind aus den Veröffentlichungen EP 1 904 508 A2 , WO 2007/004113 A2 , WO 2007/004113 R4A3 bekannt, wobei diese Liganden L auch im Rahmen von geladenen Metallkomplexen, die zumindest einen Phenylpyridin Ligand mit entsprechenden Donorgruppen wie Di- methylamino haben, gezeigt werden. Diese Verbindungen zeigen ein erhöhtes LUMO Niveau des Komplexes, wobei Akzeptorgruppen wie beispielsweise 2,4 Difluoro, in den Phenylring eingeführt werden, um das Niveau des HOMO-Orbitals zu erniedrigen. Es wird gezeigt, dass man durch die Variation der Liganden und deren Substituenten die Emissionsfarbe durch das ganze sichtbare Spektrum hindurch variieren kann. Zusätzlich zu den Liganden L hat der Metallkomplex gemäß der Strukturformel I zumindest einen Triazol-Liganden, entweder ein 1,2,3- oder ein 1, 2, 4-Triazol . Die Triazol-Einheit hat in Ortho-Position zu den zwei sich benachbarten Stickstoffen des Triazol-Ringes einen heteroaromatischen oder einen aromatischen Substituenten . Somit entsteht eine Struktur der allgemeinen Formel I .
Die 1 , 2 , 3-Triazol-Verbindungen werden erhalten mit Z2= N und Z1= C, wie in Figur 2a gezeigt, wohingegen die 1, 2, 4-Triazol- Verbindungen bei Z2= C und Z1= N entstehen. Das Ring-Numme- rierungssystem wurde anhand der 1, 2, 3-Triazole entwickelt und wird im Sinne der vorliegenden Beschreibung wie gezeigt verwendet. Dabei werden offensichtlich die 1,2,4 Triazole aus den 1, 2, 3-Triazolen durch Austausch der C und N Substituenten Z erhalten. In beiden Fällen wird das Kohlenstoffatom, das den Substituenten, der die Zweizähigkeit des gesamten Liganden bewirkt und der bevorzugt ein Arylsubstituent ist, mit 4 nummeriert .
Bevorzugt ist M = Iridium. Möglich sind aber auch Metalle, wie Re, Ru, Rh, Os, Pd, Pt, Au, Hg und Cu. Die Stöchiometrie der entsprechenden Komplexe wird dann je nach Koordinationssphäre des jeweiligen Zentralatoms variieren, insbesondere deshalb, weil nicht alle Metalle oktaedrische Komplexe wie das Iridium bilden.
Bevorzugt ist Y gleich Stickstoff. Damit sind die hetero- triazol-Liganden neutral im Hinblick auf die innere Koordina- tionssphäre. Geladene Substituenten oder Substituenten, die Ladung stabilisieren können, also „chargeable" sind, können in den äußeren Positionen angebracht werden. Der heteroaromatische Ring enthält in ortho-Position zu dem Brücken-Kohlenstoffatom ein Stickstoffatom, das neben dem Stickstoffatom 2 in der Triazoleinheit, das zweite chelatisierende Atom des
Liganden ist. Für den Fall dass Y = C ist, entsteht die klas- sische cyclometallierte Verbindung, wobei der Triazol-Ligand formal negativ geladen ist.
Damit werden für den Fall M = Ir neutrale Spezien erhalten. Optional können beide aromatischen Einheiten noch über eine zweite Brücke verbunden sein.
Nach einer anderen Ausführungsform der Materialklasse sind Ri und/oder R2 mit anderen Resten R1 ' und/oder R2 ' eines weiteren Metallkomplexes verbunden. Die verbindende Gruppe kann dabei aus den unten genannten Beispielen entnommen werden. Falls höher funktionale Verbindungsglieder gewählt werden, hat man Zugang zu höher vernetzten Komplexen bis hin zu Polymeren Komplexen. Auf der anderen Seite kann eine Brücke auch über einen der bekannten Liganden L zu einem oder mehreren weiteren Komplexen mit Liganden und Zentralatomen gebildet werden. Auch über diese Seite ist also ein Zugang zu oligomeren und polymeren Verbindungen möglich.
M kann auch Re, Os, Pt, Au, Hg sowie Ru, Rh, Pd und Ag, Cu sein .
Für den Fall, dass Y und Z1 beide gleich N sind, entsteht die folgende Struktur Ia
Figure imgf000008_0001
Ia
Bevorzugt umfasst die Metallkomplexverbindung nach der Erfindung eine Gruppe der Strukturformel II
Figure imgf000009_0001
wobei
M = I r , Re , Os , Pt , Au , Hg , Ru , Rh , Pd, Ag , Cu
Y, Z = N oder C R = unabhängig voneinander- H, verzweigte Alkylreste, unverzweigte Alkylreste, kondensierte Alkylreste, ringförmige Alkylreste, vollständig oder teilweise substituierte unverzweigte Alkylreste, vollständig oder teilweise substituierte verzweigte Alkylreste, vollständig oder teilweise substitu- ierte kondensierte Alkylreste, vollständig oder teilweise substituierte ringförmige Alkylreste, Alkoxygruppen, Amine, Amide, Ester, Carbonate, Aromaten, vollständig oder teilweise substituierte Aromaten, Heteroaromaten, kondensierte Aromaten, vollständig oder teilweise substituierte kondensierte Aromaten, Heterocyclen, vollständig oder teilweise substituierte Heterocyclen, kondensierte Heterocyclen, Halogene, Pseudohalogene und Aryl = ein beliebiger, teilweise oder vollständig substitu- ierter aromatischer oder heteroaromatischer Rest ist, der auch kondensiert sein kann, eine Brücke zu einer weiteren Verbindung knüpfen kann, und/oder kondensiert oder anneliert mit weiteren Aromaten oder Heteroaromaten, sowie verbunden mit weiteren cyclischen Verbindungen, vorliegen kann.
Im Folgenden werden einige Beispiele für die Ringstruktur des in ortho-Position zu den zwei benachbarten Stickstoffen des Triazolrings stehenden Heteroaromaten, beispielsweise einem 6-gliedrigen Ring, gegeben. Im einfachsten Fall handelt es sich um einen Pyridinring oder ein Derivat davon:
Figure imgf000010_0001
a b c d
X bedeutet entweder den Rest -C-R, wobei R einer der untenstehenden Substituenten oder ein Stickstoffatom mit einem freien Elektronenpaar ist.
Beispiele für den Substituenten "a" am Triazol sind: Pyridin Derivate, wobei Xi, X2, X3, X4 allesamt Reste -C - R sind, wobei alle R unabhängig voneinander und einer der un- tenstehenden Substituenten sind.
Pyrimidin Derivate, wobei X2 = N oder X4 = N, alle anderen Reste -C-R sind.
Pyrazin Derivate, wobei X3 = N, alle anderen -C-R sind. Pyridazin Derivate, wobei Xi = N, alle anderen -C-R sind. 1, 3, 5-Triazine Derivate, wobei X2 = N and X4 = N, alle anderen -C-R sind.
Beispiele für den Substituenten "b" am Triazol sind: Iso-chinolin Derivate, wobei alle X die Reste -C-R mit einer Verbindung zum Triazol Liganden in Position 1 sind
Chinazolin Derivate, wobei X2 = N, und alle anderen Reste vom Typ -C-R sind.
Phthalazin Derivate, wobei Xi = N, und alle anderen Reste vom Typ -C-R sind.
Beispiele für den Substituenten "c" am Triazol sind: Isochinolin-Derivate, die strukturelle Isomere zu den Isochi- nolin-Derivaten der oben zu den Substituenten ,,b" am Triazol genannten Derivaten sind.
Beispiele für den Substituenten "d" am Triazol sind: Chinolin Derivate, wobei alle X Reste vom Typ -C-R sind. Chinoxaline Derivate, wobei X5 = N ist und alle anderen des Typs -C-R sind,
Chinazoline Derivate mit Xζ = N ist und alle anderen Reste vom Typ -C-R sind.
Höher kondensierte Systeme können analog hergestellt werden, beispielsweise Pteridin, Acridin, Phenazin, Phenanthridin und/oder Purin und Derivate davon sowie Verbindungen mit zusätzlichen Heteroatomen wie Sauerstoff oder Schwefel in dem kondensierten Ring, der das koordinierende Stickstoffatom trägt .
Im Folgenden werden einige Beispiele für die Ringstruktur des in ortho-Position zu den zwei benachbarten Stickstoffen des Triazolrings stehenden Heteroaromaten, beispielsweise einem 5-gliedrigen Ring, gegeben:
Im einfachsten Fall ist wieder der 6-gliedrige Ring ein Pyri- dinring. Hier werden Beispiele für Hetero-Fünfring substitu- ierte Triazole gegeben:
Figure imgf000011_0001
Beispiele für den Substituenten "a" am Triazol sind: Oxazol Derivate, wobei X3 = O oder X2 = O, und alle anderen
Reste vom Typ -C-R sind;
Thiazol Derivate, wobei X3 = S oder X2 = S, und alle anderen
Reste vom Typ -C-R sind.
Isoaxzol Derivate, wobei Xi = O und alle anderen Reste vom Typ -C-R sind. Isothiazol Derivate, wobei Xi = S, und alle anderen Reste vom Typ -C-R sind.
Imidazol Derivate, wobei Xi, X2 Reste vom Typ -C-R sind und X3 ein Rest vom Typ N-R ist. Pyrazol Derivate, wobei X2, X3 Reste vom Typ C-R und Xi ein Rest des Typs N-R ist. Tetrazol Derivate, wobei Xi, X2, X3 alle = N sind.
Beispiele für den Substituenten "b" am Triazol sind:
Benzimidazol Derivate, wobei X5 vom Typ N-R und Xi, X2, X3, X4 Reste vom Typ -C-R sind. Weitere Stickstoffatome können in den angegliederten Benzolring enthalten sein, somit entstehen Benzimidazolanaloge Pyridin-, Pyrimidin-, Pyrazin- oder Pyri- dazin -Ring, durch Substitution des C-R durch Stickstoff.
Beispielsweise sind Purin-Derivate : X5 ist ein Rest des Typs N-R und Xi, X3, sind vom Typ N und X4 sind vom Typ -C-R.
Alle Substituenten R können unabhängig voneinander H, Methyl-, Ethyl- oder generell lineare oder verzweigt, kondensierte (Decahydronaphthyl-, Adamantyl-) , cyclische (Cyclohe- xyl-) oder ganz oder teilweise substituierte Alkylreste (Cl - C20) sein. Die Alkylgruppen können funktionelle Gruppen wie Ether (Ethoxy-, Methoxy-, etc.), Ester-, Amid-, Carbonate etc. or Halogene, bevorzugt F sein. R ist nicht auf Reste vom Alkyl-Typ beschränkt, sondern kann substituierte oder unsub- stituierte aromatische Systeme wie Phenyl, Biphenyl, Naph- thyl, Phenanthryl etc. und Benzyl etc haben.
Eine Zusammenstellung von grundlegenden aromatischen Systemen wird in der nachfolgenden Tabelle gezeigt.
Figure imgf000013_0001
Hier wurden der Einfachheit halber nur die grundlegenden Strukturen gezeigt. Substitutionen können hier an jeder Posi- tion mit einer potentiellen Bindungsvalenz auftreten.
Ebenso gut kann der Rest R organometallischer Natur sein, beispielsweise Ferrocenyl-, Phtalacyaninyl- oder Metallkatio- nen, beispielsweise von einem funktionalisierten Kronenether, wie unten gezeigt, umgeben.
Figure imgf000014_0001
Schließlich kann der Rest R auch geladen sein und somit entweder Ladung in einen bis dato ungeladenen Komplex bringen, was für OLEEC-Anwendungen vorteilhaft ist, oder einen geladenen Komplex neutralisieren und ihn damit für OLED Anwendungen zugänglich machen.
Beispiele für geladene Reste R sind:
Figure imgf000014_0002
Figure imgf000014_0003
R =
"NMe-, PFR
Figure imgf000014_0004
Zur Synthese der 1, 2, 3-Triazole gibt es verschiedene Ansätze, wobei einige hier über Zitate zum Gegenstand der vorliegenden Beschreibung gemacht werden:
Synthesebeispiel 1:
3 eq 1 moμ % Pd,dba3
N =N
,Br 4 rnol-% xan~tprιos
Ar NaN-, NH dioxane, 9Ü°C, 1 4 h Ar Die Palladium-katalysierte Synthese des 1H-Triazoles aus Al- kenyl-Halogenen und NatriumAzid ist eine komplett neue Reaktion im Zusammenhang mit Palladium-Chemie. Siehe dazu J. Bar- luenga, C. Valdes, G. Beiträn, M. Escribano, F. Aznar, Angew. Chem. Int. Ed., 2006, 45, 6893-6896.
Synthesebeispiel 2:
3 eq. 2 - 5 rnol-% PtLdba3 N
R -^^-- br + NaN, *- JL NH R alkyl,
- DM SO, 1 10°C, 20 - 24 h R ^/ vmyl
J. Barluenga, C. Valdes, G. Beiträn, M. Escribano, F. Aznar, Angew. Chem. Int. Ed., 2006, 45, 6893-6896.
Synthesebeispiel 3:
1 1 eq 0 1 θq Cu/C
1 1 eq NB3 R -N " "^J
R - N , + ΞΞΞΞΞ^ R ' dioxane 600C 1 10 - 120 mm H
Dies ist eine hocheffektive Chemie zwischen Aziden und endständigen Alkinen, die heterogen durch Kupfer-nanopartikel auf spezielle Kohle katalysiert werden kann. Die Reaktion kann durch den stöchiometrischen Zusatz von Et3N, durch Temperaturerhöhung oder durch Einsatz von Mikrowelle beschleunigt werden. B. H. Lipshutz, B. R. Taft, Angew. Chem. Int. Ed., 2006, 45, 8235-8238.
Synthesebeispiel 4:
1 rnol-% CuSO4 0 1 eq sodiurn ascorbate □ ^N
RN, + =-R" N > (I 1 )
Figure imgf000015_0001
Die Kupfer-katalysierte stufenweise Cacloaddition von Aziden an terminale Alkine eröffnet ein breites Spektrum und ermöglicht die Herstellung von 1,4 disubstituierten 1,2,3-Tri- azolen in hohen Ausbeuten und mit hoher Regioselektivität . V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. , 2002, 114, 2708-2711.
Synthesebeispiel 5: lkyl,
Figure imgf000016_0001
yl
Eine Kupfer (I) katalysierte drei-Komponentenreaktion von Aminen mit Propargyl Halogeniden und Aziden führt in Wasser zu 1-substituierten-lH-l , 2, 3-triazol-4-ylmethyl) -dialkyl- aminen. Ein sysnthetischer Vorteil ist neben der hohen Selektivität die geringe Umweltbelastung ein breites Feld an Eduk- ten (substrate scope) sowie milde Reaktionsbedingungen und gute Ausbeuten. Z. -Y. Yan, Y. -B. Zhao, M. -J. Fan, W. -M. Liu, Y. -M. Liang, Tetrahedron, 2005, 61, 9331-9337.
Synthesebeispiel 6:
1 θq CuI, 1 eq ICI D N^
12eq NEt, R"^ "N RN, + R1-= - *-
THF, r.t, 20 h ,/ X R,
Dies ist eine Methode für die regiospezifische Synthese von 1, 4, 5-trisubstituierten-l, 2, 3-Triazol, die durch Kupfer (I) Jodid katalysiert wird. Das ist das erste Beispiel für eine regiospezifische Synthese von 5-iodo-l, 4-disubstituierten- 1, 2, 3-Triazolen, die noch weiterentwickelt werden kann, so dass 1, 4, 5-trisubstituierte-l, 2, 3-Triazol-Derivate resultieren . Y. -M. Wu, J. Deng, Y. L. Li, Q. -Y. Chen, Synthesis, 2005,
1314-1318. Synthesebeispiel 7:
Figure imgf000017_0001
1, 2, 3-Triazole wurden in mittleren bis guten Ausbeuten durch die Cycloaddition von Alkyl Aziden auf Enolethern unter lösungsmittelfreien Bedingungen hergestellt. Diese Reaktion kann den Zugang zu ringannelierten Triazolen, die über Alkin- Azid-Cycloadditionen unzugänglich sind, eröffnen. Zudem kann die Reaktion leicht vom Labormaßstab hochskaliert werden. Die so hergestellten 1, 2, 3-Triazole können leicht derivatisiert werden .
D. R. Rogue, J. L. Neill, J. W. Antoon, E. P. Stevens, Syn- thesis, 2005, 2497-2502.
Synthesebeispiel 8:
Figure imgf000017_0002
Die Synthese von aromatischen Aziden aus den korrespondierenden Aminen wird unter milden Bedingungen durchgeführt mit tert . -Butyl-Nitrit und Azidotrimethylsilan . 1, 4-disubstitu- ierte 1, 2, 3-Triazole von verschiedensten aromatischen Aminen können so in excellenten Ausbeuten erhalten werden, ohne dass die Azid-Zwischenstufe isoliert werden muss.
K. Barral, A. D. Moorhouse, J. E. Moses, Org. Lett . , 2007, 9, 1809-1811. Synthesebeispiel 9:
Figure imgf000018_0001
AcOEt, 1 00X, 4 - 24 h
Es wurden Triazole über eine dreikomponentige Kupplungsreaktion mit einem inaktivierten endständigen Alkin, einem Allyl- carbonat und einem Trimethylsilyl-Azid unter Palladium (O)- und Kupfer (I) bimetallischen Katalyse hergestellt. Die Deal- lylation der erhaltenen Triazole wird auch beschrieben. S. Kamij o, T. Jin, Z. Huo, Y. Yamamoto, J. Am. Chem. Soc, 2003, 125, 7786-7787.
Synthesebeispiel 10:
Figure imgf000018_0002
Es handelt sich um eine TBAF-katalysierte [3+2] Cycloaddition eines 2-aryl-l-cyano- oder 2-aryl-l-carbethoxy-l-nitroethen mit TMSN3 unter lösungsmittelfreien Bedingungen, die die Herstellung von 4-aryl-5-cyano- oder 4-aryl-5-carbethoxy-lH- 1, 2, 3-Triazolen unter milden Reaktionsbedingungen mit guten bis ausgezeichneten Ausbeuten ermöglicht.
D. Amantini, F. Fringuelli, O. Piermatti, F. Pizzo, E. Zunino, L. Vaccaro, J. Org. Chem., 2005, 70, 6526-6529
Oder:
Figure imgf000018_0003
D. Amantini, F. Fringuelli, O. Piermatti, F. Pizzo, E. Zu- nino, L. Vaccaro, J. Org. Chem., 2005, 70, 6526-6529. Synthesebeispiel 11:
1)1 eq EtMgBr THF, 50°C, 15 min Ph ,N . sat NH4CI -N N
Ph-
2) 1 eq. PhNj M rt (30rnm)→50"C(1 h) Ph MgBr Ph 75% (isol)
Über sehr effektive Cycloadditionen wurden Triazol-basierte Monophosphin- Liganden hergestellt.
Palladium Komplexe daraus sind sehr effektive Katalysatoren für die Suzuki-Miyaura-Kupplungsreaktion sowie die Aminie- rungsreaktionen von Arylchloriden .
D. Liu, W. Gao, Q. Dai, X. Zhang, Org. Lett . , 2005, 7, 4907- 4910.
Synthesebeispiel 12:
15 eq R1 5 rnol-% Ar R1
Pd(PPh-JXk or Pd(OAc), Ar-Br
-N M , 2 eq Bu4NOAc
N 'N
R'N'N'"N R: Bn1Ar, alkyl NMP, 1000C, 2 -24 h R1 H1Ar, alkyl
Eine hocheffiziente Methode zur Synthese von multisubstitu- ierten 1, 2, 3-Triazolen über eine direkte Palladiumkatalysier- te C-5 Arylierungsreaktion wird vorgestellt.
S. Chuprakov, N. Chernyak, A. S. Dudnik, V. Gevorgyan, Org. Lett., 2007, 9, 2333-2336.
Im Weiteren werden noch beispielhaft einzelne Synthesebeispiele im Detail beschrieben.
Beispiel 1: Synthese von
[F2 (ppy) Ir (adamantyltryazolylpyridin) ] BF4 : a) Herstellung des Liganden:
Figure imgf000020_0001
2-ethynylpyridine 1-azidoadamantane adamantyl ligand
Beschreibung: 1 Äquivalent einer Azid-Komponente und 1 Äquivalent 2-Ethylpyridin werden mit einer katalytischen Menge an Kupferbromid und Pentamethyldiethylentriamin (beide mit ca. 0,04 Äquivalenten) in einem frisch destillierten sauerstofffreien Tetrahydrofuran (6 ml) gerührt. Die Mischung reagiert 12 Stunden bei Raumtemperatur unter Stickstoffatmosphäre ab. Nach dem Entfernen des Lösungsmittels unter reduziertem Druck wird der Feststoff über Säulenchromatographie in Hexan/Ether 20/80 als mobiler Phase, gereinigt. Man erhält eine weiße kristalline Verbindung.
In Figur 1 wird das 1H-Protonenspektrum der Verbindung ge- zeigt.
1H NMR (300 MHz, CD2C12) δ 8.54 (d, J = 4.2, IH), 8.23 (s, IH), 8.13 (d, J = 8.0, IH), 7.77 (t, J = 9.0, IH), 7.24-7.18 (m, IH), 2.29 (s, 9H), 1.82 (s, 6H) . HRMS berechnet für (C17H20N4)H 281.1761 [MH], gefunden 281.1648.
b) Umsetzung des Liganden mit der chloroverbrückten Iridium- Ausgangsverbindung .
Figure imgf000021_0001
dichloro-bridged complex adamantyl ligand chloride complex
Chloride complex + NH4PF6 PF6 "
Figure imgf000021_0002
1 Äquivalent des dichloroverbrückten Iridiumkomplexes und 2.2 Äquivalente des Adamantylliganden werden in 30ml Dichloro- methan und 10ml Methanol gelöst. Die Mischung wird dann in einen 2-Hals-Rundkolben gegeben und reagiert dort in 4 Stunden bei 45°C unter Stickstoffatmosphäre ab. Nach dem Abkühlen der Mischung auf Raumtemperatur werden die Lösungsmittel unter vermindertem Druck abgezogen und der überschüssige Ligand wird chromatographisch über ein Silicat-Pulver mit Ethyl- Azetat und Methanol als mobiler Phase abgetrennt. Das gereinigte Produkt in Form seines Chlorids wird in Methanol wieder gelöst. Dann wird eine gesättigte Lösung an NH4PFe in Methanol zugegeben. Die Mischung wird für einige Stunden gerührt dann unter vermindertem Druck konzentriert um den gelben Feststoff auszufällen, der dann 3x mit Wasser (3x 20 ml) und 2x mit kaltem Methanol ( 2 x 20 ml) gewaschen wird.
Die Figuren 2 bis 5 zeigen die jeweiligen NMR-Spektren der
Verbindung.
1H NMR (300 MHz, CDC13) δ 10.69 (s, IH), 10.27-10.16 (m, 3H),
10.00 (t, J = 6, IH), 9.81-9.70 (m, 3H), 9.46 (d, J = 6, IH), 9.41 (d, J = 6, IH) , 9.28 (t, J = 6, IH) , 9.01 (t, J = 9.0, IH) , 8.95 (t, J = 9.0, IH) , 8.58-8.40 (m, 2H) , 7.66 (t, J = 9, 2H) , 4.13 (s, 9H) , 3.69 (s, 6H) . HRMS berechnet für C39H32F4IrN6 853.2254 [M-PF6] , gefunden 853.2171.
c) Umsetzung des Chlorids zum Tetrafluoroborat :
chloride complex + NH BF,
Figure imgf000022_0001
Um das Tetrafluoroborat zu erhalten, wird ein Äquivalent des Chlorid-Komplexes, der wie oben beschrieben erhalten werden kann, in Azeton gelöst. Zu dieser Lösung werden 3 Äquivalente Ammoniumtetrafluoroborat , die in einem Minimum an Wasser gelöst vorliegen, zugegeben. Die Mischung wird über Nacht ge- rührt, dann wird ein weißes Pulver abfiltriert, das vermutlich ein Überschuss an Ammoniumtetrafluoroborat ist, und das Lösungsmittel unter vermindertem Druck abgezogen. Der erhaltene Feststoff wird teilweise in Wasser gelöst und der unlösliche Teil wird filtriert und mehrmals mit Wasser gewaschen. Schließlich wird er in Dichloromethan gelöst und über Magnesiumsulfat getrocknet.
Figur 6 bis 8 zeigen die NMR-Spektren des Tetrafluoroborats .
1H NMR (300 MHz, CDC13) δ 9.28 (s, IH), 8.68 (d, J = 8.0,
IH), 8.28 (d, J = 8.0, 2H), 8.05 (t, J = 7.1, IH), 7.80 (t, J = 9.0, 2H), 7.73 (d, J = 3.0, IH), 7.50 (d, J = 6.0, IH), 7.44 (d, J = 6.0, IH), 7.29 (t, J = 6.0, IH), 7.08 (t, J = 6.0, IH), 7.01 (t, J = 6.0, IH) , 6.59-6.44 (m, 2H), 5.72 - 5.60 (m, 2H) , 2.19 (s, 9H) , 1.72 (s, 6H) . HRMS berechnet für C39H32F4IrN6 853.2254 [M-BF4] , gefunden 853.2148. Figuren 9 bis 10 zeigen Spektren von [F2 (ppy) Ir (adamantyltry- azolylpyridin) ] PF6; ein Photolumineszenz-Spektrum (Figur 9) und ein Elektrolumineszenzspektrum (Figur 10) .
Figur 11 zeigt die Licht-Strom-Spannungs-Charakteristik der Verbindung [F2 (ppy) Ir (adamantyltryazolylpyridin) ] PF 6.
Figur 12 zeigt ein Elektrolumineszenz Spektrum der Tetrafluo- roborat-Verbindung [F2 (ppy) Ir (adamantyltryazolylpyridin) ] BF4.
Figur 13 zeigt wieder eine Licht- Strom- Spannungs- Charakte¬ ristik, diesmal der Verbindung [F2 (ppy) Ir (adamantyltryazolyl¬ pyridin) ]BF4.
Figur 14 zeigt das 1-H- NMR für die Verbindung Bis-(2,4-di- fluorophenyl-pyridyl) (4-pyridyl-l-phenyl-triazole) iridium (III) -tetrafluorobrat .
In Tabelle 1 werden die Redoxpotentiale der verbrückten Iri¬ dium (III) Verbindungen gezeigt.
Figure imgf000023_0001
Die Messungen wurden in wasserfreiem Acetonitril durchgeführt (für die Komplexe) , und in THF für die Liganden, (Flu) die Werte wurden gegenüber Ferrocen/Ferrocenium als internem Standard gemessen.
Figure imgf000024_0001
Figur 15 zeigt ein Absorptionsspektrum einer verbrückten Iridium (III) -Triazol Verbindung.
Figur 16 zeigt ein Photolumineszenzspektrum der verbrückten Iridium (III) -Verbindung wie oben beschrieben, bei einer Temperatur von 77 Kelvin und
Figur 17 zeigt ein weiteres Photolumineszenzspektrum der verbrückten Iridium (III) -Verbindung bei Raumtemperatur.
Im Folgenden werden noch Strukturen von zwei Triazol-Liganden gemäß der Erfindung gezeigt, die beispielsweise gemäß der Erfindung eingesetzt werden. Es werden damit kräftig blaue Emitter erzeugt.
Figure imgf000025_0001
Die vorliegende Erfindung beschreibt ein Triazolliganden- system, das einsetzbar ist zur Erzeugung von blauen und grünen Emittern, die in organischen Licht emittierenden elektrochemischen Zellen OLEECs einsetzbar sind. Einige der hier erstmals gezeigten blauen Emitter, insbesondere die hier vorgestellte Klasse der Iridium-komplexverbindungen, sind die blauesten Emitter, die zurzeit überhaupt existieren.
Die Erfindung betrifft eine phosphoreszente Metallkomplexverbindung, Verfahren zur Herstellung dazu und ein strahlungs- emittierendes Bauelement, insbesondere eine lichtemittierende organische elektrochemische Zelle (organic light emitting electrochemical cell OLEEC) .

Claims

Patentansprüche
1. Phosphoreszente Metallkomplexverbindung, die zumindest ein metallisches Zentralatom M und zumindest einen durch das me- tallische Zentralatom koordinierten Liganden umfasst, der einen zweizähnigen Liganden mit einer Triazoleinheit enthält.
2. Verbindung nach Anspruch 1, wobei die Triazol-Einheit ausgewählt ist aus der Gruppe der 1, 2, 3-Triazole und der 1,2,4 Triazole.
3. Verbindung nach einem der Ansprüche 1 oder 2, die verbrückt ist.
4. Verbindung nach einem der vorstehenden Ansprüche, wobei das metallische Zentralatom ausgewählt ist aus der Gruppe folgender Metalle: Ir, Re, Os, Pt, Au, Hg, Ru, Rh, Pd, Ag, Cu.
5. Verbindung nach einem der vorstehenden Ansprüche, wobei die Triazol-Einheit in 4-Stellung substituiert ist.
6. Verbindung nach einem der vorstehenden Ansprüche, wobei die Triazoleinheit in 4-Stellung Aryl-substituiert ist.
7. Verbindung nach einem der vorstehenden Ansprüche, die die Strukturformel
Figure imgf000027_0001
aufweist, wobei gilt: M=Ir, Re, Os, Pt, Au, Hg, Ru, Rh, Pd, Ag, Cu Y, Z = N oder C R = unabhängig voneinander - H, verzweigte Alkylreste, unverzweigte Alkylreste, kondensierte Alkylreste, ringförmige Alkylreste, vollständig oder teilweise substituierte unverzweigte Alkylreste, vollständig oder teilweise substituierte verzweigte Alkylreste, vollständig oder teilweise substituierte kondensierte Alkylreste, vollständig oder teilweise substituierte ringförmige Alkylreste, Alkoxygruppen, Amine, Amide, Ester, Carbonate, Aromaten, vollständig oder teilweise substituierte Aromaten, Heteroaromaten, kondensierte Aroma- ten, vollständig oder teilweise substituierte kondensierte
Aromaten, Heterocyclen, vollständig oder teilweise substituierte Heterocyclen, kondensierte Heterocyclen, Halogene, Pseudohalogene und Aryl = ein beliebiger, teilweise oder vollständig substituierter aromatischer oder heteroaromatischer Rest ist, der auch kondensiert sein kann, eine Brücke zu einer weiteren Verbindung knüpfen kann, und/oder kondensiert oder anneliert mit weiteren Aromaten oder Heteroaromaten, sowie verbunden mit weiteren cyclischen Verbindungen, vorliegen kann.
8. Verbindung nach dem vorherigen Anspruch, wobei Ri und/oder R2 zusätzlich an M koordiniert sind.
9. Verbindung nach einem der vorherigen Ansprüche, die mehrkernig ist und zumindest zwei metallische Zentralatome M aufweist .
10. Verbindung nach dem vorherigen Anspruch, wobei die zumin- dest zwei metallischen Zentralatome M über eine Metall- Metall-Wechselwirkung aneinander koordiniert sind.
11. Verbindung nach einem der vorherigen Ansprüche 9 oder 10, wobei die zumindest zwei metallischen Zentralatome M über zu- mindest einen zusätzlichen Brückenliganden verbunden sind.
12. Strahlungsemittierendes Bauelement, umfassend ein Substrat, eine erste Elektrodenschicht auf dem Substrat, zumindest eine organische emittierende Schicht auf der ersten Elektrodenschicht und eine zweite Elektrodenschicht auf der organischen emittieren- den Schicht, wobei die organische emittierende Schicht eine phosphoreszente Metallkomplexverbindung gemäß den Ansprüchen 1 bis 11 umfasst.
13. Bauelement nach dem vorhergehenden Anspruch, wobei die phosphoreszente Metallverbindung in einem Matrixmaterial vorhanden ist.
14. Bauelement nach einem der Ansprüche 12 oder 13, das bei Anlegen einer Spannung Licht einer Farbe emittiert, die aus- gewählt ist aus einer Gruppe umfassend die Farben grün, blaugrün, hellblau, tiefblau, blau.
15. Bauelement nach den vorhergehenden Ansprüchen 12 bis 14, wobei das Substrat und die erste Elektrodenschicht transpa- rent sind.
16. Verfahren zur Herstellung einer phosphoreszenten Metallkomplexverbindung gemäß den Ansprüchen 1 bis 11 mit den Verfahrensschritten A) Bereitstellen einer Zentralatomverbindung eines metallischen Zentralatoms, aufweisend an das Zentralatom koordinierte Austauschliganden,
B) Mischen der Zentralatomverbindung und eines in einem ersten Lösungsmittel gelösten Liganden zur Bildung der Me- tallkomplexverbindung, wobei der Austauschligand durch den Liganden, der zweizähnig am Zentralatom koordiniert und eine Triazoleinheit umfasst, ersetzt wird.
17. Verfahren nach Anspruch 16, wobei die Metallkomplexver- bindung säulenchromatographisch gereinigt wird.
PCT/EP2009/059092 2008-07-18 2009-07-15 Phosphoreszente metallkomplexverbindung, verfahren zur herstellung dazu und strahlungsemittierendes bauelement WO2010007107A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980128096.7A CN102099365B (zh) 2008-07-18 2009-07-15 磷光金属配合化合物、其制备方法和发出辐射的构件
JP2011517921A JP5653352B2 (ja) 2008-07-18 2009-07-15 リン光性金属錯体化合物、その製造方法、並びに放射構成要素
US12/737,466 US9012038B2 (en) 2008-07-18 2009-07-15 Phosphorescent metal complex compound, method for the preparation thereof and radiating component
EP20090780655 EP2307430B1 (de) 2008-07-18 2009-07-15 Phosphoreszente metallkomplexverbindung, verfahren zur herstellung dazu und strahlungsemittierendes bauelement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008033929.6 2008-07-18
DE200810033929 DE102008033929A1 (de) 2008-07-18 2008-07-18 Phosphoreszente Metallkomplexverbindung, Verfahren zur Herstellung dazu und strahlungsemittierendes Bauelement

Publications (1)

Publication Number Publication Date
WO2010007107A1 true WO2010007107A1 (de) 2010-01-21

Family

ID=41066585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/059092 WO2010007107A1 (de) 2008-07-18 2009-07-15 Phosphoreszente metallkomplexverbindung, verfahren zur herstellung dazu und strahlungsemittierendes bauelement

Country Status (7)

Country Link
US (1) US9012038B2 (de)
EP (1) EP2307430B1 (de)
JP (1) JP5653352B2 (de)
KR (1) KR20110040941A (de)
CN (1) CN102099365B (de)
DE (1) DE102008033929A1 (de)
WO (1) WO2010007107A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067401A1 (en) 2009-12-03 2011-06-09 Westfälische Wilhelms-Universität Münster Use of luminescent ir(iii) and ru(ii) complexes
JP2011213715A (ja) * 2010-03-15 2011-10-27 Semiconductor Energy Lab Co Ltd 有機金属錯体、発光素子、表示装置、電子機器、及び照明装置
DE102010023959A1 (de) 2010-06-16 2011-12-22 Siemens Aktiengesellschaft Neue Verbindungen als Liganden für Übergangsmetallkomplexe und daraus hergestellte Materialien, sowie Verwendung dazu
WO2012141185A1 (en) * 2011-04-15 2012-10-18 Semiconductor Energy Laboratory Co., Ltd. Organic light-emitting element, organometallic complex, light-emitting device, electronic appliance, and lighting device
CN102834944A (zh) * 2010-01-25 2012-12-19 欧司朗股份有限公司 胍基阳离子在发光器件中的应用
JP2016119458A (ja) * 2010-03-11 2016-06-30 メルク パテント ゲーエムベーハー 発光ファイバー
US9768396B2 (en) 2011-12-23 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011104169A1 (de) * 2011-06-14 2012-12-20 Osram Ag Strahlungsemittierendes Bauelement und Verfahren zur Herstellung eines strahlungsemittierenden Bauelements
JP6166557B2 (ja) 2012-04-20 2017-07-19 株式会社半導体エネルギー研究所 燐光性有機金属イリジウム錯体、発光素子、発光装置、電子機器、および照明装置
JP6117618B2 (ja) 2012-06-01 2017-04-19 株式会社半導体エネルギー研究所 有機金属錯体、発光素子、発光装置、電子機器、及び照明装置
EP2688119A1 (de) * 2012-07-20 2014-01-22 OSRAM GmbH Organische elektrolumineszente Vorrichtung und Verfahren für den Betrieb einer organischen elektrolumineszenten Vorrichtung
KR102098340B1 (ko) * 2013-04-29 2020-04-13 유디씨 아일랜드 리미티드 카르벤 리간드를 갖는 전이 금속 착물 및 oled에서의 그의 용도
US9735378B2 (en) 2013-09-09 2017-08-15 Universal Display Corporation Organic electroluminescent materials and devices
US9865824B2 (en) 2013-11-07 2018-01-09 Industrial Technology Research Institute Organometallic compound, organic light-emitting device, and lighting device employing the same
US10153441B2 (en) 2015-03-30 2018-12-11 Industrial Technology Research Institute Organic metal compound, organic light-emitting device, and lighting device employing the same
JP6697299B2 (ja) 2015-04-01 2020-05-20 株式会社半導体エネルギー研究所 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
JP7016496B2 (ja) * 2017-10-03 2022-02-07 学校法人神奈川大学 パラジウム錯体固体、錯体触媒、及びそれらの製造方法
CN108671961B (zh) * 2018-05-10 2021-01-26 三峡大学 一种钌配合物光催化剂,制备方法及其应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018653A1 (en) 2001-08-31 2003-03-06 Nippon Hoso Kyokai Phosphor light-emitting compound, phosphor light-emitting composition, and organic light emitting element
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
WO2005097943A1 (ja) 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2005097942A1 (ja) 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006008976A1 (ja) 2004-07-16 2006-01-26 Konica Minolta Holdings, Inc. 白色発光有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006013738A1 (ja) 2004-08-05 2006-02-09 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置および照明装置
US7001536B2 (en) 1999-03-23 2006-02-21 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
WO2006098120A1 (ja) 2005-03-16 2006-09-21 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子
WO2006135076A1 (en) 2005-06-14 2006-12-21 Showa Denko K.K. Light emitting polymer material, organic electroluminescence device and display device comprising light emitting polymer material
US20070001166A1 (en) 2003-11-07 2007-01-04 Ye Tao Phosphorescent Osmium (II) complexes and uses thereof
WO2007004113A2 (en) 2005-06-30 2007-01-11 Koninklijke Philips Electronics N.V. Electro luminescent metal complexes
EP1692244B1 (de) 2003-12-12 2007-04-11 Basf Aktiengesellschaft Verwendung von platin(ii)-komplexen als lumineszierende materialien in organischen licht-emittierenden dioden (oleds)
US20070190359A1 (en) 2006-02-10 2007-08-16 Knowles David B Metal complexes of cyclometallated imidazo[1,2-ƒ]phenanthridine and diimidazo[1,2-a:1',2'-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
EP1486552B1 (de) 2003-06-12 2007-12-19 Sony Corporation Organisches elektrolumineszentes Material, organische elektrolumineszente Vorrichtung und heterozyklischer Iridium-Komplex

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US190359A (en) * 1877-05-01 Improvement in gutter-hangers
US1953843A (en) * 1933-03-02 1934-04-03 Samuel J Wilson Safety device for submarines
JP4062994B2 (ja) * 2001-08-28 2008-03-19 株式会社豊田自動織機 放熱用基板材、複合材及びその製造方法
JP2003208982A (ja) 2002-01-15 2003-07-25 Fuji Photo Film Co Ltd 発光素子
US6951080B2 (en) * 2002-05-10 2005-10-04 Oryzatech Inc. Culm blocks
GB0311234D0 (en) 2003-05-16 2003-06-18 Isis Innovation Organic phosphorescent material and organic optoelectronic device
US20060000544A1 (en) * 2004-01-09 2006-01-05 Riverwood International Corporation Method of producing cartons
WO2006000544A2 (en) 2004-06-28 2006-01-05 Ciba Specialty Chemicals Holding Inc. Electroluminescent metal complexes with triazoles and benzotriazoles
WO2006024997A1 (en) * 2004-09-02 2006-03-09 Koninklijke Philips Electronics N.V. White light-emitting device
TWI270573B (en) * 2005-06-15 2007-01-11 Au Optronics Corp Light emission material and organic electroluminescent device using the same
US7235978B2 (en) * 2005-09-07 2007-06-26 Matsushita Electric Industrial Co., Ltd. Device for measuring impedance of electronic component
US7398681B2 (en) * 2005-09-22 2008-07-15 The Regents Of The University Of California Gas sensor based on dynamic thermal conductivity and molecular velocity
US7807839B2 (en) 2005-10-18 2010-10-05 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element and light-emitting device using the same
JP5072312B2 (ja) * 2005-10-18 2012-11-14 株式会社半導体エネルギー研究所 有機金属錯体及びそれを用いた発光素子、発光装置
EP1953843B1 (de) 2005-10-31 2012-12-05 Konica Minolta Holdings, Inc. Organische elektrolumineszenzanordnung, display und beleuchtungsanordnung
TWI313292B (en) * 2005-11-25 2009-08-11 Chi Mei Optoelectronics Corp Light-emitting element and iridium complex
US20070137872A1 (en) * 2005-12-19 2007-06-21 Ziebell Donald L Attachment for road grader blade for grading shoulders
JP2007169541A (ja) 2005-12-26 2007-07-05 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8030490B2 (en) * 2006-12-29 2011-10-04 National Tsing Hua University Phosphorescent iridium complex with non-conjugated cyclometalated ligands, synthetic method of preparing the same and phosphorescent organic light emitting diode thereof
EP2170911B1 (de) * 2007-06-22 2018-11-28 UDC Ireland Limited Lichtemittierende cu(i)-komplexe

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6902830B2 (en) 1998-09-14 2005-06-07 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US7001536B2 (en) 1999-03-23 2006-02-21 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
WO2003018653A1 (en) 2001-08-31 2003-03-06 Nippon Hoso Kyokai Phosphor light-emitting compound, phosphor light-emitting composition, and organic light emitting element
EP1486552B1 (de) 2003-06-12 2007-12-19 Sony Corporation Organisches elektrolumineszentes Material, organische elektrolumineszente Vorrichtung und heterozyklischer Iridium-Komplex
WO2005019373A2 (de) 2003-08-19 2005-03-03 Basf Aktiengesellschaft Übergangsmetallkomplexe mit carbenliganden als emitter für organische licht-emittierende dioden (oleds)
US20070001166A1 (en) 2003-11-07 2007-01-04 Ye Tao Phosphorescent Osmium (II) complexes and uses thereof
EP1692244B1 (de) 2003-12-12 2007-04-11 Basf Aktiengesellschaft Verwendung von platin(ii)-komplexen als lumineszierende materialien in organischen licht-emittierenden dioden (oleds)
WO2005097943A1 (ja) 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2005097942A1 (ja) 2004-03-31 2005-10-20 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006008976A1 (ja) 2004-07-16 2006-01-26 Konica Minolta Holdings, Inc. 白色発光有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006013738A1 (ja) 2004-08-05 2006-02-09 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置および照明装置
WO2006098120A1 (ja) 2005-03-16 2006-09-21 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子
WO2006135076A1 (en) 2005-06-14 2006-12-21 Showa Denko K.K. Light emitting polymer material, organic electroluminescence device and display device comprising light emitting polymer material
WO2007004113A2 (en) 2005-06-30 2007-01-11 Koninklijke Philips Electronics N.V. Electro luminescent metal complexes
EP1904508A2 (de) 2005-06-30 2008-04-02 Koninklijke Philips Electronics N.V. Elektrolumineszente metallkomplexe
US20070190359A1 (en) 2006-02-10 2007-08-16 Knowles David B Metal complexes of cyclometallated imidazo[1,2-ƒ]phenanthridine and diimidazo[1,2-a:1',2'-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
WO2007095118A2 (en) 2006-02-10 2007-08-23 Universal Display Corporation METAL COMPLEXES OF CYCLOMETALLATED IMIDAZO[1,2-f]PHENANTHRIDINE AND DIIMIDAZO[1,2-A:1',2'-C]QUINAZOLINE LIGANDS AND ISOELECTRONIC AND BENZANNULATED ANALOGS THEREOF

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
B. H. LIPSHUTZ; B. R. TAFT, ANGEW. CHEM. INT. ED., vol. 45, 2006, pages 8235 - 8238
CHEN ET AL.: "22th. International Conference On Organometallic Chemistry ICOMC 2006, Book of Abstracts", vol. 2, July 2006, pages: 23
CHEN ET AL: "Blue Phosphorescent Heteroleptic Triscyclometallated Ir(III) Organometallic Complexes", 22TH. INTERNATIONAL CONFERENCE ON ORGANOMETALLIC CHEMISTRY ICOMC 2006), BOOK OF ABSTRACTS, POSTER PRESENTATIONS, ZARAGOZA, JULY 23-28, 2006,, vol. 2, 23 July 2006 (2006-07-23), pages P662, XP002510842 *
D. AMANTINI; F. FRINGUELLI; O. PIERMATTI; F. PIZZO; E. ZUNINO; L. VACCARO, J. ORG. CHEM., vol. 70, 2005, pages 6526 - 6529
D. LIU; W. GAO; Q. DAI; X. ZHANG, ORG. LETT., vol. 7, 2005, pages 4907 - 4910
D. R. ROGUE; J. L. NEILL; J. W. ANTOON; E. P. STEVENS, SYNTHESIS, 2005, pages 2497 - 2502
DIE DRUCKSCHRIFT LAMANSKYS ET AL.: "Inorganic Chemistry", vol. 40, January 2001, AMERICAN CHEMICAL SOCIETY, pages: 1
J. BARLUENGA; C. VALDES; G. BELTRÄN; M. ESCRIBANO; F. AZNAR, ANGEW. CHEM. INT. ED., vol. 45, 2006, pages 6893 - 6896
K. BARRAL; A. D. MOORHOUSE; J. E. MOSES, ORG. LETT., vol. 9, 2007, pages 1809 - 1811
LAMANSKY S ET AL: "Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON, US, vol. 40, no. 7, 1 January 2001 (2001-01-01), pages 1704 - 1711, XP002196399, ISSN: 0020-1669 *
S. CHUPRAKOV; N. CHERNYAK; A. S. DUDNIK; V. GEVORGYAN, ORG. LETT., vol. 9, 2007, pages 2333 - 2336
S. KAMIJO; T. JIN; Z. HUO; Y. YAMAMOTO, J. AM. CHEM. SOC., vol. 125, 2003, pages 7786 - 7787
V. V. ROSTOVTSEV; L. G. GREEN; V. V. FOKIN; K. B. SHARPLESS, ANGEW. CHEM., vol. 114, 2002, pages 2708 - 2711
Y.-M. WU; J. DENG; Y. L. LI; Q.-Y. CHEN, SYNTHESIS, 2005, pages 1314 - 1318
Z.-Y. YAN; Y.-B. ZHAO; M.-J. FAN; W.-M. LIU; Y.-M. LIANG, TETRAHEDRON, vol. 61, 2005, pages 9331 - 9337

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067401A1 (en) 2009-12-03 2011-06-09 Westfälische Wilhelms-Universität Münster Use of luminescent ir(iii) and ru(ii) complexes
US9375392B2 (en) 2010-01-25 2016-06-28 Osram Ag Use of the guanidinium cation and light-emitting component
CN102834944A (zh) * 2010-01-25 2012-12-19 欧司朗股份有限公司 胍基阳离子在发光器件中的应用
EP2529425B1 (de) * 2010-01-25 2016-08-31 OSRAM GmbH Verwendung des guanidinium-kations in einem lichtemittierenden bauelement
JP2016119458A (ja) * 2010-03-11 2016-06-30 メルク パテント ゲーエムベーハー 発光ファイバー
JP2018029067A (ja) * 2010-03-11 2018-02-22 メルク パテント ゲーエムベーハー 発光ファイバー
US9005773B2 (en) 2010-03-15 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, display device, electronic device, and lighting device
JP2011213715A (ja) * 2010-03-15 2011-10-27 Semiconductor Energy Lab Co Ltd 有機金属錯体、発光素子、表示装置、電子機器、及び照明装置
WO2011157546A1 (de) 2010-06-16 2011-12-22 Siemens Aktiengesellschaft Neue verbindungen als liganden für übergangsmetallkomplexe und daraus hergestellte materialien, sowie verwendung dazu
US8937175B2 (en) 2010-06-16 2015-01-20 Osram Gmbh Compounds as ligands for transition metal complexes and materials made thereof, and use therefor
CN103038222A (zh) * 2010-06-16 2013-04-10 欧司朗股份有限公司 作为过渡金属络合物的配位体的新型化合物和由其制造的材料,及其应用
DE102010023959B4 (de) * 2010-06-16 2013-02-21 Osram Ag Neue Verbindungen als Liganden für Übergangsmetallkomplexe und daraus hergestellte Materialien, sowie Verwendung dazu
DE102010023959A1 (de) 2010-06-16 2011-12-22 Siemens Aktiengesellschaft Neue Verbindungen als Liganden für Übergangsmetallkomplexe und daraus hergestellte Materialien, sowie Verwendung dazu
WO2012141185A1 (en) * 2011-04-15 2012-10-18 Semiconductor Energy Laboratory Co., Ltd. Organic light-emitting element, organometallic complex, light-emitting device, electronic appliance, and lighting device
JP2016015510A (ja) * 2011-04-15 2016-01-28 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置
US9200022B2 (en) 2011-04-15 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Organic light-emitting element, organometallic complex, light-emitting device, electronic appliance, and lighting device
JP2012231137A (ja) * 2011-04-15 2012-11-22 Semiconductor Energy Lab Co Ltd 有機発光素子、有機金属錯体、発光装置、電子機器、及び照明装置
US9768396B2 (en) 2011-12-23 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Iridium complex, light-emitting element, light-emitting device, electronic device, and lighting device

Also Published As

Publication number Publication date
EP2307430B1 (de) 2014-08-27
DE102008033929A1 (de) 2010-01-21
JP5653352B2 (ja) 2015-01-14
CN102099365A (zh) 2011-06-15
EP2307430A1 (de) 2011-04-13
KR20110040941A (ko) 2011-04-20
CN102099365B (zh) 2015-05-13
JP2011528328A (ja) 2011-11-17
US20110187265A1 (en) 2011-08-04
US9012038B2 (en) 2015-04-21

Similar Documents

Publication Publication Date Title
EP2307430B1 (de) Phosphoreszente metallkomplexverbindung, verfahren zur herstellung dazu und strahlungsemittierendes bauelement
EP1819717B1 (de) Verwendung von übergangsmetall-carbenkomplexen in organischen licht-emittierenden dioden (oleds)
EP2718394B1 (de) Phosphoreszente metallkomplexverbindung, verfahren zur herstellung dazu und strahlungsemittierendes bauelement
EP2205615B1 (de) Übergangsmetallkomplexe mit verbrückten carbenliganden und deren verwendung in oleds
EP3094638B1 (de) Metallkomplexe
DE112012005364B4 (de) Metallorganischer Komplex
EP2493906B1 (de) Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
EP2082447B1 (de) Oled-anzeige mit verlängerter lebensdauer
DE112011102366B4 (de) Metallkomplexe
EP3424936B1 (de) Metallkomplexe
EP3216797B1 (de) Dinukleare platin-carben-komplexe und deren verwendung in oleds
DE112011102008B4 (de) Metallkomplexe
EP2044169B1 (de) Verwendung von pt- und pd-bis- und tetracarbenkomplexen mit verbrückten carbenliganden in oleds
EP2906575B1 (de) Metallkomplexe
EP2500398B1 (de) Phosphoreszente Metallkomplexverbindung, strahlungsemittierendes Bauelement aufweisend eine phosphoreszente Metallkomplexverbindung und Verfahren zur Herstellung einer phosphoreszenten Metallkomplexverbindung
EP2134807B1 (de) Iridium-triphenylen-komplexe und deren verwendung in oleds
EP2035526A1 (de) Verwendung von übergangsmetallcarbenkomplexen, die keine cyclometallierung über nicht-carbene enthalten, in oleds
EP1721347A2 (de) Verwendung von metallkomplexen als n-dotanden für organische halbleiter und die darstellung derselbigen inkl. ihrer liganden
WO2010086089A1 (de) Metallkomplexe
WO2009150150A1 (de) Neue übergangsmetall-komplexe und deren verwendung in organischen leuchtdioden - iii
DE102010005632A1 (de) Phosphoreszente Metallkomplexverbindung, Verfahren zur Herstellung und lichtemittierendes Bauelement
EP2190945B1 (de) Organisches strahlungsemittierendes bauteil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980128096.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09780655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009780655

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011517921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117003881

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12737466

Country of ref document: US