WO2010004731A1 - シャトルコック - Google Patents

シャトルコック Download PDF

Info

Publication number
WO2010004731A1
WO2010004731A1 PCT/JP2009/003158 JP2009003158W WO2010004731A1 WO 2010004731 A1 WO2010004731 A1 WO 2010004731A1 JP 2009003158 W JP2009003158 W JP 2009003158W WO 2010004731 A1 WO2010004731 A1 WO 2010004731A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
shuttlecock
blade member
shaft
skirt portion
Prior art date
Application number
PCT/JP2009/003158
Other languages
English (en)
French (fr)
Inventor
佐藤充
大森裕二
Original Assignee
株式会社オムシード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008199271A external-priority patent/JP4392454B1/ja
Priority claimed from JP2008285287A external-priority patent/JP2010110459A/ja
Priority claimed from JP2009048075A external-priority patent/JP2010200890A/ja
Application filed by 株式会社オムシード filed Critical 株式会社オムシード
Publication of WO2010004731A1 publication Critical patent/WO2010004731A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B67/00Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
    • A63B67/18Badminton or similar games with feathered missiles
    • A63B67/183Feathered missiles
    • A63B67/187Shuttlecocks
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B67/00Sporting games or accessories therefor, not provided for in groups A63B1/00 - A63B65/00
    • A63B67/18Badminton or similar games with feathered missiles
    • A63B67/183Feathered missiles
    • A63B67/187Shuttlecocks
    • A63B67/193Shuttlecocks with all feathers made in one piece

Definitions

  • the present invention relates to a shuttlecock having a skirt portion made of a resin material.
  • the present invention relates to a shuttlecock having characteristics closer to a shuttlecock (waterfowl ball) made of a natural material.
  • the shuttlecock has a structure in which a skirt portion in which a blade member having a blade shaft and blades extending to the left and right of the blade shaft is annularly arranged is fixed on a base made of cork or the like.
  • the official skirt part of the shuttlecock is made of waterfowl, but since it is expensive and easily deteriorates, a shuttlecock whose skirt part is made of a resin material is manufactured.
  • a shuttlecock having a skirt portion made of a resin material is inexpensive and preferable from the viewpoints of animal protection and environmental protection, and is now produced in large quantities and used for playground equipment and practice.
  • nylon such as nylon 6, nylon 6-6, unplasticized or plasticized nylon 11, and nylon 12 is usually used.
  • a synthetic sphere in which a skirt portion is made of polyether ester amide, which is a polyamide-based elastomer, has also been proposed (see Patent Document 2).
  • a synthetic ball having a skirt portion made of polypropylene has also been proposed (see Patent Document 3).
  • the present inventors can provide a shuttlecock synthetic sphere having characteristics closer to a waterfowl sphere by devising the material and structure constituting the skirt portion. As a result, the present invention described below has been provided.
  • a shuttlecock comprising a skirt portion made of styrene-based elastomer or ionomer resin and a base for fixing the skirt portion.
  • a shuttlecock comprising a skirt portion composed of a plurality of blade members and a base for fixing the skirt portion,
  • the blade member includes a single blade shaft, a left blade extending leftward from the blade shaft, and a right blade extending rightward from the blade shaft.
  • the plurality of blade members are arranged in an annular shape, and the left side of the left blade of each blade member is connected to the right side of the right blade of the blade member arranged on the left side of the blade member to form an annular skirt portion.
  • the blade shaft of each blade member is provided with ribs having a height of 0.3 mm or more that project in the central axis direction of the shuttlecock over its entire length (in this case, the left and right directions are the directions of the shuttlecock with the table down) It is the left-right direction when viewing the blade axis from the central axis).
  • the shuttlecock according to [5] comprising a ring connecting all the blade shafts constituting the skirt portion.
  • the shuttlecock according to [5] comprising two or more rings that connect all the blade shafts constituting the skirt portion.
  • [8 ′] The shuttlecock according to any one of [5] to [7], wherein the requirement according to any one of [1] to [4] is satisfied.
  • a shuttlecock comprising a skirt portion composed of a plurality of blade members and a base for fixing the skirt portion,
  • the blade member includes a single blade shaft, a left blade extending leftward from the blade shaft, and a right blade extending rightward from the blade shaft.
  • the plurality of blade members are arranged in a ring shape, and the left side of the left blade of each blade member is connected to the right side of the right blade of the blade member arranged on the left side of the blade member at a connecting portion, respectively, to form an annular skirt Forming part, Shuttle cock in which the connecting portion forms a valley line over 90% or more of the total length of the connecting portion from the tip of the connecting portion toward the stand (here, the left and right directions are the blades from the central axis of the shuttlecock with the stand down) Left and right direction when looking at the axis).
  • the connecting portion forms a valley line over 90% or more of the total length of the connecting portion from the tip of the connecting portion toward the stand (here, the left and right directions are the blades from the central axis of the shuttlecock with the stand down) Left and right direction when looking at the axis).
  • a shuttlecock comprising a resin skirt portion having a plurality of blade members and a base for fixing the skirt portion,
  • the blade member includes a single blade shaft, a left blade extending leftward from the blade shaft, and a right blade extending rightward from the blade shaft.
  • the plurality of blade members are arranged in a ring shape, and the left side of the left blade of each blade member is connected to the right side of the right blade of the blade member arranged on the left side of the blade member at a connecting portion, respectively, to form an annular skirt Forming part, Shuttle cocks with 4-8 mm cuts formed in the connecting part from the tip of the connecting part toward the base direction (in this case, the left and right directions refer to the blade axis from the central axis of the shuttlecock with the base down) Direction).
  • the shuttlecock according to [10] wherein the length of the cut is 5 to 7 mm.
  • a shuttlecock comprising a skirt portion having a plurality of first blade members and a plurality of second blade members, and a base for fixing the skirt portion
  • the first blade member has one blade shaft, a left blade with an opening rate of 50 to 90% extending to the left of the blade shaft, and an opening rate of 0 to 10 extending to the right of the blade shaft.
  • the second blade member includes one blade shaft, a left blade with an opening rate of 50 to 90% extending to the left of the blade shaft, and an opening rate of 15 to 40 extending to the right of the blade shaft.
  • the number of the first blade member and the second blade member constituting the skirt portion is the same, and the first blade member and the second blade member are alternately arranged in an annular shape, and each first blade member The left side of the left blade is connected to the right side of the right blade of the second blade member adjacent to the left side, and the right side of the right blade of each first blade member is connected to the left side of the left blade of the second blade member adjacent to the right side.
  • Shuttle cocks connected to form an annular skirt here, the left and right directions are directions when the blade axis is viewed from the central axis of the shuttlecock with the base down).
  • a shuttlecock comprising a skirt portion having a plurality of first blade members and a plurality of second blade members, and a base for fixing the skirt portion
  • the first blade member includes one blade shaft, a right blade having a hole ratio of 50 to 90% extending in the right direction of the blade shaft, and a hole ratio of 0 to 10 extending in the left direction of the blade shaft.
  • the second blade member includes one blade shaft, a right blade having a hole ratio of 50 to 90% extending in the right direction of the blade shaft, and a hole ratio of 15 to 40 extending in the left direction of the blade shaft.
  • the number of the first blade member and the second blade member constituting the skirt portion is the same, and the first blade member and the second blade member are alternately arranged in an annular shape, and each first blade member The left side of the left blade is connected to the right side of the right blade of the second blade member adjacent to the left side, and the right side of the right blade of each first blade member is connected to the left side of the left blade of the second blade member adjacent to the right side.
  • Connected shuttlecocks here, the left and right directions are directions when the blade axis is viewed from the central axis of the shuttlecock with the base down).
  • the shuttlecock of the present invention has a characteristic that it has a performance close to that of a waterfowl ball while being a synthetic sphere made of resin.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • Styrenic elastomers or ionomer resins have excellent moldability, are lightweight and durable, and are suitable for mass production, so they are extremely useful as shuttlecocks that replace waterfowl balls.
  • the styrene elastomer is an elastomer having a styrene rubber as a base polymer.
  • a typical styrenic elastomer is a styrene block copolymer (SBC), specifically, a styrene-butadiene-styrene block copolymer (SBS), a styrene-isoprene-styrene block copolymer (SIS), a styrene- Examples thereof include an ethylene-butylene-styrene block copolymer (SEBS) and a styrene-ethylene-propylene-styrene block copolymer (SEPS). Of these, a styrene-isoprene-styrene block copolymer (SIS) is preferable.
  • SBC styrene block copolymer
  • SBS styrene-buta
  • Examples of commercially available styrene elastomers include Lavalon [trade name] manufactured by Mitsubishi Chemical Corporation, Sumiflex [trade name] manufactured by Mitsubishi Chemical Corporation, and NOFALOY KA832 [trade name] manufactured by NOF Corporation.
  • a styrene elastomer having a specific gravity in the range of 0.85 to 0.99 or a styrene elastomer having a specific gravity in the range of 0.85 to 0.97 is used.
  • the shuttlecock which shows a favorable effect can be manufactured compared with the case where resin used from is used.
  • a specific gravity within the range of 0.89 to 0.93 is selected and used, the flight curve is much closer to the waterfowl than when using a specific gravity other than that. This is preferable because a shuttlecock having a high strength can be manufactured.
  • a styrene elastomer having a hardness (JIA type A) in the range of 40 to 100, or a styrene elastomer having a hardness in the range of 55 to 100 is used.
  • the shuttlecock which shows a favorable effect can be manufactured compared with the case where resin used from is used. In particular, if you select and use one with a hardness in the range of 80 to 100, a shuttlecock with even better hitting sound, feel at impact, and flight curve than when using one with other hardness. Since it can manufacture, it is preferable.
  • a styrene elastomer having a styrene content in the range of 20 to 50% by weight or a styrene elastomer having a styrene content in the range of 23 to 45% by weight is used.
  • a shuttlecock that exhibits a better effect than when other conventionally used resins are used.
  • the “styrene content” in the present specification means the content (weight ratio) of styrene in the monomer mixture before the styrene elastomer is polymerized.
  • a styrene elastomer having a specific gravity in the range of 0.89 to 0.93 and a hardness in the range of 80 to 100 is used, the hitting sound, feel at impact, flight curve, rotational performance, elasticity It is extremely preferable because a shuttlecock having performances closer to that of waterfowl can be manufactured with various performances such as recovery performance and flexural elasticity performance. If a condition that the content of styrene is in the range of 27 to 38% by weight is added to this, a more preferable shuttlecock can be manufactured.
  • Styrene elastomer has a relatively small environmental impact compared to other resins. For this reason, the shuttlecock of this invention using the styrene-type elastomer has suppressed the influence with respect to an environment in a material surface.
  • the ionomer resin is a resin in which a polymer is aggregated by utilizing a cohesive force caused by metal ions.
  • a typical example is a copolymer of ethylene and acrylic acid or methacrylic acid crosslinked with metal ions.
  • the ionomer resin is hard because it is ionically bonded at a low temperature, but has a property of generating fluidity when loosened when heated and returning to its original state when cooled.
  • the ionomer resin used in the present invention may be a commercially available product.
  • High Milan [trade name] manufactured by Mitsui Chemicals, Inc., Surlyn [trade name] manufactured by DuPont Co., Ltd., and the like can be given.
  • High Milan [trade name] manufactured by Mitsui Chemicals, Inc. can be preferably used.
  • An ionomer resin having the same physical property range as that of the styrenic elastomer can be preferably used in the present invention.
  • another resin may be mixed and used in addition to the above styrene elastomer or ionomer resin.
  • examples of such another resin include polyethylene, polypropylene, and polycarbonate. These resins may be used alone or in combination of two or more.
  • polypropylene can be preferably used.
  • it can be used, for example, in an amount of 0.1 to 40% of the total weight of the skirt, particularly 0.1 to 20%, and further 0.1 to 10%. .
  • the bio-degradable resin can also be included in the skirt portion of the shuttlecock of the present invention.
  • biodegradable resins include polylactic acid and polybutylene succinate.
  • polylactic acid can be preferably used.
  • it is used in an amount of, for example, 0.1 to 40%, particularly 0.1 to 20%, more preferably 0.1 to 10% of the total weight of the skirt portion. it can.
  • an additive can be included in the skirt portion of the shuttlecock of the present invention.
  • the content is preferably 0.001 to 10%, more preferably 0.01 to 5%, still more preferably 0.1 to 3% of the total weight of the skirt portion.
  • the additive include an ultraviolet absorber, a plasticizer, and a pigment. These additives may be used alone or in combination of two or more. In the present invention, for example, a pigment can be preferably used.
  • the skirt portion of the shuttlecock of the present invention has such a shape that the shuttlecock can be used for badminton games or practice. Specifically, it is made of synthetic materials specified in Article 2 of the Badminton Consultation Rules adopted by the Japan Badminton Association (enforced on April 1, 1974 and partially revised on October 11, 2006). It is preferable to satisfy the conditions of the shuttle.
  • the skirt portion includes a plurality of blade shafts, a part of the plurality of blade shafts (usually a part of the region from the tip of the blade shaft toward the table), the plurality of blade shafts, It is preferable to comprise a ring connecting the blade shaft at a portion where the blade is not formed.
  • the blade shaft may be hollow in order to reduce the weight.
  • the blades formed on each blade shaft are usually formed so as to spread to the left and right of the blade shaft, and are preferably formed so as to spread at an angle inside the shuttlecock.
  • the blade is preferably provided with a through-hole penetrating from the inner surface to the outer surface of the blade, and the number and area of the through-holes of the blade provided on the left and right of the blade shaft are different on the left and right. More preferred.
  • a through hole having a larger hole diameter than the right side is provided on the left side of the blade axis as viewed from the central axis, or the left side porosity is preferably 50 to 90%, more preferably 55 to 80%, and still more preferably.
  • the right side porosity is preferably 0 to 50%, more preferably 0 to 40%, and still more preferably 0 to 30%.
  • the thickness of the skirt portion is preferably 0.15 to 0.30 mm, and more preferably 0.18 to 0.20 mm.
  • each blade shaft and the right end piece of the blade formed at the tip of the blade shaft adjacent to the left of the blade shaft are connected and integrated.
  • each blade is connected in the circumferential direction to form a skirt-like continuous shape.
  • the blade shaft portion where the blade is not formed is fixed with a ring in the circumferential direction. At this time, it is preferable that a plurality of rings are formed at different heights. Specifically, 2 to 4 are preferably formed, and 2 to 3 are more preferably formed.
  • FIG. 1 A typical example of a shuttlecock having such a skirt is shown in FIG.
  • the structure of the shuttlecock can be modified as appropriate.
  • the present invention can also be applied to a shuttlecock having a new skirt structure having a characteristic function not found in a conventional shuttlecock.
  • it can be applied to the shuttlecock shown in FIG.
  • the present invention can be applied to a shuttlecock having a feature in the arrangement of through holes provided in the blade member as shown in FIG.
  • the second blade member 2 includes a skirt portion 2 and a base 1 for fixing the skirt portion 2.
  • the skirt portion 2 has a plurality of first blade members 3 and a plurality of second blade members 4.
  • the number of the first blade members 3 and the number of the second blade members 4 constituting the skirt portion 2 are the same, and usually eight.
  • the first blade member 3 and the second blade member 4 are alternately arranged in an annular shape.
  • the first blade member 3 is composed of one blade shaft 5a, a left blade 6a having an opening rate of 50 to 90% extending in the left direction of the blade shaft 5a, and an opening rate extending in the right direction of the blade shaft. It is composed of 0 to 10% of the right blade 7a.
  • the second blade member 4 includes one blade shaft 5b, a left blade 6b having an opening ratio of 50 to 90% extending in the left direction of the blade shaft, and an opening extending in the right direction of the blade shaft.
  • the right blade 7b has a rate of 15 to 40%.
  • the left side of the left blade 6a of the first blade member 3 is connected to the right side of the right blade 7b of the second blade member 4 adjacent to the left side.
  • the right side of the right blade of each first blade member is connected to the left side of the left blade of the second blade member adjacent to the right.
  • the shuttlecock of FIG. 2 has one feature in the aperture ratio of each blade.
  • the hole area ratio is a percentage of the area of the opening with respect to the total area of the blade including the opening.
  • the opening ratio of the right blade of the first blade member is 0 to 10%, preferably 0 to 5%, more preferably 0 to 3%, and still more preferably 0 to 1%. 0% is particularly preferable.
  • the aperture ratio of the right blade of the second blade member is 15 to 40%, preferably 15 to 35%, more preferably 15 to 30%, and still more preferably 15 to 25%.
  • Both the left blade of the first blade member and the left blade of the second blade member are 50 to 90%, preferably 55 to 85%, more preferably 55 to 80%, and more preferably 60 to 75%. More preferably.
  • the plurality of first blade members constituting the skirt portion are preferably all the same shape, and the plurality of second blade members constituting the skirt portion are preferably all the same shape. Further, the left blade of the first blade member preferably has the same shape as the left blade of the second blade member.
  • the shape here means a shape including the shape and size of the opening and the position of the opening.
  • the hole area of each opening formed in the right blade of the second blade member is smaller than the hole area of each opening formed in the left blade of the second blade member.
  • the aperture ratio of the first blade member is not 0%
  • the hole area of each aperture formed in the right blade of the first blade member is the individual area formed in the left blade of the first blade member. It is preferable that it is smaller than the hole area of the opening.
  • the total hole area (total hole area) of the openings formed in the right blade of the second blade member is preferably 35 to 50 mm 2 , more preferably 35 to 45 mm 2 .
  • the total open area of apertures formed in the right wing of the first blade member is preferably from 0.5 ⁇ 2 mm 2, is 0.5 ⁇ 0.8 mm 2 It is more preferable.
  • the total hole area of the openings formed in the left blade of the first blade member and the left blade of the second blade member is preferably 80 to 95 mm 2 , and preferably 85 to 95 mm 2. More preferred.
  • Each blade may have a plurality of types of apertures with different sizes and shapes. For example, it is preferable to change the size and number of apertures above and below the blades.
  • the hole area of the lower opening is preferably smaller than the hole area of the upper hole.
  • the opening formed in the upper part can be, for example, a horizontally long rectangle, and the opening formed in the lower part can be, for example, a slightly vertically long rectangle.
  • the upper direction here means the upper direction when the base is down and the skirt portion is up.
  • the top of each blade may be provided with a triangular top having the tip of the blade shaft as a vertex, and an opening may be formed in such a top.
  • the opening at the top may be a triangular opening similar to the triangular shape at the top, or may be a vertically long opening, for example.
  • the shuttlecock having such a structure is manufactured using the styrene-based elastomer or ionomer resin of the present invention (that is, the material used for the skirt portion of Examples 1 to 4), the conventional product manufactured using the same material is used. Rather, a rotational speed close to that of a waterfowl is obtained, and good results are obtained in all of the flight curve, hitting sound, feel at impact, elastic recovery performance, bending elastic performance, and temperature and humidity fluctuation resistance (weather resistance). For example, the number of rotations is higher than that of a shuttlecock in which the same material is used to form a skirt portion made of a first blade member and a shuttlecock that is made of the same material and made of a skirt portion that is all made of a second blade member. The flight curve, hitting sound, and hitting feeling are all close to a waterfowl ball.
  • the present invention can also be preferably applied to a shuttlecock having a skirt portion characterized by the arrangement of through holes provided in the blade member as shown in FIG.
  • the shuttlecock in FIG. 3 is composed of 16 blade members all having the same shape.
  • the right blade extending in the right direction of each blade shaft is provided with a triangular through hole non-forming region 13 and an inverted triangular through hole forming region 14.
  • the areas of the triangular through hole non-forming region 13 and the inverted triangular through hole forming region 14 are designed to be substantially equal. If a shuttlecock characterized by the arrangement of such through holes is used, the rotational speed can be made closer to the waterfowl ball.
  • the present invention can also be preferably applied to a shuttlecock in which cuts 15 are formed in the base direction from the front ends of the connecting portions of the left and right blades.
  • the length of the cut is preferably 4 to 8 mm, more preferably 5 to 7 mm, and still more preferably 5.5 to 6.7 mm. If the length of the cut is 4 mm or more, the flight distance tends not to be long when the shuttlecock is repeatedly hit with a racket. Further, if the length of the cut is 8 mm or less, the skirt of the shuttlecock skirt portion is difficult to spread, the flight curve tends to be stable, and the durability tends to be improved.
  • the length of the cut may be different for each of a plurality of connecting portions constituting the skirt portion, or may be the same. When the lengths are different, it is preferable to have a certain regularity. For example, a mode in which every other long cut and short cut are alternately formed can be mentioned. Most preferred is an aspect in which notches having a certain length are formed in all the connecting portions constituting the skirt portion.
  • the width of the cut is preferably 0.4 to 0.8 mm, more preferably 0.5 to 0.7 mm, and still more preferably 0.55 to 0.65 mm.
  • the width of the cut may change as it goes from the tip of the connecting portion toward the table. For example, an aspect in which the width becomes narrower toward the table direction can be exemplified. Most preferred is an embodiment in which the width is constant over the entire length of the cut.
  • the width of the notch may be different for each of a plurality of connecting portions constituting the skirt portion, or may be the same. When the widths are different, it is preferable to have a certain regularity. For example, a mode in which every other wide notch and narrow notch are alternately formed can be mentioned. Most preferred is an aspect in which notches having a certain width are formed in all the connecting portions constituting the skirt portion.
  • the cross section of the blade shaft of the shuttlecock of the present invention preferably has a polygonal cross section, and more preferably has a quadrangular shape. It is preferable that the ridge line located on the outermost side when the shuttlecock is assembled is located in the left blade direction with respect to an imaginary line connecting the central axis of the blade axis and the central axis of the shuttlecock. This preferred embodiment will be described with reference to FIG.
  • FIG. 6 is a top view of the shuttlecock of the present invention.
  • the 16 blade shafts constituting the shuttlecock all have the same shape, and the cross section is composed of four surfaces, a-plane, b-plane, c-plane, and d-plane, as shown in the enlarged view of FIG. .
  • the a-plane and b-plane form a ridge line 1a, and this ridge line 1a protrudes to the outermost side of the shuttlecock.
  • the right blade extends from the ridge formed by the a and c surfaces, and the left blade extends from the ridge formed by the b and d surfaces.
  • a ridge formed by the c-plane and the d-plane protrudes inside the shuttlecock to form a rib.
  • the ridge line 1a is located in a position separated in the left blade direction by d from the virtual line indicated by the broken line connecting the central axis of the shuttlecock and the central axis of the blade shaft.
  • d is preferably 0.5 to 0.8 mm, and more preferably 0.6 to 0.7 mm.
  • the a plane and the b plane existing on the left and right of the ridge line 1a are asymmetric, and the area of the a plane is larger than that of the b plane.
  • the air acts to rotate the blade shaft in the right direction. Since the area of the a-plane is larger than that of the b-plane, the leftward rotation force acts more strongly, and as a result, the shuttlecock is rotated to the left as indicated by the arrow. As a result, it is possible to realize a rotational speed and performance that are closer to the waterfowl ball.
  • FIG. 6 it exists on a virtual line indicated by a broken line connecting the central axis of the shuttlecock and the central axis of the blade axis, but the ridge line is positioned in the left blade direction from the virtual line in order to increase the rotational speed. May be.
  • the left blade and the right blade are preferably formed over 40 to 60% of the length from the tip of the blade shaft to the platform, and preferably formed over 45 to 55%.
  • the blade shaft may be hollow in order to reduce the weight.
  • the left and right blades formed on each blade shaft are usually formed so as to extend to the left and right of the blade shaft, but it is particularly preferable that the left blade and the right blade are formed so as to spread at an angle inside the shuttlecock.
  • the skirt portion 2 preferably further includes a ring 9 connected to all the blade shafts constituting the skirt portion.
  • the ring 9 preferably has the same thickness as the blade shaft 5.
  • the cross-sectional diameter is preferably 0.8 to 2.0 mm, and more preferably 1.5 to 2.0 mm.
  • the number of rings formed on the skirt portion 2 is preferably 2 or more, more preferably 2 to 4, and even more preferably 2 to 3.
  • the ring 9 is preferably formed so as to protrude inside the skirt portion.
  • the installation position of the ring is preferably a location where the blade annular body 8 is not formed. That is, it is preferable that the portion of the blade shaft 5 where the left blade 6 and the right blade 7 are not formed is connected.
  • One of the rings formed in the skirt portion 2 is preferably provided so as to be in contact with the lower end of the blade annular body 8. Further, the other ring formed in the skirt portion 2 is formed so as to be connected to the blade shaft 5 at a substantially midpoint between the lower end of the blade annular body 8 and the surface of the base 1. preferable. Note that an outer plate piece 10 that extends obliquely upward may be attached to the outside of the ring 9 as shown in FIGS.
  • the shape of the skirt deformed by the hit ball can be recovered at a timing closer to the waterfowl ball.
  • the waterfowl ball deformed by the hit ball does not immediately return to its original shape, continues to fly with the skirt part deformed for a while, and the skirt part returns to its original shape at once when the speed drops to some extent.
  • the recovery trajectory According to the present invention, if the ring and rib are formed in combination on the skirt portion of the synthetic sphere, the recovery locus closer to the waterfowl ball is traced by these synergistic effects.
  • the shuttlecock of the present invention preferably includes a rib having a height of 0.3 mm or more, with the blade shaft constituting the shuttlecock protruding in the central axis direction of the shuttlecock over its entire length.
  • the height of the rib is preferably in the range of 0.3 to 6.0 mm over the entire length, more preferably in the range of 0.4 to 5.7 mm, and 0.5 to 5.0 mm. More preferably, it is within the range.
  • it is preferable that the height of a rib is low at the front-end
  • the height of the rib at the tip of the blade is preferably in the range of 0.3 to 1.0 mm, more preferably in the range of 0.4 to 0.9 mm, and 0.5 to 0.00 mm. More preferably, it is in the range of 8 mm. Further, the height of the rib at the end on the base side is preferably in the range of 3.5 to 6.0 mm, more preferably in the range of 3.8 to 5.7 mm, and 4.0. More preferably, it is in the range of -5.0 mm.
  • the width of the rib formed on the blade shaft (bottom surface width) is preferably in the range of 0.3 to 0.6 mm at the tip of the blade, and preferably in the range of 0.35 to 0.55 mm.
  • the width of the rib at the end on the base side is preferably in the range of 0.3 to 0.6 mm, more preferably in the range of 0.35 to 0.55 mm, and 0.4 to 0.5 mm. More preferably, it is in the range.
  • ribs having a height of 0.3 mm or more may be formed on every other blade shaft as shown in FIG. Ribs with a height of 0.3 mm or more may be formed. It is preferable that ribs are formed on all the blade shafts, since it is possible to dramatically improve the resilience performance while maintaining the high rotation speed and excellent straightness of the shuttlecock. At this time, it is preferable that all the ribs formed on the blade shaft have the same shape.
  • the rib 11 is preferably formed up to the lower end of the blade shaft 5.
  • the rib 11 is separated from the central axis 12 of the shuttlecock by a distance indicated by r in FIG. r is usually 0 to 6 mm, preferably 2 to 6 mm, more preferably 4 to 6 mm, and still more preferably 4.5 to 5.5 mm.
  • shaft 5 may be formed so that the center axis
  • the length represented by h in FIG. 7 (the length of the blade shaft portion where the blade is not extended) is usually 10 to 40 mm, preferably 15 to 35 mm, more preferably 20 to 30 mm, 22 More preferably, it is ⁇ 28 mm.
  • the skirt portion of the present invention is preferably manufactured through a step of molding using a thermoplastic resin composition containing a styrene elastomer or an ionomer resin. Specifically, it is preferable to mold by melting a resin composition containing a styrene elastomer or an ionomer resin, pouring it into a mold, and cooling it after the injection. At this time, it is particularly preferable that the skirt portion is integrally formed. When performing integral molding, injection molding is preferred. In addition, what satisfies the requirements of the shuttlecock described in a claim is included in the shuttlecock of this invention irrespective of a manufacturing method.
  • the base is made of a material such as cork or foaming resin, and the base is preferably made of cork.
  • the platform is preferably at least partially hemispherical. For example, a donut-shaped hole is provided on the surface of the base for fixing the skirt portion, and the blade shaft can be inserted and fixed in the hole.
  • Test specimens were produced by molding the same material as the skirts of the shuttlecocks of specific examples 1 to 4 and specific examples 11 to 15 into a length of 52.6 mm, a width of 35 mm, and a thickness of 2.5 mm.
  • the flexural modulus was measured by a bending test, and the flexural elastic performance was evaluated in the following four stages. Flexural elastic performance: ⁇ Excellent at 400 MPa or less ⁇ Good at over 400 MPa, good at 800 MPa ⁇ Over 800 MPa, poor at 1200 MPa ⁇ bad at over 1200 MPa
  • Test 5 Three test pieces each having the same material as the skirt portion of each of the shuttlecocks of specific examples 1 to 4 and specific examples 11 to 15 formed into a length of 52.6 mm, a width of 35 mm, and a thickness of 2.5 mm were prepared. Each was allowed to stand in an environment of relative humidity 30%, 25 ° C./relative humidity 40%, and 40 ° C./relative humidity 80%. The surface hardness, tensile fracture stress and tensile fracture strain of the specimen were measured under each environment. The surface hardness was measured according to D Shore Duro. The tensile fracture stress was measured in accordance with JIS K 6251. Furthermore, the tensile fracture strain was measured according to JIS K 6251.
  • Temperature and humidity fluctuation resistance ⁇ Surface hardness variation is within 0.5 MPa, tensile fracture stress variation is within 0.5 MPa, tensile fracture strain variation is within 1%, and excellent ⁇ Surface hardness variation is within 3 MPa, tensile fracture stress The variation is within 3 MPa, the variation in tensile fracture strain is within 10%, and is good.
  • the variation in surface hardness is within 5 MPa, the variation in tensile fracture stress is within 5 MPa, and the variation in tensile fracture strain is within 30%. Poor x Variation in surface hardness is over 5 MPa, variation in tensile breaking stress is over 5 MPa, or variation in tensile fracture strain is over 30%, bad
  • the shuttlecocks of Examples 1 to 4 using styrene elastomer or ionomer resin as the skirt part 1 are more compact than those of Example 11 which is a typical conventional product.
  • Hit feeling, flight condition, rotational performance, elastic recovery performance, flexural elasticity performance, temperature and humidity fluctuation resistance performance are all close to waterfowl, and it has been confirmed that the overall performance is markedly improved in a balanced manner.
  • each of the shuttlecocks of Examples 1 to 4 has a merit that it is easy to reduce the weight of the entire shuttlecock because the water absorption is low and the specific gravity of the resin in the skirt portion is as low as 0.89 to 0.93. .
  • the hardness of specific examples 1 to 3 was closer to the waterfowl than specific example 4, and was in a more preferable state.
  • the shuttlecocks of specific examples 12 to 15 were only of the same level or worse than those of specific example 11 which is a typical conventional product.
  • a shuttlecock manufactured using a mixed material in which the blending ratio of polypropylene and high-density polyethylene is variously changed, and a shuttlecock manufactured using a polypropylene / high-density polyethylene alloy are also typical conventional examples 11 and It was just the same level or worse.
  • Examples 16 to 20 even the shuttlecock could not be manufactured due to poor moldability. From the above, it was confirmed that the performance of the shuttlecock can be made much closer to the waterfowl ball by using a styrene elastomer or ionomer resin in the skirt.
  • the specific gravity of the styrene elastomer used for the skirt portion 1 is 0.87 or 0.95, a significantly better result is obtained than in the concrete example 11, but the flight curves in the concrete examples 1 to 4 are better. It is excellent in that it is close to a waterfowl and exhibits sufficient strength.
  • a styrene elastomer having a hardness of 75 or 105 is used, the result is significantly better than that of the specific example 11, but when a styrene elastomer having a hardness of 80 to 100 is used, the hit ball Sound, hit feeling, flight curve, rotational performance, elastic recovery performance, and flexural elasticity performance are excellent overall.
  • Shuttle cocks using styrene elastomer or ionomer resin in the skirt have the same performance as waterfowl balls, are lightweight and durable, and are expected to be in great demand as shuttlecocks that replace waterfowl balls.
  • shuttlecocks using styrene elastomers or ionomer resins in the skirt are highly durable and meet the demands of the international community with the aim of reducing waste and addressing environmental issues. Therefore, the shuttlecock has high industrial applicability.
  • Example 1 the shuttlecock was manufactured by changing the point of forming a rib protruding in the central axis direction of the shuttlecock over the entire length of each blade shaft.
  • the height of the rib was 0.5 mm at the blade tip, and 4.0 mm at the base end.
  • the width of the rib was 0.4 mm at the blade tip and 0.4 mm at the base end. The height and width of the rib were gradually increased at a constant rate from the blade tip toward the base side end.
  • Example 2 (Specific Example 22) In Example 1, the shuttlecock was manufactured by changing the point that the rib protruding in the direction of the central axis of the shuttlecock was formed only in the region of the blade shaft where no blade was provided. The height of the rib was increased at a constant rate from 0 mm to 4.0 mm toward the platform side.
  • the hitting sound, hit feeling, and elastic recovery performance of the specific example 21 are further improved, and other performances are the same.
  • the specific example 22 was the same level as the specific example 1 in which the rib was not formed in all the performances.
  • the height of the rib of specific example 21 was variously changed and examined, unless the height of the rib is 0.3 mm or more, it is difficult to obtain a hitting sound, a hit feeling, and an elastic recovery performance clearly superior to those of specific example 1. It has been found.
  • a rib with a height of 0.3 mm or more is formed over the entire length of the shuttlecock blade shaft, it will have the effect of improving the hitting sound, shot feeling, and elastic recovery performance regardless of the structure and material of the shuttlecock before the rib is formed. It was also found that it can be obtained. From the above, by forming a rib having a height of 0.3 mm or more that protrudes in the direction of the central axis of the shuttlecock over the entire length of the blade shaft, it is possible to improve the hitting sound, shot feeling, and elastic recovery performance of the shuttlecock. Was confirmed.
  • valley line (specific example 31)
  • the connection portion tip is connected to the connection portion where the left side of the left blade of the blade member and the right side of the right blade of the blade member arranged on the left side of the blade member are connected over 96% of the total length of the connection portion.
  • the shuttlecock was manufactured by changing the point where the straight valley line was formed in the direction from the base to the base.
  • Example 31 In Example 31, the shuttlecock was manufactured by changing the point where the length of the valley line was 50% of the total length of the connecting portion.
  • the manufactured shuttlecock has 16 blade members arranged in a ring on the table.
  • the left side of the left blade of each blade member is connected to the right side of the right blade of the blade member arranged on the left side of the blade member to form an annular structure.
  • Each blade member is composed of one blade shaft, a right blade extending in the right direction of the blade shaft, and a left blade extending in the left direction of the blade shaft.
  • Each right blade has a first right blade region including the blade tip and a second right blade region formed continuously from the stand side.
  • Each left blade has a first left blade region including the blade tip and a second left blade region formed continuously on the base side from the first left blade region.
  • the opening rate of the first right blade region is 12.5%
  • the opening rate of the second right blade region is 0%
  • the opening rate of the first left blade region is 65%
  • the second left blade region The aperture ratio of the blade region is 65%.
  • a straight valley line is formed at the junction between the first right blade region and the first left blade region, and at the junction between the second right blade region and the second left blade region, and the length of this valley line. Is 96% of the total length of the joint.
  • a rib protruding in the central axis direction of the shuttlecock is formed on the blade shaft of each blade member, and the height thereof is 0.5 mm at the blade tip portion and 4.0 mm at the base end portion.
  • the width of the rib is 0.4 mm at the blade tip, and 0.4 mm at the base end.
  • the height and width of the ribs gradually increase at a constant rate from the blade tip to the base end.
  • Each left blade and each right blade are formed over 55% of the length from the tip of the blade shaft to the platform.
  • the ridge line 1a of the blade shaft is located at a position separated by 0.65 mm in the left blade direction from the phantom line shown in FIG. 6 that connects the central axis of the shuttlecock and the central shaft of the blade shaft (in FIG. 6).
  • the skirt part has two rings couple
  • the right blade and the left blade each have a thickness of 0.2 mm, and the blade shaft and the ring have a cross-sectional diameter of 2.0 mm.
  • the total weight is 5.05 g.
  • a valley line is provided only at the junction between the first right blade region and the first left blade region, and no valley line is provided at the junction between the second right blade region and the second left blade region.
  • a shuttlecock was manufactured.
  • the length of the valley line is 50% of the entire length of the joint.
  • Each of the specific examples 41 to 44 was closer to the waterfowl than the specific examples 51 to 53, and showed preferable performance. Compared with the specific examples 51 and 52, the specific examples 41 to 44 were particularly excellent in the hitting sound, hit feeling and elastic recovery performance of the shuttlecock. Compared with the specific examples 53 and 54, the specific examples 41 to 44 were particularly excellent in the rotational performance and straightness of the shuttlecock. As for performances other than those described above, the specific examples 41 to 44 were at the same level as the specific example 1.
  • Styrenic elastomer or ionomer resin is selected as the skirt material, ribs with a height of 0.3 mm or more projecting in the direction of the central axis of the shuttlecock are formed over the entire length of the blade shaft, and 90% or more of the total length of the connecting portion Even when a valley line is formed over the entire area, it has been found that a shuttlecock provided with the respective functions and effects can be provided.
  • the manufactured shuttlecock has 16 blade members arranged in an annular shape.
  • the left side of the left blade of each blade member is connected to the right side of the right blade of the blade member adjacent to the left to form an annular structure.
  • the blade member is composed of one blade shaft, a left blade with an aperture ratio of 80% extending to the left of the blade shaft, and a right blade with an aperture ratio of 20% extending to the right of the blade shaft. ing.
  • Each left blade and each right blade are formed over 55% of the length from the tip of the blade shaft to the platform.
  • a notch with a width of 0.6 mm is formed in the direction of the table over the length of 6.25 mm from the tip of each connecting portion of the left and right blades.
  • the ridge line 1a of the blade shaft is located at a position separated by 0.65 mm in the left blade direction from the phantom line shown in FIG. 6 connecting the central axis of the shuttlecock and the central shaft of the blade shaft (in FIG. d).
  • the skirt portion has two rings connected to all the blade shafts constituting the skirt portion. One of them is continuously installed at the lower end of the blade annular body.
  • the thickness of each of the right and left blades is 0.23 mm, and the blade shaft and the cross-sectional diameter of the ring are each 2.0 mm.
  • every other rib having a triangular cross section whose thickness gradually increases from the lower end of the blade ring toward the base direction.
  • the length of r in FIG. 7 is 4.5 mm, and the length of h is 56 mm.
  • the total weight is 2.94 g.
  • each of the shuttlecocks of specific examples 61, 71 to 74, 81 to 88 was hit 100 times by the clear hitting method. Before and after the 100th hit, the shuttle distance was hit from the bottom with the same force, and the flight distance to the drop point was measured. Each measurement was performed 10 times, and the average value was obtained. It was confirmed how much the flight distance after 100 hits changed compared to the flight distance before 100 hits. As a result, the flight distance of the shuttlecocks of the specific examples 81 to 84 was increased by 30 to 40 cm after 100 hits, and the flight distance of the shuttlecocks of the specific examples 85 to 88 was reduced by 250 to 350 cm. The flying distance of the ⁇ 74 shuttlecocks was only 0 ⁇ 5cm longer and there was almost no change.
  • first blade members and eight second blade members are alternately arranged in an annular shape.
  • the left side of the left blade of each first blade member is connected to the right side of the right blade of the second blade member adjacent to the left side
  • the right side of the right blade of each first blade member is the left side of the second blade member adjacent to the right side.
  • An annular structure is formed by connecting to the left side of each blade.
  • the first blade member is composed of one blade shaft, a left blade with an opening rate of 60% extending to the left of the blade shaft, and a right blade with an opening rate of 0% extending to the right of the blade shaft. It is configured.
  • the second blade member includes one blade shaft, a left blade with an opening rate of 60% extending to the left of the blade shaft, and a right with an opening rate of 30% extending to the right of the blade shaft. It consists of feathers.
  • the left blade of the first blade member and the left blade of the second blade member have the same shape.
  • the total hole area of the opening formed in the right blade of the second blade member is 45 mm 2
  • the total hole area of the opening formed in the left blade of the first blade member and the left blade of the second blade member is , Both are 85 mm 2 .
  • Each left blade and each right blade are formed over 55% of the length from the tip of the blade shaft to the platform.
  • the ridge line 1a of the blade shaft is located at a position separated by 0.65 mm in the left blade direction from the phantom line shown in FIG. 6 that connects the central axis of the shuttlecock and the central shaft of the blade shaft (in FIG. 6). d).
  • the skirt part has two rings couple
  • the right blade and the left blade each have a thickness of 0.2 mm, and the blade shaft and the ring have a cross-sectional diameter of 2.0 mm. As shown in FIG.
  • each blade shaft of the eight first blade members is formed with a triangular rib having a cross section that gradually increases in thickness from the lower end of the blade ring toward the base.
  • h is 25 mm and r is 5 mm.
  • the total weight is 5.05 g.
  • the hitting sound and hit feeling were improved in the specific examples 91 to 94 than in the specific examples 101 to 103.
  • the hole area ratio it is possible to bring both the rotational speed and the flight curve closer to the waterfowl ball and to have more favorable performance.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Toys (AREA)

Abstract

 スカート部をスチレン系エラストマーまたはアイオノマー樹脂で構成したシャトルコックは、温湿度変化に対する耐久性能が高く、水鳥球により近い性能を有していながら耐久性も高い。

Description

シャトルコック
 本発明は、樹脂材料で構成されるスカート部を有するシャトルコックに関する。特に、天然材料から構成されるシャトルコック(水鳥球)により近い特性を有するシャトルコックに関する。
 シャトルコックは、羽根軸とその羽根軸の左右に伸長する羽根とを有する羽根部材を環状に配置したスカート部を、コルク等でできた台の上に固定した構造を有する。公式のシャトルコックのスカート部は水鳥から構成されるものであるが、高価で劣化しやすいことから、スカート部が樹脂材料で構成されたシャトルコックが製造されている。スカート部が樹脂材料で構成されたシャトルコックは安価であり、動物保護や環境保護の観点からも好ましいため、現在では大量に生産され、遊具や練習用として使用されている。
 シャトルコックのスカート部を構成する樹脂材料としては、通常ナイロン6、ナイロン6-6、無可塑または可塑化ナイロン11、ナイロン12などのナイロンが用いられている。また、ポリアミド系エラストマーであるポリエーテルエステルアミドでスカート部を構成した合成球も提案されている(特許文献2参照)。さらに、ポリプロピレンでスカート部を構成した合成球も提案されている(特許文献3参照)。
特開平11-057096号公報 特開昭57-20280号公報 特開平08-098908号公報
 従来提供されている合成球は、水鳥球とは特性がかなり異なっている。このため、ラケットで打撃したときに合成球がたどる飛行曲線は、水鳥球とはかなり違うものになっている。また、本発明者らが試験したところ、従来提供されている合成球の回転数は、水鳥球よりもかなり低いことが確認されている。このような違いがあるために、一線級のバドミントンプレーヤーは、合成球を用いたときに水鳥球にはない違和感を感じてしまう。
 そこで本発明者らは、このような従来技術の課題を解決するために、水鳥球により近い特性を有し、水鳥球の代替品となりうるシャトルコック合成球を提供することを本発明の目的として検討を進めた。
 上記の目的を達成するために鋭意検討を行なった結果、本発明者らは、スカート部を構成する材料や構造を工夫することにより水鳥球により近い特性をもつシャトルコック合成球を提供しうることを見いだし、以下に記載の本発明を提供するに至った。
[1] スチレン系エラストマーまたはアイオノマー樹脂からなるスカート部と該スカート部を固定する台からなることを特徴とするシャトルコック。
[2] 前記スカート部が、比重が0.89~0.93の範囲内にあるスチレン系エラストマーからなることを特徴とする[1]に記載のシャトルコック。
[3] 前記スチレン系エラストマーの硬度が80~100の範囲内にあることを特徴とする[1]または[2]に記載のシャトルコック。
[4] 前記スチレン系エラストマーのスチレン含有量が25~36%の範囲内にあることを特徴とする[1]~[3]のいずれかに記載のシャトルコック。
[5] 複数の羽根部材から構成されるスカート部と該スカート部を固定する台からなるシャトルコックであって、
 前記羽根部材は、1本の羽根軸と、該羽根軸から左方向に伸長する左羽根と、該羽根軸から右方向に伸長する右羽根から構成されており、
 前記複数の羽根部材は環状に配置されており、各羽根部材の左羽根の左辺が該羽根部材の左隣に配置された羽根部材の右羽根の右辺とそれぞれ接続して環状のスカート部を形成しており、
 各羽根部材の羽根軸は、その全長にわたってシャトルコックの中心軸方向に突出する高さ0.3mm以上のリブを備えているシャトルコック(ここにおいて左右の方向は、台を下にしてシャトルコックの中心軸から羽根軸を見たときの左右の方向である)。
[6] 前記スカート部を構成するすべての羽根軸を連接するリングを備えていることを特徴とする[5]に記載のシャトルコック。
[7] 前記スカート部を構成するすべての羽根軸を連接するリングを2本以上備えていることを特徴とする[5]に記載のシャトルコック。
[8] 前記リングの断面径が0.8~2.0mmであることを特徴とする[5]~[7]のいずれか一項に記載のシャトルコック。
[8’] [1]~[4]のいずれか一項に記載の要件を満たすことを特徴とする[5]~[7]のいずれか一項に記載のシャトルコック。
[9] 複数の羽根部材から構成されるスカート部と該スカート部を固定する台からなるシャトルコックであって、
 前記羽根部材は、1本の羽根軸と、該羽根軸から左方向に伸長する左羽根と、該羽根軸から右方向に伸長する右羽根から構成されており、
 前記複数の羽根部材は環状に配置されており、各羽根部材の左羽根の左辺が該羽根部材の左隣に配置された羽根部材の右羽根の右辺とそれぞれ接続部で接続して環状のスカート部を形成しており、
 前記接続部が接続部先端から台方向に向かって接続部全長の90%以上にわたって谷線を形成しているシャトルコック(ここにおいて左右の方向は、台を下にしてシャトルコックの中心軸から羽根軸を見たときの左右の方向である)。
[9’] [1]~[8]のいずれか一項に記載の要件を満たすことを特徴とする[9]に記載のシャトルコック。
[10] 複数の羽根部材を有する樹脂製のスカート部と該スカート部を固定する台からなるシャトルコックであって、
 前記羽根部材は、1本の羽根軸と、該羽根軸から左方向に伸長する左羽根と、該羽根軸から右方向に伸長する右羽根から構成されており、
 前記複数の羽根部材は環状に配置されており、各羽根部材の左羽根の左辺が該羽根部材の左隣に配置された羽根部材の右羽根の右辺とそれぞれ接続部で接続して環状のスカート部を形成しており、
 前記接続部に、接続部先端から台方向に向かってそれぞれ4~8mmの切れ込みが形成されているシャトルコック(ここにおいて左右の方向は、台を下にしてシャトルコックの中心軸から羽根軸を見たときの方向である)。
[11] 前記切れ込みの長さが5~7mmであることを特徴とする[10]に記載のシャトルコック。
[12] 前記切れ込みの幅が0.4~0.8mmであることを特徴とする[10]または[11]に記載のシャトルコック。
[13] 前記切れ込みの幅が切れ込みの全長に渡って一定であることを特徴とする[12]に記載のシャトルコック。
[14] 前記スカート部に形成されている複数の前記切れ込みの形状がすべて等しいことを特徴とする[10]~[13]のいずれか一項に記載のシャトルコック。
[14’] [1]~[9]のいずれか一項に記載の要件を満たすことを特徴とする[10]~[13]のいずれか一項に記載のシャトルコック。
[15] 複数の第1羽根部材と複数の第2羽根部材を有するスカート部と該スカート部を固定する台からなるシャトルコックであって、
 前記第1羽根部材は、1本の羽根軸と、該羽根軸の左方向に伸長する開孔率50~90%の左羽根と、該羽根軸の右方向に伸長する開孔率0~10%の右羽根から構成され、
 前記第2羽根部材は、1本の羽根軸と、該羽根軸の左方向に伸長する開孔率50~90%の左羽根と、該羽根軸の右方向に伸長する開孔率15~40%の右羽根から構成され、
 前記スカート部を構成する前記第1羽根部材と前記第2羽根部材の数は同じであり、前記第1羽根部材と前記第2羽根部材が交互に環状に配置されており、各第1羽根部材の左羽根の左辺がその左隣の第2羽根部材の右羽根の右辺とそれぞれ接続し、各第1羽根部材の右羽根の右辺がその右隣の第2羽根部材の左羽根の左辺とそれぞれ接続して、環状のスカート部を形成しているシャトルコック(ここにおいて左右の方向は、台を下にしてシャトルコックの中心軸から羽根軸を見たときの方向である)。
[16] 前記第1羽根部材の右羽根の開孔率が0~3%であることを特徴とする[15]に記載のシャトルコック。
[17] 前記第1羽根部材の右羽根の開孔率が0%であることを特徴とする[15]に記載のシャトルコック。
[18] 前記第1羽根部材の左羽根と前記第2羽根部材の左羽根の形状が同一であることを特徴とする[15]~[17]のいずれか一項に記載のシャトルコック。
[19] 前記第2羽根部材の右羽根に形成された各開孔の孔面積が、前記第2羽根部材の左羽根に形成された各開孔の孔面積よりも小さいことを特徴とする[15]~[18]のいずれか一項に記載のシャトルコック。
[20] 前記第2羽根部材の右羽根に形成された開孔の総孔面積が40~50mm2であることを特徴とする[15]~[19]のいずれか一項に記載のシャトルコック。
[21] 前記第1羽根部材の左羽根と前記第2羽根部材の左羽根に形成された開孔の総孔面積が、いずれも80~90mm2であることを特徴とする[15]~[20]のいずれか一項に記載のシャトルコック。
[22] 前記スカート部の最も外側に位置する前記羽根軸の稜線が、前記羽根軸の中心軸とシャトルコックの中心軸を結ぶ仮想線よりも左羽根方向に位置していることを特徴とする[15]~[21]のいずれか一項に記載のシャトルコック。
[22’] [1]~[14]のいずれか一項に記載の要件を満たすことを特徴とする[15]~[21]のいずれか一項に記載のシャトルコック。
[23] 複数の第1羽根部材と複数の第2羽根部材を有するスカート部と該スカート部を固定する台からなるシャトルコックであって、
 前記第1羽根部材は、1本の羽根軸と、該羽根軸の右方向に伸長する開孔率50~90%の右羽根と、該羽根軸の左方向に伸長する開孔率0~10%の左羽根から構成され、
 前記第2羽根部材は、1本の羽根軸と、該羽根軸の右方向に伸長する開孔率50~90%の右羽根と、該羽根軸の左方向に伸長する開孔率15~40%の左羽根から構成され、
 前記スカート部を構成する前記第1羽根部材と前記第2羽根部材の数は同じであり、前記第1羽根部材と前記第2羽根部材が交互に環状に配置されており、各第1羽根部材の左羽根の左辺がその左隣の第2羽根部材の右羽根の右辺とそれぞれ接続し、各第1羽根部材の右羽根の右辺がその右隣の第2羽根部材の左羽根の左辺とそれぞれ接続しているシャトルコック(ここにおいて左右の方向は、台を下にしてシャトルコックの中心軸から羽根軸を見たときの方向である)。
[24] 前記スカート部の最も外側に位置する前記羽根軸の稜線が、前記羽根軸の中心軸とシャトルコックの中心軸を結ぶ仮想線よりも右羽根方向に位置していることを特徴とする[23]に記載のシャトルコック。
[24’] [1]~[22]のいずれか一項に記載の要件を満たすことを特徴とする[22]または[23]に記載のシャトルコック。
 本発明のシャトルコックは、樹脂製の合成球でありながら、水鳥球により近い性能を有するという特徴を有する。上記の本発明の構成を適宜組み合わせることによって、さらに一段と水鳥球に近いシャトルコックを提供することもできる。
本発明のシャトルコックの一態様を示す斜視図である。 本発明のシャトルコックの別の一態様を示す斜視図である。 本発明のシャトルコックのさらに別の一態様を示す斜視図である。 本発明のシャトルコックのさらに別の一態様を示す拡大斜視図である。 本発明のシャトルコックのなおさらに別の一態様を示す斜視図である。 本発明のシャトルコックの羽根軸を説明するための上面図である。 本発明のシャトルコックのリブを説明するための拡大斜視図である。 飛行曲線のパターンを説明するための図である。
 以下において、本発明のシャトルコックについて詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
(スカート部を構成する材料)
 本発明では、スカート部をスチレン系エラストマーまたはアイオノマー樹脂から構成することによって、水鳥球により近い性能を有するシャトルコックを提供することができる。これまで極めて多種多様な樹脂材料が提供されているが、その中でスチレン系エラストマーまたはアイオノマー樹脂をシャトルコックのスカート部に使用することは従来まったく試みられておらず、これに関する知見もまったく得られていなかった。このような状況下で本発明者らが検討したところ、スカート部の材料を従来の樹脂からスチレン系エラストマーまたはアイオノマー樹脂に替えることにより、ラケットで打撃したときの打球音、打球感、飛行状態が良化し、回転性能、弾性回復性能、曲げ弾性性能、温湿度変動耐性能のいずれもが水鳥球に近づくことが初めて確認された。スチレン系エラストマーまたはアイオノマー樹脂は成形性もよく、軽量で耐久性もあり、大量生産に向くことから、水鳥球に代わるシャトルコックとして極めて有用である。
 スチレン系エラストマーは、スチレン系ゴムをベースポリマーとしたエラストマーである。典型的なスチレン系エラストマーはスチレンブロック共重合体(SBC)であり、具体的にはスチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS)などを挙げることができる。なかでも好ましいのは、スチレン-イソプレン-スチレンブロック共重合体(SIS)である。これらのスチレン系エラストマーは1種のみを単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 スチレン系エラストマーの市販品としては、例えば、三菱化学(株)製のラバロン[商品名]、三菱化学(株)製のスミフレックス[商品名]、日油(株)製ノフアロイKA832[商品名]、旭化成(株)製タフテック[商品名]、クラレ(株)製セプトン[商品名]、クラレ(株)製ハイプラー[商品名]、JSR(株)製JSR SIS[商品名]、JSR(株)製JSR TR[商品名]、JSR(株)製ダイナフレックス[商品名]、リケンテクノス(株)製アクティマー[商品名]、リケンテクノス(株)製トリニティー[商品名]、リケンテクノス(株)製レオストマー[商品名]、アロン化成製アレキサールG[商品名]、アロン化成製エラストマーAR[商品名]、シェルジャパン(株)製クレイトン[商品名]、新興化成製トリブレン[商品名]、新興化成製スーパートリブレン[商品名]、住友化学製エスポレックス[商品名]などが挙げられる。これらの中では、例えばクラレ(株)製セプトン[商品名]を好ましく用いることができる。
 本発明では、例えば比重が0.85~0.99の範囲内にあるスチレン系エラストマーや、比重が0.85~0.97の範囲内にあるスチレン系エラストマーを使用することによって、他の従来から用いられている樹脂を使用した場合に比べて良好な効果を示すシャトルコックを製造することができる。なかでも、比重が0.89~0.93の範囲内にあるものを選択して用いれば、それ以外の比重のものを用いた場合よりも、さらに一段と飛行曲線が水鳥球に近くて、十分な強度を有するシャトルコックを製造することができるため好ましい。
 また本発明では、例えば硬度(JIAタイプA)が40~100の範囲内にあるスチレン系エラストマーや、さらには硬度が55~100の範囲内にあるスチレン系エラストマーを使用することによって、他の従来から用いられている樹脂を使用した場合に比べて良好な効果を示すシャトルコックを製造することができる。なかでも、硬度が80~100の範囲内にあるものを選択して用いれば、それ以外の硬度のものを用いた場合よりも、さらに一段と打球音、打球感、飛行曲線が優れたシャトルコックを製造することができるため好ましい。
 さらに本発明では、例えばスチレンの含有量が20~50重量%の範囲内にあるスチレン系エラストマーや、さらにはスチレンの含有量が23~45重量%の範囲内にあるスチレン系エラストマーを使用することによって、他の従来から用いられている樹脂を使用した場合に比べて良好な効果を示すシャトルコックを製造することができる。なかでも、スチレンの含有量が27~38重量%の範囲内にあるものを選択して用いれば、それ以外の含有量のものを用いた場合よりも、さらに一段と打球音、打球感、飛行曲線が優れたシャトルコックを製造することができるため好ましい。なお、本明細書における「スチレンの含有量」は、スチレン系エラストマーを重合させる前のモノマー混合物におけるスチレンの含有量(重量割合)を意味するものである。
 特に、比重が0.89~0.93の範囲内にあり、かつ、硬度が80~100の範囲内にあるスチレン系エラストマーを使用すれば、打球音、打球感、飛行曲線、回転性能、弾性回復性能、曲げ弾性性能などの多様な性能で水鳥球に一段と近い性能を有するシャトルコックを製造することができるため極めて好ましい。これにさらにスチレンの含有量が27~38重量%の範囲内にあるという条件も加われば、さらに好ましいシャトルコックを製造することができる。
 スチレン系エラストマーは、他の樹脂に比べて比較的環境負荷が小さい。このため、スチレン系エラストマーを用いた本発明のシャトルコックは、材料面において環境に対する影響が抑えられている。
 アイオノマー樹脂は、金属イオンによる凝集力を利用してポリマーを凝集体とした樹脂である。エチレンとアクリル酸またはメタクリル酸とのコポリマーを金属イオンによって架橋したものを典型例として挙げることができる。アイオノマー樹脂は、低温ではイオン結合しているため硬いが、加熱すると結合がゆるむため流動性を生じ、冷却すると元に戻る性質を有する。
 本発明で用いるアイオノマー樹脂は市販品であってもよい。例えば、三井化学(株)製ハイミラン[商品名]、デュポン(社)製サーリン[商品名]などが挙げられる。これらの中では、例えば三井化学(株)製ハイミラン[商品名]を好ましく用いることができる。
 上記スチレン系エラストマーの好ましい物性範囲と同じ物性を有するアイオノマー樹脂を、本発明において好ましく使用することができる。
 本発明のシャトルコックのスカート部には、上記のスチレン系エラストマーやアイオノマー樹脂の他にさらに別の樹脂を混合して用いてもよい。そのような別の樹脂として、例えば、ポリエチレン、ポリプロピレン、ポリカーボネートを挙げることができる。これらの樹脂は1種のみを単独で使用してもよいし、2種以上を組み合わせて使用してもよい。例えば、ポリプロピレンを好ましく用いることができる。このような別の樹脂を使用する場合は、例えばスカート部の全重量の0.1~40%、なかでも0.1~20%、さらには0.1~10%の量で用いることができる。
 本発明のシャトルコックのスカート部には、生分解性樹脂を含ませることもできる。そのような生分解性樹脂として、例えば、ポリ乳酸やポリブチレンサクシネートなどを挙げることができる。これらのなかでは、例えばポリ乳酸を好ましく用いることができる。このような生分解性樹脂を使用する場合は、例えばスカート部の全重量の0.1~40%、なかでも0.1~20%、さらには0.1~10%の量で用いることができる。
 また、本発明のシャトルコックのスカート部には、添加剤を含ませることもできる。添加剤を用いる場合の含有量は、スカート部の全重量の0.001~10%が好ましく、0.01~5%がより好ましく、0.1~3%がさらに好ましい。添加剤としては、例えば、紫外線吸収剤、可塑剤、顔料などを挙げることができる。これらの添加剤は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。本発明では、例えば顔料を好ましく用いることができる。
(スカート部の構造)
 本発明のシャトルコックのスカート部は、バドミントンの試合用または練習用としてシャトルコックを使うことができるような形状を有する。具体的には、財団法人日本バドミントン協会が採択しているバドミントン協議規則(昭和24年4月1日施行、平成18年10月11日一部改正)第2条に規定される合成素材でできたシャトルの条件を満たすものであることが好ましい。
 具体的には、スカート部は、複数の羽根軸と、該複数の羽根軸の一部(通常は羽根軸の先端から台方向に向かう一部の領域)に形成された羽根と、該複数の羽根軸を羽根が形成されていない部位で連結するリングとからなることが好ましい。羽根軸は軽量化を図るために中空になっていてもよい。各羽根軸に形成された羽根は、通常は羽根軸の左右に広がるように形成され、特にシャトルコックの内側に角度をつけて広がるように形成されていることが好ましい。羽根には、羽根の内側面から外側面へ貫通する貫通孔が設けられていることが好ましく、羽根軸の左右に設けられた羽根の貫通孔の数と孔面積が左右で異なっていることがより好ましい。例えば、中心軸からみて羽根軸の左側に右側よりも孔径が大きな貫通孔が設けられている態様や、左側の空孔率が好ましくは50~90%、より好ましくは55~80%、さらに好ましくは60~75%であって、右側の空孔率が好ましくは0~50%、より好ましくは0~40%、さらに好ましくは0~30%である態様を好ましい例として挙げることができる。スカート部の厚さは、0.15~0.30mmであることが好ましく、0.18~0.20mmであることがより好ましい。
 また、各羽根軸の先端に形成された羽根の左端片と、当該羽根軸の左隣にある羽根軸の先端に形成された羽根の右端片はそれぞれ連接して一体化していることが好ましい。このように各羽根が円周方向に連接することによりスカート状の連続形状を構成していることが好ましい。
 羽根が形成されていない羽根軸部分は、円周方向にリングで固定されていることが好ましい。このとき、リングは異なる高さに複数個形成されていることが好ましい。具体的には、2~4本形成されていることが好ましく、2~3本形成されていることがより好ましい。
 このようなスカート部を有するシャトルコックの典型例を図1に図示する。シャトルコックの構造は、適宜改変することができる。また、本発明は、従来のシャトルコックにはない特徴的な機能を備えた新しいスカート構造を有するシャトルコックに適用することもできる。例えば、図2に示すシャトルコックにも適用することが可能である。さらに、図3に示すように羽根部材に設けられた貫通孔の配置に特徴を有するシャトルコックにも適用することができる。
(新しいスカート構造)
 本発明では、上記[15]に記載される特徴的なスカート構造を採用することにより、水鳥球により近い回転数を実現するとともに、水鳥球により近い飛行曲線も実現できる。また、ラケットで打撃したときの打球音と打球感も一段と水鳥球に近づけることができる。従来は、回転数と飛行曲線をともに水鳥球に近づけることができなかったが、上記[15]の構造を採用することにより、それが可能になった。上記[15]の詳細について、その具体例である図2を参照しながら説明する。
 図2のシャトルコックは、スカート部2と該スカート部2を固定する台1からなる。スカート部2は、複数の第1羽根部材3と複数の第2羽根部材4を有している。スカート部2を構成する第1羽根部材3の数と第2羽根部材4の数は同数であり、通常は8本ずつである。第1羽根部材3と第2羽根部材4は交互に環状に配置されている。第1羽根部材3は、1本の羽根軸5aと、該羽根軸5aの左方向に伸長する開孔率50~90%の左羽根6aと、該羽根軸の右方向に伸長する開孔率0~10%の右羽根7aから構成されている。また、第2羽根部材4は、1本の羽根軸5bと、該羽根軸の左方向に伸長する開孔率50~90%の左羽根6bと、該羽根軸の右方向に伸長する開孔率15~40%の右羽根7bから構成されている。第1羽根部材3の左羽根6aの左辺はその左隣の第2羽根部材4の右羽根7bの右辺とそれぞれ接続している。同様に、各第1羽根部材の右羽根の右辺がその右隣の第2羽根部材の左羽根の左辺とそれぞれ接続している。これによって、羽根が環状に接続した羽根環状体8が形成されている。
 図2のシャトルコックは、各羽根の開孔率に1つの特徴がある。開孔率とは、開孔を含めた羽根の全面積に対する開孔の面積割合を%で表示したものである。
 第1羽根部材の右羽根の開孔率は0~10%であり、0~5%であることが好ましく、0~3%であることがより好ましく、0~1%であることがさらに好ましく、0%であることが特に好ましい。第2羽根部材の右羽根の開孔率は15~40%であり、15~35%であることが好ましく、15~30%であることがより好ましく、15~25%であることがさらに好ましい。第1羽根部材の左羽根と第2羽根部材の左羽根は、ともに50~90%であり、55~85%であることが好ましく、55~80%であることがより好ましく、60~75%であることがさらに好ましい。
 スカート部を構成する複数の第1羽根部材はすべてが同一形状であることが好ましく、また、スカート部を構成する複数の第2羽根部材もすべてが同一形状であることが好ましい。また、第1羽根部材の左羽根は第2羽根部材の左羽根と同一形状であることが好ましい。ここでいう形状は、開孔の形状やサイズ、開孔位置を含めた形状を意味する。
 第2羽根部材の右羽根に形成された個々の開孔の孔面積は、第2羽根部材の左羽根に形成された個々の開孔の孔面積よりも小さいことが好ましい。また、第1羽根部材の開孔率が0%ではないとき、第1羽根部材の右羽根に形成された個々の開孔の孔面積は、第1羽根部材の左羽根に形成された個々の開孔の孔面積よりも小さいことが好ましい。第2羽根部材の右羽根に形成された開孔の孔面積の合計(総孔面積)は35~50mm2であることが好ましく、35~45mm2であることがより好ましく、第1羽根部材の開孔率が0%ではないとき、第1羽根部材の右羽根に形成された開孔の総孔面積は0.5~2mm2であることが好ましく、0.5~0.8mm2であることがより好ましい。また、第1羽根部材の左羽根と前記第2羽根部材の左羽根に形成された開孔の総孔面積は、いずれも80~95mm2であることが好ましく、85~95mm2であることがより好ましい。
 各羽根には、サイズや形が異なる複数種の開孔が形成されていてもよい。例えば、羽根の上方と下方で開孔のサイズや数を変えることが好ましい。一般に、下方の開孔の孔面積は、上方の開孔の孔面積よりも小さくすることが好ましい。また、開孔率も下方よりも上方を大きくすることが好ましい。上方に形成される開孔は例えば横長の矩形にすることができ、下方に形成される開孔は例えばやや縦長の矩形にすることができる。なお、ここでいう上方とは、台を下にしスカート部を上にしたときの上方を意味する。各羽根の上端には羽根軸の先端を頂点とする三角形の頂部が設けられていてもよく、そのような頂部にも開孔が形成されていてもよい。頂部の開孔は、頂部の三角形状に相似する三角開孔であってもよいし、例えば縦長の開孔であってもよい。
 いかなる理論にも拘泥するものではないが、上記のように左羽根と右羽根の開孔率を制御することによって、台からスカート部に向けて流れる空気流の一部が羽根の開孔を通して適度にスカート部の内側に流れ込み、それによって望ましい回転数と飛行経路を実現することができたものと考えられる。すなわち、台からスカート部に向けて空気を送ると左羽根と右羽根に揚力が作用するが、これと同時に左羽根に送られた空気はシャトルコックを右方向に回転させるように作用し、右羽根に送られた空気はシャトルコックを左方向に回転させるように作用する。右羽根の開孔率は左羽根よりも小さいため、右羽根はより強く左方向の回転力を受け、シャトルコックは左方向に回転する。ここで説明している新しい構造のシャトルコックでは、開孔率が異なる2種類の右羽根を交互に設置しているため、微妙な空気の流れを程よく制御することができ、結果として水鳥球に極めて近い回転数と飛行経路を実現することができたものである。
 本発明のスチレン系エラストマーやアイオノマー樹脂(すなわち具体例1~4のスカート部に用いた材料)を用いて、このような構造を有するシャトルコックを製造すれば、同じ材料を用いて製造した従来品よりも、水鳥球に近い回転数が得られ、飛行曲線、打球音、打球感、弾性回復性能、曲げ弾性性能、温湿度変動耐性能(耐候性)のすべてにおいて良好な結果が得られる。例えば、同じ材料を用いてすべてが第1羽根部材からなるスカート部を形成したシャトルコックや、同じ材料を用いてすべてが第2羽根部材からなるスカート部を形成したシャトルコックに比べて、回転数、飛行曲線、打球音、打球感がいずれも水鳥球に近くなる。
 本発明は、また図3に示すように羽根部材に設けられた貫通孔の配置に特徴があるスカート部を有するシャトルコックにも好ましく適用することができる。
 図3のシャトルコックは、すべてが同一形状の16本の羽根部材から構成されている。各羽根軸の右方向に伸長する右羽根には、図4に示すように、三角形の貫通孔非形成領域13と逆三角形の貫通孔形成領域14が設けられている。三角形の貫通孔非形成領域13と逆三角形の貫通孔形成領域14の面積は、ほぼ等しくなるように設計されている。このような貫通孔の配置に特徴があるシャトルコックを用いれば、回転数を水鳥球に一段と近づけることができる。
 本発明は、さらに図5に示すように、各左羽根と各右羽根の接続部先端から台方向に向かってそれぞれ切れ込み15が形成されているシャトルコックにも好ましく適用することができる。
 切れ込みの長さは、4~8mmであることが好ましく、5~7mmであることがより好ましく、5.5~6.7mmであることがさらに好ましい。切れ込みの長さが4mm以上であれば、シャトルコックをラケットによって繰り返して打撃したときに、飛行距離が長くなりにくい傾向がある。また、切れ込みの長さが8mm以下であれば、シャトルコックのスカート部の裾が広がりにくくて、飛行曲線が安定しやすく、耐久性も良くなる傾向がある。
 切れ込みの長さは、スカート部を構成する複数の接続部ごとに異なっていてもよいし、同じであってもよい。長さが異なっている場合は、一定の規則性をもっていることが好ましい。例えば、1つおきに長い切れ込みと短い切れ込みが交互に形成されている態様を挙げることができる。最も好ましいのは、スカート部を構成するすべての接続部に一定の長さの切れ込みが形成されている態様である。
 切れ込みの幅は0.4~0.8mmであることが好ましく、0.5~0.7mmであることがより好ましく、0.55~0.65mmであることがさらに好ましい。切れ込みの幅は、接続部先端から台方向に向かうにつれて変化していてもよい。例えば、台方向に向かうにつれて幅が狭くなっている態様を例示することができる。最も好ましいのは、切れ込みの全長にわたって幅が一定である態様である。
 切れ込みの幅も、スカート部を構成する複数の接続部ごとに異なっていてもよいし、同じであってもよい。幅が異なっている場合は、一定の規則性をもっていることが好ましい。例えば、1つおきに幅が広い切れ込みと狭い切れ込みが交互に形成されている態様を挙げることができる。最も好ましいのは、スカート部を構成するすべての接続部に一定の幅の切れ込みが形成されている態様である。
 スカート部に切れ込みを形成することによって、繰り返してラケットで打撃した場合であってもシャトルコックの飛行距離の変動をより小さくすることができる。すなわち、切れ込みを有しない通常のシャトルコックは、繰り返してラケットで打撃すると飛行距離が長くなりやすいが、図5に示すような切れ込みを有するシャトルコックはこのような長距離化を大幅に抑えることができる。このような効果は、例えば、ラケットを用いて同じ力で下からシャトルコックを打ったときの飛行距離を、シャトルコックをクリア打法で100回打撃する前と後で測定して比較することによって確認することができる。
(羽根軸)
 本発明のシャトルコックの羽根軸の断面は断面が多角形をしていることが好ましく、四角形をしていることがより好ましい。シャトルコックを組み立てたときに最も外側に位置する稜線は、羽根軸の中心軸とシャトルコックの中心軸を結ぶ仮想線よりも左羽根方向に位置していることが好ましい。この好ましい態様を図6を参照しつつ説明する。
 図6は、本発明のシャトルコックの上面図である。シャトルコックを構成する16本の羽根軸はすべて同一形状を有しており、その断面は図6中の拡大図に示すようにa面、b面、c面、d面の4つの面からなる。a面とb面は稜線1aを形成しており、この稜線1aがシャトルコックの最も外側に突出している。a面とc面により形成される稜線からは右羽根が伸長しており、b面とd面により形成される稜線からは左羽根が伸長している。c面とd面により形成される稜線は、シャトルコックの内側に突出しておりリブを形成している。
 稜線1aは、シャトルコックの中心軸と羽根軸の中心軸を結ぶ破線で示す仮想線よりもdだけ左羽根方向に離れた場所に位置している。本発明において、dは0.5~0.8mmであることが好ましく、0.6~0.7mmであることがより好ましい。このとき、稜線1aの左右に存在するa面とb面は非対称となっており、a面はb面よりも面積が大きくなっている。台からスカート部に向けて空気を送ると羽根軸に揚力が作用するが、これと同時にa面に送られた空気は羽根軸を左方向に回転させるように作用し、b面に送られた空気は羽根軸を右方向に回転させるように作用する。a面の面積はb面よりも大きいため、左方向への回転力がより強く作用し、結果としてシャトルコックを矢印で示すように左方向へ回転させることとなる。これによって、一段と水鳥球に近い回転数と性能を実現することができる。
 なお図6では、シャトルコックの中心軸と羽根軸の中心軸を結ぶ破線で示す仮想線上に存在するが、より回転数を上げるために仮想線よりも左羽根方向に稜線が位置するように構成してもよい。
 左羽根と右羽根は、それぞれ羽根軸の先端から台までの長さの40~60%にわたって形成されていることが好ましく、45~55%にわたって形成されていることが好ましい。羽根軸は軽量化を図るために中空になっていてもよい。各羽根軸に形成された左羽根と右羽根は、通常は羽根軸の左右に広がるように形成されるが、特にシャトルコックの内側に角度をつけて広がるように形成されていることが好ましい。
(リング)
 図7に例示するように、スカート部2は、スカート部を構成するすべての羽根軸と結合しているリング9をさらに有していることが好ましい。リング9は、羽根軸5と同等の太さを有していることが好ましい。具体的には、断面径が0.8~2.0mmであることが好ましく、1.5~2.0mmであることがより好ましい。スカート部2に形成されるリングは、2本以上であることが好ましく、2~4本であることがより好ましく、2~3本であることがさらに好ましい。リング9はスカート部の内側に突出するように形成されていることが好ましい。
 リングの設置位置は、羽根環状体8が形成されていない箇所であることが好ましい。すなわち、左羽根6や右羽根7が形成されていない羽根軸5の部分を連結するように形成されていることが好ましい。スカート部2に形成されているリングのうちの1本は、羽根環状体8の下端に接するように設けられていることが好ましい。また、スカート部2に形成されているリングのうちの他の1本は、羽根環状体8の下端と台1表面との略中点において羽根軸5と連結するように形成されていることが好ましい。なお、リング9の外側には図1~3に示すように斜め上方に向かう外板片10が取り付けられていてもよい。
 リングは、上記のリブと組み合わせて形成することによって、打球により変形したスカート部の形状を水鳥球により近いタイミングで回復させることができるようになる。すなわち、打球により変形した水鳥球はすぐには元の形状に戻らず、しばらくはスカート部が変形したまま飛行を続け、速度がある程度落ちたときに一気にスカート部が元の形状に戻るという特徴的な回復軌跡をたどる。本発明にしたがって、合成球のスカート部にリングとリブを組み合わせて形成すれば、これらの相乗効果により、水鳥球により近い回復軌跡をたどるようになる。
(リブ)
 本発明のシャトルコックは、シャトルコックを構成する羽根軸がその全長にわたってシャトルコックの中心軸方向に突出する高さ0.3mm以上のリブを備えていることが好ましい。リブの高さは、その全長にわたって0.3~6.0mmの範囲内であることが好ましく、0.4~5.7mmの範囲内であることがより好ましく、0.5~5.0mmの範囲内であることがさらに好ましい。また、リブの高さは、羽根の先端部では低く、台側に向かうにしたがって徐々に高くなっていることが好ましい。このとき、高さは一定の割合で高くなっていることが好ましい。羽根の先端部におけるリブの高さは、0.3~1.0mmの範囲内であることが好ましく、0.4~0.9mmの範囲内であることがより好ましく、0.5~0.8mmの範囲内であることがさらに好ましい。また、台側の端部におけるリブの高さは、3.5~6.0mmの範囲内であることが好ましく、3.8~5.7mmの範囲内であることがより好ましく、4.0~5.0mmの範囲内であることがさらに好ましい。また、羽根軸に形成するリブの幅(底面幅)は、羽根の先端部において0.3~0.6mmの範囲内であることが好ましく、0.35~0.55mmの範囲内であることがより好ましく、0.4~0.5mmの範囲内であることがさらに好ましい。台側の端部におけるリブの幅は0.3~0.6mmの範囲内であることが好ましく、0.35~0.55mmの範囲内であることがより好ましく、0.4~0.5mmの範囲内であることがさらに好ましい。本発明のシャトルコックを構成する複数の羽根軸には、図7に示すように1本おきに羽根軸に高さ0.3mm以上のリブが形成されていてもよいし、すべての羽根軸に高さ0.3mm以上のリブが形成されていてもよい。すべての羽根軸にリブを形成されていれば、シャトルコックの高い回転数と優れた直進性を維持しながら、弾性反発性能を飛躍的に向上させることが可能になるため好ましい。このとき、羽根軸に形成されているリブはすべて同一形状であることが好ましい。
 リブ11は羽根軸5の下端まで形成されていることが好ましい。羽根軸5の下端部においてリブ11は、シャトルコックの中心軸12から図7のrで示す距離だけ離れている。rは通常0~6mmであり、好ましくは2~6mmであり、より好ましくは4~6mmであり、さらに好ましくは4.5~5.5mmである。なお、図7とは異なり、羽根軸5の下端部におけるリブがシャトルコックの中心軸を横切るように形成されていてもよい。このとき、複数の羽根軸に形成されたリブが中心軸で交差していてもよい。
 なお、図7のhで表される長さ(羽根が伸長していない羽根軸部分の長さ)は、通常は10~40mmであり、15~35mmが好ましく、20~30mmがより好ましく、22~28mmがさらに好ましい。
(シャトルコックの製造方法)
 本発明のスカート部は、スチレン系エラストマーまたはアイオノマー樹脂を含む熱可塑性樹脂組成物を用いて成形する工程を経て製造することが好ましい。具体的には、スチレン系エラストマーまたはアイオノマー樹脂を含む樹脂組成物を溶融して型枠中に注入し、注入後に冷却することにより成形することが好ましい。このとき、スカート部は一体成形することが特に好ましい。一体成形をする際には、射出成型することが好ましい。
 なお、製造方法の如何にかかわらず、特許請求の範囲に記載されるシャトルコックの要件を満たすものは、本発明のシャトルコックに含まれる。
 製造されたスカート部は台に固定する。台はコルク、発砲樹脂などの材料で構成され、中でもコルクで構成されるものが好ましい。台は、少なくとも一部が半球状であることが好ましい。スカート部を固定する台表面には、例えばドーナツ状の孔が設けられており、その孔の中に羽根軸を挿入して固定することができる。
 以下に具体例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
材料の検討
(具体例1~4および具体例11~15)
 表1に記載される各材料を溶融して型枠の中に流し込み、冷却することにより図1のスカート部1を一体成形した。成形したスカート部1の底部をコルクでできた台2に対して圧入機を用いて固定することにより、図1に示すシャトルコックを製造した。シャトルコックの成形性は、いずれの具体例も極めて良好であった。
(具体例16~20)
 スカート部1の材料として表1の具体例16~20に記載される材料を用いたこと以外は具体例1と同様にしてシャトルコックを製造しようとしたが、樹脂を型枠の中に首尾良く流し込んで成形することができず、シャトルコックを製造することができなかった。
(評価1)
 具体例1~4および具体例11~15の各シャトルコックについて、バドミントンの一線級のプレーヤーによる試打試験を行った。また、日本バドミントン協会認定の公式水鳥球を用いて同様の試打試験を行った。試打時の打球音、打球感、飛行状態を以下の4段階で評価した。結果を表1に示す。
 打球音:
  ◎ 具体例11よりもかなり水鳥球に近く優れている
  ○ 具体例11よりもやや水鳥球に近い
  △ 具体例11と同等
  × 具体例11よりも不良
 打球感:
  ◎ 具体例11よりもかなり水鳥球に近く優れている
  ○ 具体例11よりもやや水鳥球に近い
  △ 具体例11と同等
  × 具体例11よりも不良
 飛行状態: 
  ◎ 具体例11よりもかなり水鳥球に近く優れている
  ○ 具体例11よりもやや水鳥球に近い
  △ 具体例11と同等
  × 具体例11よりも不良
(評価2) 
 具体例1~4および具体例11~15の各シャトルコックの台表面に反射片を取り付け、鉛直方向に立てた円筒中にシャトルコックを入れて底部から送風することによりシャトルコックを回転させた。回転数を非接触型デジタル回転計測器により光学的に計測し、回転性能を以下の4段階で評価した。
 回転性能:
  ◎ 具体例11よりもかなり水鳥球に近く優れている
  ○ 具体例11よりもやや水鳥球に近い
  △ 具体例11と同等
  × 具体例11よりも不良
(評価3)
 具体例1~4および具体例11~15の各シャトルコックについて、一線級プレーヤーによる試打をすることにより弾性回復性能を以下の4段階で評価した。
 弾性回復性能:
  ◎ 具体例11よりもかなり水鳥球に近く優れている
  ○ 具体例11よりもやや水鳥球に近い
  △ 具体例11と同等
  × 具体例11よりも不良
(評価4)
 具体例1~4および具体例11~15の各シャトルコックのスカート部と同じ材料を縦52.6mm、横35mm、厚さ2.5mmに成形した試験片を作製し、25℃・相対湿度40%で曲げ弾性率を曲げ試験することにより測定し、曲げ弾性性能を以下の4段階で評価した。
 曲げ弾性性能:
  ◎ 400MPa以下であり優れている
  ○ 400MPa超、800MPaで良好
  △ 800MPa超、1200MPaで不良
  × 1200MPa超で悪い
(評価5)
 具体例1~4および具体例11~15の各シャトルコックのスカート部と同じ材料を縦52.6mm、横35mm、厚さ2.5mmに成形した試験片を3部ずつ作製し、0℃・相対湿度30%、25℃・相対湿度40%、40℃・相対湿度80%の各環境下にそれぞれを静置した。各環境下で試験片の表面硬度と引張破壊応力と引張破壊歪みを測定した。表面硬度はDショア・デュロに従って測定した。また、引張破壊応力はJIS K 6251にしたがって測定した。さらに、引張破壊歪みはJIS K 6251にしたがって測定した。0℃・相対湿度30%、25℃・相対湿度40%、40℃・相対湿度80%の各環境下における表面硬度と引張破壊応力と引張破壊歪みの変動を以下の4段階で評価した。
 温湿度変動耐性能:
  ◎ 表面硬度の変動が0.5MPa以内、引張破断応力の変動が0.5MPa以内、引張破壊歪みの変動が1%以内であり、優れている
  ○ 表面硬度の変動が3MPa以内、引張破断応力の変動が3MPa以内、引張破壊歪みの変動が10%以内であり、良好である
  △ 表面硬度の変動が5MPa以内、引張破断応力の変動が5MPa以内、引張破壊歪みの変動が30%以内であり、不良
  × 表面硬度の変動が5MPa超、引張破断応力の変動が5MPa超、または、引張破壊歪みの変動が30%超であり、悪い
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、スカート部1としてスチレン系エラストマーまたはアイオノマー樹脂を用いた具体例1~4のシャトルコックは、典型的な従来品である具体例11に比べて、成形性、打球音、打球感、飛行状態、回転性能、弾性回復性能、曲げ弾性性能、温湿度変動耐性能のいずれもが水鳥球に近づいており、性能全般がバランスよく格段に良化していることが確認された。また、具体例1~4の各シャトルコックは、吸水性が低く、スカート部の樹脂の比重が0.89~0.93で低いため、シャトルコック全体の軽量化を図りやすいというメリットもあった。なかでも、具体例4よりも具体例1~3の方が硬度が水鳥球に近くて、一段と好ましい状態であった。これに比べて、具体例12~15のシャトルコックは、典型的な従来品である具体例11と同等レベルか悪化しているものばかりであった。また、ポリプロピレンと高密度ポリエチレンの配合比率を種々変えた混合材料を用いて製造したシャトルコックやポリプロピレン・高密度ポリエチレンアロイを用いて製造したシャトルコックも、典型的な従来品である具体例11と同等レベルか悪化しているものばかりであった。さらに、具体例16~20に至っては成形性が悪くてシャトルコックすら製造できなかった。以上より、スカート部にスチレン系エラストマーまたはアイオノマー樹脂を用いることによって、シャトルコックの性能を水鳥球にかなり近づけることができることが確認された。
 なお、スカート部1に用いたスチレン系エラストマーの比重を0.87や0.95にした場合は具体例11よりも有意に良い結果が得られるが、具体例1~4の方が飛行曲線が水鳥球に近くて、かつ、十分な強度を示す点で優れている。
 また、硬度が75や105であるスチレン系エラストマーを用いた場合も具体例11よりも有意に良い結果が得られるが、硬度が80~100であるスチレン系エラストマーを用いた場合の方が、打球音、打球感、飛行曲線、回転性能、弾性回復性能、曲げ弾性性能が総合的に優れている。
 さらに、スチレンの含有量が20重量%や40重量%のスチレン系エラストマーを用いた場合も具体例11よりも有意に良い結果が得られるが、スチレンの含有量が25~36であるスチレン系エラストマーを用いた場合の方が、打球音、打球感、飛行曲線、回転性能、弾性回復性能、曲げ弾性性能が総合的に優れている。
 スカート部にスチレン系エラストマーまたはアイオノマー樹脂を用いたシャトルコックは、水鳥球と同等の性能を有しており軽量で耐久性もあることから、水鳥球に代わるシャトルコックとして大きな需要が見込まれる。また、スカート部にスチレン系エラストマーまたはアイオノマー樹脂を用いたシャトルコックは耐久性が高いため、廃棄物を減らし環境問題に対処することをめざす国際社会の要請に応えるものである。したがって、当該シャトルコックは産業上の利用可能性が高い。
リブの検討
(具体例21)
 具体例1において、各羽根軸の全長にわたってシャトルコックの中心軸方向に突出するリブを形成した点を変更してシャトルコックを製造した。リブの高さは羽根先端部で0.5mmとし、台側端部で4.0mmとした。リブの幅は羽根先端部で0.4mmとし、台側端部で0.4mmとした。リブの高さと幅は、羽根先端から台側端部へ向けて一定の割合で徐々に大きくした。
(具体例22)
 具体例1において、羽根が設けられていない羽根軸の領域にのみシャトルコックの中心軸方向に突出するリブを形成した点を変更してシャトルコックを製造した。リブの高さは台側に向かうにしたがって0mmから4.0mmへと一定の割合で高くした。
(評価)
 リブが形成されていない具体例1と比べて、具体例21の打球音、打球感、弾性回復性能は一段と良化しており、その他の性能は同等であった。一方、具体例22は、リブが形成されていない具体例1とすべての性能について同等レベルであった。具体例21のリブの高さを種々変更して検討したところ、リブの高さが0.3mm以上でないと具体例1よりも明らかに優れた打球音、打球感、弾性回復性能は得られにくいことが判明した。また、シャトルコックの羽根軸の全長にわたって高さ0.3mm以上のリブを形成すれば、リブ形成前のシャトルコックの構造や材質によらず、打球音、打球感、弾性回復性能の改善効果が得られることも判明した。以上より、羽根軸の全長にわたってシャトルコックの中心軸方向に突出する高さ0.3mm以上のリブを形成することにより、シャトルコックの打球音、打球感、弾性回復性能を良化することができることが確認された。
谷線の検討
(具体例31)
 具体例1において、羽根部材の左羽根の左辺と該羽根部材の左隣に配置された羽根部材の右羽根の右辺とが接続する接続部に、該接続部の全長の96%にわたって接続部先端から台方向に向けて直線状の谷線を形成した点を変更してシャトルコックを製造した。
(具体例32)
 具体例31において、谷線の長さを接続部の全長の50%にした点を変更してシャトルコックを製造した。
(評価)
 谷線が形成されていない具体例1と比べて、具体例31の回転性能は一段と水鳥球に近いことが確認された。また、具体例1よりもさらに一段と直進性に優れていることも確認された。一方、具体例32は、谷線が形成されていない具体例1とすべての性能について同等レベルであった。具体例31の谷線の長さを種々変更して検討したところ、谷線の長さが90%以上でないと具体例1よりも明らかに優れた回転性能と直進性は得られにくいことが判明した。また、接続部の90%以上の谷線を形成すれば、谷線形成前のシャトルコックの構造や材質によらず、回転性能と直進性の改善効果が得られることも判明した。以上より、接続部の90%以上の谷線を形成することにより、シャトルコックの回転性能と直進性を良化することができることが確認された。
好ましい材質とリブと谷線の併用
(具体例41)
 スチレン系エラストマー(クラレ(株)製、セプトンKC627H)を溶融して型枠の中に流し込み、冷却することにより図1のスカート部2を一体成形した。成形したスカート部2の底部を図1に示すようにコルクでできた台1に対して圧入機を用いて固定した。
 製造したシャトルコックは、16本の羽根部材が台上に環状に配置されている。各羽根部材の左羽根の左辺は該羽根部材の左隣に配置された羽根部材の右羽根の右辺とそれぞれ接続して環状構造を形成している。各羽根部材は、1本の羽根軸と、該羽根軸の右方向に伸長する右羽根と、該羽根軸の左方向に伸長する左羽根から構成されている。各右羽根は、羽根先端部を含む第1右羽根領域とそれよりも台側に連続して形成されている第2右羽根領域を有する。また、各左羽根は、羽根先端部を含む第1左羽根領域とそれよりも台側に連続して形成されている第2左羽根領域を有する。第1右羽根領域の開孔率は12.5%であり、第2右羽根領域の開孔率は0%であり、第1左羽根領域の開孔率は65%であり、第2左羽根領域の開孔率は65%である。第1右羽根領域と第1左羽根領域の接合部と、第2右羽根領域と第2左羽根領域の接合部には、直線状の谷線が形成されており、この谷線の長さは接合部全長の96%である。各羽根部材の羽根軸には、シャトルコックの中心軸方向に突出したリブが形成されており、その高さは羽根先端部で0.5mmであり、台側端部で4.0mmである。リブの幅は羽根先端部で0.4mmであり、台側端部で0.4mmである。リブの高さと幅は、羽根先端から台側端部へ向けて一定の割合で徐々に大きくなっている。各左羽根と各右羽根は、それぞれ羽根軸の先端から台までの長さの55%にわたって形成されている。羽根軸の稜線1aは、シャトルコックの中心軸と羽根軸の中心軸を結ぶ図6の破線で示す仮想線よりも0.65mmだけ左羽根方向に離れた場所に位置している(図6のd)。また、スカート部は、スカート部を構成するすべての羽根軸と結合しているリングを2本有している。そのうちの1本は羽根環状体の下端に連続して設置されている。右羽根および左羽根の厚みはそれぞれ0.2mmであり、羽根軸とリングの断面径はそれぞれ2.0mmである。全体の重量は5.05gである。
(具体例42)
 スカート部1の材料としてスチレン系エラストマー(クラレ(株)製、セプトンFY60N)を用いたこと以外は具体例41と同様にしてシャトルコックを製造した。
(具体例43)
 スカート部1の材料としてスチレン系エラストマー(クラレ(株)製、セプトンFY55N)を用いたこと以外は具体例41と同様にしてシャトルコックを製造した。
(具体例44)
 スカート部1の材料としてアイオノマー樹脂(三井・デュポン ポリケミカル(株)製、ハイミラン1702)を用いたこと以外は具体例41と同様にしてシャトルコックを製造した。
(具体例51)
 具体例41のシャトルコックにおいて、羽根軸にリブを有しないシャトルコックを製造した。
(具体例52)
 具体例41のシャトルコックにおいて、羽根軸の羽根が設けられていない領域にのみリブを形成したシャトルコックを製造した。リブの高さは台側に向かうにしたがって0mmから4.0mmへと一定の割合で厚くなっている。
(具体例53)
 具体例41のシャトルコックにおいて、第1右羽根領域と第1左羽根領域の接合部にだけ谷線を設け、第2右羽根領域と第2左羽根領域の接合部には谷線を設けないシャトルコックを製造した。この谷線の長さは接合部全長の50%である。
(具体例54)
 具体例41のシャトルコックにおいて、第1右羽根領域と第1左羽根領域の接合部にも、第2右羽根領域と第2左羽根領域の接合部にも谷線を設けないシャトルコックを製造した。この谷線の長さは接合部全長の0%である。
(評価)
 具体例41~44はいずれも、具体例51~53よりも水鳥球に近くて好ましい性能を示した。具体例51および52と比べると、具体例41~44は特にシャトルコックの打球音、打球感、弾性回復性能に優れていた。具体例53および54と比べると、具体例41~44は特にシャトルコックの回転性能と直進性に優れていた。また、上記以外の性能については、具体例41~44は具体例1と同等レベルであった。スカート部の材質としてスチレン系エラストマーまたはアイオノマー樹脂を選択し、羽根軸の全長にわたってシャトルコックの中心軸方向に突出する高さ0.3mm以上のリブを形成し、かつ、接続部全長の90%以上にわたって谷線を形成した場合であっても、それぞれの作用効果が相加的に備えられたシャトルコックを提供できることが判明した。
切れ込みの検討
(具体例61)
 具体例1において、羽根部材の左羽根の左辺と該羽根部材の左隣に配置された羽根部材の右羽根の右辺とが接続する接続部に、該接続部の先端から幅0.6mmの切れ込みが6.25mmの長さに渡って台方向に向かって形成した点を変更してシャトルコックを製造した。
(具体例71)
 スチレン系エラストマー(クラレ(株)製、KC-627H01)を溶融して型枠の中に流し込み、冷却することにより図5のスカート部2を一体成形した。成形したスカート部2の底部を図1に示すようにコルクでできた台1に対して圧入機を用いて固定した。
 製造したシャトルコックは、16本の羽根部材が環状に配置されている。各羽根部材の左羽根の左辺はその左隣の羽根部材の右羽根の右辺とそれぞれ接続して環状構造を形成している。羽根部材は、1本の羽根軸と、該羽根軸の左方向に伸長する開孔率80%の左羽根と、該羽根軸の右方向に伸長する開孔率20%の右羽根から構成されている。各左羽根と各右羽根は、それぞれ羽根軸の先端から台までの長さの55%にわたって形成されている。左羽根と右羽根の各接続部先端から幅0.6mmの切れ込みが6.25mmの長さに渡って台方向に向かって形成されている。羽根軸の稜線1aは、シャトルコックの中心軸と羽根軸の中心軸を結ぶ図6の破線で示す仮想線よりも0.65mmだけ左羽根方向に離れた場所に位置している(図6のd)。また、スカート部は、スカート部を構成するすべての羽根軸と結合しているリングを2本有している。そのうちの1本は羽根環状体の下端に連続して設置されている。右羽根および左羽根の厚みはそれぞれ0.23mmであり、羽根軸とリングの断面径はそれぞれ2.0mmである。羽根部材の羽根軸には、図7に示すように、羽根環状体の下端から台方向に向けて徐々に厚みが増している断面が三角形のリブが1本おきに形成されている。図7のrの長さは4.5mmであり、hの長さは56mmである。全体の重量は2.94gである。
(具体例72)
 スカート部1の材料としてスチレン系エラストマー(クラレ(株)製、セプトンFY60N)を用いたこと以外は具体例71と同様にしてシャトルコックを製造した。
(具体例73)
 スカート部1の材料としてスチレン系エラストマー(クラレ(株)製、セプトンFY55N)を用いたこと以外は具体例71と同様にしてシャトルコックを製造した。
(具体例74)
 スカート部1の材料としてアイオノマー樹脂(三井・デュポン ポリケミカル(株)製、ハイミラン1702)を用いたこと以外は具体例71と同様にしてシャトルコックを製造した。
(具体例81~84)
 切れ込みをまったく形成しなかった点を変更して、具体例71~74と同じ方法にしたがってシャトルコックを製造した。
(具体例85~88)
 切れ込みの長さを10cmにした点を変更して、具体例71~74と同じ方法にしたがってシャトルコックを製造した。
(評価11)
 ラケットを用いて、具体例61、71~74、81~88の各シャトルコックをクリア打法でそれぞれ100回打撃した。その100回打撃の前後において、同じ力で下からシャトルコックを打って落下点までの飛行距離を測定した。それぞれ10回測定してその平均値を取得した。100回打撃前の飛行距離に比べて、100回打撃後の飛行距離がどの程度変化したかを確認した。
 その結果、具体例81~84のシャトルコックの飛行距離は100回打撃によって30~40cm長くなり、具体例85~88のシャトルコックの飛行距離は250~350cm短くなったが、具体例61、71~74のシャトルコックの飛行距離は0~5cm長くなっただけでほとんど変動がなかった。
(評価12)
 上記評価11において100回打撃する前後のシャトルコックの飛行曲線を比較した。
 その結果、具体例81~88のシャトルコックの飛行曲線はいずれも100回打撃の前後で異なっていた。これに対して、具体例61、71~74のシャトルコックの飛行曲線は100回打撃の前後においても一定で安定していた。
 切れ込みが形成されていない具体例1等と比べて、具体例61、71~74の飛行距離安定性や飛行曲線安定性は一段と優れていることが確認された。その他のシャトルコックの性能は、具体例1と同等レベルであった。具体例61の切れ込みを種々変更して検討したところ、切れ込みの長さが5~7mmであり、切れ込みの幅が0.4~0.8mmであるときに、安定性がよりいっそう高まることが判明した。また、安定化効果はスカート部に形成されている複数の前記切れ込みの形状がすべて等しいときに一段と高まることも判明した。また、切れ込みを形成すれば、切れ込み形成前のシャトルコックの構造や材質によらず、飛行距離安定性や飛行曲線安定性が高まることも判明した。以上より、切れ込みを形成することにより、シャトルコックの飛行距離安定性や飛行曲線安定性が良化することが確認された。切れ込みを有するシャトルコックは、使用を続けても特性があまり変化せず耐久性が高いため、廃棄物を減らし環境問題に対処することをめざす国際社会の要請に応えるものである。したがって、産業上の利用可能性が高い。
開孔率の検討
(具体例91)
 スチレン系エラストマー(クラレ(株)製、セプトンKC627H)を溶融して型枠の中に流し込み、冷却することにより図2のスカート部2を一体成形した。成形したスカート部2の底部を図2に示すようにコルクでできた台1に対して圧入機を用いて固定した。
 製造したシャトルコックは、8本の第1羽根部材と8本の第2羽根部材が交互に環状に配置されている。各第1羽根部材の左羽根の左辺はその左隣の第2羽根部材の右羽根の右辺とそれぞれ接続し、各第1羽根部材の右羽根の右辺はその右隣の第2羽根部材の左羽根の左辺とそれぞれ接続して環状構造を形成している。第1羽根部材は、1本の羽根軸と、該羽根軸の左方向に伸長する開孔率60%の左羽根と、該羽根軸の右方向に伸長する開孔率0%の右羽根から構成されている。また、第2羽根部材は、1本の羽根軸と、該羽根軸の左方向に伸長する開孔率60%の左羽根と、該羽根軸の右方向に伸長する開孔率30%の右羽根から構成されている。第1羽根部材の左羽根と第2羽根部材の左羽根は同一形状である。第2羽根部材の右羽根に形成された開孔の総孔面積は45mm2であり、第1羽根部材の左羽根と前記第2羽根部材の左羽根に形成された開孔の総孔面積は、いずれも85mm2である。各左羽根と各右羽根は、それぞれ羽根軸の先端から台までの長さの55%にわたって形成されている。羽根軸の稜線1aは、シャトルコックの中心軸と羽根軸の中心軸を結ぶ図6の破線で示す仮想線よりも0.65mmだけ左羽根方向に離れた場所に位置している(図6のd)。また、スカート部は、スカート部を構成するすべての羽根軸と結合しているリングを2本有している。そのうちの1本は羽根環状体の下端に連続して設置されている。右羽根および左羽根の厚みはそれぞれ0.2mmであり、羽根軸とリングの断面径はそれぞれ2.0mmである。8本の第1羽根部材の各羽根軸には、図7に示すように、羽根環状体の下端から台方向に向けて徐々に厚みが増している断面が三角形のリブが形成されている。図7のhは25mm、rは5mmである。また、全体の重量は5.05gである。
(具体例92)
 スカート部1の材料としてスチレン系エラストマー(クラレ(株)製、セプトンFY60N)を用いたこと以外は具体例91と同様にしてシャトルコックを製造した。
(具体例93)
 スカート部1の材料としてスチレン系エラストマー(クラレ(株)製、セプトンFY55N)を用いたこと以外は具体例91と同様にしてシャトルコックを製造した。
(具体例94)
 スカート部1の材料としてアイオノマー樹脂(三井・デュポン ポリケミカル(株)製、ハイミラン1702)を用いたこと以外は具体例91と同様にしてシャトルコックを製造した。
(具体例101)
 具体例91のシャトルコックにおいて、第1羽根部材を8本とも第2羽根部材に置き換えたシャトルコックを製造した。すなわち、スカート部を構成する16本の羽根部材がすべて具体例91に記載される第2羽根部材であるシャトルコックを製造した。
(具体例102)
 具体例91のシャトルコックにおいて、8本の第2羽根部材の下方に形成されている12の開孔をすべて塞いだシャトルコックを製造した。すなわち、8本の第2羽根部材には、それぞれ上方に13の開孔だけが設けられている。
(具体例103)
 具体例91のシャトルコックにおいて、第2羽根部材を8本とも第1羽根部材に置き換えたシャトルコックを製造した。すなわち、スカート部を構成する16本の羽根部材がすべて具体例91に記載される第1羽根部材であるシャトルコックを製造した。
(評価)
 具体例91~94と具体例101~103の各シャトルコックと水鳥球をバドミントンラケットで水平方向から45°上向きに同じ強さで打撃し、シャトルコックの飛行曲線を記録した。その結果、水鳥球と具体例91~94のシャトルコックは図8のAの飛行曲線をたどり、具体例101と102のシャトルコックは図8のBの飛行曲線をたどり、具体例103のシャトルコックは図8のCの飛行曲線をたどった。回転性能を検討したところ、具体例101と102は回転数が低く、具体例103は回転数が高かったが、具体例91~94は水鳥球に最も近かった。さらに打球音と打球感は、具体例101~103よりも具体例91~94の方が良化していた。このように、開孔率を制御することによって、回転数と飛行曲線を両方とも水鳥球に近づけて、より好ましい性能を持たせることが可能である。
 1 スカート部
 2 台
 3 第1羽根部材
 4 第2羽根部材
 5,5a,5b 羽根軸
 6,6a,6b 左羽根
 7,7a,7b 右羽根
 8 羽根環状体
 9 リング
10 外板片
11 リブ
12 中心軸
13 貫通孔非形成領域
14 貫通孔形成領域
15 切れ込み

Claims (24)

  1.  スチレン系エラストマーまたはアイオノマー樹脂からなるスカート部と該スカート部を固定する台からなることを特徴とするシャトルコック。
  2.  前記スカート部が、比重が0.89~0.93の範囲内にあるスチレン系エラストマーからなることを特徴とする請求項1に記載のシャトルコック。
  3.  前記スチレン系エラストマーの硬度が80~100の範囲内にあることを特徴とする請求項2に記載のシャトルコック。
  4.  前記スチレン系エラストマーのスチレン含有量が25~36%の範囲内にあることを特徴とする請求項3に記載のシャトルコック。
  5.  複数の羽根部材から構成されるスカート部と該スカート部を固定する台からなるシャトルコックであって、
     前記羽根部材は、1本の羽根軸と、該羽根軸から左方向に伸長する左羽根と、該羽根軸から右方向に伸長する右羽根から構成されており、
     前記複数の羽根部材は環状に配置されており、各羽根部材の左羽根の左辺が該羽根部材の左隣に配置された羽根部材の右羽根の右辺とそれぞれ接続して環状のスカート部を形成しており、
     各羽根部材の羽根軸は、その全長にわたってシャトルコックの中心軸方向に突出する高さ0.3mm以上のリブを備えているシャトルコック(ここにおいて左右の方向は、台を下にしてシャトルコックの中心軸から羽根軸を見たときの左右の方向である)。
  6.  前記スカート部を構成するすべての羽根軸を連接するリングを備えていることを特徴とする請求項5に記載のシャトルコック。
  7.  前記スカート部を構成するすべての羽根軸を連接するリングを2本以上備えていることを特徴とする請求項5に記載のシャトルコック。
  8.  前記リングの断面径が0.8~2.0mmであることを特徴とする請求項5~7のいずれか一項に記載のシャトルコック。
  9.  複数の羽根部材から構成されるスカート部と該スカート部を固定する台からなるシャトルコックであって、
     前記羽根部材は、1本の羽根軸と、該羽根軸から左方向に伸長する左羽根と、該羽根軸から右方向に伸長する右羽根から構成されており、
     前記複数の羽根部材は環状に配置されており、各羽根部材の左羽根の左辺が該羽根部材の左隣に配置された羽根部材の右羽根の右辺とそれぞれ接続部で接続して環状のスカート部を形成しており、
     前記接続部が接続部先端から台方向に向かって接続部全長の90%以上にわたって谷線を形成しているシャトルコック(ここにおいて左右の方向は、台を下にしてシャトルコックの中心軸から羽根軸を見たときの左右の方向である)。
  10.  複数の羽根部材を有する樹脂製のスカート部と該スカート部を固定する台からなるシャトルコックであって、
     前記羽根部材は、1本の羽根軸と、該羽根軸から左方向に伸長する左羽根と、該羽根軸から右方向に伸長する右羽根から構成されており、
     前記複数の羽根部材は環状に配置されており、各羽根部材の左羽根の左辺が該羽根部材の左隣に配置された羽根部材の右羽根の右辺とそれぞれ接続部で接続して環状のスカート部を形成しており、
     前記接続部に、接続部先端から台方向に向かってそれぞれ4~8mmの切れ込みが形成されているシャトルコック(ここにおいて左右の方向は、台を下にしてシャトルコックの中心軸から羽根軸を見たときの方向である)。
  11.  前記切れ込みの長さが5~7mmであることを特徴とする請求項10に記載のシャトルコック。
  12.  前記切れ込みの幅が0.4~0.8mmであることを特徴とする請求項10または11に記載のシャトルコック。
  13.  前記切れ込みの幅が切れ込みの全長に渡って一定であることを特徴とする請求項12に記載のシャトルコック。
  14.  前記スカート部に形成されている複数の前記切れ込みの形状がすべて等しいことを特徴とする請求項10~13のいずれか一項に記載のシャトルコック。
  15.  複数の第1羽根部材と複数の第2羽根部材を有するスカート部と該スカート部を固定する台からなるシャトルコックであって、
     前記第1羽根部材は、1本の羽根軸と、該羽根軸の左方向に伸長する開孔率50~90%の左羽根と、該羽根軸の右方向に伸長する開孔率0~10%の右羽根から構成され、
     前記第2羽根部材は、1本の羽根軸と、該羽根軸の左方向に伸長する開孔率50~90%の左羽根と、該羽根軸の右方向に伸長する開孔率15~40%の右羽根から構成され、
     前記スカート部を構成する前記第1羽根部材と前記第2羽根部材の数は同じであり、前記第1羽根部材と前記第2羽根部材が交互に環状に配置されており、各第1羽根部材の左羽根の左辺がその左隣の第2羽根部材の右羽根の右辺とそれぞれ接続し、各第1羽根部材の右羽根の右辺がその右隣の第2羽根部材の左羽根の左辺とそれぞれ接続して、環状のスカート部を形成しているシャトルコック(ここにおいて左右の方向は、台を下にしてシャトルコックの中心軸から羽根軸を見たときの方向である)。
  16.  前記第1羽根部材の右羽根の開孔率が0~3%であることを特徴とする請求項15に記載のシャトルコック。
  17.  前記第1羽根部材の右羽根の開孔率が0%であることを特徴とする請求項15に記載のシャトルコック。
  18.  前記第1羽根部材の左羽根と前記第2羽根部材の左羽根の形状が同一であることを特徴とする請求項15~17のいずれか一項に記載のシャトルコック。
  19.  前記第2羽根部材の右羽根に形成された各開孔の孔面積が、前記第2羽根部材の左羽根に形成された各開孔の孔面積よりも小さいことを特徴とする請求項15~18のいずれか一項に記載のシャトルコック。
  20.  前記第2羽根部材の右羽根に形成された開孔の総孔面積が40~50mm2であることを特徴とする請求項15~19のいずれか一項に記載のシャトルコック。
  21.  前記第1羽根部材の左羽根と前記第2羽根部材の左羽根に形成された開孔の総孔面積が、いずれも80~90mm2であることを特徴とする請求項15~20のいずれか一項に記載のシャトルコック。
  22.  前記スカート部の最も外側に位置する前記羽根軸の稜線が、前記羽根軸の中心軸とシャトルコックの中心軸を結ぶ仮想線よりも左羽根方向に位置していることを特徴とする請求項15~21のいずれか一項に記載のシャトルコック。
  23.  複数の第1羽根部材と複数の第2羽根部材を有するスカート部と該スカート部を固定する台からなるシャトルコックであって、
     前記第1羽根部材は、1本の羽根軸と、該羽根軸の右方向に伸長する開孔率50~90%の右羽根と、該羽根軸の左方向に伸長する開孔率0~10%の左羽根から構成され、
     前記第2羽根部材は、1本の羽根軸と、該羽根軸の右方向に伸長する開孔率50~90%の右羽根と、該羽根軸の左方向に伸長する開孔率15~40%の左羽根から構成され、
     前記スカート部を構成する前記第1羽根部材と前記第2羽根部材の数は同じであり、前記第1羽根部材と前記第2羽根部材が交互に環状に配置されており、各第1羽根部材の左羽根の左辺がその左隣の第2羽根部材の右羽根の右辺とそれぞれ接続し、各第1羽根部材の右羽根の右辺がその右隣の第2羽根部材の左羽根の左辺とそれぞれ接続しているシャトルコック(ここにおいて左右の方向は、台を下にしてシャトルコックの中心軸から羽根軸を見たときの方向である)。
  24.  前記スカート部の最も外側に位置する前記羽根軸の稜線が、前記羽根軸の中心軸とシャトルコックの中心軸を結ぶ仮想線よりも右羽根方向に位置していることを特徴とする請求項23に記載のシャトルコック。
PCT/JP2009/003158 2008-07-07 2009-07-07 シャトルコック WO2010004731A1 (ja)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2008-176825 2008-07-07
JP2008176825 2008-07-07
JP2008184417 2008-07-16
JP2008-184417 2008-07-16
JP2008199271A JP4392454B1 (ja) 2008-07-07 2008-08-01 シャトルコック
JP2008-199271 2008-08-01
JP2008-285287 2008-11-06
JP2008285287A JP2010110459A (ja) 2008-11-06 2008-11-06 シャトルコック
JP2009048075A JP2010200890A (ja) 2009-03-02 2009-03-02 シャトルコック
JP2009-048075 2009-03-02

Publications (1)

Publication Number Publication Date
WO2010004731A1 true WO2010004731A1 (ja) 2010-01-14

Family

ID=41506858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003158 WO2010004731A1 (ja) 2008-07-07 2009-07-07 シャトルコック

Country Status (1)

Country Link
WO (1) WO2010004731A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194011A1 (ja) * 2017-04-19 2018-10-25 ヨネックス株式会社 シャトルコック

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841576A (ja) * 1981-09-03 1983-03-10 ヨネツクススポ−ツ株式会社 シヤトルコツク
JPH10258144A (ja) * 1997-03-19 1998-09-29 Takaoka Sekizai Kogyo Kk バドミントンシャトルの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841576A (ja) * 1981-09-03 1983-03-10 ヨネツクススポ−ツ株式会社 シヤトルコツク
JPH10258144A (ja) * 1997-03-19 1998-09-29 Takaoka Sekizai Kogyo Kk バドミントンシャトルの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194011A1 (ja) * 2017-04-19 2018-10-25 ヨネックス株式会社 シャトルコック

Similar Documents

Publication Publication Date Title
JP5519439B2 (ja) ゴルフクラブおよびゴルフクラブヘッド
AU2010100629A4 (en) Golf ball with oriented particles
US3910578A (en) Lacrosse stick
JP5424990B2 (ja) ゴルフボール
JP5538402B2 (ja) ゴルフボール
JP5181052B2 (ja) ゴルフクラブセット
JP2005305179A (ja) アンダーカットを備えたゴルフクラブヘッド
JP2006051352A (ja) ゴルフボール
EP2420299B1 (en) Golf ball having layers with specified flexural moduli and hardnesses
JP2010115485A (ja) ゴルフボール
US20070293341A1 (en) Golf club
JP2007075600A (ja) ソリッドゴルフボール
JP2010115486A (ja) ゴルフボール
JP6451309B2 (ja) ゴルフボール用樹脂組成物及びゴルフボール
JP4411364B1 (ja) シャトルコック
US9050505B2 (en) All-climate lacrosse stick head
JP2002210042A (ja) ゴルフボール
WO2010004731A1 (ja) シャトルコック
JP2017113220A (ja) ゴルフボール用樹脂組成物及びゴルフボール
EP2952231B1 (en) Racket
KR100777567B1 (ko) 단거리 비상 골프공
WO2022172706A1 (ja) シャトルコック
WO2015179645A1 (en) Modulus transition layers for stiff core golf balls
JP2010110459A (ja) シャトルコック
JP2010200890A (ja) シャトルコック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09794179

Country of ref document: EP

Kind code of ref document: A1