WO2010004378A1 - Antirelective coating compositions - Google Patents

Antirelective coating compositions Download PDF

Info

Publication number
WO2010004378A1
WO2010004378A1 PCT/IB2009/005486 IB2009005486W WO2010004378A1 WO 2010004378 A1 WO2010004378 A1 WO 2010004378A1 IB 2009005486 W IB2009005486 W IB 2009005486W WO 2010004378 A1 WO2010004378 A1 WO 2010004378A1
Authority
WO
WIPO (PCT)
Prior art keywords
antireflective
coating composition
polymer
film
antireflective coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2009/005486
Other languages
English (en)
French (fr)
Inventor
Huirong Yao
Guanyang Lin
Jian Yin
Hengpeng Wu
Mark Neisser
Ralph R. Dammel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMD Performance Materials Corp
Original Assignee
AZ Electronic Materials USA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZ Electronic Materials USA Corp filed Critical AZ Electronic Materials USA Corp
Priority to CN200980120871.4A priority Critical patent/CN102056954B/zh
Priority to KR1020107027326A priority patent/KR101536798B1/ko
Priority to EP09785893.0A priority patent/EP2300507B1/en
Priority to JP2011517254A priority patent/JP5765854B2/ja
Publication of WO2010004378A1 publication Critical patent/WO2010004378A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0273Polyamines containing heterocyclic moieties in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0677Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6854Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds

Definitions

  • the present invention relates to a novel antireflective coating composition and its use in image processing by forming a thin layer of the novel antireflective coating composition between a reflective substrate and a photoresist coating.
  • compositions are particularly useful in the fabrication of semiconductor devices by photolithographic techniques.
  • Photoresist compositions are used in microlithography processes for making miniaturized electronic components such as in the fabrication of computer chips and integrated circuits.
  • a thin coating of film of a photoresist composition is first applied to a substrate material, such as silicon wafers used for making integrated circuits.
  • the coated substrate is then baked to evaporate any solvent in the photoresist composition and to fix the coating onto the substrate.
  • the baked coated surface of the substrate is next subjected to an image-wise exposure to radiation.
  • This radiation exposure causes a chemical transformation in the exposed areas of the coated surface.
  • Visible light, ultraviolet (UV) light, electron beam and X-ray radiant energy are radiation types commonly used today in microlithographic processes.
  • UV light, ultraviolet (UV) light, electron beam and X-ray radiant energy are radiation types commonly used today in microlithographic processes.
  • the coated substrate is treated with a developer solution to dissolve and remove either the radiation-exposed or the unexposed areas of the photoresist.
  • the trend towards the miniaturization of semiconductor devices has led to the use of new photoresists that are sensitive to lower and lower wavelengths of radiation and has also led to the use of sophisticated multilevel systems to overcome difficulties associated with such miniaturization.
  • bottom antireflective coating provides the best solution for the elimination of reflectivity.
  • the bottom antireflective coating is applied to the substrate prior to coating with the photoresist and prior to exposure.
  • the photoresist is exposed imagewise and developed.
  • the antireflective coating in the exposed area is then etched, typically in gaseous plasma, and the photoresist pattern is thus transferred to the substrate.
  • the etch rate of the antireflective film should be relatively high in comparison to the photoresist so that the antireflective film is etched without excessive loss of the photoresist film during the etch process.
  • Antireflective coatings must also possess the correct absorption and refractive indices (known as 'k' and 'n') at the wavelength of exposure to achieve the desired lithographic properties.
  • antireflective coating that functions well at exposures less than 300 nm.
  • Such antireflective coatings need to have high etch rates and be sufficiently absorbing with the correct refractive index to act as antireflective coatings.
  • the invention describes an antireflective coating composition which contains a novel polymer without an aromatic chromophore, which finds applications in anti-reflective coating materials in high NA lithography.
  • the materials have ultra high etch rates because of the polymer backbone and the absence of aromatic chromophore attached to the polymer.
  • the anti reflective coating composition of the present invention comprises a polymer which does not contain an aromatic chromophore, an acid generator, and optionally a crosslinking agent, where the polymer comprises a structural unit derived from an aminoplast and a structural unit derived from a diol, triol, dithiol, trithiol, other polyols, diacid, triacid, other polyacids, diimide, diamide, imide-amide, or mixture thereof, where the diol, dithiol, triol, trithiol, diacid, triacid, diimide, diamide, or imide-amide optionally contain one or more nitrogen and/or sulfur atoms or contain one or more alkene groups to improve absorbtivity at a wavelength useful in IC manufacturing and achieve high n value for the antireflective material.
  • the present invention is also related to a polymer which does not contain an aromatic chromophore comprising a structural unit derived from an aminoplast and a structural unit derived from a diol, triol, dithiol, trithiol, other polyols, diacid, triacid, other polyacids, diimide or mixture thereof, where the diol, dithiol, triol, trithiol, diacid, triacid, diimide, diamide, or imide-amide optionally contain one or more nitrogen and/or sulfur atoms or contain one or more alkene groups.
  • the present invention also relates to a coated substrate comprising a substrate having thereon an antireflective coating layer formed from the antireflective coating composition disclosed herein, where the antireflective coating layer has an absorption parameter (k) in the range of 0.01 ⁇ k ⁇ 0.35 when measured at 193 nm.
  • the present invention also relates to a process for forming an image comprising, a) coating and baking a substrate with the antireflective coating composition disclosed herein; b) coating and baking a photoresist film on top of the antireflective coating; c) imagewise exposing the photoresist; d) developing an image in the photoresist; e) optionally, baking the W
  • the present invention also relates to a process for forming on a substrate an antireflective film and a photoresist film sensitive to an exposure wavelength, comprising a) forming an antireflective film on a substrate, where the antireflective film is formed from the antireflective coating composition of the present invention where the diol, triol, dithiol, trithiol, diacid, triacid diimide, diamide, or imide-amide in the antireflective coating composition is chosen in such a way that the absorption maximum of the polymer in the antireflective coating composition is less than the exposure wavelength for the photoresist and where the exposure wavelength is between the absorption maximum and the absorption minimum on the long wavelength side of the absorption band of the polymer in the antireflective coating composition, resulting in an anomalous dispersion contribution to the refractive index of the antireflective film that raises the refractive index 'n' of the antireflective film and lowers the absorption
  • the diol, triol, dithiol, trithiol, other polyols, diacid, triacid, other polyacids, diimide, diamide, or imide-amide can be chosen such that the absorption maximum of the polymer in the antireflective coating composition is less than the exposure wavelength for the photoresist and where the exposure wavelength is between the half height of the absorption band of the polymer in the antireflective coating composition and the absorption minimum on the long wavelength side.
  • Fig. 1 illustrates the principle of anomalous dispersion with the following meanings:
  • Fig. 2 shows dispersion curves showing anomalous dispersion effect for coating example 2, measured by spectroscopic ellipsometry. wa denotes wavelength.
  • the invention describes an antireflective coating composition which contains a novel polymer without an aromatic chromophore, which finds applications in anti-reflective coating materials in high NA lithography.
  • the materials have ultra high etch rates because of the polymer backbone and the absence of aromatic chromophore attached to the polymer.
  • the antireflective coating composition of the present invention comprises a polymer which does not contain an aromatic chromophore, an acid generator, and optionally a crosslinking agent, where the polymer comprises a structural unit derived from an aminoplast and a structural unit derived from a diol, triol, dithiol, trithiol, other polyols, diacid, triacid, other polyacids, diimide, diamide, imide-amide, or mixture thereof, where the diol, dithiol, triol, trithiol, diacid, triacid, diimide, diamide, or imide-amide optionally contain one or more nitrogen and/or sulfur atoms or contain one or more alkene groups.to improve absorbtivity at a wavelength useful in IC manufacturing and achieve high n value for the antireflective material.
  • the present invention is also related to a polymer which does not contain an aromatic chromophore comprising a structural unit derived from an aminoplast and a structural unit derived from a diol, triol, dithiol, trithiol, other polyols, diacid, triacid, other polyacids, diimide or mixture thereof, where the diol, dithiol, triol, trithiol, diacid, triacid, diimide, diamide, or imide-amide optionally contain one or more nitrogen and/or sulfur atoms or contain one or more alkene groups.
  • the present invention also relates to a coated substrate comprising a substrate having thereon an anti reflective coating layer formed from the antireflective coating composition disclosed herein, where the antireflective coating layer has an absorption parameter (k) in the range of 0.01 ⁇ k ⁇ 0.35 when measured at 193 nm.
  • the present invention also relates to a process for forming an image comprising, a) coating and baking a substrate with the antireflective coating composition disclosed herein; b) coating and baking a photoresist film on top of the antireflective coating; c) imagewise exposing the photoresist; d) developing an image in the photoresist; e) optionally, baking the substrate after the exposing step.
  • the present invention also relates to a coated substrate comprising a substrate having thereon an antireflective coating layer formed from the antireflective coating composition disclosed herein, where the antireflective coating layer has an absorption parameter (k) in the range of 0.01 ⁇ k ⁇ 0.35 when measured at 193 nm.
  • the present invention also relates to a process for forming an image comprising, a) coating and baking a substrate with the antireflective coating composition disclosed herein; b) coating and baking a photoresist film on top of the antireflective coating; c) imagewise exposing the photoresist; d) developing an image in the photoresist; e) optionally, baking the substrate after the exposing step.
  • the present invention also relates to a process for forming on a substrate an antireflective film and a photoresist film sensitive to an exposure wavelength, comprising a) forming an antireflective film on a substrate, where the antireflective film is formed from the antireflective coating composition of present invention where the diol, triol, dithiol, trithiol, diacid, triacid diimide, diamide, or imide-amide in the antireflective coating composition is chosen in such a way that the absorption maximum of the polymer in the antireflective coating composition is less than the exposure wavelength for the photoresist and where the exposure wavelength is between the absorption maximum and the absorption minimum on the long wavelength side of the absorption band of the polymer in the antireflective coating composition, resulting in an anomalous dispersion contribution to the refractive index of the anti reflective film that raises the refractive index 'n' of the anti reflective film and lowers the absorption parameter 'k 1 of the anti reflective film; and
  • the diol, triol, dithiol, trithiol, other polyols, diacid, triacid, other polyacids, diimide, diamide, or imide-amide can be chosen such that the absorption maximum of the polymer in the antireflective coating composition is less than the exposure wavelength for the photoresist and where the exposure wavelength is between the half height of the absorption band of the polymer in the antireflective coating composition and the absorption minimum on the long wavelength side.
  • aromatic chromophore means an arene containing chromophore that contains only carbon atoms in the ring structures; for example, phenyl, naphthyl, and the like.
  • diols, triols, dithiols, trithiols, diacids, triacids, and diimide examples include, for example,
  • the polymer of the present invention is self-crosslinkable with assistance of an acid generator.
  • the aminoplast can be substituted by two or more alkoxy groups can be based on aminoplasts such as, for example, glycoluril-aldehyde resins, melamine-aldehyde resins, benzoguanamine-aldehyde resins, and urea- aldehyde resins.
  • aldehyde examples include formaldehyde, acetaldehyde, etc. In some instances, three or four alkoxy groups are useful.
  • Monomeric, alkylated glycoluril-formaldehyde resins are an example.
  • One example is tetra(alkoxyalkyl)glycoluril having the following structure
  • each R 8 is (CH2)n ⁇ O-(CH 2 )m ⁇ CH 3
  • each Rn is hydrogen or d-C-e alkyl
  • n is 1 to 4
  • m is 0 to 3.
  • tetra(alkoxymethyl)glycoluril may include, e.g., tetra(methoxymethyl)glycoluril, tetra(ethoxymethyl)glycoluril, tetra(n- propoxymethyl)glycoluril, tetra(i-propoxymethyl)glycoluril, tetra(n- butoxymethyl)glycoluril, tetra(t-butoxymethyl)glycoluril, substituted tetra(alkoxymethyl)glycolurils such as 7-methyl tetra(methoxymethyl)glycoluril, 7- ethyl tetra(methoxymethyl)glycoluril, 7-(i- or n-)propyl tetra(methoxymethyl)glycoluril, 7-(i- or sec- or t-)butyl tetra(methoxymethyl)glycoluril, 7,8-dimethyl
  • Tetra(methoxymethyl)glycoluril is available under the trademark POWDERLINK from Cytec Industries (e.g., POWDERLINK 1174).
  • Other examples include methylpropyltetramethoxymethyl glycoluril, and methylphenyltetramethoxymethyl glycoluril.
  • Other aminoplasts are commercially available from Cytec Industries under the trademark CYMEL and from Monsanto Chemical Co. under the trademark RESIMENE.
  • Condensation products of other amines and amides can also be employed, for example, aldehyde condensates of triazines, diazines, diazoles, guanidines, guanimines and alkyl- and aryl-substituted derivatives of such compounds, including alkyl- and aryl-substituted melamines.
  • Some examples of such compounds are N,N'-dimethyl urea, benzourea, dicyandiamide, formaguanamine, acetoguanamine, ammeline, 2-chloro-4,6-diamino-1 ,3,5- triazine, 6-methyl-2,4-diamino,1 ,3,5-traizine, 3,5-diaminotriazole, triaminopyrimidine,2-mercapto-4,6-diamino-pyrimidine, 3,4,6-tris(ethylamino)- 1,3,5-triazine, tris(alkoxycarbonylamino)triazine, N, N 1 N', N 1 - tetramethoxymethylurea and the like.
  • aminoplasts include compounds having the following structures:
  • etherified amino resins for example methylated or butylated melamine resins (N- methoxymethyl- or N-butoxymethyl-melamine respectively) or methylated/butylated glycolurils, for example as can be found in Canadian Patent No. 1 204 547 to Ciba Specialty Chemicals.
  • Various melamine and urea resins are commercially available under the Nicalacs (Sanwa Chemical Co.), Plastopal (BASF AG), or Maprenal (Clariant GmbH) tradenames.
  • the above mentioned aminoplasts can also be used, when needed, as crosslinking agents in the present invention.
  • Other types of crosslinking agents include
  • One example of a repeating unit from the polymer of the present invention is
  • Z is a residue of a diol, triol, dithiol, trithiol, other polyols, diacid, triacid, other polyacids, diimide, diamide, imide-amide, or mixture thereof;
  • X is -OR 3 , -
  • R 3 is hydrogen, unsubstituted or substituted alkyl, unsubstituted or substituted alkene, unsubstituted or substituted alkyne, or unsubstituted or substituted 6-membered ring optionally having one or more nitrogen and/or sulfur atoms within the ring; each of R 4 and R 5 are independently R 3 or R 4 and R 5 together with the atoms to which they are attached form an unsubstituted or substituted 5- or 6-membered ring optionally having one or more nitrogen and/or sulfur atoms within the ring; and each of Rn is hydrogen or Ci -6 alkyl.
  • repeating units include
  • the polymers of this invention may be prepared by any of the standard polymerization methods known in the art, especially condensation polymerization techniques.
  • the polymer may be synthesized using solution, emulsion, bulk, suspension polymerization, or the like.
  • the aminoplast is condensed with a diol, triol, dithiol, trithiol, or a mixture thereof, at elevated temperatures, and optionally in the presence of an acid, to give the polymer of the present invention.
  • a typical ratio of aminoplast to diol, triol, dithiol, trithiol, other polyols, diacid, triacid, other polyacids, diimide or mixtures thereof range between 1 :2 to about 3:1 , further from about 1 :1.5 to about 2.5:1.
  • the acid generator used with the present invention preferably a thermal acid generator is a compound which, when heated to temperatures greater than 90 0 C. and less than 250 0 C, generates an acid.
  • the acid in combination with the crosslinker, crosslinks the polymer.
  • the antireflective coating layer after heat treatment becomes insoluble in the solvents used for coating photoresists, and furthermore, is also insoluble in the alkaline developer used to image the photoresist.
  • the thermal acid generator is activated at 90°C. and more preferably at above 120 0 C, and even more preferably at above 150 0 C.
  • the antireflective coating layer is heated for a sufficient length of time to crosslink the coating.
  • acids and thermal acid generators are butane sulfonic acid, triflic acid, nanoflurobutane sulfonic acid, nitrobenzyl tosylates, such as 2- nitrobenzyl tosylate, 2,4-dinitrobenzyl tosylate, 2,6-dinitrobenzyl tosylate, A- nitrobenzyl tosylate; benzenesulfonates such as 2-trifluoromethyl-6-nitrobenzyl A- chlorobenzenesulfonate, 2-trifluoromethyl-6-nitrobenzyl 4-nitro benzenesulfonate; phenolic sulfonate esters such as phenyl, 4-methoxybenzenesulfonate; alkyl ammonium salts of organic acids, such as triethylammonium salt of 10- camphorsulfonic acid, and the like.
  • nitrobenzyl tosylates such as 2- nitrobenzyl tosylate, 2,
  • Thermal acid generators are preferred over free acids, although free acids may also be used, in the novel antireflective composition, since it is possible that over time the shelf stability of the antireflective solution will be affected by the presence of the acid, if the polymer were to crosslink in solution. Thermal acid generators are only activated when the antireflective film is heated on the substrate. Additionally, mixtures of thermal acids and free acids may be used. Although thermal acid generators are preferred for crosslinking the polymer efficiently, an anti-reflective coating composition comprising the polymer and crosslinking agent may also be used, where heating crosslinks the polymer. Examples of a free acid are, without limitation, strong acids, such as sulfonic acids. Sulfonic acids such as toluene sulfonic acid, triflic acid or mixtures of these are preferred.
  • the novel composition may further contain a photoacid generator, examples of which without limitation, are onium salts, sulfonate compounds, nitrobenzyl esters, triazines, etc.
  • the preferred photoacid generators are onium salts and sulfonate esters of hydoxyimides, specifically diphenyl iodnium salts, triphenyl sulfonium salts, dialkyl iodonium salts, triakylsulfonium salts, and mixtures thereof.
  • One or more cross-linking catalysts can be used in the composition.
  • solvents for the coating composition include alcohols, esters, glymes, ethers, glycol ethers, glycol ether esters, ketones, lactones, cyclic ketones, and mixtures thereof.
  • solvents include, but are not limited to, propylene glycol methyl ether, propylene glycol methyl ether acetate, cyclohexanone, 2-heptanone, ethyl 3-ethoxy-propionate, propylene glycol methyl ether acetate, ethyl lactate, gamma valerolactone, methyl 3-methoxypropionate, and mixtures thereof.
  • the solvent is typically present in an amount of from about 40 to about 99 weight percent.
  • the addition of lactone solvents is useful in helping flow characteristics of the anti reflective coating composition when used in layered systems.
  • the lactone solvent comprises about 1 to about 10% of the solvent system.
  • ⁇ -valerolactone is a useful lactone solvent.
  • the amount of the polymer in the present composition can vary from about 100 weight % to about 1 weight % relative to the solid portion of the composition.
  • the amount of the crosslinker in the present composition when used, can vary from 0 weight % to about 50 weight % relative to the solid portion of the composition.
  • the amount of the acid generator in the present composition can vary from 0.1 weight % to about 10 weight % relative to the solid portion of the composition.
  • the present composition can optionally comprise additional materials typically found in anti reflective coating compositions such as, for example, monomeric dyes, lower alcohols, surface leveling agents, adhesion promoters, antifoaming agents, etc, provided that the performance is not negatively impacted. Since the composition is coated on top of the substrate and is further subjected to dry etching, it is envisioned that the composition is of sufficiently low metal ion level and purity that the properties of the semiconductor device are not adversely affected. Treatments such as passing a solution of the polymer, or compositions containing such polymers, through an ion exchange column, filtration, and extraction processes can be used to reduce the concentration of metal ions and to reduce particles.
  • additional materials typically found in anti reflective coating compositions such as, for example, monomeric dyes, lower alcohols, surface leveling agents, adhesion promoters, antifoaming agents, etc, provided that the performance is not negatively impacted. Since the composition is coated on top of the substrate and is further subjected to dry etching, it is envisioned that the
  • the optical characteristics of the anti reflective coating are optimized for the exposure wavelength and other desired lithographic characteristics.
  • the absorption parameter (k) of the novel composition for 193 nm exposure ranges from about 0.1 to about 1.0, preferably from about 0.2 to about
  • the value of the refractive index (n) ranges from about 1.25 to about 2.0, preferably from about 1.8 to about 2.0. Due to the good absorption characteristics of this composition at 193 nm, very thin anti reflective films of the order of about 20 nm may be used. This is particularly advantageous when using a nonaromatic photoresist, such as those sensitive at 193 nm, 157 nm and lower wavelengths, where the photoresist films are thin and must act as an etch mask for the antireflective film.
  • the substrates over which the antireflective coatings are formed can be any of those typically used in the semiconductor industry. Suitable substrates include, without limitation, silicon, silicon substrate coated with a metal surface, copper coated silicon wafer, copper, substrate coated with antireflective coating, aluminum, polymeric resins, silicon dioxide, metals, doped silicon dioxide, silicon nitride, silicon oxide nitride, titanium nitride, tantalum, tungsten, copper, polysilicon, ceramics, aluminum/copper mixtures; gallium arsenide and other such Group Ill/V compounds, and the like.
  • the substrate may comprise any number of layers made from the materials described above.
  • the coating composition can be coated on the substrate using techniques well known to those skilled in the art, such as dipping, spincoating or spraying.
  • the film thickness of the anti-reflective coating ranges from about 0.01 ⁇ m to about 1 ⁇ m.
  • the coating can be heated on a hot plate or convection oven or other well known heating methods to remove any residual solvent and induce crosslinking if desired, and insolubilizing the anti-reflective coatings to prevent intermixing between the anti-reflective coating and the photoresist.
  • the preferred range of temperature is from about 90 0 C to about 250 0 C. If the temperature is below 90 0 C then insufficient loss of solvent or insufficient amount of crosslinking takes place, and at temperatures above 300 0 C the composition may become chemically unstable.
  • a film of photoresist is then coated on top of the uppermost anti reflective coating and baked to substantially remove the photoresist solvent.
  • An edge bead remover may be applied after the coating steps to clean the edges of the substrate using processes well
  • photoresist compositions there are two types, negative-working and positive-working.
  • negative-working photoresist compositions When negative-working photoresist compositions are exposed image- wise to radiation, the areas of the resist composition exposed to the radiation become less soluble to a developer solution (e.g. a cross-linking reaction occurs) while the unexposed areas of the photoresist coating remain relatively soluble to such a solution.
  • a developer solution e.g. a cross-linking reaction occurs
  • treatment of an exposed negative- working resist with a developer causes removal of the non-exposed areas of the photoresist coating and the creation of a negative image in the coating, thereby uncovering a desired portion of the underlying substrate surface on which the photoresist composition was deposited.
  • Negative working photoresist and positive working photoresist compositions and their use are well known to those skilled in the art.
  • 193 nm immersion lithography is a viable solution for nodes down to 45 nm node and beyond.
  • low "k" BARCs are more suitable for optimum substrate reflectivity control based on simulations.
  • the BARC film needs to be thin enough to have desired etch selectivity for very small features in thin film lithography.
  • the low film thickness requires high n value for BARCs.
  • This invention describes an antireflective coating composition which contains a novel polymer with non- aromatic dyes. The dye is less absorbing at 193 nm than that of conventional 193 nm BARC, e.g.
  • the invention takes advantage of anomalous dispersion effects near the absorption maxima ⁇ max (excluding ⁇ max ) by a judicious choice of the dye.
  • the dye with absorbance maxima lower than the exposure absorbance (193 nm) is used to achieve hyper n value.
  • a n value that is above the value predicted from the Cauchy correlation is considered high, which covers entire half of the absorbance band in high wavelength area.
  • the high n low k material should ideally have absorption maxima, ⁇ max , such that the actinic wavelength is the same as the wavelength ⁇ + that is at half height of the absorption band on the higher wavelength side of the absorption band (Fig. 1).
  • the amplitude of the refractive index fluctuation is not only determined by the position of ⁇ max but also influenced by the strength of absorbance based on a Kramers-Kronic relation. In principle, nearly any increment of n value can be achieved as long as the dye has extremely strong absorbance corresponding to the anomalous dispersion area.
  • the low k requirement of the organic BARC limits the amplitude of n enhancement and adds challenges in dye selection and material development.
  • optical indices used in the antireflective coating is not the same as the absorption property of organic compound in its pure form or in its liquid solution.
  • the absorption spectrum of a dye in coating may shift due to changes of chemical and physical environment such as solvent, additives and possible chemical reactions.
  • a dye behaves ideally in solution may not be right for antireflective coating.
  • the invention has studied many low k BARC materials with various carefully selected dyes and the structures are presented in this work.
  • the diol, triol, dithiol, trithiol, diacid, triacid diimide, diamide, or imide-amide in the antireflective coating composition can be chosen in such a way that the absorption maximum of the polymer, in the antireflective coating composition which is used to form an antireflective film on a substrate, is less than the exposure wavelength for the photoresist and where the exposure wavelength is between the absorption maximum and the absorption minimum on the long wavelength side of the absorption band of the polymer in the antireflective coating composition, resulting in an anomalous dispersion contribution to the refractive index of the antireflective film that raises the refractive index 'n 1 of the antireflective film and lowers the absorption parameter 'k' of the antireflective film.
  • the diol, triol, dithiol, trithiol, other polyols, diacid, triacid, other polyacids, diimide, diamide, or imide-amide can be chosen such that the absorption maximum of the polymer in the antireflective coating composition is less than the exposure wavelength for the photoresist and where the exposure wavelength is between the half height of the absorption band of the polymer in the antireflective coating composition and the absorption minimum on the long wavelength side.
  • an anomalous dispersion contribution to the refractive index of the antireflective film results in raising the refractive index 'n' of the antireflective film and lowers the absorption parameter 'k' of the antireflective film.
  • a process of the instant invention comprises coating a substrate with an antireflective coating composition comprising a polymer of the present invention and heating the substrate on a hotplate or convection oven or other well known heating methods at a sufficient temperature for sufficient length of time to remove the coating solvent, and crosslink the polymer if necessary, to a sufficient extent so that the coating is not soluble in the coating solution of a photoresist or in a aqueous alkaline developer.
  • An edge bead remover may be applied to clean the edges of the substrate using processes well known in the art.
  • the heating ranges in temperature from about 70 0 C to about 250 0 C.
  • a film of a photoresist composition is then coated on top of the antireflective coating and baked to substantially remove the photoresist solvent.
  • the photoresist is image-wise exposed and developed in an aqueous developer to remove the treated resist.
  • An optional heating step can be incorporated into the process prior to development and after exposure.
  • the process of coating and imaging photoresists is well known to those skilled in the art and is optimized for the specific type of resist used.
  • the patterned substrate can then be dry etched in a suitable etch chamber to remove the exposed portions of the anti-reflective film, with the remaining photoresist acting as an etch mask.
  • Various gases are known in the art for etching organic anti reflective coatings, such as O 2 , Cl 2 , F 2 and CF 4 as well as other etching gases known in the art. This process is generally known as a bilayer process.
  • An intermediate layer may be placed between the antireflective coating and the photoresist to prevent intermixing, and is envisioned as lying within the scope of this invention.
  • the intermediate layer is an inert polymer cast from a solvent, where examples of the polymer are polysulfones and polyimides.
  • a multilayer system for example, a trilayer system, or process is also envisioned within the scope of the invention.
  • a trilayer process for example, an organic film is formed on a substrate, an antireflection film is formed on the organic film, and a photoresist film is formed on the antireflection film.
  • the organic film can also act as an antireflection film.
  • the organic film is formed on a substrate as a lower resist film by spin coating method etc.
  • the organic film may or may not then crosslinked with heat or acid after application by spin coating method etc.
  • the antireflection film for example that which is disclosed herein, as an intermediate resist film.
  • an organic solvent is evaporated, and baking is carried out in order to promote crosslinking reaction to prevent the antireflection film from intermixing with an overlying photoresist film.
  • the photoresist film is formed thereon as an upper resist film.
  • Spin coating method can be used for forming the photoresist film as with forming the antireflection film.
  • pre-baking is carried out. After that, a pattern circuit area is exposed, and post exposure baking (PEB) and development with a developer are carried out to obtain a resist pattern.
  • Another trilayer resist process is such when a bottom layer is formed with a carbon etch mask.
  • an intermediate layer is formed by using an intermediate resist layer composition containing silicon atoms.
  • an antireflection layer based on the antireflection coating composition of the present invention, is formed.
  • a top layer is formed by using a top resist layer composition of a photoresist composition.
  • the composition for forming the intermediate layer may include polysilsesquioxane-based silicone polymer, tetraorthosilicate glass (TEOS), and the like.
  • the top resist layer composition of a photoresist composition preferably comprises a polymer without a silicon atom.
  • a top resist layer comprising a polymer without a silicon atom has an advantage of providing superior resolution to a top resist layer comprising a polymer containing silicon atoms.
  • PEB post exposure baking
  • a silicon wafer was coated with AZ® 1C5D bottom anti reflective coating composition (AZ Electronic
  • AZ® 1C5D bottom antireflective coating composition (AZ Electronic Materials
  • AZ® 1C5D bottom antireflective coating composition (AZ Electronic Materials
  • the exposed wafer was baked at 110 0 C for 60 seconds and developed in AZ® 300 MIF developer (available from AZ Electronic Materials USA Corp., Somerville, NJ) for 30 seconds.
  • the cleaned wafer was then examined under scanning electron microscope. Line and space patterns showed no standing waves, no footing and no scumming, indicating efficacy of the bottom anti-reflective coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Materials For Photolithography (AREA)
  • Paints Or Removers (AREA)
  • Polyethers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
PCT/IB2009/005486 2008-07-08 2009-04-29 Antirelective coating compositions Ceased WO2010004378A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980120871.4A CN102056954B (zh) 2008-07-08 2009-04-29 抗反射涂层组合物
KR1020107027326A KR101536798B1 (ko) 2008-07-08 2009-04-29 반사방지 코팅 조성물
EP09785893.0A EP2300507B1 (en) 2008-07-08 2009-04-29 Antirelective coating compositions
JP2011517254A JP5765854B2 (ja) 2008-07-08 2009-04-29 反射防止コーティング組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/133,567 US8329387B2 (en) 2008-07-08 2008-07-08 Antireflective coating compositions
US12/133,567 2008-07-08

Publications (1)

Publication Number Publication Date
WO2010004378A1 true WO2010004378A1 (en) 2010-01-14

Family

ID=40952422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/005486 Ceased WO2010004378A1 (en) 2008-07-08 2009-04-29 Antirelective coating compositions

Country Status (8)

Country Link
US (1) US8329387B2 (OSRAM)
EP (1) EP2300507B1 (OSRAM)
JP (1) JP5765854B2 (OSRAM)
KR (1) KR101536798B1 (OSRAM)
CN (1) CN102056954B (OSRAM)
MY (1) MY155289A (OSRAM)
TW (1) TWI510577B (OSRAM)
WO (1) WO2010004378A1 (OSRAM)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2258691A1 (en) * 2009-05-20 2010-12-08 Rohm and Haas Electronic Materials, L.L.C. Coating compositions for use with an overcoated photoresist
CN102939549A (zh) * 2010-06-03 2013-02-20 Az电子材料美国公司 抗反射涂料组合物和制造微电子器件的方法
JP2013519926A (ja) * 2010-02-18 2013-05-30 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション 反射防止組成物及びそれを用いた方法
US9678427B2 (en) 2013-12-27 2017-06-13 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition containing copolymer that has triazine ring and sulfur atom in main chain
US10732504B2 (en) 2017-02-03 2020-08-04 Samsung Sdi Co., Ltd. Resist underlayer composition, and method of forming patterns using the composition
CN111665683A (zh) * 2019-03-06 2020-09-15 三星Sdi株式会社 抗蚀剂底层组合物和使用所述组合物形成图案的方法
US11822248B2 (en) 2015-10-31 2023-11-21 Rohm And Haas Electronic Materials Korea Ltd. Coating compositions for use with an overcoated photoresist

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8221965B2 (en) * 2008-07-08 2012-07-17 Az Electronic Materials Usa Corp. Antireflective coating compositions
US20100092894A1 (en) * 2008-10-14 2010-04-15 Weihong Liu Bottom Antireflective Coating Compositions
US9244352B2 (en) * 2009-05-20 2016-01-26 Rohm And Haas Electronic Materials, Llc Coating compositions for use with an overcoated photoresist
EP2472329B1 (en) * 2010-12-31 2013-06-05 Rohm and Haas Electronic Materials LLC Coating compositions for use with an overcoated photoresist
US8465902B2 (en) 2011-02-08 2013-06-18 Az Electronic Materials Usa Corp. Underlayer coating composition and processes thereof
US9170494B2 (en) 2012-06-19 2015-10-27 Az Electronic Materials (Luxembourg) S.A.R.L. Antireflective compositions and methods of using same
US8900797B2 (en) 2012-09-26 2014-12-02 Az Electronic Materials (Luxembourg) S.A.R.L. Developable bottom anti-reflective coating
US9017934B2 (en) 2013-03-08 2015-04-28 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist defect reduction system and method
US8932799B2 (en) 2013-03-12 2015-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US9110376B2 (en) 2013-03-12 2015-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US9245751B2 (en) 2013-03-12 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-reflective layer and method
US9175173B2 (en) 2013-03-12 2015-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Unlocking layer and method
US9256128B2 (en) 2013-03-12 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing semiconductor device
US9543147B2 (en) 2013-03-12 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist and method of manufacture
US9502231B2 (en) 2013-03-12 2016-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist layer and method
US9354521B2 (en) 2013-03-12 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US9117881B2 (en) 2013-03-15 2015-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive line system and process
WO2015012177A1 (ja) * 2013-07-24 2015-01-29 Jsr株式会社 パターン形成方法
US9341945B2 (en) 2013-08-22 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist and method of formation and use
US10036953B2 (en) 2013-11-08 2018-07-31 Taiwan Semiconductor Manufacturing Company Photoresist system and method
US10095113B2 (en) 2013-12-06 2018-10-09 Taiwan Semiconductor Manufacturing Company Photoresist and method
US9761449B2 (en) 2013-12-30 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Gap filling materials and methods
US9599896B2 (en) 2014-03-14 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist system and method
US9581908B2 (en) 2014-05-16 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist and method
JP6086618B2 (ja) * 2015-02-13 2017-03-01 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、及びレジスト膜
KR102441290B1 (ko) * 2015-07-29 2022-09-07 주식회사 동진쎄미켐 유기 반사방지막 형성용 조성물
KR102653125B1 (ko) 2016-01-13 2024-04-01 삼성전자주식회사 포토레지스트의 하부막 조성물 및 이를 이용한 패턴 형성 방법
US10203602B2 (en) * 2016-09-30 2019-02-12 Rohm And Haas Electronic Materials Korea Ltd. Coating compositions for use with an overcoated photoresist
US20180364575A1 (en) * 2017-06-15 2018-12-20 Rohm And Haas Electronic Materials Korea Ltd. Coating compositions for use with an overcoated photoresist
KR102264693B1 (ko) * 2018-06-11 2021-06-11 삼성에스디아이 주식회사 레지스트 하층막용 조성물 및 이를 이용한 패턴형성방법
US20210271168A1 (en) * 2018-06-26 2021-09-02 Nissan Chemical Corporation Resist underlying film-forming composition comprising a reaction product with a glycidyl ester compound
KR102288386B1 (ko) * 2018-09-06 2021-08-10 삼성에스디아이 주식회사 레지스트 하층막용 조성물 및 이를 이용한 패턴 형성 방법
WO2020121967A1 (ja) * 2018-12-12 2020-06-18 Jsr株式会社 感光性樹脂組成物、レジストパターン膜の製造方法、およびメッキ造形物の製造方法
CN109705306B (zh) * 2018-12-13 2021-02-26 江南大学 一种uv固化聚二甲基硅氧烷基改性耐候涂料的制备方法
KR102400603B1 (ko) * 2019-03-29 2022-05-19 삼성에스디아이 주식회사 레지스트 하층막용 조성물 및 이를 이용한 패턴 형성 방법
KR102186921B1 (ko) * 2019-12-18 2020-12-04 이근수 삼원공중합체, 그 제조 방법, 삼원공중합체를 포함하는 반사방지막 및 응용
CN112354566B (zh) * 2020-10-30 2023-04-21 中北大学 一种巴比妥酸-多金属氧簇杂化物及其制备方法
JP7408591B2 (ja) * 2021-03-22 2024-01-05 四国化成工業株式会社 カルボキシル基を有するイソシアヌレート化合物および該化合物を用いたエポキシ樹脂組成物
CN117501179A (zh) * 2021-06-02 2024-02-02 默克专利有限公司 使用含有有机酸化合物的组合物的方法、含有有机酸化合物的光刻组合物以及制造抗蚀剂图案的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1204547A (en) 1981-02-13 1986-05-13 Rudolf Kirchmayr Curable composition based on an acid-curable resin, and process for curing this resin
JPH01293339A (ja) 1988-05-23 1989-11-27 Tosoh Corp フォトレジスト組成物
US20030180559A1 (en) 2001-09-26 2003-09-25 Shipley Company, L.L.C. Coating compositions for use with an overcoated photoresist
EP1560070A1 (en) 2002-10-09 2005-08-03 Nissan Chemical Industries, Ltd. Composition for forming antireflection film for lithography
US20050215713A1 (en) 2004-03-26 2005-09-29 Hessell Edward T Method of producing a crosslinked coating in the manufacture of integrated circuits
EP1598702A1 (en) 2004-05-18 2005-11-23 Rohm and Haas Electronic Materials, L.L.C. Coating compositions for use with an overcoated photoresist
EP1705519A2 (en) 2005-03-20 2006-09-27 Rohm and Haas Electronic Materials, L.L.C. Coating compositions for use with an overcoated photoresist
US20060275696A1 (en) 2005-02-05 2006-12-07 Rohm And Haas Electronic Materials Llc Coating compositions for use with an overcoated photoresist
WO2007010385A1 (en) 2005-07-19 2007-01-25 Az Electronic Materials Usa Corp. New organic bottom antireflective polymer compositions
EP1757986A1 (en) 2004-04-09 2007-02-28 Nissan Chemical Industries, Ltd. Antireflection film for semiconductor containing condensation type polymer
EP1939688A1 (en) 2005-09-27 2008-07-02 Nissan Chemical Industries, Ltd. Composition for antireflection film formation, comprising product of reaction between isocyanuric acid compound and benzoic acid compound

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215758A (en) 1961-05-10 1965-11-02 Gulf Oil Corp Condensation polymers
US3279940A (en) 1963-05-13 1966-10-18 Gulf Oil Corp Polyethylene and polypropylene containers coated with a polyester resin
US3448084A (en) 1964-06-10 1969-06-03 Gulf Oil Corp Polyesters from tris(2-hydroxyethyl) isocyanurate
US3477996A (en) 1965-03-29 1969-11-11 Allied Chem Polyesters prepared from tris - (2-hydroxyalkyl) isocyanurates and ethylenically unsaturated dicarboxylic acid anhydrides
US3474054A (en) 1966-09-13 1969-10-21 Permalac Corp The Surface coating compositions containing pyridine salts or aromatic sulfonic acids
US3476718A (en) 1967-07-17 1969-11-04 Hercules Inc Polymers of epoxy cyclic sulfones
US3711391A (en) 1971-05-18 1973-01-16 American Can Co Photopolymerizable epoxy systems containing sulfoxide gelation inhibitors
US4058537A (en) 1976-01-05 1977-11-15 Ciba-Geigy Corporation Esters of anhydride aromatic polycarboxylic acids with perfluoroalkyl alcohols
US4064191A (en) 1976-03-10 1977-12-20 American Cyanamid Company Coating composition containing an alkylated glycoluril, a polymeric non-self-crosslinking compound and an acid catalyst
US4118437A (en) 1976-04-08 1978-10-03 American Cyanamid Company Cross linkable powder coating compositions
US4200729A (en) 1978-05-22 1980-04-29 King Industries, Inc Curing amino resins with aromatic sulfonic acid oxa-azacyclopentane adducts
US4251665A (en) 1978-05-22 1981-02-17 King Industries, Inc. Aromatic sulfonic acid oxa-azacyclopentane adducts
US4255558A (en) 1979-06-18 1981-03-10 Scm Corporation Self-curing thermosetting powder paints
US4309529A (en) 1980-05-12 1982-01-05 Minnesota Mining And Manufacturing Company Water-dispersible energy curable heterocyclic group-containing polyesters
US4491628A (en) 1982-08-23 1985-01-01 International Business Machines Corporation Positive- and negative-working resist compositions with acid generating photoinitiator and polymer with acid labile groups pendant from polymer backbone
EP0440374B1 (en) 1990-01-30 1997-04-16 Wako Pure Chemical Industries Ltd Chemical amplified resist material
US5187019A (en) 1991-09-06 1993-02-16 King Industries, Inc. Latent catalysts
US5380804A (en) 1993-01-27 1995-01-10 Cytec Technology Corp. 1,3,5-tris-(2-carboxyethyl) isocyanurate crosslinking agent for polyepoxide coatings
WO1996028764A1 (en) 1993-09-02 1996-09-19 Goo Chemical Industries Co., Ltd. Photosensitive resin composition, and coating film, resist ink, resist, solder resist and printed circuit board each produced therefrom
US5693691A (en) 1995-08-21 1997-12-02 Brewer Science, Inc. Thermosetting anti-reflective coatings compositions
TW394850B (en) * 1996-03-07 2000-06-21 Clariant Finance Bvi Ltd Bottom antireflective coatings through refractive index modification by anomalous dispersion
US5843624A (en) 1996-03-08 1998-12-01 Lucent Technologies Inc. Energy-sensitive resist material and a process for device fabrication using an energy-sensitive resist material
US5998099A (en) 1996-03-08 1999-12-07 Lucent Technologies Inc. Energy-sensitive resist material and a process for device fabrication using an energy-sensitive resist material
EP0851300B1 (en) 1996-12-24 2001-10-24 Fuji Photo Film Co., Ltd. Bottom anti-reflective coating material composition and method of forming resist pattern using the same
KR100265597B1 (ko) 1996-12-30 2000-09-15 김영환 Arf 감광막 수지 및 그 제조방법
US6274295B1 (en) 1997-03-06 2001-08-14 Clariant Finance (Bvi) Limited Light-absorbing antireflective layers with improved performance due to refractive index optimization
WO2001030896A1 (en) 1999-10-27 2001-05-03 Kaneka Corporation Extruded styrene resin foam and process for producing the same
US6686124B1 (en) 2000-03-14 2004-02-03 International Business Machines Corporation Multifunctional polymeric materials and use thereof
US6323310B1 (en) 2000-04-19 2001-11-27 Brewer Science, Inc. Anti-reflective coating compositions comprising polymerized aminoplasts
JP3971088B2 (ja) 2000-06-30 2007-09-05 株式会社東芝 パターン形成方法
KR100734249B1 (ko) 2000-09-07 2007-07-02 삼성전자주식회사 축합환의 방향족 환을 포함하는 보호기를 가지는 감광성폴리머 및 이를 포함하는 레지스트 조성물
US6509417B1 (en) 2000-10-31 2003-01-21 Lilly Industries, Inc. Coating of fatty acid-modified glycidyl copolymer, OH polymer and optional anhydride polymer
JP3804792B2 (ja) 2001-04-10 2006-08-02 日産化学工業株式会社 リソグラフィー用反射防止膜形成組成物
EP1315043A1 (en) 2001-11-27 2003-05-28 Fujitsu Limited Resist pattern thickening material, resist pattern and forming process thereof, and semiconductor device and manufacturing process thereof
US6488509B1 (en) 2002-01-23 2002-12-03 Taiwan Semiconductor Manufacturing Company Plug filling for dual-damascene process
US6806026B2 (en) 2002-05-31 2004-10-19 International Business Machines Corporation Photoresist composition
US7038328B2 (en) 2002-10-15 2006-05-02 Brewer Science Inc. Anti-reflective compositions comprising triazine compounds
CN101550265B (zh) * 2003-04-02 2014-04-16 日产化学工业株式会社 含有环氧化合物和羧酸化合物的光刻用形成下层膜的组合物
US7186789B2 (en) 2003-06-11 2007-03-06 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyester polymers for use in drug eluting stent coatings
TWI363251B (en) 2003-07-30 2012-05-01 Nissan Chemical Ind Ltd Sublayer coating-forming composition for lithography containing compound having protected carboxy group
TWI358612B (en) 2003-08-28 2012-02-21 Nissan Chemical Ind Ltd Polyamic acid-containing composition for forming a
US7081511B2 (en) 2004-04-05 2006-07-25 Az Electronic Materials Usa Corp. Process for making polyesters
US20060057501A1 (en) * 2004-09-15 2006-03-16 Hengpeng Wu Antireflective compositions for photoresists
US7691556B2 (en) 2004-09-15 2010-04-06 Az Electronic Materials Usa Corp. Antireflective compositions for photoresists
CN100585496C (zh) * 2004-10-12 2010-01-27 日产化学工业株式会社 含有硫原子的形成光刻用防反射膜的组合物
US7326523B2 (en) 2004-12-16 2008-02-05 International Business Machines Corporation Low refractive index polymers as underlayers for silicon-containing photoresists
EP1742108B1 (en) 2005-07-05 2015-10-28 Rohm and Haas Electronic Materials, L.L.C. Coating compositions for use with an overcoated photoresist
US7553905B2 (en) 2005-10-31 2009-06-30 Az Electronic Materials Usa Corp. Anti-reflective coatings
JP4666166B2 (ja) 2005-11-28 2011-04-06 信越化学工業株式会社 レジスト下層膜材料及びパターン形成方法
US7816069B2 (en) 2006-06-23 2010-10-19 International Business Machines Corporation Graded spin-on organic antireflective coating for photolithography
US7638262B2 (en) 2006-08-10 2009-12-29 Az Electronic Materials Usa Corp. Antireflective composition for photoresists
WO2008026468A1 (fr) 2006-08-28 2008-03-06 Nissan Chemical Industries, Ltd. Composition servant à créer une sous-couche de réserve et contenant un additif liquide
US7416834B2 (en) 2006-09-27 2008-08-26 Az Electronic Materials Usa Corp. Antireflective coating compositions
US20080175882A1 (en) 2007-01-23 2008-07-24 Trollsas Mikael O Polymers of aliphatic thioester
US20090035704A1 (en) 2007-08-03 2009-02-05 Hong Zhuang Underlayer Coating Composition Based on a Crosslinkable Polymer
US20090042133A1 (en) 2007-08-10 2009-02-12 Zhong Xiang Antireflective Coating Composition
US7989144B2 (en) 2008-04-01 2011-08-02 Az Electronic Materials Usa Corp Antireflective coating composition
US20090274974A1 (en) 2008-04-30 2009-11-05 David Abdallah Spin-on graded k silicon antireflective coating
US7932018B2 (en) 2008-05-06 2011-04-26 Az Electronic Materials Usa Corp. Antireflective coating composition
US8221965B2 (en) 2008-07-08 2012-07-17 Az Electronic Materials Usa Corp. Antireflective coating compositions
US20100092894A1 (en) 2008-10-14 2010-04-15 Weihong Liu Bottom Antireflective Coating Compositions
AU2010230549B2 (en) 2009-04-03 2013-06-06 Polynt Composites USA Inc. Thermosetting compositions containing isocyanurate rings
US8507192B2 (en) 2010-02-18 2013-08-13 Az Electronic Materials Usa Corp. Antireflective compositions and methods of using same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1204547A (en) 1981-02-13 1986-05-13 Rudolf Kirchmayr Curable composition based on an acid-curable resin, and process for curing this resin
JPH01293339A (ja) 1988-05-23 1989-11-27 Tosoh Corp フォトレジスト組成物
US20030180559A1 (en) 2001-09-26 2003-09-25 Shipley Company, L.L.C. Coating compositions for use with an overcoated photoresist
EP1560070A1 (en) 2002-10-09 2005-08-03 Nissan Chemical Industries, Ltd. Composition for forming antireflection film for lithography
US20050215713A1 (en) 2004-03-26 2005-09-29 Hessell Edward T Method of producing a crosslinked coating in the manufacture of integrated circuits
WO2005097883A2 (en) 2004-03-26 2005-10-20 King Industries, Inc. Method of producing a crosslinked coating in the manufacture of integrated circuits
EP1757986A1 (en) 2004-04-09 2007-02-28 Nissan Chemical Industries, Ltd. Antireflection film for semiconductor containing condensation type polymer
EP1598702A1 (en) 2004-05-18 2005-11-23 Rohm and Haas Electronic Materials, L.L.C. Coating compositions for use with an overcoated photoresist
US20060275696A1 (en) 2005-02-05 2006-12-07 Rohm And Haas Electronic Materials Llc Coating compositions for use with an overcoated photoresist
EP1705519A2 (en) 2005-03-20 2006-09-27 Rohm and Haas Electronic Materials, L.L.C. Coating compositions for use with an overcoated photoresist
WO2007010385A1 (en) 2005-07-19 2007-01-25 Az Electronic Materials Usa Corp. New organic bottom antireflective polymer compositions
EP1939688A1 (en) 2005-09-27 2008-07-02 Nissan Chemical Industries, Ltd. Composition for antireflection film formation, comprising product of reaction between isocyanuric acid compound and benzoic acid compound

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2258691A1 (en) * 2009-05-20 2010-12-08 Rohm and Haas Electronic Materials, L.L.C. Coating compositions for use with an overcoated photoresist
JP2013519926A (ja) * 2010-02-18 2013-05-30 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション 反射防止組成物及びそれを用いた方法
CN102939549A (zh) * 2010-06-03 2013-02-20 Az电子材料美国公司 抗反射涂料组合物和制造微电子器件的方法
JP2013530425A (ja) * 2010-06-03 2013-07-25 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション 反射防止コーティング組成物及び微細電子デバイスを製造するための方法
CN102939549B (zh) * 2010-06-03 2015-11-25 默克专利有限公司 抗反射涂料组合物和制造微电子器件的方法
US9678427B2 (en) 2013-12-27 2017-06-13 Nissan Chemical Industries, Ltd. Resist underlayer film-forming composition containing copolymer that has triazine ring and sulfur atom in main chain
US11822248B2 (en) 2015-10-31 2023-11-21 Rohm And Haas Electronic Materials Korea Ltd. Coating compositions for use with an overcoated photoresist
US12242193B2 (en) 2015-10-31 2025-03-04 Rohm And Haas Electronic Materials Korea Ltd. Coating compositions for use with an overcoated photoresist
US10732504B2 (en) 2017-02-03 2020-08-04 Samsung Sdi Co., Ltd. Resist underlayer composition, and method of forming patterns using the composition
CN111665683A (zh) * 2019-03-06 2020-09-15 三星Sdi株式会社 抗蚀剂底层组合物和使用所述组合物形成图案的方法
CN111665683B (zh) * 2019-03-06 2023-03-24 三星Sdi株式会社 抗蚀剂底层组合物和使用所述组合物形成图案的方法

Also Published As

Publication number Publication date
EP2300507A1 (en) 2011-03-30
MY155289A (en) 2015-09-30
CN102056954A (zh) 2011-05-11
TWI510577B (zh) 2015-12-01
US20100009297A1 (en) 2010-01-14
EP2300507B1 (en) 2014-02-26
KR20110042263A (ko) 2011-04-26
US8329387B2 (en) 2012-12-11
JP2011527461A (ja) 2011-10-27
KR101536798B1 (ko) 2015-07-14
TW201002794A (en) 2010-01-16
CN102056954B (zh) 2013-07-03
JP5765854B2 (ja) 2015-08-19

Similar Documents

Publication Publication Date Title
US8329387B2 (en) Antireflective coating compositions
EP2300518B1 (en) Antireflective coating compositions
US8465902B2 (en) Underlayer coating composition and processes thereof
US20100092894A1 (en) Bottom Antireflective Coating Compositions
US20150227043A1 (en) Bottom antireflective materials and compositions
EP2577361B1 (en) Antireflective coating composition and process for manufacturing microelectronic device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120871.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09785893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107027326

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011517254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009785893

Country of ref document: EP