WO2010003733A1 - Bauraumoptimierte zündkerze - Google Patents

Bauraumoptimierte zündkerze Download PDF

Info

Publication number
WO2010003733A1
WO2010003733A1 PCT/EP2009/056508 EP2009056508W WO2010003733A1 WO 2010003733 A1 WO2010003733 A1 WO 2010003733A1 EP 2009056508 W EP2009056508 W EP 2009056508W WO 2010003733 A1 WO2010003733 A1 WO 2010003733A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing part
spark plug
housing
plug according
combustion chamber
Prior art date
Application number
PCT/EP2009/056508
Other languages
English (en)
French (fr)
Inventor
Detlef Hartmann
Andreas Benz
Jochen Fischer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN200980126569XA priority Critical patent/CN102089946A/zh
Priority to EP09779565A priority patent/EP2301121B1/de
Priority to AT09779565T priority patent/ATE545183T1/de
Priority to JP2011517051A priority patent/JP2011527491A/ja
Publication of WO2010003733A1 publication Critical patent/WO2010003733A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/08Mounting, fixing or sealing of sparking plugs, e.g. in combustion chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode

Definitions

  • the present invention relates to a space-optimized spark plug with a clamping nut for an internal combustion engine.
  • Spark plugs for internal combustion engines are known from the prior art in different configurations.
  • a spark plug with a one-piece metal housing is known.
  • the spark plug does not have its own thread, but is clamped by a nut in a cylinder head.
  • a spark plug consisting of an insulator, a center electrode and at least one ground electrode is known.
  • the spark plug is screwed over the insulator with a nut in a cylinder head. This nut also establishes the ground contact between ground electrode and cylinder head.
  • spark plugs which have a thread on the housing and are screwed into the cylinder head.
  • Modern multi-valve technology increases the intake and exhaust ports and the close mounting position on the required direct injection
  • Injector require a constant space reduction in spark plugs.
  • here refers to the space reduction to a reduced diameter of the spark plug.
  • the isolation of the high voltage between the two electrodes requires a minimum wall thickness. This minimum thickness of the insulation precludes the desired diameter reduction.
  • the absence of a thread on the housing of the spark plug opens up opportunities for diameter reduction and consequently for space reduction.
  • a two-part housing is provided, wherein the two housing parts have different wall thicknesses, wherein in particular a thin-walled pipe construction is advantageous.
  • the outer diameter of the spark plug is reduced and the holes in the cylinder head can be reduced, wherein the wall thicknesses of the insulator can be kept equal or possibly increased.
  • the spark plug is further supported by a housing seat surface. Since the housing of the spark plug according to the invention has a substantially increased cross-section at this point of the housing seat surface, this is done via this
  • a spark plug for an internal combustion engine, comprising the following components: a two-part metallic housing with a first housing part, in particular housing seat, and a second housing part, in particular housing tube, a center electrode, a ground electrode, the first Housing part is arranged, and an insulator to separate the center electrode from the ground electrode.
  • the first housing part is closer to the combustion chamber, i. closer to a e.g. Cylinder of the internal combustion engine, as the second housing part.
  • the first housing part has a housing seat surface for the secure seating of the spark plug in an installed state.
  • a first wall thickness of the first housing part is greater than a second one
  • Wall thickness of the second housing part It follows that a cross-sectional area perpendicular to a longitudinal axis of the spark plug of the first housing part is greater than a cross-sectional area perpendicular to the longitudinal axis of the spark plug of the second housing part.
  • the housing seat surface is inclined to the longitudinal axis of the spark plug.
  • the housing seat surface and the spark plug can be centered on the inclined or conical surfaces.
  • the insulator of the spark plug according to the invention is supported on an inner shoulder of the first housing part. It is also advantageous to provide a sealing element on this support surface. Thus, the space between the housing and insulator against the combustion chamber is securely sealed.
  • the insulator may preferably rest on the second housing part, the first housing part also having an inner shoulder here.
  • the second housing part has an inwardly directed combustion chamber facing the end, on which the insulator rests.
  • the inwardly directed combustion chamber nearer end of the second housing part is deformed or reshaped onto the inner shoulder of the first housing part. On this end of the second housing part of the insulator sits on.
  • the sealing surface between the housing and insulator opposite the combustion chamber is formed by the end of the second housing part.
  • the housing seat surface is closer to the combustion chamber than the inner shoulder on the first housing part.
  • the spark plug comprises a clamping nut for axially clamping the spark plug in the cylinder head.
  • the clamping with a clamping nut ensures the sealing between insulator and housing seat and the external tightness between the housing seat and cylinder head.
  • the spark plug is supported by a clamping nut against a housing seat surface.
  • the second housing part has at least one tab, in particular aligned with the ground electrode, at the end remote from the combustion chamber.
  • the tab in particular three tabs, in particular the clamping nut can be prevented from slipping down in the direction of combustion chamber side facing away.
  • the tabs meet here a captive for the clamping nut.
  • the position of the tab is matched with the position of the ground electrode or matches.
  • the ground electrode can be fixed to the tab directed or the tab directed to the ground electrode to be bent.
  • An alignment of the ground electrode in the combustion chamber is possible by simply turning the spark plug. The position of the ground electrode in the combustion chamber can be seen after assembly at the position of the tabs. Of course, this match of tab and ground electrode - A -
  • the position can be displayed via three tabs.
  • first housing part is firmly connected to the second housing part, in particular by means of laser welding. This facilitates the assembly of the spark plug according to the invention and the exact adjustment of the electrode spacing.
  • the second housing part has an increase in diameter, in particular with beads, wherein the increase in diameter represents an approach for the clamping nut and / or wherein the diameter increase the second
  • the first housing part on its side near the combustion chamber comprises an electrode extension, in particular a shoulder, to which at least one ground electrode is attached.
  • the electrode extension for attachment of at least one ground electrode sufficient surface, in particular end face in the radial direction, offer.
  • the second housing part is designed as a sheet metal tube, and / or the first housing part (21) is made as a rotating part.
  • the second housing part is advantageously formed as a sheet metal tube with a wall thickness much smaller than the diameter of the sheet metal tube.
  • Both heat and electrical current are transferred from the ground electrode into the cylinder head via the first housing part.
  • mass can be saved in the region of the second housing part, that is to say in the region remote from the combustion chamber.
  • a thin-walled sheet-metal tube is available for mass and diameter savings, which can also be produced inexpensively.
  • a wall thickness of the first housing part at each position is always greater than a maximum wall thickness of the second housing part.
  • the first wall thickness at the height of the housing seat surface has a maximum value.
  • the first wall thickness is preferably 4 to 5 times larger than a second wall thickness of the housing tube.
  • the second wall thickness of the housing tube is preferably constant. Further preferably, the first wall thickness is always greater than the second wall thickness.
  • Figure 1 is a partially sectioned view of the inventive spark plug, mounted in a cylinder head according to a first embodiment
  • Figure 2 is a detail view of a spark plug according to the invention, mounted in a cylinder head according to a second embodiment.
  • the spark plug 1 is mounted in a cylinder head 9.
  • the spark plug 1 comprises a housing 2 having a housing seat 21 (first housing part), a housing tube 26 (second housing part) and a clamping nut 3 and a center electrode 4, a ground electrode 5 and an insulator 6.
  • the spark plug 1 has at its upper end a plug contact 11 and a first cone 13a and a second cone 13b.
  • the plug contact 11 is used for electrical connection of the spark plug 1 with an igniter.
  • the cones 13a and 13b are used to attach the Zündsteckers on the spark plug. 1
  • the housing seat 21 has an annular shoulder 22 and an inner shoulder 23 at its end remote from the combustion chamber. At the combustion chamber facing the end of the housing seat 21, the housing seat surface 24 and the electrode extension 25 is arranged.
  • the annular shoulder 22 serves to insert the housing seat 21 into the housing tube 26 and increases the stability at this connection point.
  • the inner shoulder 23 serves to support the insulator 6 on the housing seat 21.
  • a sealing point for sealing the space between the housing and insulator against the combustion chamber is formed here. This sealing point is sealed by a sealing element 7.
  • the housing seat surface 24 is conical in the direction of the combustion chamber.
  • the housing seat surface 24 not only takes the clamping force of the clamping nut 3 and forwards it into the cylinder head 9, but also serves to center the spark plug 1 in the cylinder head 9.
  • the housing seat surface 24 with its conical design serves for sealing between the combustion chamber and the cylinder head 9.
  • the housing seat 21 has at its thickest point, at the upper end of the housing seat surface 24, a maximum first wall thickness D1 (see FIG. This first wall thickness D1 is 4 to 5 times greater than a second wall thickness D2 (see Fig. 2) of the housing tube 26.
  • the second wall thickness D2 of the housing tube 26 is constant.
  • the first wall thickness Dl is always greater than the second wall thickness D2.
  • the inner bore of the housing seat 21 facing the combustion chamber forms the electrode extension 25 in order to obtain sufficient end face in the radial direction for the attachment of one or more ground electrodes 5. At the end of this electrode extension 25, the ground electrode 5 is attached.
  • the housing tube 26 In its half facing away from the combustion chamber, the housing tube 26 has a diameter increase 27 with a bead 27a. This is followed by a pipe end 28, in turn, the end of the pipe end 28 is formed to tabs 29.
  • the insulator 6 corresponds at least partially in its outer contour of the inner contour of the housing tube 26 and the diameter enlargement 27. Thus, a connection between the housing tube 26 and insulator 6, in particular in the axial direction, ensured.
  • the clamping nut 3 is held by the bent tabs 29 of the housing tube end 28. Spark plug 1 and 3 clamping nut thus result in a coherent, easy to assemble and disassemble component.
  • the clamping nut 3 presses on the housing tube 26 the insulator 6 in the inner shoulder 23 of the housing seat 21.
  • This housing seat 21 is in turn pressed or clamped in the cylinder head 9 in the cylinder head 9 via the housing seat surface 24 and a corresponding counter-surface 91 (see FIG.
  • a biasing force is applied over the clamping nut 3, which is used to seal the insulator 6 on the housing seat 21 and to seal the Housing seat 21 leads to the cylinder head 9.
  • the spark plug 1 does not necessarily have to be gas-tight.
  • the clamping nut 3 has a thread 31 and a tool engagement 32. In the cylinder head 9, a corresponding mating thread to the thread 31 is provided.
  • the considerable advantages of the inventive spark plug 1 over the prior art are achieved.
  • the absence of a thread on the housing 2 opens up the possibility of reducing the diameter of the bore in the cylinder head 9.
  • the separation of the housing 2 in housing tube 26 and housing seat 21 allows the thin tube construction on the side facing away from the combustion chamber of the spark plug 1.
  • the spark plug 1 are rotated in the cylinder head 9 before the final tension.
  • the ground electrode 5 can be made e.g. Align for injection.
  • Figure 2 shows a spark plug according to the second embodiment in detail, installed in the cylinder head 9.
  • the second embodiment has no seal 7 on the inner shoulder 23.
  • the combustion chamber facing the end 26 a of the housing tube 26 is formed on the inner shoulder 23.
  • the seal is formed here by pressing the insulator 6 onto the housing seat 21 or its inner shoulder 23.
  • FIG. 2 shows the clear difference between the first wall thickness D1 of the housing seat 21, made as a solid turned part with high stability and the second wall thickness D2 of the thin-walled tube construction of the housing tube 26.
  • the housing seat 21 and the housing tube 26 are connected together.
  • the ground electrode may be secured to the housing seat 21 before or after connection.
  • the attachment takes place directed to the tabs 29 of the housing tube 26.
  • the insulator 6 is inserted into the housing 2.
  • the tube end 28 of the housing tube 26 is formed over a shoulder on the insulator and thereby creates the increase in diameter 27 of the housing tube 26.
  • the tabs 29 are still on
  • the clamping nut 3 is inserted over the insulator 6.
  • the insulator 6 is pressed in the axial direction in the housing seat 21 with a force equal to or greater than the preload force required for gas tightness. Under bias the electrode distance is adjusted.
  • the housing tube 26, preferably by radial impression of beads 27 a plastically deformed. After relieving there is a bias in the housing 2 by the plastic deformation, which fixes the insulator 6 and prevents an adjustment of the electrode gap. By bending the tabs 29 takes a captive fixation of the clamping nut. 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft eine Zündkerze (1) für eine Verbrennungskraftmaschine, umfassend ein metallisches Gehäuse (2) mit einem ersten Gehäuseteil (21), insbesondere Gehäusesitz, einem zweiten Gehäuseteil (26), insbesondere Gehäuserohr, eine Mittelelektrode (4), eine Masseelektrode (5), die am ersten Gehäuseteil (21) angeordnet ist, und einen Isolator (6) um die Mittelelektrode (4) von der Masseelektrode (5) zu trennen, wobei das erste Gehäuseteil (21) brennraumnäher als das zweite Gehäuseteil (26) ist, wobei das erste Gehäuseteil (21) eine Gehäusesitzfläche (24), für den sicheren Sitz der Zündkerze (1) in einem eingebautem Zustand, aufweist, und wobei eine erste Wandstärke (D1) des ersten Gehäuseteils (21) größer ist als eine zweite Wandstärke (D2) des zweiten Gehäuseteils (26).

Description

Beschreibung
Titel
Bauraumoptimierte Zündkerze
Stand der Technik
Die vorliegende Erfindung betrifft eine bauraumoptimierte Zündkerze mit einer Spannmutter für eine Verbrennungskraftmaschine.
Zündkerzen für Verbrennungskraftmaschinen sind aus dem Stand der Technik in unterschiedlichen Ausgestaltungen bekannt. Beispielsweise ist aus der US 5,091,672 B eine Zündkerze mit einem einteiligen Metallgehäuse bekannt. Die Zündkerze weist dabei kein eigenes Gewinde auf, sondern wird über eine Mutter in einem Zylinderkopf verspannt.
Aus der FR 2 779 014 Al ist eine Zündkerze, bestehend aus einem Isolator, einer Mittelelektrode und mindestens einer Masseelektrode, bekannt. Dabei wird die Zündkerze über den Isolator mit einer Mutter in einem Zylinderkopf verschraubt. Diese Mutter stellt gleichzeitig den Massekontakt zwischen Masseelektrode und Zylinderkopf her.
Ferner sind aus dem Stand der Technik Zündkerzen bekannt, welche am Gehäuse ein Gewinde aufweisen und im Zylinderkopf eingeschraubt werden. Die moderne Mehrventiltechnik vergrößert die Ein- und Auslasskanäle und die bei Direkteinspritzung geforderte nahe Einbaulage am
Einspritzventil erfordern eine stetige Bauraumreduzierung bei Zündkerzen. Insbesondere bezieht sich hier die Bauraumreduzierung auf einen verkleinerten Durchmesser der Zündkerze. Jedoch erfordert die Isolation der Hochspannung zwischen den beiden Elektroden eine minimale Wandstärke. Diese Minimalstärke der Isolation steht der gewünschten Durchmesserreduzierung entgegen. Der Verzicht auf ein Gewinde am Gehäuse der Zündkerze eröffnet Möglichkeiten zur Durchmesserreduzierung und folglich zur Bauraumreduzierung.
Vorteile der Erfindung
Die erfindungsgemäße Zündkerze mit den Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass der Durchmesser im Vergleich zu den herkömmlichen Zündkerzen signifikant reduziert werden kann. Dadurch kann die gesamte Zündkerze schlanker ausgeführt werden und insbesondere auch der notwendige Bauraum für die Zündkerze reduziert werden. Somit ist es erfindungsgemäß möglich, die Zündkerze z.B. viel näher an der Einspritzung zu platzieren. Gemäß der Erfindung ist ein zweiteiliges Gehäuse vorgesehen, wobei die beiden Gehäuseteile unterschiedliche Wandstärken aufweisen, wobei insbesondere eine dünnwandige Rohrkonstruktion vorteilhaft ist. Dadurch wird der Außendurchmesser der Zündkerze verkleinert und die Bohrungen im Zylinderkopf können reduziert werden, wobei die Wandstärken des Isolators gleichgehalten oder gegebenenfalls vergrößert werden können. Die Zündkerze stützt sich ferner über eine Gehäusesitzfläche ab. Da das Gehäuse der erfindungsgemäßen Zündkerze an dieser Stelle der Gehäusesitzfläche einen wesentlich erhöhten Querschnitt aufweist, erfolgt über diese
Gehäusesitzfläche eine optimale Wärme- und Stromleitung von der Masseelektrode in den Zylinderkopf. Dies wird erfindungsgemäß dadurch erreicht, dass eine Zündkerze für eine Verbrennungskraftmaschine vorgesehen ist, welche die folgenden Baugruppen umfasst: ein zweiteiliges metallisches Gehäuse mit einem ersten Gehäuseteil, insbesondere Gehäusesitz, und einem zweiten Gehäuseteil, insbesondere Gehäuserohr, eine Mittelelektrode, eine Masseelektrode, die am ersten Gehäuseteil angeordnet ist, und einen Isolator, um die Mittelelektrode von der Masseelektrode zu trennen. Dabei ist das erste Gehäuseteil brennraumnäher, d.h. näher an einem z.B. Zylinder der Brennkraftmaschine, als das zweite Gehäuseteil. Des Weiteren weist das erste Gehäuseteil eine Gehäusesitzfläche für den sicheren Sitz der Zündkerze in einem eingebauten Zustand auf. Ferner ist eine erste Wandstärke des ersten Gehäuseteils größer als eine zweite
Wandstärke des zweiten Gehäuseteils. Daraus ergibt sich, dass eine Querschnittsfläche senkrecht zu einer Längsachse der Zündkerze des ersten Gehäuseteils größer als eine Querschnittsfläche senkrecht zur Längsachse der Zündkerze des zweiten Gehäuseteils ist.
Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.
Des Weiteren ist es von Vorteil, dass die Gehäusesitzfläche zur Längsachse der Zündkerze geneigt ist. Somit kann durch die Gehäusesitzfläche auch die Zündkerze über die geneigten bzw. konischen Flächen zentriert werden.
In weiterer vorteilhafter Ausgestaltung stützt sich der Isolator der erfindungsgemäßen Zündkerze auf einen Innenabsatz des ersten Gehäuseteils. Ferner von Vorteil ist es, an dieser Auflagefläche ein Dichtelement vorzusehen. Damit ist der Raum zwischen Gehäuse und Isolator gegenüber dem Brennraum sicher abgedichtet. Alternativ zu der Auflage des Isolators am ersten Gehäuseteil, kann bevorzugt der Isolator am zweiten Gehäuseteil aufliegen, wobei auch hier das erste Gehäuseteil einen Innenabsatz aufweist. Ferner weist dabei das zweite Gehäuseteil ein nach innen gerichtetes brennraumzugewandtes Ende auf, an welchem der Isolator aufliegt. In vorteilhafter Ausgestaltung wird hierbei das nach innen gerichtete brennraumnähere Ende des zweiten Gehäuseteils auf den Innenabsatz des ersten Gehäuseteils verformt bzw. umgeformt. Auf diesem Ende des zweiten Gehäuseteils sitzt der Isolator auf. Somit ist hier die Dichtfläche zwischen Gehäuse und Isolator gegenüber dem Brennraum durch das Ende des zweiten Gehäuseteils gebildet.
Weiterhin bevorzugt ist es, dass die Gehäusesitzfläche brennraumnäher ist als der Innenabsatz am ersten Gehäuseteil. Somit ist die unter Umständen hitzempfindliche Dichtfläche zwischen Isolator und erstem Gehäuseteil etwas vom Brennraum zurückgenommen.
Weiter bevorzugt umfasst die Zündkerze eine Spannmutter, um die Zündkerze im Zylinderkopf axial einzuspannen. Hierdurch kann auf ein Gewinde am Gehäuse verzichtet werden, so dass eine besonders schlanke Ausgestaltung der Zündkerze möglich ist. Das Einspannen mit einer Spannmutter gewährleistet das Abdichten zwischen Isolator und Gehäusesitz und die äußere Dichtheit zwischen Gehäusesitz und Zylinderkopf. Des Weiteren stützt sich die Zündkerze dadurch mittels Spannmutter gegen eine Gehäusesitzfläche ab.
Ferner vorteilhaft ist es, dass das zweite Gehäuseteil zumindest eine Lasche, insbesondere ausgerichtet nach der Masseelektrode, am brennraumabgewandten Ende aufweist. Durch Nachaußenbiegen der Lasche, insbesondere dreier Laschen, kann insbesondere die Spannmutter am Herabrutschen in Richtung brennraumabgewandte Seite gehindert werden. Somit erfüllen die Laschen hier eine Verliersicherung für die Spannmutter. Zum Teil kann es vonnöten sein, die Masseelektrode der erfindungsgemäßen Zündkerze innerhalb der Verbrennungskraftmaschine auszurichten. Deshalb ist es von Vorteil, wenn die Lage der Lasche mit der Lage der Masseelektrode abgestimmt ist bzw. übereinstimmt. So kann z.B. die Masseelektrode zur Lasche gerichtet befestigt werden oder die Lasche gerichtet zur Masseelektrode gebogen werden. Eine Ausrichtung der Masseelektrode im Brennraum ist durch einfaches Drehen der Zündkerze möglich. Die Stellung der Masseelektrode im Brennraum ist nach der Montage an der Stellung der Laschen erkennbar. Selbstverständlich ist diese Übereinstimmung von Lasche und Masseelektrode - A -
auch bei mehreren Elektroden möglich. So kann beispielsweise bei drei Masseelektroden die Stellung über drei Laschen angezeigt werden.
Weiterhin bevorzugt ist es, dass das erste Gehäuseteil fest mit dem zweiten Gehäuseteil, insbesondere mittels Laserschweißen verbunden ist. Dies erleichtert die Montage der erfindungsgemäßen Zündkerze und die exakte Einstellung des Elektrodenabstandes.
Weiterhin von Vorteil ist es, dass das zweite Gehäuseteil eine Durchmesservergrößerung, insbesondere mit Sicken aufweist, wobei die Durchmesservergrößerung einen Ansatz für die Spannmutter darstellt und/oder wobei die Durchmesservergrößerung das zweite
Gehäuseteil und den Isolator zueinander fixiert. Somit kann durch einfaches Umformen des zweiten Gehäuseteils sowohl ein Ansatz für die Spannmutter geschaffen werden als auch die Verbindung zwischen Isolator und Gehäuse optimiert werden.
Weiterhin bevorzugt ist es, dass das erste Gehäuseteil an seiner brennraumnahen Seite einen Elektrodenfortsatz, insbesondere einen Absatz, umfasst, an welchem mindestens eine Masseelektrode befestigt ist. Dabei muss der Elektrodenfortsatz für eine Befestigung von mindestens einer Masseelektrode genügend Fläche, insbesondere Stirnfläche in radialer Richtung, bieten. Somit ist die elektrische und thermische Leitfähigkeit zwischen erstem Gehäuseteil und einer oder mehreren Masseelektroden gewährleistet.
Weiter vorteilhaft ist es, dass das zweite Gehäuseteil als Blechrohr ausgebildet ist, und/oder das erste Gehäuseteil (21) als Drehteil gefertigt ist. Dabei wird vorteilhafterweise das zweite Gehäuseteil als Blechrohr mit einer Wandstärke sehr viel kleiner dem Durchmesser des Blechrohrs ausgebildet. Über das erste Gehäuseteil wird sowohl Wärme als auch elektrischer Strom von der Masseelektrode in den Zylinderkopf übergeleitet. Für diese effektive Weiterleitung von Wärme und Strom ist eine gewisse Masse bzw. ein gewisses Volumen vonnöten. Demgegenüber kann im Bereich des zweiten Gehäuseteils, also im brennraumferneren Bereich, Masse eingespart werden. Hierzu bietet sich zur Masse- wie auch Durchmessereinsparung ein dünnwandiges Blechrohr an, welches auch kostengünstig hergestellt werden kann. Vorzugsweise ist dabei eine Wandstärke des ersten Gehäuseteils an jeder Position immer größer als eine maximale Wandstärke des zweiten Gehäuseteils.
Da die Wärme- und Stromleitung hauptsächlich über die Gehäusesitzfläche verläuft, ist es von Vorteil, dass die erste Wandstärke auf Höhe der Gehäusesitzfläche einen maximalen Wert aufweist. In diesem Ausführungsbeispiel ist die erste Wandstärke vorzugsweise 4 bis 5 mal größer als eine zweite Wandstärke des Gehäuserohrs. Weiter ist die zweite Wandstärke des Gehäuserohrs vorzugsweise konstant. Ferner bevorzugt ist die erste Wandstärke immer größer als die zweite Wandstärke.
Zeichnungen
Nachfolgend werden zwei bevorzugte Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitende Zeichnung beschrieben. In der Zeichnung ist:
Figur 1 eine teilweise geschnittene Darstellung der erfmdungsgemäßen Zündkerze, montiert in einem Zylinderkopf nach einem ersten Ausführungsbeispiel, und
Figur 2 eine Detailansicht einer erfindungsgemäßen Zündkerze, montiert in einem Zylinderkopf nach einem zweiten Ausführungsbeispiel.
Beschreibung der Ausführungsbeispiele
Nachfolgend wird unter Bezugnahme auf Figur 1 eine Zündkerze 1 gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung beschrieben.
Wie in Figur 1 zu sehen ist, ist die Zündkerze 1 in einem Zylinderkopf 9 montiert. Die Zündkerze 1 umfasst ein Gehäuse 2 mit einem Gehäusesitz 21 (erstes Gehäuseteil), einem Gehäuserohr 26 (zweites Gehäuseteil) und einer Spannmutter 3 sowie einer Mittelelektrode 4, einer Masseelektrode 5 und einem Isolator 6.
Die Zündkerze 1 weist an Ihrem oberen Ende einen Steckkontakt 11 sowie einen ersten Konus 13a und einen zweiten Konus 13b auf. Der Steckerkontakt 11 dient zur elektrischen Verbindung der Zündkerze 1 mit einer Zündvorrichtung. Die Konusse 13a und 13b dienen zum Aufstecken des Zündsteckers auf die Zündkerze 1.
Der Gehäusesitz 21 weist an seinem brennraumabgewandten Ende einen ringförmigen Absatz 22 sowie einen Innenabsatz 23 auf. An dem brennraumzugewandten Ende des Gehäusesitzes 21 ist die Gehäusesitzfläche 24 sowie der Elektrodenfortsatz 25 angeordnet.
Der ringförmige Absatz 22 dient zum Einstecken des Gehäusesitzes 21 in das Gehäuserohr 26 und erhöht die Stabilität an dieser Verbindungsstelle. Der Innenabsatz 23 dient zur Auflage des Isolators 6 auf dem Gehäusesitz 21. Gleichzeitig wird hier eine Dichtstelle zur Abdichtung des Raumes zwischen Gehäuse und Isolator gegenüber dem Brennraum gebildet. Diese Dichtstelle ist durch ein Dichtelement 7 abgedichtet.
Die Gehäusesitzfläche 24 ist konusförmig in Richtung zum Brennraum ausgebildet. Somit nimmt die Gehäusesitzfläche 24 nicht nur die Spannkraft der Spannmutter 3 auf und leitet diese weiter in den Zylinderkopf 9, sondern dient auch zur Zentrierung der Zündkerze 1 im Zylinderkopf 9. Des Weiteren wird durch diese Gehäusesitzfläche 24 die elektrische Spannung als auch die Wärme von der Masseelektrode 5 in den Zylinderkopf 9 eingeleitet. Ferner dient die Gehäusesitzfläche 24 mit ihrer kegelsitzförmigen Ausbildung zur Abdichtung zwischen Brennraum und Zylinderkopf 9. Der Gehäusesitz 21 weist an seiner dicksten Stelle, am oberen Ende der Gehäusesitzfläche 24, eine maximale erste Wandstärke Dl (s. Fig. 2) auf. Diese erste Wandstärke Dl ist 4 bis 5 mal größer als eine zweite Wandstärke D2 (s. Fig. 2) des Gehäuserohrs 26. Wie aus Fig. 1 ersichtlich ist, ist die zweite Wandstärke D2 des Gehäuserohrs 26 konstant. Ferner ist die erste Wandstärke Dl immer größer als die zweite Wandstärke D2.
Die dem Brennraum zugewandte Innenbohrung des Gehäusesitzes 21 bildet den Elektrodenfortsatz 25 aus, um für die Befestigung von einer oder mehreren Masseelektroden 5 genügend Stirnfläche in radialer Richtung zu erhalten. Am Ende dieses Elektrodenfortsatzes 25 ist die Masseelektrode 5 angebracht.
Das Gehäuserohr 26 weist in seiner brennraumabgewandten Hälfte eine Durchmesservergrößerung 27 mit einer Sicke 27a auf. Darüber schließt sich ein Rohrende 28 an, wobei wiederum das Ende des Rohrendes 28 zu Laschen 29 ausgebildet ist.
Der Isolator 6 entspricht zumindest teilweise in seiner Außenkontur der Innenkontur des Gehäuserohrs 26 sowie dessen Durchmesservergrößerung 27. Somit ist eine Verbindung zwischen Gehäuserohr 26 und Isolator 6, insbesondere in axialer Richtung, sichergestellt.
Die Spannmutter 3 wird durch die umgebogenen Laschen 29 des Gehäuserohrendes 28 gehalten. Zündkerze 1 und Spannmutter 3 ergeben somit ein zusammenhängendes, leicht montier- und demontierbares Bauteil. Die Spannmutter 3 drückt über das Gehäuserohr 26 den Isolator 6 in den Innenabsatz 23 des Gehäusesitzes 21. Dieser Gehäusesitz 21 wird wiederum über die Gehäusesitzfläche 24 und eine entsprechende Gegenfläche 91 (siehe Figur 1) im Zylinderkopf 9 in den Zylinderkopf 9 gedrückt bzw. verspannt. Somit wird über die Spannmutter 3 eine Vorspannkraft aufgebracht, die zur Abdichtung des Isolators 6 am Gehäusesitz 21 und zur Abdichtung des Gehäusesitzes 21 zum Zylinderkopf 9 führt. Im unverspannten Zustand muss die Zündkerze 1 nicht zwangsläufig gasdicht sein. Um diese Funktion zu erfüllen, weist die Spannmutter 3 ein Gewinde 31 und einen Werkzeugeingriff 32 auf. Im Zylinderkopf 9 ist ein entsprechendes Gegengewinde zum Gewinde 31 vorgesehen.
Des Weiteren ist zu sehen, wie der Gehäusesitz 21 mit dem Gehäuseteil 26 über ein Laserschweißverfahren verbunden wurde und somit eine Schweißnaht 8 aufweisen.
Anhand dieser detaillierten Beschreibung ergeben sich die erheblichen Vorteile der erfindungsgemäßen Zündkerze 1 gegenüber dem Stand der Technik. Der Verzicht auf eine Gewinde am Gehäuse 2 eröffnet die Möglichkeit zur Durchmesserreduzierung der Bohrung im Zylinderkopf 9. Die Trennung des Gehäuses 2 in Gehäuserohr 26 und Gehäusesitz 21 ermöglicht die dünne Rohrkonstruktion an der brennraumabgewandten Seite der Zündkerze 1. Ferner kann durch die Befestigung mittels der Spannmutter 3 die Zündkerze 1 vor der endgültigen Verspannung im Zylinderkopf 9 gedreht werden. Dadurch lässt sich die Masseelektrode 5 z.B. zur Einspritzung ausrichten.
In Figur 2 wird nun im Folgenden eine Zündkerze 1 gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung beschrieben. Gleiche bzw. funktional gleiche Bauteile sind hier mit denselben Bezugszeichen wie im ersten Ausführungsbeispiel beschrieben.
Figur 2 zeigt eine Zündkerze nach dem zweiten Ausführungsbeispiel in Detailansicht, eingebaut in den Zylinderkopf 9. Im Gegensatz zum ersten Ausführungsbeispiel weist das zweite Ausführungsbeispiel keine Dichtung 7 auf dem Innenabsatz 23 auf. Anstatt dieser Dichtung 7 ist hier das brennraumzugewandte Ende 26a des Gehäuserohrs 26 auf dem Innenabsatz 23 umgeformt. Die Dichtung entsteht hier durch Aufpressen des Isolators 6 auf den Gehäusesitz 21 bzw. dessen Innenabsatz 23.
Des Weiteren ist hier gut die Gegenfläche 91 des Zylinderkopfes 9 zu sehen, aufweicher sich die kegelförmige Gehäusesitzfläche 24 abstützt.
Ferner zeigt Figur 2 den deutlichen Unterschied zwischen der ersten Wandstärke Dl des Gehäusesitzes 21, gefertigt als massives Drehteil mit hoher Stabilität und der zweiten Wandstärke D2 der dünnwandigen Rohrkonstruktion des Gehäuserohrs 26.
Bei der Montage der Zündkerze 1 sind die folgenden Schritte zu berücksichtigen: Der Gehäusesitz 21 sowie das Gehäuserohr 26 werden miteinander verbunden. Die Masseelektrode kann vor oder nach dem Verbinden am Gehäusesitz 21 befestigt werden. Die Befestigung erfolgt dabei gerichtet zu den Laschen 29 des Gehäuserohrs 26. Daraufhin wird der Isolator 6 in das Gehäuse 2 eingesetzt. Das Rohrende 28 des Gehäuserohrs 26 wird über einen Absatz am Isolator geformt und dadurch entsteht die Durchmesservergrößerung 27 des Gehäuserohrs 26. Dabei liegen die Laschen 29 noch am
Isolator 6 an. In einem nächsten Schritt wird die Spannmutter 3 über den Isolator 6 gesteckt. Über die Spannmutter 3 wird der Isolator 6 mit einer Kraft, die gleich bzw. größer der zur Gasdichtheit erforderlichen Vorspannkraft ist, in axialer Richtung in den Gehäusesitz 21 gedrückt. Unter Vorspannung wird der Elektrodenabstand eingestellt. Vor dem Entlasten der Spannmutter 3 wird das Gehäuserohr 26, vorzugsweise durch radiale Einprägung von Sicken 27a, plastisch verformt. Nach dem Entlasten besteht durch die plastische Verformung eine Vorspannung im Gehäuse 2, die den Isolator 6 fixiert und ein Verstellen des Elektrodenabstands verhindert. Durch Umbiegen der Laschen 29 erfolgt eine verliersichere Fixierung der Spannmutter 3.

Claims

Ansprüche
1. Zündkerze für eine Verbrennungskraftmaschine, umfassend
- ein metallisches Gehäuse (2) mit einem ersten Gehäuseteil (21), insbesondere Gehäusesitz, und
- einem zweiten Gehäuseteil (26), insbesondere Gehäuserohr,
- eine Mittelelektrode (4), - eine Masseelektrode (5), die am ersten Gehäuseteil (21) angeordnet ist, und
- einen Isolator (6) um die Mittelelektrode (4) von der Masseelektrode (5) zu trennen, wobei das erste Gehäuseteil (21) brennraumnäher als das zweite Gehäuseteil (26) ist, wobei das erste Gehäuseteil (21) eine Gehäusesitzfläche (24) für einen sicheren Sitz der Zündkerze (1) in einem eingebautem Zustand aufweist, und wobei eine erste Wandstärke (Dl) des ersten Gehäuseteils (21) größer ist als eine zweite Wandstärke (D2) des zweiten Gehäuseteils (26).
2. Zündkerze nach Anspruch 1, dadurch gekennzeichnet, dass die Gehäusesitzfläche (24) zu einer Längsachse (X-X) der Zündkerze (1) geneigt ist.
3. Zündkerze nach einem der vorhergehen Ansprüche, dadurch gekennzeichnet, dass das erste Gehäuseteil (21) einen Innenabsatz (23) aufweist, wobei der Isolator (6) am Innenabsatz (23) aufliegt.
4. Zündkerze nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das erste Gehäuseteil (21) einen Innenabsatz (23) aufweist, und das zweite Gehäuseteil (26) ein nach innen gerichtetes brennraumzugewandtes Ende (26a) aufweist, an welchem der Isolator (6) aufliegt.
5. Zündkerze nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Gehäusesitzfläche (24) brennraumnäher ist als der Innenabsatz (23).
6. Zündkerze nach einem der vorhergehenden Ansprüche, ferner umfassend eine Spannmutter (3), um die Zündkerze im Zylinderkopf einzuspannen.
7. Zündkerze nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Gehäuseteil (26) zumindest eine Lasche (29), insbesondere ausgerichtet nach der Masseelektrode (5), am brennraumabgewandten Ende aufweist.
8. Zündkerze nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Gehäuseteil (21) fest mit dem zweiten Gehäuseteil (26), insbesondere mittels Schweißverbindung (8), verbunden ist.
9. Zündkerze nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das zweite Gehäuseteil (26) eine Durchmesservergrößerung (27), insbesondere mit Sicken (27a), aufweist, wobei die Durchmesservergrößerung (27) einen Ansatz für die Spannmutter (3) darstellt und/oder wobei die Durchmesservergrößerung (27) das zweite Gehäuseteil (26) und den Isolator (6) zueinander fixiert.
10. Zündkerze nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das erste Gehäuseteil (21) an seiner brennraumnahen Seite einen Elektrodenfortsatz (25) umfasst, an welchem mindestens eine Masseelektrode (5) befestigt ist.
11. Zündkerze nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Gehäuseteil (26) als Blechrohr ausgebildet ist, und/oder das erste Gehäuseteil
(21) als Drehteil gefertigt ist.
12. Zündkerze nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Wandstärke (Dl) auf Höhe der Gehäusesitzfläche (24) einen maximalen Wert auf.
PCT/EP2009/056508 2008-07-09 2009-05-28 Bauraumoptimierte zündkerze WO2010003733A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980126569XA CN102089946A (zh) 2008-07-09 2009-05-28 结构空间优化的火花塞
EP09779565A EP2301121B1 (de) 2008-07-09 2009-05-28 Bauraumoptimierte zündkerze
AT09779565T ATE545183T1 (de) 2008-07-09 2009-05-28 Bauraumoptimierte zündkerze
JP2011517051A JP2011527491A (ja) 2008-07-09 2009-05-28 取付けスペースに最適化された点火プラグ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008040285A DE102008040285A1 (de) 2008-07-09 2008-07-09 Bauraumoptimierte Zündkerze
DE102008040285.0 2008-07-09

Publications (1)

Publication Number Publication Date
WO2010003733A1 true WO2010003733A1 (de) 2010-01-14

Family

ID=40897566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/056508 WO2010003733A1 (de) 2008-07-09 2009-05-28 Bauraumoptimierte zündkerze

Country Status (6)

Country Link
EP (1) EP2301121B1 (de)
JP (1) JP2011527491A (de)
CN (1) CN102089946A (de)
AT (1) ATE545183T1 (de)
DE (1) DE102008040285A1 (de)
WO (1) WO2010003733A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10320156B2 (en) 2016-08-16 2019-06-11 Federal-Mogul Ignition Gmbh Spark plug and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989557A (en) * 1990-04-25 1991-02-05 General Motors Corporation Spark plug assembly for internal combustion engine
US5091672A (en) 1990-06-26 1992-02-25 Allied-Signal Inc. Shield for aligning a ground electrode of a spark plug in a cylinder head
FR2779014A1 (fr) 1998-05-22 1999-11-26 Sagem Bougie d'allumage pour moteur a allumage commande
WO2008031482A1 (de) 2006-09-16 2008-03-20 Multitorch Gmbh Zundkerze

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167392U (de) * 1986-04-15 1987-10-23
US5014656A (en) * 1990-04-25 1991-05-14 General Motors Corporation Internal combustion engine having a permanent ground electrode and replaceable center electrode element
DE19500216A1 (de) * 1995-01-05 1996-07-11 Stihl Maschf Andreas Dekompressionsventil
US5535726A (en) * 1995-05-05 1996-07-16 Cooper Industries, Inc. Automotive ignition coil assembly
JPH11329666A (ja) * 1998-05-15 1999-11-30 Ngk Spark Plug Co Ltd スパークプラグ
JPH11351115A (ja) * 1998-06-12 1999-12-21 Ngk Spark Plug Co Ltd 内燃機関、点火プラグ組立体、シリンダーヘッド、点火プラグ、およびプラグ固定具
JP2003077620A (ja) * 2001-06-20 2003-03-14 Denso Corp スパークプラグおよびその製造方法
ES2235130T3 (es) * 2002-07-22 2005-07-01 Jenbacher Aktiengesellschaft Bujia de encendido.
JP2006012464A (ja) * 2004-06-22 2006-01-12 Ngk Spark Plug Co Ltd スパークプラグおよびそれを備えた内燃機関

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989557A (en) * 1990-04-25 1991-02-05 General Motors Corporation Spark plug assembly for internal combustion engine
US5091672A (en) 1990-06-26 1992-02-25 Allied-Signal Inc. Shield for aligning a ground electrode of a spark plug in a cylinder head
FR2779014A1 (fr) 1998-05-22 1999-11-26 Sagem Bougie d'allumage pour moteur a allumage commande
WO2008031482A1 (de) 2006-09-16 2008-03-20 Multitorch Gmbh Zundkerze

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10320156B2 (en) 2016-08-16 2019-06-11 Federal-Mogul Ignition Gmbh Spark plug and method for manufacturing same

Also Published As

Publication number Publication date
CN102089946A (zh) 2011-06-08
JP2011527491A (ja) 2011-10-27
EP2301121A1 (de) 2011-03-30
DE102008040285A1 (de) 2010-01-14
EP2301121B1 (de) 2012-02-08
ATE545183T1 (de) 2012-02-15

Similar Documents

Publication Publication Date Title
EP1482168B1 (de) Niederhalter für ein Brennstoffeinspritzventil
EP1906464B1 (de) Piezoaktor mit einer Ummantelung, zur Anordnung in einem Piezoinjektor
EP1364119A1 (de) Ausgleichselement für ein brennstoffeinspritzventil
WO2006092427A1 (de) Brennstoffeinspritzvorrichtung
EP2845274B1 (de) Zündkerze und verfahren zum herstellen einer zündkerze
EP1442211B1 (de) Verfahren zum herstellen einer kraftstoffspeicherleitung mit einem vorgespannten anschlussst ck
WO2007118724A2 (de) Befestigungsvorrichtung für hochdruckleitungen an einem hochdruckspeicher
EP1454054B1 (de) Brennstoffeinspritzanlage
EP1570171B1 (de) Stützelement
EP2050171B1 (de) Zündkerze mit reduziertem bauraum
WO2003018997A1 (de) Ausgleichselement für ein brennstoffeinspritzventil
EP2301121B1 (de) Bauraumoptimierte zündkerze
WO2011069732A1 (de) Gehäuselose zündkerze für eine verbrennungskraftmaschine
WO2005026529A1 (de) Spannhülse mit temperaturkompensation
EP2016653B1 (de) Zündspule, insbesondere für eine brennkraftmaschine eines kraftfahrzeugs
DE202008004065U1 (de) Hochdruckabdichtung
EP3018335B1 (de) Kraftstoffinjektor und verfahren zum herstellen eines kraftstoffinjektors
WO2023274813A1 (de) Vorkammerzündkerze mit verbesserten zündeigenschaften
EP1780403A2 (de) Brennstoffeinspritzventil
WO2024083411A1 (de) Kraftstoffinjektoranordnung zur montage eines kraftstoffinjektors in einer brennkraftmaschine
WO2023110308A1 (de) Zündkerze mit dichtender masseelektrode
WO2012163578A1 (de) ZÜNDKERZE MIT REDUZIERTEN EINBAUMAßEN
EP1939515A1 (de) Hochdruckabdichtung
WO2017093110A1 (de) Sensorhalter für eine druckmessglühkerze einer brennkraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126569.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09779565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009779565

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011517051

Country of ref document: JP

Kind code of ref document: A