WO2010001870A1 - ジフェニルカーボネートの製造方法 - Google Patents

ジフェニルカーボネートの製造方法 Download PDF

Info

Publication number
WO2010001870A1
WO2010001870A1 PCT/JP2009/061889 JP2009061889W WO2010001870A1 WO 2010001870 A1 WO2010001870 A1 WO 2010001870A1 JP 2009061889 W JP2009061889 W JP 2009061889W WO 2010001870 A1 WO2010001870 A1 WO 2010001870A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorine
diphenyl carbonate
carbon atoms
compound
Prior art date
Application number
PCT/JP2009/061889
Other languages
English (en)
French (fr)
Inventor
隆 岡添
秀一 岡本
宏平 田島
優子 長崎
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2010001870A1 publication Critical patent/WO2010001870A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates

Definitions

  • the present invention relates to a method for producing diphenyl carbonate.
  • Diphenyl carbonate is an industrially useful compound as a raw material for the polycarbonate.
  • diphenyl carbonate for example, the following methods are known.
  • phosgene method A method in which phenol and phosgene are condensed at the interface in the presence of an alkali catalyst.
  • transesterification method A method of transesterifying a dialkyl carbonate such as dimethyl carbonate with phenol in the presence of a catalyst.
  • the method (iii) has a problem that the yield is not sufficient at 31% and the solvent needs to be removed.
  • the method (iv) there is a problem that the reaction process becomes very complicated and the investment in manufacturing equipment becomes large.
  • the present invention provides a method capable of producing diphenyl carbonate in a simple process and in a high yield without using a toxic compound such as phosgene.
  • the method for producing diphenyl carbonate of the present invention is at least selected from the group consisting of a compound represented by the following formula (1), a compound represented by the following formula (2), and a compound represented by the following formula (3):
  • diphenyl carbonate is obtained by a transesterification reaction between one type of fluorine-containing carbonate and phenol.
  • R 1 is a group represented by CX 1 Y 1 R 4
  • two R 1 s may be the same or different
  • R 2 is a hydrogen atom or CX 2 Y 2 R 5
  • Two R 2 s may be the same or different
  • R 3 is a hydrogen atom or a group represented by CX 3 Y 3 R 6
  • two R 3 are the same or different even
  • X 1 ⁇ X 3 are each a hydrogen atom, a fluorine atom or a R f
  • Y 1 ⁇ Y 3 are each a fluorine atom or a R f
  • R 4 ⁇ R 6 is Each is a fluorine atom, R f , OR f or an alkyl group having 1 to 6 carbon atoms
  • R f is a fluoroalkyl group having 1 to 4 carbon atoms (however, it may contain etheric oxygen).
  • R 1 is a group represented by CX 1 Y 1 R 4
  • R 2 is a hydrogen atom or a group represented by CX 2 Y 2 R 5
  • R 3 is a hydrogen atom or CX 3 Y 3 R 6
  • R 7 is a perfluoroalkylene group having 1 to 5 carbon atoms (which may contain etheric oxygen)
  • X 1 to X 3 are each A hydrogen atom, a fluorine atom or R f
  • Y 1 to Y 3 are each a fluorine atom or R f
  • R 4 to R 6 are each a fluorine atom, R f , OR f or a carbon number of 1 to 6 an alkyl group, the R f, a fluoroalkyl group having 1 to 4 carbon atoms (provided that it may contain an etheric oxygen.).
  • R 7 is a perfluoroalkylene group having 1 to 5 carbon atoms (which may contain etheric oxygen), and two R 7 may be the same or different.
  • the transesterification reaction between the fluorine-containing carbonate and the phenol is preferably performed in the presence of a metal salt catalyst.
  • the metal salt catalyst is preferably a metal fluoride or a metal alkoxy compound.
  • the transesterification reaction between the fluorine-containing carbonate and the phenol is preferably performed in the presence of a metal salt catalyst and a metal oxide.
  • the metal oxide include cerium oxide (CeO 2 / Ce 2 O 3 ), silica alumina (SiO 2 ⁇ Al 2 O 3 ), ⁇ -alumina (Al 2 O 3 ), silica magnesia (SiO 2 ⁇ MgO), and zirconia.
  • ZrO 2 silica zirconia
  • SiO 2 ⁇ ZrO 2 is preferably at least one selected from the group consisting of ZnO ⁇ ZrO 2, and Al 2 O 3 ⁇ B 2 O 3.
  • the fluorine-containing carbonate is obtained by a reaction using as a starting material at least one fluorine-containing alcohol selected from the group consisting of a compound represented by the following formula (4) and a compound represented by the following formula (5): Is preferred.
  • R 1 is a group represented by CX 1 Y 1 R 4
  • R 2 is a hydrogen atom or a group represented by CX 2 Y 2 R 5
  • R 3 is a hydrogen atom or CX 3 Y 3 R 6
  • R 7 is a perfluoroalkylene group having 1 to 5 carbon atoms (which may contain etheric oxygen)
  • X 1 to X 3 are each A hydrogen atom, a fluorine atom or R f
  • Y 1 to Y 3 are each a fluorine atom or R f
  • R 4 to R 6 are each a fluorine atom, R f , OR f or a carbon number of 1 to 6
  • An alkyl group, and R f is a fluoroalkyl group having 1 to 4 carbon atoms (which may contain etheric oxygen).
  • the fluorine-containing alcohol preferably has 2 to 10 carbon atoms.
  • R 2 in the formula (4) is preferably a group represented by CX 2 Y 2 R 5 .
  • the fluorine-containing alcohol preferably has a pKa of less than 15.
  • the boiling point of the fluorinated alcohol is preferably less than 181 ° C.
  • the fluorinated alcohol is 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoropropanol, 2,2,3,3-tetrafluoropropanol, 1,1,1,3, 3,3-hexafluoroisopropanol, 2,2,3,4,4,4-hexafluorobutanol, 2,2,3,3,4,4,5,5-octafluoropentanol and perfluoro (t- Butyl) is preferably at least one selected from the group consisting of alcohols.
  • diphenyl carbonate can be produced in a simple process and in a high yield without using a toxic compound such as phosgene.
  • a compound represented by the formula (1) is referred to as a compound (1).
  • the method for producing diphenyl carbonate of the present invention is a method for obtaining diphenyl carbonate by a transesterification reaction between a specific fluorine-containing carbonate and phenol.
  • the fluorine-containing carbonate is at least one selected from the group consisting of the compound (1), the compound (2) and the compound (3).
  • R 1 is a group represented by CX 1 Y 1 R 4
  • two R 1 s may be the same or different
  • R 2 is a hydrogen atom or CX 2 Y 2 R 5
  • Two R 2 s may be the same or different
  • R 3 is a hydrogen atom or a group represented by CX 3 Y 3 R 6
  • two R 3 are the same
  • X 1 to X 3 are each a hydrogen atom
  • Y 1 to Y 3 are each a fluorine atom or R f
  • R 4 to R 6 are Each is a fluorine atom, R f , OR f or an alkyl group having 1 to 6 carbon atoms
  • R f is a fluoroalkyl group having 1 to 4 carbon atoms (however, it may contain etheric oxygen).
  • R 1 is a group represented by CX 1 Y 1 R 4
  • R 2 is a hydrogen atom or a group represented by CX 2 Y 2 R 5
  • R 3 is a hydrogen atom or CX a 3 Y 3 groups represented by R 6
  • R 7 is perfluoroalkylene group having 1 to 5 carbon atoms (which may contain an etheric oxygen.)
  • X 1 ⁇ X 3 are each A hydrogen atom, a fluorine atom or R f
  • Y 1 to Y 3 are each a fluorine atom or R f
  • R 4 to R 6 are each a fluorine atom, R f , OR f or a carbon number of 1 to 6
  • R f is a fluoroalkyl group having 1 to 4 carbon atoms (which may contain etheric oxygen).
  • R 7 is a perfluoroalkylene group having 1 to 5 carbon atoms (which may contain etheric oxygen), and two R 7 may be the same or different.
  • Fluorine-containing carbonates are often low-viscosity liquids at room temperature, which is advantageous when reacting with phenol.
  • many of them have a boiling point in the range of 80 to 250 ° C. and have high thermal stability, so it is easy to obtain high-purity fluorinated carbonate by distillation purification, which is advantageous for producing high-quality diphenyl carbonate. It is.
  • the fluorine-containing carbonate can be obtained by a reaction using at least one fluorine-containing alcohol selected from the group consisting of the compound (4) and the compound (5) as a starting material.
  • R 1 is a group represented by CX 1 Y 1 R 4
  • R 2 is a hydrogen atom or a group represented by CX 2 Y 2 R 5
  • R 3 is a hydrogen atom or CX 3 Y 3 R 6
  • R 7 is a perfluoroalkylene group having 1 to 5 carbon atoms (which may contain etheric oxygen)
  • X 1 to X 3 are each A hydrogen atom, a fluorine atom or R f
  • Y 1 to Y 3 are each a fluorine atom or R f
  • R 4 to R 6 are each a fluorine atom, R f , OR f or a carbon number of 1 to 6
  • An alkyl group, and R f is a fluoroalkyl group having 1 to 4 carbon atoms (which may contain etheric oxygen).
  • the fluorine-containing alcohol those having a high degree of acid dissociation are preferable from the viewpoint of improving the transesterification reaction rate. Therefore, a compound in which a fluoroalkyl group is directly bonded to the ⁇ -position carbon atom of the hydroxyl group (hereinafter also referred to as ⁇ -carbon) is preferable.
  • ⁇ -carbon a compound in which a fluorine atom is directly bonded to the ⁇ -carbon is not preferable because a decomposition reaction due to a deHF reaction easily occurs.
  • pKa of a fluorinated alcohol is used as a measure of the degree of acid dissociation.
  • the alcohol constituting the dialkyl carbonate used for the production of conventional diphenyl carbonate is a hydrocarbon alcohol (methanol, ethanol, etc.), and the pKa of the alcohol is about 15 or more. Therefore, the pKa of the fluorinated alcohol is preferably less than 15 in order to obtain the desired product at a higher yield than conventional dialkyl carbonate.
  • the boiling point of the fluorinated alcohol is lower than that of phenol used as the raw material, the yield of the target product is improved by distilling off the fluorinated alcohol separated by transesterification from the reaction system by distillation. it can. Therefore, the boiling point of the fluorinated alcohol is preferably less than 181 ° C.
  • R 2 is a group represented by CX 2 Y 2 R 5 (that is, It is preferably a secondary or tertiary fluorine-containing alcohol.)
  • R 2 and R 3 are each a group represented by CX 2 Y 2 R 5 and a group represented by CX 3 Y 3 R 6 ( That is, it is a tertiary fluorine-containing alcohol).
  • the carbon number of the fluorinated alcohol is preferably 2 to 10. If the fluorine-containing alcohol has 2 or more carbon atoms, a stable fluorine-containing alcohol in which a fluorine atom is not directly bonded to the ⁇ -position of the hydroxyl group can be selected. If the fluorine-containing alcohol has 10 or less carbon atoms, the fluorine-containing alcohol separated by the transesterification reaction can be distilled out of the reaction system by distillation at a relatively low temperature, so that the loss of phenol as a raw material can be suppressed, Diphenyl carbonate can be synthesized without using extra phenol.
  • fluorine-containing alcohol examples include 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoropropanol, 2,2,3,3-tetrafluoropropanol, 1,1,1 , 3,3,3-hexafluoroisopropanol, 2-fluoropropanol, 2,2,3,4,4,4-hexafluorobutanol, 2,2,3,3,4,4,5,5-octafluoro Pentanol, perfluoro (t-butyl) alcohol, 2,2,3,3,4,4,5,5-octafluorocyclopentanol, 2,2,3,3,4,4,5,5 Examples include 6,6-decafluorocyclohexanol.
  • Fluorine-containing alcohols include 2,2,2-trifluoroethanol (pKa: 12.4, boiling point: 73.6 ° C.), 2,2,3,3,3-penta in terms of acid dissociation and boiling point. Fluoropropanol (pKa: 12.7, boiling point: 80.7 ° C), 2,2,3,3-tetrafluoropropanol (pKa: 12.7, boiling point: 108 ° C), 1,1,1,3,3 , 3-hexafluoroisopropanol (pKa: 9.3, boiling point: 58.6 ° C.), 2,2,3,4,4,4-hexafluorobutanol (pKa: 12.4, boiling point: 115 ° C.), 2 , 2,3,3,4,4,5,5-octafluoropentanol (pKa: 12.7, boiling point: 140 ° C.) and perfluoro (t-butyl) alcohol (pKa: 5.4, boiling point: 45) Less selected from the group consisting
  • Specific methods for obtaining a fluorinated carbonate by a reaction using a fluorinated alcohol as a starting material include the following methods (a) to (c), and the yield can be obtained without using a toxic compound such as phosgene. From the viewpoint of high, the method (c) is preferable.
  • B A method of obtaining a fluorinated carbonate by a transesterification reaction between a dialkyl carbonate and a fluorinated alcohol.
  • C A method of obtaining a fluorinated carbonate by reacting the compound (6) with a fluorinated alcohol in the presence of a catalyst.
  • X 11 to X 13 are each a hydrogen atom or a halogen atom, at least one of X 11 to X 13 is a halogen atom, and X 14 to X 16 are each a hydrogen atom or a halogen atom. At least one of X 14 to X 16 is a halogen atom.
  • X 11 to X 16 are preferably all halogen atoms, more preferably fluorine atoms or chlorine atoms, and most preferably all chlorine atoms from the viewpoint that chloroform is obtained as a by-product.
  • hexachloroacetone pentachloroacetone, tetrachloroacetone, 1,1,2-trichloroacetone, hexafluoroacetone, pentafluoroacetone, 1,1,3,3-tetrafluoroacetone, 1,1 , 2-trifluoroacetone, 1,1,3,3-tetrachloro-1,3-difluoroacetone, 1,1,1-trichloro-3,3,3-trifluoroacetone, 1,3-dichloro-1 1,3,3-tetrafluoroacetone, tetrabromoacetone, pentabromoacetone, hexabromoacetone, and the like.
  • Hexachloroacetone is preferred because industrially useful chloroform can be produced in high yield.
  • chloroacetones can be easily produced by the method of chlorinating acetone described in Japanese Patent Publication No. 60-52741 and Japanese Patent Publication No. 61-16255.
  • a partially fluorinated compound can be easily produced by the method of fluorinating chloroacetones with hydrogen fluoride described in US Pat. No. 6,235,950.
  • the ratio between the number of moles of the first charge of the fluorinated alcohol and the number of moles of the first charge of the compound (6) (fluorinated alcohol / compound (6)) is from the point of improving the yield of the fluorinated carbonate, More than 1, preferably 1.5 or more, more preferably 2 or more.
  • Examples of the catalyst used in the method (c) include catalysts used in the transesterification described below.
  • the amount of the catalyst is variously selected depending on the catalyst, but is preferably 0.01 to 30% by mass with respect to the substrate, and more preferably 0.1 to 10% by mass considering the reaction activity and the catalyst removal step after the reaction. .
  • a solvent may be used for the purpose of promoting the reaction.
  • the reaction temperature in the method (c) is preferably 40 to 200 ° C.
  • the reaction pressure in the method (c) is usually atmospheric pressure.
  • Transesterification reaction As a specific method for obtaining a diphenyl carbonate by transesterifying the fluorinated carbonate and phenol, a method of reacting the fluorinated carbonate and phenol in the presence of a catalyst is used.
  • the transesterification reaction proceeds even at a temperature of about 50 to 100 ° C. at the initial stage of the reaction.
  • the transesterification reaction is carried out at a temperature of 100 ° C. or higher and includes separation. It is preferable to carry out while distilling off the fluorine alcohol. Moreover, since it will cause the yield fall by decomposition
  • the ratio of the number of moles of fluorine-containing carbonate initially charged to the number of moles of phenol initially charged may be 0.5 or less.
  • the fluorine-containing carbonate / phenol is preferably 0.1 to 0.5.
  • the transesterification reaction can be accelerated by using a catalyst.
  • Catalysts include alkali metals, alkaline earth metals; alkali metal hydrides, alkaline earth metal hydrides; alkali metal hydroxides, alkaline earth metal hydroxides; phase transfer catalysts; alkali metal halides; alkaline earths Metal halides; alkali metal alkoxy compounds, alkaline earth metal alkoxy compounds; ammonia halides; ion exchange resins; tin, titanium, aluminum, tungsten, molybdenum, zirconium, zinc, iron, copper, silicon, and cerium And at least one compound selected from the group consisting of a transesterification catalyst and at least one metal compound or oxide selected from the group consisting of various rare earth metals.
  • Catalysts include metal salt catalysts (alkali metal halides, alkaline earth metal halides, alkali metal alkoxys) from the standpoints of reaction activity, target product selectivity, industrial scale handling, safety, etc.
  • Compounds, alkaline earth metal alkoxy compounds, etc. preferably a metal salt catalyst (alkali metal halide, alkaline earth metal halide, etc.) consisting of a salt of a strong base and a strong acid or a metal consisting of a salt of a strong base and an alcohol Salt catalysts (alkali metal alkoxy compounds, alkaline earth metal alkoxy compounds, etc.) are more preferred, and metal fluoride catalysts or metal phenoxides are particularly preferred.
  • Examples of the alkali metal include Li, Na, K, Rb, and Cs.
  • Examples of the alkaline earth metal include Be, Ca, and Sr.
  • Examples of the alkali metal hydride include LiH, NaH, KH, RbH, CsH and the like.
  • Examples of the alkaline earth metal hydride include BeH 2 , CaH 2 , SrH 2 and the like.
  • Examples of the alkali metal hydroxide include LiOH, NaOH, KOH, RbOH, CsOH and the like.
  • Examples of the alkaline earth metal hydroxide Be (OH) 2, Ca (OH) 2, Sr (OH) 2 and the like.
  • phase transfer catalyst examples include quaternary ammonium salts, quaternary phosphonium salts, quaternary arsonium salts, and sulfonium salts.
  • compound (7) As the quaternary ammonium salt, compound (7) can be mentioned.
  • R 11 to R 14 each represent a hydrocarbon group
  • Y ⁇ represents an anion
  • R 11 to R 14 examples include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an aryl group, an alkylaryl group, an aralkyl group, and the like, and an alkyl group, an aryl group, or an aralkyl group is preferable.
  • the total carbon number of R 11 to R 14 is preferably 4 to 100 per molecule of R 11 R 12 R 13 R 14 N + .
  • R 11 to R 14 may be the same group or different groups.
  • R 11 to R 14 may be substituted with a functional group that is inert under the reaction conditions.
  • R 11 to R 14 may combine with each other to form a heterocyclic ring (such as a nitrogen-containing heterocyclic ring).
  • R 11 to R 14 may be part of a polymer compound.
  • R 11 R 12 R 13 R 14 N + includes tetramethylammonium ion, tetraethylammonium ion, tetra-n-propylammonium ion, tetra-n-butylammonium ion, tri-n-octylmethylammonium ion, cetyltrimethylammonium ion Ion, benzyltrimethylammonium ion, benzyltriethylammonium ion, cetylbenzyldimethylammonium ion, cetylpyridinium ion, n-dodecylpyridinium ion, phenyltrimethylammonium ion, phenyltriethylammonium ion, N-benzylpicolinium ion, pentamethonium ion, hexa Examples include metonium ions.
  • Y ⁇ includes chlorine ion, fluorine ion, bromine ion, iodine ion, sulfate ion, nitrate ion, phosphate ion, perchlorate ion, hydrogen sulfate ion, hydroxide ion, acetate ion, benzoate ion, and benzenesulfonic acid.
  • Ion, p-toluenesulfonic acid ion, and the like, and chlorine ion, bromine ion, iodine ion, hydrogen sulfate ion or hydroxide ion is preferable.
  • the compound (7) is preferably a combination of the following R 11 R 12 R 13 R 14 N + and the following Y ⁇ from the viewpoint of versatility and reactivity of the compound (7).
  • R 11 R 12 R 13 R 14 N + Tetramethylammonium ion, tetraethylammonium ion, tetra-n-propylammonium ion, tetra-n-butylammonium ion or tri-n-octylmethylammonium ion.
  • Y ⁇ Fluorine ion, chlorine ion or bromine ion.
  • Compound (8) is an example of the quaternary phosphonium salt.
  • R 21 ⁇ R 24 each represent a hydrocarbon group
  • Y - represents an anion
  • R 21 to R 24 examples include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an aryl group, an alkylaryl group, an aralkyl group, and the like, and an alkyl group, an aryl group, or an aralkyl group is preferable.
  • the total number of carbon atoms of R 21 to R 24 is preferably 4 to 100 per molecule of R 21 R 22 R 23 R 24 P + .
  • R 21 to R 24 may be the same group or different groups.
  • R 21 to R 24 may be substituted with a functional group inert under the reaction conditions. Examples of the inert functional group include a halogen atom, an ester group, a nitrile group, an acyl group, a carboxyl group, and an alkoxyl group, depending on the reaction conditions.
  • R 21 R 22 R 23 R 24 P + includes tetraethylphosphonium ion, tetra-n-butylphosphonium ion, tri-n-octylethylphosphonium ion, cetyltriethylphosphonium ion, cetyltri-n-butylphosphonium ion, n-butyl.
  • Examples thereof include triphenylphosphonium ion, n-amyltriphenylphosphonium ion, methyltriphenylphosphonium ion, benzyltriphenylphosphonium ion, and tetraphenylphosphonium ion.
  • Y ⁇ includes chlorine ion, fluorine ion, bromine ion, iodine ion, sulfate ion, nitrate ion, phosphate ion, perchlorate ion, hydrogen sulfate ion, hydroxide ion, acetate ion, benzoate ion, and benzenesulfonic acid. Ion, p-toluenesulfonic acid ion and the like, and fluorine ion, chlorine ion or bromine ion is preferable.
  • Compound (9) is an example of the quaternary arsonium salt.
  • R 31 to R 34 each represent a hydrocarbon group, and Y ⁇ represents an anion.
  • R 31 to R 34 examples include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an aryl group, an alkylaryl group, an aralkyl group, and the like, and an alkyl group, an aryl group, or an aralkyl group is preferable.
  • the total carbon number of R 31 to R 34 is preferably 4 to 100 per molecule of R 31 R 32 R 33 R 34 As + .
  • R 31 to R 34 may be the same group or different groups.
  • R 31 to R 34 may be substituted with a functional group inert under the reaction conditions. Examples of the inert functional group include a halogen atom, an ester group, a nitrile group, an acyl group, a carboxyl group, and an alkoxyl group, depending on the reaction conditions.
  • Examples of the compound (9) include triphenylmethylarsonium fluoride, tetraphenylarsonium fluoride, triphenylmethylarsonium chloride, tetraphenylarsonium chloride, tetraphenylarsonium bromide, and polymer derivatives thereof. .
  • Examples of sulfonium salts include compound (10).
  • R 41 to R 43 each represent a hydrocarbon group, and Y 2 ⁇ represents an anion.
  • R 41 to R 43 examples include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an aryl group, an alkylaryl group, an aralkyl group, and the like, and an alkyl group, an aryl group, or an aralkyl group is preferable.
  • the total number of carbon atoms of R 41 ⁇ R 43 is, R 41 R 42 R 43 S + per molecule of the 4-100 preferred.
  • R 41 to R 43 may be the same group or different groups.
  • R 41 to R 43 may be substituted with a functional group inert under the reaction conditions.
  • R 41 to R 43 may be connected to each other to form a heterocyclic ring (such as a nitrogen-containing heterocyclic ring).
  • R 41 to R 43 may be part of a polymer compound.
  • Examples of Y ⁇ include various anions, preferably halogen ions, and more preferably fluorine ions, chlorine ions, or bromine ions.
  • Examples of the compound (10) include di-n-butylmethylsulfonium iodide, tri-n-butylsulfonium tetrafluoroborate, dihexylmethylsulfonium iodide, dicyclohexylmethylsulfonium iodide, dodecylmethylethylsulfonium chloride, tris (diethylamino) sulfonium. Examples thereof include difluorotrimethyl silicate.
  • alkali metal halide examples include LiF, LiCl, LiBr, NaF, NaCl, NaBr, KF, KCl, KBr, RbF, RbCl, RbBr, CsF, CsCl, and CsBr.
  • alkaline earth metal halide examples include BeF 2 , BeCl 2 , BeBr 2 , CaF 2 , CaCl 2 , CaBr 2 , SrF 2 , SrCl 2 , and SrBr 2 .
  • alkali metal alkoxy compound examples include LiOCH 3 , LiOCH 2 CH 3 , LiOPh, LiOCH 2 CF 2 CHF 2 , NaOCH 3 , NaOCH 2 CH 3 , NaOPh, NaOCH 2 CF 2 CHF 2 , KOCH 3 , KOCH 2 CH 3 , KOPh, KOCH 2 CF 2 CHF 2 , RbOCH 3, RbOCH 2 CH 3, RbOPh, RbOCH 2 CF 2 CHF 2, CsOCH 3, CsOCH 2 CH 3, CsOPh, include CsOCH 2 CF 2 CHF 2, or the like.
  • alkaline earth metal alkoxy compounds examples include Be (OCH 3 ) 2 , Be (OCH 2 CH 3 ) 2 , Be (OPh) 2 , Be (OCH 2 CF 2 CHF 2 ) 2 , Ca (OCH 3 ) 2 , Ca (OCH 2 CH 3 ) 2 , Ca (OPh) 2 , Ca (OCH 2 CF 2 CHF 2 ) 2 , Sr (OCH 3 ) 2 , Sr (OCH 2 CH 3 ) 2 , Sr (OPh) 2 , Sr ( OCH 2 CF 2 CHF 2 ) 2 and the like.
  • the halide of ammonia examples include NH 4 F, NH 4 Cl, NH 4 Br, and the like.
  • the halide NaF, KF, NaCl, KCl, and CsF are preferable in terms of reactivity and utilization on an industrial scale.
  • the halide may be supported on a metal oxide or a composite oxide. Examples of the compound include soda lime.
  • the ion exchange resin examples include a cation type ion exchange resin and an anion type ion exchange resin.
  • Commercially available products include Diaion (registered trademark) series (Mitsubishi Chemical Corporation), Amberlite (registered trademark) series (Rohm and Haas), Amberlist (registered trademark) series (Rohm and Haas) Manufactured) and the like.
  • the ion exchange resin is preferably an anion type ion exchange resin having halogen ions as anions from the viewpoint of reaction rate.
  • the transesterification catalyst a base or an acid catalyst (alkali metal alcoholates, butyllithium, p-toluenesulfonic acid, sulfuric acid, perchloric acid, BF 3, etc..) And the like.
  • an acid catalyst alkali metal alcoholates, butyllithium, p-toluenesulfonic acid, sulfuric acid, perchloric acid, BF 3, etc..
  • the transesterification reaction between the fluorine-containing carbonate and the phenol is performed in the presence of a metal salt catalyst and a metal oxide.
  • the metal salt catalyst is combined with a metal oxide, the catalytic activity is further improved.
  • the metal oxide examples include cerium oxide (CeO 2 / Ce 2 O 3 ), silica alumina (SiO 2 ⁇ Al 2 O 3 ), ⁇ -alumina (Al 2 O 3 ), silica magnesia (SiO 2 ⁇ MgO), and zirconia.
  • ZrO 2 silica zirconia
  • SiO 2 ⁇ ZrO 2 is preferably at least one selected from the group consisting of ZnO ⁇ ZrO 2, and Al 2 O 3 ⁇ B 2 O 3.
  • the metal oxide silica alumina, zirconia, and cerium oxide are more preferable, and cerium oxide is most preferable.
  • diphenyl carbonate of the present invention In the production method of diphenyl carbonate of the present invention described above, a specific fluorine-containing carbonate derived from a fluorine-containing alcohol having a relatively high degree of acid dissociation is subjected to a transesterification reaction with phenol. Without using a toxic compound, diphenyl carbonate can be produced by a simple process and in a high yield.
  • the fluorine-containing carbonate compound used in the present invention has a high degree of dissociation of the ester site due to the effect of electron withdrawing by fluorine atoms, and the transesterification reaction with phenol is easy.
  • the low yield which was the problem of the method for producing diphenyl carbonate by the transesterification method, was eliminated, and a complicated multi-step reaction process was unnecessary, and it was possible to produce diphenyl carbonate with a simple process and high yield. It is a manufacturing method.
  • GC analysis was performed using an Agilent 6890 series.
  • Example 1 In a 500 mL glass reactor equipped with a stirrer, a reflux condenser at 20 ° C., and a distillation line, 174 g (0.60 mol) of Compound (11), 141 g (1.5 mol) of phenol, and 3 g of KF were added. After charging, the temperature in the reactor was gradually increased while stirring, and a transesterification reaction was performed at an internal temperature of 110 ° C. The reaction was carried out for 11 hours while distilling off 2,2,3,3-tetrafluoropropanol produced by the transesterification reaction from the distillation line. After completion of the reaction, the reaction crude liquid was recovered by heating to 130 ° C. and distilling off all volatile components in a recovery container under reduced pressure (3 Torr). The collected organic components were subjected to GC analysis, and the compositions shown in Table 1 were confirmed.
  • Example 2 Using the same reactor as in Example 1, except that 3 g of CsF was used as a catalyst, the reaction crude liquid was recovered in the same manner as in Example 1. The recovered organic components were subjected to GC analysis, and the compositions shown in Table 2 were confirmed.
  • Example 3 Using the same reactor as in Example 1, except that 3 g of KF and 3 g of cerium oxide (Ce 2 O 3 / CeO 2 ) were used as catalysts, the reaction crude liquid was recovered. The collected organic components were subjected to GC analysis, and the compositions shown in Table 3 were confirmed.
  • Example 4 Using the same reactor as in Example 1, except that 3 g of CsF and 3 g of cerium oxide (Ce 2 O 3 / CeO 2 ) were used as a catalyst, the reaction crude liquid was recovered. The collected organic components were subjected to GC analysis, and the compositions shown in Table 4 were confirmed.
  • Example 5 Using the same reactor as in Example 1, except that 3 g of NaOCH 3 was used as a catalyst, the reaction crude liquid was recovered in the same manner as in Example 1. The collected organic components were subjected to GC analysis, and the compositions shown in Table 5 were confirmed.
  • Example 6 In a 500 mL glass reactor equipped with a stirrer, a reflux condenser at 20 ° C. and a distillation line, 136 g (0.60 mol) of Compound (12), 141 g (1.5 mol) of phenol, and 3 g of KF were added. While charging the reactor, the temperature is gradually raised while stirring in the reactor, and a transesterification reaction is performed at an internal temperature of 110 ° C. By carrying out the reaction for another 11 hours while distilling off 2,2,2-trifluoroethanol produced from the transesterification reaction from the distillation line, the conversion of the raw material (compound (12)) was 70%, The desired product is obtained with a selectivity of 90%.
  • Example 7 In a 500 mL glass reactor equipped with a stirrer, a reflux condenser at 20 ° C. and a distillation line, 217 g (0.60 mol) of compound (13), 141 g (1.5 mol) of phenol, and 3 g of KF were added. While stirring the reactor, the temperature is gradually raised and the ester exchange reaction is carried out at an internal temperature of 80 ° C. The conversion of the raw material (compound (13)) was carried out by conducting the reaction for another 3 hours while distilling 1,1,1,3,3,3-hexafluoroisopropanol produced by the transesterification reaction from the distillation line. The desired product is obtained with 100% and diphenyl carbonate selectivity of 98%.
  • Example 8 Using the same reactor as in Example 1, except that 3 g of NaOPh was used as a catalyst, the reaction crude liquid was recovered in the same manner as in Example 1. The collected organic components were subjected to GC analysis, and the compositions shown in Table 6 were confirmed.
  • the diphenyl carbonate obtained by the production method of the present invention is useful as a raw material for polycarbonate widely used in many fields as engineering plastics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、ホスゲン等の毒性の化合物を用いることなく、簡便なプロセスで、かつ高い収率でジフェニルカーボネートを製造できる方法を提供する。本発明は、下式(1)で表される化合物、下式(2)で表される化合物、および下式(3)で表される化合物からなる群から選ばれる少なくとも1種以上の含フッ素カーボネートと、フェノールとのエステル交換反応によってジフェニルカーボネートを得ることを特徴とするジフェニルカーボネートの製造方法に関する。 式中、RはCX;RはHまたはCX;RはHまたはCX;Rはパーフルオロアルキレン基;X~XはH、F、またはR;Y~YはFまたはR;R~RはF、R、OR、またはアルキル基;Rはフルオロアルキル基を表す。

Description

ジフェニルカーボネートの製造方法
 本発明は、ジフェニルカーボネートの製造方法に関する。
 ポリカーボネートは、耐熱性、耐衝撃性、透明性等に優れたエンジニアリングプラスチックスとして多くの分野に幅広く用いられている。そして、ジフェニルカーボネートは、該ポリカーボネートの原料として工業的に有用な化合物である。
 ジフェニルカーボネートの製造方法としては、たとえば、下記の方法が知られている。
 (i)フェノールとホスゲンとをアルカリ触媒存在下に界面で縮合させる方法(ホスゲン法)。
 (ii)触媒の存在下に、ジメチルカーボネート等のジアルキルカーボネートとフェノールとをエステル交換反応させる方法(エステル交換法)。
 しかし、(i)の方法では、有毒なホスゲンを用いる;反応により副生する塩化ナトリウム等の無機塩を洗浄除去しなければならない;塩化メチレン等の溶媒を用いるため、反応後の精製、溶媒の回収等の複雑なプロセスが必要となる等の問題がある。
 また、(ii)の方法におけるジアルキルカーボネートとフェノールとのエステル交換反応は、反応速度が遅く、転化率および選択率が低い(特許文献1参照)。
 (ii)の方法の問題を改善する方法としては、下記の方法が知られている。
 (iii)ジアルキルカーボネートとフェノールとのエステル交換反応の際に、改良された触媒を用いるとともに、溶媒を用いる方法(特許文献2参照)。
 (iv)ジアルキルカーボネートとフェノールとのエステル交換反応の際に、多段の反応器と蒸留塔とを組み合わせて、エステル交換反応によって分離する低沸成分を反応系から系外に除去することにより、平衡を生成物側にずらして目的物の収率を向上する方法(特許文献3参照)。
 しかし、(iii)の方法では、収率が31%と充分ではなく、さらに溶媒を除去する必要がある等の問題がある。
 また、(iv)の方法では、反応プロセスが非常に複雑になるとともに、製造設備投資が大きくなる問題がある。
 なお、ポリカーボネートの製造方法として、下記の方法が知られている。
 (v)塩基触媒(NaOCH等。)の存在下に、含フッ素カーボネートとビスフェノールAとを反応させることによって、ポリカーボネートを製造する方法(特許文献4参照)。
 しかし、(v)の方法によるジフェニルカーボネートの製造方法は知られていない。
日本国特開昭62-246533号公報 日本国特開平04-122451号公報 日本国特開平04-235951号公報 日本国特開昭55-102626号公報
 本発明は、ホスゲン等の毒性の化合物を用いることなく、簡便なプロセスで、かつ高い収率でジフェニルカーボネートを製造できる方法を提供する。
 本発明のジフェニルカーボネートの製造方法は、下式(1)で表される化合物、下式(2)で表される化合物、および下式(3)で表される化合物からなる群から選ばれる少なくとも1種の含フッ素カーボネートと、フェノールとのエステル交換反応によってジフェニルカーボネートを得る方法である。
Figure JPOXMLDOC01-appb-C000005
 式中、Rは、CXで表される基であり、2つのRは同一であっても異なってもよく、Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、X~Xは、それぞれ水素原子、フッ素原子またはRであり、Y~Yは、それぞれフッ素原子またはRであり、R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000006
 式中、Rは、CXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、炭素数1~5のパーフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、X~Xは、それぞれ水素原子、フッ素原子またはRであり、Y~Yは、それぞれフッ素原子またはRであり、R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000007
 式中、Rは、炭素数1~5のパーフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、2つのRは同一であっても異なってもよい。
 本発明のジフェニルカーボネートの製造方法においては、前記含フッ素カーボネートと前記フェノールとのエステル交換反応を、金属塩触媒の存在下に行うことが好ましい。
 前記金属塩触媒は、金属フッ化物または金属アルコキシ化合物であることが好ましい。
 前記含フッ素カーボネートと前記フェノールとのエステル交換反応を、金属塩触媒および金属酸化物の存在下に行うことが好ましい。
 前記金属酸化物は、酸化セリウム(CeO/Ce)、シリカアルミナ(SiO・Al)、γ-アルミナ(Al)、シリカマグネシア(SiO・MgO)、ジルコニア(ZrO)、シリカジルコニア(SiO・ZrO)、ZnO・ZrO、およびAl・Bからなる群から選ばれる少なくとも1種であることが好ましい。
 前記含フッ素カーボネートは、下式(4)で表される化合物および下式(5)で表される化合物からなる群から選ばれる少なくとも1種の含フッ素アルコールを出発物質として用いる反応によって得られることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 式中、Rは、CXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、炭素数1~5のパーフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、X~Xは、それぞれ水素原子、フッ素原子またはRであり、Y~Yは、それぞれフッ素原子またはRであり、R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
 前記含フッ素アルコールの炭素数は、2~10であることが好ましい。
 前記式(4)におけるRは、CXで表される基であることが好ましい。
 前記含フッ素アルコールのpKaは、15未満であることが好ましい。
 前記含フッ素アルコールの沸点は、181℃未満であることが好ましい。
 前記含フッ素アルコールは、2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロプロパノール、2,2,3,3-テトラフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、2,2,3,4,4,4-ヘキサフルオロブタノール、2,2,3,3,4,4,5,5-オクタフルオロペンタノールおよびパーフルオロ(t-ブチル)アルコールからなる群から選ばれる少なくとも1種であることが好ましい。
 本発明のジフェニルカーボネートの製造方法によれば、ホスゲン等の毒性の化合物を用いることなく、簡便なプロセスで、かつ高い収率でジフェニルカーボネートを製造できる。
 本明細書においては、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。
<ジフェニルカーボネートの製造方法>
 本発明のジフェニルカーボネートの製造方法は、特定の含フッ素カーボネートと、フェノールとのエステル交換反応によってジフェニルカーボネートを得る方法である。
(含フッ素カーボネート)
 含フッ素カーボネートは、化合物(1)、化合物(2)および化合物(3)からなる群から選ばれる少なくとも1種である。
Figure JPOXMLDOC01-appb-C000009
 式中、Rは、CXで表される基であり、2つのRは同一であっても異なってもよく、Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、X~Xは、それぞれ水素原子、フッ素原子またはRであり、Y~Yは、それぞれフッ素原子またはRであり、R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000010
 式中、Rは、CXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、炭素数1~5のパーフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、X~Xは、それぞれ水素原子、フッ素原子またはRであり、Y~Yは、それぞれフッ素原子またはRであり、R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
Figure JPOXMLDOC01-appb-C000011
 式中、Rは、炭素数1~5のパーフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、2つのRは同一であっても異なってもよい。
 含フッ素カーボネートは、常温で低粘性の液体のものが多く、フェノールとの反応を行う際に有利である。また、沸点が80~250℃の範囲のものが多く、熱安定性も高いため、蒸留精製により高純度の含フッ素カーボネートを得ることが容易であり、品質の高いジフェニルカーボネートを製造する上で有利である。
(含フッ素カーボネートの製造方法)
 含フッ素カーボネートは、化合物(4)および化合物(5)からなる群から選ばれる少なくとも1種の含フッ素アルコールを出発物質として用いる反応によって得ることができる。
Figure JPOXMLDOC01-appb-C000012
 式中、Rは、CXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、水素原子またはCXで表される基であり、Rは、炭素数1~5のパーフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、X~Xは、それぞれ水素原子、フッ素原子またはRであり、Y~Yは、それぞれフッ素原子またはRであり、R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
 含フッ素アルコールとしては、エステル交換反応速度を向上させる点から、酸解離度が高いものが好ましい。よって、水酸基のα位の炭素原子(以下、α炭素とも記す。)にフルオロアルキル基が直接結合した化合物が好ましい。ただし、α炭素に直接フッ素原子が結合したアルコールは、脱HF反応による分解反応が起こりやすいため、好ましくない。
 酸解離度の尺度としては、含フッ素アルコールのpKaを用いる。
 従来のジフェニルカーボネートの製造に用いられているジアルキルカーボネートを構成するアルコールは、炭化水素のアルコール(メタノール、エタノール等。)であり、該アルコールのpKaがおおよそ15以上である。よって、従来のジアルキルカーボネートに比較して高い収率で目的物を得るためには、含フッ素アルコールのpKaは、15未満が好ましい。
 含フッ素アルコールの沸点が、原料に用いるフェノールよりも低い沸点であれば、エステル交換反応によって分離する含フッ素アルコールを蒸留で反応系から系外に留去することにより、目的物の収率を向上できる。よって、含フッ素アルコールの沸点は、181℃未満が好ましい。
 化合物(4)としては、α炭素に結合するフルオロアルキル基が多いほど含フッ素アルコールの酸解離度が高くなることから、RがCXで表される基である(すなわち、2級または3級の含フッ素アルコールである。)ことが好ましく、RおよびRがそれぞれCXで表される基およびCXで表される基である(すなわち、3級の含フッ素アルコールである。)ことがより好ましい。
 含フッ素アルコールの炭素数は、2~10が好ましい。含フッ素アルコールの炭素数が2以上であれば、水酸基のα位に直接フッ素原子が結合していない安定な含フッ素アルコールを選択できる。含フッ素アルコールの炭素数が10以下であれば、エステル交換反応によって分離する含フッ素アルコールを比較的低温の蒸留で反応系から系外に留去できるため、原料であるフェノールのロスが抑えられ、フェノールを余分に用いることなくジフェニルカーボネートを合成できる。
 含フッ素アルコールの具体例としては、2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロプロパノール、2,2,3,3-テトラフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、2-フルオロプロパノール、2,2,3,4,4,4-ヘキサフルオロブタノール、2,2,3,3,4,4,5,5-オクタフルオロペンタノール、パーフルオロ(t-ブチル)アルコール、2,2,3,3,4,4,5,5-オクタフルオロシクロペンタノール、2,2,3,3,4,4,5,5,6,6-デカフルオロシクロヘキサノール等が挙げられる。
 含フッ素アルコールとしては、酸解離度、沸点の点から、2,2,2-トリフルオロエタノール(pKa:12.4、沸点:73.6℃)、2,2,3,3,3-ペンタフルオロプロパノール(pKa:12.7、沸点:80.7℃)、2,2,3,3-テトラフルオロプロパノール(pKa:12.7、沸点:108℃)、1,1,1,3,3,3-ヘキサフルオロイソプロパノール(pKa:9.3、沸点:58.6℃)、2,2,3,4,4,4-ヘキサフルオロブタノール(pKa:12.4、沸点:115℃)、2,2,3,3,4,4,5,5-オクタフルオロペンタノール(pKa:12.7、沸点:140℃)およびパーフルオロ(t-ブチル)アルコール(pKa:5.4、沸点:45℃)からなる群から選ばれる少なくとも1種であることが特に好ましい。
 含フッ素アルコールを出発物質として用いる反応によって含フッ素カーボネートを得る具体的な方法としては、下記の(a)~(c)の方法が挙げられ、ホスゲン等の毒性の化合物を用いることなく、収率が高い点から、(c)の方法が好ましい。
 (a)ホスゲンと含フッ素アルコールとを反応させて、含フッ素カーボネートを得る方法。
 (b)ジアルキルカーボネートと含フッ素アルコールとのエステル交換反応によって、含フッ素カーボネートを得る方法。
 (c)触媒の存在下、化合物(6)と含フッ素アルコールとを反応させて、含フッ素カーボネートを得る方法。
Figure JPOXMLDOC01-appb-C000013
 式中、X11~X13は、それぞれ水素原子またはハロゲン原子であり、X11~X13のうち少なくとも1つはハロゲン原子であり、X14~X16は、それぞれ水素原子またはハロゲン原子でありし、X14~X16のうち少なくとも1つはハロゲン原子である。
 X11~X16は、すべてハロゲン原子であることが好ましく、フッ素原子または塩素原子がより好ましく、副生物としてクロロホルムが得られる点から、すべて塩素原子であることが最も好ましい。
 化合物(6)としては、ヘキサクロロアセトン、ペンタクロロアセトン、テトラクロロアセトン、1,1,2-トリクロロアセトン、ヘキサフルオロアセトン、ペンタフルオロアセトン、1,1,3,3-テトラフルオロアセトン、1,1,2-トリフルオロアセトン、1,1,3,3-テトラクロロ-1,3-ジフルオロアセトン、1,1,1-トリクロロ-3,3,3-トリフルオロアセトン、1,3-ジクロロ-1,1,3,3-テトラフルオロアセトン、テトラブロモアセトン、ペンタブロモアセトン、ヘキサブロモアセトン等が挙げられ、工業的に有用なクロロホルムを高収率で併産できる点から、ヘキサクロロアセトンが好ましい。
 化合物(6)のうち、クロロアセトン類は、日本国特公昭60-52741号公報、日本国特公昭61-16255号公報に記載された、アセトンを塩素化する方法により容易に製造できる。また、米国特許第6235950号明細書に記載された、クロロアセトン類をフッ化水素によってフッ素化する方法によって、容易に部分フッ素化化合物を製造できる。
 含フッ素アルコールの最初の仕込みのモル数と、化合物(6)の最初の仕込みのモル数との比(含フッ素アルコール/化合物(6))は、含フッ素カーボネートの収率を向上させる点から、1超が好ましく、1.5以上がより好ましく、2以上が特に好ましい。
 (c)の方法で用いる触媒としては、後述のエステル交換反応に用いる触媒が挙げられる。
 触媒の量は、触媒によって種々選択されるが、基質に対して0.01~30質量%が好ましく、反応活性および反応後の触媒除去工程を考慮すると、0.1~10質量%がより好ましい。
 (c)の方法においては、反応を促進させる目的で、溶媒を用いてもよい。ただし、反応器の容積効率、溶媒分離工程時の目的物のロスを考えると、可能であれば無溶剤で反応を実施することが好ましい。
 (c)の方法における反応温度は、40~200℃が好ましい。
 (c)の方法における反応圧力は、通常は大気圧である。
(エステル交換反応)
 含フッ素カーボネートとフェノールとをエステル交換反応させて、ジフェニルカーボネートを得る具体的な方法としては、含フッ素カーボネートとフェノールとを触媒の存在下に反応させる方法が用いられる。
 エステル交換反応は、反応初期においては50~100℃程度の温度でも進行するが、反応を完結させ、かつジフェニルカーボネートの収率を向上させるためには、100℃以上の温度で、かつ分離する含フッ素アルコールを留去させながら実施することが好ましい。また、あまり温度が高すぎると生成物の分解等による収率低下の原因となるため、200℃以下の温度で実施することが好ましい。
 含フッ素カーボネートの最初の仕込みのモル数と、フェノールの最初の仕込みのモル数との比(含フッ素カーボネート/フェノール)は、0.5以下であればよく、ジフェニルカーボネートの収率を向上させるためには、できるだけ小さい方が好ましいが、フェノールの量が過剰に多くなると、製造プロセスにおけるフェノールのロスの原因となったり、蒸留工程において目的物であるジフェニルカーボネートを精製する際に目的物のロスの原因となったりするため、含フッ素カーボネート/フェノールは、0.1~0.5が好ましい。
 エステル交換反応は、触媒を用いることにより加速できる。
 触媒としては、アルカリ金属、アルカリ土類金属;アルカリ金属水素化物、アルカリ土類金属水素化物;アルカリ金属水酸化物、アルカリ土類金属水酸化物;相間移動触媒;アルカリ金属ハロゲン化物;アルカリ土類金属ハロゲン化物;アルカリ金属アルコキシ化合物、アルカリ土類金属アルコキシ化合物;アンモニアのハロゲン化物;イオン交換樹脂;スズ、チタン、アルミニウム、タングステン、モリブデン、ジルコニウム、亜鉛、鉄、銅、珪素、およびセリウムを初めとする各種希土類金属からなる群から選ばれる少なくとも1種の金属の化合物または酸化物;およびエステル交換反応触媒からなる群から選ばれる少なくとも1種が挙げられる。
 触媒としては、反応の活性、目的物の選択性、工業的なスケールでの取扱いやすさ、安全性等の点から、金属塩触媒(アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属アルコキシ化合物、アルカリ土類金属アルコキシ化合物等)が好ましく、強塩基と強酸との塩からなる金属塩触媒(アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物等)または強塩基とアルコールとの塩からなる金属塩触媒(アルカリ金属アルコキシ化合物、アルカリ土類金属アルコキシ化合物等)がより好ましく、金属フッ化物触媒または金属フェノキシドが特に好ましい。
 アルカリ金属としては、Li、Na、K、Rb、Cs等が挙げられる。
 アルカリ土類金属としては、Be、Ca、Sr等が挙げられる。
 アルカリ金属水素化物としては、LiH、NaH、KH、RbH、CsH等が挙げられる。
 アルカリ土類金属水素化物としては、BeH、CaH、SrH等が挙げられる。
 アルカリ金属水酸化物としては、LiOH、NaOH、KOH、RbOH、CsOH等が挙げられる。
 アルカリ土類金属水酸化物としては、Be(OH)、Ca(OH)、Sr(OH)等が挙げられる。
 相間移動触媒としては、第4級アンモニウム塩、第4級ホスホニウム塩、第4級アルソニウム塩、スルホニウム塩が挙げられる。
 第4級アンモニウム塩としては、化合物(7)が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 式中、R11~R14は、それぞれ炭化水素基を表し、Yは、陰イオンを表す。
 R11~R14としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、アルキルアリール基、アラルキル基等が挙げられ、アルキル基、アリール基またはアラルキル基が好ましい。
 R11~R14の合計の炭素数は、R11121314の1分子あたり、4~100が好ましい。
 R11~R14は、それぞれ同じ基であってもよく、異なる基であってもよい。
 R11~R14は、反応条件下に不活性な官能基で置換されていてもよい。該不活性な官能基としては、反応条件に応じて異なるが、ハロゲン原子、エステル基、ニトリル基、アシル基、カルボキシル基、アルコキシル基等が挙げられる。
 R11~R14は、互いに連結して、複素環(含窒素複素環等。)を形成してもよい。
 R11~R14は、高分子化合物の一部であってもよい。
 R11121314としては、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラ-n-プロピルアンモニウムイオン、テトラ-n-ブチルアンモニウムイオン、トリ-n-オクチルメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ベンジルトリメチルアンモニウムイオン、ベンジルトリエチルアンモニウムイオン、セチルベンジルジメチルアンモニウムイオン、セチルピリジニウムイオン、n-ドデシルピリジニウムイオン、フェニルトリメチルアンモニウムイオン、フェニルトリエチルアンモニウムイオン、N-ベンジルピコリニウムイオン、ペンタメトニウムイオン、ヘキサメトニウムイオン等が挙げられる。
 Yとしては、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、硝酸イオン、リン酸イオン、過塩素酸イオン、硫酸水素イオン、水酸イオン、酢酸イオン、安息香酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオン等が挙げられ、塩素イオン、臭素イオン、ヨウ素イオン、硫酸水素イオンまたは水酸イオンが好ましい。
 化合物(7)としては、化合物(7)の汎用性および反応性の点から、下記R11121314と、下記Yとの組み合わせが好ましい。
 R11121314:テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラ-n-プロピルアンモニウムイオン、テトラ-n-ブチルアンモニウムイオンまたはトリ-n-オクチルメチルアンモニウムイオン。
 Y:フッ素イオン、塩素イオンまたは臭素イオン。
 第4級ホスホニウム塩としては、化合物(8)が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 式中、R21~R24は、それぞれ炭化水素基を表し、Yは、陰イオンを表す。
 R21~R24としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、アルキルアリール基、アラルキル基等が挙げられ、アルキル基、アリール基またはアラルキル基が好ましい。
 R21~R24の合計の炭素数は、R21222324の1分子あたり、4~100が好ましい。
 R21~R24は、それぞれ同じ基であってもよく、異なる基であってもよい。
 R21~R24は、反応条件下に不活性な官能基で置換されていてもよい。該不活性な官能基としては、反応条件に応じて異なるが、ハロゲン原子、エステル基、ニトリル基、アシル基、カルボキシル基、アルコキシル基等が挙げられる。
 R21222324としては、テトラエチルホスホニウムイオン、テトラ-n-ブチルホスホニウムイオン、トリ-n-オクチルエチルホスホニウムイオン、セチルトリエチルホスホニウムイオン、セチルトリ-n-ブチルホスホニウムイオン、n-ブチルトリフェニルホスホニウムイオン、n-アミルトリフェニルホスホニウムイオン、メチルトリフェニルホスホニウムイオン、ベンジルトリフェニルホスホニウムイオン、テトラフェニルホスホニウムイオン等が挙げられる。
 Yとしては、塩素イオン、フッ素イオン、臭素イオン、ヨウ素イオン、硫酸イオン、硝酸イオン、リン酸イオン、過塩素酸イオン、硫酸水素イオン、水酸イオン、酢酸イオン、安息香酸イオン、ベンゼンスルホン酸イオン、p-トルエンスルホン酸イオン等が挙げられ、フッ素イオン、塩素イオンまたは臭素イオンが好ましい。
 第4級アルソニウム塩としては、化合物(9)が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 式中、R31~R34は、それぞれ炭化水素基を表し、Yは、陰イオンを表す。
 R31~R34としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、アルキルアリール基、アラルキル基等が挙げられ、アルキル基、アリール基またはアラルキル基が好ましい。
 R31~R34の合計の炭素数は、R31323334Asの1分子あたり、4~100が好ましい。
 R31~R34は、それぞれ同じ基であってもよく、異なる基であってもよい。
 R31~R34は、反応条件下に不活性な官能基で置換されていてもよい。該不活性な官能基としては、反応条件に応じて異なるが、ハロゲン原子、エステル基、ニトリル基、アシル基、カルボキシル基、アルコキシル基等が挙げられる。
 化合物(9)としては、トリフェニルメチルアルソニウムフロライド、テトラフェニルアルソニウムフロライド、トリフェニルメチルアルソニウムクロライド、テトラフェニルアルソニウムクロライド、テトラフェニルアルソニウムブロマイド、これらの高分子誘導体等が挙げられる。
 スルホニウム塩としては、化合物(10)が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 式中、R41~R43は、それぞれ炭化水素基を表し、Yは、陰イオンを表す。
 R41~R43としては、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アリール基、アルキルアリール基、アラルキル基等が挙げられ、アルキル基、アリール基またはアラルキル基が好ましい。
 R41~R43の合計の炭素数は、R414243の1分子あたり、4~100が好ましい。
 R41~R43は、それぞれ同じ基であってもよく、異なる基であってもよい。
 R41~R43は、反応条件下に不活性な官能基で置換されていてもよい。該不活性な官能基としては、反応条件に応じて異なるが、ハロゲン原子、エステル基、ニトリル基、アシル基、カルボキシル基、アルコキシル基等が挙げられる。
 R41~R43は、互いに連結して、複素環(含窒素複素環等。)を形成してもよい。
 R41~R43は、高分子化合物の一部であってもよい。
 Yとしては、各種陰イオンが挙げられ、ハロゲンイオンが好ましく、フッ素イオン、塩素イオンまたは臭素イオンがより好ましい。
 化合物(10)としては、ジ-n-ブチルメチルスルホニウムアイオダイド、トリ-n-ブチルスルホニウムテトラフルオロボレート、ジヘキシルメチルスルホニウムアイオダイド、ジシクロヘキシルメチルスルホニウムアイオダイド、ドデシルメチルエチルスルホニウムクロライド、トリス(ジエチルアミノ)スルホニウムジフルオロトリメチルシリケート等が挙げられる。
 アルカリ金属のハロゲン化物としては、LiF、LiCl、LiBr、NaF、NaCl、NaBr、KF、KCl、KBr、RbF、RbCl、RbBr、CsF、CsCl、CsBr等が挙げられる。
 アルカリ土類金属のハロゲン化物としては、BeF、BeCl、BeBr、CaF、CaCl、CaBr、SrF、SrCl、SrBr等が挙げられる。
 アルカリ金属のアルコキシ化合物としては、LiOCH、LiOCHCH、LiOPh、LiOCHCFCHF、NaOCH、NaOCHCH、NaOPh、NaOCHCFCHF、KOCH、KOCHCH、KOPh、KOCHCFCHF、RbOCH、RbOCHCH、RbOPh、RbOCHCFCHF、CsOCH、CsOCHCH、CsOPh、CsOCHCFCHF等が挙げられる。
アルカリ土類金属のアルコキシ化合物としては、Be(OCH、Be(OCHCH、Be(OPh)、Be(OCHCFCHF、Ca(OCH、Ca(OCHCH、Ca(OPh)、Ca(OCHCFCHF、Sr(OCH、Sr(OCHCH、Sr(OPh)、Sr(OCHCFCHF等が挙げられる。
 アンモニアのハロゲン化物としては、NHF、NHCl、NHBr等が挙げられる。
 該ハロゲン化物としては、反応性、工業的なスケールでの利用の点で、NaF、KF、NaCl、KCl、CsFが好ましい。
 該ハロゲン化物は、金属酸化物または複合酸化物に担持させてもよい。該化合物としては、ソーダライム等が挙げられる。
 イオン交換樹脂としては、陽イオン型イオン交換樹脂、陰イオン型イオン交換樹脂が挙げられる。市販品としては、ダイヤイオン(登録商標)シリーズ(三菱化学社製)、アンバーライト(登録商標)シリーズ(ローム・アンド・ハース社製)、アンバーリスト(登録商標)シリーズ(ローム・アンド・ハース社製)等が挙げられる。
 イオン交換樹脂としては、反応速度の点から、ハロゲンイオンを陰イオンとする陰イオン型イオン交換樹脂が好ましい。
 スズ、チタン、アルミニウム、タングステン、モリブデン、ジルコニウム、亜鉛、鉄、銅、珪素、およびセリウムを初めとする各種希土類金属からなる群から選ばれる少なくとも1種の金属の化合物または酸化物としては、チタン化合物(テトラブチルチタネート、テトラプロピルチタネート、テトラエチルチタネート、テトラメチルチタネート等。)、酸化チタン(TiO)、有機スズ化合物(オクチル酸スズ、モノブチルスズオキシド、モノブチルスズトリス(2-エチルヘキサノエート)、ジブチルスズオキシド、ジブチルスズラウレート、ジブチルスズジアセテート、モノブチルスズヒドロキシオキサイド等。)、酸化第一スズ(SnO)、ハロゲン化スズ(塩化第一スズ(SnCl)、臭化第一スズ(SnBr)、ヨウ化第一スズ(SnI)等。)、塩化アルミニウム、酸化アルミニウム(Al)、塩化ジルコニウム(ZrCl)、酸化ジルコニウム(ZrO)、塩化銅(CuCl、CuCl)、酸化銅(CuO、CuO)、塩化鉄(FeCl、FeCl)、酸化鉄(FeO、Fe)、酸化セリウム(CeO、Ce)、シリカ(SiO)等が挙げられる。
 エステル交換反応触媒としては、塩基または酸触媒(アルカリ金属のアルコラート、ブチルリチウム、パラトルエンスルホン酸、硫酸、過塩素酸、BF等。)等が挙げられる。本発明において、前記含フッ素カーボネートと前記フェノールとのエステル交換反応を、金属塩触媒および金属酸化物の存在下に行うことが特に好ましい。金属塩触媒は、金属酸化物と組み合わせることにより、触媒活性がさらに向上する。
 前記金属酸化物は、酸化セリウム(CeO/Ce)、シリカアルミナ(SiO・Al)、γ-アルミナ(Al)、シリカマグネシア(SiO・MgO)、ジルコニア(ZrO)、シリカジルコニア(SiO・ZrO)、ZnO・ZrO、およびAl・Bからなる群から選ばれる少なくとも1種であることが好ましい。金属酸化物としては、シリカアルミナ、ジルコニア、酸化セリウムがより好ましく、酸化セリウムが最も好ましい。
 以上説明した本発明のジフェニルカーボネートの製造方法にあっては、酸解離度が比較的高い含フッ素アルコールに由来する特定の含フッ素カーボネートと、フェノールとをエステル交換反応させているため、ホスゲン等の毒性の化合物を用いることなく、簡便なプロセスで、かつ高い収率でジフェニルカーボネートを製造できる。
 すなわち、本発明に用いられる含フッ素カーボネート化合物は、フッ素原子による電子吸引性の効果でエステル部位の解離度が高く、フェノールとのエステル交換反応が容易であることから、本発明の方法は、従来のエステル交換法によるジフェニルカーボネートの製造方法の課題であった低い収率が解消され、多段の複雑な反応プロセスが不要であり、簡便なプロセスで、かつ高い収率でジフェニルカーボネートを製造できる優れた製造方法である。
 以下、実施例を挙げて、本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
(ガスクロマトグラフィー(GC)分析)
 Agilent社製の6890シリーズを用いてGC分析を行った。
〔製造例1〕
ビス(2,2,3,3-テトラフルオロプロピル)カーボネート(化合物(11))の製造:
 撹拌機、20℃の還流冷却器および留出ラインを備えた500mLのガラス製の反応器に、ヘキサクロロアセトンの201g(0.76mol)、2,2,3,3-テトラフルオロプロパノールの358g(2.71mol)、KFの10gを仕込んだ後、撹拌を行いながら、徐々に温度を上昇し、内温100℃で20時間反応を行った。反応終了後に、反応器内に存在する反応粗液の560gを回収した。回収液をGC分析した結果、化合物(11)が生成していることを確認した。反応粗液を蒸留することにより化合物(11)の214gを単離した。へキサクロロアセトンに基づく、化合物(11)の収率は、97%であった。
Figure JPOXMLDOC01-appb-C000018
〔製造例2〕
ビス(2,2,2-トリフルオロエチル)カーボネート(化合物(12))の製造:
 500mLのハステロイ-C製の耐圧反応器に、ヘキサクロロアセトンの201g(0.76mol)、2,2,2-トリフルオロエタノールの271g(2.71mol)、CsFの10gを仕込んだ後、撹拌を行いながら、徐々に温度を上昇し、内温100℃で20時間反応を行った。反応終了後に、反応器内に存在する反応粗液の480gを回収した。回収液をGC分析した結果、化合物(12)が生成していることを確認した。反応粗液を蒸留することにより化合物(12)163gを単離した。へキサクロロアセトンに基づく、化合物(12)の収率は、95%であった。
Figure JPOXMLDOC01-appb-C000019
〔製造例3〕
ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル)カーボネート(化合物(13))の製造:
 1,000mLのハステロイ-C製の耐圧反応器に、ヘキサクロロアセトンの201g(0.76mol)、1,1,1,3,3,3-ヘキサフルオロイソプロパノールの455g(2.71mol)、CsFの10gを仕込んだ後、撹拌を行いながら、徐々に温度を上昇し、内温100℃で20時間反応を行った。反応終了後に、反応器内に存在する反応粗液の480gを回収した。回収液をGC分析した結果、化合物(13)が生成していることを確認した。反応粗液を蒸留することにより化合物(13)41gを単離した。へキサクロロアセトンに基づく、化合物(13)の収率は、15%であった。
Figure JPOXMLDOC01-appb-C000020
〔例1〕
 撹拌機、20℃の還流冷却器および留出ラインを備えた500mLのガラス製の反応器に、化合物(11)の174g(0.60mol)、フェノールの141g(1.5mol)、KFの3gを仕込んだ後、反応器内を撹拌しながら、徐々に昇温し、内温110℃でエステル交換反応を行った。エステル交換反応により生成する2,2,3,3-テトラフルオロプロパノールを留出ラインから留去させながら、11時間反応を行った。反応終了後に、130℃に加温し、減圧条件下(3Torr)に揮発成分を全量回収容器に留去させることにより反応粗液を回収した。回収した有機成分をGC分析し、表1に示す組成を確認した。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-C000022
 表1の結果から、原料(化合物(11))の転化率は70%、目的物であるジフェニルカーボネートの選択率は90%(収率63%)であった。
〔例2〕
 例1と同様の反応器を用い、触媒としてCsFの3gを用いた以外は、例1と同様に行い、反応粗液を回収した。回収した有機成分をGC分析し、表2に示す組成を確認した。
Figure JPOXMLDOC01-appb-T000023
 表2の結果から、原料(化合物(11))の転化率は90%、目的物であるジフェニルカーボネートの選択率は83%(収率75%)であった。
〔例3〕
 例1と同様の反応器を用い、触媒としてKFの3gおよび酸化セリウム(Ce/CeO)の3gを用いた以外は、例1と同様に行い、反応粗液を回収した。回収した有機成分をGC分析し、表3に示す組成を確認した。
Figure JPOXMLDOC01-appb-T000024
 表3の結果から、原料(化合物(11))の転化率は87%、目的物であるジフェニルカーボネートの選択率は87%(収率76%)であった。
〔例4〕
 例1と同様の反応器を用い、触媒としてCsFの3gおよび酸化セリウム(Ce/CeO)の3gを用いた以外は、例1と同様に行い、反応粗液を回収した。回収した有機成分をGC分析し、表4に示す組成を確認した。
Figure JPOXMLDOC01-appb-T000025
 表4の結果から、原料(化合物(11))の転化率は100%、目的物であるジフェニルカーボネートの選択率は98%(収率98%)であった。
〔例5〕
 例1と同様の反応器を用い、触媒としてNaOCHの3gを用いた以外は、例1と同様に行い、反応粗液を回収した。回収した有機成分をGC分析し、表5に示す組成を確認した。
Figure JPOXMLDOC01-appb-T000026
 表5の結果から、原料(化合物(11))の転化率は80%、目的物であるジフェニルカーボネートの選択率は75%(収率60%)であった。
〔例6〕
 撹拌機、20℃の還流冷却器および留出ラインを備えた500mLのガラス製の反応器に、化合物(12)の136g(0.60mol)、フェノールの141g(1.5mol)、KFの3gを仕込み、反応器内を撹拌しながら、徐々に昇温し、内温110℃でエステル交換反応を行う。エステル交換反応により生成する2,2,2-トリフルオロエタノールを留出ラインから留去させながら、さらに11時間反応を行うことにより、原料(化合物(12))の転化率70%、ジフェニルカーボネートの選択率90%で目的物を得る。
〔例7〕
 撹拌機、20℃の還流冷却器および留出ラインを備えた500mLのガラス製の反応器に、化合物(13)の217g(0.60mol)、フェノールの141g(1.5mol)、KFの3gを仕込み、反応器内を撹拌しながら、徐々に昇温し、内温80℃でエステル交換反応を行う。エステル交換反応により生成する1,1,1,3,3,3-ヘキサフルオロイソプロパノールを留出ラインから留去させながら、さらに3時間反応を行うことにより、原料(化合物(13))の転化率100%、ジフェニルカーボネートの選択率98%で目的物を得る。
〔例8〕
 例1と同様の反応器を用い、触媒としてNaOPhの3gを用いた以外は、例1と同様に行い、反応粗液を回収した。回収した有機成分をGC分析し、表6に示す組成を確認した。
Figure JPOXMLDOC01-appb-T000027
 表6の結果から、原料(化合物(11))の転化率は100%、目的物であるジフェニルカーボネートの選択率は98%(収率98%)であった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年6月30日出願の日本特許出願2008-170793に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の製造方法で得られたジフェニルカーボネートは、エンジニアリングプラスチックスとして多くの分野に幅広く用いられているポリカーボネートの原料として有用である。

Claims (11)

  1.  下式(1)で表される化合物、下式(2)で表される化合物、および下式(3)で表される化合物からなる群から選ばれる少なくとも1種の含フッ素カーボネートと、フェノールとのエステル交換反応によってジフェニルカーボネートを得ることを特徴とするジフェニルカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-C000001

     式中、Rは、CXで表される基であり、2つのRは同一であっても異なってもよく、
     Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、
     Rは、水素原子またはCXで表される基であり、2つのRは同一であっても異なってもよく、
     X~Xは、それぞれ水素原子、フッ素原子またはRであり、
     Y~Yは、それぞれフッ素原子またはRであり、
     R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、
     Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
    Figure JPOXMLDOC01-appb-C000002

     式中、Rは、CXで表される基であり、
     Rは、水素原子またはCXで表される基であり、
     Rは、水素原子またはCXで表される基であり、
     Rは、炭素数1~5のパーフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、
     X~Xは、それぞれ水素原子、フッ素原子またはRであり、
     Y~Yは、それぞれフッ素原子またはRであり、
     R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、
     Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
    Figure JPOXMLDOC01-appb-C000003

     式中、Rは、炭素数1~5のパーフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、2つのRは同一であっても異なってもよい。
  2.  前記含フッ素カーボネートと前記フェノールとのエステル交換反応を、金属塩触媒の存在下に行う、請求項1に記載のジフェニルカーボネートの製造方法。
  3.  前記金属塩触媒が、金属フッ化物または金属アルコキシ化合物である、請求項2に記載のジフェニルカーボネートの製造方法。
  4.  前記含フッ素カーボネートと前記フェノールとのエステル交換反応を、金属塩触媒および金属酸化物の存在下に行う、請求項2または3に記載のジフェニルカーボネートの製造方法。
  5.  前記金属酸化物が、酸化セリウム(CeO/Ce)、シリカアルミナ(SiO・Al)、γ-アルミナ(Al)、シリカマグネシア(SiO・MgO)、ジルコニア(ZrO)、シリカジルコニア(SiO・ZrO)、ZnO・ZrO、およびAl・Bからなる群から選ばれる少なくとも1種である、請求項4に記載のポリカーボネートの製造方法。
  6.  前記含フッ素カーボネートが、下式(4)で表される化合物および下式(5)で表される化合物からなる群から選ばれる少なくとも1種の含フッ素アルコールを出発物質として用いる反応によって得られる、請求項1~5のいずれかに記載のジフェニルカーボネートの製造方法。
    Figure JPOXMLDOC01-appb-C000004

     式中、Rは、CXで表される基であり、
     Rは、水素原子またはCXで表される基であり、
     Rは、水素原子またはCXで表される基であり、
     Rは、炭素数1~5のパーフルオロアルキレン基(ただし、エーテル性酸素を含んでもよい。)であり、
     X~Xは、それぞれ水素原子、フッ素原子またはRであり、
     Y~Yは、それぞれフッ素原子またはRであり、
     R~Rは、それぞれフッ素原子、R、ORまたは炭素数1~6のアルキル基であり、
     Rは、炭素数1~4のフルオロアルキル基(ただし、エーテル性酸素を含んでもよい。)である。
  7.  前記含フッ素アルコールの炭素数が、2~10である、請求項6に記載のジフェニルカーボネートの製造方法。
  8.  前記式(4)におけるRが、CXで表される基である、請求項6または7に記載のジフェニルカーボネートの製造方法。
  9.  前記含フッ素アルコールのpKaが、15未満である、請求項6~8のいずれかに記載のジフェニルカーボネートの製造方法。
  10.  前記含フッ素アルコールの沸点が、181℃未満である、請求項6~9のいずれかに記載のジフェニルカーボネートの製造方法。
  11.  前記含フッ素アルコールが、2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロプロパノール、2,2,3,3-テトラフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、2,2,3,4,4,4-ヘキサフルオロブタノール、2,2,3,3,4,4,5,5-オクタフルオロペンタノールおよびパーフルオロ(t-ブチル)アルコールからなる群から選ばれる少なくとも1種である、請求項6~10のいずれかに記載のジフェニルカーボネートの製造方法。
PCT/JP2009/061889 2008-06-30 2009-06-29 ジフェニルカーボネートの製造方法 WO2010001870A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008170793 2008-06-30
JP2008-170793 2008-06-30

Publications (1)

Publication Number Publication Date
WO2010001870A1 true WO2010001870A1 (ja) 2010-01-07

Family

ID=41465965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061889 WO2010001870A1 (ja) 2008-06-30 2009-06-29 ジフェニルカーボネートの製造方法

Country Status (2)

Country Link
TW (1) TW201006795A (ja)
WO (1) WO2010001870A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024732A1 (ja) * 2009-08-28 2011-03-03 旭硝子株式会社 ポリカーボネートの製造方法
WO2014024891A1 (ja) * 2012-08-10 2014-02-13 旭硝子株式会社 カーボネート化合物および芳香族ポリカーボネートの製造方法
JPWO2014088029A1 (ja) * 2012-12-06 2017-01-05 旭硝子株式会社 カーボネート化合物の製造方法
JP2018520799A (ja) * 2015-07-20 2018-08-02 コヴィディエン リミテッド パートナーシップ 可動遠位チップを含む組織除去用カテーテル

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102529A (en) * 1978-12-15 1980-08-05 Gen Electric Manufacture of monocarbonate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102529A (en) * 1978-12-15 1980-08-05 Gen Electric Manufacture of monocarbonate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHO YAMAZAKI ET AL.: "Tansan Gus no Kagaku Hanno ni Kansuru Kenkyu", REPORTS OF THE ASAHI GLASS FOUNDATION FOR INDUSTRIAL TECHNOLOGY, vol. 37, 1980, pages 33 - 48 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024732A1 (ja) * 2009-08-28 2011-03-03 旭硝子株式会社 ポリカーボネートの製造方法
WO2014024891A1 (ja) * 2012-08-10 2014-02-13 旭硝子株式会社 カーボネート化合物および芳香族ポリカーボネートの製造方法
US9221740B2 (en) 2012-08-10 2015-12-29 Asahi Glass Company, Limited Method for producing carbonate compound and method for producing aromatic polycarbonate
JPWO2014024891A1 (ja) * 2012-08-10 2016-07-25 旭硝子株式会社 カーボネート化合物および芳香族ポリカーボネートの製造方法
JPWO2014088029A1 (ja) * 2012-12-06 2017-01-05 旭硝子株式会社 カーボネート化合物の製造方法
JP2018520799A (ja) * 2015-07-20 2018-08-02 コヴィディエン リミテッド パートナーシップ 可動遠位チップを含む組織除去用カテーテル

Also Published As

Publication number Publication date
TW201006795A (en) 2010-02-16

Similar Documents

Publication Publication Date Title
JP5604875B2 (ja) カーボネート化合物の製造方法
TW568898B (en) Method for continuously producing a dialkyl carbonate and a diol
JPWO2019189024A1 (ja) 1−クロロ−2,3,3−トリフルオロプロペンの製造方法
JP6269487B2 (ja) カーボネート化合物および芳香族ポリカーボネートの製造方法
WO2010001870A1 (ja) ジフェニルカーボネートの製造方法
JP5458891B2 (ja) カーボネート化合物の製造方法
JP5321582B2 (ja) ポリカーボネートの製造方法
CN108722478B (zh) 碳酸二苯酯类化合物的制备方法及其催化剂和应用
JP4042870B2 (ja) 芳香族カーボネートの連続的製造方法
EP2930165B1 (en) Method for producing carbonate compound
CN109265344B (zh) 碳酸二苯酯类化合物的制备方法
RU2494088C2 (ru) Способ получения карбонатного соединения
CN108727192B (zh) 碳酸二苯酯类化合物的制备方法
JP2009007301A (ja) α−メチレン−γ−ブチロラクトンの製造法
CN111233618A (zh) 一种利用光气制备氯乙烯类化合物的方法
CN105408298A (zh) 不饱和酸酯或不饱和酸的制造方法
CN1276905C (zh) 用二氯代酚与氯代烷合成二氯代芳醚的方法
CN108722493B (zh) 制备碳酸二苯酯类化合物的催化剂及其应用
CN109265343B (zh) 碳酸二苯酯类化合物的制备方法
JP2019156732A (ja) HCFC−224ca及び/又はCFO−1213yaの精製方法、HCFC−224caの製造方法、並びにCFO−1213yaの製造方法
JPH09221436A (ja) ジアルキルカーボネートとジオールの製造方法
JP2002012575A (ja) 炭酸ジアルキルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519067

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773448

Country of ref document: EP

Kind code of ref document: A1