WO2010001815A1 - 半導体装置用絶縁膜、半導体装置用絶縁膜の製造方法及び製造装置、半導体装置及びその製造方法 - Google Patents

半導体装置用絶縁膜、半導体装置用絶縁膜の製造方法及び製造装置、半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2010001815A1
WO2010001815A1 PCT/JP2009/061659 JP2009061659W WO2010001815A1 WO 2010001815 A1 WO2010001815 A1 WO 2010001815A1 JP 2009061659 W JP2009061659 W JP 2009061659W WO 2010001815 A1 WO2010001815 A1 WO 2010001815A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
semiconductor device
manufacturing
substrate
plasma
Prior art date
Application number
PCT/JP2009/061659
Other languages
English (en)
French (fr)
Inventor
加福 秀考
敏人 藤原
西森 年彦
嶋津 正
保田 直紀
英治 信時
輝彦 熊田
卓也 神山
山本 哲也
慎弥 柴田
Original Assignee
三菱重工業株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱電機株式会社 filed Critical 三菱重工業株式会社
Priority to US13/001,256 priority Critical patent/US8288294B2/en
Priority to KR1020107029442A priority patent/KR101181691B1/ko
Priority to EP09773393.5A priority patent/EP2302667A4/en
Publication of WO2010001815A1 publication Critical patent/WO2010001815A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an insulating film for a semiconductor device used for an interlayer insulating film, a copper diffusion preventing film, an etch stopper layer, a passivation film, a hard mask, a high stress film, etc., a method and a manufacturing apparatus for the insulating film for a semiconductor device,
  • the present invention relates to a semiconductor device using an insulating film for a semiconductor device and a manufacturing method thereof.
  • the wiring material by changing the wiring material from an aluminum alloy to a copper material, the resistance of the wiring is also reduced, but the thin film such as a barrier film that contacts the wiring not only has a low dielectric constant, There is also a need for an anti-diffusion function for metals, especially copper.
  • next-generation insulating layer materials various materials such as fluorine-containing silicon oxide film (SiOF), porous silicon oxide film, fluorine-containing polyimide film, porous organic coating film, SiC-based film, etc. are used as next-generation insulating layer materials. It is being considered.
  • the dielectric constant of the interlayer insulating film is lower than that of the conventional one, but the dielectric constant is about 3.2 to 3.5. Reduction and prevention of signal propagation delay of wiring are not sufficiently achieved.
  • an interlayer insulating film is formed of an organic compound material, a dielectric constant of 2.7 is achieved with a film in which fluorine atoms are introduced into polyimide or an aryl ether polymer, but it is still insufficient.
  • the parylene vapor deposition film can achieve a dielectric constant of 2.4, but heat resistance can be obtained only at about 200 to 300 ° C., which limits the semiconductor element manufacturing process.
  • the porous SiO 2 film has been reported to have a dielectric constant of 2.0 to 2.5.
  • the porosity is high, the mechanical strength (CMP polishing process resistance) is weak, and the pore diameter is also low.
  • CMP polishing process resistance is weak
  • the pore diameter is also low.
  • these polymer materials and porous SiO 2 films are inferior in thermal conductivity to conventional SiO 2 interlayer insulating films, there is a concern about deterioration of wiring life (electromigration) due to an increase in wiring temperature.
  • copper diffuses in these insulating films by an electric field, when copper wiring is applied, it is necessary to cover the surface of copper with a diffusion preventing film.
  • the upper surface and side wall of the copper wiring are covered with a conductive barrier metal, and the upper surface is covered with insulating silicon nitride.
  • the dielectric constant of this silicon nitride film is about 7, and the resistance of the barrier metal is This is much higher than copper, and as a result, the resistance value of the entire wiring increases, and there is a problem that the speeding up of the semiconductor device is limited.
  • the conventional silicon oxide film with good thermal conductivity is used in the layer of the connection hole connecting the upper and lower wirings in order to avoid reliability deterioration, which further increases the wiring capacity. Will be. These increases in wiring capacity cause a signal delay, and there is a problem that the speeding up of the semiconductor device is limited.
  • the above insulating layer material does not have a level that sufficiently satisfies all of the low dielectric constant, high mechanical strength, and metal diffusion prevention function, and has low heat resistance and low thermal conductivity. Many problems remain to be solved when applied as an insulating layer. Japanese Patent No. 3778164
  • Patent Document 1 discloses a low dielectric constant material having a borazine skeleton molecule in the molecule of an inorganic or organic material.
  • the low dielectric constant material has hydrolyzability, there is a problem that the change with time causes the expansion of the film, the relative dielectric constant and the leakage current, and the change with time of these characteristics. Therefore, there is a demand for a technique capable of stably producing a thin film (hereinafter referred to as a borazine skeleton structure film) having a small borazine skeleton structure (6-membered ring structure).
  • borazine compound having a side chain group of an alkyl group containing carbon (C) is used as a raw material for forming a borazine skeleton structure film, in order to obtain a lower leakage current and a lower dielectric constant, borazine
  • a technique for reducing the amount of carbon in the skeleton structure film and sufficiently performing a crosslinking reaction between borazine skeleton molecules in the borazine skeleton structure film has been a demand for a technique for reducing the amount of carbon in the skeleton structure film and sufficiently performing a crosslinking reaction between borazine skeleton molecules in the borazine skeleton structure film.
  • the present invention has been made in view of the above problems, and has characteristics of a low dielectric constant, a low leakage current, and a high mechanical strength, a change with time of these characteristics is small, and an insulating film for a semiconductor device excellent in water resistance.
  • An object of the present invention is to provide a method and apparatus for manufacturing an insulating film for a semiconductor device, a semiconductor device, and a method for manufacturing the semiconductor device.
  • a method for manufacturing an insulating film for a semiconductor device for solving the above-described problems is as follows.
  • a gas containing a raw material gas obtained by vaporizing an alkyl borazine compound represented by the following chemical formula 1 is supplied into the chamber, Using an inductively coupled plasma generating means, an electromagnetic wave is incident into the chamber to bring the gas into a plasma state, Placing a substrate in the plasma diffusion region of the plasma; Gas phase polymerization is performed using a borazine skeleton molecule in the alkylborazine compound dissociated by the plasma as a basic unit, and is formed on the substrate as an insulating film for a semiconductor device.
  • R1 to R6 in the chemical formula 1 are a hydrogen atom or an alkyl group having 5 or less carbon atoms, and may be the same or different. However, the case where all of R1 to R6 are hydrogen atoms is excluded.
  • a method for manufacturing an insulating film for a semiconductor device according to a second invention for solving the above-described problems is as follows.
  • the alkyl borazine compound represented by Chemical Formula 1 is further characterized in that at least one of R 1, R 3 and R 5 is a hydrogen atom.
  • a manufacturing method of an insulating film for a semiconductor device according to a third invention for solving the above-described problems is as follows.
  • the plasma generating means is for injecting electromagnetic waves into the chamber from an antenna disposed immediately above the ceiling plate of the chamber,
  • the substrate is arranged at a position where a distance from the lower surface of the ceiling plate is 5 cm to 30 cm.
  • a method for manufacturing an insulating film for a semiconductor device according to a fourth aspect of the present invention for solving the above-described problem is as follows.
  • the substrate is arranged in a region where an electron temperature is 3.5 eV or less.
  • a method for manufacturing an insulating film for a semiconductor device according to a fifth aspect of the present invention for solving the above-described problem is as follows.
  • a gas containing at least one selected from the group consisting of ammonia and an amine compound containing an alkyl group having 1 to 3 carbon atoms together with the alkyl borazine compound is supplied into the chamber.
  • a manufacturing method of an insulating film for a semiconductor device according to a sixth invention for solving the above-described problems is as follows.
  • the formed insulating film for a semiconductor device is treated with a plasma mainly containing a gas not containing the alkylborazine compound.
  • a manufacturing method of an insulating film for a semiconductor device according to a seventh invention for solving the above-described problem is In the method for manufacturing an insulating film for a semiconductor device according to any one of the first to sixth inventions, A bias is applied to the substrate.
  • a manufacturing method of an insulating film for a semiconductor device according to an eighth invention for solving the above-described problems is as follows.
  • the temperature of the substrate is 150 ° C. or higher and 700 ° C. or lower.
  • a method for manufacturing a semiconductor device according to a ninth invention for solving the above-described problems is as follows.
  • Gas supply means for supplying a desired gas into the chamber;
  • An inductively coupled plasma generating means that makes electromagnetic waves enter the chamber to bring the gas into a plasma state;
  • Disposing means for disposing a substrate at a desired position in the chamber;
  • Control means for controlling the gas supply means, the plasma generation means and the arrangement means,
  • the control means includes
  • a gas containing a raw material gas obtained by vaporizing an alkyl borazine compound represented by the following chemical formula 2 is supplied into the chamber,
  • the plasma is generated by the plasma generating means,
  • the substrate is arranged in a plasma diffusion region of the plasma, Gas phase polymerization is performed using a borazine skeleton molecule in the alkylborazine compound dissociated by the plasma as a basic unit, and is formed on the substrate as an insulating film for a semiconductor device.
  • the gas supply means supplies the alkylborazine compound represented by the chemical formula 2 in which at least one of R1, R3, and R5 is a hydrogen atom.
  • An insulating film manufacturing apparatus for a semiconductor device according to a twelfth invention for solving the above-described problems is
  • the plasma generating means is for injecting electromagnetic waves into the chamber from an antenna disposed immediately above the ceiling plate of the chamber,
  • the arranging means arranges the substrate at a position where the distance from the lower surface of the ceiling plate is 5 cm to 30 cm.
  • An apparatus for manufacturing an insulating film for a semiconductor device according to a thirteenth invention for solving the above-described problems is In the device for manufacturing an insulating film for a semiconductor device according to any one of the tenth to twelfth inventions, The arranging means arranges the substrate in a region where the electron temperature is 3.5 eV or less.
  • the gas supply means supplies a gas containing at least one selected from the group consisting of ammonia and an amine compound containing an alkyl group having 1 to 3 carbon atoms together with the alkyl borazine compound into the chamber.
  • An apparatus for manufacturing an insulating film for a semiconductor device according to a fifteenth aspect of the present invention for solving the above-described problem is provided.
  • the control unit After the formation of the insulating film for a semiconductor device, the control unit generates a plasma mainly composed of a gas not containing the alkyl borazine compound using the gas supply unit and the plasma generation unit, The insulating film for a semiconductor device thus formed is processed.
  • An apparatus for manufacturing an insulating film for a semiconductor device according to a sixteenth aspect of the present invention for solving the above-described problem is provided.
  • the manufacturing apparatus for an insulating film for a semiconductor device according to any one of the tenth to fifteenth inventions Further comprising bias applying means for applying a bias to the substrate; A bias is applied to the substrate by the bias applying means.
  • An apparatus for manufacturing an insulating film for a semiconductor device according to a seventeenth aspect of the present invention for solving the above-described problem is provided.
  • a substrate temperature control means for controlling the temperature of the substrate The temperature of the substrate is controlled to 150 ° C. or more and 700 ° C. or less by the substrate temperature control means.
  • An insulating film for a semiconductor device according to an eighteenth invention for solving the above-described problems is It is formed by using the method for manufacturing an insulating film for a semiconductor device according to any one of the first to eighth inventions.
  • An insulating film for a semiconductor device according to a nineteenth invention for solving the above-described problem is In the semiconductor device insulating film according to the eighteenth invention, in infrared absorption measurement, The ratio of the absorption intensity B1 at the absorption intensity A and the wave number 2400 ⁇ 2600 cm -1 in wave number 1250 ⁇ 1450cm -1 [B1 / A ] , characterized in that it is 0.05 or less.
  • An insulating film for a semiconductor device according to a twentieth invention for solving the above problems is
  • the insulating film for a semiconductor device according to the eighteenth or nineteenth invention is an infrared absorption measurement, The ratio of the absorption intensity B2 of the absorption intensity A and the wave number 760 ⁇ 800 cm -1 in wave number 1250 ⁇ 1450cm -1 [B2 / A ] , characterized in that it is 0.1 or more.
  • an insulating film for a semiconductor device according to a twenty-first invention for solving the above-mentioned problems is In the X-ray photoelectron spectroscopy, the insulating film for a semiconductor device according to the eighteenth invention is Among the constituent elements in the film, the ratio [C / (B + N + C)] of the carbon atom C content to the sum of the boron atom B, nitrogen atom N and carbon atom C content is 35% or less.
  • An insulating film for a semiconductor device according to a twenty-second invention for solving the above-described problem is
  • the insulating film for a semiconductor device according to the eighteenth aspect of the invention is an oblique incidence X-ray analysis.
  • the average density of the film is 1.5 g / cm 3 or more and 2.2 g / cm 3 or less.
  • a semiconductor device for solving the above-mentioned problems is as follows.
  • the insulating film for a semiconductor device according to any one of the eighteenth to twenty-second inventions is used.
  • an insulating film for a semiconductor device having characteristics of low carbon content, low dielectric constant, low leakage current, and high mechanical strength, and the change of these characteristics over time is small.
  • the formed insulating film for the semiconductor device manufacturing method according to the present invention As properties of the formed insulating film for the semiconductor device manufacturing method according to the present invention, by changing the distance from the ceiling plate with the presence of C 2 H 5 NH 2, it is a graph of carbon content.
  • the characteristics of the insulating film for a semiconductor device formed by the manufacturing method according to the present invention are the results of measurement by changing the LF power, (a) is a graph of the leakage current, and (b) is C There addition of 2 H 5 NH 2, a graph of the Young's modulus and leakage current in the no. 6 is a graph showing leakage current measured by changing the substrate temperature as a characteristic of the insulating film for a semiconductor device formed by the manufacturing method according to the present invention.
  • FIG. 6 is a graph showing leakage current measured by changing RF power as a characteristic of an insulating film for a semiconductor device formed by the manufacturing method according to the present invention. It is the graph which evaluated the characteristic of the insulating film for semiconductor devices formed with the manufacturing method concerning this invention using infrared absorption measurement. It is the graph which evaluated the correlation with the leakage current while measuring the density of the characteristic of the insulating film for semiconductor devices formed by the manufacturing method concerning the present invention using GIXA measurement.
  • FIG. 1 is a perspective side view for explaining an apparatus for manufacturing an insulating film for a semiconductor device according to the present invention.
  • a plasma CVD apparatus 1 for an insulating film for a semiconductor device according to the present invention is configured such that the inside of a cylindrical vacuum chamber 2 is formed as a film forming chamber, and a ceramic circle is formed in the upper opening of the vacuum chamber 2.
  • a plate-like ceiling board 3 is disposed so as to close the opening.
  • a high frequency antenna 4 made of, for example, a plurality of circular rings is disposed on the top (directly above) the ceiling plate 3, and a high frequency power source 6 is connected to the high frequency antenna 4 via a matching unit 5 ( Plasma generating means).
  • the high-frequency power source 6 can feed a high oscillation frequency (for example, 13.56 MHz) to the high-frequency antenna 4 than the low-frequency power source 13 described later, and the electromagnetic waves that generate plasma in the vacuum chamber 2 are transmitted to the ceiling plate 3. Can be incident through the light.
  • a high oscillation frequency for example, 13.56 MHz
  • a support base 7 is provided at the lower part of the vacuum chamber 2 so that, for example, a substrate 8 such as a semiconductor is electrostatically attracted and held on the upper surface of the support base 7 using an electrostatic chuck or the like. It has become.
  • the support table 7 can be moved up and down by an elevating device 9 (arranging means), and the distance between the plasma generated in the vacuum chamber 2 and the substrate 8 during film formation can be adjusted. It is like that.
  • the support base 7 is provided with an electrode portion 11, and a low frequency power source 13 is connected to the electrode portion 11 via a matching unit 12 (bias applying means).
  • the low frequency power supply 13 can apply a bias to the substrate 8 by applying an oscillation frequency (for example, 4 MHz) lower than that of the high frequency power supply 6 to the electrode portion 11.
  • the support base 7 is provided with a temperature control device (substrate temperature control means; not shown) such as a heater for controlling the temperature of the substrate 8 and a refrigerant flow path.
  • the temperature can be set (for example, 150 to 700 ° C.).
  • the substrate 8 is configured to be transferred onto the support base 7 by opening the gate door 17 provided on the side wall of the vacuum chamber 2, and after placing on the support base 7, the gate door 17 is closed, The process described later is performed inside the vacuum chamber 2.
  • a plurality of gas nozzles 14 are provided on the side wall portion of the vacuum chamber 2 at a position lower than the ceiling plate 3 and higher than the support base 7, and are controlled from the gas nozzle 14 by controlling the gas control device 15.
  • a gas having a desired flow rate can be supplied inside (gas supply means).
  • an alkyl borazine compound and a carrier gas described later are used as the gas to be supplied.
  • the alkyl borazine compound described below is vaporized and then supplied to the vacuum chamber 2 using an inert gas as a carrier gas.
  • the carrier gas a rare gas such as helium or argon or nitrogen is generally used. However, a mixed gas thereof or a mixed gas to which hydrogen, oxygen, ammonia, methane, or the like is added as necessary. Also good.
  • the alkyl borazine compound is preferably a liquid at normal temperature and pressure, but may be a solid as long as it can be vaporized (sublimated) by heating or the like.
  • the vacuum chamber 2 is provided with a pressure control device (vacuum pump, pressure control valve, vacuum gauge, etc .; not shown), and the inside of the vacuum chamber 2 is exhausted from the bottom side using the vacuum pump, The inside of the vacuum chamber 2 is adjusted to a desired pressure using a vacuum gauge and a pressure control valve.
  • a pressure control device vacuum pump, pressure control valve, vacuum gauge, etc .; not shown
  • the high-frequency power source 6, the lifting device 9, the low-frequency power source 13, the gas control device 15, the temperature control device, the pressure control device, and the like are integrally controlled by the main control device 16 (control means) and set in advance. The desired process steps and process conditions are controlled.
  • alkyl borazine compound one represented by the following chemical formula 3 is used.
  • the side chain groups R1 to R6 in the chemical formula 3 are hydrogen atoms or alkyl groups having 5 or less carbon atoms, and may be the same or different. However, the case where all of R1 to R6 are hydrogen atoms is excluded.
  • alkylborazine compounds in which at least one of R1, R3, and R5 is a hydrogen atom are preferable.
  • a mixed gas containing a source gas obtained by vaporizing the alkylborazine compound represented by the above chemical formula 3 together with the carrier gas is supplied from the gas nozzle 14 into the vacuum chamber 2.
  • An electromagnetic wave is incident on the vacuum chamber 2 from the high frequency antenna 4 to ionize at least a part of the supplied mixed gas to form plasma.
  • the plasma is formed as an inductively coupled plasma field having a high electron density by an ICP type plasma generation mechanism.
  • borazine skeleton system molecule (borazine ring) and the side chain group in the alkyl borazine compound are dissociated by this plasma, the borazine skeleton system molecules are vapor-phase polymerized to each other to be mounted on the support table 7.
  • a borazine skeleton structure film is formed on the surface of the substrate 8 placed as an insulating film for a semiconductor device.
  • the borazine skeleton molecules can be further increased in molecular weight to form an insulating film with good characteristics. Therefore, in the present embodiment, by devising the arrangement position of the substrate 8, more specifically, by using the lifting device 9, the distance from the ceiling plate 3 to the substrate 8 (the surface of the support 7) is increased.
  • the substrate 8 is arranged in the plasma diffusion region where the electron density diffuses and decreases from the plasma generation region by separating the distance from the plasma generation region having a high plasma density.
  • FIG. 2 (a) shows a schematic configuration diagram of a conventional plasma CVD apparatus having a parallel plate type plasma generation mechanism.
  • a lower electrode 22 and an upper electrode 23, which serve as a supporting table and an electrode are arranged in parallel inside a vacuum chamber 21, thereby forming a parallel plate type.
  • a plasma generation mechanism is configured. Then, the substrate 24 is placed on the lower electrode 22, a predetermined source gas is supplied, and a high frequency voltage is applied between the lower electrode 22 and the upper electrode 23, whereby the lower electrode 22 and the upper electrode 23 are A plasma is formed between them.
  • a flat region having a high electron density occupies substantially the entire region between the lower electrode 22 and the upper electrode 23. Further, in the vicinity of the lower electrode 22 and the upper electrode 23 (for example, the region A shown in FIG. 2A), there is a region called a sheath region where the electron density rapidly decreases. In this region A, electrons are accelerated. Usually, the sheath occurs in an area of several mm above the substrate 24. Even if the position of the lower electrode 22 (substrate 24) is raised or lowered, the parallel plate type plasma generation region does not change.
  • the position of the substrate 24 and the region where the electron density of plasma is high is close. Therefore, the borazine skeleton system molecule and the alkyl group in the alkyl borazine compound dissociated in the plasma are transported to the surface of the substrate 24 while being excited, and when the borazine skeleton system molecules are vapor-phase polymerized with each other. The probability of recombination with the excited alkyl group is high. As a result, an alkyl group is taken into the borazine skeleton structure film, the amount of carbon in the thin film cannot be reduced, and the leakage current cannot be reduced.
  • FIG. 2B shows a schematic configuration diagram of the plasma CVD apparatus 1 according to the present invention shown in FIG.
  • the plasma CVD apparatus 1 according to the present invention has a configuration in which the high-frequency antenna 4 is disposed on the top (directly above) the ceiling plate 3. And plasma is formed in the inside by the electromagnetic wave which injects into the vacuum chamber 2 from the high frequency antenna 4.
  • FIG. When the change in electron density ( ⁇ plasma density) of this plasma is shown along the direction away from the ceiling plate 3, the plasma is at a position slightly away from the ceiling plate 3 as shown in the right figure of FIG.
  • the electron density is formed so as to have a center, and as it moves away from the center in the direction of the substrate 8 on the support base 7, the electron density gradually decreases monotonously, from the plasma generation region toward the substrate, and plasma generation.
  • a plasma diffusion region that is a region in which electrons are not accelerated and diffuses only by a concentration gradient is generated because the maximum electron density of the region is 2/3 or less.
  • the support base 7 can be moved up and down by the lift apparatus 9. In some cases, by disposing the support base 7 (substrate 8) at a position farther from the ceiling plate 3, the substrate 8 is disposed at a position where the electron density is low (plasma diffusion region B shown in FIG. 2B). Will do.
  • the lifting / lowering device 9 may be controlled so that the substrate 8 is arranged in the plasma diffusion region B shown in FIG. 2B, and this causes a low electron density of several centimeters to several tens of centimeters above the substrate 8. An area can be secured.
  • the position of the substrate 8 and the region where the electron density of plasma is high (plasma generation region) can be separated. Therefore, the alkyl group in the alkylborazine compound dissociated in the plasma can be neutralized before being transported to the surface of the substrate 8, and the probability of recombination with the borazine skeleton molecule is low. Will be.
  • the incorporation of alkyl groups into the borazine skeleton structure film is reduced, the amount of carbon in the thin film can be reduced, and leakage current is reduced. Can do.
  • the ICP type plasma generation mechanism is used, and the substrate 8 is arranged away from the ceiling plate 3 by the lifting device 9, so that the borazine using the alkyl borazine compound is used.
  • the dissociated alkyl group can be neutralized and the reaction efficiency of gas phase polymerization between borazine skeleton molecules can be improved.
  • the plasma density obtained by the parallel plate type plasma generation mechanism is generally about 10 8 to 10 9 cm ⁇ 3 , whereas it is obtained by the ICP type plasma generation mechanism. Since the generated plasma density is 10 10 to 10 11 cm -3 or more, which is one digit or more, the above effect can be obtained by using only the ICP type plasma generation mechanism if the substrate placement positions are the same. Becomes difficult.
  • the ICP type plasma generation mechanism and the lifting device 9 are combined to secure a sufficient plasma diffusion area together with the plasma generation area.
  • the characteristics of the borazine skeleton structure film formed by arranging the substrate 8 in the plasma diffusion region are shown in the conditions 1 to 5 in Table 1 (Table 1 shows other characteristics at the end of these examples. It was listed together with the conditions.)
  • the conditions 1 to 5 were obtained by using the alkyl borazine compound shown in the raw material column of Table 1 and measuring each characteristic of the formed film while forming a film on the substrate according to the film forming conditions shown in Table 1. Are also shown in Table 1.
  • the film forming process time is set so that the formed film thickness is 2000 mm to 3000 mm. From the results of conditions 1 to 5 in Table 1, in any case, it has characteristics of low carbon content, low dielectric constant, low leakage current, and high mechanical strength, and exhibits long-term stability of the above characteristics. all right.
  • Comparative Example 1 A comparative example for condition 3 in Table 1 is shown in Comparative Example 1 in Table 1.
  • the substrate position is closer to the ceiling plate 3 than the condition 3 shown in Table 1 and is a position where the plasma generation region is formed, and a film on the substrate is formed under the same film forming conditions as the condition 3 shown in Table 1.
  • each characteristic of the formed film was measured, and the results are also shown in Table 1. From the results of Comparative Example 1 in Table 1, the C content in the borazine skeleton structure film is high, the leakage current is increased, and the leakage current applicable as an insulating film is larger than 5E-8 A / cm 2. Recognize.
  • the C content is obtained by analyzing the element content in the thin film by X-ray photoelectron spectroscopy (XPS), and includes carbon (C), boron (B) and nitrogen (N). The ratio (%) of the content of carbon (C) with respect to the sum of the element contents of, ie, C / (C + B + N) was obtained.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 3 (b) the lower limit of the distance from the ceiling plate 3 is 5 cm.
  • the dissociation is performed.
  • the alkyl group is taken into the film as it is, and the C content in the film increases, so that the leakage current also increases.
  • the upper limit of the distance from the ceiling board 3 is 30 cm.
  • the reactive species of the borazine skeleton molecules are deactivated, and the gas phase polymerization does not proceed. Since the film becomes an incomplete borazine skeleton structure film that easily deteriorates, the change in relative permittivity with time increases. This change in relative permittivity with time is a difference between the relative permittivity after thin film formation and after 2 weeks. From this, it can be seen that the distance from the ceiling plate 3 is preferably in the range of 5 cm or more and 30 cm or less.
  • rate will fall when the distance from the ceiling board 3 becomes large, since it becomes impossible to form the film in practical time, it is desirable to set it as 20 cm or less.
  • This electron temperature is an electron temperature at which a neutral molecule in which an alkyl group dissociated from an alkylborazine compound is recombined does not dissociate again, and is the lowest dissociation energy necessary for the neutral molecule to dissociate.
  • the threshold was defined from 5 eV.
  • the manufacturing method of the insulating film for a semiconductor device according to the present embodiment is performed on the premise of the manufacturing apparatus and the manufacturing method described in the first embodiment. Accordingly, the description of the present embodiment is omitted here, omitting the description overlapping with the first embodiment.
  • an electromagnetic wave is incident on the vacuum chamber 2 from the high-frequency antenna 4 to form plasma, and after the borazine skeleton molecule and the side chain group in the alkylborazine compound are dissociated by the generated plasma, the borazine skeleton molecule By vapor-phase polymerization of each other, a borazine skeleton structure film is formed on the surface of the substrate 8 (see FIG. 1).
  • An amine compound having 4 or more carbon atoms has a very low vapor pressure and is not suitable for film formation because it is not gasified at a working pressure of 10 to 50 mTorr, which is the working pressure of the present invention.
  • the film When forming the film, it is desirable to form the film so that the alkyl group dissociated from the alkylborazine compound is not taken into the thin film, as in Example 1. Therefore, in this embodiment, as in Embodiment 1, in addition to the position of the substrate 8 being arranged away from the ceiling plate 3, it contains ammonia and an alkyl group having 1 to 3 carbon atoms together with the alkylborazine compound. By supplying at least one selected from the group consisting of amine compounds, the alkyl group can be neutralized more efficiently than Example 1.
  • C 2 H 5 NH 2 ie, ethylamine
  • C 2 H 5 NH 2 is obtained by dissociating the dissociated alkyl group and C 2 H 5 NH 2 before being transported to the surface of the substrate 8.
  • This alkylamine has a low probability of recombination with the borazine skeleton molecule, and is exhausted as it is. Therefore, compared with Example 1, when a borazine skeleton system molecule
  • the alkyl group is incorporated into the thin film.
  • the characteristics of the borazine skeleton structure film formed in this example are shown in conditions 6 to 8 in Table 1.
  • Conditions 6 to 8 use the amine compounds shown in the raw material column of Table 1 and measure the characteristics of the formed film as well as the film formed on the substrate according to the film forming conditions shown in Table 1. This is also shown in 1.
  • the result shown in FIG. 4 was obtained.
  • the graph without addition of C 2 H 5 NH 2 is the result of measurement by changing the distance from the ceiling plate 3 based on the condition 3 in Table 1 and is shown for comparison (FIG. 3). (See (a)).
  • Example 4 the C content in the borazine skeleton structure film tends to decrease as the distance from the ceiling plate increases. is the same, compared to example 1 (graph C 2 H 5 NH 2 without addition), it can be seen that the C content in the borazine skeleton structure film is further reduced.
  • the C content is obtained by analyzing the element content in the thin film by XPS and obtaining C / (C + B + N) as in FIG.
  • FIG. 4 shows that the distance from the ceiling plate 3 can be further reduced in the case of the present embodiment with the same C content. If the distance from the ceiling plate 3 is too large, the film formation rate may decrease (throughput deteriorates). However, by adding C 2 H 5 NH 2 or the like as in this embodiment, the ceiling plate 3 Even if the distance from the substrate is not increased, the desired C content, that is, the desired low leakage current can be obtained, and in addition, the film formation rate does not decrease, so that the throughput can be improved. .
  • the addition amount of ammonia, an amine compound containing an alkyl group having 1 to 3 carbon atoms, or the like is large relative to the flow rate of the alkyl borazine compound, the film formation rate decreases, so the ammonia or amine compound addition ratio (ammonia Alternatively, the amine compound flow rate / alkylborazine compound flow rate molar ratio) is preferably 30 times or less.
  • amine compounds containing an alkyl group having 1 to 3 carbon atoms include methylamine, ethylamine, dimethylamine, n-propylamine, isopropylamine, trimethylamine, diethylamine, di-n-propylamine, tri-n- Examples thereof include monoalkylamines such as propylamine, dialkylamines, and trialkylamines.
  • the manufacturing method of the insulating film for a semiconductor device according to the present embodiment is also performed on the premise of the manufacturing apparatus and the manufacturing method described in the first embodiment. Therefore, the description of the present embodiment will be made again, omitting the description overlapping with the first embodiment.
  • This embodiment is a combination with the second embodiment. Therefore, the characteristics of the borazine skeleton structure film were measured by changing the LF power together with the presence or absence of C 2 H 5 NH 2 . Specifically, when measured by increasing the LF power based on C 2 H 5 condition 3 in Table 1 is not the addition of NH 2 and C 2 H 5 NH 2 Condition 8 was added, FIG. 5 (b) The results shown were obtained. As shown in FIG. 5B, the Young's modulus increases as the LF power increases regardless of the presence or absence of C 2 H 5 NH 2 .
  • the leakage current if the addition of C 2 H 5 NH 2 is not, but increase 10 5 times or more in accordance with LF power increases, when the addition of C 2 H 5 NH 2 is present, LF power
  • the increase in the leakage current is 10 times or less, and the leakage current value applicable to the insulating film, which is 5E-8 A / cm 2 or less, can be maintained. From this, when C 2 H 5 NH 2 is added, it becomes possible to apply a larger LF power, while suppressing the leakage current to a low level, while maintaining the mechanical strength, water resistance, heat resistance, It becomes possible to further improve the chemical resistance.
  • the characteristics of the borazine skeleton structure film are shown in conditions 9 to 10 in Table 1.
  • Conditions 9 to 10 are obtained by forming the film on the substrate and measuring each characteristic of the formed film according to the film formation conditions shown in Table 1, and the results are also shown in Table 1.
  • the LF power was changed based on condition 9 in Table 1, the result shown in FIG. 5A was obtained.
  • the leakage current tends to increase as the LF power increases, and when the LF power becomes larger than 14500 W / m 2 , It was larger than 5E-8 A / cm 2, which is a leak current applicable as an insulating film.
  • the upper limit of the LF power when forming the borazine skeleton structure film is preferably 14500 W / m 2 or less per unit area of the substrate 8 from the viewpoint of leakage current.
  • the manufacturing method of the insulating film for a semiconductor device according to the present embodiment is also performed on the premise of the manufacturing apparatus and the manufacturing method described in the first embodiment. Therefore, the description of the present embodiment will be made again, omitting the description overlapping with the first embodiment.
  • the borazine skeleton structure film When forming the borazine skeleton structure film, it is desirable not only to apply an appropriate LF power to the substrate 8, but also to control the substrate 8 to an appropriate temperature.
  • the leakage current does not change greatly until it exceeds 700 ° C.
  • the value is smaller than 5E-8 A / cm 2
  • when it exceeds 700 ° C. it is larger than 5E-8 A / cm 2, which is a leak current value applicable as an insulating film.
  • the borazine skeleton structure film it is desirable that the borazine skeleton molecules are in a single bond state, but when the substrate temperature exceeds 700 ° C., some of the borazine skeleton molecules start to condense. Therefore, it is considered that the leakage current characteristics were adversely affected.
  • the upper limit of the substrate temperature when forming the borazine skeleton structure film is desirably 700 ° C. or less from the viewpoint of leakage current.
  • the lower limit is desirably a vaporization temperature of 150 ° C. or higher so that the source gas, specifically, the alkylborazine compound does not liquefy inside the vacuum chamber 2. This is because, when the substrate temperature is lower than 150 ° C., the alkyl borazine compound may be liquefied on the substrate surface, and a thin film that does not progress sufficiently and is likely to deteriorate over time is formed. Because there is a fear.
  • the lower temperature of 400 ° C. may be set as the upper limit temperature in consideration of the influence (damage) of the temperature on the metal wiring.
  • the manufacturing method of the insulating film for a semiconductor device according to the present embodiment is also performed on the premise of the manufacturing apparatus and the manufacturing method described in the first embodiment. Therefore, the description of the present embodiment will be made again, omitting the description overlapping with the first embodiment.
  • the borazine skeleton structure film When forming the borazine skeleton structure film, it is desirable not only to apply an appropriate LF power to the substrate 8 or to control it to an appropriate temperature, but also to apply an RF power appropriately.
  • the leakage current gradually increases as the RF power increases as shown in FIG. There was a tendency, and when the RF power became larger than 53000 W / m 2 , it increased rapidly and became larger than 5E-8 A / cm 2 .
  • the film forming process for forming the borazine skeleton structure film itself has been described. However, after the film forming process using the manufacturing method of the above Examples 1 to 5, the thin film formed is formed.
  • a reaction promotion step that is, comprising two stages of process steps, a film formation step and a reaction promotion step, in particular, the aging characteristics of the thin film are greatly increased. It is possible to improve.
  • the film forming process using the manufacturing methods of Examples 1 to 5 dissociates the side chain group of the alkyl borazine compound and destroys the dissociated side chain group without destroying the borazine skeleton structure of the alkyl borazine compound.
  • the borazine skeleton molecules are vapor-phase polymerized so that they are not taken in.
  • a thin film having a borazine skeleton structure is formed, and the basic characteristics of the borazine skeleton structure film, specifically, low dielectric constant, low leakage current, and high mechanical strength are established.
  • the reaction promotion step in the present embodiment is a plasma treatment process for promoting the cross-linking reaction of borazine skeleton molecules in the thin film formed on the substrate 8. Accordingly, since it is not necessary to form a film, plasma treatment of the formed thin film is performed using a plasma mainly containing a source gas, for example, a carrier gas.
  • the carrier gas used in the reaction promotion step is particularly preferably a rare gas (He, Ar, etc.), N 2 or the like gas in order to eliminate the reaction with the thin film itself.
  • heat treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, ion irradiation treatment, etc. are also effective as means for promoting the crosslinking reaction of borazine skeleton molecules.
  • the LF power in the reaction promoting step is made larger than the LF power in the film forming step in order to promote the cross-linking reaction of the borazine skeleton-based molecules, but if it is made too large, damage to the thin film is caused by the sputtering effect. Since it occurs, it is desirable that it is 127400 W / m 2 or less. Furthermore, in order to prevent deterioration of the thin film over time, the application time of LF power is also important, and it is desirable that [LF power ⁇ time] is 254500 W / m 2 ⁇ s or more. If it is less than this, the effect of improving the deterioration over time cannot be sufficiently obtained.
  • the RF power in the reaction promoting step is preferably 53000 W / m 2 or less.
  • the lower limit of the RF power is desirably 800 W / m 2 or more in consideration of stable ignition of plasma.
  • RF power in the reaction promoting step is preferably 800 W / m 2 or more and is 53000W / m 2 or less. This is the same as the conditions in the film forming process.
  • the reactive reaction groups remaining in the borazine skeleton structure film formed in the film formation step are condensed to accelerate the crosslinking reaction and remove the BH bond. Accordingly, the promotion of the cross-linking reaction further promotes the reduction of the dielectric constant, and the removal of the B—H bond, which is the active site of the reaction with moisture, suppresses the change with time and improves the stability. Further, by promoting the crosslinking reaction, higher mechanical strength is achieved (mechanical strength Young's modulus of 10 GPa or more). As a result, chemical resistance is improved, workability is improved, and CMP (Chemical-Mechanical-Polish) resistance is improved. It will be. In addition, heat resistance can also be achieved because an inorganic polymer material superior in heat resistance compared to an organic polymer material is used.
  • Conditions 11 to 15 include forming a film on the substrate according to the film formation conditions shown in Table 1, performing a reaction promotion step shown in the reaction promotion step column of Table 1, and measuring each characteristic of the formed film. The results are also shown in Table 1. The effect on deterioration with time by carrying out this reaction promoting step is remarkable. Specifically, under conditions 1 to 10 where there is no reaction promoting step, the change in the relative permittivity after 14 days has passed the characteristic condition required for the film of 0.1 or less, but the relative permittivity is the initial value. It has changed by 0.03 or more compared to the value.
  • the change in relative permittivity is 0.01 or less even after 14 days, and the change with time is further suppressed as compared with the case without the reaction promoting step.
  • I understand that I can do it.
  • the stability of the relative dielectric constant was evaluated by leaving it in an environment with a temperature of 25 ° C. and a humidity of 50% Rh.
  • the manufacturing method according to the present invention is performed by the plasma CVD apparatus 1 shown in FIG. 1 in the following procedure.
  • Step 1 The substrate 8 is transferred from the gate door 17 into the vacuum chamber 2 using a transfer device (not shown), placed on the support base 7 and held by suction with an electrostatic chuck.
  • the support base 7 is controlled to any temperature within a range of 150 ° C. to 700 ° C. by a temperature control device, and the temperature of the support base 7 is controlled so that the temperature of the substrate 8 can be processed at a desired set temperature. deep.
  • the height of the support 7 (substrate 8) is moved by the lifting device 9 to any position within the range of 5 to 30 cm from the ceiling plate 3.
  • Step 2 The gas control means 15 is used to supply a carrier gas (for example, He gas) from the gas nozzle 14 into the vacuum chamber 2, and the degree of vacuum in the vacuum chamber 2 is controlled to about 10 to 50 mTorr by the vacuum control device, and matching is performed.
  • An RF power having a frequency of 13.56 MHz is supplied from the high frequency power source 6 to the high frequency antenna 4 via the device 5, and electromagnetic waves are incident on the vacuum chamber 2 to generate plasma in the vacuum chamber 2.
  • RF power high-frequency power source 6 is powered until the series of processes is finished, it is controlled by one of power in the range of 800W / m 2 ⁇ 53000W / m 2.
  • the flow rate of the carrier gas supplied from the gas nozzle 14 is controlled to an appropriate flow rate until the series of processes is completed, but is preferably about 200 sccm to 1000 sccm.
  • Step 3 After stabilization of the plasma, an LF power having a frequency of 4 MHz is supplied to the electrode 11 from the low frequency power supply 13 through the matching unit 12, and the alkylborazine compound shown in Chemical Formula 3 evaporated from the gas nozzle 14 in the vacuum chamber 2 is supplied.
  • the pressure is gradually increased to a predetermined amount, and the degree of vacuum in the vacuum chamber 2 is controlled to about 10 to 50 mTorr.
  • ammonia, an amine compound containing an alkyl group having 1 to 3 carbon atoms for example, C 2 H 5 NH 2
  • the like are also supplied together with the alkyl borazine compound at about 200 sccm.
  • [LF power ⁇ application time] by the low-frequency power source 13 is controlled by electric power at which the LF power is not less than 254500 W / m 2 ⁇ sec and the LF power is not more than 127400 W / m 2 .
  • the above process conditions promote the reaction in the reaction promoting step, that is, the crosslinking reaction between borazine skeleton molecules.
  • a borazine skeleton structure film having a small change in strength over time can be realized.
  • low dielectric constant relative dielectric constant of 3.5 or less
  • low leakage current leakage current of 5E-8A / cm 2 or less
  • high mechanical strength Youngng's modulus of 10 GPa or more
  • stability of the characteristics it is possible to realize the stability of the relative permittivity (change in the relative permittivity with time of 0.1 or less).
  • the insulating film for a semiconductor device (borazine skeleton structure film) according to the present invention formed by using the manufacturing method of Examples 1 to 6 has a low dielectric constant (relative dielectric constant of 3.5 or less) and low leakage current. (Leakage current 5E-8A / cm 2 or less) and the following characteristics.
  • Infrared absorption measurement can measure functional group information, qualitative properties of compounds, etc., and determine the characteristics of the object (for example, hygroscopicity, stability over time, etc.) from the measurement results. It is something that can be done.
  • NEXUS670 manufactured by Thermo Nicolet was used for measurement.
  • a large absorption corresponding to the BN bond was obtained as shown in FIG.
  • the absorption intensity at a wave number region of 1250 ⁇ 1450 cm -1 corresponding to the B-N bond is A
  • the In the borazine skeleton structure film prepared according to the invention as shown in the conditions 1 to 15 in Table 1, the ratio [B1 / A] is 0.05 or less. From this result, it can be seen that the film obtained by the present invention has few BH bonds and high stability over time.
  • the absorption intensity in the region of wave number 760 to 800 cm ⁇ 1 corresponding to the B—N—B bond is B2
  • the ratio [B2 / A] is 0.10 or more.
  • the B—N—B bond is a structure in which N (nitrogen) dissociated from alkylborazine, alkylamine, or the like enters between the bridges of the borazine skeleton structures. Increases stability. From these results, it can be seen that the film obtained according to the present invention has many B—N—B bonds and high stability over time. More preferably, when the ratio [B1 / A] is 0.05 or less and the ratio [B2 / A] is 0.10 or more, the temporal stability is further improved.
  • XPS measurement can measure the binding energy of an element, etc., and can judge the characteristic (for example, composition ratio etc.) of a target object from the measurement result.
  • Quantum 2000 manufactured by ULVAC-PHI was used for the measurement.
  • the borazine skeleton structure film obtained in the comparative example and the borazine skeleton structure film prepared according to the present invention were evaluated using XPS measurement, and the element contents of B (boron), N (nitrogen), and C (carbon) ( mol%) were obtained, and the carbon content [C / (B + N + C)] was determined from these measurement results.
  • GIXA Gram Incidence X-ray Analysis
  • GIXA Gram Incidence X-ray Analysis
  • the average density of the thin film is about 1.4 g / cm 3 , and the leakage current is larger than 5E-8 A / cm 2. Did not meet.
  • the average density of the thin film is 1.5 g / cm 3 or more, and the leakage current is smaller than 5E-8 A / cm 2 , which satisfies the characteristic conditions required for the insulating film.
  • the density of boron nitride (hBN) itself is 2.2 g / cm 3 , this numerical value is also the upper limit for the density of the borazine skeleton structure film produced according to the present invention.
  • the average density is not less 1.5 g / cm 3 or more, it can be seen that the leakage current of the thin film is lowered. This is because gas phase polymerization between borazine skeleton molecules sufficiently proceeds and an ideal cross-linked structure is formed, and the mechanical strength is also sufficient.
  • the insulating film for a semiconductor device has characteristics of a low dielectric constant, a low leakage current, and a high mechanical strength, and changes in these characteristics with time are small. Therefore, when manufacturing a semiconductor device, for example, a semiconductor device such as a CPU, RAM, ASIC, etc., after forming the wiring on the substrate in the wiring forming step, the insulating film forming step is performed on the substrate. By forming the film, it can be disposed as an interlayer insulating film between the wirings, and high integration and high speed of the semiconductor device can be stably realized.
  • the insulating film for a semiconductor device according to the present invention is suitable for an interlayer insulating film of a semiconductor device, and also for a copper diffusion prevention film, an etch stopper layer, a passivation film, a hard mask, a high stress film, etc. of a semiconductor device. Applicable.

Abstract

 低誘電率、低リーク電流、高機械的強度の特性を備え、これらの特性の経時変化が小さく、耐水性に優れた半導体装置用絶縁膜、当該半導体装置用絶縁膜の製造方法及び製造装置、半導体装置及びその製造方法を提供する。そのため、所定のアルキルボラジン化合物を気化した原料ガスを含有するガスをチャンバ(2)内に供給し、誘導結合型プラズマ発生機構(4、5、6)を用いて、チャンバ(2)内に電磁波を入射して、ガスをプラズマとし、プラズマのプラズマ拡散領域に基板(8)を配置し、プラズマにより解離されたアルキルボラジン化合物中のボラジン骨格系分子を基本単位として気相重合し、半導体装置用絶縁膜として基板(8)に成膜する。

Description

半導体装置用絶縁膜、半導体装置用絶縁膜の製造方法及び製造装置、半導体装置及びその製造方法
 本発明は、層間絶縁膜、銅拡散防止膜、エッチストッパ層、パシベーション膜、ハードマスク、ハイストレス膜等に用いられる半導体装置用絶縁膜、当該半導体装置用絶縁膜の製造方法及び製造装置、当該半導体装置用絶縁膜を用いた半導体装置及びその製造方法に関する。
 近年、情報通信社会の発展に伴い、情報処理量が増大しており、その信号処理を行うLSI(Large Scale Integrated circuit)の高集積化、高速化が求められている。LSIの高集積化、高速化のため、その微細化が進められているが、微細化に伴い、配線間の絶縁層の容量による損失が問題となっており、絶縁層の低誘電率化が必要となってきている。絶縁層としては、低誘電率化に加えて、LSIの加工プロセス上、高い機械的強度が必要とされている。又、配線材料をアルミニウム合金から銅材へと変更することにより、配線の低抵抗化も図られているが、配線に接触するバリア膜等の薄膜には、低誘電率化はもちろんのこと、金属、特に銅に対する拡散防止機能も必要とされている。
 上述した課題を踏まえて、次世代の絶縁層材料として、フッ素含有シリコン酸化膜(SiOF)、多孔質シリコン酸化膜、フッ素含有ポリイミド膜、多孔質有機塗布膜、SiC系膜等、様々な材料が検討されている。
 しかしながら、SiOFで層間絶縁膜を形成する場合は、従来のものに比べて層間絶縁膜の誘電率が低くなるものの、誘電率が3.2~3.5程度であり、従って、配線間の容量低減や配線の信号伝播遅延の防止等が十分に図られていない。
 又、有機化合物材料で層間絶縁膜を形成する場合は、ポリイミドにフッ素原子を導入した膜やアリールエーテル系高分子では、誘電率2.7が達成されているがまだまだ不十分である。そして、パリレンの蒸着膜では、誘電率2.4を達成できるが、耐熱性が200~300℃程度しか得られないため、半導体素子の製造プロセスに制限を加えてしまう。
 又、多孔質のSiO2膜においては、誘電率2.0~2.5の値が報告されているが、気孔率が高いため機械的強度(CMP研磨プロセス耐性)が弱く、又、気孔径がばらつくという問題がある。
 更に、これら高分子材料及び多孔質SiO2膜は、従来のSiO2層間絶縁膜よりも熱伝導性が劣るため、配線温度上昇による配線寿命劣化(エレクトロマイグレーション)が懸念されている。
 又、銅は電界によりこれらの絶縁膜中を拡散するため、銅配線を適用する場合、銅の表面を拡散防止膜で被覆する必要がある。そのため、銅配線の上面及び側壁は導電性のバリアメタルを被覆し、上面は絶縁性の窒化シリコンで被覆しているが、この窒化シリコン膜の誘電率は7程度であり、バリアメタルの抵抗は銅よりもはるかに高く、その結果、配線全体の抵抗値は増加するため、半導体装置の高速化が制限されるという問題点があった。
 又、低誘電率絶縁膜を用いる場合には、信頼性劣化をさけるため、熱伝導の良好な従来の酸化シリコン膜を、上下配線を接続する接続孔の階層に用いるため、更に配線容量が増加することとなる。これらの配線容量増加は信号遅延を引き起こし、半導体装置の高速化が制限されるという問題点があった。
 このように、上記の絶縁層材料には、低誘電率化、高機械的強度、金属拡散防止機能の全てを十分満足するレベルのものではなく、又、耐熱性が低い、熱伝導性が低い等、絶縁層として適用する際に解決すべき問題点が多く残っている。
特許第3778164号公報
 上記のような問題点を解決する、低誘電率と耐熱性を有する材料として、無機又は有機材料の分子中にボラジン骨格系分子を有する低誘電率材料が、特許文献1に記載されている。しかし、上記低誘電率材料は、加水分解性を有していることから、経時変化により、膜の膨張、比誘電率及びリーク電流の悪化が引き起こされるという問題があり、これらの特性の経時変化が小さく、ボラジン骨格構造(6員環構造)からなる薄膜(以降、ボラジン骨格構造膜と呼ぶ。)を安定して作製できる技術が求められていた。又、ボラジン骨格構造膜の作製する原料として、炭素(C)を含むアルキル基等を側鎖基とするボラジン化合物を用いる場合には、より低いリーク電流、より低い誘電率を得るために、ボラジン骨格構造膜中の炭素量を低減すると共に、ボラジン骨格構造膜において、ボラジン骨格系分子同士の架橋反応を十分に行う技術が求められていた。
 本発明は上記課題に鑑みなされたもので、低誘電率、低リーク電流、高機械的強度の特性を備え、これらの特性の経時変化が小さく、耐水性に優れた半導体装置用絶縁膜、当該半導体装置用絶縁膜の製造方法及び製造装置、半導体装置及びその製造方法を提供することを目的とする。
 上記課題を解決する第1の発明に係る半導体装置用絶縁膜の製造方法は、
 下記化学式1に示すアルキルボラジン化合物を気化した原料ガスを含有するガスをチャンバ内に供給し、
 誘導結合型のプラズマ生成手段を用いて、前記チャンバ内に電磁波を入射して、前記ガスをプラズマ状態とし、
 前記プラズマのプラズマ拡散領域に基板を配置し、
 前記プラズマにより解離された前記アルキルボラジン化合物中のボラジン骨格系分子を基本単位として気相重合し、半導体装置用絶縁膜として前記基板に成膜することを特徴とする。
Figure JPOXMLDOC01-appb-C000003
 ここで、上記化学式1中のR1~R6は、水素原子あるいは炭素数5以下のアルキル基であり、同一又は異なっていても良い。但し、R1~R6の全てが水素原子である場合を除く。
 上記課題を解決する第2の発明に係る半導体装置用絶縁膜の製造方法は、
 第1の発明に記載の半導体装置用絶縁膜の製造方法において、
 前記化学式1に示すアルキルボラジン化合物が、更に、R1、R3、R5の少なくとも1つが水素原子であることを特徴とする。
 上記課題を解決する第3の発明に係る半導体装置用絶縁膜の製造方法は、
 第1又は第2の発明に記載の半導体装置用絶縁膜の製造方法において、
 前記プラズマ生成手段は、前記チャンバの天井板の直上に配置したアンテナから、前記チャンバ内に電磁波を入射するものであり、
 前記基板は、前記天井板下面からの距離が5cm~30cmとなる位置に配置されることを特徴とする。
 上記課題を解決する第4の発明に係る半導体装置用絶縁膜の製造方法は、
 第1から第3のいずれかの発明に記載の半導体装置用絶縁膜の製造方法において、
 前記基板は、電子温度が3.5eV以下となる領域に配置されることを特徴とする。
 上記課題を解決する第5の発明に係る半導体装置用絶縁膜の製造方法は、
 第1から第4のいずれかの発明に記載の半導体装置用絶縁膜の製造方法において、
 前記アルキルボラジン化合物と共に、アンモニア及び炭素数1~3のアルキル基を含むアミン化合物からなる群から選ばれる少なくとも1種を含有するガスを、前記チャンバ内に供給することを特徴とする。
 上記課題を解決する第6の発明に係る半導体装置用絶縁膜の製造方法は、
 第1から第5のいずれかの発明に記載の半導体装置用絶縁膜の製造方法において、
 前記半導体装置用絶縁膜の成膜の後、前記アルキルボラジン化合物を含有しないガスが主となるプラズマで、成膜した前記半導体装置用絶縁膜を処理することを特徴とする。
 上記課題を解決する第7の発明に係る半導体装置用絶縁膜の製造方法は、
 第1から第6の発明いずれかに記載の半導体装置用絶縁膜の製造方法において、
 前記基板にバイアスを印加することを特徴とする。
 上記課題を解決する第8の発明に係る半導体装置用絶縁膜の製造方法は、
 第1から第7のいずれかの発明に記載の半導体装置用絶縁膜の製造方法において、
 前記基板の温度を150℃以上700℃以下とすることを特徴とする。
 上記課題を解決する第9の発明に係る半導体装置の製造方法は、
 基板に配線を形成する配線形成工程と、
 第1から第8のいずれかの発明に記載の半導体装置用絶縁膜の製造方法を用いて、基板に絶縁膜を形成する絶縁膜形成工程とを有することを特徴とする。
 上記課題を解決する第10の発明に係る半導体装置用絶縁膜の製造装置は、
 チャンバ内に所望のガスを供給するガス供給手段と、
 前記チャンバ内に電磁波を入射して、前記ガスをプラズマ状態とする誘導結合型のプラズマ生成手段と、
 基板を前記チャンバ内の所望の位置へ配置する配置手段と、
 前記ガス供給手段、前記プラズマ生成手段及び前記配置手段を制御する制御手段とを備え、
 前記制御手段は、
 前記ガス供給手段により、下記化学式2に示すアルキルボラジン化合物を気化した原料ガスを含有するガスを前記チャンバ内に供給し、
 前記プラズマ生成手段により、前記ガスをプラズマ状態とし、
 前記配置手段により、前記プラズマのプラズマ拡散領域に前記基板を配置し、
 前記プラズマにより解離された前記アルキルボラジン化合物中のボラジン骨格系分子を基本単位として気相重合し、半導体装置用絶縁膜として前記基板に成膜することを特徴とする。
Figure JPOXMLDOC01-appb-C000004
 ここで、上記化学式2中のR1~R6は、水素原子あるいは炭素数5以下のアルキル基であり、同一又は異なっていても良い。但し、R1~R6の全てが水素原子である場合を除く。
 上記課題を解決する第11の発明に係る半導体装置用絶縁膜の製造装置は、
 第10の発明に記載の半導体装置用絶縁膜の製造装置において、
 前記ガス供給手段は、前記化学式2に示すアルキルボラジン化合物が、更に、R1、R3、R5の少なくとも1つが水素原子であるものを供給することを特徴とする。
 上記課題を解決する第12の発明に係る半導体装置用絶縁膜の製造装置は、
 第10又は第11の発明に記載の半導体装置用絶縁膜の製造装置において、
 前記プラズマ生成手段は、前記チャンバの天井板の直上に配置したアンテナから、前記チャンバ内に電磁波を入射するものであり、
 前記配置手段は、前記天井板下面からの距離が5cm~30cmとなる位置に前記基板を配置することを特徴とする。
 上記課題を解決する第13の発明に係る半導体装置用絶縁膜の製造装置は、
 第10から第12のいずれかの発明に記載の半導体装置用絶縁膜の製造装置において、
 前記配置手段は、電子温度が3.5eV以下となる領域に前記基板を配置することを特徴とする。
 上記課題を解決する第14の発明に係る半導体装置用絶縁膜の製造装置は、
 第10から第13のいずれかの発明に記載の半導体装置用絶縁膜の製造装置において、
 前記ガス供給手段は、前記アルキルボラジン化合物と共に、アンモニア及び炭素数1~3のアルキル基を含むアミン化合物からなる群から選ばれる少なくとも1種を含有するガスを、前記チャンバ内に供給することを特徴とする。
 上記課題を解決する第15の発明に係る半導体装置用絶縁膜の製造装置は、
 第10から第14のいずれかの発明に記載の半導体装置用絶縁膜の製造装置において、
 前記制御手段は、前記半導体装置用絶縁膜の成膜の後、前記ガス供給手段及び前記プラズマ生成手段を用いて、前記アルキルボラジン化合物を含有しないガスが主となるプラズマを生成し、当該プラズマで、成膜した前記半導体装置用絶縁膜を処理することを特徴とする。
 上記課題を解決する第16の発明に係る半導体装置用絶縁膜の製造装置は、
 第10から第15のいずれかの発明に記載の半導体装置用絶縁膜の製造装置において、
 前記基板にバイアスを印加するバイアス印加手段を更に備え、
 前記バイアス印加手段により、前記基板にバイアスを印加することを特徴とする。
 上記課題を解決する第17の発明に係る半導体装置用絶縁膜の製造装置は、
 第10から第16のいずれかの発明に記載の半導体装置用絶縁膜の製造装置において、
 前記基板の温度を制御する基板温度制御手段を更に備え、
 前記基板温度制御手段により、前記基板の温度を150℃以上700℃以下に制御することを特徴とする。
 上記課題を解決する第18の発明に係る半導体装置用絶縁膜は、
 第1から第8のいずれかの発明に記載の半導体装置用絶縁膜の製造方法を用いて形成されたことを特徴とする。
 上記課題を解決する第19の発明に係る半導体装置用絶縁膜は、
 第18の発明に記載の半導体装置用絶縁膜が、赤外吸収測定において、
 波数1250~1450cm-1での吸収強度Aと波数2400~2600cm-1での吸収強度B1との比[B1/A]が、0.05以下であることを特徴とする。
 上記課題を解決する第20の発明に係る半導体装置用絶縁膜は、
 第18又は第19の発明に記載の半導体装置用絶縁膜が、赤外吸収測定において、
 波数1250~1450cm-1での吸収強度Aと波数760~800cm-1での吸収強度B2との比[B2/A]が、0.1以上であることを特徴とする。
 上記課題を解決する第21の発明に係る半導体装置用絶縁膜は、
 第18の発明に記載の半導体装置用絶縁膜が、X線光電子分光法において、
 膜内部の構成元素のうち、ホウ素原子B、窒素原子N及び炭素原子Cの含有量の和に対する炭素原子Cの含有量の比率[C/(B+N+C)]が、35%以下であることを特徴とする。
 上記課題を解決する第22の発明に係る半導体装置用絶縁膜は、
 第18の発明に記載の半導体装置用絶縁膜が、斜入射X線分析において、
 膜の平均密度が1.5g/cm3以上2.2g/cm3以下であることを特徴とする。
 上記課題を解決する第23の発明に係る半導体装置は、
 第18から第22のいずれかの発明に記載の半導体装置用絶縁膜を用いたことを特徴とする。
 本発明により、低炭素含有量、低誘電率、低リーク電流、高機械的強度の特性を備え、これらの特性の経時変化が小さい半導体装置用絶縁膜とすることができ、このような特性を有する半導体装置用絶縁膜を半導体装置に適用することで、半導体装置の高集積化、高速化を図ることができる。
本発明に係る半導体装置用絶縁膜の製造装置を説明する透視側面図である。 プラズマに対する基板の配置位置を説明する図であり、(a)は、平行平板型のプラズマ発生機構を有する装置の概略構成図であり、(b)は、誘電結合(ICP)型のプラズマ発生機構を有する装置の概略構成図である。 本発明に係る製造方法で形成された半導体装置用絶縁膜の特性を、天井板からの距離を変えて測定した結果であり、(a)は、炭素含有量及びリーク電流を測定したグラフであり、(b)は、リーク電流及び比誘電率の経時変化を測定したグラフである。 本発明に係る製造方法で形成された半導体装置用絶縁膜の特性として、C25NH2の有無と共に天井板からの距離を変えて、炭素含有量を測定したグラフである。 本発明に係る製造方法で形成された半導体装置用絶縁膜の特性を、LFパワーを変えて測定した結果であり、(a)は、リーク電流を測定したグラフであり、(b)は、C25NH2の添加有り、無しにおけるヤング率及びリーク電流を測定したグラフである。 本発明に係る製造方法で形成された半導体装置用絶縁膜の特性として、基板温度を変えて、リーク電流を測定したグラフである。 本発明に係る製造方法で形成された半導体装置用絶縁膜の特性として、RFパワーを変えて、リーク電流を測定したグラフである。 本発明に係る製造方法で形成された半導体装置用絶縁膜の特性を、赤外線吸収測定を用いて評価したグラフである。 本発明に係る製造方法で形成された半導体装置用絶縁膜の特性を、GIXA測定を用いて密度を測定すると共にリーク電流との相関を評価したグラフである。
 1  プラズマCVD装置
 2  真空チャンバ
 3  天井板
 4  高周波アンテナ
 5  整合器
 6  高周波電源
 7  支持台
 8  基板
 9  昇降装置
 11 電極
 12 整合器
 13 低周波電源
 14 ガスノズル
 15 ガス制御装置
 16 主制御装置
 17 ゲートドア
 以下、本発明に係る半導体装置用絶縁膜及びその製造方法、製造装置を、図1~図9を参照して、詳細に説明する。なお、図1では、一例として、ICP(Inductively Coupled Plasma)型のプラズマCVD装置1を示しているが、誘導結合型のプラズマ発生機構を有するものであればよい。
 図1は、本発明に係る半導体装置用絶縁膜の製造装置を説明する透視側面図である。
 本発明に係る半導体装置用絶縁膜のプラズマCVD装置1は、円筒状の真空チャンバ2の内部が成膜室として構成されるものであり、真空チャンバ2の上部開口部には、セラミクス製の円板状の天井板3が、開口部を塞ぐように配設されている。
 又、天井板3の上部(直上)には、例えば、複数の円形リングからなる高周波アンテナ4が配置されており、高周波アンテナ4には整合器5を介して高周波電源6が接続されている(プラズマ生成手段)。この高周波電源6は、後述する低周波電源13より高い発振周波数(例えば、13.56MHz)を高周波アンテナ4に給電可能となっており、真空チャンバ2内でプラズマを生成する電磁波を、天井板3を透過して入射可能なものである。これは、所謂、ICP型のプラズマ発生機構の構成である。
 又、真空チャンバ2の下部には支持台7が備えられており、例えば、半導体等の基板8が支持台7の上面に、静電チャック等を用いて、静電的に吸着保持されるようになっている。この支持台7は、昇降装置9(配置手段)により、その位置が上下に昇降可能となっており、成膜時に真空チャンバ2内に発生するプラズマと基板8との距離を調整することができるようになっている。又、支持台7には、電極部11が設けられており、電極部11には整合器12を介して低周波電源13が接続されている(バイアス印加手段)。低周波電源13は、高周波電源6より低い発振周波数(例えば、4MHz)を電極部11に印加し、基板8にバイアスを印加できるようになっている。又、支持台7には、基板8の温度を制御するヒータ、冷媒流路等の温度制御装置(基板温度制御手段;図示省略)が設けられており、温度制御装置により、基板8を所望の温度(例えば、150~700℃)に設定可能となっている。
 なお、基板8は、真空チャンバ2の側壁に設けられたゲートドア17を開けて、支持台7上に搬送されるようになっており、支持台7上に載置後、ゲートドア17を閉めて、真空チャンバ2内部で後述するプロセスが実施される。
 又、真空チャンバ2の側壁部分には、天井板3より低く、支持台7より高い位置に複数のガスノズル14が設けられており、ガス制御装置15により制御することにより、ガスノズル14から真空チャンバ2内部に所望の流量のガスを供給可能である(ガス供給手段)。供給されるガスとしては、後述するアルキルボラジン化合物及びキャリアガスが使用される。後述のアルキルボラジン化合物は、気化された後、不活性ガスをキャリアガスとして用いて、真空チャンバ2へ供給される。又、キャリアガスとしては、ヘリウム、アルゴン等の希ガスや窒素が一般に使用されるが、それらの混合ガスや、必要に応じて、水素、酸素、アンモニア、メタン等を添加した混合ガスを用いてもよい。なお、アルキルボラジン化合物は、好ましくは、常温常圧下で液体であるものがよいが、加熱等により気化(昇華)できれば、固体であってもよい。
 又、真空チャンバ2には、圧力制御装置(真空ポンプ、圧力制御弁、真空計等;図示省略)が設けられており、真空ポンプを用いて、底部側から真空チャンバ2内部を排気すると共に、真空計、圧力制御弁を用いて、真空チャンバ2内部を所望の圧力に調整している。
 そして、上記高周波電源6、昇降装置9、低周波電源13、ガス制御装置15、温度制御装置、圧力制御装置等は、主制御装置16(制御手段)により統合的に制御されており、予め設定した所望のプロセス工程、プロセス条件に従って制御されている。
 次に、プラズマCVD装置1において実施する本実施例における半導体装置用絶縁膜の製造方法を具体的に説明する。
 本実施例における半導体装置用絶縁膜の製造方法において、アルキルボラジン化合物としては、以下の化学式3に示すものを用いる。
Figure JPOXMLDOC01-appb-C000005
 ここで、上記化学式3中の側鎖基R1~R6は、水素原子あるいは炭素数5以下のアルキル基であり、同一又は異なっていても良い。但し、R1~R6の全てが水素原子である場合を除く。
 中でも、R1、R3、R5の少なくとも1つが水素原子であるアルキルボラジン化合物が好ましい。
 そして、本実施例における半導体装置用絶縁膜の製造方法は、上述したプラズマCVD装置1において、概略して、以下の手順で実施される。
(1)キャリアガスと共に上記化学式3で示されるアルキルボラジン化合物を気化した原料ガスを含有する混合ガスを、ガスノズル14から真空チャンバ2内に供給する。
(2)真空チャンバ2に高周波アンテナ4から電磁波を入射して、供給された混合ガスの少なくとも一部を電離させて、プラズマを形成する。このとき、プラズマは、ICP型のプラズマ発生機構により、電子密度の高い誘導結合型のプラズマ場として形成される。
(3)このプラズマにより、アルキルボラジン化合物中のボラジン骨格系分子(ボラジン環)と側鎖基とが解離された後、ボラジン骨格系分子同士が気相重合することにより、支持台7上に載置された基板8の表面に、ボラジン骨格構造膜が半導体装置用絶縁膜として成膜されることになる。
 成膜の際には、アルキルボラジン化合物から解離した側鎖基、特に、アルキル基が、薄膜中に取り込まれないように成膜することが望ましく、そのようにすることで、気相重合されたボラジン骨格系分子を更に高分子量化して、特性のよい絶縁膜にすることができる。そのために、本実施例においては、基板8の配置位置を工夫することにより、更に具体的には、昇降装置9を用いて、天井板3から基板8(支持台7の表面)までの距離を離すことにより、プラズマ密度の高いプラズマ発生領域との間に距離を取って、プラズマ発生領域から電子密度が拡散して減少するプラズマ拡散領域に基板8を配置するようにしている。
 ここで、基板8をプラズマ拡散領域に配置することについて、図2を用いて、更に詳しく説明する。
 図2(a)に、平行平板型のプラズマ発生機構を備えた従来のプラズマCVD装置の概略構成図を示す。図2(a)に示すように、従来のプラズマCVD装置では、真空チャンバ21の内部に、支持台兼電極となる下部電極22と上部電極23とを平行に配置することにより、平行平板型のプラズマ発生機構を構成するようにしている。そして、下部電極22上に基板24を載置し、所定の原料ガスを供給し、下部電極22と上部電極23との間に高周波電圧を印加することにより、下部電極22と上部電極23との間にプラズマを形成するようにしている。
 このプラズマでは、図2(a)右図に示すように、下部電極22と上部電極23との間の略全域を、プラズマ発生領域と呼ばれる、電子密度が高くフラットな領域が占めている。又、下部電極22、上部電極23の極近傍(例えば、図2(a)に示す領域A)では、電子密度が急激に減少していく、シース領域と呼ばれる領域が存在する。この領域Aでは、電子は加速される。通常、シースは基板24の上の数mmの領域で発生する。下部電極22(基板24)の位置を昇降させたとしても、平行平板型のプラズマ発生領域は、変わることはない。
 このように、平行平板型のプラズマ発生機構を備えた従来のプラズマCVD装置では、基板24とプラズマの電子密度が高い領域との位置が近い。そのため、プラズマ中で解離されたアルキルボラジン化合物中のボラジン骨格系分子とアルキル基とが、励起されたまま基板24表面へ輸送されることになり、ボラジン骨格系分子同士が気相重合する際に、励起されたアルキル基と再び結合する確率が高い。その結果、ボラジン骨格構造膜中にアルキル基が取り込まれることになり、薄膜中の炭素量を低減することができず、リーク電流を低減することができなかった。
 図2(b)に、図1に示した本発明に係るプラズマCVD装置1の概略構成図を示す。図2(b)にも示すように、本発明に係るプラズマCVD装置1は、天井板3の上部(直上)に高周波アンテナ4が配置される構成となっている。そして、高周波アンテナ4から真空チャンバ2内に入射される電磁波によって、その内部にプラズマが形成される。このプラズマの電子密度(≒プラズマ密度)の変化を、天井板3から離れる方向に沿って示すと、図2(b)右図に示すように、プラズマは、天井板3から少し離れた位置に電子密度の中心を持つように形成され、その中心から支持台7上の基板8の方向に離れるにしたがって、電子密度は緩やかに単調減少していき、プラズマ発生領域から基板方向へ向かい、プラズマ発生領域の最大電子密度の3分の2以下となり、電子が加速されず、濃度勾配のみで拡散する領域であるプラズマ拡散領域が発生する。
 ICP型のプラズマ発生機構の場合には、支持台(基板)の位置に関係なくプラズマが形成できるため、本発明に係るプラズマCVD装置1のように、支持台7が昇降装置9により昇降可能である場合には、支持台7(基板8)を天井板3からより離れた位置に配置することにより、電子密度が低い位置(図2(b)に示すプラズマ拡散領域B)に基板8を配置することになる。
 図2(b)に示すプラズマ拡散領域Bに基板8を配置するように、昇降装置9を制御すればよく、このことにより、基板8の上方に、数cm~数十cmの電子密度の低い領域を確保することができる。
 このように、本発明に係るプラズマCVD装置1では、基板8とプラズマの電子密度が高い領域(プラズマ発生領域)との位置を離すことができる。そのため、プラズマ中で解離されたアルキルボラジン化合物中のアルキル基を、基板8表面へ輸送される前に、中性分子化することができ、ボラジン骨格系分子と再び結合する確率は低く、そのまま排気されることになる。その結果、ボラジン骨格系分子同士が気相重合する際に、ボラジン骨格構造膜中にアルキル基が取り込まれることが低減され、薄膜中の炭素量を低減することができ、リーク電流を低減することができる。
 以上説明したように、本発明に係るプラズマCVD装置1では、ICP型のプラズマ発生機構を用いると共に、昇降装置9により天井板3から離して基板8を配置するので、アルキルボラジン化合物を用いたボラジン骨格構造膜の形成において、解離したアルキル基を中性分子化することができると共に、ボラジン骨格系分子同士の気相重合の反応効率を向上させることができる。その結果、ボラジン骨格構造膜中にアルキル基が取り込まれることを低減して、薄膜中の炭素量を低減し、リーク電流を低減するという顕著な効果を得ることができる。
 なお、プロセス条件にもよるが、一般的に、平行平板型のプラズマ発生機構で得られるプラズマ密度が108~109cm-3程度であるのに対して、ICP型のプラズマ発生機構で得られるプラズマ密度は1010~1011cm-3と1桁以上大きいため、基板の配置位置が共に同一条件であれば、ICP型のプラズマ発生機構のみを用いたというだけでは、上記効果を得ることは難しくなる。これに対して、本発明に係るプラズマCVD装置1では、ICP型のプラズマ発生機構と昇降装置9とを組み合わせて、プラズマ発生領域と共に十分なプラズマ拡散領域を確保しているので、プラズマ発生領域においては、高いプラズマ密度により、アルキルボラジン化合物中のボラジン骨格系分子とアルキル基とを効率的に解離しており、プラズマ拡散領域においては、解離したアルキル基を中性分子化すると共に、ボラジン骨格系分子同士を効率的に気相重合させるという利点が得られる。
 本実施例において、基板8をプラズマ拡散領域に配置して、形成したボラジン骨格構造膜の特性を、表1の条件1~5に示す(表1は、これらの実施例の最後に、他の条件と一緒にまとめて記載した。)。この条件1~5は、表1の原料欄に示すアルキルボラジン化合物を用い、表1に示す膜形成条件により、基板上に膜を形成すると共に形成された膜の各特性を測定し、その結果を表1に併記したものである。表1は形成膜厚が2000Å~3000Åになるように成膜工程の時間を設定している。表1の条件1~5の結果からは、いずれの場合も、低炭素含有量、低誘電率、低リーク電流、高機械的強度の特性を備え、上記特性の長期の安定性を示すことがわかった。
 また、表1の条件3に対する比較例を、表1の比較例1に示す。比較例1は基板位置を、表1に示す条件3と比べ天井板3により近い、プラズマ発生領域となる位置とし、表1に示す条件3と同様の膜形成条件で、基板上の膜を形成すると共に、形成された膜の各特性を測定し、その結果を表1に併記したものである。表1の比較例1の結果からは、ボラジン骨格構造膜中のC含有量が高く、リーク電流も多くなり、絶縁膜として適用可能なリーク電流である5E-8A/cm2より大きくなることがわかる。なお、このC含有量は、薄膜中の元素含有量をX線光電子分光法(XPS;X-ray photoelectron spectroscopy)により分析したものであり、炭素(C)、ホウ素(B)及び窒素(N)の元素含有量の和に対する炭素(C)の含有量の比率(%)、つまり、C/(C+B+N)を求めたものである。
 表1の条件3を基に天井板3からの距離を変えて測定すると、図3(a)に示すような結果が得られた。図3(a)に示すように、天井板からの距離が大きくなるにしたがって、ボラジン骨格構造膜中のC含有量が減っていくことがわかる。そして、C含有量に比例するように、リーク電流も減っていっている。
 又、天井板3からの距離について、適切な範囲を見極めるため、リーク電流、比誘電率の経時変化について、表1の条件3を基に天井板3からの距離を変えて測定すると、図3(b)に示すような結果が得られた。図3(b)に示すように、天井板3からの距離について、その下限は5cmであり、この位置よりも天井板3の方に近づくと、図3(a)でも示したように、解離したアルキル基がそのまま膜中に取り込まれてしまい、膜中のC含有量が多くなるため、リーク電流も多くなってしまう。
 一方、天井板3からの距離について、その上限は30cmであり、この位置よりも天井板3から離れると、ボラジン骨格系分子の反応活性種が失活して、気相重合が進まなくなり、経時劣化を起こしやすい不完全なボラジン骨格構造膜となるため、比誘電率の経時変化が大きくなってしまう。この比誘電率の経時変化は、薄膜形成後とその2週間後の比誘電率とを差分したものである。このことから、天井板3からの距離については、5cm以上、かつ、30cm以下である範囲が望ましいことがわかる。なお、天井板3からの距離が大きくなると、成膜速度が低下してくるため、実用的な時間での成膜ができなくなることから、20cm以下とすることが望ましい。
 又、電子温度の観点から、基板8の配置位置を検討してみると、電子温度が3.5eV以下となる位置に基板8を配置して、成膜を行うことが望ましい。この電子温度は、アルキルボラジン化合物から解離されたアルキル基が再結合した中性分子が、再び解離しないための電子温度であり、この中性分子が解離するために必要な最も低い解離エネルギー3.5eVから、その閾値を定義した。
 本実施例の半導体装置用絶縁膜の製造方法は、実施例1において説明した製造装置及び製造方法を前提として行われるものである。従って、ここでは、実施例1と重複する説明を省略して、本実施例の説明を行う。
 本実施例の半導体装置用絶縁膜の製造方法においては、実施例1において説明した混合ガス(キャリアガス+化学式3で示されるアルキルボラジン化合物を気化した原料ガス)と共に、アンモニア及び炭素数1~3のアルキル基を含むアミン化合物からなる群から選ばれる少なくとも1種を、ガスノズル14から真空チャンバ2内に供給するようにしている。なお、供給方法は図面に記載がないがそれぞれのガスを個別のノズルを使い供給しても良い。そして、真空チャンバ2に高周波アンテナ4から電磁波を入射して、プラズマを形成し、生成したプラズマにより、アルキルボラジン化合物中のボラジン骨格系分子と側鎖基とを解離させた後、ボラジン骨格系分子同士を気相重合させることにより、基板8の表面にボラジン骨格構造膜を成膜するようにしている(図1参照)。なお、炭素数4以上のアミン化合物については、蒸気圧が極めて低く、本発明の使用圧力である10~50mTorrではガス化しないため、成膜への適用には向かない。
 成膜の際には、実施例1と同様に、アルキルボラジン化合物から解離したアルキル基が、薄膜中に取り込まれないように成膜することが望ましい。そこで、本実施例では、実施例1のように、基板8の位置を天井板3から離れて配置していることに加えて、アルキルボラジン化合物と共にアンモニア及び炭素数1~3のアルキル基を含むアミン化合物からなる群から選ばれる少なくとも1種を供給することにより、実施例1と比較して、より効率的にアルキル基を中性分子化することができる。例えば、炭素数2のアミン化合物として、C25NH2、即ち、エチルアミンがあるが、基板8表面へ輸送される前に、解離されたアルキル基とC25NH2を解離したものとを反応させて、中性分子であるアルキルアミンとすることができる。このアルキルアミンは、ボラジン骨格系分子と再び結合する確率は低く、そのまま排気されることになる。従って、実施例1と比較して、ボラジン骨格系分子同士が気相重合する際に、ボラジン骨格構造膜中にアルキル基が取り込まれることがより低減され、薄膜中の炭素量をより低減することができ、リーク電流をより低減することができる。
 更には、後述の図8においても説明するが、アンモニア及び炭素数1~3のアルキル基を含むアミン化合物からなる群から選ばれる少なくとも1種を供給することにより、アルキル基の薄膜中への取り込みを低減することに加えて、ボラジン骨格構造同士の架橋の間に、アンモニア、炭素数1~3のアルキル基を含むアミン化合物等から解離されたN(窒素)がスペーサとして入った構造(B-N-B結合)が形成され、その結果、ボラジン骨格構造同士が縮合しにくくなり、このことも、リーク電流の低減に寄与していると考えられる。
 実際、本実施例において形成されたボラジン骨格構造膜の特性を、表1の条件6~8に示す。条件6~8は、表1の原料欄に示すアミン化合物を用い、表1に示す膜形成条件により、基板上に膜を形成すると共に形成された膜の各特性を測定し、その結果を表1に併記したものである。表1の条件8を基に天井板3からの距離を変えて測定すると、図4に示すような結果が得られた。図4において、C25NH2添加無しのグラフは表1の条件3を基に天井板3からの距離を変えて測定した結果であり、比較のために示したものである(図3(a)参照)。図4のC25NH2添加有りのグラフに示すように、実施例1と同様に、天井板からの距離が大きくなるにしたがって、ボラジン骨格構造膜中のC含有量が減っていく傾向は同じであるが、実施例1(C25NH2添加無しのグラフ)と比較して、ボラジン骨格構造膜中のC含有量が更に低減していることがわかる。なお、このC含有量は、図3(a)と同様に、薄膜中の元素含有量をXPSにより分析して、C/(C+B+N)を求めたものである。
 又、図4からは、同じC含有量であれば、本実施例の場合には、天井板3からの距離をより小さくできることがわかる。天井板3からの距離が大きすぎると、成膜レートが低下(スループットが悪化)するおそれがあるが、本実施例のように、C25NH2等を添加することにより、天井板3からの距離を大きくしなくても、所望のC含有量、即ち、所望の低いリーク電流とすることができ、加えて、成膜レートが低下することもないので、スループットを向上させることができる。但し、アンモニア、炭素数1~3のアルキル基を含むアミン化合物等の添加量が、アルキルボラジン化合物の流量に対して多い場合は、成膜レートが低下するため、アンモニアもしくはアミン化合物添加比(アンモニアもしくはアミン化合物流量/アルキルボラジン化合物流量のモル比)については、30倍以下であることが好ましい。
 なお、炭素数1~3のアルキル基を含むアミン化合物として、具体的には、メチルアミン、エチルアミン、ジメチルアミン、n-プロピルアミン、イソプロピルアミン、トリメチルアミン、ジエチルアミン、ジn-プロピルアミン、トリn-プロピルアミンなどのモノアルキルアミン、ジアルキルアミン、トリアルキルアミンがあげられる。
 本実施例の半導体装置用絶縁膜の製造方法も、実施例1において説明した製造装置及び製造方法を前提として行われるものである。従って、ここでも、実施例1と重複する説明を省略して、本実施例の説明を行う。
 ボラジン骨格構造膜の機械的強度としては、通常、ヤング率10GPa以上であることが求められている。そして、後述の図5(b)のグラフに示すように、ボラジン骨格構造膜を成膜する際にLFパワー(バイアス)を印加しなくても(図5(b)のグラフのLFパワー=0におけるヤング率参照)、この条件は満たされている。しかしながら、ボラジン骨格構造膜の機械的強度を更に向上させるには、成膜時に低周波電源13を用いて、基板8にLFパワーを印加することが望ましい。LFパワーを印加すると、ボラジン骨格系分子同士の気相重合が促進されるため、その機械的強度が向上するだけではなく、耐水性・耐熱性・耐薬品性も改善されるという利点がある。
 本実施例は、実施例2と組み合わせたものである。そこで、ボラジン骨格構造膜の特性を、C25NH2の有無と共にLFパワーを変えて測定した。具体的には、C25NH2の添加が無い表1の条件3及びC25NH2を添加した条件8を基にLFパワーを増加して測定すると、図5(b)に示すような結果が得られた。図5(b)に示すように、C25NH2の有無に関わらず、ヤング率は、LFパワーが増加するに従って増加する。一方、リーク電流は、C25NH2の添加が無い場合には、LFパワーが増加するに従って105倍以上増加するが、C25NH2の添加が有る場合には、LFパワーが増加しても、リーク電流の増加は10倍以下で、絶縁膜として適用可能なリーク電流値である5E-8A/cm2以下を維持できる。このことから、C25NH2の添加が有る場合には、より大きなLFパワーを印加することが可能となり、リーク電流は低く抑制しながら、機械的強度、そして、耐水性・耐熱性・耐薬品性をより改善することが可能となる。
 更に、ボラジン骨格構造膜の特性を、表1の条件9~10に示す。条件9~10は、表1に示す膜形成条件により、基板上に膜を形成すると共に形成された膜の各特性を測定し、その結果を表1に併記したものである。又、表1の条件9を基にLFパワーを変化させると、図5(a)に示すような結果が得られた。LFパワーとリーク電流との相関を確認すると、図5(a)に示すように、リーク電流は、LFパワーの増加に伴って増加する傾向があり、LFパワーが14500W/m2より大きくなると、絶縁膜として適用可能なリーク電流である5E-8A/cm2より大きくなった。ボラジン骨格構造膜を成膜する際には、ボラジン骨格構造を壊すことなく、ボラジン骨格系分子の側鎖基を解離し、ボラジン骨格系分子同士を気相重合することが重要であるが、LFパワーが高くなりすぎると、ボラジン骨格構造が破壊される確率が高くなり、その結果、気相重合されたボラジン骨格系分子のグラファイト化が進み(未結合の分子が増える)、リーク電流の特性に悪影響を及ぼしたものと考えられる。従って、ボラジン骨格構造膜を成膜する際のLFパワーの上限は、リーク電流の観点から、基板8の単位面積当たり14500W/m2以下であることが望ましい。
 本実施例の半導体装置用絶縁膜の製造方法も、実施例1において説明した製造装置及び製造方法を前提として行われるものである。従って、ここでも、実施例1と重複する説明を省略して、本実施例の説明を行う。
 ボラジン骨格構造膜を成膜する際には、基板8に適切なLFパワーを印加するだけではなく、基板8も適切な温度に制御することが望ましい。
 そこで、表1の条件10を基に基板温度を変化させ、基板温度とリーク電流との相関を確認すると、図6に示すように、リーク電流は、700℃を超えるまでは大きな変化はなく、5E-8A/cm2より小さい値であるが、700℃を超えると、絶縁膜として適用可能なリーク電流値である5E-8A/cm2よりより大きくなった。これは、成膜されたボラジン骨格構造膜において、ボラジン骨格系分子同士は単結合状態であることが望ましいが、基板温度が700℃を超えると、ボラジン骨格系分子同士の一部が縮合し始めるため、リーク電流の特性に悪影響を及ぼしたものと考えられる。従って、ボラジン骨格構造膜を成膜する際の基板温度の上限は、リーク電流の観点から、700℃以下であることが望ましい。一方、その下限は、原料ガス、具体的には、アルキルボラジン化合物が真空チャンバ2内部で液化しないように、その気化温度150℃以上であることが望ましい。これは、基板温度が150℃未満である場合には、アルキルボラジン化合物が基板表面で液化してしまうおそれがあり、又、重合が十分に進まず、経時劣化を起こしやすい薄膜が成膜されるおそれがあるからである。なお、下地にAl(アルミニウム)等の金属配線がある場合等には、金属配線等への温度の影響(ダメージ)を考慮して、更に低い400℃を上限の温度とすることもある。
 このように、基板8を適切な温度に制御することにより、ボラジン骨格系分子同士の気相重合を促進させて、リーク電流、そして、機械的強度、耐水性・耐熱性・耐薬品性をより改善することが可能となる。又、薄膜中の不純物の濃度も低減されるという効果も奏する。そして、本実施例は、実施例1だけでなく、実施例2、3とも組み合わせることにより、よりよい改善効果を得ることが可能となる。なお、基板温度の条件は、後述する反応促進工程(実施例6参照)においても、同じ条件としてよい。
 本実施例の半導体装置用絶縁膜の製造方法も、実施例1において説明した製造装置及び製造方法を前提として行われるものである。従って、ここでも、実施例1と重複する説明を省略して、本実施例の説明を行う。
 ボラジン骨格構造膜を成膜する際には、基板8に適切なLFパワーを印加したり、適切な温度に制御したりするだけではなく、RFパワーも適切に印可することが望ましい。
 そこで、表1の条件10を基にRFパワーを変化させ、RFパワーとリーク電流との相関を確認すると、図7に示すように、リーク電流は、RFパワーの増加に伴って徐々に増加する傾向があり、RFパワーが53000W/m2より大きくなると、急激に増加して、5E-8A/cm2より大きくなった。ボラジン骨格構造膜を成膜する際には、ボラジン骨格構造を壊すことなく、ボラジン骨格系分子の側鎖基を解離し、ボラジン骨格系分子同士を気相重合することが重要であるが、RFパワーが高くなりすぎると、ボラジン骨格構造が破壊される確率が高くなり、その結果、気相重合されたボラジン骨格系分子のグラファイト化が進み(未結合の分子が増える)、リーク電流の特性に悪影響を及ぼしたものと考えられる。従って、ボラジン骨格構造膜を成膜する際のRFパワーの上限は、リーク電流の観点から、単位面積当たり53000W/m2以下であることが望ましい。一方、その下限は、プラズマを安定して点火することを考慮して、単位面積当たり800W/m2以上であることが望ましい。
 このように、RFを適切なパワーで印加することにより、ボラジン骨格系分子同士の気相重合を促進させて、リーク電流、そして、機械的強度、耐水性・耐熱性・耐薬品性をより改善することが可能となる。そして、本実施例は、実施例1だけでなく、実施例2、3、4とも組み合わせることにより、よりよい改善効果を得ることが可能となる。
 上記実施例1~5においては、ボラジン骨格構造膜自体を成膜する成膜工程について説明してきたが、上記実施例1~5の製造方法を用いた成膜工程の後、成膜した薄膜に対して後処理(以降、反応促進工程と呼ぶ。)を実施することにより、つまり、成膜工程及び反応促進工程の2段階のプロセス工程から構成することにより、特に、薄膜の経時変化特性を大きく改善することが可能である。
 上述したように、実施例1~5の製造方法を用いた成膜工程は、アルキルボラジン化合物のボラジン骨格構造を壊すことなく、アルキルボラジン化合物の側鎖基を解離すると共に、解離した側鎖基を取り込まないようにして、ボラジン骨格系分子同士を気相重合するようにしている。この成膜工程により、ボラジン骨格構造を有する薄膜が成膜されて、ボラジン骨格構造膜の基本的特性、具体的には、低誘電率化、低リーク電流、高機械的強度の特性が確立される。そして、この成膜工程の終了後、反応促進工程へ移行する。
 本実施例における反応促進工程は、基板8に成膜された薄膜におけるボラジン骨格系分子の架橋反応を促進するためのプラズマ処理プロセスである。従って、成膜を行う必要はないため、原料ガスを含有しないガス、例えば、キャリアガスが主となるプラズマを用いて、成膜された薄膜のプラズマ処理を行っている。このとき、反応促進工程で使用するキャリアガスは、薄膜自体との反応を無くすため、希ガス(He、Ar等)やN2等のガスが特に望ましい。なお、ボラジン骨格系分子の架橋反応の促進手段としては、上記プラズマ処理以外に、熱処理、紫外線照射処理、電子線照射処理、イオン照射処理等でも有効である。
 この反応促進工程においても、成膜工程と同様に、LFパワー、RFパワーに適切な条件がある。例えば、反応促進工程におけるLFパワーは、ボラジン骨格系分子の架橋反応を促進するために、成膜工程におけるLFパワーより大きくしているが、あまり大きくしすぎると、スパッタリング効果により薄膜へのダメージが発生するので、127400W/m2以下であることが望ましい。更に、薄膜の経時劣化を防止するには、LFパワーの印加時間も重要であり、[LFパワー×時間]が254500W/m2・s以上であることが望ましい。これ未満である場合には、経時劣化の改善効果を十分に得ることができない。
 又、反応促進工程におけるRFパワーは、あまり大きくしすぎると、機械強度が顕著に低下する傾向があるので、反応促進工程におけるRFパワーは、53000W/m2以下であることが望ましい。又、RFパワーの下限側は、プラズマを安定的に点火することを考慮して、800W/m2以上であることが望ましい。このように、反応促進工程におけるRFパワーは、800W/m2以上かつ53000W/m2以下であることが望ましい。これは、成膜工程における条件と同じである。
 この反応促進工程では、成膜工程で形成されたボラジン骨格構造膜中に残存する反応活性基を縮合させることにより架橋反応を促進すると共に、B-H結合を除去している。従って、架橋反応の促進により、更に低誘電率化が促進されると共に、水分との反応の活性点となるB-H結合の除去により経時変化が抑制され、安定性が向上することになる。又、架橋反応の促進により、更に高機械的強度が図られ(機械的強度ヤング率10GPa以上)、その結果、耐薬品性の向上、加工性の向上、CMP(Chemical Mechanical Polish)耐性が向上することになる。加えて、有機系高分子材料と比較して耐熱性に優れた無機高分子系材料を用いているため、耐熱化も達成できる。
 本実施例において形成されたボラジン骨格構造膜の特性を、表1の条件11~15に示す。条件11~15は、表1に示す膜形成条件により、基板上に膜を形成すると共に、表1の反応促進工程欄に示す反応促進工程を行い、形成された膜の各特性を測定し、その結果を表1に併記したものである。この反応促進工程を実施することによる経時劣化に対する効果は顕著なものである。具体的には、反応促進工程が無い条件1~10では、14日経過後の比誘電率の変化は、膜に求められる特性条件の0.1以下は満たしているものの、比誘電率がその初期値と比べ0.03以上変化している。それに対して、反応促進工程が有る条件11~15では、14日が過ぎても、比誘電率の変化は0.01以下となっており、反応促進工程が無い場合に比べ経時変化をより抑制できることがわかる。なお、この比誘電率の安定性の確認は、温度25℃、湿度50%Rhの環境下に放置して、評価した。
 なお、上記実施例1~6を全て組み合わせる場合には、例えば、以下のような手順で、本発明に係る製造方法を、図1に示すプラズマCVD装置1で実施することになる。
(ステップ1)
 図示しない搬送装置を用いて、ゲートドア17から真空チャンバ2内に基板8を搬送し、支持台7上に載置すると共に静電チャックにて基板8を吸着保持する。支持台7は、温度制御装置により、150℃~700℃の範囲のいずれかの温度に制御しておき、支持台7の温度制御により基板8の温度を所望の設定温度でプロセスできるようにしておく。又、支持台7(基板8)の高さ位置は、天井板3から5cm~30cmの範囲のいずれかの位置に、昇降装置9により移動しておく。
(ステップ2)
 ガス制御手段15を用いて、真空チャンバ2内にガスノズル14からキャリアガス(例えば、Heガス)を供給し、真空チャンバ2内の真空度を真空制御装置により10~50mTorr程度に制御すると共に、整合器5を介して、高周波電源6から周波数13.56MHzのRFパワーを高周波アンテナ4に給電して、真空チャンバ2内に電磁波を入射し、真空チャンバ2内にプラズマを生成する。高周波電源6が給電するRFパワーは、一連のプロセスが終了するまで、800W/m2~53000W/m2の範囲のいずれかの電力で制御される。なお、ガスノズル14から供給されるキャリアガスの流量は、一連のプロセスが終了するまで、適宜な流量に制御されるが、200sccm~1000sccm程度がよい。
(ステップ3)
 プラズマの安定化後、整合器12を介して、低周波電源13から周波数4MHzのLFパワーを電極11に給電すると共に、真空チャンバ2内にガスノズル14から気化した化学式3に示したアルキルボラジン化合物を所定量まで漸増しながら供給して、真空チャンバ2内の真空度を10~50mTorr程度に制御する。このとき、アンモニア、炭素数1~3のアルキル基を含むアミン化合物(例えば、C25NH2)等も200sccm程度、アルキルボラジン化合物と共に供給する。低周波電源13が給電するLFパワーは、成膜プロセスにおいては、0W/m2~14500W/m2の範囲のいずれかの電力で制御される。そして、以上のプロセス条件により、成膜工程における成膜反応、即ち、プラズマ状態となったボラジン骨格系分子同士が気相重合されて、基板8に吸着することにより所望のボラジン骨格構造膜が形成される成膜反応が行われることになる。
(ステップ4)
 成膜工程が所定時間実施され、所望の膜厚の薄膜が基板8上に成膜されると、成膜工程は終了し、続いて、反応促進工程が実施される。具体的には、電極11に給電する低周波電源13からのLFパワーを、成膜工程におけるLFパワーとは異なる大きさにすると共に、ガスノズル14から真空チャンバ2内に供給するアルキルボラジン化合物、アンモニア、炭素数1~3のアルキル基を含むアミン化合物等を徐々に漸減しながら供給して、真空チャンバ2内の真空度を10~50mTorr程度に制御している。この反応促進工程において、低周波電源13による[LFパワー×印加時間]は、254500W/m2・秒以上であり、かつ、そのLFパワーが127400W/m2以下となる電力で制御される。そして、以上のプロセス条件により、反応促進工程における反応促進、即ち、ボラジン骨格系分子同士の架橋反応が促進されることになる。
 上記手順を実施することにより、低誘電率、低リーク電流、高機械的強度の特性を備えたボラジン骨格構造膜を実現することに加えて、更に、低誘電率、低リーク電流、高機械的強度の特性の経時変化が小さいボラジン骨格構造膜を実現することができる。そして、その具体的特性として、低誘電率化(比誘電率3.5以下)、低リーク電流化(リーク電流5E-8A/cm2以下)、高機械的強度(ヤング率10GPa以上)を実現すると共に、特性の安定性として、比誘電率の安定性(比誘電率の経時変化0.1以下)を実現することができる。
<本発明に係る半導体装置用絶縁膜の特徴>
 上記実施例1~6の製造方法を用いて形成された本発明に係る半導体装置用絶縁膜(ボラジン骨格構造膜)は、低誘電率化(比誘電率3.5以下)、低リーク電流化(リーク電流5E-8A/cm2以下)の特性を有すると共に、更に、以下に示す特性を有するものとなる。
(1)赤外線吸収測定
 赤外線吸収測定は官能基の情報や化合物の定性等を測定することができ、その測定結果から、対象物の特性(例えば、吸湿性、経時安定性等)を判断することができるものである。測定にはサーモニコレー社製NEXUS670を用いた。比較例で得られたボラジン骨格構造膜と本発明により作製したボラジン骨格構造膜とを、赤外線吸収測定を用いて評価を行うと、図8に示すように、B-N結合に対応する大きな吸収ピークが波数1250~1450cm-1の領域に観測され、又、B-H結合に対応する吸収ピークが波数2400~2600cm-1の領域に、B-N-B結合に対応する吸収ピークが波数760~800cm-1の領域に観測される。
 そして、B-N結合に対応する波数1250~1450cm-1の領域での吸収強度をAとし、B-H結合に対応する波数2400~2600cm-1の領域での吸収強度をB1とすると、本発明により作製したボラジン骨格構造膜においては、表1の条件1~15に示すように、比[B1/A]が0.05以下となる。この結果から、本発明により得られる膜は、B-H結合が少なく、経時安定性が高いことがわかる。
 又、B-N-B結合に対応する波数760~800cm-1の領域での吸収強度をB2とすると、本発明により作製したボラジン骨格構造膜においては、表1の条件1~15に示すように、比[B2/A]が0.10以上となる。B-N-B結合は、ボラジン骨格構造同士の架橋の間に、アルキルボラジンやアルキルアミンン等から解離されたN(窒素)が入った構造であり、このような構造となることにより、経時安定性が高くなる。この結果から、本発明により得られる膜は、B-N-B結合が多く、経時安定性が高いことがわかる。より好ましくは、比[B1/A]が0.05以下であり、かつ、比[B2/A]が0.10以上であれば、経時安定性が更に向上する。
(2)XPS測定
 XPS測定は、元素の結合エネルギー等を測定することができ、その測定結果から、対象物の特性(例えば、組成比等)を判断することができるものである。測定にはULVAC-PHI製Quantum2000を用いた。比較例で得られたボラジン骨格構造膜と本発明により作製したボラジン骨格構造膜を、XPS測定を用いて評価を行い、B(ホウ素)、N(窒素)、C(炭素)の元素含有量(mol%)を各々得て、これらの測定結果から、炭素含有量[C/(B+N+C)]を求めた。表1の比較例1は炭素含有量が40%だったのに対して、本発明により作製したボラジン骨格構造膜においては、表1の条件1~15に示すように、35%以下の低い炭素含有量となっており、成膜時におけるアルキル基の取り込みを抑制できていることがわかる。
(3)GIXA(斜入射X線分析法)測定
 GIXA(Grazing Incidence X-ray Analysis)測定は、X線を非常に浅い角度で試料に入射すると全反射が生じ、全反射臨界角近傍においてはX線の侵入深さが数nm~数100nm程度と非常に小さくなるという現象を用いて、薄膜の密度等を測定することができるものである。測定にはPhilis製 X’Pert PRO MRDを用いた。比較例で得られたボラジン骨格構造膜と本発明により作製したボラジン骨格構造膜とを、GIXA測定を用いて測定すると共に、それらの膜のリーク電流を測定した。図9は、比較例で得られたボラジン骨格構造膜である表1の比較例1と、本発明により作製したボラジン骨格構造膜である表1の条件1~15の密度とリーク電流を比較したものである。
 図9からわかるように、比較例1は、薄膜の平均密度が1.4g/cm3程度であり、しかも、リーク電流が、5E-8A/cm2より大きく、絶縁膜に求められる特性条件を満たしていなかった。一方、本発明の場合には、薄膜の平均密度が1.5g/cm3以上であり、しかも、リーク電流が、5E-8A/cm2より小さく、絶縁膜に求められる特性条件を満たしている。ちなみに、窒化ホウ素(hBN)自体の密度は2.2g/cm3であるため、本発明により作製したボラジン骨格構造膜の密度も、この数値が上限となる。これらの結果から、平均密度が1.5g/cm3以上であれば、薄膜のリーク電流が低くなることがわかる。これは、ボラジン骨格系分子同士の気相重合が十分に進み、理想的な架橋構造が形成されているためであり、機械的強度も十分なものとなる。
 このように、本発明に係る半導体装置用絶縁膜は、低誘電率、低リーク電流、高機械的強度の特性を備えると共に、これらの特性の経時変化が小さいものである。従って、半導体装置、例えば、CPU、RAM、ASIC等の半導体デバイスを製造する際、配線形成工程において、基板に配線を形成した後、絶縁膜形成工程において、基板に本発明に係る半導体装置用絶縁膜を形成することにより、配線間に層間絶縁膜として配置して、半導体装置の高集積化、高速化を安定して実現することができる。
 ここで、表1(条件1~15、比較例1)を、以下に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明に係る半導体装置用絶縁膜は、半導体デバイスの層間絶縁膜に好適なものであり、又、半導体デバイスの銅拡散防止膜、エッチストッパ層、パシベーション膜、ハードマスク、ハイストレス膜等にも適用可能である。

Claims (23)

  1.  下記化学式1に示すアルキルボラジン化合物を気化した原料ガスを含有するガスをチャンバ内に供給し、
     誘導結合型のプラズマ生成手段を用いて、前記チャンバ内に電磁波を入射して、前記ガスをプラズマ状態とし、
     前記プラズマのプラズマ拡散領域に基板を配置し、
     前記プラズマにより解離された前記アルキルボラジン化合物中のボラジン骨格系分子を基本単位として気相重合し、半導体装置用絶縁膜として前記基板に成膜することを特徴とする半導体装置用絶縁膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     ここで、上記化学式1中のR1~R6は、水素原子あるいは炭素数5以下のアルキル基であり、同一又は異なっていても良い。但し、R1~R6の全てが水素原子である場合を除く。
  2.  請求項1に記載の半導体装置用絶縁膜の製造方法において、
     前記化学式1に示すアルキルボラジン化合物が、更に、R1、R3、R5の少なくとも1つが水素原子であることを特徴とする半導体装置用絶縁膜の製造方法。
  3.  請求項1又は請求項2に記載の半導体装置用絶縁膜の製造方法において、
     前記プラズマ生成手段は、前記チャンバの天井板の直上に配置したアンテナから、前記チャンバ内に電磁波を入射するものであり、
     前記基板は、前記天井板下面からの距離が5cm~30cmとなる位置に配置されることを特徴とする半導体装置用絶縁膜の製造方法。
  4.  請求項1から請求項3のいずれかに記載の半導体装置用絶縁膜の製造方法において、
     前記基板は、電子温度が3.5eV以下となる領域に配置されることを特徴とする半導体装置用絶縁膜の製造方法。
  5.  請求項1から請求項4のいずれかに記載の半導体装置用絶縁膜の製造方法において、
     前記アルキルボラジン化合物と共に、アンモニア及び炭素数1~3のアルキル基を含むアミン化合物からなる群から選ばれる少なくとも1種を含有するガスを、前記チャンバ内に供給することを特徴とする半導体装置用絶縁膜の製造方法。
  6.  請求項1から請求項5のいずれかに記載の半導体装置用絶縁膜の製造方法において、
     前記半導体装置用絶縁膜の成膜の後、前記アルキルボラジン化合物を含有しないガスが主となるプラズマで、成膜した前記半導体装置用絶縁膜を処理することを特徴とする半導体装置用絶縁膜の製造方法。
  7.  請求項1から請求項6のいずれかに記載の半導体装置用絶縁膜の製造方法において、
     前記基板にバイアスを印加することを特徴とする半導体装置用絶縁膜の製造方法。
  8.  請求項1から請求項7のいずれかに記載の半導体装置用絶縁膜の製造方法において、
     前記基板の温度を150℃以上700℃以下とすることを特徴とする半導体装置用絶縁膜の製造方法。
  9.  基板に配線を形成する配線形成工程と、
     請求項1から請求項8のいずれかに記載の半導体装置用絶縁膜の製造方法を用いて、基板に絶縁膜を形成する絶縁膜形成工程とを有することを特徴とする半導体装置の製造方法。
  10.  チャンバ内に所望のガスを供給するガス供給手段と、
     前記チャンバ内に電磁波を入射して、前記ガスをプラズマ状態とする誘導結合型のプラズマ生成手段と、
     基板を前記チャンバ内の所望の位置へ配置する配置手段と、
     前記ガス供給手段、前記プラズマ生成手段及び前記配置手段を制御する制御手段とを備え、
     前記制御手段は、
     前記ガス供給手段により、下記化学式2に示すアルキルボラジン化合物を気化した原料ガスを含有するガスを前記チャンバ内に供給し、
     前記プラズマ生成手段により、前記ガスをプラズマ状態とし、
     前記配置手段により、前記プラズマのプラズマ拡散領域に前記基板を配置し、
     前記プラズマにより解離された前記アルキルボラジン化合物中のボラジン骨格系分子を基本単位として気相重合し、半導体装置用絶縁膜として前記基板に成膜することを特徴とする半導体装置用絶縁膜の製造装置。
    Figure JPOXMLDOC01-appb-C000002
     ここで、上記化学式2中のR1~R6は、水素原子あるいは炭素数5以下のアルキル基であり、同一又は異なっていても良い。但し、R1~R6の全てが水素原子である場合を除く。
  11.  請求項10に記載の半導体装置用絶縁膜の製造装置において、
     前記ガス供給手段は、前記化学式2に示すアルキルボラジン化合物が、更に、R1、R3、R5の少なくとも1つが水素原子であるものを供給することを特徴とする半導体装置用絶縁膜の製造装置。
  12.  請求項10又は請求項11に記載の半導体装置用絶縁膜の製造装置において、
     前記プラズマ生成手段は、前記チャンバの天井板の直上に配置したアンテナから、前記チャンバ内に電磁波を入射するものであり、
     前記配置手段は、前記天井板下面からの距離が5cm~30cmとなる位置に前記基板を配置することを特徴とする半導体装置用絶縁膜の製造装置。
  13.  請求項10から請求項12のいずれかに記載の半導体装置用絶縁膜の製造装置において、
     前記配置手段は、電子温度が3.5eV以下となる領域に前記基板を配置することを特徴とする半導体装置用絶縁膜の製造装置。
  14.  請求項10から請求項13のいずれかに記載の半導体装置用絶縁膜の製造装置において、
     前記ガス供給手段は、前記アルキルボラジン化合物と共に、アンモニア及び炭素数1~3のアルキル基を含むアミン化合物からなる群から選ばれる少なくとも1種を含有するガスを、前記チャンバ内に供給することを特徴とする半導体装置用絶縁膜の製造装置。
  15.  請求項10から請求項14のいずれかに記載の半導体装置用絶縁膜の製造装置において、
     前記制御手段は、前記半導体装置用絶縁膜の成膜の後、前記ガス供給手段及び前記プラズマ生成手段を用いて、前記アルキルボラジン化合物を含有しないガスが主となるプラズマを生成し、当該プラズマで、成膜した前記半導体装置用絶縁膜を処理することを特徴とする半導体装置用絶縁膜の製造装置。
  16.  請求項10から請求項15のいずれかに記載の半導体装置用絶縁膜の製造装置において、
     前記基板にバイアスを印加するバイアス印加手段を更に備え、
     前記バイアス印加手段により、前記基板にバイアスを印加することを特徴とする半導体装置用絶縁膜の製造装置。
  17.  請求項10から請求項16のいずれかに記載の半導体装置用絶縁膜の製造装置において、
     前記基板の温度を制御する基板温度制御手段を更に備え、
     前記基板温度制御手段により、前記基板の温度を150℃以上700℃以下に制御することを特徴とする半導体装置用絶縁膜の製造装置。
  18.  請求項1から請求項8のいずれかに記載の半導体装置用絶縁膜の製造方法を用いて形成されたことを特徴とする半導体装置用絶縁膜。
  19.  請求項18に記載の半導体装置用絶縁膜が、赤外吸収測定において、
     波数1250~1450cm-1での吸収強度Aと波数2400~2600cm-1での吸収強度B1との比[B1/A]が、0.05以下であることを特徴とする半導体装置用絶縁膜。
  20.  請求項18又は請求項19に記載の半導体装置用絶縁膜が、赤外吸収測定において、
     波数1250~1450cm-1での吸収強度Aと波数760~800cm-1での吸収強度B2との比[B2/A]が、0.1以上であることを特徴とする半導体装置用絶縁膜。
  21.  請求項18に記載の半導体装置用絶縁膜が、X線光電子分光法において、
     膜内部の構成元素のうち、ホウ素原子B、窒素原子N及び炭素原子Cの含有量の和に対する炭素原子Cの含有量の比率[C/(B+N+C)]が、35%以下であることを特徴とする半導体装置用絶縁膜。
  22.  請求項18に記載の半導体装置用絶縁膜が、斜入射X線分析において、
     膜の平均密度が1.5g/cm3以上2.2g/cm3以下であることを特徴とする半導体装置用絶縁膜。
  23.  請求項18から請求項22のいずれかに記載の半導体装置用絶縁膜を用いたことを特徴とする半導体装置。
PCT/JP2009/061659 2008-06-30 2009-06-25 半導体装置用絶縁膜、半導体装置用絶縁膜の製造方法及び製造装置、半導体装置及びその製造方法 WO2010001815A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/001,256 US8288294B2 (en) 2008-06-30 2009-06-25 Insulating film for semiconductor device, process and apparatus for producing insulating film for semiconductor device, semiconductor device, and process for producing the semiconductor device
KR1020107029442A KR101181691B1 (ko) 2008-06-30 2009-06-25 반도체 장치용 절연막, 반도체 장치용 절연막의 제조 방법 및 제조 장치, 반도체 장치 및 그 제조 방법
EP09773393.5A EP2302667A4 (en) 2008-06-30 2009-06-25 INSULATING FILM FOR SEMICONDUCTOR DEVICE, METHOD AND APPARATUS FOR MANUFACTURING INSULATING FILM FOR SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-169847 2008-06-30
JP2008169847A JP5330747B2 (ja) 2008-06-30 2008-06-30 半導体装置用絶縁膜、半導体装置用絶縁膜の製造方法及び製造装置、半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2010001815A1 true WO2010001815A1 (ja) 2010-01-07

Family

ID=41465912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061659 WO2010001815A1 (ja) 2008-06-30 2009-06-25 半導体装置用絶縁膜、半導体装置用絶縁膜の製造方法及び製造装置、半導体装置及びその製造方法

Country Status (6)

Country Link
US (1) US8288294B2 (ja)
EP (1) EP2302667A4 (ja)
JP (1) JP5330747B2 (ja)
KR (1) KR101181691B1 (ja)
TW (1) TWI398924B (ja)
WO (1) WO2010001815A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260586B2 (ja) * 2010-03-12 2013-08-14 三菱重工業株式会社 半導体装置用絶縁膜の製造方法、半導体装置の製造方法
US8476743B2 (en) * 2011-09-09 2013-07-02 International Business Machines Corporation C-rich carbon boron nitride dielectric films for use in electronic devices
US20140000810A1 (en) * 2011-12-29 2014-01-02 Mark A. Franklin Plasma Activation System
JP6007031B2 (ja) * 2012-08-23 2016-10-12 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
JP2015103729A (ja) * 2013-11-27 2015-06-04 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US10535531B2 (en) * 2017-04-26 2020-01-14 Tokyo Electron Limited Method of cyclic plasma etching of organic film using carbon-based chemistry
US10541146B2 (en) * 2017-04-26 2020-01-21 Tokyo Electron Limited Method of cyclic plasma etching of organic film using sulfur-based chemistry
KR102638422B1 (ko) * 2017-04-26 2024-02-19 도쿄엘렉트론가부시키가이샤 유황 및/또는 탄소계 화학물을 사용하는 유기막의 주기적 플라즈마 에칭 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186402A (ja) * 2002-06-19 2004-07-02 Mitsubishi Heavy Ind Ltd プラズマ処理装置及びプラズマ処理方法
JP2006032745A (ja) * 2004-07-20 2006-02-02 Kyoto Univ ボラジン系ポリマー及びボラジン含有ケイ素系ポリマーの製造方法
JP2007266489A (ja) * 2006-03-29 2007-10-11 Mitsubishi Electric Corp プラズマcvd装置
JP2007324536A (ja) * 2006-06-05 2007-12-13 Renesas Technology Corp 層間絶縁膜およびその製造方法、ならびに半導体装置
JP2008311548A (ja) * 2007-06-18 2008-12-25 Mitsubishi Heavy Ind Ltd 半導体装置の製造方法、半導体装置用絶縁膜及びその製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508629B2 (ja) 1999-06-28 2004-03-22 三菱電機株式会社 耐熱低誘電率薄膜の形成方法、その耐熱低誘電率薄膜からなる半導体層間絶縁膜及びこの半導体層間絶縁膜を用いた半導体装置
JP3778045B2 (ja) 2001-10-09 2006-05-24 三菱電機株式会社 低誘電率材料の製造方法および低誘電率材料、並びにこの低誘電率材料を用いた絶縁膜および半導体装置
JP3778164B2 (ja) 2002-12-06 2006-05-24 三菱電機株式会社 低誘電率膜の形成方法
JP2005167114A (ja) * 2003-12-05 2005-06-23 Mitsubishi Heavy Ind Ltd 窒化ホウ素膜の成膜方法及び成膜装置
JP4415921B2 (ja) 2005-09-15 2010-02-17 三菱電機株式会社 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186402A (ja) * 2002-06-19 2004-07-02 Mitsubishi Heavy Ind Ltd プラズマ処理装置及びプラズマ処理方法
JP2006032745A (ja) * 2004-07-20 2006-02-02 Kyoto Univ ボラジン系ポリマー及びボラジン含有ケイ素系ポリマーの製造方法
JP2007266489A (ja) * 2006-03-29 2007-10-11 Mitsubishi Electric Corp プラズマcvd装置
WO2007116644A1 (ja) * 2006-03-29 2007-10-18 Mitsubishi Electric Corporation プラズマcvd装置および薄膜形成方法並びに半導体装置
JP2007324536A (ja) * 2006-06-05 2007-12-13 Renesas Technology Corp 層間絶縁膜およびその製造方法、ならびに半導体装置
JP2008311548A (ja) * 2007-06-18 2008-12-25 Mitsubishi Heavy Ind Ltd 半導体装置の製造方法、半導体装置用絶縁膜及びその製造装置

Also Published As

Publication number Publication date
EP2302667A4 (en) 2014-06-25
EP2302667A1 (en) 2011-03-30
US20110266660A1 (en) 2011-11-03
TWI398924B (zh) 2013-06-11
TW201021120A (en) 2010-06-01
KR101181691B1 (ko) 2012-09-19
US8288294B2 (en) 2012-10-16
KR20110019386A (ko) 2011-02-25
JP5330747B2 (ja) 2013-10-30
JP2010010516A (ja) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5330747B2 (ja) 半導体装置用絶縁膜、半導体装置用絶縁膜の製造方法及び製造装置、半導体装置及びその製造方法
JP5022116B2 (ja) 半導体装置の製造方法及び製造装置
TWI426545B (zh) 沉積具有改進密度與階梯覆蓋率之非晶系碳膜的方法
US7049247B2 (en) Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device made
US20080076266A1 (en) Method for forming insulation film having high density
CN108220922A (zh) 成膜方法、硼膜以及成膜装置
JP2011517848A (ja) 改善された密度および段差被覆性をもつ非晶質炭素膜を堆積させる方法
JP4986625B2 (ja) 膜の製造方法および当該方法で製造された膜を用いた半導体装置
US20040058199A1 (en) Hexagonal boron nitride film with low dielectric constant, layer dielectric film and method of production thereof, and plasma CVD apparatus
US9236430B2 (en) Porous insulation film, and a semiconductor device including such porous insulation film
US20220293417A1 (en) Silicon compounds and methods for depositing films using same
JP5260586B2 (ja) 半導体装置用絶縁膜の製造方法、半導体装置の製造方法
JP4117768B2 (ja) 半導体基板上のシロキサン重合体膜及びその製造方法
US9371430B2 (en) Porous film with high hardness and a low dielectric constant and preparation method thereof
Oh et al. Bonding structure of the cross-link in organosilicate films using O2/BTMSM precursors
US20100151151A1 (en) Method of forming low-k film having chemical resistance
JP5750230B2 (ja) 炭窒化珪素膜及び炭窒化珪素膜の成膜方法
US11404263B2 (en) Deposition of low-stress carbon-containing layers
JP5607394B2 (ja) 層間絶縁膜の成膜方法および層間絶縁膜
JP2013197188A (ja) 低誘電率膜の形成方法、並びに、これにより形成された半導体用絶縁膜およびこれを有する半導体装置
JP2007318070A (ja) 絶縁膜材料、この絶縁膜材料を用いた成膜方法および絶縁膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773393

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009773393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009773393

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107029442

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13001256

Country of ref document: US