WO2009157513A1 - 無線通信装置および無線通信方法 - Google Patents

無線通信装置および無線通信方法 Download PDF

Info

Publication number
WO2009157513A1
WO2009157513A1 PCT/JP2009/061631 JP2009061631W WO2009157513A1 WO 2009157513 A1 WO2009157513 A1 WO 2009157513A1 JP 2009061631 W JP2009061631 W JP 2009061631W WO 2009157513 A1 WO2009157513 A1 WO 2009157513A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
antenna
communication
transmission antenna
unit
Prior art date
Application number
PCT/JP2009/061631
Other languages
English (en)
French (fr)
Inventor
吉雅 草野
琢 中山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP09770223A priority Critical patent/EP2293476A1/en
Priority to JP2010518054A priority patent/JP5133413B2/ja
Priority to US13/001,593 priority patent/US8559877B2/en
Priority to KR1020107029532A priority patent/KR101169881B1/ko
Publication of WO2009157513A1 publication Critical patent/WO2009157513A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present invention relates to a wireless communication apparatus and a wireless communication method for simultaneously transmitting a plurality of communication data series using the same frequency band to a receiving apparatus via a plurality of transmission antennas.
  • MIMO multiplexing technique
  • the interval between the antennas should be considerably larger than the wavelength of the used frequency ( For example, 4 ⁇ or more) is common.
  • the receiving device when the communication quality (for example, SNR) is deteriorated below a predetermined threshold, the receiving device is more than an increase in communication speed by using a plurality of communication data sequences. In order to continue the communication with the transmission device as much as possible, it can be determined that a single communication data sequence is used.
  • the transmitting device transmits only one communication data series based on the feedback information transmitted from the receiving device. That is, in such a case, the improvement in the separability of the communication data series due to the diversity effect described above is irrelevant, and the communication speed cannot be increased by simultaneously transmitting a plurality of communication data series.
  • an object of the present invention is to provide a wireless communication apparatus and a wireless communication method capable of realizing higher speed and stable communication even when the communication quality deteriorates below a predetermined threshold.
  • the present invention has the following features.
  • a communication data sequence using the same frequency band is received through a transmission antenna unit (transmission antenna unit 130) including a plurality of transmission antennas (transmission antenna 131 to transmission antenna 134).
  • a wireless communication device wireless base station 100 including a wireless communication unit (wireless communication unit 120) that transmits a plurality of signals simultaneously to (wireless terminal 200), and simultaneously receives the wireless communication device and a plurality of communication data sequences.
  • the communication quality of the wireless communication path with the receiving device that is separated into each communication data series is deteriorated below a predetermined threshold, among the transmission antennas constituting the transmission antenna unit, the communication quality is the An antenna that performs an antenna selection process for selecting the transmission antenna in which the interval between the transmission antennas is narrower than before the deterioration is lower than a predetermined threshold.
  • the antenna selection unit when the communication quality is deteriorated below a predetermined threshold, the antenna selection unit, before the communication quality is deteriorated below the predetermined threshold, among the transmission antennas constituting the transmission antenna unit. Also select a transmitting antenna with a smaller interval.
  • the wireless communication apparatus According to the wireless communication apparatus according to the first feature, even in the case of communication quality deteriorated below a predetermined threshold in a multiple-input multiple-output wireless communication system, higher-speed and stable communication can be continued. .
  • a second feature of the present invention relates to the first feature of the present invention, wherein the antenna selecting unit obtains a predetermined electric field strength at a position of the receiving device among the transmitting antennas constituting the transmitting antenna unit.
  • the gist of the present invention is to determine an interval of the transmission antennas in which a region to be expanded is widened and to perform the antenna selection process based on the determined interval of the transmission antennas.
  • a third feature of the present invention relates to the first feature of the present invention, wherein the antenna selection unit is configured to control the transmission antennas constituting the transmission antenna unit when the communication quality is deteriorated below the predetermined threshold.
  • the gist is to select the transmission antennas whose interval between the transmission antennas is equal to or less than a predetermined wavelength corresponding to the frequency band.
  • a fourth feature of the present invention is according to the third feature of the present invention, wherein the antenna selection unit is configured to change the transmission antenna having a transmission antenna interval of 1 ⁇ or less when the wavelength of the frequency band is 1 ⁇ .
  • the gist is to choose.
  • a fifth feature of the present invention is according to the third feature of the present invention, wherein the transmission antenna section is a narrow antenna composed of a plurality of transmission antennas arranged at intervals of the predetermined wavelength or less (interval d2).
  • the gist is to select the narrow-spaced antenna group.
  • a sixth feature of the present invention relates to the third feature of the present invention, wherein the transmission antenna constituting the transmission antenna unit transmits the communication data sequence until the communication quality deteriorates below the predetermined threshold.
  • the transmission antenna unit includes a spare transmission antenna (spare transmission antenna 135) that is not used for the transmission, and a specific transmission antenna (transmission antenna 134) in which an interval (interval d4) between the spare transmission antenna is equal to or less than the predetermined wavelength.
  • An interval (interval d1, interval d2 or interval d3) between transmission antennas (transmission antenna 131 to transmission antenna 134) other than the spare transmission antenna among the transmission antennas to be performed is larger than the predetermined wavelength, and the antenna selection unit When the communication quality deteriorates below the predetermined threshold, the spare transmission antenna and the specific transmission antenna are selected. And it is required to.
  • a seventh feature of the present invention relates to the third feature of the present invention, wherein the transmission antenna constituting the transmission antenna unit transmits the communication data sequence until the communication quality deteriorates below the predetermined threshold.
  • the transmission antenna constituting the transmission antenna unit transmits the communication data sequence until the communication quality deteriorates below the predetermined threshold.
  • Including a plurality of spare transmission antennas (spare transmission antenna 135 and spare transmission antenna 136), and the spacing between the spare transmission antennas (spacing d5) is equal to or less than the predetermined wavelength, and constitutes the transmission antenna unit Among the transmission antennas, an interval (interval d1, interval d2 or interval d3) between transmission antennas (transmission antenna 131 to transmission antenna 134) different from the auxiliary transmission antenna, and an interval (interval) between the different transmission antenna and the auxiliary transmission antenna d4) is greater than the predetermined wavelength, and the antenna selection unit determines that the communication quality is the predetermined threshold value. If you remote deteriorated, and summarized in that selecting the spare transmit antenna
  • An eighth feature of the present invention relates to any one of the first to seventh features of the present invention, and in the antenna selection unit, the wireless communication unit transmits only one communication data sequence at a time. In this case, the gist is to execute the antenna selection process.
  • a ninth feature of the present invention relates to the eighth feature of the present invention, and further comprises a weight determining unit (antenna weight determining unit 143) for determining a transmission antenna weight for weighting the communication data series for each of the transmission antennas.
  • the weight determination unit determines the transmission antenna weight for improving the communication quality for each transmission antenna.
  • a tenth feature of the present invention is that a communication data sequence using the same frequency band is transmitted to a receiving device (wireless) via a transmission antenna unit (transmission antenna unit 130) including a plurality of transmission antennas (transmission antennas 131 to 134).
  • a wireless communication device including a plurality of wireless communication units (wireless communication unit 120) capable of simultaneously transmitting toward terminal 200), wherein a plurality of the communication data sequences are received simultaneously to each communication data sequence
  • the number of communication data sequences transmitted by the wireless communication unit to the separable receiving device is equal to or less than a predetermined number, the number of communication data sequences among the transmission antennas constituting the transmission antenna unit
  • the antenna selection process for performing the antenna selection process for selecting the transmission antenna in which the interval between the transmission antennas is narrower than before the predetermined number is less than the predetermined number. Part comprising a (antenna selector 142), the wireless communication unit via the transmission antenna selected by the antenna selector, to increase the transmission of the communication data series.
  • An eleventh feature of the present invention is a wireless communication method using a wireless communication unit that simultaneously transmits a plurality of communication data sequences using the same frequency band to a receiving device via a transmission antenna unit including a plurality of transmission antennas. If the communication quality of the wireless communication path between the wireless communication unit and the receiving device that receives a plurality of the communication data series simultaneously and separates into each communication data series is deteriorated below a predetermined threshold, A step (step S102) of selecting the transmission antenna in which the interval between the transmission antennas is narrower than that before the communication quality is deteriorated below the predetermined threshold among the transmission antennas constituting the transmission antenna unit (step S102); A communication unit including the step of transmitting the communication data sequence via the transmission antenna selected in the selecting step. The gist.
  • a twelfth feature of the present invention is a wireless communication method using a wireless communication unit capable of simultaneously transmitting a plurality of communication data sequences using the same frequency band to a receiving device via a transmission antenna unit including a plurality of transmission antennas. And when the number of the communication data series transmitted by the wireless communication unit to the receiving device that can receive a plurality of the communication data series simultaneously and can be separated into each communication data series is equal to or less than a predetermined number, A step of selecting the transmission antenna in which the interval between the transmission antennas is narrower than before the number of the communication data series is equal to or less than the predetermined number among the transmission antennas constituting the transmission antenna unit; and the wireless communication unit Includes transmitting the communication data series via the transmission antenna selected in the selecting step.
  • the communication quality is deteriorated below a predetermined threshold. Even in this case, it is possible to provide a wireless communication apparatus and a wireless communication method that can realize continuous communication at higher speed and more stably.
  • FIG. 1 is a schematic configuration diagram of a radio communication system according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the radio base station according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the radio terminal according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining antenna selection processing according to the first embodiment of the present invention (part 1).
  • FIG. 5 is a diagram for explaining antenna selection processing according to the first embodiment of the present invention (part 2).
  • FIG. 6 is a flowchart showing a transmission parameter determination operation executed in the radio base station according to the first embodiment of the present invention.
  • FIG. 7 is a diagram for explaining the effect obtained by the first embodiment of the present invention (part 1).
  • FIG. 1 is a schematic configuration diagram of a radio communication system according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the radio base station according to the first embodiment of the present invention.
  • FIG. 3
  • FIG. 8 is a diagram for explaining the effect obtained by the first embodiment of the present invention (part 2).
  • FIG. 9 is a diagram for explaining the effects obtained by the first embodiment of the present invention (No. 3).
  • FIG. 10 is a block diagram showing a configuration of a radio base station according to the second embodiment of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a radio base station according to the third embodiment of the present invention.
  • FIGS. 1 (a) and 1 (b) are schematic configuration diagrams of a radio communication system 10 according to the first embodiment.
  • the radio communication system 10 includes a radio base station 100 and a radio terminal 200.
  • the wireless terminal 200 is located in the communication area of the wireless base station 100 and performs wireless communication with the wireless base station 100.
  • communication in the downlink direction (direction from the radio base station 100 to the radio terminal 200) will be mainly described.
  • the radio base station 100 simultaneously transmits a plurality of communication streams (communication data sequences) using the same frequency band via a plurality of transmission antennas.
  • the wireless terminal 200 configures a receiving apparatus that receives a plurality of communication streams via a plurality of reception antennas and separates the communication streams into communication streams.
  • the wireless communication system 10 is a multiple-input multiple-output (MIMO) wireless communication system (hereinafter referred to as “MIMO communication system” as appropriate).
  • MIMO communication system a multiple-input multiple-output (MIMO communication system” as appropriate.
  • FIG. 1A there are four maximum communication streams, four transmission antennas provided in the radio base station 100 (see FIG. 2), and provided in the radio terminal 200.
  • FIG. 3 A case where there are two receiving antennas (see FIG. 3), that is, a 4 ⁇ 2 antenna configuration will be described as an example.
  • the radio terminal 200 analyzes the communication stream received from the radio base station 100, and generates feedback information for adaptively controlling multi-antenna transmission in the radio base station 100.
  • a MIMO communication system that feeds back feedback information is called a closed-loop MIMO communication system.
  • the feedback information is composed of “rank”, “PMI (Precoding Mat Index)” and “CQI (Channel Quality Indicator)”.
  • Rank is control information for controlling the number of communication streams.
  • PMI is control information for controlling the transmission antenna weight.
  • CQI is reception quality information for controlling transmission power and modulation scheme.
  • the radio terminal 200 determines the number of communication streams and transmits the rank to the radio base station 100 using the uplink radio line. At the same time, the radio terminal 200 calculates the transmission antenna weight that maximizes the received SNR according to the number of communication streams, and transmits the PMI according to the calculation result to the radio base station 100. Also, the radio terminal 200 obtains a CQI from the received SNR and transmits the CQI to the radio base station 100 using an uplink radio channel.
  • the radio base station 100 determines the number of downlink communication streams, the transmission antenna weight, the transmission output, and the modulation scheme according to rank, PMI, and CQI transmitted from the radio terminal 200, and realizes adaptive transmission multi-antenna control.
  • the number of transmission antennas used is all the transmission antennas of the radio base station 100.
  • the radio base station 100 and the radio terminal 200 perform control such that the rank is lowered when the communication quality such as the received SNR is deteriorated, and the rank is raised when the communication quality is improved. That is, communication with a plurality of communication streams is executed if the reception SNR is secured, and the plurality of communication streams are not used when the reception SNR is low.
  • the radio terminal 200 calculates the transmission antenna weight and transmits the calculation result to the radio base station 100 as PMI. For this reason, when there is a large difference between the downlink propagation path characteristic when calculating the transmission antenna weight and the downlink propagation path characteristic when transmitting with the transmission antenna weight actually determined by the PMI on the radio base station 100 side In this case, the transmission diversity effect due to the transmission antenna weight is reduced, and the communication quality is significantly degraded.
  • the diversity effect means that, in a radio propagation environment in which multipath propagation occurs (see FIG. 1B), communication streams that have passed through a plurality of paths are combined or selected at the reception side to improve communication quality (for example, reception SNR). It is an effect that can be.
  • FIG. 2 is a block diagram showing the configuration of the radio base station 100.
  • the radio base station 100 includes a data generation unit 110, a radio communication unit 120, a transmission antenna unit 130, and a control unit 140.
  • a state at the time of transmitting a plurality of communication streams is shown.
  • the data generation unit 110 generates a data series to be transmitted to the wireless terminal 200.
  • the wireless communication unit 120 converts the data series generated by the data generation unit 110 into a plurality of communication streams and converts it into a radio frequency band (system frequency band). At that time, each of the plurality of communication streams is converted into the same frequency band.
  • the transmission antenna unit 130 sends out a plurality of communication streams converted into a radio frequency band.
  • the radio communication unit 120 includes a data distribution unit 121 and four radio signal conversion units (a radio signal conversion unit 122, a radio signal conversion unit 123, a radio signal conversion unit 124, and a radio signal conversion unit 125).
  • the data distribution unit 121 distributes the data series generated by the data generation unit 110 to the wireless signal conversion unit 122 to the wireless signal conversion unit 125 under the control of the control unit 140. Specifically, the data distribution unit 121 performs serial / parallel conversion on the data series generated by the data generation unit 110 to generate four communication streams. Thereby, parallel data transfer is possible. When the control unit 140 instructs the data distribution unit 121 to transmit only one communication stream, the data distribution unit 121 outputs the data series generated by the data generation unit 110 without performing serial / parallel conversion.
  • the radio signal conversion unit 122 includes an up-converter and a power amplifier, and converts the communication stream from the data distribution unit 121 into a radio frequency band. At that time, the radio signal conversion unit 122 weights the communication stream using a transmission antenna weight by a weighting mechanism provided therein. The transmission antenna weight adjusts the phase and amplitude of the communication stream, and is input from the control unit 140.
  • the power amplifier in the radio signal conversion unit 122 is instructed by the control unit 140 to transmit power of the communication stream converted into the radio frequency band.
  • the radio signal converter 123, the radio signal converter 124, and the radio signal converter 125 operate in the same manner as the radio signal converter 122.
  • the transmission antenna unit 130 has four transmission antennas (transmission antenna 131, transmission antenna 132, transmission antenna 133, and transmission antenna 134) arranged linearly at predetermined intervals (linear arrangement).
  • the transmission antenna 131 is connected to the radio signal conversion unit 122, the transmission antenna 132 is connected to the radio signal conversion unit 123, the transmission antenna 133 is connected to the radio signal conversion unit 124, and the transmission antenna 134 is connected to the radio signal conversion unit 125. Is done.
  • the transmission antenna 131 and the transmission antenna 132 are arranged at an interval d1.
  • the transmission antenna 132 and the transmission antenna 133 are arranged with an interval d2.
  • the transmission antenna 133 and the transmission antenna 134 are arranged at an interval d3.
  • the distance d2 between the transmission antenna 132 and the transmission antenna 133 is narrower than the distance d1 between the transmission antenna 131 and the transmission antenna 132 and the distance d3 between the transmission antenna 133 and the transmission antenna 134, respectively.
  • Transmit antennas 131 to 134 are arranged. Further, the interval d1 and the interval d3 are substantially equal.
  • the control unit 140 determines the transmission parameters, that is, the transmission antenna, the transmission antenna weight, the transmission power, and the modulation scheme, according to the feedback information from the radio terminal 200.
  • the control unit 140 includes a stream determination unit 141, an antenna selection unit 142, an antenna weight determination unit 143, and a transmission power / modulation method determination unit 144.
  • the rank fed back from the wireless terminal 200 is input to the stream determination unit 141.
  • the stream determination unit 141 determines whether or not the number of communication streams is 1 based on rank. Here, when the number of transmission streams is 1, it indicates that communication quality such as reception SNR in the radio terminal 200 has deteriorated below a predetermined threshold.
  • the stream determination unit 141 constitutes a determination unit that determines whether or not the communication quality of the wireless communication path between the wireless base station 100 and the wireless terminal 200 has deteriorated below a predetermined threshold.
  • the stream determination unit 141 controls the data distribution unit 121 according to the rank determination result.
  • the antenna selection unit 142 selects a transmission antenna to be used for transmission of the communication stream from the transmission antennas 131 to 134.
  • the antenna selection unit 142 sets the number of transmission antennas to 4 when rank is other than 1, that is, when the communication quality has not deteriorated below a predetermined threshold.
  • the antenna selection unit 142 sets the number of transmission antennas to 2 when rank is 1, that is, when it is determined that the communication quality has deteriorated below a predetermined threshold.
  • the antenna selection unit 142 performs an antenna selection process of selecting the transmission antennas 132 and 133 in which the interval between the transmission antennas is narrower than before the transmission antennas 131 to 134 are determined to have deteriorated in communication quality below a predetermined threshold. Execute. Details of the antenna selection processing will be described later.
  • the PMI fed back from the wireless terminal 200 is input to the antenna weight determination unit 143.
  • the antenna weight determination unit 143 determines the transmission antenna weight according to the PMI, and outputs the transmission antenna weight to the radio signal conversion unit 122 to the radio signal conversion unit 125.
  • Transmission power / modulation scheme determination section 144 determines transmission power and modulation scheme according to CQI, and controls radio signal conversion section 122 to radio signal conversion section 125 according to the determination result.
  • FIG. 3 is a block diagram showing the configuration of the radio terminal 200.
  • the wireless terminal 200 includes two reception antennas (a reception antenna 201 and a reception antenna 202), a wireless communication unit 210, and a reception signal analysis unit 220.
  • the wireless communication unit 210 includes a wireless signal conversion unit 211, a wireless signal conversion unit 212, and a data synthesis unit 213.
  • the radio signal converter 211 includes a low noise amplifier, a down converter, and the like, and amplifies and downconverts the received signal received by the receiving antenna 201. At the time of transmitting a plurality of communication streams, the wireless signal conversion unit 211 outputs a plurality of communication streams that have interfered with each other in the wireless section.
  • the wireless signal converter 212 operates in the same manner as the wireless signal converter 211.
  • the communication stream output from the wireless signal converter 211 and the communication stream output from the wireless signal converter 212 are substantially equal.
  • the data combining unit 213 combines the communication stream output from the wireless signal conversion unit 211 and the communication stream output from the wireless signal conversion unit 212.
  • the received signal analysis unit 220 analyzes the received signal and determines the number of communication streams (rank) corresponding to the propagation path characteristics. When the rank is 1, the reception signal analysis unit 220 fixes the number of transmission antennas of the radio base station 100 to 2, and when the rank is 2 or more, the number of transmission antennas is not limited. Received signal analysis section 220 estimates transmission antenna weights corresponding to the number of transmission antennas, and determines PMI according to the estimation result. Further, the received signal analysis unit 220 determines CQI from the SNR measured at the time of reception, and transmits the rank, PMI, and CQI to the radio base station 100 via the uplink radio channel.
  • a communication stream similar to the data generated by the data generation unit 110 is input to the radio signal conversion unit 123 connected to the transmission antenna 132.
  • the same communication stream as that input to the wireless signal converter 123 is input to the wireless signal converter 124 connected to the transmission antenna 133.
  • the transmission antenna 131 and the transmission antenna 134 arranged outside the transmission antennas 131 to 134 are not used, and only the transmission antenna 132 and the transmission antenna 133 arranged inside and adjacent to each other are used. used.
  • the interval d2 between the transmission antenna 132 and the transmission antenna 133 is set narrow.
  • the transmission antenna 132 and the transmission antenna 133 constitute a narrowly spaced antenna group (a narrowly spaced antenna pair).
  • the beam forming effect is an effect of improving gain on the receiving side by spatially synthesizing radio waves from a plurality of transmitting antennas and directing directivity (region having a strong electrolytic distribution) in the direction of the receiving side. is there.
  • the region where the predetermined electric field strength A can be obtained at the position of the wireless terminal 200 can be expanded.
  • the electric field strength is constant regardless of the position of the wireless terminal 200.
  • the distance d2 between the transmission antenna 132 and the transmission antenna 133 is 1 ⁇ (predetermined wavelength) or less.
  • the beam forming effect becomes remarkable at 1 ⁇ or less, the beam forming effect can be obtained even if it is slightly over 1 ⁇ .
  • the distance d1 between the transmission antenna 131 and the transmission antenna 132 and the distance d3 between the transmission antenna 133 and the transmission antenna 134 are about 4 ⁇ in order to improve the transmission diversity effect.
  • FIG. 6 is a flowchart showing a transmission parameter determination operation executed in the radio base station 100.
  • step S101 the stream determination unit 141 determines whether the number of communication streams is 1 based on the rank fed back from the wireless terminal 200. If it is determined that the number of communication streams is 1, the process proceeds to step S102. If it is determined that there are a plurality of communication streams, the process proceeds to step S103.
  • step S102 the antenna selection unit 142 selects the transmission antennas 132 and 133 having the smallest interval as the transmission antennas used for transmission of one communication stream.
  • step S103 the antenna weight determination unit 143 determines the transmission antenna weight according to the PMI fed back from the radio terminal 200.
  • step S104 the transmission power / modulation method determination unit 144 determines the transmission power and modulation method according to the CQI fed back from the radio terminal 200.
  • FIG. 7 shows the characteristics of frequency effective efficiency when the MIMO antenna configurations are 4 ⁇ 2 and 2 ⁇ 2, and the distance between adjacent antennas is set to 4 ⁇ and 10 ⁇ .
  • the vertical axis represents the channel capacity, and the horizontal axis represents the reception SNR at the radio terminal 200.
  • the total transmission power is set to be the same for both the four transmission antennas and the two transmission antennas.
  • the moving speed of the wireless terminal 200 is 3 km / h.
  • FIG. 8 shows the result when the moving speed of the wireless terminal 200 is 120 km / h in addition to the configuration shown in FIG.
  • the performance is the same regardless of the number of transmission antennas. This indicates that there is no effect of transmission diversity due to transmission antenna weights in an environment where intense channel characteristics exist. In addition, the performance is the same regardless of the antenna interval.
  • FIG. 9 shows the result of comparing the antenna spacing 0.5 ⁇ and 10 ⁇ in the 2 ⁇ 2 antenna configuration. Although it is known that the beam forming effect becomes remarkable at an antenna interval of 1 ⁇ or less, the configuration of 1 ⁇ or less in FIG. 9 also ensures stable communication quality without depending on the moving speed of the radio terminal 200. You can see that
  • an antenna configuration with high antenna correlation can achieve communication stream transmission that is resistant to propagation path fluctuations.
  • a better multiplex communication path can be configured by selecting an antenna configuration that lowers the antenna correlation.
  • the transmission antenna unit 130 transmits the transmission antenna when the wireless communication unit 120 transmits only one communication stream at the same time, that is, when the communication quality deteriorates below a predetermined threshold.
  • the transmission antennas 132 and 133 having the smallest antenna interval are selected.
  • the wireless communication unit 120 transmits the communication stream via the transmission antennas 132 and 133 selected by the antenna selection unit 142.
  • the beam forming effect becomes higher than the diversity effect by increasing the correlation between the transmitting antennas, so that the communication quality can be improved. That is, according to the radio base station 100 according to the present embodiment, even when the communication quality is deteriorated below a predetermined threshold in the MIMO communication system, it is possible to realize higher speed and more stable communication.
  • the radio base station 100 it is possible to ensure sufficient communication performance even in the case where the fluctuation of the radio channel characteristics is large in the closed-loop MIMO communication system.
  • stable MIMO information transmission is possible even in an environment where radio propagation characteristics such as the radio terminal 200 moving at a high speed fluctuate dramatically.
  • the beamforming effect can be improved.
  • the antenna weight determining unit 143 that determines the transmission antenna weight for weighting the communication stream for each of the transmission antennas 131 to 134 determines the transmission antenna weight for improving the communication quality for each transmission antenna. For this reason, when communication quality deteriorates below a predetermined threshold value, directivity can be directed toward the radio terminal 200, and the beamforming effect can be further improved.
  • FIG. 10A is a block diagram showing a configuration of the radio communication unit 120A and the transmission antenna unit 130A according to the second embodiment. Since the configuration of the control unit 140 is the same as that of the first embodiment, the illustration is omitted here.
  • the transmission antenna unit 130A is different from the first embodiment in that the transmission antenna unit 130A has one spare transmission antenna 135 that is not used for transmission of a communication stream until the communication quality deteriorates below a predetermined threshold.
  • the wireless communication unit 120 ⁇ / b> A includes a wireless signal conversion unit 126 connected between the standby transmission antenna 135 and the data distribution unit 121.
  • the interval d4 between the spare transmission antenna 135 and the transmission antenna 134 (specific transmission antenna) adjacent to the spare transmission antenna 135 is 1 ⁇ or less.
  • each of the transmission antennas 131 to 135 other than the spare transmission antenna 135 (transmission antenna 131 to transmission antenna 134) (interval d1, interval d2 or interval d3) is larger than 1 ⁇ , for example, about 4 ⁇ . It is.
  • the antenna selection unit 142 selects the spare transmission antenna 135 and the transmission antenna 134 when one communication stream is transmitted (when the communication quality deteriorates below a predetermined threshold). As a result, similar to the first embodiment, even when the communication quality is deteriorated below a predetermined threshold, it is possible to realize higher speed and more stable communication.
  • the antenna selection unit 142 selects a transmission antenna (transmission antenna 131 to transmission antenna 134) other than the spare transmission antenna 135 when transmitting a plurality of communication streams.
  • each interval between the transmission antenna 131 to the transmission antenna 134 is about 4 ⁇ , it is possible to improve the diversity effect when transmitting a plurality of communication streams.
  • FIG. 11A is a block diagram illustrating configurations of the wireless communication unit 120B and the transmission antenna unit 130B according to the third embodiment. Since the configuration of the control unit 140 is the same as that of the first embodiment, the illustration is omitted here.
  • the transmission antenna unit 130B is different from the first embodiment in that the transmission antenna unit 130B includes two spare transmission antennas 135 and 136 that are not used for transmission of the communication stream until the communication quality deteriorates below a predetermined threshold.
  • the radio communication unit 120B also includes a radio signal conversion unit 126 connected between the standby transmission antenna 135 and the data distribution unit 121, and a radio signal conversion connected between the backup transmission antenna 136 and the data distribution unit 121. Part 127.
  • the interval d5 between the spare transmission antennas 135 and 136 is 1 ⁇ or less.
  • the distance d4 from the antenna 135 is larger than 1 ⁇ , for example, about 4 ⁇ .
  • the antenna selection unit 142 selects the spare transmission antennas 135 and 136 when one communication stream is transmitted (when the communication quality deteriorates below a predetermined threshold). As a result, similar to the first embodiment, even when the communication quality is deteriorated below a predetermined threshold, it is possible to realize higher speed and more stable communication.
  • the antenna selection unit 142 selects a transmission antenna (transmission antenna 131 to transmission antenna 134) other than the spare transmission antennas 135 and 136 when transmitting a plurality of communication streams. Since the intervals between the transmission antennas 131 to 134 are about 4 ⁇ , the diversity effect during transmission of a plurality of communication streams can be improved as in the second embodiment.
  • the MIMO communication method based on the closed loop method using feedback has been described.
  • TDD time division multiplexing
  • communication is performed on the transmission side using reversibility of the propagation path. Quality can be estimated. Therefore, the present invention can be applied to a MIMO communication system based on an open loop system that does not use feedback.
  • the communication in the downlink direction has been mainly described, but it is needless to say that the present invention can also be applied to the communication in the uplink direction.
  • the 4 ⁇ 2 antenna configuration has been mainly described.
  • the configuration is not limited to the antenna configuration, and a configuration including more antennas or only one receiving antenna (receiving antenna) is used.
  • the configuration may be also possible.
  • the transmission antennas are arranged in a straight line (linear arrangement), but may be arranged in a semicircular shape or an annular shape.
  • linear arrangement in which multi-antenna communication is mounted as a standard, three or more configurations with a linear arrangement are recommended, and a linear arrangement is preferable.
  • the wireless communication device and the wireless communication method according to the present invention even when communication quality deteriorates below a predetermined threshold in a multi-input / multi-output wireless communication system, faster and more stable communication is possible. Since continuation can be realized, it is useful in the field of wireless communication such as mobile communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明に係る無線基地局100は、無線基地局100と受信装置との間における無線通信路の通信品質が所定の閾値よりも劣化したか否かを判定するストリーム判定部141と、通信品質が所定の閾値よりも劣化したと判定された場合、送信アンテナ131~134のうち、通信品質が所定の閾値よりも劣化したと判定される前よりも送信アンテナ131~134の間隔が狭くなるように送信アンテナを選択するアンテナ選択部142とを備える。

Description

無線通信装置および無線通信方法
 本発明は、複数の送信アンテナを介して、同一の周波数帯を用いる複数の通信データ系列を受信装置に向けて同時に送信する無線通信装置および無線通信方法に関する。
 近年、無線通信システムでは、有限な周波数帯域をさらに効率的に利用するため、様々な多重化技術が実現されている。例えば、複数の送信アンテナを介して同一の周波数帯を用いる通信データ系列を複数同時に送信するとともに、複数の受信アンテナを介して当該通信データ系列を受信し、各通信データ系列に分離する多入力多出力型(MIMO)の無線通信システムが知られている(例えば、特許文献1)。
 このような無線通信システムでは、アンテナの設置位置によるダイバシティ効果を得ることによって受信装置における通信データ系列の分離性を向上するため、各アンテナの間隔は、使用周波数の波長よりもかなり大きくすること(例えば、4λ以上)が一般的である。
特開2006-141013号公報(第14頁、第1図)
  多入力多出力型の無線通信システムでは、通信品質(例えば、SNR)が所定の閾値よりも劣化している場合、受信装置は、複数の通信データ系列を用いることによる通信速度の増大よりも、送信装置との通信を可能な限り継続すべく、単一の通信データ系列を用いると決定することができる。送信装置は、受信装置から送信されたフィードバック情報に基づいて、1つの通信データ系列のみを送信する。すなわち、このような場合、上述したダイバシティ効果による通信データ系列の分離性の向上は何ら関係なくなり、複数の通信データ系列を同時に送信することによる通信速度も増大は図られない。
 そこで、本発明は、このような状況に鑑みてなされたものであり、複数の送信アンテナを用いて同一の周波数帯を用いる通信データ系列を複数同時に送信可能な多入力多出力型の無線通信システムにおいて、通信品質が所定の閾値よりも劣化した場合でも、より高速かつ安定した通信の継続を実現できる無線通信装置および無線通信方法を提供することを目的とする。
 上述した問題を解決するため、本発明は、次のような特徴を有している。まず、本発明の第1の特徴は、送信アンテナ(送信アンテナ131~送信アンテナ134)を複数含む送信アンテナ部(送信アンテナ部130)を介して、同一の周波数帯を用いる通信データ系列を受信装置(無線端末200)に向けて複数同時に送信する無線通信部(無線通信部120)を備える無線通信装置(無線基地局100)であって、前記無線通信装置と、前記通信データ系列を複数同時に受信して各通信データ系列に分離する前記受信装置との間における無線通信路の通信品質が所定の閾値よりも劣化した場合、前記送信アンテナ部を構成する前記送信アンテナのうち、前記通信品質が前記所定の閾値よりも劣化する前よりも前記送信アンテナの間隔が狭くなる前記送信アンテナを選択するアンテナ選択処理を実行するアンテナ選択部(アンテナ選択部142)を備え、前記無線通信部は、前記アンテナ選択部によって選択された前記送信アンテナを介して、前記通信データ系列を送信することを要旨とする。
 このような無線通信装置によれば、アンテナ選択部は、通信品質が所定の閾値よりも劣化した場合、送信アンテナ部を構成する送信アンテナのうち、通信品質が所定の閾値よりも劣化する前よりも間隔が狭くなる送信アンテナを選択する。
 したがって、通信品質が所定の閾値よりも劣化した後において、送信アンテナ間の相関が高くなり、その結果ダイバシティ効果よりもビームフォーミング効果が高くなるため通信品質を改善することができる。すなわち、第1の特徴に係る無線通信装置によれば、多入力多出力型の無線通信システムにおいて、通信品質が所定の閾値よりも劣化した場合でも、より高速かつ安定した通信の継続を実現できる。
 本発明の第2の特徴は、本発明の第1の特徴に係り、前記アンテナ選択部は、前記送信アンテナ部を構成する前記送信アンテナのうち、前記受信装置の位置において所定の電界強度が得られる領域が広がる前記送信アンテナの間隔を決定し、決定した前記送信アンテナの間隔に基づいて前記アンテナ選択処理を実行することを要旨とする。
 本発明の第3の特徴は、本発明の第1の特徴に係り、前記アンテナ選択部は、前記通信品質が前記所定の閾値よりも劣化した場合、前記送信アンテナ部を構成する前記送信アンテナのうち、前記送信アンテナの間隔が前記周波数帯に対応する所定波長以下となる前記送信アンテナを選択することを要旨とする。
 本発明の第4の特徴は、本発明の第3の特徴に係り、前記アンテナ選択部は、前記周波数帯の波長を1λとした場合、前記送信アンテナの間隔が1λ以下となる前記送信アンテナを選択することを要旨とする。
 本発明の第5の特徴は、本発明の第3の特徴に係り、前記送信アンテナ部は、前記所定波長以下の間隔(間隔d2)をおいて配置された複数の送信アンテナによって構成される狭間隔アンテナ群(送信アンテナ132および送信アンテナ133)を含み、前記送信アンテナ部を構成する前記送信アンテナのうち前記狭間隔アンテナ群と異なる送信アンテナ(送信アンテナ131および送信アンテナ134)同士の間隔(間隔d1+d2+d3)、および前記異なる送信アンテナと前記狭間隔アンテナ群との間隔(間隔d1または間隔d3)は、前記所定波長よりも大きく、前記アンテナ選択部は、前記通信品質が前記所定の閾値よりも劣化した場合、前記狭間隔アンテナ群を選択することを要旨とする。
 本発明の第6の特徴は、本発明の第3の特徴に係り、前記送信アンテナ部を構成する前記送信アンテナは、前記通信品質が前記所定の閾値よりも劣化するまで前記通信データ系列の送信に使用されない予備送信アンテナ(予備送信アンテナ135)と、前記予備送信アンテナとの間隔(間隔d4)が前記所定波長以下となる特定送信アンテナ(送信アンテナ134)とを含み、前記送信アンテナ部を構成する前記送信アンテナのうち前記予備送信アンテナ以外の送信アンテナ(送信アンテナ131~送信アンテナ134)同士の間隔(間隔d1、間隔d2または間隔d3)は、前記所定波長よりも大きく、前記アンテナ選択部は、前記通信品質が前記所定の閾値よりも劣化した場合、前記予備送信アンテナおよび前記特定送信アンテナを選択することを要旨とする。
 本発明の第7の特徴は、本発明の第3の特徴に係り、前記送信アンテナ部を構成する前記送信アンテナは、前記通信品質が前記所定の閾値よりも劣化するまで前記通信データ系列の送信に使用されない複数の予備送信アンテナ(予備送信アンテナ135および予備送信アンテナ136)を含み、前記予備送信アンテナ同士の間隔(間隔d5)は、前記所定波長以下であり、前記送信アンテナ部を構成する前記送信アンテナのうち前記予備送信アンテナと異なる送信アンテナ(送信アンテナ131~送信アンテナ134)同士の間隔(間隔d1、間隔d2または間隔d3)、および前記異なる送信アンテナと前記予備送信アンテナとの間隔(間隔d4)は、前記所定波長よりも大きく、前記アンテナ選択部は、前記通信品質が前記所定の閾値よりも劣化した場合、前記予備送信アンテナを選択することを要旨とする。
 本発明の第8の特徴は、本発明の第1乃至第7の何れか一つの特徴に係り、前記アンテナ選択部は、前記無線通信部が前記通信データ系列を同時に1つのみ送信している場合、前記アンテナ選択処理を実行することを要旨とする。
 本発明の第9の特徴は、本発明の第8の特徴に係り、前記通信データ系列を重み付けする送信アンテナ重みを前記送信アンテナ毎に決定する重み決定部(アンテナ重み決定部143)をさらに備え、前記重み決定部は、前記通信品質を向上させる前記送信アンテナ重みを前記送信アンテナ毎に決定することを要旨とする。
 本発明の第10の特徴は、送信アンテナ(送信アンテナ131~送信アンテナ134)を複数含む送信アンテナ部(送信アンテナ部130)を介して、同一の周波数帯を用いる通信データ系列を受信装置(無線端末200)に向けて複数同時に送信可能な無線通信部(無線通信部120)を備える無線通信装置(無線基地局100)であって、前記通信データ系列を複数同時に受信して各通信データ系列に分離可能な前記受信装置に対して前記無線通信部が送信する前記通信データ系列の数が所定数以下となった場合、前記送信アンテナ部を構成する前記送信アンテナのうち、前記通信データ系列の数が前記所定数以下となる前よりも前記送信アンテナの間隔が狭くなる前記送信アンテナを選択するアンテナ選択処理を実行するアンテナ選択部(アンテナ選択部142)を備え、前記無線通信部は、前記アンテナ選択部によって選択された前記送信アンテナを介して、前記通信データ系列を送信することを要旨とする。
 本発明の第11の特徴は、送信アンテナを複数含む送信アンテナ部を介して、同一の周波数帯を用いる通信データ系列を受信装置に向けて複数同時に送信する無線通信部を用いた無線通信方法であって、前記無線通信部と、前記通信データ系列を複数同時に受信して各通信データ系列に分離する前記受信装置との間における無線通信路の通信品質が所定の閾値よりも劣化した場合、前記送信アンテナ部を構成する前記送信アンテナのうち、前記通信品質が前記所定の閾値よりも劣化する前よりも前記送信アンテナの間隔が狭くなる前記送信アンテナを選択するステップ(ステップS102)と、前記無線通信部が、前記選択するステップにおいて選択された前記送信アンテナを介して、前記通信データ系列を送信するステップとを含むことを要旨とする。
 本発明の第12の特徴は、送信アンテナを複数含む送信アンテナ部を介して、同一の周波数帯を用いる通信データ系列を受信装置に向けて複数同時に送信可能な無線通信部を用いた無線通信方法であって、前記通信データ系列を複数同時に受信して各通信データ系列に分離可能な前記受信装置に対して前記無線通信部が送信する前記通信データ系列の数が所定数以下となった場合、前記送信アンテナ部を構成する前記送信アンテナのうち、前記通信データ系列の数が前記所定数以下となる前よりも前記送信アンテナの間隔が狭くなる前記送信アンテナを選択するステップと、前記無線通信部が、前記選択するステップにおいて選択された前記送信アンテナを介して、前記通信データ系列を送信するステップとを含むことを要旨とする。
 本発明の特徴によれば、複数の送信アンテナを用いて同一の周波数帯を用いる通信データ系列を複数同時に送信可能な多入力多出力型の無線通信システムにおいて、通信品質が所定の閾値よりも劣化した場合でも、より高速かつ安定した通信の継続を実現できる無線通信装置および無線通信方法を提供することができる。
図1は、本発明の第1実施形態に係る無線通信システムの概略構成図である。 図2は、本発明の第1実施形態に係る無線基地局の構成を示すブロック図である。 図3は、本発明の第1実施形態に係る無線端末の構成を示すブロック図である。 図4は、本発明の第1実施形態に係るアンテナ選択処理を説明するための図である(その1)。 図5は、本発明の第1実施形態に係るアンテナ選択処理を説明するための図である(その2)。 図6は、本発明の第1実施形態に係る無線基地局において実行される送信パラメータの決定動作を示すフローチャートである。 図7は、本発明の第1実施形態によって得られる効果を説明するための図である(その1)。 図8は、本発明の第1実施形態によって得られる効果を説明するための図である(その2)。 図9は、本発明の第1実施形態によって得られる効果を説明するための図である(その3)。 図10は、本発明の第2実施形態に係る無線基地局の構成を示すブロック図である。 図11は、本発明の第3実施形態に係る無線基地局の構成を示すブロック図である。
 次に、本発明の実施形態について説明する。なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
 [第1実施形態]
 第1実施形態では、(1)無線通信システムの概略構成、(2)無線通信システムの詳細構成、(3)アンテナ選択処理、(4)送信パラメータの決定動作、(5)検証結果、(6)作用・効果について説明する。
 (1)無線通信システムの概略構成
 図1(a)および図1(b)は、第1実施形態に係る無線通信システム10の概略構成図である。無線通信システム10は、無線基地局100および無線端末200を含む。
 無線端末200は、無線基地局100の通信エリア内に位置しており、無線基地局100と無線通信を実行する。第1実施形態においては、下り方向(無線基地局100から無線端末200へ向かう方向)の通信を主として説明する。
 図1(a)および図1(b)に示すように、無線基地局100は、複数の送信アンテナを介して同一の周波数帯を用いる通信ストリーム(通信データ系列)を複数同時に送信する無線通信装置を構成する。無線端末200は、複数の受信アンテナを介して複数通信ストリームを受信し、各通信ストリームに分離する受信装置を構成する。
 このように、無線通信システム10は、多入力多出力型(MIMO)の無線通信システム(以下、適宜「MIMO通信システム」と称する)である。第1実施形態では、図1(a)に示すように、最大通信ストリームが4つであり、無線基地局100に設けられた送信アンテナが4つ(図2参照)、無線端末200に設けられた受信アンテナが2つ(図3参照)である場合、すなわち4×2のアンテナ構成を例に説明する。
 無線端末200は、無線基地局100から受信した通信ストリームを分析し、無線基地局100におけるマルチアンテナ送信を適応的に制御するためのフィードバック情報を生成する。フィードバック情報をフィードバックするMIMO通信システムは、閉ループ方式のMIMO通信システムと呼ばれる。フィードバック情報は、“rank”、“PMI (Precoding Mat rix Index)”および“CQI (Channel Quality Indicator)”によって構成される。
 rankは、通信ストリーム数を制御する制御情報である。PMIは、送信アンテナ重みを制御する制御情報である。CQIは、送信電力および変調方式を制御するための受信品質情報である。
 無線端末200は、通信ストリーム数を決定し、上り無線回線を使用してrankを無線基地局100に伝送する。同時に無線端末200は、通信ストリーム数に応じて、受信SNRが最大となる送信アンテナ重みを算出し、算出結果に応じたPMIを無線基地局100に伝送する。また、無線端末200は、受信SNRからCQIを求め、当該CQIを上り無線回線を使用して無線基地局100へ伝送する。
 無線基地局100は、無線端末200から伝送されたrank、PMIおよびCQIに従って、下り通信ストリーム数、送信アンテナ重み、送信出力および変調方式を決定し、適応送信マルチアンテナ制御を実現する。複数通信ストリーム伝送時において、使用される送信アンテナ数は、無線基地局100が持つ送信アンテナ全てとなる。
 無線基地局100および無線端末200は、受信SNRなどの通信品質が劣化した場合にはrankを下げ、通信品質が改善された場合にはrankを上げるという制御を実行する。つまり、受信SNRが確保されていれば複数通信ストリームによる通信を実行し、受信SNRが低い場合には複数通信ストリームは使用しない事になる。
 また、閉ループ方式によるMIMO通信システムでは、無線端末200が、送信アンテナ重みを算出し、算出結果をPMIとして無線基地局100へ伝送する。このため、送信アンテナ重みを算出する時の下り伝搬路特性と、無線基地局100側で実際にPMIにより決定された送信アンテナ重みで送信する時の下り伝搬路特性とに大きな差異が発生した場合には、送信アンテナ重みによる送信ダイバシティ効果は減少し、通信品質は著しく劣化する。ダイバシティ効果とは、マルチパス伝搬が生じる無線伝搬環境(図1(b)参照)において、複数のパスを経由した通信ストリームを受信側で合成または選択し、通信品質(例えば、受信SNR)を高めることができる効果である。
 上記のようにrankを適応的に制御し、通信ストリーム数を制限したとしても通信品質は劣化する。伝搬路特性が大きく変化する環境として代表されるのは、無線端末200が高速に無線基地局100の通信エリア内を移動している場合である。高速移動環境では時々刻々無線伝搬特性が変動し、マルチパスの状態が変動してしまい、送信アンテナ重みによるダイバシティ効果は全く望めない。
 このため、第1実施形態では、ダイバシティ効果が全く望めない状況下において、送信アンテナを適切に選択することによって、より高速かつ安定した通信の継続を実現する構成について説明する。
 (2)無線通信システムの詳細構成
 次に、無線通信システム10の詳細構成について、(2.1)無線基地局の構成、(2.2)無線端末の構成の順に説明する。なお、以下においては、本発明に関連する構成を主に説明する。
 (2.1)無線基地局の構成
 図2は、無線基地局100の構成を示すブロック図である。
 図2に示すように、無線基地局100は、データ生成部110、無線通信部120、送信アンテナ部130および制御部140を有する。なお、図2の例では、複数通信ストリーム送信時の状態を示している。
 データ生成部110は、無線端末200に送信されるデータ系列を生成する。無線通信部120は、データ生成部110によって生成されたデータ系列を、複数通信ストリームに変換するとともに無線周波数帯(システム周波数帯)に変換する。その際、複数通信ストリームのそれぞれは、同一の周波数帯に変換される。送信アンテナ部130は、無線周波数帯に変換された複数通信ストリームを送出する。
 無線通信部120は、データ分配部121と、4つの無線信号変換部(無線信号変換部122、無線信号変換部123、無線信号変換部124および無線信号変換部125)とを有する。
 データ分配部121は、制御部140の制御下で、データ生成部110によって生成されたデータ系列を無線信号変換部122~無線信号変換部125に分配する。具体的には、データ分配部121は、データ生成部110によって生成されたデータ系列をシリアル/パラレル変換して、4つの通信ストリームを生成する。これにより、並列的なデータ転送が可能となる。データ分配部121は、1つの通信ストリームのみを送信することを制御部140から指示された場合、シリアル/パラレル変換を実行せず、データ生成部110によって生成されたデータ系列をそのまま出力する。
 無線信号変換部122は、アップコンバータおよびパワーアンプなどを含み、データ分配部121からの通信ストリームを無線周波数帯に変換する。その際、無線信号変換部122は、内部に設けられた重み付け機構により、送信アンテナウェイトを用いて当該通信ストリームを重み付けする。送信アンテナウェイトは、当該通信ストリームの位相および振幅を調整するものであり、制御部140から入力される。
 また、無線信号変換部122内部のパワーアンプは、制御部140によって、無線周波数帯に変換された通信ストリームの送信電力が指示される。無線信号変換部123、無線信号変換部124および無線信号変換部125は、無線信号変換部122と同様に動作する。
 送信アンテナ部130は、所定の間隔をおいて直線状に配置(リニア配置)された4つの送信アンテナ(送信アンテナ131、送信アンテナ132、送信アンテナ133および送信アンテナ134)を有する。
 送信アンテナ131は無線信号変換部122に接続され、送信アンテナ132は無線信号変換部123に接続され、送信アンテナ133は無線信号変換部124に接続され、送信アンテナ134は無線信号変換部125に接続される。送信アンテナ131と送信アンテナ132とは、間隔d1をおいて配置される。送信アンテナ132と送信アンテナ133とは、間隔d2をおいて配置される。送信アンテナ133と送信アンテナ134とは、間隔d3をおいて配置される。
 本実施形態では、送信アンテナ132と送信アンテナ133との間隔d2は、送信アンテナ131と送信アンテナ132との間隔d1、および送信アンテナ133と送信アンテナ134との間隔d3のそれぞれよりも狭くなるように、送信アンテナ131~134が配置されている。また、間隔d1と間隔d3とは略等しい。
 制御部140は、無線端末200からのフィードバック情報に従って、送信パラメータ、すなわち、送信アンテナ、送信アンテナ重み、送信電力および変調方式を決定する。制御部140は、ストリーム判定部141、アンテナ選択部142、アンテナ重み決定部143および送信電力・変調方式決定部144を有する。
 ストリーム判定部141には、無線端末200からフィードバックされたrankが入力される。ストリーム判定部141は、rankに基づいて通信ストリーム数が1であるか否かを判定する。ここで、送信ストリーム数が1である場合、無線端末200における受信SNRなどの通信品質が所定の閾値よりも劣化したことを表している。
 すなわち、本実施形態においてストリーム判定部141は、無線基地局100と無線端末200との間における無線通信路の通信品質が所定の閾値よりも劣化したか否かを判定する判定部を構成する。ストリーム判定部141は、rankの判定結果に応じてデータ分配部121を制御する。
 アンテナ選択部142は、送信アンテナ131~134のうち、通信ストリームの送信に使用する送信アンテナを選択する。アンテナ選択部142は、rankが1以外の時、すなわち、通信品質が所定の閾値よりも劣化していない場合には、送信アンテナ数を4とする。一方、アンテナ選択部142は、rankが1の時、すなわち、通信品質が所定の閾値よりも劣化したと判定された場合、送信アンテナ数を2とする。
 アンテナ選択部142は、送信アンテナ131~134のうち、通信品質が所定の閾値よりも劣化したと判定される前よりも送信アンテナの間隔が狭くなる送信アンテナ132,133を選択するアンテナ選択処理を実行する。アンテナ選択処理の詳細については後述する。
 アンテナ重み決定部143には、無線端末200からフィードバックされたPMIが入力される。アンテナ重み決定部143は、PMIに応じて送信アンテナ重みを決定し、当該送信アンテナ重みを無線信号変換部122~無線信号変換部125に出力する。
 送信電力・変調方式決定部144には、無線端末200からフィードバックされたCQIが入力される。送信電力・変調方式決定部144は、CQIに応じて送信電力および変調方式を決定し、決定結果に応じて無線信号変換部122~無線信号変換部125を制御する。
 (2.2)無線端末の構成
 図3は、無線端末200の構成を示すブロック図である。
 図3に示すように、無線端末200は、2つの受信アンテナ(受信アンテナ201および受信アンテナ202)、無線通信部210、および受信信号分析部220を有する。無線通信部210は、無線信号変換部211、無線信号変換部212およびデータ合成部213を有する。
 無線信号変換部211は、低雑音増幅器およびダウンコンバータなどを含み、受信アンテナ201が受信した受信信号を増幅およびダウンコンバートする。複数通信ストリーム伝送時には、無線信号変換部211は、無線区間において混信した複数通信ストリームを出力する。無線信号変換部212は、無線信号変換部211と同様に動作する。
 1通信ストリーム伝送時には、無線信号変換部211が出力する通信ストリームと無線信号変換部212が出力する通信ストリームとは略等しくなる。データ合成部213は、無線信号変換部211が出力する通信ストリームと無線信号変換部212が出力する通信ストリームとを合成する。
 受信信号分析部220は、受信信号を分析し、伝搬路特性に対応した通信ストリーム数(rank)を決定する。rankが1の場合には、受信信号分析部220は、無線基地局100の送信アンテナ数を2に固定し、rankが2以上の場合には送信アンテナ数を制限なしとする。受信信号分析部220は、送信アンテナ数に対応した送信アンテナ重みを推定し、推定結果に応じてPMIを決定する。更に、受信信号分析部220は、受信時に測定したSNRからCQIを決定し、これらrank、PMIおよびCQIを上り無線回線を介して無線基地局100へ伝送する。
 (3)アンテナ選択処理
 次に、図4および図5を用いて、アンテナ選択処理について説明する。
 図4(a)に示すように無線基地局100から無線端末200へ1つの通信ストリームのみが伝送される場合には、図4(b)に示すように、送信アンテナ132,133のみが通信ストリームの送信に使用され、送信アンテナ131および送信アンテナ134は通信ストリームの送信に使用されない。すなわち、無線通信システム10では、送信2アンテナ、受信2アンテナ、1通信ストリームでのMIMO通信が実行される事となる。
 図4(b)に示すように、送信アンテナ132に接続された無線信号変換部123には、データ生成部110が生成するデータと同様の通信ストリームが入力される。送信アンテナ133に接続された無線信号変換部124には、無線信号変換部123に入力される通信ストリームと同一の通信ストリームが入力される。
 このように、1通信ストリーム伝送時には、送信アンテナ131~134のうち外側に配置された送信アンテナ131および送信アンテナ134は使用されず、内側に配置され互いに隣接する送信アンテナ132および送信アンテナ133のみが使用される。図5(a)に示すように、送信アンテナ132および送信アンテナ133の間隔d2は狭く設定されている。本実施形態において送信アンテナ132および送信アンテナ133は、狭間隔アンテナ群(狭間隔アンテナ対)を構成する。
 1通信ストリーム伝送時には、アンテナ間隔が狭い送信アンテナ132および送信アンテナ133のみを使用し、ビームフォーミング効果によって、無線端末200のアンテナ端での合成利得を確保することができる。ビームフォーミング効果とは、複数の送信アンテナからの電波が空間合成されて、受信側の方向に指向性(電解分布の強い領域)が向けられることによって、当該受信側での利得を向上させる効果である。
 つまり、アンテナ間隔が狭い送信アンテナ132および送信アンテナ133のみを使用することによって、図5(b)に示すように、無線端末200の位置において所定の電界強度Aが得られる領域を広げることができる。これに対し、複数通信ストリーム伝送時には、無線端末200の位置と無関係に電界強度が一定である。
 本実施形態では、通信ストリームの伝送に用いられる周波数帯の波長を1λとした場合、送信アンテナ132および送信アンテナ133の間隔d2は1λ(所定波長)以下である。ただし、1λ以下ではビームフォーミング効果が顕著になるものの、1λを多少超える程度であっても、ビームフォーミング効果は得ることができる。
 一方で、図5(a)に示すように、送信アンテナ131と送信アンテナ132との間隔d1、および送信アンテナ133と送信アンテナ134との間隔d3は、送信ダイバシティ効果を向上させるために、4λ程度に設定されている。このように、送信アンテナ131と送信アンテナ132との間隔d1(4λ)、送信アンテナ133と送信アンテナ134との間隔d3(4λ)、送信アンテナ131と送信アンテナ134との間隔(d1+d2+d3)のそれぞれは、間隔d2よりも大きい。
 (4)送信パラメータの決定動作
 図6は、無線基地局100において実行される送信パラメータの決定動作を示すフローチャートである。
 ステップS101において、ストリーム判定部141は、無線端末200からフィードバックされたrankに基づいて、通信ストリーム数が1であるか否かを判定する。通信ストリーム数が1であると判定された場合、処理がステップS102に進む。通信ストリーム数が複数であると判定された場合、処理がステップS103に進む。
 ステップS102において、アンテナ選択部142は、1通信ストリームの送信に使用する送信アンテナとして、間隔が最小となる送信アンテナ132,133を選択する。
 ステップS103において、アンテナ重み決定部143は、無線端末200からフィードバックされたPMIに応じて、送信アンテナ重みを決定する。
 ステップS104において、送信電力・変調方式決定部144は、無線端末200からフィードバックされたCQIに応じて、送信電力および変調方式を決定する。
 (5)検証結果
 次に、シミュレーションによる検証結果を挙げて、本実施形態によって得られる効果について説明する。
 図7は、MIMOアンテナ構成を4×2および2×2として、隣り合うアンテナ間隔を4λと10λに設定した場合の周波数有効効率の特性を示している。縦軸がチャネル容量、横軸は無線端末200における受信SNRとなっている。送信アンテナ4本の場合も2本の場合も総送信電力は等しくなる様に設定している。無線端末200の移動速度は3km/hである。
 送信アンテナが2本の場合に比べて、4本の場合が特性的に勝っているのは、送信ダイバシティ効果による結果である。この結果より、低速環境ではPMIによる送信アンテナ重み制御の効果があると判断できる。また、アンテナ間隔が4λの場合も10λの場合も同程度の性能を表している。
 図8は、図7での構成に加え、無線端末200の移動速度が120km/hである場合の結果を示している。送信アンテナ数に関係なく、同じ性能となっている。これは、激しい伝搬路特性が存在する環境下では、送信アンテナ重みによる送信ダイバシティの効果がない事を示している。また、アンテナ間隔には関係なく、同性能となっている。
 図9は、2×2アンテナ構成において、アンテナ間隔0.5λと10λとを比較した結果を示している。1λ以下のアンテナ間隔ではビームフォーミング効果が顕著になることが知られているが、図9においても1λ以下の構成では、無線端末200の移動速度に依存せず、安定した通信品質を確保させる事が出来ている事が分る。
 つまり、MIMO通信方式においても通信ストリーム数が1の場合には、アンテナ相関が高くなるアンテナ構成とした方が、伝搬路変動に強い通信ストリーム伝送を実現できるという事である。勿論、rankが2以上の複数通信ストリーム伝送では、アンテナ相関が低くなる様なアンテナ構成を選択した方が、良好な多重通信路を構成できる。
 (6)作用・効果
 以上説明したように、送信アンテナ部130は、無線通信部120が通信ストリームを同時に1つのみ送信する場合、すなわち、通信品質が所定の閾値よりも劣化した場合、送信アンテナ131~134のうち、アンテナ間隔が最も狭い送信アンテナ132,133を選択する。無線通信部120は、アンテナ選択部142によって選択された送信アンテナ132,133を介して通信ストリームを送信する。
 したがって、通信品質が所定の閾値よりも劣化した後、送信アンテナ間の相関を高めることによってダイバシティ効果よりもビームフォーミング効果が高くなるため、通信品質を改善することができる。すなわち、本実施形態に係る無線基地局100によれば、MIMO通信システムにおいて、通信品質が所定の閾値よりも劣化した場合でも、より高速かつ安定した通信の継続を実現できる。
 また、無線基地局100によれば、閉ループ方式のMIMO通信システムにおいて、無線伝搬路特性の変動が大きい場合でも、十分な通信性能を確保する事が可能となる。特に、無線端末200が高速移動している様な無線伝搬特性が激しく変動している様な環境においても安定したMIMO情報伝送を可能とする。また、移動速度に依存する事無く、低速でも高速でも等価な通信品質を提供できる。
 第1実施形態では、通信品質が所定の閾値よりも劣化した場合に選択される送信アンテナ132,133の間隔は、1λ以下であるため、ビームフォーミング効果を向上させることができる。
 第1実施形態では、送信アンテナ131~134のそれぞれについて通信ストリームを重み付けする送信アンテナ重みを決定するアンテナ重み決定部143は、通信品質を向上させる送信アンテナ重みを送信アンテナ毎に決定する。このため、通信品質が所定の閾値よりも劣化した場合において、無線端末200の方向に指向性を向けることができ、ビームフォーミング効果をさらに向上させることができる。
 [第2実施形態]
 以下の第2実施形態および第3実施形態では、第1実施形態とは異なる送信アンテナ配置について説明する。なお、第2実施形態および第3実施形態では、第1実施形態と異なる点について説明し、重複する説明を省略する。
 図10(a)は、第2実施形態に係る無線通信部120Aおよび送信アンテナ部130Aの構成を示すブロック図である。制御部140の構成は第1実施形態と同様であるため、ここでは図示を省略している。
 送信アンテナ部130Aは、通信品質が所定の閾値よりも劣化するまで通信ストリームの送信に使用されない1つの予備送信アンテナ135を有している点で、第1実施形態とは異なっている。また、無線通信部120Aは、予備送信アンテナ135とデータ分配部121との間に接続された無線信号変換部126を有する。
 図10(a)および図10(b)に示すように、予備送信アンテナ135と、予備送信アンテナ135に隣接する送信アンテナ134(特定送信アンテナ)との間隔d4は、1λ以下である。一方、送信アンテナ131~135のうち予備送信アンテナ135以外の送信アンテナ(送信アンテナ131~送信アンテナ134)同士の各間隔(間隔d1、間隔d2または間隔d3)は、1λよりも大きく、例えば4λ程度である。
 第2実施形態では、アンテナ選択部142は、1通信ストリーム伝送時(通信品質が所定の閾値よりも劣化した場合)には、予備送信アンテナ135および送信アンテナ134を選択する。これにより、第1実施形態と同様に、通信品質が所定の閾値よりも劣化した場合でも、より高速かつ安定した通信の継続を実現できる。
 アンテナ選択部142は、複数通信ストリーム伝送時には、予備送信アンテナ135以外の送信アンテナ(送信アンテナ131~送信アンテナ134)を選択する。第2実施形態では、送信アンテナ131~送信アンテナ134の各間隔が4λ程度であるため、複数通信ストリーム伝送時におけるダイバシティ効果を向上させることができる。
 [第3実施形態]
 図11(a)は、第3実施形態に係る無線通信部120Bおよび送信アンテナ部130Bの構成を示すブロック図である。制御部140の構成は第1実施形態と同様であるため、ここでは図示を省略している。
 送信アンテナ部130Bは、通信品質が所定の閾値よりも劣化するまで通信ストリームの送信に使用されない2つの予備送信アンテナ135,136を有している点で、第1実施形態とは異なっている。また、無線通信部120Bは、予備送信アンテナ135とデータ分配部121との間に接続された無線信号変換部126と、予備送信アンテナ136とデータ分配部121との間に接続された無線信号変換部127とを有する。
 図11(a)および図11(b)に示すように、予備送信アンテナ135,136同士の間隔d5は、1λ以下である。一方、送信アンテナ131~136のうち予備送信アンテナ135,136と異なる送信アンテナ(送信アンテナ131~送信アンテナ134)同士の各間隔(間隔d1、間隔d2または間隔d3)、および送信アンテナ134と予備送信アンテナ135との間隔d4は、1λよりも大きく、例えば4λ程度である。
 第3実施形態では、アンテナ選択部142は、1通信ストリーム伝送時(通信品質が所定の閾値よりも劣化した場合)には、予備送信アンテナ135,136を選択する。これにより、第1実施形態と同様に、通信品質が所定の閾値よりも劣化した場合でも、より高速かつ安定した通信の継続を実現できる。
 アンテナ選択部142は、複数通信ストリーム伝送時には、予備送信アンテナ135,136以外の送信アンテナ(送信アンテナ131~送信アンテナ134)を選択する。送信アンテナ131~送信アンテナ134の各間隔が4λ程度であるため、第2実施形態と同様に、複数通信ストリーム伝送時におけるダイバシティ効果を向上させることができる。
 [その他の実施形態]
 上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述および図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態が明らかとなろう。
 例えば、上述した実施形態では、フィードバックを用いる閉ループ方式によるMIMO通信方式について説明したが、時分割多重(TDD)方式が採用される場合には、伝搬路の可逆性を利用し、送信側において通信品質を推定できる。このため、フィードバックを用いない開ループ方式によるMIMO通信方式に本発明を適用可能である。
 また、上述した実施形態では、下り方向の通信について主に説明したが、上り方向の通信についても本発明を適用可能であることは勿論である。
 さらに、上述した実施形態では、4×2のアンテナ構成について主に説明したが、当該アンテナ構成に限らず、さらに多くのアンテナを備える構成や、受信側のアンテナ(受信アンテナ)を1つのみとした構成でもよい。
 上述した実施形態では、各送信アンテナは、直線状に配置(リニア配置)されていたが、半円状や円環状の配置としてもよい。ただし、マルチアンテナ通信が標準として搭載されている無線通信システムでは、リニア配置の3本以上の構成が推奨されており、リニア配置とすることが好ましい。
 このように、本発明は、ここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 なお、日本国特許出願第2008-169628号(2008年6月27日出願)の全内容が、参照により、本願明細書に組み込まれている。
 以上のように、本発明に係る無線通信装置および無線通信方法によれば、多入力多出力型の無線通信システムにおいて通信品質が所定の閾値よりも劣化した場合でも、より高速かつ安定した通信の継続を実現できるため、移動体通信等の無線通信分野において有用である。

Claims (12)

  1.  送信アンテナを複数含む送信アンテナ部を介して、同一の周波数帯を用いる通信データ系列を受信装置に向けて複数同時に送信する無線通信部を備える無線通信装置であって、
     前記無線通信装置と、前記通信データ系列を複数同時に受信して各通信データ系列に分離する前記受信装置との間における無線通信路の通信品質が所定の閾値よりも劣化した場合、前記送信アンテナ部を構成する前記送信アンテナのうち、前記通信品質が前記所定の閾値よりも劣化する前よりも前記送信アンテナの間隔が狭くなる前記送信アンテナを選択するアンテナ選択処理を実行するアンテナ選択部を備え、
     前記無線通信部は、前記アンテナ選択部によって選択された前記送信アンテナを介して、前記通信データ系列を送信する無線通信装置。
  2.  前記アンテナ選択部は、
     前記送信アンテナ部を構成する前記送信アンテナのうち、前記受信装置の位置において所定の電界強度が得られる領域が広がる前記送信アンテナの間隔を決定し、
     決定した前記送信アンテナの間隔に基づいて前記アンテナ選択処理を実行する請求項1に記載の無線通信装置。
  3.  前記アンテナ選択部は、前記通信品質が前記所定の閾値よりも劣化した場合、前記送信アンテナ部を構成する前記送信アンテナのうち、前記送信アンテナの間隔が前記周波数帯に対応する所定波長以下となる前記送信アンテナを選択する請求項1に記載の無線通信装置。
  4.  前記アンテナ選択部は、前記周波数帯の波長を1λとした場合、前記送信アンテナの間隔が1λ以下となる前記送信アンテナを選択する請求項3に記載の無線通信装置。
  5.  前記送信アンテナ部は、前記所定波長以下の間隔をおいて配置された複数の送信アンテナによって構成される狭間隔アンテナ群を含み、
     前記送信アンテナ部を構成する前記送信アンテナのうち、前記狭間隔アンテナ群と異なる送信アンテナ同士の間隔、および前記異なる送信アンテナと前記狭間隔アンテナ群との間隔は、前記所定波長よりも大きく、
     前記アンテナ選択部は、前記通信品質が前記所定の閾値よりも劣化した場合、前記狭間隔アンテナ群を選択する請求項3に記載の無線通信装置。
  6.  前記送信アンテナ部を構成する前記送信アンテナは、
     前記通信品質が前記所定の閾値よりも劣化したと判定されるまで前記通信データ系列の送信に使用されない予備送信アンテナと、
     前記予備送信アンテナとの間隔が前記所定波長以下となる特定送信アンテナとを含み、
     前記送信アンテナ部を構成する前記送信アンテナのうち前記予備送信アンテナ以外の送信アンテナ同士の間隔は、前記所定波長よりも大きく、
     前記アンテナ選択部は、前記通信品質が前記所定の閾値よりも劣化した場合、前記予備送信アンテナおよび前記特定送信アンテナを選択する請求項3に記載の無線通信装置。
  7.  前記送信アンテナ部を構成する前記送信アンテナは、前記通信品質が前記所定の閾値よりも劣化するまで前記通信データ系列の送信に使用されない複数の予備送信アンテナを含み、
     前記予備送信アンテナ同士の間隔は、前記所定波長以下であり、
     前記送信アンテナ部を構成する前記送信アンテナのうち前記予備送信アンテナと異なる送信アンテナ同士の間隔、および前記異なる送信アンテナと前記予備送信アンテナとの間隔は、前記所定波長よりも大きく、
     前記アンテナ選択部は、前記通信品質が前記所定の閾値よりも劣化した場合、前記予備送信アンテナを選択する請求項3に記載の無線通信装置。
  8.  前記アンテナ選択部は、前記無線通信部が前記通信データ系列を同時に1つのみ送信している場合、前記アンテナ選択処理を実行する請求項1乃至7の何れか一項に記載の無線通信装置。
  9.  前記通信データ系列を重み付けする送信アンテナ重みを前記送信アンテナ毎に決定する重み決定部をさらに備え、
     前記重み決定部は、前記通信品質を向上させる前記送信アンテナ重みを前記送信アンテナ毎に決定する請求項8に記載の無線通信装置。
  10.  送信アンテナを複数含む送信アンテナ部を介して、同一の周波数帯を用いる通信データ系列を受信装置に向けて複数同時に送信可能な無線通信部を備える無線通信装置であって、
     前記通信データ系列を複数同時に受信して各通信データ系列に分離可能な前記受信装置に対して前記無線通信部が送信する前記通信データ系列の数が所定数以下となった場合、前記送信アンテナ部を構成する前記送信アンテナのうち、前記通信データ系列の数が前記所定数以下となる前よりも前記送信アンテナの間隔が狭くなる前記送信アンテナを選択するアンテナ選択処理を実行するアンテナ選択部を備え、
     前記無線通信部は、前記アンテナ選択部によって選択された前記送信アンテナを介して、前記通信データ系列を送信する無線通信装置。
  11.  送信アンテナを複数含む送信アンテナ部を介して、同一の周波数帯を用いる通信データ系列を受信装置に向けて複数同時に送信する無線通信部を用いた無線通信方法であって、
     前記無線通信部と、前記通信データ系列を複数同時に受信して各通信データ系列に分離する前記受信装置との間における無線通信路の通信品質が所定の閾値よりも劣化した場合、前記送信アンテナ部を構成する前記送信アンテナのうち、前記通信品質が前記所定の閾値よりも劣化する前よりも前記送信アンテナの間隔が狭くなる前記送信アンテナを選択するステップと、 前記無線通信部が、前記選択するステップにおいて選択された前記送信アンテナを介して、前記通信データ系列を送信するステップと
    を含む無線通信方法。
  12.  送信アンテナを複数含む送信アンテナ部を介して、同一の周波数帯を用いる通信データ系列を受信装置に向けて複数同時に送信可能な無線通信部を用いた無線通信方法であって、
     前記通信データ系列を複数同時に受信して各通信データ系列に分離可能な前記受信装置に対して前記無線通信部が送信する前記通信データ系列の数が所定数以下となった場合、前記送信アンテナ部を構成する前記送信アンテナのうち、前記通信データ系列の数が前記所定数以下となる前よりも前記送信アンテナの間隔が狭くなる前記送信アンテナを選択するステップと、
     前記無線通信部が、前記選択するステップにおいて選択された前記送信アンテナを介して、前記通信データ系列を送信するステップと
    を含む無線通信方法。
PCT/JP2009/061631 2008-06-27 2009-06-25 無線通信装置および無線通信方法 WO2009157513A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09770223A EP2293476A1 (en) 2008-06-27 2009-06-25 Radio communication device and radio communication method
JP2010518054A JP5133413B2 (ja) 2008-06-27 2009-06-25 無線通信装置および無線通信方法
US13/001,593 US8559877B2 (en) 2008-06-27 2009-06-25 Radio communication device and radio communication method
KR1020107029532A KR101169881B1 (ko) 2008-06-27 2009-06-25 무선 통신 장치 및 무선 통신 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-169628 2008-06-27
JP2008169628 2008-06-27

Publications (1)

Publication Number Publication Date
WO2009157513A1 true WO2009157513A1 (ja) 2009-12-30

Family

ID=41444576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061631 WO2009157513A1 (ja) 2008-06-27 2009-06-25 無線通信装置および無線通信方法

Country Status (5)

Country Link
US (1) US8559877B2 (ja)
EP (1) EP2293476A1 (ja)
JP (1) JP5133413B2 (ja)
KR (1) KR101169881B1 (ja)
WO (1) WO2009157513A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130343328A1 (en) * 2011-03-16 2013-12-26 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for power allocation in communication systems
JP2014500686A (ja) * 2010-12-06 2014-01-09 クゥアルコム・インコーポレイテッド 無線ローカル・エリア・ネットワーク(lan)におけるアドバンスト受信機パフォーマンスを保護するためにシグナリングすること
WO2016038960A1 (ja) * 2014-09-11 2016-03-17 株式会社Nttドコモ 基地局、ユーザ装置および無線通信システム
JP2017528955A (ja) * 2014-07-30 2017-09-28 華為技術有限公司Huawei Technologies Co.,Ltd. 下りチャネル品質の測定方法、送信端、受信端およびシステム
WO2018173646A1 (ja) * 2017-03-21 2018-09-27 三菱電機株式会社 通信システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012798A1 (en) * 2009-07-20 2011-01-20 Telcordia Technologies, Inc. System and method for improving mimo performance of vehicular based wireless communications
US8934499B1 (en) * 2011-02-25 2015-01-13 Sprint Communications Company L.P. Dynamically transferring between multiple-input and multiple-output (MIMO) transmit modes based on a usage level of a wireless access node
US20120299707A1 (en) * 2011-05-25 2012-11-29 International Business Machines Corporation User communication device based card presence monitoring and account status control
WO2013143617A1 (en) * 2012-03-30 2013-10-03 Telefonaktiebolaget L M Ericsson (Publ) A line-of-sight multiple-input multiple-output communication system
KR101932197B1 (ko) 2012-07-03 2018-12-24 삼성전자주식회사 다중 안테나 통신 시스템에서의 안테나 개수 결정 방법 및 장치
TWI540848B (zh) * 2013-05-16 2016-07-01 晨星半導體股份有限公司 無線通信裝置與方法
US9781668B2 (en) * 2015-05-08 2017-10-03 Alcatel-Lucent Usa Inc. Methods and apparatuses for configuring number of antennas for massive MIMO communication
WO2018109603A1 (en) * 2016-12-13 2018-06-21 Amimon Ltd. Analog signal transmission with multiple antennas

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290148A (ja) * 2001-01-17 2002-10-04 Lucent Technol Inc アンテナアレイ
JP2003338781A (ja) * 2002-05-21 2003-11-28 Nec Corp アンテナ送受信システム
JP2005136492A (ja) * 2003-10-28 2005-05-26 Ntt Docomo Inc アンテナ装置及びその制御方法
JP2006141013A (ja) 2004-11-09 2006-06-01 Samsung Electronics Co Ltd 多重アンテナを使用する広帯域無線接続システムにおける多様な多重アンテナ技法を支援するための方法
WO2006123418A1 (ja) * 2005-05-20 2006-11-23 Fujitsu Limited 無線通信装置、移動端末装置及び無線通信方法
WO2007091317A1 (ja) * 2006-02-08 2007-08-16 Fujitsu Limited マルチアンテナ送信技術を用いた無線通信システム及び,これに適用するマルチユーザスケジューラ
JP2007235761A (ja) * 2006-03-02 2007-09-13 Fujitsu Ltd 多入力多出力通信装置
JP2007235762A (ja) * 2006-03-02 2007-09-13 Fujitsu Ltd 多入力多出力通信用アンテナ装置
JP2008169628A (ja) 2007-01-12 2008-07-24 Three Bond Co Ltd セグメントの止水構造
JP2008278076A (ja) * 2007-04-26 2008-11-13 Kyocera Corp 無線通信装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291048A (ja) 2001-03-28 2002-10-04 Denso Corp 通信位置案内装置
WO2005125020A1 (en) * 2004-06-22 2005-12-29 Nortel Networks Limited Methods and systems for enabling feedback in wireless communication networks
US7469152B2 (en) 2004-11-30 2008-12-23 The Regents Of The University Of California Method and apparatus for an adaptive multiple-input multiple-output (MIMO) wireless communications systems
US7574236B1 (en) * 2006-06-06 2009-08-11 Nextel Communications Inc. System and method of operating an antenna in MIMO and beamforming modes
US8000730B2 (en) * 2006-07-07 2011-08-16 Wisconsin Alumni Research Foundation Method and system for improving performance in a sparse multi-path environment using reconfigurable arrays
KR20080022033A (ko) * 2006-09-05 2008-03-10 엘지전자 주식회사 프리코딩 정보 피드백 방법 및 프리코딩 방법
CN101335910B (zh) * 2007-06-29 2012-02-29 中国移动通信集团公司 智能天线与多输入多输出天线的复用天线系统和方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290148A (ja) * 2001-01-17 2002-10-04 Lucent Technol Inc アンテナアレイ
JP2003338781A (ja) * 2002-05-21 2003-11-28 Nec Corp アンテナ送受信システム
JP2005136492A (ja) * 2003-10-28 2005-05-26 Ntt Docomo Inc アンテナ装置及びその制御方法
JP2006141013A (ja) 2004-11-09 2006-06-01 Samsung Electronics Co Ltd 多重アンテナを使用する広帯域無線接続システムにおける多様な多重アンテナ技法を支援するための方法
WO2006123418A1 (ja) * 2005-05-20 2006-11-23 Fujitsu Limited 無線通信装置、移動端末装置及び無線通信方法
WO2007091317A1 (ja) * 2006-02-08 2007-08-16 Fujitsu Limited マルチアンテナ送信技術を用いた無線通信システム及び,これに適用するマルチユーザスケジューラ
JP2007235761A (ja) * 2006-03-02 2007-09-13 Fujitsu Ltd 多入力多出力通信装置
JP2007235762A (ja) * 2006-03-02 2007-09-13 Fujitsu Ltd 多入力多出力通信用アンテナ装置
JP2008169628A (ja) 2007-01-12 2008-07-24 Three Bond Co Ltd セグメントの止水構造
JP2008278076A (ja) * 2007-04-26 2008-11-13 Kyocera Corp 無線通信装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500686A (ja) * 2010-12-06 2014-01-09 クゥアルコム・インコーポレイテッド 無線ローカル・エリア・ネットワーク(lan)におけるアドバンスト受信機パフォーマンスを保護するためにシグナリングすること
US20130343328A1 (en) * 2011-03-16 2013-12-26 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for power allocation in communication systems
US9295062B2 (en) * 2011-03-16 2016-03-22 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for power allocation in communication systems
JP2017528955A (ja) * 2014-07-30 2017-09-28 華為技術有限公司Huawei Technologies Co.,Ltd. 下りチャネル品質の測定方法、送信端、受信端およびシステム
US10122433B2 (en) 2014-07-30 2018-11-06 Huawei Technologies Co., Ltd. Method for measuring downlink channel quality, transmit end, receive end, and system
US10236962B2 (en) 2014-07-30 2019-03-19 Huawei Technologies Co., Ltd. Method for measuring downlink channel quality, transmit end, receive end, and system
WO2016038960A1 (ja) * 2014-09-11 2016-03-17 株式会社Nttドコモ 基地局、ユーザ装置および無線通信システム
US10356727B2 (en) 2014-09-11 2019-07-16 Ntt Docomo, Inc. User equipment and radio base station
WO2018173646A1 (ja) * 2017-03-21 2018-09-27 三菱電機株式会社 通信システム
JPWO2018173646A1 (ja) * 2017-03-21 2020-01-30 三菱電機株式会社 通信システム
US10785661B2 (en) 2017-03-21 2020-09-22 Mitsubishi Electric Corporation Communication system
US11483718B2 (en) 2017-03-21 2022-10-25 Mitsubishi Electric Corporation Communication system

Also Published As

Publication number Publication date
US20110105064A1 (en) 2011-05-05
JP5133413B2 (ja) 2013-01-30
KR101169881B1 (ko) 2012-07-31
EP2293476A1 (en) 2011-03-09
US8559877B2 (en) 2013-10-15
KR20110025670A (ko) 2011-03-10
JPWO2009157513A1 (ja) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5133413B2 (ja) 無線通信装置および無線通信方法
JP6600053B2 (ja) 無線通信システムにおけるビームフォーミングを用いた通信方法及び装置
KR101241910B1 (ko) 다중 셀 환경에서 사운딩 채널을 이용한 협력적 mimo 기법
JP5560369B2 (ja) 多入力多出力システム用ダウンリンク伝送方法及び基地局
KR101513889B1 (ko) 멀티 빔 결합을 이용한 스위치 빔 포밍 장치 및 방법
JP4504293B2 (ja) 複数アンテナを備えた無線通信装置および無線通信システム、無線通信方法
JP6466338B2 (ja) ビームフォーミングベースの無線通信システムにおける送受信ビームパターン変更によるビーム利得補償の運用のための方法及び装置
US7729442B2 (en) Method and system for transmitting data in a communication system
JP5199473B2 (ja) Mimoシステムにおいて移動局のセットを構築する方法、対応する移動局、基地局、運用及び保守センター、並びに無線通信ネットワーク
US8050618B2 (en) Apparatus and method for transmission and reception in multiple input multiple output system with relay station
US9438327B2 (en) Method for operating a secondary station
US20130172002A1 (en) Beamforming method and apparatus for acquiring transmission beam diversity in a wireless communication system
KR20130127376A (ko) 아날로그 및 디지털 하이브리드 빔포밍을 통한 통신 방법 및 장치
CN105122900A (zh) 在基于波束成形的无线通信系统中的上行链路功率控制方法和装置
JPWO2009031184A1 (ja) 適応マルチアンテナを用いる移動体通信システム
US20120003926A1 (en) Transceiver and a repeater
EP1350404A2 (en) Radio communication system.
KR100809016B1 (ko) 빔 형성, mimo, 다이버서티 기법이 결합된 다중 안테나전송 기술을 이용하는 송신 방법 및 장치
US8768266B2 (en) Radio communication system, radio terminal, radio base station and radio communication method
KR20090053599A (ko) 다중 입출력 안테나를 포함하는 시분할다중화무선통신시스템에서 상향 링크 데이터 전송을 위한 송신안테나 선택과 다중 입출력 채널 추정을 위한 데이터송/수신 장치 및 방법
KR20090072135A (ko) 무선통신 네트워크에서 하향 링크 데이터 송수신 방법 및장치
KR101987002B1 (ko) 적응적 송신 편파 제어를 이용한 무선 통신 방법 및 장치
JP4837638B2 (ja) Mimoアンテナ装置及びそれを備えた無線通信装置
Gheorghe et al. Massive MIMO technology for 5G adaptive networks
EP1929662B1 (en) Data transmission scheme in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09770223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518054

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13001593

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009770223

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107029532

Country of ref document: KR

Kind code of ref document: A