WO2009157154A1 - 表示素子の製造方法及び製造装置 - Google Patents

表示素子の製造方法及び製造装置 Download PDF

Info

Publication number
WO2009157154A1
WO2009157154A1 PCT/JP2009/002748 JP2009002748W WO2009157154A1 WO 2009157154 A1 WO2009157154 A1 WO 2009157154A1 JP 2009002748 W JP2009002748 W JP 2009002748W WO 2009157154 A1 WO2009157154 A1 WO 2009157154A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
alignment system
display element
predetermined direction
alignment
Prior art date
Application number
PCT/JP2009/002748
Other languages
English (en)
French (fr)
Inventor
浜田智秀
奈良圭
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2010517724A priority Critical patent/JP5467531B2/ja
Priority to KR1020107028143A priority patent/KR101504388B1/ko
Publication of WO2009157154A1 publication Critical patent/WO2009157154A1/ja
Priority to US12/978,976 priority patent/US9086585B2/en
Priority to US14/736,567 priority patent/US9917023B2/en
Priority to US15/870,732 priority patent/US10832977B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present invention relates to a method or an apparatus for manufacturing a display element such as an organic electroluminescence (EL) element, a liquid crystal display element, or a field emission display (FED).
  • a display element such as an organic electroluminescence (EL) element, a liquid crystal display element, or a field emission display (FED).
  • EL organic electroluminescence
  • FED field emission display
  • Display elements such as organic EL and liquid crystal display elements are characterized by their small size, thinness, low power consumption, and light weight, and are currently widely used in various electronic devices. These display elements are increasing in size.
  • deformation of the flexible sheet substrate greatly affects the yield of products. For this reason, accurate acquisition of the positional information (alignment information) of the flexible sheet substrate in the manufacturing process greatly affects the yield improvement of the liquid crystal display element product.
  • Patent Document 1 discloses a manufacturing apparatus that manufactures an organic EL display element in a roll form as a measure for reducing the organic EL display element and reducing the running cost.
  • an image recognition camera is used to align the flexible sheet substrate and the mask when the substrate and the mask are aligned. It is necessary to perform alignment.
  • the invention disclosed in Patent Document 1 has a first image recognition camera for confirming the position of the flexible sheet substrate and a second image recognition camera for confirming the position of the mask.
  • the flexible sheet substrate may shrink due to heat in each process.
  • positioning is very important.
  • slip occurs between the conveyance roller and the flexible sheet substrate, or because there is a difference between the rotation speed of the conveyance roller and the conveyance speed of the long flexible sheet substrate, It is necessary to appropriately grasp the conveyance speed of the flexible sheet substrate. Therefore, a display device manufacturing apparatus capable of detecting a position with high accuracy is provided in order to form a display device with high accuracy on a substrate.
  • the display element manufacturing method of the present invention includes a first and second alignment systems arranged in a predetermined direction to detect a reference mark on the substrate, and calculates an expansion and contraction in the predetermined direction of the substrate. And a processing step of processing a predetermined position of the substrate by the processing device based on expansion and contraction of the substrate in a predetermined direction.
  • the display element manufacturing apparatus of the present invention is arranged at a predetermined distance from the first alignment system, a transport unit that transports a substrate having a reference mark in a predetermined direction, a first alignment system that detects the reference mark, and the first alignment system.
  • a second alignment system that detects a reference mark; a calculation unit that detects the reference mark and calculates expansion / contraction of the substrate in a predetermined direction or a substrate transport speed; and at least one of expansion / contraction of the substrate in a predetermined direction or substrate transport speed;
  • a processing unit that processes the substrate at a predetermined position based on the mark.
  • the present invention can measure the expansion and contraction and movement speed of the substrate by detecting the reference mark with the first alignment system and the second alignment system with respect to the substrate that easily expands and contracts. For this reason, the precision of the display element manufacturing apparatus can be improved, and elements with few defects are mass-produced.
  • FIG. 3 is a perspective view of a first position detection device 60.
  • FIG. 7 is a perspective view of a second position detection device 69.
  • FIG. 6 is a diagram for calibrating the distance between the first alignment system 61 and the second alignment system 62 in the first position detection device 60.
  • A) is a perspective view of the laser interferometer of the first position detector 60R on the right side.
  • (B) is a perspective view of the laser interferometer of the second position detector 69R on the right side.
  • (A) is a top view of the first position detection device 60 and the first position detection device 60 and the gate droplet applying device 20G.
  • (B) is a diagram showing a positional relationship between the alignment mark AM and the gate bus line GBL and the source bus line SBL of the field effect transistor.
  • 4 is a schematic flowchart of a manufacturing process of the organic EL element 50.
  • FIG. 1A is an enlarged top view of the organic EL element 50
  • FIGS. 1B and 1C are a bb sectional view and a cc sectional view of FIG.
  • the organic EL element 50 is a bottom contact type.
  • a gate electrode G, a gate insulating layer I, a source electrode S, a drain electrode D, a pixel electrode P, and an organic semiconductor layer OS are formed on a flexible sheet substrate FB (hereinafter referred to as a sheet substrate FB). Is done.
  • the gate electrode G is formed on the sheet substrate FB.
  • An insulating layer I is formed on the gate electrode G.
  • a source electrode S of the source bus line SBL is formed on the insulating layer I, and a drain electrode D connected to the pixel electrode P is formed.
  • An organic semiconductor layer OS is formed between the source electrode S and the drain electrode D. This completes the field effect transistor.
  • a light emitting layer IR is formed on the pixel electrode P, and a transparent electrode ITO is formed on the light emitting layer IR.
  • the sheet substrate FB has a partition wall BA (bank layer).
  • source bus lines SBL are formed between the barrier ribs BA.
  • the partition BA allows the source bus line SBL to be formed with high accuracy, and the pixel electrode P and the light emitting layer IR to be accurately formed.
  • the gate bus line GBL is also formed between the partition walls BA in the same manner as the source bus line SBL.
  • FIG. 2 is a schematic diagram showing a configuration of a manufacturing apparatus 100 that manufactures the organic EL element 50 having the pixel electrode P and the light emitting layer IR shown in FIG. 1 on the sheet substrate FB.
  • a substrate on which a thin film transistor (TFT) and a pixel electrode are formed is formed.
  • TFT thin film transistor
  • partition walls BA are accurately formed in the boundary region of the pixel electrode. It is preferable.
  • the manufacturing apparatus 100 for an organic EL element includes a partition forming process, an electrode forming process, and a light emitting layer forming process.
  • a partition forming process In order to perform precise processing in the electrode forming step and the light emitting layer forming step, it is necessary to accurately acquire the position information of the sheet substrate. For this reason, before the electrode forming step and the light emitting layer forming step, the first position detecting device 60 for detecting the alignment mark AM is required.
  • the manufacturing apparatus 100 for an organic EL element includes a supply roll RL for sending out a sheet substrate FB wound in a roll shape. As the supply roll RL rotates at a predetermined speed, the sheet substrate FB is sent in the + X-axis direction, which is the transport direction.
  • the manufacturing apparatus 100 for organic EL elements includes transport rollers RR at a plurality of locations, and the sheet substrate FB is also sent in the X-axis direction by rotating the transport rollers RR.
  • the transport roller RR may be a rubber roller that sandwiches the sheet substrate FB from both sides. A part of the transport rollers RR can move in the Y-axis direction orthogonal to the transport direction.
  • the sheet substrate FB sent out from the supply roll RL first enters a partition formation process for forming the partition BA on the sheet substrate FB.
  • the imprint roller 10 presses the sheet substrate FB, and the sheet substrate FB is heated to the glass transition point or more by the thermal transfer roller 15 so that the pressed partition wall BA maintains its shape.
  • the roller surface of the imprint roller 10 is mirror-finished, and a fine imprint mold 11 made of a material such as SiC or Ta is attached to the roller surface.
  • the fine imprint mold 11 forms a thin film transistor wiring stamper and a color filter stamper.
  • the mold shape including the partition BA formed in the fine imprint mold 11 is transferred to the sheet substrate FB.
  • the fine imprint mold 11 has a stamper for the alignment marks AM. As the imprint roller 10 rotates, the alignment mark AM and the partition wall BA are formed.
  • the thin film transistor may be an inorganic semiconductor type or an organic semiconductor type. If a thin film transistor is formed using an organic semiconductor, the thin film transistor can be formed by utilizing a printing method or a droplet coating method.
  • the manufacturing apparatus 100 uses a droplet applying apparatus 20 that is one of the droplet applying methods in the electrode forming process.
  • the droplet applying device 20 can adopt an ink jet method or a dispenser method.
  • Examples of the inkjet method include a charge control method, a pressure vibration method, an electromechanical conversion method, an electrothermal conversion method, and an electrostatic suction method.
  • the use of the material is less wasteful, and a desired amount of the material can be accurately disposed at a desired position.
  • the amount of one drop of metal ink applied by the droplet application method is, for example, 1 to 300 nanograms.
  • Metal ink is a liquid in which a conductor having a particle diameter of about 5 nm is stably dispersed in a solvent at room temperature, and carbon, silver (Ag), gold (Au), or the like is used as the conductor.
  • the manufacturing apparatus 100 arranges the first position detection device 60 after the process of the thermal transfer roller 15.
  • the first position detecting device 60 measures the alignment mark AM, thereby instructing an accurate coating position to the gate droplet coating apparatus 20G in the next step.
  • the first position detection device 60 measures the deformation amount of the sheet substrate FB.
  • the gate droplet applying apparatus 20G applies metal ink into the partition wall BA of the gate bus line GBL.
  • the heat treatment apparatus BK dries or bakes (bakes) the metal ink with radiant heat such as hot air or far infrared rays. Through these processes, the gate electrode G (see FIG. 1B) is formed.
  • the first position detection device 60 detects the alignment mark AM in a state where the sheet substrate FB and the transport roller RR are in close contact so that the sheet substrate FB does not sag. Therefore, the first position detection device 60 is disposed on the conveyance roller RR, and the first position detection device 60 detects the alignment mark AM in a state where the sheet substrate FB is on the conveyance roller RR.
  • the first position detection device 60 disposed downstream of the drying or baking process measures the alignment mark AM and instructs the droplet application apparatus 20I for the insulating layer in the next process to have an accurate application position.
  • the insulating layer droplet applying apparatus 20I applies an electrically insulating ink of polyimide resin or urethane resin to the switching unit.
  • the heat treatment apparatus BK dries and cures the electrically insulating ink by radiant heat such as hot air or far infrared rays. With these processes, the gate insulating layer I is formed.
  • the first position detection device 60 disposed after the process of the gate insulating layer I measures the alignment mark AM, and is accurate to the droplet application apparatus 20SD for the source and drain and for the pixel electrode in the next process. Tell the application position.
  • the droplet applying device 20SD for the source, the drain, and the pixel electrode applies metal ink in the partition BA of the source bus line SBL (see FIG. 1A) and in the partition BA of the pixel electrode P.
  • the heat treatment apparatus BK dries or fires the metal ink. By these processes, an electrode in a state where the source electrode S, the drain electrode D, and the pixel electrode P (see FIG. 1A) are connected is formed.
  • the first position detection device 60 disposed after the process of the source electrode S and the drain electrode D measures the alignment mark AM, and sets an accurate application position on the cutting position of the cutting device 30 and the organic semiconductor droplet applying device 20OS. Tell.
  • the cutting device 30 cuts the source electrode S and the drain electrode D connected to each other.
  • the cutting device 30 is a femtosecond laser irradiation unit using, for example, a femtosecond laser.
  • the femtosecond laser irradiation unit irradiates laser light LL having a wavelength of 760 nm with a pulse of 10 KHz to 40 KHz.
  • the galvano mirror (not shown) disposed in the optical path of the laser beam LL rotates, the irradiation position of the laser beam LL changes.
  • the cutting device 30 uses, for example, a femtosecond laser irradiation unit, it can be processed on the order of submicrons.
  • the cutting device 30 accurately cuts the channel length (interval) between the source electrode S and the drain electrode D (see FIG. 1B) that determines the performance of the field effect transistor.
  • the source electrode S, the drain electrode D, and the channel length are about 20 ⁇ m to 30 ⁇ m. By this cutting process, an electrode in which the source electrode S and the drain electrode D are separated is formed.
  • the cutting device 30 can use a carbon dioxide laser or a green laser in addition to the femtosecond laser. In addition to the laser, the cutting device 30 may use a mechanical cutting device such as a dicing saw.
  • the organic semiconductor droplet applying apparatus 20OS applies the organic semiconductor ink to the switching portion between the source electrode S and the drain electrode D.
  • the heat treatment apparatus BK dries or bakes the organic semiconductor ink with radiant heat such as hot air or far infrared rays. Through these processes, the organic semiconductor layer OS (see FIG. 1B) is formed.
  • the compound forming the organic semiconductor ink may be a single crystal material or an amorphous material, and may be a low molecule or a polymer. Particularly preferred are single crystals or ⁇ -conjugated polymers of condensed ring aromatic hydrocarbon compounds represented by pentacene, triphenylene, anthracene and the like.
  • the manufacturing apparatus 100 forms a thin film transistor or the like by using a printing method or a droplet coating method.
  • the channel length of the source electrode S and the drain electrode D (see FIG. 1B) that determines the performance of the thin film transistor is determined by laser processing or mechanical processing by detecting an accurate position with the first position detection device 60. It is formed.
  • the sheet substrate FB on which the thin film transistor and the pixel electrode are formed is continuously subjected to the next light emitting layer forming step as shown in the lower part of FIG.
  • the manufacturing apparatus 100 for an organic EL element continues the process of forming the light emitting layer IR (see FIG. 1) of the organic EL element 50 on the pixel electrode P.
  • the manufacturing apparatus 100 uses the printing roller 40 in the light emitting layer forming process.
  • the printing roller 40 soaked with the phosphorescent compound rotates to form a layer of the phosphorescent compound EL on the pixel electrode PX.
  • the phosphorescent compound EL may be applied by a droplet coating method instead of the printing method.
  • the second position detection device 69 disposed after the cutting device 30 transmits the accurate application position to the printing roller 40 in the next step.
  • the red light emitting layer printing roller 40R is disposed on the lower side (Z direction) than the transport roller RR that changes the transport direction. Therefore, the transport direction of the sheet substrate FB is sent from the + X axis direction to the ⁇ Z axis direction, and the transport direction of the sheet substrate FB is sent from the ⁇ Z axis direction to the + X axis direction by the printing roller 40R for the red light emitting layer. Therefore, the contact area between the sheet substrate FB and the red light emitting layer printing roller 40R is increased.
  • the green light emitting layer printing roller 40G and the blue light emitting layer printing roller 40B include a small front roller SR1 and a rear roller SR2 for pressing the sheet substrate FB.
  • the front roller SR1 and the rear roller SR2 increase the area where the sheet substrate FB follows the outer peripheral surfaces of the printing roller 40G and the printing roller 40B, that is, the contact area.
  • the printing roller 40R for the red light emitting layer applies the R solution onto the pixel electrode P and forms a film so as to have a thickness of 100 nm after drying.
  • the R solution is a solution in which a red dopant material is dissolved in 1,2-dichloroethane in a host material polyvinylcarbazole (PVK).
  • PVK polyvinylcarbazole
  • the green light emitting layer printing roller 40G applies the G solution onto the pixel electrode P.
  • the G solution is a solution in which a green dopant material is dissolved in 1,2-dichloroethane in a host material PVK.
  • the blue light emitting layer printing roller 40B applies the B solution onto the pixel electrode P.
  • the solution B is a solution in which a blue dopant material is dissolved in 1,2-dichloroethane in a host material PVK. Thereafter, the heat treatment apparatus BK dries and cures the light emitting layer solution with radiant heat such as hot air or far infrared rays.
  • the first position detection device 60 arranged after the printing process of the light emitting layer measures the alignment mark AM and transmits the accurate coating position to the droplet coating apparatus 20I for the insulating layer in the next process.
  • the insulating layer droplet applying apparatus 20I applies an electrically insulating ink of polyimide resin or urethane resin to a part of the gate bus line GBL or the source bus line SBL so as not to be short-circuited with a transparent electrode ITO described later. To do.
  • the heat treatment apparatus BK dries and cures the electrically insulating ink by radiant heat such as hot air or far infrared rays.
  • the first position detection device 60 disposed after the insulating layer forming step measures the alignment mark AM and transmits the accurate application position to the ITO electrode droplet applying device 20IT in the next step.
  • the ITO electrode droplet applying apparatus 20IT applies ITO (Indium Tin Oxide indium tin oxide) ink on the red, green and blue light emitting layers.
  • the ITO ink preferably has a transmittance of 90% or more.
  • the heat treatment apparatus BK dries and cures the ITO ink by radiant heat such as hot air or far infrared rays.
  • the organic EL element 50 shown in FIG. 1 is completed.
  • the organic EL element 50 may provide a positive hole transport layer and an electron carrying layer, these layers should just utilize a printing method or a droplet coating method.
  • the manufacturing apparatus 100 has the speed alignment control unit 90 shown in FIG.
  • the speed alignment control unit 90 performs speed control of the supply roll RL and the transport roller RR. Some of the transport rollers RR are movable in the Y-axis direction, and the speed alignment control unit 90 performs movement control of the transport rollers RR in the Y-axis direction. Further, the speed alignment control unit 90 receives the detection result of the alignment mark AM from the plurality of alignment systems 60, and applies the ink application position by the droplet application device 20 or the application position and timing such as ink printing by the printing roller 40, and cutting. The cutting position and timing of the device 30 are controlled.
  • the sheet substrate FB used in the present embodiment is a heat-resistant resin film, specifically, polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, A polyimide resin, polycarbonate resin, polystyrene resin, or vinyl acetate resin that has a light transmission function can be used.
  • the sheet substrate FB is subjected to heat transfer heat treatment in the partition formation process, and the sheet substrate FB is heated to around 200 ° C. in order to receive heat treatment by the heat treatment apparatus BK.
  • the sheet substrate FB may be reduced in thermal expansion coefficient by mixing an inorganic filler with a resin film so that the dimensions are not changed as much as possible even when receiving heat.
  • FIG. 3 is a perspective view of the first position detection device 60.
  • the sheet substrate FB shown in FIG. 3 moves in the transport direction (+ X axis direction).
  • the alignment marks AM are formed at equal intervals in the X-axis direction on the right and left sides of the sheet substrate FB.
  • the alignment mark AM under the first position detection device 60R on the right side is referred to as an alignment mark AMR1 and an alignment mark AMR2.
  • the alignment marks AM below the left first position detection device 60L are referred to as alignment marks AML1 and AML2. All of these are called alignment marks AM when they are not distinguished.
  • the first position detection device 60 (60R, 60L) includes a first alignment system 61 and a second alignment system 62, and is disposed so as to come above the alignment mark AM of the sheet substrate FB.
  • the first alignment system 61 and the second alignment system 62 are fixed by a holding part 63.
  • the holding part 63 is arranged at a predetermined distance, and the holding part 63 is made of an invar alloy made of Fe-36Ni having a low thermal expansion coefficient, a Kovar alloy made of Fe29Ni-17Co, ceramic, or the like. For this reason, the distance between the first alignment system 61 and the second alignment system 62 can be kept at a predetermined distance without being affected by heat. As shown in FIG.
  • the first position detection device 60 has a first position detection device 60R on the right side at the upper part on both sides of the sheet substrate FB, which is a position orthogonal to the conveyance direction (+ X axis direction) of the sheet substrate FB. And the left first position detection device 60L.
  • the first alignment system 61 of the first position detection device 60R on the right side detects the alignment mark AMR1, and then detects the alignment mark AMR2. At that time, the second alignment system 62 detects the alignment mark AMR1. At the same timing, the first alignment system 61 of the left first position detection device 60L also detects the alignment mark AML2, and the second alignment system 62 detects the alignment mark AML1.
  • the first position detection device 60R on the right side detects the alignment mark AMR1 with the first alignment system 61 and detects the moving alignment mark AMR1 with the second alignment system 62.
  • the detection signal is sent to the speed calculation unit 91 in the speed alignment control unit 90. Since the interval between the first alignment system 61 and the second alignment system 62 is accurate, it is possible to measure the right speed of the sheet substrate FB accurately.
  • the first position detection device 60L on the left also detects the alignment mark AML1 with the first alignment system 61, and detects the moving alignment mark AML1 with the second alignment system 62.
  • the detection signal is sent to the speed calculation unit 91 in the speed alignment control unit 90. Since the distance between the first alignment system 61 and the second alignment system 62 is accurate, it is possible to measure an accurate speed on the left side of the sheet substrate FB.
  • the first position detection device 60R on the right side and the first position detection device 60L on the left side simultaneously measure the alignment mark AMR1 and the alignment mark AML1 on both sides of the sheet substrate FB, so that the speed calculation unit 91 can detect the right and left of the sheet substrate FB. Can be measured.
  • the expansion / contraction calculation unit 93 in the velocity alignment control unit 90 compares the detected distance between the alignment mark AMR1 and the alignment mark AMR2 with the distance between the alignment mark AMR1 and the alignment mark AMR2 that are design values.
  • the expansion / contraction calculation unit 93 calculates the expansion / contraction state on the right side of the sheet substrate FB.
  • the distance between the alignment mark AMR1 and the alignment mark AMR2, which are design values, coincides between the pair of alignment marks AM formed on the fine imprint mold 11 (see FIG. 2).
  • the expansion / contraction calculation unit 93 performs the alignment mark AMR1, alignment mark AMR2, alignment mark AML1, and alignment mark AML2.
  • the expansion / contraction state of the enclosed area can be calculated.
  • FIG. 4 is a perspective view of the second position detecting device 69.
  • the second position detection device 69 has the same configuration as the first position detection device 60, and includes a first alignment system 65, a second alignment system 66, and a holding unit 67. However, the attachment angles of the first alignment system 65 and the second alignment system 66 are different. Each of the optical axes of the first alignment system 65 and the optical axis of the second alignment system 66 is set at 90 degrees.
  • the material of the holding portion 67 of the second position detection device 69 is formed of a material having a low thermal expansion coefficient, like the first position detection device 60.
  • the first alignment system 65 of the right-side second position detection device 69R on the right side detects the alignment mark AMR1 after the sheet substrate FB moves in the conveyance direction. Is detected.
  • the second alignment system 66 is detecting the alignment mark AMR1.
  • the left second position detector 69L also detects the alignment mark AML1 by the second alignment system 66 when the first alignment system 65 detects the alignment mark AML2.
  • the sheet substrate FB and the transport roller RR are on the optical axis of the first alignment system 65 of the second position detection device 69 (69R, 69L). Since the first alignment system 65 can detect the alignment mark AM in a state where the sheet substrate FB and the transport roller RR are in close contact with each other, the slack of the sheet substrate FB can be removed and measured. Similarly, the second alignment system 66 of the second position detection device 69 (69R, 69L) can detect the alignment mark AM in a state where the sheet substrate FB and the transport roller RR are in close contact with each other.
  • the speed calculation unit 91 is similar to the first position detection device 60.
  • the speed and left and right traveling deviation can also be calculated simultaneously.
  • the expansion / contraction calculation unit 93 can calculate the expansion / contraction state of the region surrounded by the four alignment marks AM (alignment mark AMR1, alignment mark AMR2, alignment mark AML1, and alignment mark AML2).
  • the first position detection device 60 or the second position detection device 69 of this embodiment may pick up an image with a CCD or CMOS under visible light illumination, and process the picked-up image to detect the position of the alignment mark AM.
  • the first position detection device 60 or the second position detection device 69 may be a method of detecting the position of the alignment mark AM by irradiating the alignment mark AM with a laser beam and receiving the scattered light.
  • FIG. 5 is a diagram showing calibration between the distances of the first alignment system 61 and the second alignment system 62 of the first position detection device 60.
  • the first alignment system 61 and the second alignment system 62 are fixed by a holding part 63 made of a material having a low thermal expansion coefficient, but the distance between the first alignment system 61 and the second alignment system 62 is a temperature. It fluctuates due to such influences. Therefore, the manufacturing apparatus 100 for the organic EL element passes the calibration substrate GR in which the calibration basic mark BM is accurately formed before processing the sheet substrate FB. Calibration between the distances between the first alignment system 61 and the second alignment system 62 is performed.
  • the calibration substrate GR is a glass or plastic substrate having a small thermal expansion, and the basic mark BMR1, the basic mark BMR2, the basic mark BML1, and the basic mark BML2 are formed on the substrate.
  • the positions of these basic marks BM are accurately measured in advance by a measuring instrument (not shown). That is, the distance between the basic mark BMR1 and the basic mark BMR2, the distance between the basic mark BML1 and the basic mark BML2, the distance between the basic mark BMR1 and the basic mark BML1, and the distance between the basic mark BMR2 and the basic mark BML2 are measured in advance. ing.
  • the manufacturing apparatus 100 transports the calibration substrate GR instead of the sheet substrate FB.
  • the calibration substrate GR stops near the first position detection device 60.
  • the first alignment system 61 and the second alignment system 62 of the first position detection device 60 detect the basic mark BM.
  • the calibration unit 95 in the velocity alignment control unit 90 calibrates the distance between the first alignment system 61 and the second alignment system 62.
  • the calibration unit 95 can also calibrate the distance between the first position detection device 60R on the right side and the first position detection device 60L on the left side.
  • the first position detection device 60 is arranged at a plurality of locations.
  • the distance between the first alignment system 61 and the second alignment system 62 is also calibrated for each first position detection device 60.
  • the distance between the first alignment system 65 and the second alignment system 66 of the second position detection device 69 is calibrated using a flexible calibration substrate with small thermal expansion.
  • the basic mark BM for calibration is also drawn on the lexical calibration substrate.
  • the calibration unit 95 can calibrate the distance between the optical axes of the first alignment system 65 and the second alignment system 66 of the second position detection device 69.
  • FIG. 6 is a perspective view showing the laser interferometer and the first position detection device 60.
  • 6A shows the laser interferometer 70 of the first position detection device 60R on the right side of the first position detection device 60
  • FIG. 6B shows the second position detection device 69R on the right side of the second position detection device 69.
  • the laser interferometer 70 is shown. Note that the laser interferometer 70 of the first position detection device 60L on the left side and the second position detection device 69L on the left side are not shown because they have the same configuration.
  • the laser interferometer 70 includes a laser interferometer body 71, a fixed mirror 72, and a moving mirror 73.
  • the distance between the first alignment system and the second alignment system is related to the stretched state of the holding portion 63. Therefore, the fixed mirror 72 is installed in the first alignment system 61 and the movable mirror 73 is installed in the second alignment system 62 so that the longitudinal direction of the holding unit 63 is parallel to the projection direction of the laser light 74 and the laser light 75. Installed.
  • the two laser beams 74 and 75 projected from the laser interferometer main body 71 are projected in parallel along the longitudinal direction of the holding unit 63, and the fixed mirror 72 and the second alignment system 62 installed in the first alignment system 61. Is projected toward the movable mirror 73 installed on the screen.
  • the laser interferometer body 71 synthesizes the laser beams reflected by the fixed mirror 72 and the movable mirror 73, and measures the relative position change between the first alignment system 61 and the second alignment system 62 based on the interference fringes. .
  • the laser interferometer 70 can measure a relative position change between the first alignment system 61 and the second alignment system 62 even while the organic EL element is being manufactured on the sheet substrate FB.
  • the laser light source (not shown) projected from the laser interferometer main body 71 is one place, and is divided into two laser beams 74 and a laser beam 75 by a spectroscope (not shown) such as a beam splitter.
  • the fixed mirror 72 is installed in the first alignment system 65 and the movable mirror 73 is installed in the second alignment system 66 for the second position detection device 69 as well. Then, the two laser beams 74 and 75 projected from the laser interferometer main body 71 are projected in parallel along the longitudinal direction of the holding portion 67, and the relative relationship between the first alignment system 65 and the second alignment system 66 is calculated. Measure position change.
  • the manufacturing apparatus 100 for an organic EL element always accurately measures the distance between the first alignment system 61 and the second alignment system 62 or the distance between the first alignment system 65 and the second alignment system 66 using the laser interferometer 70. To do. For this reason, the measured value of the 1st position detection apparatus 60 or the 2nd position detection apparatus 69 can be calibrated correctly. Therefore, the manufacturing apparatus 100 for organic EL elements can always obtain an accurate measurement result.
  • FIG. 7A shows a top view of the first position detection device 60, the first position detection device 60, and the gate droplet applying device 20G.
  • a gate droplet applying apparatus 20G will be described as a representative of the processing apparatus.
  • the description of the second position detection device 69 is omitted.
  • the speed calculation unit 91 and the expansion / contraction calculation unit 93 of the speed alignment control unit 90 detect the alignment marks AM (four positions in total) on both sides formed on the sheet substrate FB with the first position detection device 60, thereby Measure speed, left / right travel deviation and expansion / contraction state. Further, since the first position detection device 60 is provided above the transport roller RR, the error due to the bending of the sheet substrate FB is made as small as possible.
  • the speed alignment control unit 90 sends signals regarding the speed of the sheet substrate FB, the lateral shift, and the expansion / contraction state to the gate droplet applying apparatus 20G so that the gate droplet applying apparatus 20G can apply the droplets at an optimal position. Put out. Similarly, the speed alignment control unit 90 issues an instruction for the speed of the sheet substrate FB and the rotation speed of the printing roller 40 from the detection result of the first position detection device 60.
  • the gate droplet applying apparatus 20G is arranged in the Y-axis direction, a plurality of nozzles 22 are arranged in the Y-axis direction, and a plurality of rows of nozzles 22 are also arranged in the X-axis direction.
  • the positional relationship of the plurality of nozzles 22 in the XY axis direction is stored in advance.
  • the positional relationship between the alignment mark AM and the gate bus line GBL and the source bus line SBL of the field effect transistor is also defined in advance.
  • the alignment mark AM and the mold shape of the partition wall BA formed on the fine imprint mold 11 shown in FIG. 2 are transferred to the sheet substrate FB.
  • FIG. 7B shows the sheet substrate FB onto which the mold shape has been transferred.
  • a predetermined distance PY between the alignment mark AM and the gate bus line GBL is defined in the Y-axis direction
  • the alignment mark AM and the source bus line SBL are defined in the X-axis direction.
  • a predetermined distance PX is defined.
  • the gate droplet applying apparatus 20G applies the timing for applying the metal ink from the nozzles 22 in accordance with the signal relating to the speed of the sheet substrate FB sent from the speed alignment control unit 90, the left and right advancement deviation, and the expansion and contraction state.
  • the nozzle 22 for applying the metal ink is switched.
  • the droplet applying device 20G can apply the metal ink from the appropriate nozzle 22 at an appropriate timing based on the signal relating to the speed of the sheet substrate FB, the lateral shift and the expansion / contraction state.
  • the other liquid droplet application devices 20 can similarly receive the signal from the velocity alignment control unit 90 and adjust the position where the ink or the like is applied to the sheet substrate FB.
  • the cutting device 30 receives a signal from the speed alignment control unit 90 and adjusts the cutting position.
  • one alignment mark AM is provided for the partition wall BA of the field effect transistors in one row in the X-axis direction.
  • a plurality of alignment marks AM may be provided for the partition walls BA of one row of field effect transistors. If there is a space in the sheet substrate FB, the alignment mark AM may be provided not only on both sides of the sheet substrate FB but also in the central region.
  • the alignment mark AM has been shown as an example of a cross shape, but may have other mark shapes such as a circular mark or an oblique straight mark.
  • FIG. 8 is a schematic flowchart of the manufacturing process of the organic EL element 50.
  • Step P1 alignment marks AM and partition walls BA such as thin film transistors and light emitting layers are formed on the sheet substrate FB by the imprint roller 10 by thermal transfer. Note that the alignment mark AM and the partition wall BA are preferably formed at the same time because the mutual positional relationship is important.
  • Step P2 the first position detection device 60 images the alignment mark AM, so that the speed calculation unit 91 and the expansion / contraction calculation unit 93 of the speed alignment control unit 90 cause the speed of the heat-treated sheet substrate FB and the left and right traveling deviations. And the expansion / contraction state is calculated.
  • step P3 based on the signal regarding the speed of the sheet substrate FB, the lateral shift and expansion / contraction state from the speed alignment controller 90, the gate droplet applying apparatus 20G and the insulating layer droplet applying apparatus 20I.
  • the source and drain droplet applying devices 20SD sequentially apply metal ink for various electrodes.
  • Step P4 the first position detection device 60 images the alignment mark AM, and the speed calculation unit 91 and the expansion / contraction calculation unit 93 calculate the speed, the lateral shift, and the expansion / contraction state of the heat-treated sheet substrate FB.
  • step P5 based on the signal from the velocity alignment control unit 90, the laser beam LL of the cutting device 30 forms a channel that is a gap between the source electrode S and the drain electrode D.
  • Step P6 the organic semiconductor droplet coating apparatus 20OS forms the organic semiconductor in the gap between the source electrode S and the drain electrode D based on the signal from the speed alignment controller 90.
  • Step P7 the second position detection device 69 images the alignment mark AM, and the speed alignment control unit 90 calculates the speed, the lateral shift, and the expansion / contraction state of the heat-treated sheet substrate FB.
  • Step P8 based on the signal from the speed alignment controller 90, the printing roller 40 forms an RGB light emitting layer.
  • Step P9 the first position detection device 60 images the alignment mark AM, and the speed alignment control unit 90 calculates the speed, the left-right advancement deviation, and the expansion / contraction state of the heat-treated sheet substrate FB.
  • Step P ⁇ b> 10 the insulating layer droplet applying apparatus 20 ⁇ / b> I forms the insulating layer I based on the signal from the speed alignment control unit 90.
  • Step P11 the first position detection device 60 images the alignment mark AM, and the speed alignment control unit 90 calculates the speed, the left-right advancement deviation, and the expansion / contraction state of the heat-treated sheet substrate FB.
  • step P12 based on the signal corrected by the speed alignment controller 90, the ITO electrode droplet applying apparatus 20IT forms the ITO electrode.
  • the fine imprint mold 11 (FIG. 2) is premised on forming the alignment mark AM on the sheet substrate FB.
  • the sheet substrate FB on which the alignment marks AM are formed in advance may be purchased, and the fine imprint mold 11 may form only the partition walls BA on the sheet substrate FB.
  • the positional relationship in the XY direction between the alignment mark AM and the partition wall BA may be measured by a measurement device (not shown).
  • the manufacturing apparatus of the present invention can be applied to a liquid crystal display element, a field emission display, and the like.
  • the heat treatment apparatus BK is provided in the manufacturing apparatus of the embodiment, an ink or solution that does not require heat treatment has been proposed by improving the metal ink or the light emitting layer solution. For this reason, it is not always necessary to provide the heat treatment apparatus BK in this embodiment.
  • Holding unit 70 Laser interferometer (71 ... Laser interferometer body, 72 ... Fixed mirror, 73 ... Moving mirror) 74, 75 ... Laser light 90 ... Speed & alignment control unit 100 ... Manufacturing apparatus AM ... Alignment mark BA ... Partition wall BK ... Heat treatment apparatus D ... Drain electrode FB ... Sheet substrate G ... Gate electrode GBL Gate bus line GR ... Glass substrate I ... Gate insulating layer IR ... Light emitting layer ITO Transparent electrode LL ... Laser light OS ... Organic semiconductor layer P ... Pixel electrode PX ... Predetermined distance PY in the X-axis direction ... Predetermined distance RL in the Y-axis direction ... Supply roll RR ... Roller S ... Source electrode SBL ... Source bus line

Abstract

 高精度に位置検出できる表示素子の製造方法及び製造装置を提供することを課題とする。表示素子の製造装置は、基板(FB)を第1方向に搬送する搬送部(RR)と、基準マーク(AMR2、AML2)を検出する第1アライメント系(61)と、第1アライメント系から第1方向に所定距離離れて配置され基準マーク(AMR1、AML1)を検出する第2アライメント系(62)と、基準マークを検出し基板の第1方向の伸縮又は基板の搬送速度を算出する算出部(91、93)と、基板の第1方向の伸縮又は基板の搬送速度の少なくとも一方と基準マークとに基づいて、基板の所定の位置に処理する処理部と、を有する。

Description

表示素子の製造方法及び製造装置
 本発明は、有機エレクトロルミネッセンス(EL)素子、液晶表示素子又は電界放出ディスプレイ(FED:フィールドエミッション・ディスプレイ)などの表示素子の製造方法又は製造装置に関する。
 有機EL,液晶表示素子などの表示素子は、小型、薄型、低消費電力、及び軽量という特徴を有するため、現在、各種の電子機器に広く用いられている。これら表示素子は大型化が進んでいる。大型化したロール状に巻かれた可撓性シート基板に表示素子を形成するには、可撓性シート基板の変形が製品の歩留まりに大きく影響する。このため、製造工程における可撓性シート基板の位置情報(アライメント情報)の正確な取得が液晶表示素子の製品の歩留まり向上に大きく影響することになる。
 特許文献1は有機ELの表示素子の低減、ランニング・コストの低減の対策として、ロール形式で有機ELの表示素子を製造する製造装置を開示する。特許文献1に開示されるように、可撓性シート基板を用いて基板上に有機EL素子を形成する場合、基板とマスクとのアライメント時には画像認識カメラを用いて可撓性シート基板とマスクとをアライメントを行う必要がある。特許文献1の開示する発明は、可撓性シート基板の位置を確認する第1画像認識カメラとマスクの位置を確認する第2画像認識カメラとを有している。
特開2003-173870号公報
 しかし、可撓性シート基板は、各工程における熱によって収縮する場合がある。長尺の表示素子を形成するには、可撓性シート基板の伸縮が無視できない問題となってきているため、位置決めが非常に重要となる。また搬送ローラと可撓性シート基板との間にはすべり発生するため、又は搬送ローラの回転速度と長尺の可撓性シート基板の搬送速度とには差異があるため、実際の長尺の可撓性シート基板の搬送速度を適切に把握する必要がある。
 そこで、基板に対しても高精度に表示素子を形成するため、高精度に位置検出できる表示素子用の製造装置を提供する。
 本発明の表示素子の製造方法は、所定方向に配列した第1アライメント系及び第2アライメント系で基板上の基準マークを検出し、基板の所定方向の伸縮を算出する伸縮算出工程と、基準マーク及び基板の所定方向の伸縮に基づいて、処理装置により基板の所定の位置に処理を施す処理工程と、を有する。
 この製造方法により、基板の所定方向の伸縮を把握することができ、その伸縮に応じて基板に処理を施すことができるため、熱などによって基板が伸縮した場合であっても正確に基板を処理することができる。
 本発明の表示素子の製造装置は、基準マークを有する基板を所定方向に搬送する搬送部と、基準マークを検出する第1アライメント系と、第1アライメント系から所定方向に所定距離離れて配置され基準マークを検出する第2アライメント系と、基準マークを検出し基板の所定方向の伸縮又は基板の搬送速度を算出する算出部と、基板の所定方向の伸縮又は基板の搬送速度の少なくとも一方と基準マークとに基づいて基板の所定の位置に処理する処理部と、を有する。
 この製造装置により、基板の所定方向の伸縮又は搬送速度を把握することができ、その伸縮又は搬送速度に応じて基板に処理を施すことができるため、正確に基板を処理することができる。
 本発明は、伸縮しやすい基板に対して、第1アライメント系と第2アライメント系とによって基準マークを検出することで基板の伸縮及び移動速度を計測することができる。このため、表示素子の製造装置の精度を高めることができ、不良の少ない素子が量産される。
(a)は、ボトムゲート型の有機EL素子50の上面図である。 (b)は、(a)のb-b断面図である。 (c)は、(a)のc-c断面図である。 有機EL素子50を製造する製造装置100の構成を示した概略図である。 第1位置検出装置60の斜視図である。 第2位置検出装置69の斜視図である。 第1位置検出装置60において第1アライメント系61と第2アライメント系62との距離を校正する図である。 (a)は、右側の第1位置検出装置60Rのレーザー干渉計の斜視図である。 (b)は、右側の第2位置検出装置69Rのレーザー干渉計の斜視図である。 (a)は、第1位置検出装置60及び第1位置検出装置60とゲート用液滴塗布装置20Gとの上面図である。 (b)は、アライメントマークAMと電界効果型トランジスタのゲートバスラインGBL及びソースバスラインSBLとの位置関係を示した図である。 有機EL素子50の製造工程の概略フローチャートである。
<電界効果型トランジスタの有機EL素子50>
 図1(a)は、有機EL素子50の拡大上面図であり、図1(b)及び(c)は、(a)のb-b断面図及びc-c断面図である。有機EL素子50はボトムコンタクト型である。有機EL素子50は、可撓性のシート基板FB(以下はシート基板FBとする)にゲート電極G、ゲート絶縁層I、ソース電極S、ドレイン電極D、画素電極P及び有機半導体層OSが形成される。
 図1(b)に示されるようにシート基板FB上にゲート電極Gが形成されている。そのゲート電極Gの上に絶縁層Iが形成されている。絶縁層Iの上にソースバスラインSBLのソース電極Sが形成されるとともに、画素電極Pと接続したドレイン電極Dが形成される。ソース電極Sとドレイン電極Dとの間には有機半導体層OSが形成される。これで電界効果型トランジスタが完成することになる。また、図1(b)及び(c)に示されるように、画素電極Pの上には発光層IRが形成され、その発光層IRには透明電極ITOが形成される。
 図1(b)及び(c)から理解されるように、シート基板FBには隔壁BA(バンク層)が形状されている。そして図1(c)に示されるようにソースバスラインSBLが隔壁BA間に形成されている。このように、隔壁BAが存在することによりソースバスラインSBLが高精度に形成されるとともに、画素電極P及び発光層IRも正確に形成されている。なお、図1(b)及び(c)では描かれていないがゲートバスラインGBLもソースバスラインSBLと同様に隔壁BA間に形成されている。このような有機EL素子50を量産する製造装置100を以下に説明する。
<<有機EL素子の製造装置>>
 図2は、シート基板FBに、図1で示した画素電極P及び発光層IRなど有する有機EL素子50を製造する製造装置100の構成を示した概略図である。
 有機EL素子50の製造においては、薄膜トランジスタ(TFT)及び画素電極が形成された基板が形成される。その基板上の画素電極上に発光層を含む1以上の有機化合物層(発光素子層)を精度良く形成するために、画素電極の境界領域に隔壁BA(図1を参照)を精度良く形成することが好ましい。
 有機EL素子用の製造装置100は隔壁形成工程、電極形成工程、及び発光層形成工程で構成される。電極形成工程及び発光層形成工程では精密に処理するために、正確にシート基板の位置情報を取得しておく必要がある。このため電極形成工程及び発光層形成工程などの前には、アライメントマークAMを検出する第1位置検出装置60が必要となる。
 有機EL素子用の製造装置100は、ロール状に巻かれたシート基板FBを送り出すための供給ロールRLを備えている。供給ロールRLが所定速度の回転を行うことで、シート基板FBが搬送方向である+X軸方向に送られる。また、有機EL素子用の製造装置100は、複数個所に搬送ローラRRを備えており、この搬送ローラRRが回転することによっても、シート基板FBがX軸方向に送られる。搬送ローラRRはシート基板FBを両面から挟み込むゴムローラであってもよい。また一部の搬送ローラRRは搬送方向と直交するY軸方向に移動可能である。
<隔壁形成工程>
 供給ロールRLから送り出されたシート基板FBは、最初にシート基板FBに隔壁BAを形成する隔壁形成工程に入る。隔壁形成工程では、インプリントローラ10がシート基板FBを押圧するとともに、押圧された隔壁BAが形状を保つように熱転写ローラ15でシート基板FBをガラス転移点以上に熱する。インプリントローラ10のローラ表面は鏡面仕上げされており、そのローラ表面にSiC、Taなどの材料で構成された微細インプリント用モールド11が取り付けられている。
 微細インプリント用モールド11は、薄膜トランジスタの配線用のスタンパー及びカラーフィルタ用のスタンパーを形成している。微細インプリント用モールド11に形成された隔壁BAを含む型形状がシート基板FBに転写される。また、シート基板FBの幅方向であるY軸方向の両側に基準マークであるアライメントマークAMを形成するため、微細インプリント用モールド11は、アライメントマークAM用のスタンパーを有している。インプリントローラ10が回転することで、アライメントマークAMと隔壁BAとが形成される。
<電極形成工程>
 薄膜トランジスタ(TFT)としては、無機半導体系のものでも有機半導体を用いたものでも良い。有機半導体を用いて薄膜トランジスタを構成すれば、印刷法や液滴塗布法を活用して薄膜トランジスタを形成できる。
 製造装置100は、電極形成工程で、液滴塗布法の一つである液滴塗布装置20を使用する。液滴塗布装置20は、インクジェット方式又はディスペンサー方式を採用することができる。インクジェット方式としては、帯電制御方式、加圧振動方式、電気機械変換式、電気熱変換方式、静電吸引方式などが挙げられる。液滴塗布法は、材料の使用に無駄が少なく、しかも所望の位置に所望の量の材料を的確に配置できる。なお、液滴塗布法により塗布されるメタルインクの一滴の量は、例えば1~300ナノグラムである。なおメタルインクは、粒子径が約5nmほどの導電体が室温の溶媒中で安定して分散をする液体であり、導電体として、カーボン、銀(Ag)又は金(Au)などが使われる。
 製造装置100は、熱転写ローラ15の工程の後に第1位置検出装置60を配置する。第1位置検出装置60はアライメントマークAMを計測することで、次の工程のゲート用液滴塗布装置20Gに正確な塗布位置を指示する。特に熱転写ローラ15の処理後はシート基板FBが収縮変形し易いため、第1位置検出装置60はシート基板FBの変形量を計測する。ゲート用液滴塗布装置20Gは、ゲートバスラインGBLの隔壁BA内にメタルインクを塗布する。そして、熱処理装置BKは熱風又は遠赤外線などの放射熱によりメタルインクを乾燥又は焼成(ベーキング)する。これらの処理で、ゲート電極G(図1(b)を参照)が形成される。
 第1位置検出装置60は、シート基板FBの弛みがないように、シート基板FBと搬送ローラRRとが密着した状態でアライメントマークAMを検出することが好ましい。このため、第1位置検出装置60は搬送ローラRR上に配置され、第1位置検出装置60は搬送ローラRR上にシート基板FBがある状態でアライメントマークAMを検出する。
 次に、乾燥又は焼成工程の下流に配置された第1位置検出装置60は、アライメントマークAMを計測し、次の工程の絶縁層用の液滴塗布装置20Iに正確な塗布位置を指示する。熱処理装置BKの処理後には、シート基板FBが収縮変形し易いためである。絶縁層用の液滴塗布装置20Iは、ポリイミド系樹脂又はウレタン系樹脂の電気絶縁性インクをスイッチング部に塗布する。そして、熱処理装置BKは熱風又は遠赤外線などの放射熱により電気絶縁性インクを乾燥し硬化する。これらの処理で、ゲート絶縁層Iが形成される。
 次に、ゲート絶縁層Iの工程後に配置された第1位置検出装置60は、アライメントマークAMを計測し、次の工程のソース用及びドレイン用並びに画素電極用の液滴塗布装置20SDに正確な塗布位置を伝える。ソース用及びドレイン用並びに画素電極用の液滴塗布装置20SDは、メタルインクを、ソースバスラインSBL(図1(a)を参照)の隔壁BA内及び画素電極Pの隔壁BA内に塗布する。そして、熱処理装置BKはメタルインクを乾燥又は焼成する。これらの処理で、ソース電極S、ドレイン電極D及び画素電極P(図1(a)を参照)が接続された状態の電極が形成される。
 次に、ソース電極Sドレイン電極Dの工程後に配置された第1位置検出装置60は、アライメントマークAMを計測し、切断装置30の切断位置及び有機半導体液滴塗布装置20OSに正確な塗布位置を伝える。切断装置30は互いにつながったソース電極Sとドレイン電極Dとを切断する。切断装置30は例えばフェムト秒レーザーを使ったフェムト秒レーザー照射部である。フェムト秒レーザー照射部は760nm波長のレーザー光LLを10KHzから40KHzのパルスで照射する。レーザー光LLの光路に配置されるガルバノミラー(不図示)が回転することにより、レーザー光LLの照射位置が変化する。
 切断装置30は、例えばフェムト秒レーザー照射部を使用するため、サブミクロンオーダの加工が可能である。切断装置30は、電界効果型トランジスタの性能を決めるソース電極Sとドレイン電極D(図1(b)を参照)とのチャネル長(間隔)を正確に切断する。ソース電極Sとドレイン電極Dとチャネル長は、20μmから30μm程度である。この切断処理により、ソース電極Sとドレイン電極Dとが分離された電極が形成される。
 切断装置30は、フェムト秒レーザー以外に、炭酸ガスレーザー又はグリーンレ-ザーなどを使用することも可能である。また、切断装置30はレーザー以外にもダイシングソーなどで機械的な切断装置を使用してもよい。
 次に、有機半導体液滴塗布装置20OSは、ソース電極Sとドレイン電極Dとの間のスイッチング部に有機半導体インクを塗布する。そして、熱処理装置BKは熱風又は遠赤外線などの放射熱により有機半導体インクを乾燥又は焼成する。これらの処理で、有機半導体層OS(図1(b)を参照)が形成される。
 なお、有機半導体インクを形成する化合物は、単結晶材科でもアモルファス材料でもよく、低分子でも高分子でもよい。特に好ましいものとしては、ペンタセンやトリフェニレン、アントラセン等に代表される縮環系芳香族炭化水素化合物の単結晶又はπ共役系高分子が挙げられる。
 以上のようにして、製造装置100は、印刷法や液滴塗布法を活用して薄膜トランジスタ等を形成する。また薄膜トランジスタの性能を決めるソース電極Sとドレイン電極D(図1(b)を参照)とのチャネル長は、第1位置検出装置60で正確な位置を検出することで、レーザー加工又は機械加工により形成される。
 薄膜トランジスタ及び画素電極が形成されたシート基板FBは、図2の下段に示されるように連続して次の発光層形成工程が行われる。
<発光層形成工程>
 有機EL素子用の製造装置100は、画素電極P上に有機EL素子50の発光層IR(図1を参照)の形成工程を引き続き行う。製造装置100は、発光層形成工程では、印刷ローラ40を使用する。リン光性化合物を染み込ませた印刷ローラ40が回転して、画素電極PXにリン光性化合物ELの層が形成される。印刷法ではなく液滴塗布法でリン光性化合物ELが塗布されてもよい。
 切断装置30の工程後に配置された第2位置検出装置69は次の工程の印刷ローラ40に正確な塗布位置を伝える。赤色発光層用の印刷ローラ40Rは、搬送方向を変更する搬送ローラRRより下側(Z方向)に配置されている。このためシート基板FBは搬送方向が+X軸方向から-Z軸方向に送られ、赤色発光層用の印刷ローラ40Rによって、シート基板FBは搬送方向が-Z軸方向から+X軸方向に送られる。したがってシート基板FBと赤色発光層用の印刷ローラ40Rとの接触面積が増やされている。
 緑色発光層用の印刷ローラ40G及び青色発光層用の印刷ローラ40Bは、シート基板FBを押さえるための小型の前部ローラSR1と後部ローラSR2とを備える。前部ローラSR1及び後部ローラSR2はシート基板FBが印刷ローラ40G及び印刷ローラ40Bの外周面に倣う領域、すなわち接触面積を増やしている。
 赤色発光層用の印刷ローラ40Rは、R溶液を画素電極P上に塗布し、乾燥後の厚み100nmになるように成膜を行う。R溶液は、ホスト材のポリビニルカルバゾール(PVK)に赤ドーパント材を1、2-ジクロロエタン中に溶解した溶液とする。
 続いて、緑色発光層用の印刷ローラ40Gは、G溶液を画素電極P上に塗布する。G溶液は、ホスト材PVKに緑ドーパント材を1、2-ジクロロエタン中に溶解した溶液とする。
 さらに、青色発光層用の印刷ローラ40Bは、B溶液を画素電極P上に塗布する。B溶液は、ホスト材PVKに青ドーパント材を1、2-ジクロロエタン中に溶解した溶液とする。その後、熱処理装置BKは熱風又は遠赤外線などの放射熱により発光層溶液を乾燥し硬化する。
 次に、発光層の印刷工程後に配置された第1位置検出装置60は、アライメントマークAMを計測し、次の工程の絶縁層用の液滴塗布装置20Iに正確な塗布位置を伝える。絶縁層用の液滴塗布装置20Iは、ポリイミド系樹脂又はウレタン系樹脂の電気絶縁性インクを、後述する透明電極ITOとショートしないように、ゲートバスラインGBL又はソースバスラインSBLの一部に塗布する。そして、熱処理装置BKは熱風又は遠赤外線などの放射熱により電気絶縁性インクを乾燥し硬化する。
 その後、絶縁層の形成工程後に配置された第1位置検出装置60は、アライメントマークAMを計測し、次の工程のITO電極用の液滴塗布装置20ITに正確な塗布位置を伝える。ITO電極用の液滴塗布装置20ITは、赤色、緑色及び青色発光層の上にITO(Indium Tin Oxide インジウムスズ酸化物)インクを塗布する。ITOインクは、透過率が90%以上であることが好ましい。そして、熱処理装置BKは熱風又は遠赤外線などの放射熱によりITOインクを乾燥し硬化する。
 発光層及びITO電極が形成されると、図1に示された有機EL素子50が完成する。なお、有機EL素子50は、正孔輸送層及び電子輸送層を設ける場合があるが、これらの層も印刷法や液滴塗布法を活用すればよい。
 製造装置100は、図1に示された速度アライメント制御部90を有している。速度アライメント制御部90は、供給ロールRL、及び搬送ローラRRの速度制御を行う。また一部の搬送ローラRRは、Y軸方向に移動可能になっており、速度アライメント制御部90は、搬送ローラRRのY軸方向の移動制御を行う。また、速度アライメント制御部90は、複数のアライメント系60からアライメントマークAMの検出結果を受け取り、液滴塗布装置20によるインクの塗布位置又は印刷ローラ40によるインクの印刷などの塗布位置とタイミング、切断装置30の切断位置及びタイミングを制御する。
 本実施形態で用いるシート基板FBは、耐熱性の樹脂フィルムであり、具体的には、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂で光透過機能があるものを使うことができる。
 シート基板FBは、隔壁形成工程で熱転写の熱処理を受け、熱処理装置BKによる熱処理を受けるために、シート基板FBが200度C前後に加熱される。シート基板FBは、熱を受けてもできるだけ寸法が変わらないように無機フィラーを樹脂フィルムに混合して熱膨張係数を小さくしてもよい。
<アライメント>
 図3は第1位置検出装置60の斜視図である。図3で示されるシート基板FBは搬送方向(+X軸方向)に移動する。図3ではアライメントマークAMは、シート基板FBの右側及び左側にX軸方向に均等の間隔で形成されている。以下、右側の第1位置検出装置60Rの下にあるアライメントマークAMをアライメントマークAMR1及びアライメントマークAMR2と呼ぶ。左側の第1位置検出装置60Lの下にあるアライメントマークAMをアライメントマークAML1及びアライメントマークAML2と呼ぶ。また特にそれらを区別しないときにはこれらすべてをアライメントマークAMと呼ぶ。
 第1位置検出装置60(60R,60L)は、第1アライメント系61と第2アライメント系62とを備え、シート基板FBのアライメントマークAMの上部に来るように配置される。第1アライメント系61と第2アライメント系62とは保持部63により固定されている。保持部63は所定距離で配置され、保持部63の材質は低い熱膨張係数のFe-36Niからなるインバー合金や、Fe29Ni-17Coからなるコバール合金や、セラミックなどを用いる。このため、第1アライメント系61と第2アライメント系62との距離は熱に影響されずに所定距離を保つことができる。第1位置検出装置60は、図3に示されるようにシート基板FBの搬送方向(+X軸方向)に対して直交する位置であるシート基板FBの両側の上部に右側の第1位置検出装置60Rと左側の第1位置検出装置60Lとを設置している。
 右側の第1位置検出装置60Rの第1アライメント系61はアライメントマークAMR1を検出した後、アライメントマークAMR2を検出する。その際に第2アライメント系62はアライメントマークAMR1を検出している。同様なタイミングで、左側の第1位置検出装置60Lの第1アライメント系61もアライメントマークAML2を検出し、第2アライメント系62がアライメントマークAML1を検出する。
 右側の第1位置検出装置60Rは、第1アライメント系61でアライメントマークAMR1を検出し、移動するアライメントマークAMR1を第2アライメント系62で検出する。検出信号は、速度アライメント制御部90内の速度算出部91に送られる。第1アライメント系61と第2アライメント系62との間隔は正確であるため、正確なシート基板FBの右側の速度を計測することができる。同様に左側の第1位置検出装置60Lも第1アライメント系61でアライメントマークAML1を検出し、移動するアライメントマークAML1を第2アライメント系62で検出する。その検出信号は、速度アライメント制御部90内の速度算出部91に送られる。第1アライメント系61と第2アライメント系62との間隔は正確であるため、正確なシート基板FBの左側の速度を計測することができる。
 また、右側の第1位置検出装置60R及び左側の第1位置検出装置60Lがシート基板FBの両側のアライメントマークAMR1及びアライメントマークAML1を同時に計測することで、速度算出部91はシート基板FBの左右の進行ずれを計測することができる。
 さらに第1アライメント系61と第2アライメント系62とは、シート基板FBのアライメントマークAMR1とアライメントマークAMR2とを同時に計測することができるので、アライメントマークAMR1とアライメントマークAMR2との距離を計測することができる。速度アライメント制御部90内の伸縮算出部93は、検出されたアライメントマークAMR1とアライメントマークAMR2との距離と、設計値であるアライメントマークAMR1とアライメントマークAMR2との距離とを比較する。そして伸縮算出部93はシート基板FBの右側の伸縮状態を算出する。設計値であるアライメントマークAMR1とアライメントマークAMR2との距離は、微細インプリント用モールド11(図2を参照)に形成された一対のアライメントマークAM間と一致する。
 また、同様に、シート基板FBの左側のアライメントマークAML1とアライメントマークAML2とを同時に測定することで、伸縮算出部93は、アライメントマークAMR1、アライメントマークAMR2、アライメントマークAML1、及びアライメントマークAML2とで囲まれた領域の伸縮状態を算出することができる。
 図4は第2位置検出装置69の斜視図である。第2位置検出装置69は、第1位置検出装置60と同様な構成であり、第1アライメント系65、第2アライメント系66及び保持部67で構成されている。ただし、第1アライメント系65と第2アライメント系66との取り付け角度が異なる。第1アライメント系65の光軸と第2アライメント系66の光軸との交点が90度になるようそれぞれが設置されている。第2位置検出装置69の保持部67の材質は第1位置検出装置60と同様に低熱膨張係数の材料で形成されている。
 図4に示されるシート基板の搬送方向に対して、右側の右側第2位置検出装置69Rの第1アライメント系65はシート基板FBが搬送方向に移動し、アライメントマークAMR1を検出した後アライメントマークAMR2を検出する。その際に、第2アライメント系66はアライメントマークAMR1を検出している状態である。同様なタイミングで左側第2位置検出装置69Lも第1アライメント系65がアライメントマークAML2を検出した際に、第2アライメント系66でアライメントマークAML1を検出する。
 第2位置検出装置69(69R、69L)の第1アライメント系65の光軸上にはシート基板FBと搬送ローラRRとがある。第1アライメント系65はシート基板FBと搬送ローラRRとが密着した状態でアライメントマークAMを検出することができるため、シート基板FBの弛みを除去して計測することができる。第2位置検出装置69(69R、69L)の第2アライメント系66も同様にシート基板FBと搬送ローラRRとが密着した状態でアライメントマークAMを検出することができる。つまり、第2位置検出装置69の第1アライメント系65の視野から第2アライメント系66の視野は全て搬送ローラRRの表面に密着しているため、弛みを除去したシート基板FBの4箇所のアライメントマークAMで囲まれた領域で正確に計測することができる。
 第2位置検出装置69(69R、69L)によりアライメントマークAMR1、アライメントマークAMR2、アライメントマークAML1、及びアライメントマークAML2を同時に計測することで、速度算出部91は、第1位置検出装置60と同様に速度及び左右の進行ずれも同時に算出することができる。また、伸縮算出部93は4箇所のアライメントマークAM(アライメントマークAMR1、アライメントマークAMR2、アライメントマークAML1、及びアライメントマークAML2)で囲まれた領域の伸縮状態を算出することができる。
 本実施形態の第1位置検出装置60又は第2位置検出装置69は、可視光照明下でCCD又はCMOSで撮像し、その撮像画像を処理してアライメントマークAMの位置を検出してもよい。また、第1位置検出装置60又は第2位置検出装置69は、レーザー光をアライメントマークAMに照射して、その散乱光を受光することでアライメントマークAMの位置を検出する方法でもよい。
 <第1アライメント系と第2アライメント系との距離間の校正>
 図5は、第1位置検出装置60の第1アライメント系61と第2アライメント系62との距離間の校正を示した図である。
 第1アライメント系61と第2アライメント系62とは低い熱膨張係数の材料で構成される保持部63により固定されているが、第1アライメント系61と第2アライメント系62との距離間は温度などの影響で変動する。そこで、有機EL素子用の製造装置100はシート基板FBを処理する前に校正用の基礎マークBMを正確に形成した校正用基板GRを通過させる。そして第1アライメント系61と第2アライメント系62との距離間の校正が行われる。
 校正用基板GRは、熱膨張が小さいガラス又はプラスチックの基板であり、その基板上に基礎マークBMR1、基礎マークBMR2、基礎マークBML1、及び基礎マークBML2が形成されている。そしてこれらの基礎マークBMの位置は不図示の測定器によって予め正確に測定されている。つまり、基礎マークBMR1と基礎マークBMR2との距離、基礎マークBML1と基礎マークBML2との距離、基礎マークBMR1と基礎マークBML1との距離、及び基礎マークBMR2と基礎マークBML2との距離が予め測定されている。
 そして製造装置100は、シート基板FBに代えて校正用基板GRを搬送する。校正用基板GRは第1位置検出装置60の付近で停止する。第1位置検出装置60の第1アライメント系61と第2アライメント系62とが基礎マークBMを検出する。その検出結果に基づいて、速度アライメント制御部90内の校正部95は、第1アライメント系61と第2アライメント系62との距離を校正する。また校正部95は、右側の第1位置検出装置60Rと左側の第1位置検出装置60Lとの距離も校正することができる。
 図2に示されるように、第1位置検出装置60は複数の箇所に配置されている。それぞれの第1位置検出装置60に対しても第1アライメント系61と第2アライメント系62との距離が校正される。
 なお、図示しないが、第2位置検出装置69の第1アライメント系65と第2アライメント系66との距離は、熱膨張が小さいフレキシブルな校正用基板を使用して校正する。レキシブルな校正用基板にも校正用の基礎マークBMが描かれている。校正部95は、第2位置検出装置69の第1アライメント系65と第2アライメント系66との光軸間距離を校正することができる。
 <第1アライメント系と第2アライメント系との距離間の常時計測>
 図6はレーザー干渉計と第1位置検出装置60とを示した斜視図である。図6(a)は第1位置検出装置60の右側の第1位置検出装置60Rのレーザー干渉計70を示し、図6(b)は第2位置検出装置69の右側の第2位置検出装置69Rのレーザー干渉計70を示している。なお、左側の第1位置検出装置60L及び左側の第2位置検出装置69Lのレーザー干渉計70も同様な構成であるため図示していない。
 図6(a)に示されるように、レーザー干渉計70はレーザー干渉計本体71と固定鏡72と移動鏡73とで構成されている。第1アライメント系と第2アライメント系との距離間は、保持部63の伸縮状態に関連する。そのため、保持部63の長手方向とレーザー光74、レーザー光75の投射方向とが平行になるように、第1アライメント系61に固定鏡72が設置され、第2アライメント系62に移動鏡73が設置される。レーザー干渉計本体71から投射される2本のレーザー光74、75は保持部63の長手方向に沿って平行に投射され、第1アライメント系61に設置された固定鏡72と第2アライメント系62に設置された移動鏡73とに向けて投射される。
 そしてレーザー干渉計本体71は、固定鏡72及び移動鏡73で反射したレーザー光を合成しその干渉縞に基づいて第1アライメント系61と第2アライメント系62との相対的な位置変化を計測する。レーザー干渉計70はシート基板FBに有機EL素子を製造している最中でも、第1アライメント系61と第2アライメント系62との相対的な位置変化を計測することができる。なお、レーザー干渉計本体71から投射するレーザー光源(不図示)は1箇所であり、ビームスプリッタ等の分光器(不図示)で2本のレーザー光74、レーザー光75に分けている。
 図6(b)に示されるように、第2位置検出装置69に対しても、第1アライメント系65に固定鏡72が設置され、第2アライメント系66に移動鏡73が設置される。そして、レーザー干渉計本体71から投射される2本のレーザー光74、75は保持部67の長手方向に沿って平行に投射され、第1アライメント系65と第2アライメント系66との相対的な位置変化を計測する。
 有機EL素子用の製造装置100はレーザー干渉計70により、正確に第1アライメント系61と第2アライメント系62との距離、又は第1アライメント系65と第2アライメント系66との距離を常時測定する。このため、第1位置検出装置60又は第2位置検出装置69の測定値を正確に校正することができる。したがって、有機EL素子用の製造装置100は、常に正確な計測結果を求めることができる。
 <第1位置検出装置60の検出結果に基づく処理>
 図7(a)は、第1位置検出装置60及び第1位置検出装置60とゲート用液滴塗布装置20Gとの上面図を示している。以下は、処理装置の代表としてゲート用の液滴塗布装置20Gについて説明する。第2位置検出装置69については説明を割愛する。
 速度アライメント制御部90の速度算出部91及び伸縮算出部93は、シート基板FBに形成した両側のアライメントマークAM(合計4箇所)を第1位置検出装置60で検出することで、シート基板FBの速度、左右の進行ずれ及び伸縮状態を計測する。また、第1位置検出装置60は、搬送ローラRRの上方に設けられているためシート基板FBの撓みによる誤差をできるだけ小さくしている。
 速度アライメント制御部90は、ゲート用液滴塗布装置20Gが最適な位置に液滴を塗布できるように、シート基板FBの速度、左右の進行ずれ及び伸縮状態に関する信号をゲート用液滴塗布装置20Gに出す。また、速度アライメント制御部90は、同様に、第1位置検出装置60の検出結果からシート基板FBの速度、印刷ローラ40の回転速度の指示を出す。
 ゲート用液滴塗布装置20Gは、Y軸方向に配置されており、複数列のノズル22をY軸方向に配置し、また、X軸方向も複数行のノズル22が配置されている。複数のノズル22のXY軸方向の位置関係は予め記憶されている。
 一方、アライメントマークAMと電界効果型トランジスタのゲートバスラインGBL及びソースバスラインSBLとの位置関係も予め規定されている。つまり、図2で示された微細インプリント用モールド11に形成されたアライメントマークAM及び隔壁BAの型形状がシート基板FBに転写されている。図7(b)は型形状が転写されたシート基板FBを示している。図7(b)に示されるように、Y軸方向には、アライメントマークAMとゲートバスラインGBLとの所定距離PYが規定されており、X軸方向には、アライメントマークAMとソースバスラインSBLとの所定距離PXが規定されている。
 すなわち、予め、複数のノズル22の位置関係、アライメントマークAMとゲートバスラインGBLとの位置関係が把握されている。そこで、ゲート用液滴塗布装置20Gは、速度アライメント制御部90から送られてくるシート基板FBの速度、左右の進行ずれ及び伸縮状態に関する信号に応じて、ノズル22からメタルインクを塗布するタイミング、メタルインクを塗布するノズル22を切り換える。
 したがって、シート基板FBの速度、左右の進行ずれ及び伸縮状態に関する信号に基づいて、液滴塗布装置20Gは、適正なノズル22から適切なタイミングでメタルインクを塗布することができる。
 図示しないが、他の液滴塗布装置20も同様に、速度アライメント制御部90からの信号を受け取ってインクなどをシート基板FBに塗布する位置を調整することができる。また、切断装置30も同様に、速度アライメント制御部90からの信号を受け取って切断位置を調整する。
 図7(b)では、アライメントマークAMが、X軸方向の1行の電界効果型トランジスタの隔壁BAに対して1つ設けられている。しかし、1行の電界効果型トランジスタの隔壁BAに対して、複数のアライメントマークAMが設けられても良い。また、シート基板FBにスペースがあれば、シート基板FBの両側だけでなく中央領域にアライメントマークAMが設けられても良い。なお、アライメントマークAMは十字形状の例が示されたが、円形マーク、斜めの直線マークなど他のマーク形状であってもよい。
<有機EL素子の製造装置の動作> 
 図8は、有機EL素子50の製造工程の概略フローチャートである。
 ステップP1において、インプリントローラ10によりシート基板FBにアライメントマークAMと、薄膜トランジスタ及び発光層などの隔壁BAとが熱転写で形成される。なお、アライメントマークAMと隔壁BAとは相互の位置関係が重要であるため同時に形成されることが好ましい。
 ステップP2では、第1位置検出装置60によりアライメントマークAMを撮像することで、速度アライメント制御部90の速度算出部91及び伸縮算出部93が、熱処理されたシート基板FBの速度、左右の進行ずれ及び伸縮状態を算出する。
 次に、ステップP3では、速度アライメント制御部90からのシート基板FBの速度、左右の進行ずれ及び伸縮状態に関する信号に基づいて、ゲート用液滴塗布装置20G、絶縁層用の液滴塗布装置20I、ソース用及びドレイン用の液滴塗布装置20SDが各種電極用のメタルインクなどを順次塗布する。
 ステップP4では、第1位置検出装置60がアライメントマークAMを撮像し、速度算出部91及び伸縮算出部93が、熱処理されたシート基板FBの速度、左右の進行ずれ及び伸縮状態を算出する。
 次に、ステップP5では、速度アライメント制御部90からの信号に基づいて、切断装置30のレーザー光LLがソース電極Sとドレイン電極Dとの間隙であるチャネルを形成する。
 またステップP6では、速度アライメント制御部90から信号に基づいて、有機半導体液滴塗布装置20OSが有機半導体をソース電極Sとドレイン電極Dとの間隙に形成する。
 ステップP7では、第2位置検出装置69がアライメントマークAMを撮像し、速度アライメント制御部90が、熱処理されたシート基板FBの速度、左右の進行ずれ及び伸縮状態を算出する。
 次に、ステップP8では、速度アライメント制御部90から信号に基づいて、印刷ローラ40がRGBの発光層を形成する。
 ステップP9では、第1位置検出装置60がアライメントマークAMを撮像し、速度アライメント制御部90が、熱処理されたシート基板FBの速度、左右の進行ずれ及び伸縮状態を算出する。
 次に、ステップP10では、速度アライメント制御部90からの信号に基づいて、絶縁層用の液滴塗布装置20Iが絶縁層Iを形成する。
 ステップP11では、第1位置検出装置60がアライメントマークAMを撮像し、速度アライメント制御部90が、熱処理されたシート基板FBの速度、左右の進行ずれ及び伸縮状態を算出する。
 次に、ステップP12では、速度アライメント制御部90が補正した信号に基づいて、ITO電極用の液滴塗布装置20ITがITO電極を形成する。
 以上の実施形態において、微細インプリント用モールド11(図2)はアライメントマークAMをシート基板FBに形成することを前提としていた。しかし、予めアライメントマークAMが形成されたシート基板FBを購入し、そのシート基板FBに微細インプリント用モールド11が隔壁BAのみを形成してもよい。この場合には、アライメントマークAMと隔壁BAとのXY方向の位置関係を不図示の計測装置で計測すればよい。
 有機EL素子の製造方法について説明してきたが、本発明の製造装置は、液晶表示素子及び電界放出ディスプレイなどにも適用できる。
 また、実施例の製造装置には熱処理装置BKを設けたが、メタルインク又は発光層溶液などの改良によって熱処理が必要でないインク又は溶液が提案されている。このため、本実施例においても熱処理装置BKを必ず設ける必要はない。
10 … インプリントローラ
11 … 微細インプリント用モールド
15 … 熱転写ローラ
20 … 液滴塗布装置(20G … ゲート用液滴塗布装置、20I … 絶縁層用の液滴塗布装置、20IT … ITO電極用の液滴塗布装置、20OS … 有機半導体液滴塗布装置、20SD … ソース用及びドレイン用並びに画素電極用の液滴塗布装置)
22 … ノズル
30 … 切断装置
40 … 印刷ローラ(40B 青色発光層用の印刷ローラ、40G 緑色発光層用の印刷ローラ、40R 赤色発光層用の印刷ローラ)
50 … 有機EL素子
60 … 位置検出装置(61、65 … 第1アライメント系、62、66 … 第2アライメント系)
63、67 … 保持部
70 … レーザー干渉計 (71 … レーザー干渉計本体、72 … 固定鏡、73 … 移動鏡)
74、75 … レーザー光
90 … 速度&アライメント制御部
100 … 製造装置
AM … アライメントマーク
BA … 隔壁
BK … 熱処理装置
D … ドレイン電極
FB … シート基板
G … ゲート電極
GBL  ゲートバスライン
GR … ガラス基板
I … ゲート絶縁層
IR … 発光層
ITO  透明電極
LL … レーザー光
OS … 有機半導体層
P … 画素電極
PX … X軸方向の所定距離
PY … Y軸方向の所定距離
RL … 供給ロール
RR … ローラ
S … ソース電極
SBL … ソースバスライン

Claims (14)

  1.  所定方向に配列した第1アライメント系及び第2アライメント系で基板上の基準マークを検出し、前記基板の所定方向の伸縮を算出する伸縮算出工程と、
     前記基準マーク及び前記基板の所定方向の伸縮に基づいて、処理装置により前記基板の所定の位置に処理を施す処理工程と、
     を有することを特徴とする表示素子の製造方法。
  2.  前記基準マークは、前記所定方向と交差する方向の前記基板の両端に形成される請求項1に記載の表示素子の製造方法。
  3.  前記伸縮算出工程は、前記所定方向と交差する方向の前記基板の伸縮を算出する請求項2に記載の表示素子の製造方法。
  4.  所定方向に配列した第1アライメント系及び第2アライメント系で基板上の基準マークを検出し、前記基板が所定方向に送り出される速度を算出する速度算出工程と、
     前記基準マーク及び前記基板の所定方向の速度に基づいて、処理装置により前記基板の所定の位置に処理を施す処理工程と、
     を有する表示素子の製造方法。
  5.  前記基板が所定方向に送り出される際に前記基準マークを形成するマーク形成工程を有する請求項1から請求項4のいずれか一項に記載の表示素子の製造方法。
  6.  前記マーク形成工程において、前記導電部材が印刷又は塗布されるための隔壁を形成する請求項5に記載の表示素子の製造方法。
  7.  前記処理装置は、前記基板に導電部材を塗布又は印刷する処理を行う請求項1ないし請求項6のいずれか一項に記載の表示素子の製造方法。
  8.  前記所定方向に予め距離が測定されている一対の基礎マークを、前記第1アライメント系及び前記第2アライメント系で同時に検出して、前記第1アライメント系と前記第2アライメント系との距離を校正する請求項1ないし請求項7のいずれか一項に記載の表示素子の製造方法。
  9.  基準マークを有する基板を所定方向に搬送する搬送部と、
     前記基準マークを検出する第1アライメント系と、
     前記第1アライメント系から前記所定方向に所定距離離れて配置され、前記基準マークを検出する第2アライメント系と、
     前記基準マークを検出し、前記基板の所定方向の伸縮又は前記基板の搬送速度を算出する算出部と、
     前記基板の所定方向の伸縮又は前記基板の搬送速度の少なくとも一方と前記基準マークとに基づいて、前記基板の所定の位置に処理する処理部と、
     を有することを特徴とする表示素子の製造装置。
  10.  前記搬送部は搬送ローラを含み、この搬送ローラの前記基板上で前記第1アライメント系及び第2アライメント系が前記基準マークを検出する請求項9に記載の表示素子の製造装置。
  11.  前記第1アライメント系と第2アライメント系とが低膨張素材で結合している請求項9又は請求項10に記載の表示素子の製造装置。
  12.  前記第1アライメント系と第2アライメント系との互いの距離を測定する干渉計が設けられている請求項9から請求項11のいずれか一項に記載の表示素子の製造装置。
  13.  前記基準マークは前記所定方向と交差する前記基板の両端に形成され、
     前記算出部は前記所定方向と交差する方向の前記基板の伸縮を算出する請求項9から請求項12のいずれか一項に記載の表示素子の製造装置。
  14.  前記基板に前記基準マークを形成するマーク形成部を備える請求項9から請求項13のいずれか一項に記載の表示素子の製造装置。
PCT/JP2009/002748 2008-06-26 2009-06-17 表示素子の製造方法及び製造装置 WO2009157154A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010517724A JP5467531B2 (ja) 2008-06-26 2009-06-17 表示素子の製造方法及び製造装置
KR1020107028143A KR101504388B1 (ko) 2008-06-26 2009-06-17 표시소자의 제조방법 및 제조장치
US12/978,976 US9086585B2 (en) 2008-06-26 2010-12-27 Display element manufacturing method and manufacturing apparatus
US14/736,567 US9917023B2 (en) 2008-06-26 2015-06-11 Display element manufacturing method and manufacturing apparatus
US15/870,732 US10832977B2 (en) 2008-06-26 2018-01-12 Display element manufacturing method and manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-167270 2008-06-26
JP2008167270 2008-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/978,976 Continuation US9086585B2 (en) 2008-06-26 2010-12-27 Display element manufacturing method and manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2009157154A1 true WO2009157154A1 (ja) 2009-12-30

Family

ID=41444227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002748 WO2009157154A1 (ja) 2008-06-26 2009-06-17 表示素子の製造方法及び製造装置

Country Status (5)

Country Link
US (3) US9086585B2 (ja)
JP (1) JP5467531B2 (ja)
KR (1) KR101504388B1 (ja)
TW (2) TWI564989B (ja)
WO (1) WO2009157154A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253505A (zh) * 2010-05-20 2011-11-23 北京京东方光电科技有限公司 基板位置检测方法及装置
WO2012090587A1 (ja) * 2010-12-28 2012-07-05 日東電工株式会社 有機el素子の製造方法及び製造装置
JP2012212747A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp 薄膜トランジスタの製造装置およびその製造方法
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
JP2016118580A (ja) * 2014-12-18 2016-06-30 日東電工株式会社 光学表示パネルの製造方法および光学表示パネルの製造システム
WO2016204202A1 (ja) * 2015-06-15 2016-12-22 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157154A1 (ja) * 2008-06-26 2009-12-30 株式会社ニコン 表示素子の製造方法及び製造装置
US9645180B1 (en) 2011-07-25 2017-05-09 Clean Power Research, L.L.C. System and method for estimating photovoltaic energy generation for use in photovoltaic fleet operation with the aid of a digital computer
US10599747B1 (en) 2011-07-25 2020-03-24 Clean Power Research, L.L.C. System and method for forecasting photovoltaic power generation system degradation
US9638831B1 (en) 2011-07-25 2017-05-02 Clean Power Research, L.L.C. Computer-implemented system and method for generating a risk-adjusted probabilistic forecast of renewable power production for a fleet
US8165812B2 (en) * 2011-07-25 2012-04-24 Clean Power Research, L.L.C. Computer-implemented system and method for estimating power data for a photovoltaic power generation fleet
US11068563B2 (en) 2011-07-25 2021-07-20 Clean Power Research, L.L.C. System and method for normalized ratio-based forecasting of photovoltaic power generation system degradation with the aid of a digital computer
US10663500B2 (en) 2011-07-25 2020-05-26 Clean Power Research, L.L.C. System and method for estimating photovoltaic energy generation through linearly interpolated irradiance observations with the aid of a digital computer
US10140401B1 (en) 2011-07-25 2018-11-27 Clean Power Research, L.L.C. System and method for inferring a photovoltaic system configuration specification with the aid of a digital computer
US8682585B1 (en) 2011-07-25 2014-03-25 Clean Power Research, L.L.C. Computer-implemented system and method for inferring operational specifications of a photovoltaic power generation system
US9880230B1 (en) 2011-07-25 2018-01-30 Clean Power Research, L.L.C. System and method for inferring operational specifications of a photovoltaic power generation system using net load with the aid of a digital computer
US9411073B1 (en) 2011-07-25 2016-08-09 Clean Power Research, L.L.C. Computer-implemented system and method for correlating satellite imagery for use in photovoltaic fleet output estimation
US10797639B1 (en) 2011-07-25 2020-10-06 Clean Power Research, L.L.C. System and method for performing power utility remote consumer energy auditing with the aid of a digital computer
CN102722048B (zh) * 2012-06-20 2015-05-06 深圳市华星光电技术有限公司 液晶面板的制作装置及方法
US10409925B1 (en) 2012-10-17 2019-09-10 Clean Power Research, L.L.C. Method for tuning photovoltaic power generation plant forecasting with the aid of a digital computer
US10747914B1 (en) 2014-02-03 2020-08-18 Clean Power Research, L.L.C. Computer-implemented system and method for estimating electric baseload consumption using net load data
US10719636B1 (en) 2014-02-03 2020-07-21 Clean Power Research, L.L.C. Computer-implemented system and method for estimating gross energy load of a building
US10789396B1 (en) 2014-02-03 2020-09-29 Clean Power Research, L.L.C. Computer-implemented system and method for facilitating implementation of holistic zero net energy consumption
US10024733B1 (en) 2014-02-03 2018-07-17 Clean Power Research, L.L.C. Apparatus and method for empirically estimating overall thermal performance of a building with the aid of a digital computer
US10156554B1 (en) 2015-02-25 2018-12-18 Clean Power Research, L.L.C. System and method for determining infiltration of a building through empirical testing using a CO2 concentration monitoring device
US10332021B1 (en) 2015-02-25 2019-06-25 Clean Power Research, L.L.C. System and method for estimating indoor temperature time series data of a building with the aid of a digital computer
US10203674B1 (en) 2015-02-25 2019-02-12 Clean Power Research, L.L.C. System and method for providing constraint-based heating, ventilation and air-conditioning (HVAC) system optimization with the aid of a digital computer
US11921478B2 (en) * 2015-02-25 2024-03-05 Clean Power Research, L.L.C. System and method for estimating periodic fuel consumption for cooling of a building with the aid of a digital computer
US10339232B1 (en) 2015-02-25 2019-07-02 Clean Power Research, L.L.C. Computer-implemented system and method for modeling building heating energy consumption
US10359206B1 (en) 2016-11-03 2019-07-23 Clean Power Research, L.L.C. System and method for forecasting seasonal fuel consumption for indoor thermal conditioning with the aid of a digital computer
KR102448904B1 (ko) * 2017-07-31 2022-09-29 삼성디스플레이 주식회사 임프린트 장치 및 임프린트 방법
US11423199B1 (en) 2018-07-11 2022-08-23 Clean Power Research, L.L.C. System and method for determining post-modification building balance point temperature with the aid of a digital computer
CN110181934B (zh) * 2019-07-03 2021-01-26 京东方科技集团股份有限公司 一种印刷装置、印刷系统及其印刷方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307173A (ja) * 1992-04-30 1993-11-19 Idemitsu Kosan Co Ltd 液晶素子及びその製造方法
JP2004303559A (ja) * 2003-03-31 2004-10-28 Tohoku Pioneer Corp アライメント装置及び方法、並びにこれを用いて製造される有機el素子
WO2007004627A1 (ja) * 2005-07-05 2007-01-11 Konica Minolta Holdings, Inc. パターニング装置、有機エレクトロルミネッセンス素子とその製造方法及び有機エレクトロルミネッセンス表示装置
JP2007033537A (ja) * 2005-07-22 2007-02-08 Sharp Corp 可撓性表示素子の製造装置およびその素子の製造方法
JP2007110048A (ja) * 2005-10-17 2007-04-26 Ricoh Co Ltd インクジェット方式によるパターン形成方法・インクジェット方式によるパターン形成装置・電子素子アレイ・表示素子
JP2008070857A (ja) * 2006-08-17 2008-03-27 Ulvac Japan Ltd 貼り合せ基板の製造方法、及び貼り合せ基板製造装置
WO2008129819A1 (ja) * 2007-04-13 2008-10-30 Nikon Corporation 表示素子の製造方法、表示素子の製造装置、及び表示素子

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3706951B2 (ja) * 1995-06-26 2005-10-19 株式会社ニコン 露光装置
JPH10208994A (ja) * 1997-01-16 1998-08-07 Nec Corp 露光方法及び露光装置
US6547616B1 (en) 1998-04-15 2003-04-15 Fujitsu Display Technologies Corporation Display, its manufacture, ink coating apparatus, all suitable for narrowing display frame
US6118132A (en) 1998-09-17 2000-09-12 Agilent Technologies System for measuring the velocity, displacement and strain on a moving surface or web of material
US20030113724A1 (en) * 2001-10-12 2003-06-19 Schembri Carol T. Packaged microarray apparatus and a method of bonding a microarray into a package
JP4336869B2 (ja) * 2001-11-27 2009-09-30 日本電気株式会社 真空成膜装置、真空成膜方法および電池用電極の製造方法
JP2003173870A (ja) 2001-12-04 2003-06-20 Sony Corp 有機エレクトロルミネッセンス素子の製造装置及び製造方法
JP2003224058A (ja) 2002-01-30 2003-08-08 Nsk Ltd 露光装置及び露光方法
US6682863B2 (en) * 2002-06-27 2004-01-27 Eastman Kodak Company Depositing an emissive layer for use in an organic light-emitting display device (OLED)
WO2007008992A2 (en) * 2005-07-12 2007-01-18 3M Innovative Properties Company Apparatus and methods for continuously depositing a pattern of material onto a substrate
US20080171422A1 (en) * 2007-01-11 2008-07-17 Tokie Jeffrey H Apparatus and methods for fabrication of thin film electronic devices and circuits
WO2009157154A1 (ja) * 2008-06-26 2009-12-30 株式会社ニコン 表示素子の製造方法及び製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05307173A (ja) * 1992-04-30 1993-11-19 Idemitsu Kosan Co Ltd 液晶素子及びその製造方法
JP2004303559A (ja) * 2003-03-31 2004-10-28 Tohoku Pioneer Corp アライメント装置及び方法、並びにこれを用いて製造される有機el素子
WO2007004627A1 (ja) * 2005-07-05 2007-01-11 Konica Minolta Holdings, Inc. パターニング装置、有機エレクトロルミネッセンス素子とその製造方法及び有機エレクトロルミネッセンス表示装置
JP2007033537A (ja) * 2005-07-22 2007-02-08 Sharp Corp 可撓性表示素子の製造装置およびその素子の製造方法
JP2007110048A (ja) * 2005-10-17 2007-04-26 Ricoh Co Ltd インクジェット方式によるパターン形成方法・インクジェット方式によるパターン形成装置・電子素子アレイ・表示素子
JP2008070857A (ja) * 2006-08-17 2008-03-27 Ulvac Japan Ltd 貼り合せ基板の製造方法、及び貼り合せ基板製造装置
WO2008129819A1 (ja) * 2007-04-13 2008-10-30 Nikon Corporation 表示素子の製造方法、表示素子の製造装置、及び表示素子

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
CN102253505A (zh) * 2010-05-20 2011-11-23 北京京东方光电科技有限公司 基板位置检测方法及装置
CN102253505B (zh) * 2010-05-20 2013-04-03 北京京东方光电科技有限公司 基板位置检测方法及装置
WO2012090587A1 (ja) * 2010-12-28 2012-07-05 日東電工株式会社 有機el素子の製造方法及び製造装置
JP2012142141A (ja) * 2010-12-28 2012-07-26 Nitto Denko Corp 有機el素子の製造方法及び製造装置
JP2012212747A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp 薄膜トランジスタの製造装置およびその製造方法
JP2016118580A (ja) * 2014-12-18 2016-06-30 日東電工株式会社 光学表示パネルの製造方法および光学表示パネルの製造システム
WO2016204202A1 (ja) * 2015-06-15 2016-12-22 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法
JPWO2016204202A1 (ja) * 2015-06-15 2018-03-29 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法

Also Published As

Publication number Publication date
TW201001606A (en) 2010-01-01
US10832977B2 (en) 2020-11-10
TWI503919B (zh) 2015-10-11
US9917023B2 (en) 2018-03-13
TW201545263A (zh) 2015-12-01
US20180158740A1 (en) 2018-06-07
US20110276306A1 (en) 2011-11-10
JPWO2009157154A1 (ja) 2011-12-08
JP5467531B2 (ja) 2014-04-09
US9086585B2 (en) 2015-07-21
KR20110025912A (ko) 2011-03-14
US20150311128A1 (en) 2015-10-29
KR101504388B1 (ko) 2015-03-19
TWI564989B (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
JP5467531B2 (ja) 表示素子の製造方法及び製造装置
US8926387B2 (en) Defect detection method of display device and defect detection apparatus of display device
KR101538281B1 (ko) 표시 소자의 제조 방법과 제조 장치
JP5448240B2 (ja) 表示素子の製造装置
TWI455235B (zh) A manufacturing method of a display element, and a manufacturing apparatus for a display element
KR101507915B1 (ko) 롤투롤 시스템에서의 고속 미세 기판 정렬 장치
US9235135B2 (en) Exposure apparatus
US8399263B2 (en) Method for measuring expansion/contraction, method for processing substrate, method for producing device, apparatus for measuring expansion/contraction, and apparatus for processing substrate
JP2007208009A (ja) 有機薄膜トランジスタの製造方法および製造装置
JP5360675B2 (ja) 表示素子の製造方法、及び表示素子の製造装置
JP2013210653A (ja) 表示素子の製造方法、及び表示素子の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769864

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517724

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107028143

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09769864

Country of ref document: EP

Kind code of ref document: A1