WO2009156368A1 - Bauteil mit deckschicht aus einer pa613-formmasse - Google Patents

Bauteil mit deckschicht aus einer pa613-formmasse Download PDF

Info

Publication number
WO2009156368A1
WO2009156368A1 PCT/EP2009/057750 EP2009057750W WO2009156368A1 WO 2009156368 A1 WO2009156368 A1 WO 2009156368A1 EP 2009057750 W EP2009057750 W EP 2009057750W WO 2009156368 A1 WO2009156368 A1 WO 2009156368A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
component
film
component according
Prior art date
Application number
PCT/EP2009/057750
Other languages
English (en)
French (fr)
Inventor
Roland Wursche
Sonja Bollmann
Franz-Erich Baumann
Beatrice Küting
Kirsten LÜTZELER
Andreas Pawlik
Martin Wielpütz
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Priority to EP09769217A priority Critical patent/EP2291286A1/de
Priority to JP2011515339A priority patent/JP5523453B2/ja
Priority to US12/989,899 priority patent/US20110045269A1/en
Priority to CN2009801240777A priority patent/CN102076497A/zh
Priority to KR1020107026302A priority patent/KR20110048488A/ko
Priority to CA2724526A priority patent/CA2724526A1/en
Priority to BRPI0914201A priority patent/BRPI0914201A2/pt
Publication of WO2009156368A1 publication Critical patent/WO2009156368A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2451/00Decorative or ornamental articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31533Of polythioether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31562Next to polyamide [nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31728Next to second layer of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31736Next to polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/3175Next to addition polymer from unsaturated monomer[s]

Definitions

  • the present invention relates to a component which contains an outer layer or covering layer of a PA613 molding compound.
  • the invention furthermore relates to a decorative film which can be used to produce such a component and which contains a layer based on PA613.
  • Thermoplastic components with a cover layer of a different material are used by default when the surface of the component is to be protected from external influences and possibly decorated.
  • a suggestion to remedy this is the use of multilayer plastic films, which are used to cover the components and no longer need to be painted.
  • the bond between substrate and decorating film can be realized by a number of manufacturing processes.
  • the film can be pressed, for example, with the substrate or you can choose a Schuspritzmaschine, in which the film is inserted in the component manufacturing in the injection mold.
  • the concept of a foil as a decor carrier also meets a trend towards the individualization of design elements on the automobile. This tendency leads namely in the production of a larger range of models, but are reduced in the number of each manufactured components per series. Since the use of foils allows fast, easy design changes, this challenge can be met.
  • the film meets the standards required in the automotive industry with respect to surface properties (Class A surface), resistance to media and visual impression. Films having such properties are also useful in the design of automotive interior surfaces.
  • Such decorative films are known in principle.
  • EP 0 949 120 A1 describes decorative films with polyalkyl methacrylate as the base layer, which may additionally comprise a substrate-side support layer made of polyamide, while WO 94/03337 discloses decorative films whose base layer may consist of a large number of alternative polymers, including polyamide .
  • Another example of a multilayer system is EP 0 285 071 A2.
  • the advantage of a multi-layered structure is that an optimal system solution results from the interaction of the different individual layers.
  • Each layer of the multilayer film fulfills one or more specific functions in the context of the overall system.
  • polyamides in particular polyamides based on PA 12 or PAl 1 are generally well suited for the production of such decorative films. Accordingly, find in the patent literature descriptions of decorative films or protective films containing a cover layer of a polyamide. Examples which may be mentioned here are the publications JP60155239A, JP2003118055A, EP 1 302 309 A, EP 0 522 240 A, EP 0 694 377 A, EP 0 734 833 A, WO 9212008 A, WO 2006008357 A, WO 2006008358 A and EP 0 568 988 A.
  • Transparent components such as lenses, displays, glazings, sight glasses, etc. are often made of amorphous materials such as polycarbonate, PMMA or transparent polyamides. These have a good transparency, but show a poor chemical resistance and low scratch resistance. For applications in which contact of such materials with chemicals or solvents may occur, the low chemical resistance is disadvantageous, since it can cause phenomena such as turbidity or cracking. Poor scratch resistance shortens the life of the transparent objects as scratching also leads to undesirable clouding.
  • a cover layer of a partially crystalline polyamide can be used to achieve improved resistance of transparent objects to chemicals.
  • EP 0 696 501 A2 describes that this deficiency can be remedied by a well-adhering coating of polyalkyl (meth) acrylate molded parts with polyamide, in which case an adhesion promoter must be used.
  • the application of this concept to polyarylate molded parts is described in DE 197 02 088 A1. Further state of the art can be found in WO 2005/123384, WO 2006/072496, WO 2006/087250, WO 2006/008357 and WO 2006/008358;
  • the object of the invention is to provide a component whose surface is characterized by improved scratch resistance and high chemical resistance.
  • the material of the cover layer should be so transparent that even with larger layer thicknesses transparent components can be produced when the substrate of the component is transparent.
  • decorative films should be provided with an aliphatic polyamide cover layer which are suitable for producing such components, on the one hand, the transparency of the cover layer should be improved over the prior art;
  • the molding composition of the cover should be sufficiently crystalline to ensure sufficient stress cracking resistance and solvent and chemical resistance.
  • the formation of deposits should be suppressed as completely as possible.
  • a cover layer of a molding composition which is at least 50 wt .-%, preferably at least 60 wt .-%, particularly preferably at least 70 wt .-%, particularly preferably at least 80 wt .-% and very particularly preferably at least 90 wt. contains% of PA613, as well
  • IL is a substrate made of a thermoplastic molding material.
  • PA613 can be prepared in a known manner by polycondensation of hexamethylenediamine and 1,13-tridecanoic acid.
  • the PA613 is preferably a homopolymer; but it can also be a copolymer having a maximum of 30 mol%, preferably not more than 20 mol% and particularly preferably not more than 10 mol% of one or more comonomer units.
  • the comonomer units can be derived from any monomer conventionally used to prepare polyamides, for example caprolactam, laurolactam, sebacic acid, dodecanedioic acid, 1,10-decanediamine, 1,12-dodecanediamine, 4,4'-diaminodicyclohexylmethane or isophoronediamine.
  • monomer conventionally used to prepare polyamides for example caprolactam, laurolactam, sebacic acid, dodecanedioic acid, 1,10-decanediamine, 1,12-dodecanediamine, 4,4'-diaminodicyclohexylmethane or isophoronediamine.
  • the PA613 has up to 45%, maximum 40%, maximum 35%, maximum 30% or maximum 25% of all end groups of amino groups. In this way, a yellowing of the film by thermo-oxidative damage can be avoided.
  • the preparation of such end notegeregelten polyamide by the addition of a dicarboxylic acid or monocarboxylic acid as a regulator is state of the art.
  • the molding composition based on PA613 may additionally contain, for example, the following further components:
  • nucleating agents selected from nanoscale fillers and basic metal salts, metal oxides or metal hydroxides; the latter are added to ensure the desired transparency, at most in such an amount as they can be dissolved in the melt in reaction with the carboxyl end groups of the polyamide; b) customary auxiliaries or additives in the amounts customary for polyamide molding compositions, for example stabilizers, UV absorbers or lubricants, c) colorants which do not significantly affect the transparency, d) fillers whose refractive index is only slightly different from that of the matrix differs or exactly matches (isorefractive fillers), e) other polymer components whose refractive index differs only slightly from or corresponds exactly to that of the matrix, and nucleating agents based on organic compounds, which do not substantially affect the transparency.
  • nucleating agents selected from nanoscale fillers and basic metal salts, metal oxides or metal hydroxides; the latter are added to ensure the desired transparency, at most in such an amount as they can be dissolved in the melt in reaction with the carboxy
  • Any existing nanoscale fillers have a number average effective particle diameter dso in the molding composition of less than 150 nm, preferably less than 120 nm, more preferably less than 90 nm, more preferably less than 70 nm and most preferably less than 50 nm or less than 40 nm.
  • the effective particle diameter should not be confused with the diameter of the primary particles. For the transparency, not the latter is crucial, but what matters is the size of the aggregates or agglomerates that are actually present in the molding composition. In the case of very good dispersion, however, the effective particle diameter may, in the limiting case, fall to the diameter of the primary particles.
  • the determination of effective particle diameters of nanoscale particles or their aggregates or agglomerates in molding compositions and the associated distribution function is carried out by preparing a thin section of the molding composition.
  • a thin section of the molding composition For polyamides a low-temperature thin-section at -100 0 C is made advantageously.
  • a Number of TEM images made to allow a statistical evaluation of a sufficiently large number of particles. Depending on the case, this number of particles is at least two hundred, but better still a thousand particles. With the aid of an evaluation program, the particles are measured in terms of their diameter. The obtained data is converted into a distribution function.
  • the transparency of the molding composition when measured according to ASTM D 1003 on a film with a thickness of 200 microns and at a light wavelength of 589 nm may be deteriorated by at most 2%.
  • the cover layer, a possibly present adhesion promoter layer and any further layers present contain at most 1% by weight of nanoparticles. This amount is perfectly adequate for the purpose of nucleation or laser marking.
  • the polyamide molding compound according to I. may contain not more than 20% by weight, not more than 16% by weight, not more than 12% by weight, not more than 8% by weight or not more than 4% by weight of auxiliaries or additives % By weight, based on the total polyamide composition.
  • the molding composition may also contain at least one further polyamide, preferably one whose monomer units contain on average at least 8 carbon atoms such as PA610, PA612, PA614, PA88, PA810, PA812, PA101, PA1012, PA1014, PA1212, PAI1 or PA12.
  • at least one further polyamide preferably one whose monomer units contain on average at least 8 carbon atoms such as PA610, PA612, PA614, PA88, PA810, PA812, PA101, PA1012, PA1014, PA1212, PAI1 or PA12.
  • Suitable substrates are, for example, molding compositions based on Polyolef ⁇ nen, polyamides, polyesters, polyacrylates, polycarbonates, ABS, polystyrene or styrene copolymers and curable systems z. B. based on epoxy resin or polyurethane.
  • the substrate has a maximum of at least 30% and preferably of at least 35%, 40%, 45%, 50%, 55% in the visible spectrum of 380 to 800 mm in the transmission curve at a layer thickness of 1 mm.
  • Such substrates are largely transparent.
  • the substantially transparent polymer which forms the basis for the molding material of the substrate is not limited in type. In principle, any known largely transparent polymers can be used.
  • polyamides examples include polyamides, polyalkyl (meth) acrylates, polycarbonate, polyester carbonate, polyesters, polyimides, polyetherimides, polymethacrylimides, polysulfone, styrene polymers, polyolefins with cyclic building blocks, olefin-maleimide copolymers or polymers based on vinylcyclohexane.
  • the substantially transparent polymer preferably has a melting enthalpy of less than 12 J / g, preferably less than 8 J / g, more preferably less than 6 J / g, more preferably less than 4 J / g and most preferably less as 3 J / g, measured by the DSC method according to ISO 11357 at the 2nd heating and integration of the possibly existing melting peak.
  • substantially transparent polyamides which can be used according to the invention are: the polyamide of terephthalic acid and / or isophthalic acid and the mixture of isomers
  • Caprolactam the polyamide of 1.12-dodecanedioic acid and 4.4'-diaminodicyclohexylmethane (at low trans, trans isomeric content), the copolyamide of terephthalic acid and / or isophthalic acid and an alkyl-substituted
  • Dicarboxylic acid such as terephthalic acid and / or 2,6-naphthalenedicarboxylic acid, the copolyamide from a mixture of bis (4-amino-cyclohexyl) methane and bis (4-amino
  • polyalkyl (meth) acrylates having 1 to 6 C atoms in the carbon chain of the alkyl radical, the methyl group being preferred as the alkyl group.
  • the polyalkyl (meth) acrylates usually have a MeIt flow rate of 0.5 to 30 g / 10 min, preferably 0.8 to 15 g / 10 min, measured according to ISO 1133 at 230 0 C with a load of 3 , 8 kg.
  • Examples include polymethylmethacrylate and polybutylmethacrylate mentioned.
  • copolymers of the polyalkyl (meth) acrylates it is also possible to use copolymers of the polyalkyl (meth) acrylates.
  • So can to 50 wt .-%, preferably up to 30 wt .-% and particularly preferably up to 20 wt .-% of the alkyl (meth) acrylate by other monomers such as (meth) acrylic acid, styrene, acrylonitrile, acrylamide or the like. Also suitable are copolymers of methyl methacrylate and dicyclopentyl methacrylate.
  • the molding composition can be adjusted to high impact strength, for example by adding a core / shell rubber customary for such molding compositions.
  • thermoplastics such as SAN (styrene / acrylonitrile Copolymer) and / or polycarbonate.
  • the substrate may be composed of a molding compound containing a polycarbonate as a main component.
  • Polycarbonates suitable according to the invention contain units which are carbonic acid diesters of diphenols.
  • diphenols may be, for example, the following: hydroquinone, resorcinol, dihydroxybiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfites, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) sulfoxides, ⁇ , ⁇ '-bis (hydroxyphenyl) diisopropylbenzenes and their ring-alkylated or nuclear-halogenated derivatives or else ⁇ , ⁇ -bis (hydroxyphenyl) - polysiloxane.
  • Preferred diphenols are, for example, 4,4'-dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1 , 1-bis (4-hydroxyphenyl) cyclohexane, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,1-bis - (4-hydroxyphenyl) -p-diisopropylbenzene, 1, 3-bis [2- (4-hydroxyphenyl) -2-propyl] benzene, 2,2-bis (3-methyl-4-hydroxyphenyl) -propane, 2,2-bis (3-chloro-4-hydroxyphenyl) -propane, bis (3,5-dimethyl-4-hydroxyphenyl) -methane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl
  • the diphenols can be used both alone and in admixture with each other.
  • the diphenols are known from the literature or can be prepared by methods known from the literature (see, for example, BHJ Buysch et al., Ullmann's Encyclopedia of Industrial Chemistry, VCH, New York 1991, 5th ed. Vol. 19, p. 348).
  • the polycarbonates used according to the invention are prepared by known processes, for example by the phase boundary process or by the melt transesterification process. They have weight average molecular weights M w (determined by gel permeation chromatography and polystyrene standard calibration) of between 5,000 and 200,000, preferably between 10,000 and 80,000 and more preferably between 15,000 and 40,000.
  • the polycarbonate molding composition can, for example, to less than 50 wt .-%, preferably less than 40 wt .-%, more preferably less than 30 wt .-% and particularly preferably less than 20 wt .-%, based on the total Polymer base, other polymers such as polyethylene terephthalate, polybutylene terephthalate, polyesters of cyclohexanedimethanol, ethylene glycol and terephthalic acid, polyesters of cyclohexanedimethanol and cyclohexanedicarboxylic acid, polyalkyl (meth) acrylates, SAN, styrene (meth) acrylate copolymers, polystyrene (amorphous or syndiotactic), polyetherimides , Polyimides, polysulfones and / or polyarylates (eg based on bisphenol A and isophthalic acid / terephthalic acid).
  • Polyestercarbonates are composed of at least one diphenol, of at least one aromatic dicarboxylic acid and of carbonic acid. As diphenols the same as for polycarbonate are suitable.
  • the amount derived from aromatic dicarboxylic acids, based on the sum of the parts derived from aromatic dicarboxylic acids and from carbonic acid, is at most 99.9 mol%, at most 95 mol%, at most 90 mol%, at most 85 mol%, at most 80 Mo is 1% or at most 75 Mo 1%, while its minimum content is 0.1 mol%, 5 mol%, 10 mol%, 15 mol%, 20 mol% or 25 Mo 1%.
  • Suitable aromatic dicarboxylic acids are, for example, orthophthalic acid, terephthalic acid, isophthalic acid, tert-butyl isophthalic acid, 3,3'-diphenyldicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, 3,4'-benzophenone dicarboxylic acid, 2,2-bis (4-carboxyphenyl) -propane and trimethyl-3-phenylindane-4,5-dicarboxylic acid.
  • terephthalic acid and / or isophthalic acid are preferably used.
  • Suitable thermoplastic polyesters are preferably either fully aromatic or mixed aliphatic / aromatic.
  • the first case is polyarylates; these are derived of diphenols and aromatic dicarboxylic acids.
  • diphenols the same as for polycarbonate are suitable, while as dicarboxylic acid are the same as suitable for polyester carbonates.
  • the polyesters are derived from one or more aromatic dicarboxylic acids and one or more diols; for example, it is polyethylene terephthalate or copolyesters of terephthalic acid, 1,4-cyclohexanedimethanol and ethylene glycol.
  • Suitable polysulfones are generally prepared by polycondensation of a diphenol / Dihalogendiarylsulfon mixture in an aprotic solvent in the presence of a base such. B. sodium carbonate.
  • diphenol it is possible, for example, to use those which are also suitable for the preparation of polycarbonates, but in particular bisphenol A, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenyl and hydroquinone, although it is also possible to use mixtures of different diphenols.
  • the dihalogen compound is in most cases 4,4'-dichlorodiphenylsulfone; however, it is also possible to use any other dihalogen compound in which the halogen is activated by a para-positional sulfone group.
  • fluorine is also suitable in addition to chlorine.
  • polysulfone also includes the polymers commonly referred to as “polyethersulfone” or “polyphenylene sulfone.” Suitable types are commercially available.
  • Polyimides are prepared in a known manner from tetracarboxylic acids or their anhydrides and diamines. When the tetracarboxylic acid and / or the diamine contains an ether group, a polyetherimide results.
  • a particularly suitable ether-containing tetracarboxylic acid is the compound I; from it are obtained together with aromatic diamines amorphous polyetherimides, which are commercially available.
  • polyacrylimides are polymethacrylimides, sometimes referred to as polyacrylimides or polyglutarimides. These are products based on Polyalkylacrylates or polyalkyl methacrylates in which two adjacent carboxylate groups have been converted to a cyclic acid imide. The imide formation is preferably with ammonia or primary amines, such as. As methylamine performed.
  • the products and their preparation are known (Hans R. Kricheldorf, Handbook of Polymer Synthesis, Part A, Publisher Marcel Dekker Inc. New York-Basel-Hong Kong, p 223 f., HG Elias, macromolecules, Wegig and Wepf Verlag Basel- Heidelberg-New York; US 2,146,209 A; US 4,246,374).
  • Suitable styrene polymers are, for example, homopolystyrene or copolymers of styrene with up to 50 mol%, based on the monomer mixture, of other monomers such. For example, methyl methacrylate, maleic anhydride, acrylonitrile or maleimides. Styrene-maleimide copolymers are also accessible, for example, by reacting styrene-maleic anhydride copolymers with ammonia or primary amines such as methylamine or aniline.
  • Polyolefins with cyclic building blocks can be prepared by copolymerization of at least one cyclic or polycyclic olefin, for example norbornene or tetracyclododecene, with at least one acyclic olefin, for example ethene (WO 00/20496, US Pat. No. 5,635,573, EP-A-0 729 983, EP -AO 719 803).
  • This substance class is called COC.
  • COP Suitable class of compounds, commonly referred to as COP, are optionally hydrogenated products of the ring-opening metathetic polymerization of polycyclic olefins, for example norbornene, dicyclopentadiene, substituted derivatives or Diels-Alder adducts thereof (EP-A-0 784 066, WO 01/14446, EP-A-0 313 838, US 3 676 390, WO 96/20235).
  • polycyclic olefins for example norbornene, dicyclopentadiene, substituted derivatives or Diels-Alder adducts thereof (EP-A-0 784 066, WO 01/14446, EP-A-0 313 838, US 3 676 390, WO 96/20235).
  • Olefm-maleimide copolymers are known, for example, from US Pat. No. 7,018,697.
  • Vinylcyclohexane-based polymers can be prepared either by polymerization or copolymerization of vinylcyclohexane or by catalytic hydrogenation of styrene polymers (WO 94/21694, WO 00/49057, WO 01/30858, FS Bates et al., PCHE-Based Pentablock Copolymers: Evolution of a New Plastic, AIChE Journal Vol. 47, No. 4, pp. 762 -
  • the molding material of the substrate may also contain other conventional auxiliaries or additives such.
  • auxiliaries or additives such as stabilizers, processing aids, flame retardants, plasticizers, antistatic agents, isorefractive fillers or reinforcing agents, isorefractive impact modifiers, dyes that do not significantly affect the transparency, flow agents, mold release agents or other polymers that do not significantly affect the transparency. If the substrate does not need to be transparent in use, the fillers and reinforcing agents as well as the impact modifiers need not be isorefractive. Also in the case of the dyes, any pigments present and any other polymers present, there are no restrictions in this case.
  • the amount of all auxiliaries and additives is a total of at most 50 wt .-%, preferably at most 40 wt .-%, more preferably at most 30 wt .-% and particularly preferably at most 20 wt .-%.
  • the bonding of the cover layer to the substrate can be done in any known manner, for example by multi-component injection molding, coextrusion, injection molding of a film, foaming of a film, extrusion laminating, laminating, pressing or gluing.
  • the multi-component injection molding is used to produce moldings with layers or areas of different plastics or colorations.
  • Various process variants are possible, which are known to the person skilled in the art.
  • two or more injection molding units are used, which work successively in a tool. After the first unit has filled a tool cavity, the mold cavity for the second unit injection molding operation is increased, for example, by traversing the tool halves, rotating tool halves or core pull motions to release additional cavity areas. It is also possible to work sequentially with several tools on standard one-component machines by inserting molded parts into the next tool and spraying the following component on.
  • a partial filling of the tool is carried out with the first unit and the melt of the second unit displaces the melt of the first from the core area to the surface of the molded part, wherein the finished component has a skin-core structure ( Sandwich structure).
  • Sandwich structure Another variant is the monosandwich process, in which the melts are conveyed via two separate plasticizing units into a common injection space and spatially stacked one behind the other. During injection, one component displaces the other component to the surface.
  • Multilayer structures e.g. Plates, for example, can be produced by coextrusion.
  • coextrusion several melt streams of the same or different types of plastics are combined.
  • the process variants are known to the person skilled in the art.
  • the union of melts before, in or behind a tool can be done.
  • Merging the melts behind (for example, blow molding) or in the mold offers the advantage that the melts can be tempered at different temperatures.
  • the melts are brought together before they enter the forming tool.
  • the multi-layered structures e.g., multi-layered plates
  • the coextrusion process can be supplemented by a subsequent blow molding process.
  • the film In the case of an in-mold film, the film, if appropriate after previous forming (for example thermoforming), is placed in an injection mold and then charged with the melt of the substrate. The result is a composite component.
  • previous forming for example thermoforming
  • the tool After inserting the film, the tool is only partially filled with melt and then the tool space is reduced in a controlled manner by displaceable parts, similar to the injection-compression molding process.
  • Backfoaming of deep-drawn foils offers advantages for large-area and flat components where back injection molding machines and tools would be very cost-intensive.
  • a mixture of long-glass fibers and polyurethane foam can be applied to the back of a deep-drawn part. After curing of the polyurethane-glass mixture to obtain components with high rigidity and heat resistance at low weight.
  • the composite material can also be produced by further processes, for example by extrusion laminating.
  • a prefabricated substrate is continuously combined with a prefabricated cover layer, wherein the compound by a plastic melt is brought in, which is fed to the point of contact of the former components.
  • a variant consists in extruding the substrate material onto the prefabricated cover layer or the cover layer on a prefabricated substrate.
  • Another possibility is provided by continuous lamination processes, the connection being realized by the introduction of adhesives (solvent-based, hotmelt, etc.).
  • composites may also be made by compression molding, the bond between the prefabricated joining partners being affected by the action of pressure and temperature, e.g. in a press, is evoked.
  • adhesives, etc. may be additionally used.
  • a welding process (eg laser welding) is also possible for joining the cover layer and substrate or semifinished product and substrate.
  • the surface can be structured, for example, by embossing. A structuring of the surface is also possible upstream in the context of film extrusion, for example by specially designed rollers.
  • the resulting composite part can then be further formed.
  • connection between cover layer and substrate can be done by positive locking, for example by means of undercuts.
  • a cohesive compound is preferred.
  • the materials must adhere to each other, which is effected for example by chemical attachment or by entanglement of the macromolecules.
  • an adhesion promoter can be used, for example, a multilayer film containing a substrate-side primer layer.
  • the nature of the bonding agent is not critical; however, it should preferably be sufficiently transparent at the selected layer thickness.
  • the adhesion promoter contains a blend of a polymer that is identical or similar to the polymer of the adjacent film layer and a polymer that is identical or similar to the polymer of the substrate.
  • Similar means that the polymers in question can be mixed in the melt into phase-stable blends or that layers of both polymers have sufficient adhesion to one another after coextrusion or back-injection, ie the polymers are compatible with one another
  • the blend is usually prepared by melt blending and suitable weight percent mixing ratios are 20-80: 80-20, preferably 30-70: 70-30, and more preferably 40-60: 60-40 a compatibilizer can also be used, for example a branched polymer such as a polyamine-polyamide graft copolymer (EP-A-065 048), a polymer having reactive groups capable of undergoing a chemical reaction with at least one of the blend partners, or a block copolymer. In many cases s ind also polyurethanes suitable as adhesion promoters.
  • the adhesion promoter contains 2 to 100 wt .-%, preferably 5 to 90 wt .-%, particularly preferably 10 to 80 wt .-%, particularly preferably 15 to 60 wt .-% and most preferably 20 to 40 %
  • the copolymer preferably contains the following monomer units:
  • the units of the formula (I) are derived, for example, from acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, methyl methacrylate, n-propyl methacrylate or isobutyl methacrylate.
  • the units of the formula (II) are derived, for example, from acrylamide, methacrylamide, N-methylacrylamide, N-methylmethacrylamide or N, N-dimethylacrylamide.
  • the units of the formula (III) are derived from acrylonitrile or methacrylonitrile.
  • the units of the formula (IV) are derived from ethene, propene, styrene or ⁇ -methylstyrene; the latter can be replaced in whole or in part by other polymerizable aromatics such as p-methylstyrene or indene, which have the same effect.
  • maleimides such as maleimide, N-methylmaleimide, N-ethylmaleimide, N-phenylmaleimide or N-methylaconitic imide.
  • the units of the formula (VI) are derived from optionally substituted maleic anhydrides, such as maleic anhydride or aconitic anhydride. The latter may be wholly or partly by other unsaturated acid anhydrides such. B. itaconic anhydride are replaced, which have the same effect.
  • the units of the formula (VII) are derived from glycidyl acrylate or glycidyl methacrylate and the units of the formula (VIII) are from vinyloxazoline or isopropenyloxazoline.
  • the following units contain:
  • polyacrylimides or polymethacrylimides In the presence of units of formula (V), such copolymers are referred to as polyacrylimides or polymethacrylimides or sometimes also as polyglutarimides.
  • These are products starting from polyalkyl acrylates or polyalkyl methacrylates, in which two adjacent carboxylate groups have been converted to a cyclic acid imide.
  • the imide formation is preferably with ammonia or primary amines, such as.
  • the products and their preparation are known (Hans R.
  • Such copolymers are prepared in a known manner by free-radically initiated copolymerization of z.
  • Such copolymers are accessible in a known manner by free-radically initiated copolymerization of acrylic acid, methacrylic acid and / or their esters, optionally aliphatically unsaturated aromatics or olefins and unsaturated carboxylic anhydrides.
  • copolymers are accessible in a known manner by free-radically initiated copolymerization of acrylic acid, methacrylic acid and / or their esters, acrylic or methacrylonitrile and unsaturated carboxylic anhydrides.
  • the copolymer may in each case additionally contain further monomer units, for example those derived from maleic diesters, fumaric diesters, itaconic esters or vinyl acetate, as long as the desired adhesion-promoting effect is not significantly impaired.
  • the adhesion promoter may consist entirely of the copolymer; in a variant thereof, the copolymer contains a Schlagzähmodifier, z. B. an acrylate rubber.
  • the adhesion promoter contains 2 to 99.9 wt .-%, preferably 5 bis 90 wt .-%, particularly preferably 10 to 80 wt .-%, particularly preferably 15 to 60 wt .-% and very particularly preferably 20 to 40 wt .-% of the copolymer and 0.1 to 98 wt .-%, preferably 10 to 95 wt .-%, particularly preferably 20 to 90 wt .-%, particularly preferably 40 to 85 wt .-% and very particularly preferably 60 to 80 wt .-% of a polymer which is selected from the group of polyamide adjacent Film layer, polymer of the substrate, polyamide similar to the polyamide of the adjacent film layer, polymer similar to the polymer of the substrate, or mixtures thereof.
  • the primer can the usual auxiliaries and additives such. As flame retardants, stabilizers, plasticizers, processing aids, dyes or the like. The amount of the said agents should be metered so that the desired properties are not seriously affected.
  • the component is produced by bonding a decorative film to the substrate.
  • Decorative films in the context of the invention are films which can be printed and / or contain a color layer and are furthermore intended to be connected to a substrate in order to decorate the surface thereof.
  • the decoration can also be effected by concealing optical defects of the surface, e.g. B. by a resulting from fillers or reinforcing materials surface roughness is covered.
  • the decorative film according to the invention is single-layered or multi-layered.
  • the type and number of the remaining layers depend on the application requirements; It is only decisive that the cover layer consists of the molding composition used according to the invention.
  • the following embodiments are possible: 1.
  • the film is single-layered. It consists in this case by definition only of the cover layer; by printing z. B. by means of Thermosublimationstik can be mounted either on the top or the bottom decors.
  • the film contains, in addition to the top layer, an underlying color layer.
  • the color layer may be a lacquer layer; However, it is, according to the prior art, preferably from a colored thermoplastic layer.
  • the thermoplastic may, for example, have the same or a similar composition as the cover layer, contain a component thereof or another polyamide or another polymer which either adheres directly to the cover layer or by means of a sufficiently transparent adhesion promoter (for example, a carboxyl or Acid anhydride groups or epoxy group-functionalized polyolefin, a thermoplastic polyurethane or a blend of the constituents of the layers to be bonded).
  • a sufficiently transparent adhesion promoter for example, a carboxyl or Acid anhydride groups or epoxy group-functionalized polyolefin, a thermoplastic polyurethane or a blend of the constituents of the layers to be bonded.
  • As a colorant z As organic dyes, inorganic or organic pigments or metal flakes are used. Since the cover layer
  • the film contains, in addition to the cover layer and, where appropriate, the color layer, a further layer which, as a carrier layer, effects a sufficient mechanical strength and, if appropriate, additionally a connection to the substrate.
  • the film contains, in addition to the cover layer and, where appropriate, the color layer, an underlying adhesion promoter layer for connection to the substrate.
  • Suitable adhesion promoters are, for example, a polyolefin functionalized with carboxyl or acid anhydride groups or with epoxide groups, a thermoplastic polyurethane, a blend of the materials of the layer to be bonded and the substrate or one of the adhesion promoters described in more detail above.
  • the film also contains an underlying adhesion promoter layer for attachment to the substrate.
  • adhesion agent the same applies as under point 4.
  • one of items 1 to 5 contains as needed, for. B. with increased demands on the scratch resistance, on the top layer nor a protective layer, such as a clearcoat based on polyurethane. It is possible to use coating compositions which are curable in two stages. For example, a film having such a coating may still be reformed after the first curing step; the second curing step takes place only on the formed film or on a molded part produced, for example, by injection-molding of the film.
  • a protective layer in the form of a lacquer may be used to increase the scratch resistance according to the prior art also z. B. be modified with nanoparticles.
  • the film may optionally also contain a removable protective film laminated, which acts as a transport or mounting protection and is withdrawn, for example, after the production of the composite part.
  • the transparent cover layer can be printed like a monofilm from one side or from both sides, in order then to be connected to the other layers in a second step to form the multilayer film.
  • the transparent cover layer can be printed from above.
  • the cover layer can also be colored transparent or opaque.
  • the color layer and / or the carrier layer and / or the adhesion promoter layer contains a molding composition, in particular a polyetheramide or a polyetheresteramide, and preferably a polyetheramide or polyetheresteramide based on a linear aliphatic diamine having from 6 to 18 and preferably 6 to 12 carbon atoms. Atoms, a linear aliphatic or aromatic dicarboxylic acid having 6 to 18 and preferably 6 to 13 carbon atoms and a polyether having more than an average of 2.3 carbon atoms per oxygen atom and a number average molecular weight of 200 to 2 000.
  • the molding composition of this layer may contain other blend components such as.
  • polyacrylates or polyglutarimides with carboxyl or carboxylic anhydride groups or epoxide groups a functional group-containing rubber and / or a polyamide.
  • Such molding compounds are state of the art; you are For example, in EP 1 329 481 A2 and DE-OS 103 33 005, which is incorporated herein by reference.
  • the polyamide content of the polyamide elastomer is composed of the same monomers as used in the cover layer. However, this is not absolutely necessary in order to achieve good adhesion.
  • the color layer and / or the carrier layer may also contain, in addition to a polyamide, a customary impact-modifying rubber.
  • the film has a thickness of 0.02 to 1.2 mm, particularly preferably 0.05 to 1 mm, very particularly preferably 0.08 to 0.8 mm and particularly preferably 0.15 to 0 , 6 mm.
  • the adhesion promoter layer has a thickness of from 0.01 to 0.5 mm, particularly preferably from 0.02 to 0.4 mm, very particularly preferably from 0.04 to 0.3 mm and in particular from 0, 05 to 0.2 mm.
  • the film is produced by known methods, for example by extrusion, or in the case of multilayer systems by coextrusion or lamination. It can then optionally be reshaped.
  • the cover layer When the component is produced by multi-component injection molding, the cover layer usually has a thickness of 0.1 to 10 mm, preferably 0.2 to 7 mm and particularly preferably 0.5 to 5 mm. Under special process conditions, layer thicknesses below 0.1 mm are possible. Low thicknesses generally lead to better transparency of the component.
  • the cover layer When produced by coextrusion, the cover layer usually has a thickness of 0.02 to 1.2 mm, preferably from 0.05 to 1.0 mm, particularly preferably from 0.08 to 0.8 mm and particularly preferably from 0, 12 to 0.6 mm. These thickness specifications for the cover layer also apply to the cover layer of the decorative film according to the invention.
  • the substrate can be of any thickness. In general, it has a thickness in the range of 0.5 to 100 mm, preferably in the range of 0.8 to 80 mm, more preferably in the range of 1 to 60 mm, particularly preferably in the range of 1, 2 to 40 mm and most preferably in the Range from 1.4 to 30 mm. Other preferred upper limits of thickness are 25 mm, 20 mm, 15 mm, 10 mm, 6 mm, 5 mm and 4 mm. The thickness should be chosen so that the component has the required rigidity.
  • the component according to the invention is not a foil; In contrast, it is dimensionally stable.
  • the component according to the invention is used as a transparent, for example as an optical component.
  • examples include lenses, headlamp lenses, rear lights, lenses, prisms, lenses, displays, decorative display components, lighting system components, backlit switches, any type of glazing, and cell phone cases.
  • the film of the invention is used as a cover layer of a film composite for the design or decoration of surfaces on and in automobiles and commercial vehicles, wherein the film is adhesively bonded to a plastic substrate.
  • the correspondingly shaped component may be formed flat, such as a body part, such as roof module, fenders, hood or door.
  • embodiments in question, in which elongated, more or less curved components are produced such as panels, such as the cladding of so-called A-pillars on the car or trim and trim strips of all kinds. Another example are protective panels for door sills.
  • the films of the invention In addition to applications in the exterior of the motor vehicle and components of the interior can be favorably decorated by the films of the invention, in particular trim elements such as strips and panels, as in the interior impact resistance and resistance to chemicals, such as cleaning agents is required.
  • the plastic substrate does not have to be transparent here. In the automotive industry are often used as substrates reinforced molding compounds containing, for example, glass fibers or talc and are therefore not transparent. To demand a transparency of the substrate makes z. B. also makes no sense if a covering color layer is used in a multilayer film composite.
  • the film according to the invention is used as a top covering for sports equipment, for example snowboards of all kinds, such as skis or snowboards.
  • sports equipment for example snowboards of all kinds, such as skis or snowboards.
  • the ski is produced according to the so-called monocoque system, wherein the topping is first constructed from two plastic films, of which the outer is transparent and the inner opaque (white). Before the two films are glued together and the subsequent deep drawing, the outside of the transparent top film and one of the later contact surfaces between the transparent top film and the opaque bottom film are printed with different decorations.
  • Suitable plastics for the top film are acrylonitrile-butadiene-styrene copolymer (ABS), acrylonitrile-styrene copolymer (AS), thermoplastic polyurethane (TPU) and aliphatic polyamides, especially PAl 1 and PA 12.
  • ABS acrylonitrile-butadiene-styrene copolymer
  • AS acrylonitrile-styrene copolymer
  • TPU thermoplastic polyurethane
  • aliphatic polyamides especially PAl 1 and PA 12.
  • copolyamides are mentioned in addition to polyester amides, polyetheramides, modified polyolefins and styrene-carboxylic anhydride copolymers.
  • the connection of the top covering with the ski or snowboard can also be done after all other known shaping and bonding methods.
  • a monofilm is used according to the invention, it is transparent and is preferably printed on the underside, in which case a white or possibly differently colored adhesive is used as the optical background for joining the film to the ski.
  • a coextruded two-layer film preferably consists of a transparent top layer and a white or colored pigmented underlayer as the background, the film being printed on top.
  • the film can be decorated, for example, by screen printing or offset printing, but it can also be printed well by means of thermal diffusion or sublimation printing. These thermal printing processes often require increased heat resistance of the films or moldings.
  • the film can also be used, for example, as a protective film against contamination, UV radiation, weathering, chemicals or abrasion, as a barrier film on vehicles, in the home, on floors, tunnels, tents and buildings or as a decor carrier, for example for top coverings of boats, aircraft, in the household or on buildings.
  • the relative viscosity ⁇ re i of the polyamides was determined according to DIN EN ISO 307. The determination of the end groups was carried out in the usual way by titration.
  • the starting materials were melted in a nitrogen atmosphere and heated with stirring in a closed autoclave to about 190 0 C, with an internal pressure of about 14 bar. This internal pressure was maintained for 3 hours; Thereafter, the melt was heated to about 215 0 C and stirred at the adjusting internal pressure of about 20 bar. With continuous depressurization to normal pressure was then further heated to 250 0 C internal temperature. Nitrogen was passed through the melt for about 1 hour while maintaining the 250 ° C. viscosity requirement until the desired torque was indicated. The discharge of the melt took place by means of a gear pump as a strand, the granulation was fed. The granules were dried for 16 hours under water pump vacuum at 80 0 C.
  • the product resulting from the product of Example 1 was Festphasennachkondensationen ZSK30 M9 / 1 (K3) is present in a kneader of the type Werner + Pfieiderer with a cylinder temperature of 250 0 C at 250 rpm and a throughput of 8 kg / h, with the addition of 0.7 .-% compounded of a conventional stabilizer composition.
  • Admer ® QF551E (functionalized polypropylene): 110 ⁇ m
  • Cover layer made of PAl 2.
  • Monofilms of 190 ⁇ m thickness were used for the wash brush test on an Engel Victory 650/200 # 159202 injection molding machine with a high-gloss tool with a PA12
  • the transmission was measured on monofilms of thickness 1000 ⁇ m according to ISO 13468-2; see Table 1. It can be seen that the films of PA613 have improved transparency compared to the other polyamides.
  • the rapid weathering was carried out on multilayer films in a Weathering Tester, QUV / se model of the company Q-Panel in two steps.
  • Step 1 55 ° C., exposure 0.98 W / m 2 at 340 nm, 4 h step 2: 45 ° C., condensation without exposure, 4 h
  • the gloss profile was determined at defined time intervals on the stored multilayer films; see Table 2.
  • the heat storage (24 h at 120 0 C) was carried out in a convection oven, wherein prior to storage, after 1 h and after 24 h storage gloss measurements were carried out; see table
  • Table 1 Transmission at 400 nm and 1000 ⁇ m film thickness

Abstract

Ein Bauteil, das folgende Komponenten enthält: I.Eine Deckschicht aus einer Formmasse, die mindestens 50 Gew.-% an PA613 enthält, sowie II.ein Substrat aus einer thermoplastischen Formmasse besitzt eine Oberfläche mit hoher Kratzfestigkeit und hoher Chemikalienbeständigkeit.

Description

Bauteil mit Deckschicht aus einer PA613-Formmasse
Die vorliegende Erfindung hat ein Bauteil zum Gegenstand, das eine Außenschicht bzw. Deckschicht aus einer PA613 -Formmasse enthält. Gegenstand der Erfindung ist weiterhin eine Dekorfolie, die zur Herstellung eines derartigen Bauteils verwendet werden kann und die eine Schicht auf Basis von PA613 enthält.
Thermoplastische Bauteile mit einer Deckschicht aus einem anderen Material werden standardmäßig dann eingesetzt, wenn die Oberfläche des Bauteils vor äußeren Einflüssen geschützt sowie gegebenenfalls dekoriert werden soll.
Das derzeitige Standardverfahren zur Dekoration von Außenflächen an Automobilen ist das Lackieren. Diese Vorgehensweise verursacht jedoch zum einen hohe Fertigungskosten, die durch die Vorhaltung eines spezifischen Maschinenparks und den damit verbundenen Bedienaufwand beim Automobilhersteller bedingt sind, zum anderen wird hierdurch die Umwelt belastet. Eine Umweltbelastung resultiert beispielsweise aus freiwerdenden Lösungsmittelbestandteilen der eingesetzten Lacke sowie aus dem Anfall von Farbresten, die einer geordneten Entsorgung zugeführt werden müssen.
Ferner kommt hinzu, dass das Lackieren nur in begrenztem Maße geeignet ist, die Oberflächen von Kunststoffbauteilen zu dekorieren, die in den letzten Jahren im Automobilbau wegen der Gewichts- und Kostenersparnis an Beliebtheit gewonnen haben.
Der Lackierprozess von Kunststoffbauteilen als Komponenten der Karosserie ist beispielsweise on-line führbar, wobei das Kunststoffteil der gleichen Lackierbehandlung unterzogen wird wie die metallischen Komponenten. Dies führt zu einer einheitlichen Farbe, bringt aber infolge der hier üblichen kathodischen Tauchlackierung hohe Temperaturen mit sich, die die Materialauswahl erschweren. Außerdem muss eine Haftung der Lackrezeptur in gleicher Weise auf den sehr unterschiedlichen Substraten gewährleistet sein. Wird der Lackierprozess der Kunststoffteile in einem separaten Schritt (so genannte off-line-Lackierung) durchgeführt, der für Kunststoffe günstigere Prozessbedingungen beinhaltet, tritt die Problematik des color-matching auf, das heißt, der am Metall realisierte Farbton muss genau getroffen werden. Dies ist jedoch aufgrund der Unterschiede in Substrat, verwendbarer Basislackrezeptur und Prozessbedingungen sehr schwierig zu erreichen. Im Falle einer durch das Design vorgegebenen Farbdifferenz bleibt als gravierender Nachteil die Vorhaltung einer zweiten Lackiereinrichtung für die Kunststoffteile und der damit verbundene Aufwand, wobei auch ein zusätzlicher Zeitbedarf für die Fertigung des Automobils einzubeziehen ist. Die direkte Verwendung der unbehandelten, in der Regel spritzgegossenen Kunststoffteile ist unter ästhetischen Gesichtspunkten unvorteilhaft, da hier prozessbedingte Fehler der Oberfläche, wie etwa Bindenähte, Lufteinschlüsse, aber auch notwendige verstärkende Füllstoffe wie Glasfasern deutlich wahrnehmbar sind. Dies ist im Sichtbereich nicht tolerabel. Folglich muss eine Verbesserung der Oberfiächenqualität vorgenommen werden, beispielsweise im Zuge einer Lackierung, wobei oft eine arbeitsintensive Vorbehandlung durch Schleifen und die Aufbringung eines Primers in dickeren Schichten nötig wird.
Ein Vorschlag zur Abhilfe besteht in der Verwendung von mehrschichtigen Kunststofffolien, die zur Abdeckung der Bauteile eingesetzt werden und nicht mehr lackiert werden müssen. Der Verbund zwischen Substrat und dekorierender Folie kann hierbei durch eine Reihe von Fertigungsverfahren realisiert werden. Die Folie kann beispielsweise mit dem Substrat verpresst werden oder man wählt ein Hinterspritzverfahren, bei dem die Folie bei der Bauteilherstellung in das Spritzgießwerkzeug eingelegt wird. Das Konzept einer Folie als Dekorträger kommt darüber hinaus einem Trend zur Individualisierung gestalterischer Elemente am Automobil entgegen. Diese Tendenz führt nämlich in der Fertigung zu einer größeren Palette von Modellen, die aber in der Anzahl der jeweils gefertigten Bauteile pro Serie reduziert sind. Da der Einsatz von Folien schnelle, problemlose Designwechsel erlaubt, kann dieser Herausforderung hiermit begegnet werden. Wichtig ist hierbei, dass durch die Folie die in der Automobilindustrie geforderten Standards hinsichtlich Oberflächeneigenschaften (Class A Oberfläche), Beständigkeit gegenüber Medien und optischem Eindruck erfüllt werden. Folien mit derartigen Eigenschaften sind ebenfalls in der Gestaltung von Innenoberflächen im Automobil gut einsetzbar. Derartige Dekorfolien sind im Prinzip bekannt. Die EP 0 949 120 Al beispielsweise beschreibt Dekorfolien mit Polyalkylmethacrylat als Basisschicht, die zusätzlich auch eine substratseitige Stützschicht aus Polyamid enthalten können, während aus der WO 94/03337 Dekorfolien bekannt sind, deren Basisschicht aus einer Vielzahl alternativer Polymere, darunter auch Polyamid, bestehen kann. Ein weiteres Beispiel für ein mehrschichtiges System ist die EP 0 285 071 A2. Der Vorteil eines mehrschichtigen Aufbaus besteht darin, dass durch das Zusammenwirken der unterschiedlichen Einzelschichten eine optimale Systemlösung resultiert. Dabei erfüllt jede Schicht der mehrschichtigen Folie eine oder mehrere spezifische Funktionen im Rahmen des Gesamtsystems.
Dekorierbare, transparente Folien aus Polyamid in Sportanwendungen sind in Annual Technical Conference - Society of Plastics Engineers 2001, 59, 2471-2475 beschrieben.
Aufgrund ihres Eigenschaftsprofils, beispielsweise Schlagzähigkeit und Chemikalienbeständigkeit, sind Polyamide, insbesondere Polyamide auf Basis von PA 12 oder PAl 1, ganz allgemein für die Herstellung derartiger Dekorfolien gut geeignet. Dementsprechend finden sich in der Patentliteratur Beschreibungen von Dekorfolien oder auch Schutzfolien, die eine Deckschicht aus einem Polyamid enthalten. Zu nennen sind hier beispielsweise die Schriften JP60155239A, JP2003118055A, EP 1 302 309 A, EP 0 522 240 A, EP 0 694 377 A, EP 0 734 833 A, WO 9212008 A, WO 2006008357 A, WO 2006008358 A und EP 0 568 988 A.
Während Deckschichten aus Polyamiden mit hoher Carbonamidgruppendichte aufgrund der hohen Polarität eine ungenügende Chemikalienbeständigkeit und zu hohe Wasseraufnahme besitzen, zeigt sich in der Praxis, dass bei der Verwendung von Polyamiden mit niedriger Carbonamidgruppendichte, die aus Lactamen bzw. den entsprechenden Aminocarbonsäuren hergestellt wurden (AB-Polyamide), unter Umgebungsbedingungen im Laufe der Zeit Beläge auf der Oberfläche der Folien gebildet werden, die den Glanz erheblich herabsetzen und für diese Anwendung nicht tolerierbar sind. Zudem wäre eine Verbesserung der Transparenz und der Kratzfestigkeit wünschenswert. Verwendet man dagegen Polyamide aus Diamin und Dicarbonsäure (AABB-Polyamide) mit niedriger Dichte an Carbonamidgruppen, so bilden sich keine Beläge, aber auch hier wäre eine Verbesserung bei der Transparenz vorteilhaft. In vielen Fällen sind die zu dekorierenden bzw. zu schützenden Bauteile transparent. Transparente Bauteile wie Linsen, Displays, Verscheibungen, Schaugläser etc. werden häufig aus amorphen Werkstoffen wie Polycarbonat, PMMA oder transparenten Polyamiden hergestellt. Diese weisen eine gute Transparenz auf, zeigen jedoch eine schlechte Chemikalienbeständigkeit und geringe Kratzfestigkeit. Für Anwendungen, bei denen ein Kontakt derartiger Werkstoffe mit Chemikalien oder Lösungsmitteln auftreten kann, ist die geringe Chemikalienbeständigkeit von Nachteil, da es zu Phänomenen wie Trübung oder Bildung von Rissen kommen kann. Eine schlechte Kratzfestigkeit verkürzt die Lebensdauer der transparenten Objekte, da ein Verkratzen ebenfalls zu unerwünschten Trübungen führt.
Grundsätzlich kann eine Deckschicht aus einem teilkristallinen Polyamid verwendet werden, um eine verbesserte Beständigkeit transparenter Objekte gegen Chemikalien zu erreichen. Beispielsweise ist in der EP 0 696 501 A2 beschrieben, dass dieser Mangel durch eine gut haftende Beschichtung von Polyalkyl(meth)acrylat-Formteilen mit Polyamid behoben werden kann, wobei ein Haftvermittler verwendet werden muss. Die Anwendung dieses Konzepts auf Polyarylat-Formteile ist in der DE 197 02 088 Al beschrieben. Weiterer Stand der Technik findet sich in der WO 2005/123384, der WO 2006/072496, der WO 2006/087250, der WO 2006/008357 und der WO 2006/008358; hier wird eine Folie, die eine Schicht aus einer Polyamidformmasse enthält, mit einem Substrat verbunden, z. B. durch Hinterspritzen. Darüber hinaus sind beispielsweise die Schriften JP60155239A, JP2003118055 A, EP 1 302 309 A, EP 0 522 240 A, EP 0 694 377 A, EP 0 734 833 A, WO 9212008 A und EP 0 568 988 A zu nennen. Dieser Stand der Technik liefert jedoch keine Lösung für das Problem, eine hohe Chemikalienbeständigkeit mit einer hohen Kratzfestigkeit zu kombinieren.
Eine Verbesserung in Bezug auf Belagsbildung und Transparenz wurde bei den Folien erreicht, die in der WO 2006/087250 und der EP 1 731 569 Al offenbart sind. Jedoch ist die Transparenz bei höheren Schichtdicken der dort für die Deckschicht vorgeschlagenen Zusammensetzungen verbesserungswürdig.
Die Aufgabe der Erfindung besteht darin, ein Bauteil zur Verfügung zu stellen, dessen Oberfläche sich durch verbesserte Kratzfestigkeit und hohe Chemikalienbeständigkeit auszeichnet. Hierbei sollte das Material der Deckschicht so transparent sein, dass auch bei größeren Schichtdicken transparente Bauteile hergestellt werden können, wenn das Substrat des Bauteils transparent ist. Ein weiterer Aspekt der Aufgabe bestand darin, dass Dekorfolien mit einer Deckschicht aus einem aliphatischen Polyamid bereitgestellt werden sollten, die zur Herstellung derartiger Bauteile geeignet sind, wobei einerseits die Transparenz der Deckschicht gegenüber dem Stand der Technik verbessert werden sollte; andererseits sollte jedoch die Formmasse der Deckschicht ausreichend kristallin sein, um eine ausreichende Spannungsrissbeständigkeit sowie Lösemittel- und Chemikalienbeständigkeit zu gewährleisten. Zudem sollte die Belagsbildung möglichst vollständig unterdrückt werden.
Diese Aufgabe wurde durch ein Bauteil gelöst, das folgende Komponenten enthält:
I. eine Deckschicht aus einer Formmasse, die mindestens 50 Gew.-%, bevorzugt mindestens 60 Gew.-%, besonders bevorzugt mindestens 70 Gew.-%, insbesondere bevorzugt mindestens 80 Gew.-% und ganz besonders bevorzugt mindestens 90 Gew.-% an PA613 enthält, sowie
IL ein Substrat aus einer thermoplastischen Formmasse.
PA613 ist auf bekannte Weise herstellbar durch Polykondensation von Hexamethylendiamin und 1,13-Tridecansäure. Das PA613 ist bevorzugt ein Homopolymer; es kann aber auch ein Copolymer mit maximal 30 Mol-%, bevorzugt maximal 20 Mol-% und besonders bevorzugt mit maximal 10 Mo 1-% eines oder mehrerer Comonomereinheiten sein. Die Comonomereinheiten können sich von jedem beliebigen Monomer herleiten, das üblicherweise zur Herstellung von Polyamiden eingesetzt wird, beispielsweise Caprolactam, Laurinlactam, Sebacinsäure, Dodecandisäure, 1,10-Decandiamin, 1,12-Dodecandiamin, 4,4 '-Diaminodicyclohexylmethan oder Isophorondiamin.
In einer bevorzugten Ausführungsform sind beim PA613 maximal 45 %, maximal 40 %, maximal 35 %, maximal 30 % oder maximal 25 % aller Endgruppen Aminogruppen. Auf diese Weise kann eine Vergilbung der Folie durch thermooxidative Schädigung vermieden werden. Die Herstellung eines derart endgruppengeregelten Polyamids durch Zusatz einer Dicarbonsäure oder Monocarbonsäure als Regler ist Stand der Technik. Die Formmasse auf Basis von PA613 kann zusätzlich beispielsweise folgende weitere Komponenten enthalten:
a) Nukleierungsmittel, ausgewählt aus nano skaligen Füllstoffen und basischen Metallsalzen, Metalloxiden oder Metallhydroxiden; letztere werden, um die gewünschte Transparenz sicherzustellen, höchstens in einer solchen Menge zugesetzt, wie sie in der Schmelze unter Reaktion mit den Carboxylendgruppen des Polyamids gelöst werden können; b) übliche Hilfs- bzw. Zusatzstoffe in den für Polyamidformmassen üblichen Mengen, beispielweise Stabilisatoren, UV- Absorber oder Gleitmittel, c) Farbmittel, die die Transparenz nicht signifikant beeinflussen, d) Füllstoffe, deren Brechungsindex sich nur in geringem Maße von dem der Matrix unterscheidet oder genau übereinstimmt (isorefraktive Füllstoffe), e) weitere Polymerkomponenten, deren Brechungsindex sich nur in geringem Maße von dem der Matrix unterscheidet oder genau übereinstimmt sowie Nukleierungsmittel auf Basis organischer Verbindungen, die die Transparenz im Wesentlichen nicht beeinflussen.
Eventuell vorhandene nano skalige Füllstoffe besitzen einen zahlenmittleren effektiven Teilchendurchmesser dso in der Formmasse von weniger als 150 nm, vorzugsweise von weniger als 120 nm, besonders bevorzugt von weniger als 90 nm, insbesondere bevorzugt von weniger als 70 nm und ganz besonders bevorzugt von weniger als 50 nm bzw. von weniger als 40 nm.
Der effektive Teilchendurchmesser ist nicht mit dem Durchmesser der Primärpartikel zu verwechseln. Für die Transparenz ist nicht letzterer entscheidend, entscheidend ist vielmehr, wie groß die Aggregate bzw. Agglomerate sind, die real in der Formmasse vorliegen. Bei sehr guter Dispergierung kann jedoch der effektive Teilchendurchmesser im Grenzfall bis auf den Durchmesser der Primärpartikel absinken.
Die Bestimmung von effektiven Teilchendurchmessern nanoskaliger Teilchen bzw. deren Aggregaten oder Agglomeraten in Formmassen und der zugehörigen Verteilungsfunktion wird durchgeführt, indem man einen Dünnschnitt der Formmasse anfertigt. Bei Polyamiden wird vorteilhafterweise ein Tieftemperaturdünnschnitt bei -100 0C angefertigt. Anschließend wird eine Anzahl von TEM- Aufnahmen angefertigt, um eine statistische Auswertung einer genügend großen Teilchenzahl zu ermöglichen. Diese Teilchenzahl beträgt je nach Fall mindestens zweihundert, besser jedoch tausend Teilchen. Mit Hilfe eines Auswerteprogramms werden die Teilchen hinsichtlich ihres Durchmessers vermessen. Die gewonnenen Daten werden in eine Verteilungsfunktion umgerechnet.
Durch die Anwesenheit der teilchenförmigen Zusätze bzw. der Nanopartikel darf die Transparenz der Formmasse bei Messung gemäß ASTM D 1003 an einer Folie mit einer Dicke von 200 μm und bei einer Lichtwellenlänge von 589 nm um höchstens 2 % verschlechtert werden.
Vorzugsweise enthalten die Deckschicht, eine eventuell vorhandene Haftvermittlerschicht sowie eventuell vorhandene weitere Schichten maximal 1 Gew.-% an Nanopartikeln. Diese Menge ist zum Zwecke der Nukleierung oder der Laserbeschriftung vollkommen ausreichend.
Die Polyamidformmasse gemäß I. kann maximal 20 Gew.-%, maximal 16 Gew.-%, maximal 12 Gew.-%, maximal 8 Gew.-% oder maximal 4 Gew.-% an Hilfs- oder Zusatzstoffen enthalten, wobei sich die Gew. -%- Angaben auf die gesamte Polyamidzusammensetzung beziehen.
Darüber hinaus kann die Formmasse auch mindestens ein weiteres Polyamid enthalten, vorzugsweise eines, dessen Monomereinheiten im Durchschnitt mindestens 8 C-Atome enthalten wie beispielsweise PA610, PA612, PA614, PA88, PA810, PA812, PAlOlO, PA1012, PA1014, PA1212, PAI l oder PA12.
Geeignete Substrate sind beispielsweise Formmassen basierend auf Polyolefϊnen, Polyamiden, Polyestern, Polyacrylaten, Polycarbonaten, ABS, Polystyrol oder Styrolcopolymeren sowie härtbare Systeme z. B. auf Basis von Epoxidharz oder Polyurethan.
In einer möglichen Ausführungsform besitzt das Substrat bei einer Schichtdicke von 1 mm innerhalb des sichtbaren Spektrums von 380 bis 800 mm in der Transmissionskurve ein Maximum von mindestens 30 % und bevorzugt von mindestens 35 %, 40 %, 45 %, 50 %, 55 %, 60 %, 65 %, 70 %, 75 % bzw. 80 %, wobei die Transparenz gemäß ASTM D 1003 an spritzgegossenen Platten ermittelt wird. Derartige Substrate sind weitgehend transparent. Das weitgehend transparente Polymere, das die Basis für die Formmasse des Substrats bildet, ist von der Art her nicht eingeschränkt. Grundsätzlich kann jedes bekannte weitgehend transparente Polymere eingesetzt werden. Beispiele hierfür sind Polyamide, Polyalkyl(meth)acrylate, Polycarbonat, Polyestercarbonat, Polyester, Polyimide, Polyetherimide, Polymethacrylimide, Polysulfon, Styrolpolymere, Polyolefine mit cyclischen Bausteinen, Olefin-Maleimid-Copolymere oder Polymere auf Basis von Vinylcyclohexan.
Das weitgehend transparente Polymere besitzt vorzugsweise eine Schmelzenthalpie von weniger als 12 J/g, bevorzugt von weniger als 8 J/g, besonders bevorzugt von weniger als 6 J/g, insbesondere bevorzugt von weniger als 4 J/g und ganz besonders bevorzugt von weniger als 3 J/g, gemessen mit der DSC-Methode gemäß ISO 11357 beim 2. Aufheizen und Integration des eventuell vorhandenen Schmelzpeaks.
Beispiele für erfindungsgemäß verwendbare weitgehend transparente Polyamide sind: das Polyamid aus Terephthalsäure und/oder Isophthalsäure und dem Isomerengemisch aus
2.2.4- und 2.4.4-Trimethylhexamethylendiamin, das Polyamid aus Isophthalsäure und 1.6-Hexamethylendiamin, das Copolyamid aus einem Gemisch aus Terephthalsäure/Isophthalsäure und 1.6-
Hexamethylendiamin, gegebenenfalls in Mischung mit 4.4'-Diaminodicyclohexylmethan, das Copolyamid aus Terephthalsäure und/oder Isophthalsäure, 3.3'-Dimethyl-4.4'- diaminodicyclohexylmethan und Laurinlactam oder Caprolactam, das (Co)Polyamid aus 1.12-Dodecandisäure oder Sebacinsäure, 3.3'-Dimethyl-4.4'- diaminodicyclohexylmethan und gegebenenfalls Laurinlactam oder Caprolactam, das Copolyamid aus Isophthalsäure, 4.4'-Diaminodicyclohexylmethan und Laurinlactam oder
Caprolactam, das Polyamid aus 1.12-Dodecandisäure und 4.4'-Diaminodicyclohexylmethan (bei niedrigem trans,trans-Isomerenanteil), das Copolyamid aus Terephthalsäure und/oder Isophthalsäure sowie einem alkylsubstituierten
Bis(4-aminocyclohexyl)methan-Homologen, gegebenenfalls in Mischung mit
Hexamethylendiamin, das Copolyamid aus Bis(4-amino-3-methyl-5-ethyl-cyclohexyl)methan, gegebenenfalls zusammen mit einem weiteren Diamin, sowie Isophthalsäure, gegebenenfalls zusammen mit einer weiteren Dicarbonsäure, das Copolyamid aus einer Mischung von m-Xylylendiamin und einem weiteren Diamin, z. B.
Hexamethylendiamin, sowie Isophthalsäure, gegebenenfalls zusammen mit einer weiteren
Dicarbonsäure wie z. B. Terephthalsäure und/oder 2,6-Naphthalindicarbonsäure, das Copolyamid aus einer Mischung von Bis(4-amino-cyclohexyl)methan und Bis-(4-amino-
3-methyl-cyclohexyl)methan sowie aliphatischen Dicarbonsäuren mit 8 bis 14 C- Atomen, sowie
Polyamide oder Copolyamide aus einer Mischung, die 1.14-Tetradecandisäure sowie ein aromatisches, arylaliphatisches oder cyclo aliphatisches Diamin enthält.
Diese Beispiele können durch Hinzunahme weiterer Komponenten (z. B. Caprolactam, Laurinlactam oder Diamin/Dicarbonsäure-Kombinationen) oder durch teilweisen oder vollständigen Ersatz von Ausgangskomponenten durch andere Komponenten weitestgehend variiert werden.
Die genannten sowie weitere geeignete weitgehend transparente bzw. amorphe Polyamide sowie geeignete Herstellungsmethoden sind unter anderem in folgenden Patentanmeldungen beschrieben: WO 02090421, EP-A-O 603 813, DE-A 37 17 928, DE-A 100 09 756, DE-A 101 22 188, DE-A 196 42 885, DE-A 197 25 617, DE-A 198 21 719, DE-C 198 41 234, EP-A- 1 130 059, EP-A 1 369 447, EP-A 1 595 907, CH-B-480 381, CH-B-679 861, DE-A-22 25 938, DE-A- 26 42 244, DE-A-27 43 515, DE-A- 29 36 759, DE-A- 27 32 928, DE-A- 43 10 970, EP- A-O 053 876, EP-A- 0 271 308, EP-A-O 313 436, EP-A-O 725 100 und EP-A-O 725 101.
Als Substratmaterial sind auch Polyalkyl(meth)acrylate mit 1 bis 6 C-Atomen in der Kohlenstoffkette des Alkylrestes geeignet, wobei die Methylgruppe als Alkylgruppe bevorzugt ist. Die Polyalkyl(meth)acrylate weisen üblicherweise eine MeIt Flow-Rate von 0,5 bis 30 g/10 min, vorzugsweise 0,8 bis 15 g/10 min, auf, gemessen gemäß ISO 1133 bei 230 0C mit einer Belastung von 3,8 kg. Als Beispiele seien u.a. Polymethylmethacrylat und Polybutylmethacrylat genannt. Es können aber auch Copolymere der Polyalkyl(meth)acrylate zum Einsatz kommen. So können bis zu 50 Gew.-%, vorzugsweise bis zu 30 Gew.-% und besonders bevorzugt bis zu 20 Gew.-% des Alkyl(meth)acrylates durch andere Monomere wie z.B. (Meth)acrylsäure, Styrol, Acrylnitril, Acrylamid o.a. ersetzt sein. Geeignet sind auch Copolymere aus Methylmethacrylat und Dicyclopentylmethacrylat. Die Formmasse kann schlagzäh eingestellt sein, beispielsweise durch Zusatz eines für derartige Formmassen üblichen Kern/Schale-Kautschuks. Darüber hinaus können zu weniger als 50 Gew.-%, bevorzugt zu maximal 40 Gew.-%, besonders bevorzugt zu maximal 30 Gew.-% und insbesondere bevorzugt zu maximal 20 Gew.-% andere Thermoplaste wie zum Beispiel SAN (Styrol/Acrylnitril-Copolymer) und/oder Polycarbonat enthalten sein.
Darüber hinaus kann das Substrat aus einer Formmasse bestehen, die als Hauptbestandteil ein Polycarbonat enthält. Erfindungsgemäß geeignete Polycarbonate enthalten Einheiten, die Kohlensäurediester von Diphenolen sind. Derartige Diphenole können beispielsweise folgende sein: Hydrochinon, Resorcin, Dihydroxybiphenyle, Bis-(hydroxyphenyl)-alkane, Bis- (hydroxyphenyl)-cycloalkane, Bis-(hydroxyphenyl)-sulfϊde, Bis-(hydroxyphenyl)-ether, Bis- (hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone, Bis-(hydroxyphenyl)-sulfoxide, α, α'-Bis- (hydroxyphenyl)-diisopropylbenzole sowie deren kernalkylierte oder kernhalo genierte Derivate oder auch α,ω-Bis-(hydroxyphenyl)-polysiloxane.
Bevorzugte Diphenole sind beispielsweise 4,4'-Dihydroxybiphenyl, 2,2-Bis-(4-hydroxyphenyl)- propan (Bisphenol A), l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan, l,l-Bis-(4- hydroxyphenyl)-cyclohexan, 2,4-Bis-(4-hydroxyphenyl)-2-methylbutan, 1 , 1 -Bis-(4- hydroxyphenyl)- 1 -phenylethan, 1 , 1 -Bis-(4-hydroxyphenyl)-p-diisopropylbenzol, 1 ,3-Bis-[2-(4- hydroxyphenyl)-2-propyl]benzol, 2,2-Bis-(3-methyl-4-hydroxyphenyl)-propan, 2,2-Bis-(3-chlor- 4-hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-methan, 2,2-Bis-(3,5-dimethyl-4- hydroxyphenyl)-propan, Bis-(3,5-dimethyl-4-hydroxyphenyl)-sulfon, 2,4-Bis-(3,5-dimethyl-4- hydroxyphenyl)-2-methylbutan, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan und 2,2-Bis-(3,5- dibrom-4-hydroxyphenyl)-propan.
Die Diphenole können sowohl allein als auch im Gemisch miteinander verwendet werden. Die Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren herstellbar (siehe z. B. H. J. Buysch et al, Ullmann's Encyclopedia of Industrial Chemistry, VCH, New York 1991, 5. Ed., Vol. 19, p. 348).
Die erfindungsgemäß eingesetzten Polycarbonate werden nach bekannten Verfahren hergestellt, beispielsweise nach dem Phasengrenzflächenverfahren oder nach dem Schmelzumesterungs- verfahren. Sie besitzen Gewichtsmittelmolekulargewichte Mw (ermittelt durch Gelpermeations- chromatographie und Eichung mit Polystyrolstandard) zwischen 5000 und 200000, vorzugsweise zwischen 10000 und 80000 und besonders bevorzugt zwischen 15000 und 40000.
Die Polycarbonatformmasse kann, beispielsweise zu weniger als 50 Gew.-%, bevorzugt zu weniger als 40 Gew.-%, besonders bevorzugt zu weniger als 30 Gew.-% und insbesondere bevorzugt zu weniger als 20 Gew.-%, bezogen auf die gesamte Polymerbasis, andere Polymere enthalten wie beispielsweise Polyethylenterephthalat, Polybutylenterephthalat, Polyester aus Cyclohexandimethanol, Ethylenglykol und Terephthalsäure, Polyester aus Cyclohexandimethanol und Cyclohexandicarbonsäure, Polyalkyl(meth)acrylate, SAN, Styrol-(Meth)acrylat-Copolymere, Polystyrol (amorph oder syndiotaktisch), Polyetherimide, Polyimide, Polysulfone und/oder Polyarylate (z. B. auf Basis von Bisphenol A und Isophthalsäure/Terephthalsäure).
Polyestercarbonate sind aus mindestens einem Diphenol, aus mindestens einer aromatischen Dicarbonsäure und aus Kohlensäure aufgebaut. Als Diphenole sind die gleichen wie für Polycarbonat geeignet. Der von aromatischen Dicarbonsäuren herrührende Anteil, bezogen auf die Summe der von aromatischen Dicarbonsäuren und von Kohlensäure herrührenden Anteile, beträgt maximal 99,9 Mol-%, maximal 95 Mol-%, maximal 90 Mol-%, maximal 85 Mol-%, maximal 80 Mo 1-% bzw. maximal 75 Mo 1-%, während ihr Mindestanteil 0,1 Mol-%, 5 Mol-%, 10 Mol-%, 15 Mol-%, 20 Mol-% oder 25 Mo 1-% beträgt. Geeignete aromatische Dicarbonsäuren sind beispielsweise Orthophthalsäure, Terephthalsäure, Isophthalsäure, tert.-Butylisophthalsäure, 3,3'-Diphenyldicarbonsäure, 4,4'-Diphenyletherdicarbonsäure, 4,4'-Diphenylsulfondicarbonsäure, 3,4'-Benzophenondicarbonsäure, 2,2-Bis-(4-carboxyphenyl)-propan und Trimethyl-3- phenylindan-4,5-dicarbonsäure. Hiervon werden bevorzugt Terephthalsäure und/oder Isophthalsäure eingesetzt.
Geeignete thermoplastische Polyester sind vorzugsweise entweder vollaromatisch oder gemischt aliphatisch/aromatisch aufgebaut. Im ersten Fall handelt es sich um Polyarylate; diese leiten sich von Diphenolen und aromatischen Dicarbonsäuren her. Als Diphenole sind die gleichen wie für Polycarbonat geeignet, während als Dicarbonsäure die gleichen wie für Polyestercarbonate geeignet sind. Im zweiten Fall leiten sich die Polyester von einer oder mehreren aromatischen Dicarbonsäuren sowie einem oder mehreren Diolen her; beispielsweise handelt es sich um Polyethylenterephthalat oder um Copolyester aus Terephthalsäure, 1.4-Cyclohexandimethanol und Ethylenglykol.
Geeignete Polysulfone werden in der Regel durch Polykondensation eines Diphenol/Dihalogendiarylsulfon-Gemisches in einem aprotischen Lösemittel in Gegenwart einer Base wie z. B. Natriumcarbonat hergestellt. Als Diphenol können beispielsweise diejenigen verwendet werden, die auch zur Herstellung von Polycarbonaten geeignet sind, insbesondere jedoch Bisphenol A, 4.4'-Dihydroxydiphenylsulfon, 4.4'-Dihydroxydiphenyl und Hydrochinon, wobei auch Gemische aus verschiedenen Diphenolen eingesetzt werden können. Die Dihalogenverbindung ist in den meisten Fällen 4.4'-Dichlordiphenylsulfon; es kann aber auch jede andere Dihalogenverbindung eingesetzt werden, bei der das Halogen durch eine para-ständige Sulfongruppe aktiviert ist. Als Halogen ist neben Chlor auch Fluor geeignet. Der Begriff* „Polysulfon" schließt auch die Polymeren ein, die üblicherweise als „Polyethersulfon" oder „Polyphenylensulfon" bezeichnet werden. Geeignete Typen sind kommerziell erhältlich.
Polyimide werden auf bekannte Weise aus Tetracarbonsäuren oder deren Anhydriden und Diaminen hergestellt. Wenn die Tetracarbonsäure und/oder das Diamin eine Ethergruppe enthält, resultiert ein Polyetherimid. Eine besonders geeignete ethergruppenhaltige Tetracarbonsäure ist die Verbindung I; aus ihr werden zusammen mit aromatischen Diaminen amorphe Polyetherimide erhalten, die kommerziell erhältlich sind.
Figure imgf000013_0001
Andere geeignete Polyimide sind Polymethacrylimide, manchmal auch als Polyacrylimide oder Polyglutarimide bezeichnet. Es handelt sich hierbei um Produkte ausgehend von Polyalkylacrylaten bzw. Polyalkylmethacrylaten, bei denen zwei benachbarte Carboxylatgruppen zu einem cyclischen Säureimid umgesetzt worden sind. Die Imidbildung wird vorzugsweise mit Ammoniak bzw. primären Aminen, wie z. B. Methylamin, durchgeführt. Die Produkte sowie ihre Herstellung sind bekannt (Hans R. Kricheldorf, Handbook of Polymer Synthesis, Part A, Verlag Marcel Dekker Inc. New York-Basel-Hongkong, S. 223 f., H. G. Elias, Makromoleküle, Hüthig und Wepf Verlag Basel-Heidelberg-New York; US 2 146 209 A; US 4 246 374).
Geeignete Styrolpolymere sind beispielsweise Homopolystyrol oder Copolymere des Styrols mit bis zu 50 Mol-%, bezogen auf die Monomermischung, anderer Monomerer wie z. B. Methylmethacrylat, Maleinsäureanhydrid, Acrylnitril oder Maleinsäureimiden. Styrol-Maleinimid- Copolymere sind beispielsweise auch durch Umsetzung von Styrol-Maleinsäureanhydrid- Copolymeren mit Ammoniak oder primären Aminen wie Methylamin oder Anilin zugänglich.
Polyolefme mit cyclischen Bausteinen können durch Copolymerisation mindestens eines cyclischen oder polycyclischen Olefϊns, beispielsweise Norbornen oder Tetracyclododecen, mit mindestens einem acyclischen Olefϊn, beispielsweise Ethen, hergestellt werden (WO 00/20496, US 5 635 573, EP-A- 0 729 983, EP-A-O 719 803). Diese Substanzklasse wird als COC bezeichnet. Eine andere geeignete Substanzklasse, die üblicherweise als COP bezeichnet wird, sind gegebenenfalls hydrierte Produkte der ringöffnenden metathetischen Polymerisation von polycyclischen Olefmen, beispielsweise Norbornen, Dicyclopentadien, substituierten Derivaten oder Diels-Alder-Addukten hiervon (EP-A-O 784 066, WO 01/14446, EP-A- 0 313 838, US 3 676 390, WO 96/20235).
Olefm-Maleimid-Copolymere sind beispielsweise aus der US 7 018 697 bekannt.
Polymere auf Basis von Vinylcyclohexan können entweder durch Polymerisation oder Copolymerisation von Vinylcyclohexan oder durch katalytische Hydrierung von Styrolpolymeren hergestellt werden (WO 94/21694, WO 00/49057, WO 01/30858; F. S. Bates et al, PCHE-Based Pentablock Copolymers: Evolution of a New Plastic, AIChE Journal Vol. 47, No. 4, pp. 762 -
765). Die Formmasse des Substrats kann darüber hinaus weitere gebräuchliche Hilfs- oder Zusatzstoffe enthalten wie z. B. Stabilisatoren, Verarbeitungshilfsmittel, Flammschutzmittel, Weichmacher, Antistatika, isorefraktive Füll- oder Verstärkungsstoffe, isorefraktive Schlagzähmodifikatoren, Farbstoffe, die die Transparenz nicht nennenswert beeinträchtigen, Fließmittel, Entformungsmittel oder andere Polymere, die die Transparenz nicht nennenswert beeinträchtigen. Wenn das Substrat von der Anwendung her nicht transparent zu sein braucht, brauchen die Füll- und Verstärkungsstoffe sowie die Schlagzähmodifikatoren nicht isorefraktiv zu sein. Auch bei den Farbstoffen, eventuell vorhandenen Pigmenten sowie eventuell vorhandenen weiteren Polymeren gibt es in diesem Fall keine Einschränkungen. Die Menge aller Hilfs- und Zusatzstoffe beträgt insgesamt maximal 50 Gew.-%, bevorzugt maximal 40 Gew.-%, besonders bevorzugt maximal 30 Gew.-% und insbesondere bevorzugt maximal 20 Gew.-%.
Die Verbindung der Deckschicht mit dem Substrat kann auf jede bekannte Weise geschehen, beispielsweise durch Mehrkomponentenspritzgießen, Coextrusion, Hinterspritzen einer Folie, Hinterschäumen einer Folie, Extrusionskaschieren, Laminieren, Verpressen oder Verkleben.
Das Mehrkomponentenspritzgießen dient der Herstellung von Formteilen mit Schichten oder Bereichen aus unterschiedlichen Kunststoffen oder Einfärbungen. Dabei sind verschiedene Verfahrensvarianten möglich, die dem Fachmann bekannt sind. Im Allgemeinen werden zwei oder mehr Spritzgieß einheiten verwendet, die nacheinander in ein Werkzeug arbeiten. Nachdem die erste Einheit eine Werkzeugkavität gefüllt hat, wird das Formnest für den Spritzgießvorgang der zweiten Einheit beispielsweise durch Verfahrbewegungen der Werkzeughälften, Drehen von Werkzeughälften bzw. -teilen oder Kernzugbewegungen zum Freigeben zusätzlicher Kavitätsbereiche vergrößert. Es kann auch sequentiell mit mehreren Werkzeugen auf Standard- Einkomponentenmaschinen gearbeitet werden, indem jeweils Formteile in das nächste Werkzeug eingelegt werden und die folgende Komponente aufgespritzt wird. Darüber hinaus kann auch so gearbeitet werden, dass mit der ersten Einheit eine Teilfüllung des Werkzeugs vorgenommen wird und die Schmelze der zweiten Einheit die Schmelze der ersten aus dem Kernbereich an die Oberfläche des Formteils verdrängt, wobei das fertige Bauteil eine Haut-Kern- Struktur (Sandwichstruktur) aufweist. Eine weitere Variante ist das Monosandwich- Verfahren, bei dem die Schmelzen über zwei separate Plastifiziereinheiten in einen gemeinsamen Einspritzraum gefördert und räumlich hintereinander geschichtet werden. Beim Einspritzen verdrängt dann die eine Komponente die andere Komponente an die Oberfläche.
Mehrschichtige Strukturen, z.B. Platten, können beispielsweise durch Coextrusion hergestellt werden. Bei der Coextrusion werden mehrere Schmelzeströme artgleicher oder artfremder Kunststoffe miteinander vereinigt. Die Verfahrensvarianten sind dem Fachmann bekannt. Im Grundsatz kann die Vereinigung der Schmelzen vor, in oder hinter einem Werkzeug geschehen. Die Zusammenführung der Schmelzen hinter (z.B. beim Blasformen) oder im Werkzeug bietet den Vorteil, dass die Schmelzen unterschiedlich temperiert werden können. Im Falle sogenannter Adapter- Werkzeuge werden die Schmelzen vor dem Eintritt in das Formgebungswerkzeug zusammengeführt. Wenn möglich, können die mehrschichtigen Strukturen (z.B. mehrschichtige Platten) kalandriert werden. Eine Alternative ist das Chill-roll- Verfahren. Das Coextrusionsverfahren kann durch einen nachfolgenden Blasformprozess ergänzt werden.
Beim Hinterspritzen einer Folie wird die Folie, gegebenenfalls nach vorhergehendem Umformen (z.B. Thermoformen), in ein Spritzgießwerkzeug eingelegt und dann mit der Schmelze des Substrats beaufschlagt. Es resultiert ein Verbundbauteil. Die verschiedenen Varianten des Verfahrens sind dem Fachmann bekannt. In einer Variante dieses Verfahrens wird das Werkzeug nach Einlegen der Folie nur zum Teil mit Schmelze gefüllt und dann der Werkzeugraum durch verschiebbare Teile kontrolliert verkleinert, ähnlich wie beim Spritzprägeprozess.
Das Hinterschäumen von tiefgezogenen Folien bietet Vorteile bei großflächigen und flachen Bauteilen, bei denen Hinterspritzmaschinen und -Werkzeuge sehr kostenintensiv wären. Beispielsweise kann erfindungsgemäß beim Hinterschäumen im LFI -Verfahren ein Gemisch von Langglasfasern und Polyurethanschaum auf die Rückseite eines Tiefziehteiles aufgebracht werden. Nach dem Aushärten des Polyurethan-Glas-Gemisches erhält man Bauteile mit hoher Steifigkeit und Wärmeformbeständigkeit bei geringem Eigengewicht.
Der Materialverbund kann auch durch weitere Verfahren erzeugt werden, beispielsweise durch Extrusionskaschieren. Dabei wird ein vorgefertigtes Substrat kontinuierlich mit einer vorgefertigten Deckschicht vereinigt, wobei die Verbindung durch eine Kunststoffschmelze herbeigeführt wird, die an der Berührungsstelle der erstgenannten Komponenten eingespeist wird. Man erhält hier einen dreischichtigen Aufbau. Eine Variante besteht darin, das Substratmaterial auf die vorgefertigte Deckschicht oder die Deckschicht auf ein vorgefertigtes Substrat zu extrudieren. Eine weitere Möglichkeit bieten kontinuierlich verlaufende Laminierverfahren, wobei die Verbindung durch das Einbringen von Klebstoffen (lösemittelbasiert, Hotmelt etc.) realisiert wird.
Verbünde können alternativ auch durch Pressverfahren hergestellt werden, wobei die Verbindung zwischen den vorfabrizierten Fügepartnern durch die Einwirkung von Druck und Temperatur, z.B. in einer Presse, hervorgerufen wird. Auch in diesem Verfahren können Klebstoffe etc. zusätzlich verwendet werden.
Prinzipiell ist auch ein Schweiß verfahren (z. B. Laserschweißen) zum Verbinden von Deckschicht und Substrat oder Folienhalbzeug und Substrat möglich.
Die Oberfläche kann beispielsweise durch Prägen strukturiert werden. Eine Strukturierung der Oberfläche ist auch vorgelagert im Rahmen der Folienextrusion möglich, beispielsweise durch speziell gestaltete Walzen. Das erhaltene Verbundteil kann anschließend noch umgeformt werden.
Die Verbindung zwischen Deckschicht und Substrat kann durch Formschluss erfolgen, beispielsweise mittels Hinterschneidungen. Im Allgemeinen bevorzugt man jedoch eine stoffschlüssige Verbindung. Hierzu müssen die Materialien aufeinander haften, was beispielsweise durch chemische Anknüpfung oder durch Verschlaufung der Makromoleküle bewirkt wird.
Geeignete Materialkombinationen, die fest aufeinander haften, sind dem Fachmann bekannt oder können durch einfaches Ausprobieren ermittelt werden. In den Fällen, in denen keine ausreichende Haftung erzielt werden kann, kann ein Haftvermittler verwendet werden, beispielsweise bei einer Mehrschichtfolie, die eine substratseitige Haftvermittlerschicht enthält. Die Art des Haftvermittlers ist unkritisch; er sollte jedoch vorzugsweise bei der gewählten Schichtdicke ausreichend transparent sein. In einer Ausführungsform enthält der Haftvermittler ein Blend aus einem Polymer, das mit dem Polymer der angrenzenden Folienschicht identisch ist oder ihm ähnlich ist, sowie einem Polymer, das mit dem Polymer des Substrats identisch ist oder ihm ähnlich ist. , Ähnlich" bedeutet, dass die betreffenden Polymere in der Schmelze zu phasenstabilen Blends gemischt werden können bzw. dass Schichten aus beiden Polymeren nach dem Coextrudieren oder Hinterspritzen eine ausreichende Haftung aufeinander aufweisen, das heißt dass die Polymere miteinander verträglich sind. Verträgliche Polymerkombinationen sind dem Fachmann bekannt oder können durch einfaches Ausprobieren ermittelt werden. Das Blend wird üblicherweise durch Schmelzemischen hergestellt. Geeignete Mischungsverhältnisse in Gewichtsprozent sind 20 - 80 zu 80 - 20, vorzugsweise 30 - 70 zu 70 - 30 und besonders bevorzugt 40 - 60 zu 60 - 40. Gegebenenfalls kann ein Verträglichkeitsvermittler mit verwendet werden, beispielsweise ein verzweigtes Polymer wie etwa ein Polyamin-Polyamid-Pfropfcopolymer (EP-A-I 065 048), ein Polymer mit reaktiven Gruppen, das in der Lage ist, zumindest mit einem der Blendpartner eine chemische Reaktion einzugehen, oder ein Blockcopolymer. In vielen Fällen sind auch Polyurethane als Haftvermittler geeignet.
In einer weiteren Ausführungsform enthält der Haftvermittler 2 bis 100 Gew.-%, bevorzugt 5 bis 90 Gew.-%, besonders bevorzugt 10 bis 80 Gew.-%, insbesondere bevorzugt 15 bis 60 Gew.-% und ganz besonders bevorzugt 20 bis 40 Gew.-% eines Copolymeren, welches folgende Monomereinheiten enthält:
- 70 bis 99,9 Gew.-% an Monomereinheiten, die sich von vinylischen Verbindungen herleiten, die ausgewählt sind aus Acrylsäurederivaten, Methacrylsäurederivaten, α-Olefmen und Vinylaromaten sowie
- 0,1 bis 30 Gew.-% an Monomereinheiten, die eine funktionelle Gruppe enthalten, die ausgewählt ist aus einer Carbonsäureanhydridgruppe, einer Epoxidgruppe und einer Oxazolingruppe.
Das Copolymere enthält bevorzugt folgende Monomereinheiten:
1. Etwa 70 bis etwa 99,9 Gew.-%, bevorzugt 80 bis 99,4 Gew.-% und besonders bevorzugt 85 Gew.-% an Monomereinheiten, die ausgewählt sind aus Einheiten folgender Formeln:
(i)
-CH, -C-
I
COOR' 1 = H oder CH3 und R2 = H, Methyl, Ethyl, Propyl oder Butyl;
-CH, -C (H)
I
O=C — NR3R4 wie oben und R3 und R4, unabhängig voneinander, gleich H, Methyl oder Ethyl;
Figure imgf000019_0001
wie oben;
(IV)
-CH, c-
R6 5 = H oder CH3 und R6 = H oder C6H5;
Figure imgf000019_0002
1 wie oben und R7 = H, Methyl, Ethyl, Propyl, Butyl oder Phenyl und m = 0 oder 1; 2. etwa 0,1 bis etwa 30 Gew.-%, bevorzugt 0,6 bis 20 Gew.-% und besonders bevorzugt 1 bis 15 Gew.-% an Monomereinheiten, die ausgewählt sind aus Einheiten folgender Formeln:
Figure imgf000020_0001
0^— -o ^,
mit R1 und m wie oben;
CH, — C- (VII)
Figure imgf000020_0002
mit R1 wie oben;
Figure imgf000020_0003
N ^
CH, CH,
mit R wie oben.
Die Limitierung der Kettenlänge bei den Substituenten R1 bis R5 sowie R7 ist darin begründet, dass längere Alkylreste zu einer erniedrigten Glasübergangstemperatur und damit zu einer verringerten Wärmeformbeständigkeit führen. Dies mag im Einzelfall in Kauf genommen werden.
Die Einheiten der Formel (I) leiten sich beispielsweise von Acrylsäure, Methacrylsäure, Methylacrylat, Ethylacrylat, n-Butylacrylat, Methylmethacrylat, n-Propylmethacrylat oder i- Butylmethacrylat her.
Die Einheiten der Formel (II) leiten sich beispielsweise von Acrylamid, Methacrylamid, N- Methylacrylamid, N-Methylmethacrylamid oder N,N-Dimethylacrylamid her.
Die Einheiten der Formel (III) leiten sich von Acrylnitril oder Methacrylnitril her.
Die Einheiten der Formel (IV) leiten sich von Ethen, Propen, Styrol oder α-Methylstyrol her; letztere können ganz oder teilweise durch andere polymerisierbare Aromaten wie p-Methylstyrol oder Inden ersetzt werden, die gleichwirkend sind.
Die Einheiten der Formel (V) leiten sich im Falle m = 0 von gegebenenfalls substituierten Maleinimiden her wie Maleinimid, N-Methylmaleinimid, N-Ethylmaleinimid, N-Phenylmaleinimid oder N-Methylaconitsäureimid. Im Falle m = 1 leiten sie sich durch Umsetzung zweier in einem Polymeren benachbarter Einheiten der Formel (I) mit Ammoniak oder einem primären Amin unter Imidbildung her.
Die Einheiten der Formel (VI) leiten sich im Falle m = 0 von gegebenenfalls substituierten Maleinsäureanhydriden her wie Maleinsäureanhydrid oder Aconitsäureanhydrid. Letztere können ganz oder teilweise durch andere ungesättigte Säureanhydride wie z. B. Itaconsäureanhydrid ersetzt werden, die gleichwirkend sind. Im Falle m = 1 leiten sie sich durch Wasserabspaltung aus zwei in einem Polymeren benachbarten Einheiten der Formel (I) (R2 = H) unter Ringschluss her.
Die Einheiten der Formel (VII) leiten sich von Glycidylacrylat oder Glycidylmethacrylat her und die Einheiten der Formel (VIII) von Vinyloxazolin oder Isopropenyloxazolin.
Vom Copolymeren sind verschiedene Ausgestaltungen bevorzugt, die folgende Einheiten enthalten:
A. 14 bis 96 Gew.-%, bevorzugt 20 bis 85 Gew.-% und besonders bevorzugt 25 bis 75 Gew.-% Einheiten der Formel (I), wobei R2 nicht H ist;
0 bis 75 Gew.-%, bevorzugt 1 bis 60 Gew.-% und besonders bevorzugt 5 bis 40 Gew.-% Einheiten der Formel (V) mit m = 1 ;
0 bis 15 Gew.-%, bevorzugt 0 bis 10 Gew.-% und besonders bevorzugt 0,1 bis 7 Gew.-% Einheiten der Formel (I) mit R2 = H;
0,1 bis 30 Gew.-%, bevorzugt 1 bis 20 Gew.-% und besonders bevorzugt 2 bis 15 Gew.-% Einheiten der Formel (VI) mit m = 1.
Bei Anwesenheit von Einheiten der Formel (V) werden derartige Copolymere als Polyacrylimide bzw. Polymethacrylimide oder manchmal auch als Polyglutarimide bezeichnet. Es handelt sich hierbei um Produkte ausgehend von Polyalkylacrylaten bzw. Polyalkylmethacrylaten, bei denen zwei benachbarte Carboxylatgruppen zu einem cyclischen Säureimid umgesetzt worden sind. Die Imidbildung wird vorzugsweise mit Ammoniak bzw. primären Aminen, wie z. B. Methylamin, in Gegenwart von Wasser durchgeführt, wobei die Einheiten der Formel (VI) und ggf. Einheiten der Formel (I) mit R2 = H durch Hydrolyse mit entstehen. Die Produkte sowie ihre Herstellung sind bekannt (Hans R. Kricheldorf, Handbook of Polymer Synthesis, Part A, Verlag Marcel Dekker Inc. New York-Basel- Hongkong, S. 223 f., H. G. Elias, Makromoleküle, Hüthig und Wepf Verlag Basel- Heidelberg-New York; US 2 146 209 A; US 4 246 374). Setzt man nur mit Wasser um, so erhält man Einheiten der Formel (VI) sowie ggf. saure Einheiten (I) durch Hydrolyse, ohne dass Imideinheiten (V) gebildet werden.
B. 10 bis 60 Gew.-%, bevorzugt 15 bis 50 Gew.-% und besonders bevorzugt 20 bis 40 Gew.-% Einheiten der Formel (IV);
39,9 bis 80 Gew.-%, bevorzugt 44,9 bis 75 Gew.-% und besonders bevorzugt 49,9 bis 70 Gew.-% Einheiten der Formel (III);
0,1 bis 30 Gew.-%, bevorzugt 0,6 bis 20 Gew.-% und besonders bevorzugt 1 bis 15 Gew.-% an Einheiten der Formel (VI) mit m = 0.
Derartige Copolymere sind auf bekannte Weise durch radikalisch initiierte Copolymerisation von z. B. aliphatisch ungesättigten Aromaten, ungesättigten Carbonsäureanhydriden und Acryl- bzw. Methacrylnitril zugänglich.
C. 39,9 bis 99,9 Gew.-%, bevorzugt 49,9 bis 99,4 Gew.-% und besonders bevorzugt 59,9 bis 99 Gew.-% Einheiten der Formel (I);
0 bis 60 Gew.-%, bevorzugt 0,1 bis 50 Gew.-% und besonders bevorzugt 2 bis 40 Gew.-% Einheiten der Formel (IV);
0,1 bis 30 Gew.-%, bevorzugt 0,6 bis 20 Gew.-% und besonders bevorzugt 1 bis 15 Gew.-% an Einheiten der Formel (VI) mit m = 0.
Derartige Copolymere sind auf bekannte Weise durch radikalisch initiierte Copolymerisation von Acrylsäure, Methacrylsäure und/oder deren Estern, gegebenenfalls aliphatisch ungesättigten Aromaten oder Olefinen sowie ungesättigten Carbonsäureanhydriden zugänglich.
D. 25 bis 99,8 Gew.-%, bevorzugt 40 bis 98,4 Gew.-% und besonders bevorzugt 50 bis 97 Gew.-% Einheiten der Formel (I);
0,1 bis 45 Gew.-%, bevorzugt 1 bis 40 Gew.-% und besonders bevorzugt 2 bis 35 Gew.-% Einheiten der Formel (III);
0,1 bis 30 Gew.-%, bevorzugt 0,6 bis 20 Gew.-% und besonders bevorzugt 1 bis 15 Gew.-% Einheiten der Formel (VI) mit m = 0. Derartige Copolymere sind auf bekannte Weise durch radikalisch initiierte Copolymerisation von Acrylsäure, Methacrylsäure und/oder deren Estern, Acryl- bzw. Methacrylnitril und ungesättigten Carbonsäureanhydriden zugänglich.
E. 0 bis 99,9 Gew.-%, bevorzugt 0,1 bis 99,4 Gew.-% und besonders bevorzugt 2 bis 99 Gew.- % Einheiten ausgewählt aus den Formeln (I), wobei R2 nicht H ist, und (III),
0 bis 60 Gew.-%, bevorzugt 0,1 bis 50 Gew.-% und besonders bevorzugt 2 bis 40 Gew.-% Einheiten der Formel (IV),
0,1 bis 30 Gew.-%, bevorzugt 0,6 bis 20 Gew.-% und besonders bevorzugt 1 bis 15 Gew.-% Einheiten der Formel (VII).
F. 0 bis 99,9 Gew.-%, bevorzugt 0,1 bis 99,4 Gew.-% und besonders bevorzugt 2 bis 99 Gew.- % Einheiten ausgewählt aus den Formeln (I), wobei R2 nicht H ist, und (III),
0 bis 60 Gew.-%, bevorzugt 0,1 bis 50 Gew.-% und besonders bevorzugt 2 bis 40 Gew.-% Einheiten der Formel (IV),
0,1 bis 30 Gew.-%, bevorzugt 0,6 bis 20 Gew.-% und besonders bevorzugt 1 bis 15 Gew.-% Einheiten der Formel (VIII).
Das Copolymere kann in jedem Fall zusätzlich weitere Monomereinheiten enthalten, beispielsweise solche, die sich von Maleinsäurediestern, Fumarsäurediestern, Itaconsäureestern oder Vinylacetat herleiten, solange die gewünschte haftvermittelnde Wirkung dadurch nicht wesentlich beeinträchtigt wird.
Der Haftvermittler kann in einer Ausführungsform ganz aus dem Copolymer bestehen; in einer Variante hiervon enthält das Copolymer einen Schlagzähmodifier, z. B. einen Acrylatkautschuk.
In einer weiteren Ausführungsform enthält der Haftvermittler 2 bis 99,9 Gew.-%, bevorzugt 5 bis 90 Gew.-%, besonders bevorzugt 10 bis 80 Gew.-%, insbesondere bevorzugt 15 bis 60 Gew.-% und ganz besonders bevorzugt 20 bis 40 Gew.-% des Copolymeren sowie 0,1 bis 98 Gew.-%, bevorzugt 10 bis 95 Gew.-%, besonders bevorzugt 20 bis 90 Gew.-%, insbesondere bevorzugt 40 bis 85 Gew.-% und ganz besonders bevorzugt 60 bis 80 Gew.-% eines Polymeren, das ausgewählt ist aus der Gruppe Polyamid der angrenzenden Folienschicht, Polymer des Substrats, Polyamid, das dem Polyamid der angrenzenden Folienschicht ähnlich ist, Polymer, das dem Polymer des Substrats ähnlich ist, oder Mischungen hieraus.
Der Haftvermittler kann die üblichen Hilfs- und Zusatzstoffe wie z. B. Flammschutzmittel, Stabilisatoren, Weichmacher, Verarbeitungshilfsmittel, Farbstoffe oder ähnliches enthalten. Die Menge der genannten Mittel ist so zu dosieren, dass die gewünschten Eigenschaften nicht ernsthaft beeinträchtigt werden.
Bei schwierig zu verbindenden Materialkombinationen kann es sinnvoll sein, zwei aufeinanderfolgende, miteinander verträgliche Haftvermittlerschichten zu verwenden, deren eine an die Polyamidschicht und deren andere an das Substrat anbindet.
In einer bevorzugten Ausführungsform wird das Bauteil durch Verbinden einer Dekorfolie mit dem Substrat hergestellt. Dekorfolien im Sinne der Erfindung sind Folien, die bedruckt werden können und/oder eine Farbschicht enthalten und darüber hinaus dazu bestimmt sind, mit einem Substrat verbunden zu werden, um dessen Oberfläche zu dekorieren. Die Dekoration kann auch dadurch bewirkt werden, dass optische Mängel der Oberfläche kaschiert werden, z. B. indem eine von Füll- oder Verstärkungsstoffen herrührende Oberflächenrauhigkeit abgedeckt wird.
Die erfindungsgemäße Dekorfolie ist einschichtig oder mehrschichtig. Bei einer mehrschichtigen Ausführung richten sich die Art und Zahl der übrigen Schichten nach den anwendungstechnischen Erfordernissen; entscheidend ist nur, dass die Deckschicht aus der erfindungsgemäß verwendeten Formmasse besteht. Beispielsweise sind folgende Ausführungsformen möglich: 1. Die Folie ist einschichtig. Sie besteht in diesem Fall definitionsgemäß nur aus der Deckschicht; durch Bedrucken z. B. mittels Thermosublimationsdruck können entweder auf der Oberseite oder der Unterseite Dekore angebracht werden.
2. Die Folie enthält neben der Deckschicht eine untenliegende Farbschicht. Die Farbschicht kann eine Lackschicht sein; sie besteht aber, dem Stand der Technik entsprechend, bevorzugt aus einer eingefärbten Thermoplastschicht. Der Thermoplast kann beispielsweise die gleiche oder eine ähnliche Zusammensetzung wie die Deckschicht aufweisen, eine Komponente hiervon enthalten oder ein anderes Polyamid bzw. ein anderes Polymeres, das entweder direkt auf der Deckschicht haftet oder mit Hilfe eines ausreichend transparenten Haftvermittlers (beispielsweise ein mit Carboxyl- bzw. Säureanhydridgruppen oder mit Epoxidgruppen funktionalisiertes Polyolefin, ein thermoplastisches Polyurethan oder ein Blend aus den Bestandteilen der zu verbindenden Schichten) haftend verbunden ist. Als Farbmittel können z. B. organische Farbstoffe, anorganische bzw. organische Pigmente oder Metallflitter eingesetzt werden. Da die Deckschicht transparent ist, ist eine gute Tiefenwirkung des Farbeindrucks sichergestellt.
3. Die Folie enthält neben Deckschicht und gegebenenfalls Farbschicht eine weitere Schicht, die als Trägerschicht eine ausreichende mechanische Festigkeit und gegebenenfalls zusätzlich eine Anbindung an das Substrat bewirkt.
4. Die Folie enthält neben Deckschicht und gegebenenfalls Farbschicht noch eine untenliegende Haftvermittlerschicht zur Anbindung an das Substrat. Geeignete Haftvermittler sind beispielsweise ein mit Carboxyl- bzw. Säureanhydridgruppen oder mit Epoxidgruppen funktionalisiertes Polyolefin, ein thermoplastisches Polyurethan, ein Blend aus den Materialien der zu verbindenden Schicht und des Substrats oder einer der oben näher beschriebenen Haftvermittler.
5. Die Folie enthält neben Deckschicht, gegebenenfalls Farbschicht und Trägerschicht noch eine untenliegende Haftvermittlerschicht zur Anbindung an das Substrat. Für den Haftvermittler gilt das gleiche wie unter Punkt 4. 6. Die Folie, z. B. eine unter Punkt 1 bis 5, enthält bei Bedarf, z. B. bei erhöhten Anforderungen an die Kratzfestigkeit, auf der Deckschicht noch eine Schutzschicht, beispielsweise einen Klarlack auf Polyurethanbasis. Dabei ist es möglich, Beschichtungszusammensetzungen einzusetzen, die zweistufig härtbar sind. Eine Folie mit einer solchen Beschichtung kann beispielsweise nach der ersten Härtungsstufe noch umgeformt werden; die zweite Härtungsstufe erfolgt erst an der umgeformten Folie oder an einem beispielsweise durch Hinterspritzen der Folie hergestellten Formteil. Eine Schutzschicht in Form eines Lackes kann zur Erhöhung der Kratzfestigkeit gemäß dem Stand der Technik auch z. B. mit Nanopartikeln modifiziert sein. Daneben ist es auch möglich, auf dem Bauteil eine Schutzschicht über Verfahren der Vakuumabscheidung zu generieren. Die Folie kann gegebenenfalls auch eine abziehbare Schutzfolie auflaminiert enthalten, die als Transport- oder Montageschutz wirkt und beispielsweise nach der Herstellung des Verbundteils abgezogen wird.
Für die Ausführungsformen 2 bis 6 gilt, dass zunächst die transparente Deckschicht wie eine Monofolie von einer Seite oder von beiden Seiten her bedruckt werden kann, um dann in einem zweiten Schritt mit den übrigen Schichten zur Mehrschichtfolie verbunden zu werden. In mehrschichtigen, z. B. durch Coextrusion hergestellten Folien kann die transparente Deckschicht von oben her bedruckt werden. Die Deckschicht kann auch transparent oder deckend eingefärbt sein.
In einer bevorzugten Ausführungsform enthält die Farbschicht und/oder die Trägerschicht und/oder die Haftvermittlerschicht eine Formmasse, insbesondere eines Polyetheramids oder eines Polyetheresteramids, und vorzugsweise eines Polyetheramids oder Polyetheresteramids auf Basis eines linearen aliphatischen Diamins mit 6 bis 18 und bevorzugt 6 bis 12 C- Atomen, einer linearen aliphatischen oder einer aromatischen Dicarbonsäure mit 6 bis 18 und bevorzugt 6 bis 13 C- Atomen und eines Polyethers mit mehr als durchschnittlich 2,3 C-Atomen pro Sauerstoffatom und einer zahlenmittleren Molmasse von 200 bis 2 000. Die Formmasse dieser Schicht kann weitere Blendkomponenten enthalten wie z. B. Polyacrylate oder Polyglutarimide mit Carboxyl- bzw. Carbonsäureanhydridgruppen oder Epoxidgruppen, einen funktionelle Gruppen enthaltenden Kautschuk und/oder ein Polyamid. Derartige Formmassen sind Stand der Technik; sie sind beispielsweise in der EP 1 329 481 A2 und der DE-OS 103 33 005 beschrieben, auf die hier ausdrücklich Bezug genommen wird. Um eine gute Schichtenhaftung zu gewährleisten, ist es vorteilhaft, wenn hier der Polyamidanteil des Polyamidelastomeren aus den gleichen Monomeren aufgebaut ist, wie sie in der Deckschicht verwendet werden. Dies ist aber nicht zwingend erforderlich, um eine gute Haftung zu erreichen. Alternativ zum Polyamidelastomeren kann die Farbschicht und/oder die Trägerschicht neben einem Polyamid auch einen üblichen schlagzähmachenden Kautschuk enthalten. Vorteilhaft an diesen Ausführungsformen ist, dass in vielen Fällen ein Thermoformen der Folie als separater Schritt vor dem Hinterspritzen nicht notwendig ist, da die Folie durch das Hinterspritzen gleichzeitig auch umgeformt wird.
Die Folie hat in einer bevorzugten Ausführungsform eine Dicke von 0,02 bis 1,2 mm, besonders bevorzugt von 0,05 bis 1 mm, ganz besonders bevorzugt von 0,08 bis 0,8 mm und insbesondere bevorzugt von 0,15 bis 0,6 mm. Die Haftvermittlerschicht hat hierbei in einer bevorzugten Ausführungsform eine Dicke von 0,01 bis 0,5 mm, besonders bevorzugt von 0,02 bis 0,4 mm, ganz besonders bevorzugt von 0,04 bis 0,3 mm und insbesondere bevorzugt von 0,05 bis 0,2 mm. Die Folie wird mittels bekannter Methoden hergestellt, beispielsweise durch Extrusion, oder im Falle von mehrschichtigen Systemen durch Coextrusion oder Laminieren. Sie kann anschließend gegebenenfalls umgeformt werden.
Wenn das Bauteil durch Mehrkomponentenspritzgießen hergestellt wird, hat die Deckschicht in der Regel eine Dicke von 0,1 bis 10 mm, bevorzugt 0,2 bis 7 mm und besonders bevorzugt 0,5 bis 5 mm. Unter speziellen Prozessbedingungen sind auch Schichtdicken unterhalb von 0,1 mm möglich. Geringe Dicken führen im Allgemeinen zu einer besseren Transparenz des Bauteils. Bei Herstellung durch Coextrusion hat die Deckschicht in der Regel eine Dicke von 0,02 bis 1,2 mm, bevorzugt von 0,05 bis 1,0 mm, besonders bevorzugt von 0,08 bis 0,8 mm und insbesondere bevorzugt von 0,12 bis 0,6 mm. Diese Dickenangaben für die Deckschicht gelten auch für die Deckschicht der erfindungsgemäßen Dekorfolie.
Das Substrat kann beliebig dick sein. Im Allgemeinen weist es eine Dicke im Bereich von 0,5 bis 100 mm auf, bevorzugt im Bereich von 0,8 bis 80 mm, besonders bevorzugt im Bereich von 1 bis 60 mm, insbesondere bevorzugt im Bereich von 1 ,2 bis 40 mm und ganz besonders bevorzugt im Bereich von 1,4 bis 30 mm. Weitere bevorzugte Obergrenzen der Dicke liegen bei 25 mm, 20 mm, 15 mm, 10 mm, 6 mm, 5 mm und 4 mm. Die Dicke ist so zu wählen, dass das Bauteil die erforderliche Steifigkeit besitzt. Das erfindungsgemäße Bauteil ist keine Folie; es ist im Gegensatz hierzu formstabil.
In einer Ausführungsform wird das erfindungsgemäße Bauteil als transparentes, beispielsweise als optisches Bauteil verwendet. Beispiele hierfür sind Streuscheiben, Scheinwerferscheiben, Scheiben von Heckleuchten, Linsen, Prismen, Brillengläser, Displays, Dekorationsbauteile für Displays, Elemente von Beleuchtungssystemen, von hinten beleuchtete Schalter, Verscheibungen jeglicher Art sowie Handygehäuse.
In weiteren Ausführungsformen wird die erfindungsgemäße Folie als Deckschicht eines Folienverbundes zur Gestaltung bzw. Dekoration von Oberflächen an und in Automobilen und Nutzfahrzeugen verwendet, wobei die Folie haftend mit einem Kunststoff-Substrat verbunden ist. Das entsprechend gestaltete Bauteil kann flächig ausgeformt sein, wie etwa ein Karosserieteil, beispielsweise Dachmodul, Kotflügel, Motorhaube oder Tür. Daneben kommen auch Ausführungsformen in Frage, in denen längliche, mehr oder weniger gewölbte Bauteile erzeugt werden, etwa Verkleidungen, beispielsweise die Verkleidung sogenannter A-Säulen am Automobil oder Zier- und Blendleisten aller Art. Ein weiteres Beispiel sind Schutzverkleidungen für Türschwellen. Neben Anwendungen im Außenbereich des Kraftfahrzeuges können auch Bestandteile des Interieurs vorteilhaft durch die erfindungsgemäßen Folien dekoriert werden, insbesondere Zierelemente wie Leisten und Blenden, da auch im Innenraum Schlagzähigkeit und Beständigkeit gegenüber Chemikalien, beispielsweise Reinigungsmitteln, erforderlich ist. Das Kunststoffsubstrat muss hier nicht transparent sein. Im Automobilbau werden als Substrate oft verstärkte Formmassen eingesetzt, die beispielsweise Glasfasern oder Talkum enthalten und daher nicht transparent sind. Eine Transparenz des Substrats zu fordern macht z. B. auch dann keinen Sinn, wenn in einem mehrschichtigen Folienverbund eine deckende Farbschicht eingesetzt wird.
In einer weiteren Ausführungsform wird die erfindungsgemäße Folie als Oberbelag für Sportgeräte, beispielsweise Schneebretter aller Art, wie Skier oder Snowboards, verwendet. Ein bekanntes Verfahren zur Ausführung von dekorierten Ski-Oberbelägen wird in der US 5 437 755 beschrieben. Gemäß diesem Verfahren wird der Ski nach dem sogenannten Monocoque-System hergestellt, wobei der Oberbelag zunächst aus zwei Kunststofffolien aufgebaut wird, von denen die äußere transparent und die innere opak (weiß) ist. Vor dem Zusammenkleben der beiden Folien und dem nachfolgenden Tiefziehen werden die Außenseite der transparenten Oberfolie und eine der späteren Kontaktflächen zwischen der transparenten Oberfolie und der opaken Unterfolie mit unterschiedlichen Dekorationen bedruckt. Als geeignete Kunststoffe für die Oberfolie werden Acrylnitril-Butadien-Styrol-Copolymer (ABS), Acrylnitril- Styrol-Copolymer (AS), thermoplastisches Polyurethan (TPU) und aliphatische Polyamide, besonders PAl 1 und PA12, angegeben. Für die vor äußeren Einflüssen geschützte und nicht in jedem Fall bedruckte Unterfolie werden neben Polyesteramiden, Polyetheramiden, modifizierten Polyolefϊnen und Styrol-Carbonsäureanhydrid-Copolymeren auch Copolyamide genannt. Die Verbindung des Oberbelags mit dem Ski oder Snowboard kann aber auch nach allen anderen bekannten Formgebungs- und Verklebungsverfahren erfolgen.
Wird erfindungsgemäß eine Monofolie verwendet, so ist diese transparent und wird vorzugsweise unterseitig bedruckt, wobei in diesem Fall ein weißer oder gegebenenfalls anders eingefärbter Kleber als optischer Hintergrund zum Verbinden der Folie mit dem Ski verwendet wird.
Wird eine coextrudierte Zweischichtfolie verwendet, so besteht diese vorzugsweise aus einer transparenten Oberschicht und einer weiß oder farbig pigmentierten Unterschicht als Hintergrund, wobei die Folie an der Oberseite bedruckt ist.
Die Folie kann beispielsweise im Siebdruck oder Offsetdruck dekoriert werden, sie ist aber auch mittels Thermo diffusions- oder Sublimationsdruck gut bedruckbar. Diese thermischen Druckverfahren erfordern häufig eine erhöhte Wärmeformbeständigkeit der Folien oder Formteile. Bei den hier in Betracht kommenden Formmassen korreliert die Wärmeformbeständigkeit mit dem Kristallitschmelzpunkt Tm; für diese thermischen Druckverfahren ist ein Tm von mindestens 180 0C wünschenswert. Zu niedrige Wärmeformbeständigkeiten äußern sich in Verzug oder Deformation der zu bedruckenden Folien oder Formteile. Absenkung der Sublimationstemperatur beeinträchtigt hingegen Kontrast und Konturenschärfe des Druckbildes, da die Farbe nicht mehr tief genug in die Folie eindringt. Da der Kristallitschmelzpunkt Tmvon PA613 194 0C beträgt, sind darauf basierende Formmassen hier denen auf Basis von PA12 (Tm= 178 0C) überlegen.
Die Folie kann darüber hinaus beispielsweise als Schutzfolie gegen Verschmutzung, UV- Strahlung, Witterungseinflüsse, Chemikalien oder Abrieb verwendet werden, als Sperrfolie an Fahrzeugen, im Haushalt, an Böden, Tunnels, Zelten und Gebäuden oder als Dekorträger etwa für Oberbeläge von Booten, Flugzeugen, im Haushalt oder an Gebäuden.
Die folgenden Beispiele sollen die Erfindung illustrieren.
Die relative Viskosität ηrei der Polyamide wurde nach DIN EN ISO 307 bestimmt. Die Bestimmung der Endgruppen erfolgte auf übliche Weise durch Titration.
Herstellungsbeispiel 1 :
Zur Herstellung eines PA613 wurde ein 200 1-Polykondensationsreaktor mit folgenden
Einsatzstoffen befüllt:
30,320 kg Hexamethylendiamin (69,00 %ig) 44,683 kg Tridecandisäure (Brassylsäure) 6,900 kg vollentsalztes H2O
6,732 g einer 50 %igen wässrigen Lösung von hypophosphoriger Säure (entspricht 57 ppm).
Die Einsatzstoffe wurden in einer Stickstoffatmosphäre aufgeschmolzen und unter Rühren im geschlossenen Autoklaven auf ca. 190 0C erhitzt, wobei sich ein Innendruck von ca. 14 bar einstellte. Dieser Innendruck wurde 3 Stunden beibehalten; danach wurde die Schmelze auf ca. 215 0C aufgeheizt und bei dem sich einstellenden Innendruck von ca. 20 bar gerührt. Unter kontinuierlichem Entspannen auf Normaldruck wurde dann weiter auf 250 0C Innentemperatur aufgeheizt. Entsprechend der Viskositätsanforderung wurde unter Beibehaltung von 250 0C ca. 1 Stunde Stickstoff über die Schmelze geleitet, bis das gewünschte Drehmoment angezeigt wurde. Der Austrag der Schmelze erfolgte mittels Zahnradpumpe als Strang, der der Granulierung zugeführt wurde. Das Granulat wurde 16 Stunden unter Wasserstrahlvakuum bei 80 0C getrocknet.
Austrag: 54 kg
Das Produkt wies folgende Kennwerte auf:
Kristallitschmelzpunkt Tm: 194 / 207 0C Schmelzenthalpie: ca. 87 J/g Relative Lösungsviskosität ηrei: 1,88 Endgruppen COOH: 35 mmol/kg Endgruppen NH2: 78 mmol/kg
Zur Erhöhung des Molekulargewichts des PA613- Polykondensationsproduktes wurden 53 kg Granulat im Taumeltrockner unter Stickstoffdurchfluss drucklos bei einer Ölvorlauftemperatur von ca. 160 0C in ca. 26 Std. nachkondensiert. Austrag Festphasennachkondensation: 53 kg Das Produkt wies folgende Kennwerte auf:
Kristallitschmelzpunkt Tm: 194 / 205 0C Schmelzenthalpie: ca. 87 J/g Relative Lösungsviskosität ηrei: 2,21 Endgruppen COOH: 9 mmol/kg Endgruppen NH2: 59 mmol/kg
Herstellungsbeispiel 2
Es wurde wie im Herstellungsbeispiel 1 polykondensiert, wobei folgende Einsatzstoffe verwendet wurden:
29,858 kg Hexamethylendiamin (68,61 %ig)
44,683 kg Tridecandisäure (Brassylsäure)
6,900 kg vollentsalztes H2O
6,732 g einer 50 %igen wässrigen Lösung von hypophosphoriger Säure (entspricht 57 ppm).
Austrag aus der Polykondensation: 56 kg Das Produkt wies folgende Kennwerte auf:
Kristallitschmelzpunkt Tm: 197 / 207 0C Schmelzenthalpie: ca. 94 J/g Relative Lösungsviskosität ηrei : 1,84
Endgruppen COOH: 106 mmol/kg Endgruppen NH2: 18 mmol/kg
Verarbeitung
1. Compoundierung
Das aus der Festphasennachkondensationen resultierende Produkt aus Beispiel 1 wurde auf einem Kneter vom Typ Werner + Pfieiderer ZSK30 M9/1(K3) mit einer Zylindertemperatur von 250 0C bei 250 UpM und einem Durchsatz von 8 kg/h unter Zugabe von 0,7 Gew.-% einer üblichen Stabilisatorzusammensetzung compoundiert .
2. Extrusion von Mehrschichtfolien:
Im Anschluss an die Stabilisierung via Compoundierung folgte die Folienextrusion zu Mehrschichtfolien mit jeweiliger Gesamtdicke von 450 μm auf einer Collin - Folienanlage im Kalanderverfahren bei einer Massetemperatur von ca. 250 0C. Folienaufbau:
P A613 (Deckschicht) : 190 μm
Farbschicht auf Basis von PA 12: 150 μm
Admer® QF551E (funktionalisiertes Polypropylen): 110 μm
Für Vergleichsversuche wurden entsprechende Mehrschichtfolien mit einer 190 μm dicken
Deckschicht aus PAl 2 hergestellt.
3. Extrusion von Monofolien PA613 aus dem Beispiel 3 wurde auf der Collin-Folienanlage bei einer Massetemperatur von 240 0C zu Monofolien von 190 μm und 1000 μm Dicke verarbeitet. Für Vergleichsversuche wurden darüber hinaus auch Monofolien von 190 μm Dicke aus PAl 2 sowie Monofolien von 1000 μm Dicke aus PAlOlO, PAl 012 und PAl 2 hergestellt.
4. Hinterspritzen
Monofolien von 190 μm Dicke wurden für den Waschbürstentest auf einer Spritzgießmaschine des Typs Engel Victory 650/200#159202 mit hochglänzendem Werkzeug mit einer PA12-
Formmasse hinterspritzt. Die Abmessungen der so hergestellten Platten betrugen
15O x 105 x 3 mm.
Prüfungen
1. Transmission
Die Transmission wurde an Monofolien der Dicke 1000 μm gemäß ISO 13468-2 gemessen; siehe Tabelle 1. Man erkennt, dass die Folien aus PA613, verglichen mit den anderen Polyamiden, eine verbesserte Transparenz aufweisen.
2. Glanzwerte nach Schnellbewitterung bzw. nach Wärmelagerung
Die Schnellbewitterung wurde an Mehrschichtfolien in einem Weathering Tester, Modell QUV/se der Firma Q-Panel in zwei Schritten durchgeführt.
Schritt 1 : 55 0C, Belichtung 0,98 W/m2 bei 340 nm, 4 h Schritt 2: 45 0C, Betauung ohne Belichtung, 4 h
Nach Feststellung des Anfangsglanzes wurde in definierten Zeitabständen an den eingelagerten Mehrschichtfolien der Glanzverlauf ermittelt; siehe Tabelle 2.
Die Wärmelagerung (24 h bei 120 0C) wurde in einem Umluftofen durchgeführt, wobei vor der Lagerung, nach 1 h und nach 24 h Lagerung Glanzmessungen durchgeführt wurden; siehe Tabelle
3. Die Glanzmessungen wurden gemäß DIN 67530 mit einem Reflektometer X-Write Acugloss bei einem Einstrahlwinkel von 20° durchgeführt.
3. Waschbürstenbeständigkeitstest
Mit dem Waschbürstentest nach Amtec-Kistler wird die Beanspruchung der Oberfläche in automatischen Waschanlagen nach ISO 20566 realitätsnah simuliert. Hierzu wurden die Platten aus den hinterspritzten Monofolien als Prüfkörper in gegenläufiger Bewegung unter einer horizontal rotierenden Bürste (Drehzahl 120 min"1) hin und her bewegt. Um möglichst praxisnahe Ergebnisse zu erzielen und die Prüfung zu beschleunigen, wurde dem Waschwasser als Schmutzersatz Quarzmehl beigemischt. Anschließend wurden wie oben Glanzmessungen bei einem Einstrahlwinkel von 20° durchgeführt. Die Ergebnisse sind in der Tabelle 4 dargestellt.
Tabelle 1: Transmission bei 400 nm und 1000 μm Foliendicke
Figure imgf000035_0001
Tabelle 2: Glanzverlauf bei Schnellbewitterung
Figure imgf000035_0002
Tabelle 3: Wärmelagerung bei 120 0C
Figure imgf000035_0003
Tabelle 4: Waschbürstenbeständigkeitstest
Figure imgf000036_0001

Claims

Patentansprüche:
1. Bauteil, das folgende Komponenten enthält:
I. Eine Deckschicht aus einer Formmasse, die mindestens 50 Gew.-% an PA613 enthält, sowie IL ein Substrat aus einer thermoplastischen Formmasse.
2. Bauteil gemäß Anspruch 1, dadurch gekennzeichnet, dass das Substrat eine Formmasse auf Basis von Polyolefmen, Polyamiden, Polyestern, Polyacrylaten, Polycarbonaten, ABS, Polystyrol oder Styrolcopolymeren oder ein härtbares System auf Basis von Epoxidharz oder Polyurethan ist.
3. Bauteil gemäß einem der vorhergehenden Ansprüche, bei dem das Substrat bei einer Schichtdicke von 1 mm innerhalb des sichtbaren Spektrums von 380 bis 800 nm in der Transmissionskurve ein Maximum von mindestens 30 % aufweist, ermittelt gemäß ASTM D 1003 an spritzgegossenen Platten.
4. Bauteil gemäß Anspruch 3, dadurch gekennzeichnet, dass das Substrat eine Formmasse auf Basis eines weitgehend transparenten Polyamids, eines Polyalkyl(meth)acrylats, eines Polycarbonats, eines Polyestercarbonats, eines Polyesters, eines Polyimids, eines Polyetherimids, eines Polymethacrylimids, eines Polysulfons, eines Styrolpolymeren, eines Polyolefins mit cyclischen Bausteinen, eines Olefin-Maleimid- Copolymeren oder eines Polymeren auf Basis von Vinylcyclohexan ist.
5. Bauteil gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es durch Mehrkomponentenspritzgießen, Coextrusion, Hinterspritzen einer Folie, Hinterschäumen einer Folie, Extrusionskaschieren, Laminieren, Verpressen oder Verkleben hergestellt ist.
6. Bauteil gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es zwischen der Deckschicht und dem Substrat einen Haftvermittler enthält.
7. Bauteil gemäß einem der Ansprüche 5 und 6, dadurch gekennzeichnet, dass es durch Hinterspritzen oder Hinterschäumen einer Folie hergestellt ist, die neben der Deckschicht eine Farbschicht und/oder eine Polyamidschicht als Trägerschicht und/oder eine substratseitige Stützschicht enthält.
8. Bauteil gemäß einem der Ansprüche 3 bis 7 für optische Anwendungen.
9. Bauteil gemäß einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass es eine Streuscheibe, eine Scheinwerferscheibe, die Scheibe einer Heckleuchte, eine Linse, ein Prisma, ein Brillenglas, ein Display, ein Dekorationsbauteil für ein Display, ein Element eines Beleuchtungssystems, ein von hinten beleuchteter Schalter, eine Verscheibung jeglicher Art oder ein Handygehäuse ist.
10. Bauteil gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es ein Karosserieteil eines Kraftfahrzeuges, ein Bestandteil des Kraftfahrzeug- Innenraumes, eine Verkleidung, eine Zierleiste, eine Blendleiste, eine Blende oder ein Dekorationselement ist.
11. Bauteil gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es ein Sportgerät ist.
12. Dekorfolie, deren Deckschicht aus einer Formmasse besteht, die zumindest 50 Gew.-% PA613 enthält.
13. Dekorfolie gemäß Anspruch 12, die nur aus dieser Schicht besteht.
14. Dekorfolie gemäß Anspruch 12, die aus mehreren Schichten besteht.
15. Dekorfolie gemäß Anspruch 14, dadurch gekennzeichnet, dass sie eine Farbschicht und/oder eine Trägerschicht und/oder eine Haftvermittlerschicht enthält.
16. Dekorfolie gemäß Anspruch 15, dadurch gekennzeichnet, dass die Farbschicht und/oder die Trägerschicht und/oder die Haftvermittlerschicht ein Polyamidelastomer oder einen schlagzähmachenden Kautschuk enthält.
17. Dekorfolie gemäß einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass sie eine Dicke von 0,02 bis 1,2 mm aufweist.
18. Dekorfolie gemäß einem der Ansprüche 12 sowie 14 bis 17, dadurch gekennzeichnet, dass die Haftvermittlerschicht eine Dicke von 0,01 bis 0,5 mm aufweist.
19. Dekorfolie gemäß einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass sie durch Extrusion, Coextrusion oder Laminieren hergestellt und anschließend gegebenenfalls umgeformt wird.
20. Verwendung einer Dekorfolie gemäß einem der Ansprüche 12 bis 19 zur Herstellung eines Bauteils gemäß einem der Ansprüche 1 bis 11.
PCT/EP2009/057750 2008-06-24 2009-06-23 Bauteil mit deckschicht aus einer pa613-formmasse WO2009156368A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09769217A EP2291286A1 (de) 2008-06-24 2009-06-23 Bauteil mit deckschicht aus einer pa613-formmasse
JP2011515339A JP5523453B2 (ja) 2008-06-24 2009-06-23 Pa613成形材料を含む被覆層を有する構造部材
US12/989,899 US20110045269A1 (en) 2008-06-24 2009-06-23 Component with top layer of a pa613 moulding compound
CN2009801240777A CN102076497A (zh) 2008-06-24 2009-06-23 具有pa613成形物料的覆层的构件
KR1020107026302A KR20110048488A (ko) 2008-06-24 2009-06-23 Pa613 성형 화합물의 최상층을 갖는 부품
CA2724526A CA2724526A1 (en) 2008-06-24 2009-06-23 Component with top layer of a pa613 moulding compound
BRPI0914201A BRPI0914201A2 (pt) 2008-06-24 2009-06-23 componente com camada de topo de um composto de modelagem de pa613

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810002599 DE102008002599A1 (de) 2008-06-24 2008-06-24 Bauteil mit Deckschicht aus einer PA613-Formmasse
DE102008002599.2 2008-06-24

Publications (1)

Publication Number Publication Date
WO2009156368A1 true WO2009156368A1 (de) 2009-12-30

Family

ID=41100573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/057750 WO2009156368A1 (de) 2008-06-24 2009-06-23 Bauteil mit deckschicht aus einer pa613-formmasse

Country Status (9)

Country Link
US (1) US20110045269A1 (de)
EP (1) EP2291286A1 (de)
JP (1) JP5523453B2 (de)
KR (1) KR20110048488A (de)
CN (1) CN102076497A (de)
BR (1) BRPI0914201A2 (de)
CA (1) CA2724526A1 (de)
DE (1) DE102008002599A1 (de)
WO (1) WO2009156368A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005007665A1 (de) 2005-02-19 2006-08-31 Degussa Ag Folie auf Basis eines Polyamidblends
DE102005026264A1 (de) 2005-06-08 2006-12-14 Degussa Ag Transparente Formmasse
EP2579106A1 (de) * 2011-10-04 2013-04-10 ETA SA Manufacture Horlogère Suisse Formung einer durchsichtigen Monoblock-Uhrenkomponente
DE102011084520A1 (de) 2011-10-14 2013-04-18 Evonik Industries Ag Rückfolie für Photovoltaikmodule mit verbesserter Pigmentdispergierung
CN107210214A (zh) * 2015-03-30 2017-09-26 Jsr株式会社 化学机械研磨用处理组合物、化学机械研磨方法及清洗方法
AT519950B1 (de) * 2017-05-02 2019-02-15 Isosport Verbundbauteile Ges M B H Oberflächenfolie für ein Sportgerät
DE102020134941A1 (de) * 2020-12-28 2022-06-30 Rehau Automotive Se & Co. Kg Außenverkleidungsteil für den Frontbereich eines Kraftfahrzeugs und Verfahren zur Herstellung eines Außenverkleidungsteils

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155239A (ja) 1984-01-24 1985-08-15 Toray Ind Inc ポリアミド樹脂成形物
WO1992012008A1 (en) 1991-01-02 1992-07-23 Eastman Kodak Company Multilayered sheets having excellent adhesion
EP0522240A2 (de) 1991-06-29 1993-01-13 Alkor Gmbh Kunststoffe Mehrschichtige Kunststoffverbundfolie, Verfahren zu deren Herstellung und Verwendung
EP0568988A1 (de) 1992-05-06 1993-11-10 Ems-Inventa Ag Oberflächenresistente Bauteile
EP0619336A2 (de) * 1993-04-03 1994-10-12 Hüls Aktiengesellschaft Farblose und transparente, amorph zu verarbeitende Polyamidformmassen mit guter Spannungsrissbeständigkeit und Schlagzähigkeit
EP0694377A2 (de) 1994-07-29 1996-01-31 GRAZIOLI S.p.A. Verfahren und Vorrichtung zur Herstellung einer graphischen Darstellung auf einem Gegenstand aus Polyolefin und Folie zur Verwendung in diesem Verfahren
EP0696501A2 (de) 1994-08-11 1996-02-14 Hüls Aktiengesellschaft Thermoplastischer Mehrschichtverbund mit guter Schichtenhaftung
EP0725100A1 (de) * 1995-02-01 1996-08-07 Ems-Inventa Ag Farblose, transparente Copolyamide, ihre Herstellung sowie Formkörper aus diesen Copolyamiden, ihren Blends oder Legierungen
EP0734833A1 (de) 1995-03-30 1996-10-02 Elf Atochem S.A. Verfahren zur Herstellung eines Gegenstandes aus thermoplastischem Kunststoff mit geschütztem Dekor
DE19702088A1 (de) 1997-01-22 1998-07-23 Huels Chemische Werke Ag Thermoplastischer Mehrschichtverbund mit guter Schichtenhaftung
EP1302309A2 (de) 2001-10-12 2003-04-16 General Electric Company Mehrschichtige, witterungsbeständige Zusammensetzungen sowie Verfahren zu deren Hestellung
JP2003118055A (ja) 2001-10-18 2003-04-23 Dainippon Printing Co Ltd 化粧シート
WO2005123384A1 (de) 2004-06-16 2005-12-29 Degussa Ag Mehrschichtfolie
WO2006008357A1 (fr) 2004-06-22 2006-01-26 Arkema France Structure multicouche a base de polyamide pour recouvrir des substrats
WO2006008358A1 (fr) 2004-06-22 2006-01-26 Arkema France Utilisation d’un polyamide micro-cristallin pour obtenir un état de surface particulier
WO2006072496A1 (de) 2004-12-29 2006-07-13 Degussa Gmbh Transparente formmasse
WO2006087250A1 (de) 2005-02-19 2006-08-24 Degussa Ag Folie auf basis eines polyamidblends
WO2006087249A2 (de) 2005-02-19 2006-08-24 Degussa Gmbh Transparente, dekorierbare mehrschichtige folie
EP1731569A1 (de) 2005-06-08 2006-12-13 Degussa AG Transparente Formmasse
EP1741540A1 (de) 2005-07-04 2007-01-10 Degussa GmbH Verwendung einer Polyamidformmasse mit hoher Schmelzesteifigkeit zur Coextrusion mit einem hochschmelzenden Polymer
WO2008066763A1 (en) 2006-11-22 2008-06-05 E. I. Du Pont De Nemours And Company Mobile telephone housing comprising polyamide resin composition
WO2008084013A2 (en) * 2007-01-11 2008-07-17 Basf Se Polyamide nanocomposite

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2146209A (en) 1936-07-31 1939-02-07 Du Pont Preparation of resinous imides of substituted acrylic acids
FR1536305A (fr) 1967-06-27 1968-08-10 Charbonnages De France Nouvelles compositions élastomères et leur procédé de fabrication
DE2225938A1 (de) 1972-05-27 1973-12-13 Hoechst Ag Transparente polyamide
CH624970A5 (en) 1975-09-22 1981-08-31 Inventa Ag Process for the preparation of glass-transparent polyamide
DE2732928A1 (de) 1977-07-21 1979-02-01 Bayer Ag Transparente polyamide
DE2743515A1 (de) 1977-09-28 1979-04-05 Bayer Ag Polyamide aus isophthalsaeure und hexamethylendiamin
US4246374A (en) 1979-04-23 1981-01-20 Rohm And Haas Company Imidized acrylic polymers
DE2936759A1 (de) 1979-09-12 1981-04-02 Chemische Werke Hüls AG, 4370 Marl Transparente copolyamide
US4369305A (en) 1980-11-20 1983-01-18 E. I. Du Pont De Nemours And Company Polyamide molding resin from PACM having specific stereo isomer ratio
CH673029A5 (de) 1986-11-11 1990-01-31 Inventa Ag
EP0271308B1 (de) 1986-12-09 1994-03-16 Mitsubishi Kasei Corporation Durchsichtiges Copolyamid
CA1337795C (en) 1987-03-17 1995-12-26 Patrick Leon Spain Dry paint transfer process and product
EP0313838A3 (de) 1987-10-01 1990-08-22 The B.F. Goodrich Company Aus Präpolymeren hergestellte Cycloolefinpolymere
FR2622197B1 (fr) 1987-10-21 1990-03-09 Atochem Polyamides transparents, leur procede de fabrication
DE4137430A1 (de) * 1991-11-14 1993-05-19 Huels Chemische Werke Ag Mehrschichtiges kunststoffrohr
TW224443B (de) 1992-07-31 1994-06-01 Minnesota Mining & Mfg
US5635573A (en) 1992-12-01 1997-06-03 Exxon Chemical Patents Inc. Method for preparing alpha-olefin/cycloolefin copolymers
CH684756A5 (de) 1992-12-24 1994-12-15 Inventa Ag Formkörper aus transparenten Copolyamiden.
FR2700273B1 (fr) 1993-01-12 1995-03-31 Salomon Sa Procédé de décoration d'un dessus de ski.
US5352744A (en) 1993-03-15 1994-10-04 University Of Minnesota Method for hydrogenating polymers and products therefrom
EP0784066B1 (de) 1994-09-30 2002-01-16 Nippon Zeon Co., Ltd. Hydrogeniertes, durch ringöffnung erhaltenes polymer
US6235856B1 (en) 1994-12-23 2001-05-22 Ciba Specialty Chemicals Corporation Polymerization of dicyclopentadiene
JP3517471B2 (ja) 1994-12-28 2004-04-12 三井化学株式会社 環状オレフィン共重合体の製造方法
CH688624A5 (de) 1995-02-01 1997-12-15 Inventa Ag Amorphe Polyamid-Formmassen und -Formteile.
JPH08239426A (ja) 1995-03-01 1996-09-17 Mitsui Petrochem Ind Ltd 環状オレフィン共重合体の製造方法
DE19642885C2 (de) 1996-10-17 2001-08-02 Inventa Ag Verwendung von Polyamid-Formmassen zur Herstellung von optischen oder elektrooptischen Formteilen
DE19725617A1 (de) 1997-06-17 1998-12-24 Inventa Ag Schlagzähe transparente Polyamidlegierungen
CA2266873C (en) 1998-04-09 2002-05-28 Rexam Industries Corp. Film finishing system with design option
DE19821719C2 (de) 1998-05-14 2001-07-19 Inventa Ag Polyamidformmassen, Verfahren zu deren Herstellung und deren Verwendung
DE19841234C1 (de) 1998-09-09 1999-11-25 Inventa Ag Reversible thermotrope Kunststoff-Formmasse, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19845222A1 (de) 1998-10-01 2000-04-06 Ticona Gmbh Spannungsrißbeständige Cycloolefincopolymer-Komposition
DE19906984A1 (de) 1999-02-19 2000-08-31 Bayer Ag Vinylcyclohexan basierende Polymere
ATE272497T1 (de) 1999-06-29 2004-08-15 Degussa Mehrschichtverbund
EP1238996B1 (de) 1999-08-25 2004-11-03 Zeon Corporation Geöffnete norbornenringpolymere, deren hydrierungsprodukte sowie verfahren zur herstellung beider produkte
AU2407800A (en) 1999-10-28 2001-05-08 University Of Maryland At College Park, The Stereospecific living polymerization of olefins by a novel ziegler-natta catalyst composition
DE10009756B4 (de) 2000-03-01 2004-03-25 Ems-Chemie Ag Farblose, hochtransparente Polyamid-Blends mit verbesserter Spannungsrissbeständigkeit
DE10065177A1 (de) * 2000-12-23 2002-06-27 Degussa Mehrschichtverbund auf Polyamid/Polyolefin-Basis
DE10122188B4 (de) 2001-05-08 2007-04-12 Ems-Chemie Ag Polyamidformmassen zur Herstellung optischer Linsen
DE10201903A1 (de) 2002-01-19 2003-07-31 Degussa Formmasse auf Basis von Polyetheramiden
DE10224947B4 (de) 2002-06-05 2006-07-06 Ems Chemie Ag Transparente Polyamid-Formmassen mit verbesserter Transparenz, Chemikalienbeständigkeit und dynamischer Belastbarkeit
DE50309009D1 (de) * 2002-09-21 2008-03-06 Evonik Degussa Gmbh Verfahren zur Herstellung eines dreidimensionalen Objektes
DE10248406A1 (de) * 2002-10-17 2004-04-29 Degussa Ag Laser-Sinter-Pulver mit Titandioxidpartikeln, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinterpulver
CN1230460C (zh) * 2002-11-02 2005-12-07 中国石油化工股份有限公司 长碳链尼龙及其合成方法
DE10330591A1 (de) * 2002-11-28 2004-06-09 Degussa Ag Laser-Sinter-Pulver mit Metallseifen, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinter-Pulver
EP1424354B1 (de) * 2002-11-28 2006-03-15 Degussa AG Laser-Sinter-Pulver mit Metallseifen, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinter-Pulver
EP1459871B1 (de) * 2003-03-15 2011-04-06 Evonik Degussa GmbH Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten mittels Mikrowellenstrahlung sowie dadurch hergestellter Formkörper
DE10311437A1 (de) * 2003-03-15 2004-09-23 Degussa Ag Laser-Sinter-Pulver mit PMMI, PMMA und/oder PMMI-PMMA-Copolymeren, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinterpulver
JP2004355732A (ja) 2003-05-29 2004-12-16 Tdk Corp 光記録媒体
DE10333005A1 (de) * 2003-07-18 2005-02-03 Degussa Ag Formmasse auf Basis von Polyetheramiden
DE102004001324A1 (de) * 2003-07-25 2005-02-10 Degussa Ag Pulverförmige Komposition von Polymer und ammoniumpolyphosphathaltigem Flammschutzmittel, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Pulver
DE10334496A1 (de) * 2003-07-29 2005-02-24 Degussa Ag Laser-Sinter-Pulver mit einem Metallsalz und einem Fettsäurederivat, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinterpulver
DE10334497A1 (de) * 2003-07-29 2005-02-24 Degussa Ag Polymerpulver mit phosphonatbasierendem Flammschutzmittel, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Polymerpulver
DE10347665A1 (de) * 2003-10-09 2005-05-19 Degussa Ag Vernetzbare Basisschicht für Fixiereinlagen nach dem Doppelpunktverfahren
DE10347628A1 (de) * 2003-10-09 2005-05-19 Degussa Ag Vernetzbare Basisschicht für Fixiereinlagen nach dem Doppelpunktverfahren
DE102004010162A1 (de) * 2004-02-27 2005-09-15 Degussa Ag Polymerpulver mit Copolymer, Verwendung in einem formgebenden Verfahren mit nicht fokussiertem Energieeintrag und Formkörper, hergestellt aus diesem Polymerpulver
DE102004012682A1 (de) * 2004-03-16 2005-10-06 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels Lasertechnik und Auftragen eines Absorbers per Inkjet-Verfahren
DE102004020452A1 (de) * 2004-04-27 2005-12-01 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren
DE102004020453A1 (de) * 2004-04-27 2005-11-24 Degussa Ag Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
EP1595907A1 (de) 2004-05-14 2005-11-16 Arkema Transparent amorphe Polyamide auf Basis von Diaminen und Tetradecanedicarbonsaüre
DE102004024440B4 (de) * 2004-05-14 2020-06-25 Evonik Operations Gmbh Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102004047876A1 (de) * 2004-10-01 2006-04-06 Degussa Ag Pulver mit verbesserten Recyclingeigenschaften, Verfahren zu dessen Herstellung und Verwendung des Pulvers in einem Verfahren zur Herstellung dreidimensionaler Objekte
DE102004062761A1 (de) * 2004-12-21 2006-06-22 Degussa Ag Verwendung von Polyarylenetherketonpulver in einem dreidimensionalen pulverbasierenden werkzeuglosen Herstellverfahren, sowie daraus hergestellte Formteile
DE102005002930A1 (de) * 2005-01-21 2006-07-27 Degussa Ag Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102005004280A1 (de) * 2005-01-28 2006-08-03 Degussa Ag Verfahren zur Herstellung eines Verbundes
DE102005007034A1 (de) * 2005-02-15 2006-08-17 Degussa Ag Verfahren zur Herstellung von Formteilen unter Erhöhung der Schmelzesteifigkeit
DE102005007035A1 (de) * 2005-02-15 2006-08-17 Degussa Ag Verfahren zur Herstellung von Formteilen unter Erhöhung der Schmelzesteifigkeit
DE102005007664A1 (de) * 2005-02-19 2006-08-31 Degussa Ag Transparente Formmasse
DE102005008044A1 (de) * 2005-02-19 2006-08-31 Degussa Ag Polymerpulver mit Blockpolyetheramid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102005051126A1 (de) * 2005-10-26 2007-05-03 Degussa Gmbh Folie mit Deckschicht aus einer Polyamidzusammensetzung
DE102005054723A1 (de) * 2005-11-17 2007-05-24 Degussa Gmbh Verwendung von Polyesterpulver in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polyesterpulver
DE102006005500A1 (de) * 2006-02-07 2007-08-09 Degussa Gmbh Verwendung von Polymerpulver, hergestellt aus einer Dispersion, in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102007021199B4 (de) * 2006-07-17 2016-02-11 Evonik Degussa Gmbh Zusammensetzungen aus organischem Polymer als Matrix und anorganischen Partikeln als Füllstoff, Verfahren zu deren Herstellung sowie deren Verwendung und damit hergestellte Formkörper
DE102006040113A1 (de) * 2006-08-26 2008-03-06 Evonik Degussa Gmbh Verbundteil aus einer Mehrschichtfolie und einem Substrat auf Basis eines Polyalkyl(meth)acrylats
DE102006041138A1 (de) * 2006-09-01 2008-03-06 Evonik Degussa Gmbh Verbund aus einer Folie und einem Substrat auf Basis eines amorphen Polyamids
DE102006058681A1 (de) * 2006-12-13 2008-06-19 Evonik Degussa Gmbh Transparentes Bauteil
DE102007003327A1 (de) * 2007-01-17 2008-07-24 Evonik Degussa Gmbh Mehrschichtfolie und daraus hergestelltes Verbundteil
DE102007019133A1 (de) * 2007-04-20 2008-10-23 Evonik Degussa Gmbh Komposit-Pulver, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Pulver
DE102007038578A1 (de) * 2007-08-16 2009-02-19 Evonik Degussa Gmbh Verfahren zur Dekorierung von Oberflächen

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155239A (ja) 1984-01-24 1985-08-15 Toray Ind Inc ポリアミド樹脂成形物
WO1992012008A1 (en) 1991-01-02 1992-07-23 Eastman Kodak Company Multilayered sheets having excellent adhesion
EP0522240A2 (de) 1991-06-29 1993-01-13 Alkor Gmbh Kunststoffe Mehrschichtige Kunststoffverbundfolie, Verfahren zu deren Herstellung und Verwendung
EP0568988A1 (de) 1992-05-06 1993-11-10 Ems-Inventa Ag Oberflächenresistente Bauteile
EP0619336A2 (de) * 1993-04-03 1994-10-12 Hüls Aktiengesellschaft Farblose und transparente, amorph zu verarbeitende Polyamidformmassen mit guter Spannungsrissbeständigkeit und Schlagzähigkeit
EP0694377A2 (de) 1994-07-29 1996-01-31 GRAZIOLI S.p.A. Verfahren und Vorrichtung zur Herstellung einer graphischen Darstellung auf einem Gegenstand aus Polyolefin und Folie zur Verwendung in diesem Verfahren
EP0696501A2 (de) 1994-08-11 1996-02-14 Hüls Aktiengesellschaft Thermoplastischer Mehrschichtverbund mit guter Schichtenhaftung
EP0725100A1 (de) * 1995-02-01 1996-08-07 Ems-Inventa Ag Farblose, transparente Copolyamide, ihre Herstellung sowie Formkörper aus diesen Copolyamiden, ihren Blends oder Legierungen
EP0734833A1 (de) 1995-03-30 1996-10-02 Elf Atochem S.A. Verfahren zur Herstellung eines Gegenstandes aus thermoplastischem Kunststoff mit geschütztem Dekor
DE19702088A1 (de) 1997-01-22 1998-07-23 Huels Chemische Werke Ag Thermoplastischer Mehrschichtverbund mit guter Schichtenhaftung
EP1302309A2 (de) 2001-10-12 2003-04-16 General Electric Company Mehrschichtige, witterungsbeständige Zusammensetzungen sowie Verfahren zu deren Hestellung
JP2003118055A (ja) 2001-10-18 2003-04-23 Dainippon Printing Co Ltd 化粧シート
WO2005123384A1 (de) 2004-06-16 2005-12-29 Degussa Ag Mehrschichtfolie
WO2006008357A1 (fr) 2004-06-22 2006-01-26 Arkema France Structure multicouche a base de polyamide pour recouvrir des substrats
WO2006008358A1 (fr) 2004-06-22 2006-01-26 Arkema France Utilisation d’un polyamide micro-cristallin pour obtenir un état de surface particulier
WO2006072496A1 (de) 2004-12-29 2006-07-13 Degussa Gmbh Transparente formmasse
WO2006087250A1 (de) 2005-02-19 2006-08-24 Degussa Ag Folie auf basis eines polyamidblends
WO2006087249A2 (de) 2005-02-19 2006-08-24 Degussa Gmbh Transparente, dekorierbare mehrschichtige folie
EP1731569A1 (de) 2005-06-08 2006-12-13 Degussa AG Transparente Formmasse
EP1741540A1 (de) 2005-07-04 2007-01-10 Degussa GmbH Verwendung einer Polyamidformmasse mit hoher Schmelzesteifigkeit zur Coextrusion mit einem hochschmelzenden Polymer
WO2008066763A1 (en) 2006-11-22 2008-06-05 E. I. Du Pont De Nemours And Company Mobile telephone housing comprising polyamide resin composition
WO2008084013A2 (en) * 2007-01-11 2008-07-17 Basf Se Polyamide nanocomposite

Also Published As

Publication number Publication date
KR20110048488A (ko) 2011-05-11
JP5523453B2 (ja) 2014-06-18
BRPI0914201A2 (pt) 2019-03-12
EP2291286A1 (de) 2011-03-09
CN102076497A (zh) 2011-05-25
US20110045269A1 (en) 2011-02-24
CA2724526A1 (en) 2009-12-30
DE102008002599A1 (de) 2009-12-31
JP2011525438A (ja) 2011-09-22

Similar Documents

Publication Publication Date Title
EP1731569B1 (de) Folie aus einer transparenten Formmasse
WO2008071598A1 (de) Transparentes bauteil
EP1755890B1 (de) Mehrschichtfolie
EP1848773B1 (de) Folie auf basis eines polyamidblends
US20070104971A1 (en) Film with outer layer composed of a polyamide composition
WO2009156368A1 (de) Bauteil mit deckschicht aus einer pa613-formmasse
EP2057015B1 (de) Verbundteil aus einer folie und einem substrat auf basis eines amorphen polyamids
EP2101977B1 (de) Mehrschichtfolie und daraus hergestelltes verbundteil
WO2008025706A1 (de) Verbundteil aus einer mehrschichtfolie und einem substrat auf basis eines polyalkyl(meth)acrylats
WO2008025703A1 (de) Verbundteil aus einer mehrschichtfolie und einem substrat auf basis eines polycarbonats

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124077.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769217

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12989899

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2724526

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009769217

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107026302

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8390/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011515339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0914201

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101221