WO2009154209A1 - エチレン共重合体組成物、太陽電池素子封止用シート及び太陽電池モジュール - Google Patents

エチレン共重合体組成物、太陽電池素子封止用シート及び太陽電池モジュール Download PDF

Info

Publication number
WO2009154209A1
WO2009154209A1 PCT/JP2009/060965 JP2009060965W WO2009154209A1 WO 2009154209 A1 WO2009154209 A1 WO 2009154209A1 JP 2009060965 W JP2009060965 W JP 2009060965W WO 2009154209 A1 WO2009154209 A1 WO 2009154209A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer composition
solar cell
ethylene copolymer
sheet
mass
Prior art date
Application number
PCT/JP2009/060965
Other languages
English (en)
French (fr)
Inventor
孝一 西嶋
Original Assignee
三井・デュポンポリケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井・デュポンポリケミカル株式会社 filed Critical 三井・デュポンポリケミカル株式会社
Priority to KR1020117000707A priority Critical patent/KR101302040B1/ko
Priority to CN200980123199.4A priority patent/CN102066479B/zh
Priority to JP2009545420A priority patent/JP4619451B2/ja
Priority to DE112009001580.8T priority patent/DE112009001580B4/de
Priority to US12/999,015 priority patent/US8513357B2/en
Publication of WO2009154209A1 publication Critical patent/WO2009154209A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0876Neutralised polymers, i.e. ionomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09D123/0869Acids or derivatives thereof
    • C09D123/0876Neutralised polymers, i.e. ionomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an ethylene copolymer composition suitable for solar cell sealing for fixing a solar cell element in a solar cell module, and a solar cell element sealing sheet and solar cell module using the same.
  • Solar power generation directly converts solar energy into electrical energy using a silicon cell semiconductor (solar cell element). Since the function of the solar cell element used here is reduced when it comes into direct contact with the outside air, the solar cell element is sandwiched between sealing materials to prevent the entry of foreign matter and moisture etc. as well as buffering.
  • This sealing material is transparent and does not impede power generation by light (transparency), does not melt and break down due to heat (heat resistance), and adheres well to glass or a back sheet as a protective material. (Adhesiveness), various performances such as not causing significant deterioration or yellowing by sunlight (durability) are required, and various compounding formulations of each component are being studied to satisfy these.
  • Such a solar cell encapsulant includes a step of producing a sheet of an ethylene / vinyl acetate copolymer in which various additives are blended, and a step of encapsulating a solar cell element using the obtained sheet. It was necessary to employ a two-step process. In the production stage of this sheet, it is necessary to form at a low temperature so that the organic peroxide contained for crosslinking is not decomposed, so that the extrusion molding speed cannot be increased.
  • the sealing step of the solar cell element a step of temporarily bonding with a laminator over several minutes to ten and several minutes and a main bonding over several minutes to one hour at a high temperature at which the organic peroxide decomposes in the oven It was necessary to go through an adhesion process over a two-stage process consisting of For this reason, the production of the solar cell module not only takes time and labor, but has also been one of the factors that increase the production cost.
  • a sealing material constituting the solar cell module a press sheet formed by press molding using an ethylene copolymer composition in which an ethylene / methacrylic acid copolymer and an amino group-containing trimethoxysilane are blended at a predetermined ratio (For example, refer to Patent Documents 3 to 4).
  • the present invention has been made in view of the above situation. Under the above circumstances, an ethylene copolymer composition having excellent stability during sheet production, and a solar cell element that can be molded in a simpler and shorter time than conventional methods without requiring crosslinking with an organic peroxide or the like. There is a need for an ethylene copolymer composition suitable for use in various sealing applications. There is also a need for a solar cell element sealing sheet that has high adhesion to substrates such as glass substrates and backsheets, and that can be molded in a simpler and shorter time than conventional methods without requiring crosslinking with organic peroxides or the like. ing. Furthermore, there is a need for a solar cell module that can be manufactured in a simpler manner and in a shorter time than conventional ones, and has improved durability.
  • the composition in which an ethylene copolymer and a specific silane coupling agent are combined in a specific range is an excellent performance of the ethylene copolymer composition, in particular, transparency, heat resistance, adhesiveness, and flexibility.
  • the inventors have obtained knowledge that sheet formability is further stabilized while maintaining formability and durability, and have been achieved based on such knowledge.
  • the first invention relates to an ethylene copolymer containing a zinc ionomer containing a copolymer having a structural unit derived from ethylene and a structural unit derived from (meth) acrylic acid as a main component, and a dialkoxysilane having an amino group. It is a polymer composition.
  • the copolymer in the zinc ionomer may further have a structural unit derived from a monomer other than ethylene and (meth) acrylic acid (for example, (meth) acrylic acid ester).
  • the ethylene copolymer may be an at least one selected from the group consisting of 3-aminopropylalkyldialkoxysilane and N-2- (aminoethyl) -3-aminopropylalkyldialkoxysilane.
  • a coalescence composition is a preferred embodiment. In particular, the case where the alkyl moiety of dialkoxysilane has 1 to 3 carbon atoms is preferable.
  • an ethylene copolymer composition in which the dialkoxysilane is contained in an amount of 15 parts by mass or less with respect to 100 parts by mass of the zinc ionomer is a preferred embodiment. Further, the content of dialkoxysilane is preferably 0.03 to 12 parts by mass with respect to 100 parts by mass of zinc ionomer.
  • an ethylene copolymer composition further containing a weather resistance stabilizer selected from an ultraviolet absorber, a light stabilizer, and an antioxidant is a preferred embodiment.
  • the copolymer in the zinc ionomer further has a structural unit derived from a (meth) acrylic acid ester. Moreover, it is preferable that the content rate of the structural unit derived from the said (meth) acrylic acid is 1 mass% or more and 25 mass% or less with respect to the total mass of the said copolymer.
  • the degree of neutralization of the zinc ionomer is preferably 10% or more and 60% or less.
  • 2nd invention is the sheet
  • 3rd invention is a solar cell module provided with the sheet
  • an ethylene copolymer composition having excellent stability during sheet production, and can be molded in a simpler and shorter time than conventional methods without requiring crosslinking with an organic peroxide or the like.
  • an ethylene copolymer composition suitable for sealing solar cell elements can be provided.
  • a solar cell element sealing sheet that has high adhesion to a substrate such as a glass substrate or a back sheet, and can be molded in a simpler and shorter time than conventional methods without requiring crosslinking with an organic peroxide or the like.
  • ADVANTAGE OF THE INVENTION According to this invention, the solar cell module which can be produced simply and in a short time compared with the past, and the durability improved can be provided.
  • the ethylene copolymer composition of the present invention is also referred to as a copolymer containing a structural unit derived from ethylene and a structural unit derived from (meth) acrylic acid (hereinafter, referred to as “ethylene / (meth) acrylic acid copolymer”). )
  • ethylene / (meth) acrylic acid copolymer As a main component (hereinafter also referred to as “zinc ionomer in the present invention”) and a dialkoxysilane having an amino group.
  • the ethylene copolymer composition of the present invention is configured by blending a dialkoxysilane having an amino group in a proportion of 15 parts by mass or less with respect to 100 parts by mass of the zinc ionomer.
  • a zinc ionomer mainly composed of an ethylene / (meth) acrylic acid copolymer is used, it is excellent in transparency, heat resistance, adhesiveness, flexibility, moldability, durability, etc. While maintaining these properties high, generation of gel-like substances in a system containing a silane coupling agent is prevented, and stable sheet production is possible.
  • a crosslinking step using an organic peroxide or the like can be eliminated, the molding can be performed in a short time by a simpler method than before, and the solar cell element can be used for sealing.
  • Constant a copolymer as a main component means “a copolymer containing a structural unit derived from ethylene and a structural unit derived from (meth) acrylic acid” with respect to the total mass of the resin component in the zinc ionomer in the present invention. It means that the ratio occupied by is 80% by mass or more.
  • the neutralization degree (neutralization degree of acid groups in the ionomer) is, for example, 80% or less. However, it is desirable that the degree of neutralization is not too high in view of adhesiveness and the like. Specifically, the neutralization degree is preferably 60% or less, particularly preferably 30% or less. The lower limit of the degree of neutralization is preferably 10% from the viewpoint of adhesiveness.
  • the (meth) acrylic acid content is preferably 1% by mass or more based on the total mass of the ethylene / (meth) acrylic acid copolymer.
  • the acrylic acid content (copolymerization ratio) is 25% by mass or less, preferably 20% by mass or less, based on the total mass of the ethylene / (meth) acrylic acid copolymer.
  • the zinc ionomer in the present invention contains zinc ions as metal ions, it has superior weather resistance compared to ionomers containing other metal ions such as Na, and is combined with a specific silane coupling agent defined in the present invention. Occurrence of gel-like materials, foaming and the like in the sheet production process is suppressed, and stability during sheet production is improved.
  • the melting point of the zinc ionomer in the present invention is preferably 55 ° C. or higher, more preferably 60 ° C. or higher, and particularly preferably 70 ° C. or higher.
  • the melting point of the zinc ionomer is 55 ° C. or higher, the heat resistance is improved, and when used as a sealing material for a solar cell element, deformation due to a temperature rise during use of the solar cell is suppressed. Further, when the solar cell module is manufactured by the thermocompression bonding method, the sealing material does not flow more than necessary, and the generation of burrs is prevented.
  • the zinc ionomer in the present invention has a melt flow rate (MFR; the same applies hereinafter) at 1900 g / 10 min at 190 ° C. in accordance with JIS K7210-1999 in consideration of molding processability and mechanical strength. In particular, those having 5 to 50 g / 10 min are preferred.
  • MFR melt flow rate
  • the ethylene / (meth) acrylic acid copolymer in the zinc ionomer may be copolymerized with other monomers than ethylene and (meth) acrylic acid.
  • vinyl ester or (meth) acrylic acid ester is copolymerized as another monomer, an effect of imparting flexibility can be obtained.
  • (meth) acrylic acid esters are preferable.
  • the (meth) acrylic acid ester is preferably a lower alkyl ester of 2 to 5 carbon atoms of (meth) acrylic acid, more preferably an alkyl ester of 4 carbon atoms such as isobutyl or n-butyl of (meth) acrylic acid.
  • ester compounds such as methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, isooctyl acrylate, methyl methacrylate, isobutyl methacrylate, and dimethyl maleate.
  • acrylic acid or lower alkyl esters of methacrylic acid (2 to 5 carbon atoms) such as methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, n-butyl acrylate, methyl methacrylate, and isobutyl methacrylate. preferable.
  • n-butyl ester or isobutyl ester of acrylic acid or methacrylic acid is preferable.
  • alkyl ester of acrylic acid having 4 carbon atoms is preferable, and isobutyl ester is particularly preferable.
  • the copolymerization ratio of the other monomers can be appropriately selected within a range that does not impair the object of the present invention.
  • the ethylene / (meth) acrylic acid copolymer in the present invention can be obtained by radical copolymerization under high temperature and high pressure.
  • the zinc ionomer of the ethylene / (meth) acrylic acid copolymer can be obtained by reacting the ethylene / (meth) acrylic acid copolymer with zinc acetate or zinc oxide.
  • dialkoxysilane having an amino group examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (amino 3) such as N-2- (aminoethyl) -3-aminopropylalkyldialkoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane such as ethyl) -3-aminopropylmethyldiethoxysilane -Aminopropylalkyldialkoxysilane, N-phenyl-3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropylmethyldiethoxysilane and the like.
  • N-2- (aminoethyl) -3-aminopropylalkyldialkoxysilane (more preferably, the alkyl moiety has 1 to 3 carbon atoms) or 3-aminopropylalkyldialkoxysilane (more preferably alkyl moiety).
  • N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane N-2- (aminoethyl) -3-aminopropylmethyldiethoxysilane, -Aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane are preferred.
  • N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane is preferable because it is easily available on the market at a low cost.
  • dialkoxysilane as a silane coupling agent as in the invention, thickening and gelation are suppressed and stable in the sheet preparation process, and the adhesiveness is maintained and the glass or the back sheet is maintained. Bonding with the substrate can be performed stably.
  • the dialkoxysilane having an amino group is effective in improving the adhesion with a base material (such as glass or a back sheet) sandwiching a solar cell element, and from the viewpoint of stability such as suppression of generation of a gel-like material or the like during sheet molding.
  • a base material such as glass or a back sheet
  • stability such as suppression of generation of a gel-like material or the like during sheet molding.
  • From 100 parts by mass of the zinc ionomer in the present invention it is blended at a ratio of 15 parts by mass or less, preferably 0.03 to 12 parts by mass, particularly preferably 0.05 to 12 parts by mass.
  • the optimum range is adjusted within the above range because the generation state of the gel-like material changes depending on the heat history and the like.
  • the amount of dialkoxysilane having an amino group exceeds 15 parts by mass, normal molding processing is performed. With this method, good adhesiveness cannot be obtained, and sheet formation cannot be stably performed due to generation of gel-like materials.
  • the ethylene copolymer composition of the present invention may contain at least one weathering stabilizer such as an antioxidant, a light stabilizer, and an ultraviolet absorber, so that the sealing material based on ultraviolet rays in sunlight is used. This is effective in preventing deterioration.
  • at least one weathering stabilizer such as an antioxidant, a light stabilizer, and an ultraviolet absorber
  • antioxidants and phosphites can be preferably used.
  • the hindered phenol antioxidant include 2,6-di-t-butyl-p-cresol, 2-t-butyl-4-methoxyphenol, 3-t-butyl-4-methoxyphenol, 2 , 6-di-t-butyl-4-ethylphenol, 2,2'-methylenebis (4-methyl-6-t-butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4′-methylenebis (2,6-di-t-butylphenol), 2,2′-methylenebis [6- (1-methylcyclohexyl) -p-cresol], bis [3,3-bis (4-hydroxy) -3-tert-butylphenyl) butyric acid] glycol ester, 4,4′-butylidenebis (6-t-butyl-m-cresol), 2,2′-ethylidene
  • phosphite antioxidant examples include 3,5-di-tert-butyl-4-hydroxybenzyl phosphinate dimethyl ester, bis (3,5-di-tert-butyl-4-hydroxy). Examples thereof include ethyl benzylphosphonate and tris (2,4-di-t-butylphenyl) phosphanate.
  • hindered amine-based one can be preferably used as the light stabilizer.
  • hindered amine light stabilizers include 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2 , 6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexanoyloxy-2,2,6,6-tetramethylpiperidine, 4- (o- Chlorobenzoyloxy) -2,2,6,6-tetramethylpiperidine, 4- (phenoxyacetoxy) -2,2,6,6-tetramethylpiperidine, 1,3,8-triaza-7,7,9, 9-tetramethyl-2,4-dioxo-3-noctyl-spiro [4,5] decane, bis (2,2,6,6-tetramethyl-4-piperidyl
  • Examples of the ultraviolet absorber include 2-hydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2-carboxybenzophenone, 2-hydroxy-4-n.
  • Benzophenone series such as octoxybenzophenone, 2- (2′-hydroxy-3 ′, 5′-ditert-butylphenyl) benzotriazole, 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- Benzotriazoles such as (2′-hydroxy-5-tert-octylphenyl) benzotriazole, salicylic acid esters such as phenyl salicylate and p-octylphenyl salicylate can be used.
  • weathering stabilizers are effectively blended at a ratio of 5 parts by mass or less, particularly 0.1 to 3 parts by mass with respect to 100 parts by mass of the zinc ionomer in the present invention.
  • the ethylene copolymer composition of the present invention can be blended with any other additive as long as the purpose of use and the effects of the present invention are not impaired.
  • additives various known additives can be used.
  • the other additives include pigments, dyes, lubricants, anti-discoloring agents, anti-blocking agents, foaming agents, foaming aids, crosslinking agents, crosslinking aids, inorganic fillers, and the like.
  • a metal fatty acid salt such as cadmium or barium can be blended as the discoloration inhibitor.
  • pigments, dyes, inorganic fillers and the like can be blended.
  • examples thereof include white pigments such as titanium oxide and calcium carbonate, blue pigments such as ultramarine, black pigments such as carbon black, and glass beads and light diffusing agents.
  • the ethylene copolymer composition of the present invention is applied to a system in which an inorganic pigment such as titanium oxide is blended, it is preferable in that the effect of preventing a decrease in insulation resistance is excellent.
  • the preferred blending amount of these (especially inorganic pigments) is 100 parts by mass of zinc ionomer containing ethylene / (meth) acrylic acid copolymer as a main component.
  • the amount is preferably 100 parts by mass or less, more preferably 0.5 to 50 parts by mass, and particularly preferably 4 to 50 parts by mass.
  • the ethylene copolymer composition of the present invention can be used, for example, in the form of a sheet.
  • the sheet can be formed by a known method using a T-die extruder, a calendar forming machine, an inflation forming machine or the like.
  • a master batch In addition to supplying from the hopper to the extruder, when there are other compounding components, they are added by a master batch, and are laminated on the substrate by heating to 110 to 300 ° C. and melt extrusion into a sheet form, for example. be able to.
  • the thickness of the sheet is not particularly limited, but is usually about 0.2 to 1.2 mm.
  • a solar cell element is sandwiched between two protective substrates, and the solar cell element sealing sheet of the present invention, for example, a sheet formed as described above (hereinafter referred to as a seal), is provided between each protective substrate and the solar cell element.
  • a solar cell module can be manufactured by arranging the sheet with the material interposed therebetween and fixing by heating and / or pressure bonding. As such a solar cell module, various types can be exemplified. As an example, solar cell elements are encapsulated from both sides of the solar cell element, such as upper transparent protective material / encapsulant sheet / solar cell element / sealant sheet / lower protective material on the side where sunlight enters.
  • the lower protective material is disposed using the solar cell element sealing sheet of the present invention that does not contain an inorganic pigment as the sealing material on the side where the upper transparent protective material is disposed. It is preferable to use the solar cell element sealing sheet of the present invention containing an inorganic pigment as the side sealing material.
  • a solar cell element formed on the surface of a substrate such as glass is formed into an upper transparent protective material / sealing material sheet / solar cell element on the side where sunlight enters.
  • a solar cell element for example, a structure in which an encapsulant sheet and a lower protective material are formed on an amorphous solar cell element formed by sputtering or the like on glass or a fluororesin-based sheet can be used.
  • the encapsulant sheet made of the ethylene copolymer composition of the present invention has excellent moisture resistance.
  • thin-film solar cells tend to be particularly vulnerable to moisture because they use metal film electrodes deposited on a substrate. Therefore, it is one of the preferable aspects that the sealing material sheet of this invention is used for a thin film type solar cell.
  • solar cell elements examples include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, and III-V and II-VI compound semiconductor systems such as gallium-arsenic, copper-indium-selenium, and cadmium-tellurium.
  • silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon
  • III-V and II-VI compound semiconductor systems such as gallium-arsenic, copper-indium-selenium, and cadmium-tellurium.
  • the solar cell element sealing sheet (ethylene copolymer composition) of the present invention is particularly amorphous in terms of the durability of the bonded portion between two protective base materials (the upper transparent protective material and the lower protective material). It is useful for sealing solar cell elements such as amorphous silicon.
  • Examples of the upper protective material constituting the solar cell module include glass, acrylic resin, polycarbonate, polyester, fluorine-containing resin, and the like from the viewpoint of an incident surface on which sunlight is incident.
  • examples of the lower protective material include single or multilayer sheets such as metals and various thermoplastic resin films, for example, metals such as tin, aluminum, and stainless steel, inorganic materials such as glass, polyester, inorganic vapor-deposited polyester, A single layer or multilayer sheet of fluorine-containing resin or polyolefin can be exemplified.
  • the solar cell element sealing sheet of the present invention exhibits good adhesion to these upper protective material and / or lower protective material.
  • the solar cell module is manufactured by heating the solar cell element sealing sheet according to the present invention at a temperature at which the solar cell element sealing sheet is melted for a necessary time, and bringing the sealing material sheet into close contact with the solar cell element or the protective material. What is necessary is just to adhere.
  • Methodacrylic acid content indicates the copolymerization ratio of repeating structural units derived from methacrylic acid
  • isobutyl acrylate content indicates the copolymerization ratio of repeating structural units derived from isobutyl acrylate.
  • MFR is a mel flow rate value measured at 190 ° C. under a load of 2160 g in accordance with JIS K7210-1999.
  • Resin Resin: Resin (a): Zn ionomer of ethylene / methacrylic acid copolymer (methacrylic acid content: 15% by mass, MFR: 5 g / 10 min, neutralization degree: 23%) Resin (b): Zn ionomer of ethylene / methacrylic acid copolymer (methacrylic acid content: 8.5% by mass, MFR: 5.5 g / 10 min, degree of neutralization: 18%) Resin (c): ethylene / methacrylic acid copolymer (methacrylic acid content: 15% by mass, MFR: 25 g / 10 min) Resin (d): ethylene / methacrylic acid copolymer (methacrylic acid content: 20% by mass, MFR: 60 g / 10 min) Resin (e): Na ionomer of ethylene / methacrylic acid copolymer (methacrylic acid content: 15% by mass, MFR: 2.8 g / 10 min,
  • Silane coupling agent Silane coupling agent (a): N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane Silane coupling agent (b): N-2- (aminoethyl) -3-aminopropyltrimethoxysilane Silane coupling agent (c): 3-aminopropyltriethoxysilane Silane coupling agent (d): 3-glycidoxypropyltrimethoxysilane Silane coupling agent (e): 3-glycidoxypropylmethyl Diethoxysilane (3)
  • Antioxidant Pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (Irganox 1010, manufactured by Ciba Specialty Chemicals) (4) UV absorber: 2-hydroxy-4-n-octoxybenzophenone (Chimassorb 81, manufactured by Ciba Specialty
  • Base material The following two types were prepared for the substrate. (1) Blue glass: thickness 3 mm, size 7.5 cm ⁇ 12 cm (2) Backsheet: Laminated substrate of PVF (38 ⁇ m thick polyvinyl fluoride) / PET (75 ⁇ m thick polyethylene terephthalate) / PVF (38 ⁇ m thick polyvinyl fluoride) [PTD 75 (fluorine resin substrate) manufactured by EA Packaging ); PVF: Tedlar (registered trademark) manufactured by DuPont
  • Example 1 70 g of the resin (a) and 0.7 g of the silane coupling agent (a) were weighed and mixed in a lab plast mill kneader (a twin screw manufactured by Toyo Seiki Co., Ltd.) at 150 ° C. and a rotation speed of 30 rpm for 15 minutes. The change in torque [N ⁇ m] was observed. The state of the mixture was also observed. At this time, the silane coupling agent was added after the resin torque after charging the resin was stabilized.
  • a lab plast mill kneader a twin screw manufactured by Toyo Seiki Co., Ltd.
  • the obtained mixture was press-molded into a sheet having a thickness of 0.5 mm with a hot press (150 ° C.), and this sheet (sealing sheet) was bonded to blue glass with a laminator under the following conditions.
  • the obtained bonded product was cut into a width of 10 mm to obtain a sample, and the adhesive strength [N / 10 mm] between the blue glass and the sealing sheet was measured at a tensile speed of 50 mm / min using a tensile tester.
  • the measurement results are shown in Table 1 below.
  • 20N / 10mm or more is a tolerance
  • Bonding conditions Bonding at 150 ° C.
  • -Laminating device LM-50x50S made by NPC Sample configuration: Blue glass / sealing sheet
  • Example 2 In Example 1, except that the resin (a) was replaced with the resin (b), a bonded product was obtained in the same manner as in Example 1, and measurement was performed. The measurement results are shown in Table 1 below.
  • Example 1 Comparative Example 1 In Example 1, except that the silane coupling agent (a) was replaced with the silane coupling agent (b), a bonded product was obtained in the same manner as in Example 1, and measurement was performed. The measurement results are shown in Table 1 below.
  • Example 2 In Example 1, except that the silane coupling agent (a) was replaced with the silane coupling agent (c), a bonded product was obtained in the same manner as in Example 1, and measurement was performed. The measurement results are shown in Table 1 below.
  • Example 3 (Comparative Example 3) In Example 1, except that the silane coupling agent (a) was replaced with the silane coupling agent (d), a bonded product was obtained in the same manner as in Example 1, and measurement was performed. The measurement results are shown in Table 1 below.
  • Example 4 (Comparative Example 4) In Example 1, except that the silane coupling agent (a) was replaced with the silane coupling agent (e), a bonded product was obtained in the same manner as in Example 1, and measurement was performed. The measurement results are shown in Table 1 below.
  • Example 5 (Comparative Example 5) In Example 1, except that the resin (a) was replaced with the resin (b) and the silane coupling agent (a) was replaced with the silane coupling agent (c), the bonded product was obtained in the same manner as in Example 1. And obtained measurements. The measurement results are shown in Table 1 below.
  • Example 6 (Comparative Example 6) In Example 1, except that the resin (a) was replaced with the resin (c) and the silane coupling agent (a) was replaced with the silane coupling agent (c), the bonded product was obtained in the same manner as in Example 1. And obtained measurements. The measurement results are shown in Table 1 below.
  • Example 7 (Comparative Example 7) In Example 1, except that resin (a) was replaced with resin (c), a bonded material was obtained and measured in the same manner as Example 1. The measurement results are shown in Table 1 below.
  • Example 8 In Example 1, except that the resin (a) was replaced with the resin (d) and the silane coupling agent (a) was replaced with the silane coupling agent (c), the bonded product was obtained in the same manner as in Example 1. And obtained measurements. The measurement results are shown in Table 1 below.
  • Example 9 (Comparative Example 9) In Example 1, except having replaced resin (a) with resin (d), it carried out similarly to Example 1, and obtained the bonding thing, and measured it. The measurement results are shown in Table 1 below.
  • Example 10 Comparative Example 10
  • the resin (a) was replaced with the resin (e)
  • the silane coupling agent (a) was replaced with the silane coupling agent (c). And obtained measurements.
  • the measurement results are shown in Table 1 below.
  • Example 11 In Example 1, except that resin (a) was replaced with resin (e), a bonded material was obtained and measured in the same manner as Example 1. The measurement results are shown in Table 1 below.
  • Example 3 In Example 1, except that the addition amount of the silane coupling agent (a) was changed from 1 part to 43 parts, a bonded product was obtained in the same manner as in Example 1, and measurement was performed. The measurement results are shown in Table 1 below.
  • Example 4 100 kg of the resin (a) and 12 kg of the silane coupling agent (a) were weighed and mixed to obtain impregnated pellets.
  • L / D 33, screw diameter 44 mm
  • the state of the compound was stable, and no particularly noticeable gel-like product was observed on the strands.
  • pellets were obtained, and the obtained pellets were pressurized at 150 ° C. for 5 minutes (1.5 minutes at an initial pressure of 1 MPa and 3.5 minutes after being pressurized to 3.5 MPa) to prepare a 0.5 mm thick press sheet.
  • Example 5 5000 g of the resin (a), 10 g of the silane coupling agent (a), 1 g of the antioxidant, 10 g of the ultraviolet absorber, and 3.5 g of the light stabilizer were weighed and mixed to obtain impregnated pellets.
  • the obtained sealing sheet was bonded with the blue glass and the back sheet under the following conditions with a laminator to obtain a bonded product.
  • the pasted product is cut into a width of 10 mm to form a sample, and the adhesive strength between the back sheet / sealing sheet and the blue glass / sealing sheet [N / 10 mm] at a tensile speed of 50 mm / min using a tensile tester. was measured.
  • the adhesive strength between a back sheet / sealing sheet and between blue glass / sealing sheets 5 N / 10 mm or more and 20 N / 10 mm or more are allowable ranges, respectively.
  • the measurement results are shown in Table 2 below. ⁇ Bonding conditions> Bonding conditions: Bonding at 150 ° C.
  • -Laminating device LM-50x50S made by NPC Sample configuration: Blue glass / sealing sheet / back sheet
  • Example 7 In Example 5, except that the resin (a) was replaced with the resin (b), a sample was prepared and adhesive strength was measured and durability was evaluated in the same manner as in Example 5. The results of measurement evaluation are shown in Table 2 below.
  • Example 8 A sample was prepared in the same manner as in Example 5 except that the resin (a) was replaced with the resin (f) and the amount of the silane coupling agent (a) was changed from 10 g to 20 g in Example 5. The adhesive strength was measured and the durability was evaluated. The results of measurement evaluation are shown in Table 2 below.
  • Example 12 Comparative Example 12
  • Example 5 In Example 5, except that the resin (a) was replaced with the resin (c), a sample was prepared and adhesion strength was measured and durability was evaluated in the same manner as in Example 5. The results of measurement evaluation are shown in Table 2 below.
  • N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane is used as the dialkoxysilane having an amino group.
  • the other “dialkoxysilane having an amino group” is used in combination with an ethylene / (meth) acrylic acid copolymer. In this case, the same effect as in the above embodiment can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 エチレン由来の構成単位及び(メタ)アクリル酸由来の構成単位を有する共重合体を主成分に含む亜鉛アイオノマーと、アミノ基を有するジアルコキシシランとを含有するエチレン共重合体組成物を提供する。これにより、シート生産時の安定性を高めることが可能である。ジアルコキシシランの含有割合が、亜鉛アイオノマー100質量部に対して15質量部以下であることが好ましい。

Description

エチレン共重合体組成物、太陽電池素子封止用シート及び太陽電池モジュール
 本発明は、太陽電池モジュールにおける太陽電池素子を固定するための太陽電池封止用に好適なエチレン共重合体組成物、並びにこれを用いた太陽電池素子封止用シート及び太陽電池モジュールに関する。
 無尽蔵な自然エネルギーを利用し、二酸化炭素の削減やその他の環境問題の改善が図れる水力発電、風力発電、並びに太陽光発電などが脚光を浴びている。このうち、太陽光発電は、太陽電池モジュールの発電効率等の性能向上が著しい一方、価格の低下が進んだこと、国や自治体が住宅用太陽光発電システム導入促進事業を進めてきたことから、近年その普及が著しく進んでいる。
 太陽光発電は、シリコンセル半導体(太陽電池素子)を用いて太陽光エネルギーを直接電気エネルギーに変換する。ここで用いられている太陽電池素子は直接外気と接触するとその機能が低下するため、太陽電池素子を封止材で挟み、緩衝とともに、異物の混入や水分等の侵入を防いでいる。この封止材は、透明で光による発電を阻害しないこと(透明性)、熱によって溶け出して崩れる等がないこと(耐熱性)、保護材であるガラスやバックシートとの接着が良好であること(接着性)、太陽光によって著しい劣化や黄変を起こさないこと(耐久性)など、様々な性能が求められ、これらを満たすために各成分の配合処方が種々検討されている。例えば、透明性、耐熱性、接着性、柔軟性、成形性、耐久性などが配慮された代表的な処方として、エチレン・酢酸ビニル共重合体にパーオキサイド及びシランカップリング剤を配合したものを太陽電池封止材として使用したものが知られている(例えば、特許文献1参照)。
 このような太陽電池封止材は、各種の添加剤が配合されたエチレン・酢酸ビニル共重合体のシートを作製する工程と、得られたシートを用いて太陽電池素子を封止する工程を含む2段階の工程を採用する必要があった。このシートの作製段階では、架橋用に含まれた有機過酸化物が分解しないような低温度での成形が必要であるため、押出成形速度を大きくすることができない。また、太陽電池素子の封止段階では、ラミネーターにおいて数分ないし十数分かけて仮接着する工程と、オーブン内において有機過酸化物が分解する高温度で数十分ないし1時間かけて本接着する工程とからなる2段階の時間をかけての接着工程を経る必要があった。そのため、太陽電池モジュールの製造には、手間と時間を要するばかりか、その製造コストを上昇させる要因の一つとなっていた。
 かかる状況に鑑み、上記のような有機過酸化物の使用を必要とせず、したがって太陽電池モジュールの生産効率を顕著に改善することができ、しかも太陽電池用の封止材料として優れた特性を有する代替材料の検討が行なわれている。具体的には、不飽和カルボン酸含量が4質量%以上であって、融点が85℃以上のエチレン・不飽和カルボン酸共重合体もしくはそのアイオノマーを用いた太陽電池素子封止材料が提案されている(例えば、特許文献2参照)。
 また、太陽電池モジュールを構成する封止材料として、エチレン・メタクリル酸共重合体とアミノ基含有のトリメトキシシランとを所定の割合で配合したエチレン共重合体組成物を用いてプレス成形したプレスシートが開示されている(例えば、特許文献3~4参照)。
 その一方、太陽電池では、太陽電池素子の太陽光線が入射する側と反対側に各種のバックフィルムが使用されており、バックフィルムとの接着性の調整のため、封止材料中のシランカップリング剤の添加量を増やすことがある。
WO2006/095762A1 特開2000-186114号公報 特開2004-31445号公報 特開2001-144313号公報
 ところが、シランカップリング剤の添加量を増やそうとすると、シート生産時にシランカップリング剤同士のシラノール縮合が起きて、ゲル状物がシートに発生し、生産性が損なわれる懸念がある。上記したエチレン共重合体組成物では、これらのように安定してシート成形できる性能が充分ではない。
 本発明は、上記状況に鑑みなされたものである。上記状況のもと、シート生産時の安定性に優れたエチレン共重合体組成物、また、有機過酸化物等による架橋を要することなく、従来に比べ簡易かつ短時間に成形可能で太陽電池素子の封止用途に好適なエチレン共重合体組成物が必要とされている。
 また、ガラス基板等やバックシートなどの基材に対する接着性が高く、有機過酸化物等による架橋を要することなく従来に比べ簡易かつ短時間に成形できる太陽電池素子封止用シートが必要とされている。
 さらに、従来に比べ簡易・短時間での作製が可能で耐久性が向上した太陽電池モジュールが必要とされている。
 本発明は、エチレン系共重合体と特定のシランカップリング剤とを特定の範囲で組み合わせた構成は、エチレン共重合体組成物の優れた性能、特に透明性、耐熱性、接着性、柔軟性、成形性、耐久性などを維持しながら、シート成形性がより安定化するとの知見を得、かかる知見に基づいて達成されたものである。
 前記課題を達成するための具体的手段は、以下の通りである。即ち、
 第1の発明は、エチレンに由来する構成単位及び(メタ)アクリル酸に由来する構成単位を有する共重合体を主成分に含む亜鉛アイオノマーと、アミノ基を有するジアルコキシシランとを含有するエチレン共重合体組成物である。亜鉛アイオノマー中の前記共重合体は、エチレン及び(メタ)アクリル酸以外のモノマー(例えば(メタ)アクリル酸エステル)に由来する構成単位を更に有してもよい。
 前記第1の発明において、前記ジアルコキシシランが、3-アミノプロピルアルキルジアルコキシシラン及びN-2-(アミノエチル)-3-アミノプロピルアルキルジアルコキシシランから選ばれる少なくとも1種であるエチレン共重合体組成物が好ましい態様である。中でも、ジアルコキシシランのアルキル部位の炭素数が1~3である場合が好ましい。
 前記第1の発明において、前記ジアルコキシシランが、前記亜鉛アイオノマー100質量部に対して15質量部以下の範囲で含有されたエチレン共重合体組成物が好ましい態様である。更には、ジアルコキシシランの含有割合は、亜鉛アイオノマー100質量部に対して0.03~12質量部であることが好ましい。
 前記第1の発明において、更に、紫外線吸収剤、光安定剤、及び酸化防止剤から選ばれる耐候安定剤を含有するエチレン共重合体組成物が好ましい態様である。
 前記第1の発明においては、亜鉛アイオノマー中の共重合体が、更に、(メタ)アクリル酸エステルに由来する構成単位を有していることが好ましい。また、前記(メタ)アクリル酸由来の構成単位の含有比率が、前記共重合体の全質量に対して、1質量%以上25質量%以下であることが好ましい。
 前記亜鉛アイオノマーの中和度が、10%以上60%以下であることが好ましい。
 第2の発明は、前記第1の発明に係るエチレン共重合体組成物を用いて形成された太陽電池素子封止用シートである。
 第3の発明は、前記第2の発明に係る太陽電池素子封止用シートを備えた太陽電池モジュールである。
 本発明によれば、シート生産時の安定性に優れたエチレン共重合体組成物を提供すること、また、有機過酸化物等による架橋を要することなく、従来に比べ簡易かつ短時間に成形可能で太陽電池素子の封止用途に好適なエチレン共重合体組成物を提供することができる。また、
 本発明によれば、ガラス基板等やバックシートなどの基材に対する接着性が高く、有機過酸化物等による架橋を要することなく従来に比べ簡易かつ短時間に成形できる太陽電池素子封止用シートを提供することができる。さらに、
 本発明によれば、従来に比べ簡易・短時間での作製が可能で耐久性が向上した太陽電池モジュールを提供することができる。
 以下、本発明のエチレン共重合体組成物、並びにこれを用いた太陽電池素子封止用シート及び太陽電池モジュールについて詳細に説明する。
 本発明のエチレン共重合体組成物は、エチレン由来の構成単位及び(メタ)アクリル酸由来の構成単位を含む共重合体(以下、「エチレン・(メタ)アクリル酸系共重合体」ともいう。)を主成分に含む亜鉛アイオノマー(以下、「本発明における亜鉛アイオノマー」ともいう。)に、アミノ基を有するジアルコキシシランを配合して構成されたものである。好ましくは、本発明のエチレン共重合体組成物は、亜鉛アイオノマー100質量部に対して、アミノ基を有するジアルコキシシランを15質量部以下の割合で配合して構成される。
 本発明においては、エチレン・(メタ)アクリル酸系共重合体を主成分とする亜鉛アイオノマーを用いるので、透明性、耐熱性、接着性、柔軟性、成形性、耐久性などに優れており、これらの性質を高く保ちながら、シランカップリング剤を含む系でのゲル状物の発生などを防ぎ、安定したシート生産が可能である。また、有機過酸化物等を用いた架橋工程を不要にでき、従来以上に簡易な方法で短時間に成形することができると共に、太陽電池素子の封止用途に好適したものとなる。
 「共重合体を主成分に含む」とは、本発明における亜鉛アイオノマー中の樹脂成分の全質量に対して「エチレン由来の構成単位及び(メタ)アクリル酸由来の構成単位を含む共重合体」の占める割合が80質量%以上であることをいう。
 このようなアイオノマーを使用する利点の1つは、透明性、高温における貯蔵弾性率が高いことであり、その中和度(アイオノマー中の酸基の中和度)としては、例えば80%以下のものが望ましいが、接着性等を勘案するとあまり中和度の高すぎないことが望ましい。具体的には、前記中和度は、60%以下が好ましく、特に30%以下が好ましい。中和度の下限値は、接着性の点から10%が望ましい。
 本発明において、エチレン・(メタ)アクリル酸系共重合体を主成分に含む亜鉛アイオノマーを用いる場合、得られる共重合体組成物の透明性、ガラス等やバックシートなどの基材との接着性の観点から、(メタ)アクリル酸含量(共重合比)は、エチレン・(メタ)アクリル酸系共重合体の全質量に対し1質量%以上であることが好ましい。また、(メタ)アクリル酸含量が大きくなると、透明性に関してはより優れたものが得られるが、融点が低くなったり、吸湿性が増すなどの問題がでてくることがあるので、(メタ)アクリル酸含量(共重合比)は、エチレン・(メタ)アクリル酸系共重合体の全質量に対して25質量%以下、好ましくは20質量%以下であることが望ましい。
 本発明における亜鉛アイオノマーは、金属イオンとして亜鉛イオンを含むので、Na等の他の金属イオンを含むアイオノマーに比べ、耐候性に優れると共に、本発明に定義する特定のシランカップリング剤と組み合わせることによりシート作製過程でのゲル状物、発泡等の発生が抑制され、シート生産時の安定性が向上する。
 本発明における亜鉛アイオノマーの融点は、55℃以上が好ましく、より好ましくは60℃以上であり、特に好ましくは70℃以上である。亜鉛アイオノマーの融点は、55℃以上であると耐熱性が良好になり、太陽電池素子用の封止材料に用いた場合に、太陽電池使用時における温度上昇による変形が抑制される。また、太陽電池モジュールを加熱圧着法で製造するときには、該封止材料が必要以上に流れ出さず、バリの発生も防止される。
 本発明における亜鉛アイオノマーとしては、成形加工性、機械的強度などを考慮すると、JIS K7210-1999に準拠した190℃、2160g荷重でのメルトフローレート(MFR;以下同じ)が1~100g/10分であるものが好ましく、特には5~50g/10分のものが好ましい。
 本発明における亜鉛アイオノマー中のエチレン・(メタ)アクリル酸系共重合体は、エチレン及び(メタ)アクリル酸以外の他のモノマーが共重合されてもよい。例えば、他のモノマーとしてビニルエステルや(メタ)アクリル酸エステルなどが共重合されたときには、柔軟性付与の効果が得られる。中でも、(メタ)アクリル酸エステルは好ましい。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸の炭素数2~5の低級アルキルエステル、更に好ましくは(メタ)アクリル酸のイソブチルやn-ブチルなどの炭素数4のアルキルエステルが好ましい。具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸n-ブチル、アクリル酸イソオクチル、メタクリル酸メチル、メタクリル酸イソブチル、マレイン酸ジメチル等のエステル化合物が挙げられる。中でも、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸イソブチル、アクリル酸n-ブチル、メタクリル酸メチル、メタクリル酸イソブチルなどのアクリル酸又はメタクリル酸の低級アルキルエステル(炭素数2~5)が好ましい。更には、アクリル酸又はメタクリル酸のn-ブチルエステルやイソブチルエステルが好ましく、中でも、アクリル酸の炭素数4のアルキルエステルが好ましく、特にイソブチルエステルが好ましい。
 前記他のモノマーの共重合比は、本発明の目的を損なわない範囲で適宜選択することができる。
 本発明におけるエチレン・(メタ)アクリル酸系共重合体は、高温、高圧下のラジカル共重合により得ることができる。また、エチレン・(メタ)アクリル酸系共重合体の亜鉛アイオノマーは、エチレン・(メタ)アクリル酸系共重合体と酢酸亜鉛又は酸化亜鉛とを反応させることによって得ることができる。
 本発明のエチレン共重合体組成物に配合される「アミノ基を有するジアルコキシシラン」としては、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン等のN-2-(アミノエチル)-3-アミノプロピルアルキルジアルコキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン等の3-アミノプロピルアルキルジアルコキシシラン、N-フェニル-3-アミノプロプルメチルジメトキシシラン、N-フェニル-3-アミノプロプルメチルジエトキシシランなどを挙げることができる。
 これらの中でも、N-2-(アミノエチル)-3-アミノプロピルアルキルジアルコキシシラン(より好ましくはアルキル部位の炭素数が1~3)又は3-アミノプロピルアルキルジアルコキシシラン(より好ましくはアルキル部位の炭素数が1~3)が好ましく、中でも特に、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシランが好ましい。特に、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランは市場で安価に入手がしやすいので好ましい。
 エチレン共重合体組成物にシランカップリング剤としてトリアルコキシシランを用いた場合には、増粘が大きくゲル状物を生じ易く、保存中に接着性が比較的早く低下し始めるのに対し、本発明のようにシランカップリング剤としてジアルコキシシランを用いることにより、シート作製過程での増粘やゲル状化が抑えられて安定的になり、接着性を維持してガラス等やバックシートなどの基材との接着加工を安定して行なえる。
 アミノ基を有するジアルコキシシランは、太陽電池素子を挟む基材(ガラス等やバックシートなど)との接着性改良効果、及びシート成形時の例えばゲル状物等の発生抑制などの安定性の観点から、前記本発明における亜鉛アイオノマー100質量部に対し、15質量部以下、好ましくは0.03~12質量部、特に好ましくは0.05~12質量部の割合で配合される。最適範囲は熱履歴等によりゲル状物の発生状況が変わるため、前記範囲内で調整されるが、一般的にアミノ基を有するジアルコキシシランの量が15質量部を超えると、通常の成形加工方法では良好な接着性が得られなかったり、ゲル状物等の発生でシート成形を安定に行なえない。
 また、本発明のエチレン共重合体組成物には、酸化防止剤、光安定剤、紫外線吸収剤などの耐候安定剤の少なくとも一種を配合することが、太陽光線中の紫外線に基づく封止材の劣化を防ぐ点で効果的である。
 前記酸化防止剤として、例えば、各種ヒンダードフェノール系やホスファイト系のものが好適に使用することができる。ヒンダードフェノール系酸化防止剤の具体例としては、2,6-ジ-t-ブチル-p-クレゾール、2-t-ブチル-4-メトキシフェノール、3-t-ブチル-4-メトキシフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレンビス[6-(1-メチルシクロヘキシル)-p-クレゾール]、ビス[3,3-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、4,4’-ブチリデンビス(6-t-ブチル-m-クレゾール)、2,2’-エチリデンビス(4-sec-ブチル-6-t-ブチルフェノール)、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2,6-ジフェニル-4-オクタデシロキシフェノール、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4’-チオビス(6-t-ブチル-m-クレゾール)、トコフェロール、3,9-ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルチオ)-1,3,5-トリアジンなどを挙げることができる。
 また、前記ホスファイト系酸化防止剤の具体例としては、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスファネートジメチルエステル、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸エチル、トリス(2,4-ジ-t-ブチルフェニル)ホスファネートなどを挙げることができる。
 また、前記光安定剤としては、例えば、ヒンダードアミン系のものを好適に使用することができる。ヒンダードアミン系光安定剤として、例えば、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキサノイルオキシ-2,2,6,6-テトラメチルピペリジン、4-(o-クロロベンゾイルオキシ)-2,2,6,6-テトラメチルピペリジン、4-(フェノキシアセトキシ)-2,2,6,6-テトラメチルピペリジン、1,3,8-トリアザ-7,7,9,9-テトラメチル-2,4-ジオキソ-3-nオクチル-スピロ[4,5]デカン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)テレフタレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)ベンゼン-1,3,5-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-2-アセトキシプロパン-1,2,3-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-2-ヒドロキシプロパン-1,2,3-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)トリアジン-2,4,6-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジン)ホスファイト、トリス(2,2,6,6-テトラメチル-4-ピペリジル)ブタン-1,2,3-トリカルボキシレート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)プロパン-1,1,2,3-テトラカルボキシレート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)ブタン-1,2,3,4-テトラカルボキシレートなどを挙げることができる。
 前記紫外線吸収剤としては、例えば、2-ヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2-カルボキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノンなどのベンゾフェノン系、2-(2’-ヒドロキシ-3’,5’-ジ第3ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5-第3オクチルフェニル)ベンゾトリアゾールなどのベンゾトリアゾール系、フェニルサリチレート、p-オクチルフェニルサリチレートなどのサリチル酸エステル系のものなどが使用できる。
 これらの耐候安定剤は、本発明における亜鉛アイオノマー100質量部に対し、5質量部以下、特に0.1~3質量部の割合で配合するのが効果的である。
 本発明のエチレン共重合体組成物には、その使用目的や本発明の効果を損なわない範囲において、任意の他の添加剤を配合することができる。他の添加剤としては、公知の各種添加剤を使用することができる。
 前記他の添加剤の例としては、顔料、染料、滑剤、変色防止剤、ブロッキング防止剤、発泡剤、発泡助剤、架橋剤、架橋助剤、無機充填剤などを例示することができる。
 本発明のエチレン共重合体組成物が太陽電池封止材として用いられる場合、例えば、前記変色防止剤として、カドミウム、バリウム等の金属の脂肪酸塩を配合することができる。
 また、太陽光線が入射する側と反対側のいわゆるバックシート等の下部保護材が配される側の封止材として用いられる場合には、透明性は要求されないので、着色、発電効率向上などの目的で、顔料、染料、無機充填剤などを配合することができる。例えば、酸化チタン、炭酸カルシウムなどの白色顔料、ウルトラマリンなどの青色顔料、カーボンブラックのような黒色顔料などのほか、ガラスビーズや光拡散剤などを例示することができる。特に酸化チタンなどの無機顔料を配合する系に本発明のエチレン共重合体組成物を適用すると、絶縁抵抗低下の防止効果に優れる点で好ましい。顔料、染料、無機充填剤などを配合する場合、これら(特に無機顔料)の好適な配合量は、エチレン・(メタ)アクリル酸系共重合体を主成分に含む亜鉛アイオノマー100質量部に対し、100質量部以下が好ましく、より好ましくは0.5~50質量部であり、特に好ましくは4~50質量部である。
 本発明のエチレン共重合体組成物は、例えばシート状にして使用することができる。シートの成形は、T-ダイ押出機、カレンダー成形機、インフレーション成形機などを使用する公知の方法によって行なうことができる。例えば、エチレン・(メタ)アクリル酸系共重合体を主成分に含む亜鉛アイオノマー及びアミノ基を有するジアルコキシシランと、必要に応じて添加される無機顔料及び他の添加剤とを予めドライブレンドして押出機にそのホッパーから供給すると共に、他の配合成分があるときにはマスターバッチにより添加し、例えば110~300℃に加熱してシート状に溶融押出しすることにより基材の上にラミネートして得ることができる。シートの厚みは、特に制限されるものではないが、通常は0.2~1.2mm程度である。
 2枚の保護基材で太陽電池素子を挟み、各々の保護基材と太陽電池素子との間にそれぞれ本発明の太陽電池素子封止用シート、例えば上記のように成形したシート(以下、封止材シートともいう。)を介在させて配置し、加熱及び/又は圧着により固定することにより、太陽電池モジュールを製作することができる。このような太陽電池モジュールとしては、種々のタイプのものを例示することができる。その一例として、太陽光が入射する側の上部透明保護材/封止材シート/太陽電池素子/封止材用シート/下部保護材のように、太陽電池素子をその両側から封止材シート(本発明のエチレン共重合体組成物)で挟んだ積層構造の太陽電池モジュールを挙げることができる。このような構成の太陽電池モジュールにおいては、上部透明保護材が配される側の封止材として無機顔料を含まない本発明の太陽電池素子封止用シートを用い、下部保護材が配される側の封止材として無機顔料を含む本発明の太陽電池素子封止用シートを用いることが好ましい。
 また、別タイプの太陽電池モジュールとして、例えば、ガラスなどの基板の表面上に形成された太陽電池素子を、太陽光が入射する側の上部透明保護材/封止材シート/太陽電池素子が形成された基板/封止材用シート/下部保護材のように、基板上に形成された太陽電池素子の両側から封止材で挟む構成のもの、上部透明保護材の内周面上に形成された太陽電池素子、例えばガラスやフッ素樹脂系シート上にアモルファス太陽電池素子をスパッタリング等で作成したものの上に封止材シートと下部保護材を形成させるような構成のものなどを挙げることができる。
 本発明のエチレン共重合体組成物からなる封止材シートは耐湿性が優れる。一般に薄膜型太陽電池は基板上に蒸着した金属膜の電極を使用しているので特に水分に弱い傾向がある。したがって、本発明の封止材シートを薄膜型太陽電池に使用するのが好ましい態様の一つである。具体的には、上部透明保護材の内周面上に形成された太陽電池素子上に封止材シートと下部保護材を形成させるような構成の薄膜型太陽電池モジュールに適用するのが好ましい態様の一つである。
 太陽電池素子としては、例えば、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、ガリウム-砒素、銅-インジウム-セレン、カドミウム-テルルなどのIII-V族やII-VI族化合物半導体系など、各種太陽電池素子を用いることができる。本発明の太陽電池素子封止用シート(エチレン共重合体組成物)は、2枚の保護基材(前記上部透明保護材及び下部保護材)との接着部の耐久性の点で、特にアモルファス太陽電池素子、例えばアモルファスシリコンの封止に有用である。
 太陽電池モジュールを構成する上部保護材としては、太陽光が入射する入射面である観点から、ガラス、アクリル樹脂、ポリカーボネート、ポリエステル、フッ素含有樹脂などを例示することができる。また、下部保護材としては、金属や各種熱可塑性樹脂フィルムなどの単体もしくは多層のシートが挙げられ、例えば、錫、アルミ、ステンレススチールなどの金属、ガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィンなどの1層もしくは多層のシートを例示することができる。
 本発明の太陽電池素子封止用シートは、これらの上部保護材及び/又は下部保護材に対して良好な接着性を示す。
 太陽電池モジュールの製造は、本発明の太陽電池素子封止用シートが溶融するような温度で必要な時間をかけて加熱し、太陽電池素子や保護材に該封止材用シートを密着させて接着すればよい。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。
-1.原料-
 以下に示す実施例及び比較例の実施にあたり、下記の材料を準備した。なお、「メタクリル酸含量」はメタクリル酸由来の繰り返し構成単位の共重合比率を示し、「アクリル酸イソブチル含量」はアクリル酸イソブチル由来の繰り返し構成単位の共重合比率を示す。また、MFRは、JIS K7210-1999に準拠し、190℃、荷重2160gにて測定したメルフローレート値である。
(1)樹脂:
・樹脂(a):エチレン・メタクリル酸共重合体のZnアイオノマー
 (メタクリル酸含量:15質量%、MFR:5g/10分、中和度:23%)
・樹脂(b):エチレン・メタクリル酸共重合体のZnアイオノマー
 (メタクリル酸含量:8.5質量%、MFR:5.5g/10分、中和度:18%)
・樹脂(c):エチレン・メタクリル酸共重合体
 (メタクリル酸含量:15質量%、MFR:25g/10分)
・樹脂(d):エチレン・メタクリル酸共重合体
 (メタクリル酸含量:20質量%、MFR:60g/10分)
・樹脂(e):エチレン・メタクリル酸共重合体のNaアイオノマー
 (メタクリル酸含量:15質量%、MFR:2.8g/10分、中和度:30%)
・樹脂(f):エチレン・アクリル酸イソブチル・メタクリル酸共重合体のZnアイオノマー(アクリル酸イソブチル含量:10質量%、メタクリル酸含量:10質量%、MFR:9g/10分、中和度:35%)
(2)シランカップリング剤:
・シランカップリング剤(a):N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン
・シランカップリング剤(b):N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン
・シランカップリング剤(c):3-アミノプロピルトリエトキシシラン
・シランカップリング剤(d):3-グリシドキシプロピルトリメトキシシラン
・シランカップリング剤(e):3-グリシドキシプロピルメチルジエトキシシラン
(3)酸化防止剤:ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](Irganox 1010、チバ・スペシャルティ・ケミカルズ社製)
(4)紫外線吸収剤:2-ヒドロキシ-4-n-オクトキシベンゾフェノン(Chimassorb 81、チバ・スペシャルティ・ケミカルズ社製)
(5)光安定剤:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(Tinuvin 770DF、チバ・スペシャルティ・ケミカルズ社製)
-2.基材-
 基材には、下記の2種を用意した。
(1)青色ガラス:厚み3mm、サイズ7.5cm×12cm
(2)バックシート:PVF(38μm厚ポリフッ化ビニル)/PET(75μm厚ポリエチレンテレフタレート)/PVF(38μm厚ポリフッ化ビニル)の積層基材
 〔エムエーパッケージング(株)製のPTD75(フッ素樹脂基材);PVF:デュポン社製のテドラー(登録商標)〕
(実施例1)
 前記樹脂(a)70g及びシランカップリング剤(a)0.7gをそれぞれ秤量し、ラボプラストミル混練機(東洋精機社製 ツインスクリュー)にて、150℃、回転数30rpmで15分間混合し、トルク[N・m]の変化を観察した。また、混合物の状態についても観察した。このとき、シランカップリング剤は、樹脂投入後の樹脂トルクが安定してから添加した。
 トルク変化ΔN(%)は、トルクの最大値(Nmax)及び最小値(Nmin)から下記式により求めた。その結果を下記表1に示す。
   ΔN[%]=(Nmax/Nmin)×100 ・・・式
 次に、得られた混合物を加熱プレス(150℃)で0.5mm厚のシートにプレス成形し、このシート(封止シート)をラミネーターで下記条件にて青色ガラスと貼り合わせた。得られた貼合物を10mm幅に切り出してサンプルとし、引張試験機を用いて引張速度50mm/minにて、青色ガラス/封止シート間の接着強度[N/10mm]を測定した。この測定結果を下記表1に示す。なお、青色ガラス/封止シート間の接着強度は、20N/10mm以上が許容範囲である。
 <貼合条件>
・貼り合わせ条件:150℃×10分間にて貼り合わせ〔初圧1MPaで1.5分間プレス後、10MPaに加圧して3.5分間プレスし、23℃で5分間冷却〕
・貼り合わせ装置(ラミネーター):NPC製のLM-50x50S
・サンプル構成:青色ガラス/封止シート
(実施例2)
 実施例1において、樹脂(a)を樹脂(b)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例1)
 実施例1において、シランカップリング剤(a)をシランカップリング剤(b)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例2)
 実施例1において、シランカップリング剤(a)をシランカップリング剤(c)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例3)
 実施例1において、シランカップリング剤(a)をシランカップリング剤(d)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例4)
 実施例1において、シランカップリング剤(a)をシランカップリング剤(e)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例5)
 実施例1において、樹脂(a)を樹脂(b)に代え、シランカップリング剤(a)をシランカップリング剤(c)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例6)
 実施例1において、樹脂(a)を樹脂(c)に代え、シランカップリング剤(a)をシランカップリング剤(c)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例7)
 実施例1において、樹脂(a)を樹脂(c)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例8)
 実施例1において、樹脂(a)を樹脂(d)に代え、シランカップリング剤(a)をシランカップリング剤(c)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例9)
 実施例1において、樹脂(a)を樹脂(d)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例10)
 実施例1において、樹脂(a)を樹脂(e)に代え、シランカップリング剤(a)をシランカップリング剤(c)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(比較例11)
 実施例1において、樹脂(a)を樹脂(e)に代えたこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(実施例3)
 実施例1において、シランカップリング剤(a)の添加量を1部から43部に変更したこと以外は、実施例1と同様にして貼合物を得ると共に、測定を行なった。測定結果は、下記表1に示す。
(実施例4)
 前記樹脂(a)100kg及び前記シランカップリング剤(a)12kgをそれぞれ秤量し、混合して含浸ペレットとした。得られた含浸ペレットを、2軸押出機(L/D=33、スクリュー径44mm)を用いて150℃にて混練して、ペレットコンパウンドを得た。このとき、コンパウンドの状態は安定しており、ストランドにも特に目立ったゲル状物などの発生は観察されなかった。続いてペレットとし、得られたペレットを150℃で5分間(初圧1MPaで1.5分+10MPaに加圧後3.5分)加圧し、0.5mm厚のプレスシートを作成した。このプレスシートを用いて、ラミネーター(NPC製のLM-50x50S)で青色ガラスと貼り合わせた。得られた貼合物を10mm幅に切り出してサンプルとし、引張試験機を用いて引張速度50mm/minにて、青色ガラス/封止シート間の接着強度[N/10mm]を測定した。その結果、60N/10mm以上(シート切れ)の接着強度を示した。
(実施例5)
 前記樹脂(a)5000g、前記シランカップリング剤(a)10g、前記酸化防止剤1g、前記紫外線吸収剤10g、及び前記光安定剤3.5gをそれぞれ秤量し、混合して含浸ペレットとした。得られた含浸ペレットを、押出機(L/D=26、フルフライトスクリュー、圧縮比2.6)を用いて180℃にて混練し、均一な厚み0.4mmのシート(封止シート)を得た。得られた封止シートをラミネーターで下記条件にて青色ガラス及びバックシートと貼り合わせ、貼合物を得た。この貼合物を10mm幅に切り出してサンプルとし、引張試験機を用いて引張速度50mm/minにて、バックシート/封止シート間及び青色ガラス/封止シート間の接着強度[N/10mm]を測定した。なお、バックシート/封止シート間及び青色ガラス/封止シート間の接着強度は、それぞれ5N/10mm以上、20N/10mm以上が許容範囲である。測定結果は、下記表2に示す。
 <貼合条件>
・貼り合わせ条件:150℃×10分間にて貼り合わせ〔初圧1MPaで1.5分間プレス後、10MPaに加圧して3.5分間プレスし、23℃で5分間冷却〕
・貼り合わせ装置(ラミネーター):NPC製のLM-50x50S
・サンプル構成:青色ガラス/封止シート/バックシート
 また、得られたサンプルに対し、カラーコンピューターSM-T(スガ試験機(株)製)を用いて初期の黄色度YIを測定した。続いて、Ci-4000(アトラス社製)により、評価項目に合わせて下記の環境条件下でそれぞれエージングを行なった後、再び上記同様にYIを測定し、初期のYIと対比して黄変度を対比し、耐久性を評価した。エージングの前後でYIの変化が小さい方が耐久性に優れることを示す。測定・評価の結果は、下記表2に示す。
 <評価項目及び環境条件>
・耐熱性:85℃×1000時間
・耐湿性:85℃×90%RH×1000時間
・耐候性:83℃×180W/m×50%RH×2000時間
(実施例6)
 前記樹脂(a)4915g、実施例4で得た含浸ペレット85g、前記酸化防止剤1g、前記紫外線吸収剤10g、及び前記光安定剤3.5gをそれぞれ秤量し、混合した。これを押出機(L/D=26、フルフライトスクリュー、圧縮比2.6)を用いて180℃にて混練し、均一な厚み0.4mmのシートを得た。得られたシートを用いて、実施例5と同様に、サンプルを作成すると共に、接着強度の測定及び耐久性の評価を行なった。測定評価の結果は、下記表2に示す。
(実施例7)
 実施例5において、樹脂(a)を樹脂(b)に代えたこと以外は、実施例5と同様にして、サンプルを作成すると共に、接着強度の測定及び耐久性の評価を行なった。測定評価の結果は、下記表2に示す。
(実施例8)
 実施例5において、樹脂(a)を樹脂(f)に代え、シランカップリング剤(a)の量を10gから20gに代えたこと以外は、実施例5と同様にして、サンプルを作成すると共に、接着強度の測定及び耐久性の評価を行なった。測定評価の結果は、下記表2に示す。
(比較例12)
 実施例5において、樹脂(a)を樹脂(c)に代えたこと以外は、実施例5と同様にして、サンプルを作成すると共に、接着強度の測定及び耐久性の評価を行なった。測定評価の結果は、下記表2に示す。
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002
 前記表1に示すように、実施例では、シート成形用の樹脂組成物にゲル状態は見られず、シートの作製及び太陽電池モジュールの作製が安定的に行なえ、ガラスとの接着性も高い値を示した。また、実施例では前記表2に示すように、バックシートとの接着性も高く、また、黄変度を示すYI変化が小さく、熱・水分・光に対する耐久性も良好であった。
 これに対し、比較例では、混練中に大幅な粘度上昇が見られ、目視でゲル状態が認められたほか、ガラスと接着させた際の接着強度も劣っていた。なお、比較例では、混練加工時にゲル化したため、シート化することができなかった。
 上記の実施例では、アミノ基を有するジアルコキシシランとして、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランを用いた場合を中心に説明したが、これに限らず、他のN-2-(アミノエチル)-3-アミノプロピルアルキルジアルコキシシランを用いた場合も同様である。また更に、N-2-(アミノエチル)-3-アミノプロピルアルキルジアルコキシシラン以外の既述の他の「アミノ基を有するジアルコキシシラン」をエチレン・(メタ)アクリル酸系共重合体と併用した場合にも、前記実施例と同様の効果を得ることができる。
 日本出願2008-161494の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  エチレン由来の構成単位及び(メタ)アクリル酸由来の構成単位を有する共重合体を主成分に含む亜鉛アイオノマーと、アミノ基を有するジアルコキシシランとを含有するエチレン共重合体組成物。
  2.  前記ジアルコキシシランが、3-アミノプロピルアルキルジアルコキシシラン及びN-2-(アミノエチル)-3-アミノプロピルアルキルジアルコキシシランから選ばれる少なくとも1種であることを特徴とする請求項1に記載のエチレン共重合体組成物。
  3.  前記ジアルコキシシランの含有割合が、前記亜鉛アイオノマー100質量部に対して15質量部以下である請求項1に記載のエチレン共重合体組成物。
  4.  更に、紫外線吸収剤、光安定剤、及び酸化防止剤から選ばれる耐候安定剤を含有する請求項1に記載のエチレン共重合体組成物。
  5.  前記共重合体は、更に、(メタ)アクリル酸エステルに由来する構成単位を有する請求項1に記載のエチレン共重合体組成物。
  6.  前記亜鉛アイオノマーの中和度が、10%以上60%以下である請求項1に記載のエチレン共重合体組成物。
  7.  前記(メタ)アクリル酸由来の構成単位の含有比率が、前記共重合体の全質量に対して、1質量%以上25質量%以下である請求項1に記載のエチレン共重合体組成物。
  8.  前記ジアルコキシシランのアルキル部位の炭素数が1~3である請求項1に記載のエチレン共重合体組成物。
  9.  前記ジアルコキシシランの含有割合が、前記亜鉛アイオノマー100質量部に対して0.03~12質量部である請求項1に記載のエチレン共重合体組成物。
  10.  請求項1~請求項9のいずれか1項に記載のエチレン共重合体組成物を用いて形成された太陽電池素子封止用シート。
  11.  請求項10に記載の太陽電池素子封止用シートを備えた太陽電池モジュール。
PCT/JP2009/060965 2008-06-20 2009-06-16 エチレン共重合体組成物、太陽電池素子封止用シート及び太陽電池モジュール WO2009154209A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117000707A KR101302040B1 (ko) 2008-06-20 2009-06-16 에틸렌 공중합체 조성물, 태양전지 소자 밀봉용 시트 및 태양전지 모듈
CN200980123199.4A CN102066479B (zh) 2008-06-20 2009-06-16 乙烯共聚物组合物、太阳能电池元件密封用片材及太阳能电池模块
JP2009545420A JP4619451B2 (ja) 2008-06-20 2009-06-16 エチレン共重合体組成物、太陽電池素子封止用シート及び太陽電池モジュール
DE112009001580.8T DE112009001580B4 (de) 2008-06-20 2009-06-16 Ethylen-Copolymer-Zusammensetzung, Folie zum Versiegeln eines Solarzellenelements und ihre Verwendung
US12/999,015 US8513357B2 (en) 2008-06-20 2009-06-16 Ethylene copolymer composition, sheet for sealing a solar cell element, and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008161494 2008-06-20
JP2008-161494 2008-06-20

Publications (1)

Publication Number Publication Date
WO2009154209A1 true WO2009154209A1 (ja) 2009-12-23

Family

ID=41434126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060965 WO2009154209A1 (ja) 2008-06-20 2009-06-16 エチレン共重合体組成物、太陽電池素子封止用シート及び太陽電池モジュール

Country Status (6)

Country Link
US (1) US8513357B2 (ja)
JP (1) JP4619451B2 (ja)
KR (1) KR101302040B1 (ja)
CN (1) CN102066479B (ja)
DE (1) DE112009001580B4 (ja)
WO (1) WO2009154209A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040723A (ja) * 2009-07-15 2011-02-24 Sumitomo Chemical Co Ltd 太陽電池用封止材
WO2011142441A1 (ja) * 2010-05-13 2011-11-17 三井・デュポンポリケミカル株式会社 多層材料、太陽電池用封止材、安全(合わせ)ガラス用中間膜、太陽電池モジュール及び安全(合わせ)ガラス
JP2013028486A (ja) * 2011-07-28 2013-02-07 Achilles Corp 合わせガラス用中間膜
JP2015019069A (ja) * 2013-07-11 2015-01-29 エルエス産電株式会社Lsis Co., Ltd. 太陽電池モジュール及びその製造方法
JP2016504457A (ja) * 2012-12-24 2016-02-12 エルジー・ケム・リミテッド 封止材フィルム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113839B1 (ko) * 2013-07-29 2020-05-21 엘지전자 주식회사 후면 시트 및 이를 포함하는 태양 전지 모듈
US20150158986A1 (en) * 2013-12-06 2015-06-11 E.I. Du Pont De Nemours And Company Polymeric interlayer sheets and light weight laminates produced therefrom
US10538063B2 (en) 2016-05-09 2020-01-21 Kuraray America, Inc. Multilayer interlayer and glass laminate
EP3532290B1 (en) 2016-10-28 2022-01-05 Kuraray Europe GmbH Wedge-shaped multilayer interlayer and glass laminate
JP2020529500A (ja) 2017-07-31 2020-10-08 クラレ・アメリカ・インコーポレイテッド 接着特性が向上したアイオノマー中間層
US20190390051A1 (en) 2018-06-22 2019-12-26 Kuraray America, Inc. Reduction of edge yellowing of polyvinylacetal laminates
KR20210123347A (ko) 2019-02-04 2021-10-13 쿠라라이 유럽 게엠베하 허리케인 저항성 음향 글레이징
WO2023249853A1 (en) 2022-06-22 2023-12-28 Kuraray America, Inc. Ionomer resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190867A (ja) * 2005-01-07 2006-07-20 Du Pont Mitsui Polychem Co Ltd 太陽電池封止材
WO2008078801A1 (ja) * 2006-12-27 2008-07-03 Du Pont-Mitsui Polychemicals Co. Ltd. エチレン共重合体組成物、それからなる太陽電池素子封止用シート及びそれを用いた太陽電池モジュール
JP2009177089A (ja) * 2008-01-28 2009-08-06 Du Pont Mitsui Polychem Co Ltd 太陽電池モジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527619A (en) * 1993-04-26 1996-06-18 Rohm And Haas Company Tannin stain blocking coated substrate
KR950018342A (ko) * 1993-12-15 1995-07-22 윌리엄 이. 램버트 3세 백악질 기질에 대한 코팅제의 접착력을 개선시키는 혼합조성물
JP4565455B2 (ja) 1998-10-16 2010-10-20 三井・デュポンポリケミカル株式会社 太陽電池封止材料及び太陽電池モジュール
JP4233072B2 (ja) * 1999-11-11 2009-03-04 三井・デュポンポリケミカル株式会社 太陽電池封止材料及び太陽電池モジュール
JP4573493B2 (ja) 2002-06-21 2010-11-04 三井・デュポンポリケミカル株式会社 太陽電池モジュールの表層構造
JP2006036875A (ja) 2004-07-26 2006-02-09 Du Pont Mitsui Polychem Co Ltd 太陽電池封止用エチレン共重合体組成物及びそれを用いた太陽電池モジュール
US8053086B2 (en) 2005-03-08 2011-11-08 Du Pont-Mitsui Polychemicals Co., Ltd. Encapsulating material for solar cell
JP2008161494A (ja) 2006-12-28 2008-07-17 Care Life Japan Kk 使用者装着装置及び自動排泄処理装置
DE112009001575B4 (de) * 2008-06-26 2022-10-06 Dow-Mitsui Polychemicals Co.,Ltd. Verfahren zum Herstellen einer Schichtfolie für eine Solarzelle
CN102196909B (zh) * 2008-10-30 2014-03-12 三井-杜邦聚合化学株式会社 多层片材、太阳能电池元件用密封材料、及太阳能电池组件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190867A (ja) * 2005-01-07 2006-07-20 Du Pont Mitsui Polychem Co Ltd 太陽電池封止材
WO2008078801A1 (ja) * 2006-12-27 2008-07-03 Du Pont-Mitsui Polychemicals Co. Ltd. エチレン共重合体組成物、それからなる太陽電池素子封止用シート及びそれを用いた太陽電池モジュール
JP2009177089A (ja) * 2008-01-28 2009-08-06 Du Pont Mitsui Polychem Co Ltd 太陽電池モジュール

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040723A (ja) * 2009-07-15 2011-02-24 Sumitomo Chemical Co Ltd 太陽電池用封止材
WO2011142441A1 (ja) * 2010-05-13 2011-11-17 三井・デュポンポリケミカル株式会社 多層材料、太陽電池用封止材、安全(合わせ)ガラス用中間膜、太陽電池モジュール及び安全(合わせ)ガラス
JP4884575B2 (ja) * 2010-05-13 2012-02-29 三井・デュポンポリケミカル株式会社 多層材料、太陽電池用封止材、安全(合わせ)ガラス用中間膜、太陽電池モジュール及び安全(合わせ)ガラス
KR101319931B1 (ko) * 2010-05-13 2013-10-18 듀폰-미츠이 폴리케미칼 가부시키가이샤 다층 재료, 태양 전지용 봉지재, 안전(접합) 유리용 중간막, 태양 전지 모듈 및 안전(접합) 유리
JP2013028486A (ja) * 2011-07-28 2013-02-07 Achilles Corp 合わせガラス用中間膜
JP2016504457A (ja) * 2012-12-24 2016-02-12 エルジー・ケム・リミテッド 封止材フィルム
US9815924B2 (en) 2012-12-24 2017-11-14 Lg Chem, Ltd. Encapsulant film
JP2015019069A (ja) * 2013-07-11 2015-01-29 エルエス産電株式会社Lsis Co., Ltd. 太陽電池モジュール及びその製造方法

Also Published As

Publication number Publication date
DE112009001580T5 (de) 2011-06-16
JPWO2009154209A1 (ja) 2011-12-01
KR20110017914A (ko) 2011-02-22
US8513357B2 (en) 2013-08-20
CN102066479A (zh) 2011-05-18
CN102066479B (zh) 2015-03-18
DE112009001580B4 (de) 2016-02-04
JP4619451B2 (ja) 2011-01-26
KR101302040B1 (ko) 2013-09-05
US20110105681A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
JP4619451B2 (ja) エチレン共重合体組成物、太陽電池素子封止用シート及び太陽電池モジュール
JP5594959B2 (ja) 太陽電池素子封止材
JP5280443B2 (ja) 太陽電池用積層シート及びこれを用いた太陽電池モジュール
JP4783865B2 (ja) 多層シート、太陽電池素子用封止材、及び太陽電池モジュール
JP4884575B2 (ja) 多層材料、太陽電池用封止材、安全(合わせ)ガラス用中間膜、太陽電池モジュール及び安全(合わせ)ガラス
KR101260901B1 (ko) 가교성 에틸렌 공중합체 조성물, 그것으로 이루어지는 태양전지 소자 밀봉용 시트 및 이것을 사용한 태양전지 모듈
JPWO2007094445A1 (ja) 太陽電池封止材
WO2010095603A1 (ja) 太陽電池封止材用シート及び太陽電池モジュール
JP4762377B2 (ja) アモルファスシリコン太陽電池モジュール
JP2008120952A (ja) 架橋性エチレン共重合体組成物、該共重合体組成物からなる太陽電池素子封止用シートおよびこれを用いた太陽電池モジュール
JP6660671B2 (ja) 太陽電池用封止材及び太陽電池モジュール
JP2012004146A (ja) 太陽電池用封止膜及びこれを用いた太陽電池
EP2770541B1 (en) Solar cell sealing film and solar cell using same
JP2011111515A (ja) 太陽電池用封止膜、及び太陽電池
JP5567896B2 (ja) 太陽電池封止膜及びこれを用いた太陽電池
JP5687818B2 (ja) 太陽電池モジュール
WO2016043235A1 (ja) 太陽電池用封止材及び太陽電池モジュール
JP5909101B2 (ja) 太陽電池用封止膜形成用組成物
JP6163396B2 (ja) 太陽電池封止材用シート及び太陽電池モジュール
JP6117582B2 (ja) 太陽電池封止材用シート及び太陽電池モジュール
JP2017519087A (ja) 太陽電池モジュール用の単層バックシート
JP2020100552A (ja) 積層体及び合わせガラス
JP2016164228A (ja) 樹脂シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123199.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009545420

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12999015

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117000707

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 414/DELNP/2011

Country of ref document: IN

RET De translation (de og part 6b)

Ref document number: 112009001580

Country of ref document: DE

Date of ref document: 20110616

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09766657

Country of ref document: EP

Kind code of ref document: A1