WO2009153981A1 - 電界効果発電装置 - Google Patents

電界効果発電装置 Download PDF

Info

Publication number
WO2009153981A1
WO2009153981A1 PCT/JP2009/002744 JP2009002744W WO2009153981A1 WO 2009153981 A1 WO2009153981 A1 WO 2009153981A1 JP 2009002744 W JP2009002744 W JP 2009002744W WO 2009153981 A1 WO2009153981 A1 WO 2009153981A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrons
carrier
energy
electrode
power generation
Prior art date
Application number
PCT/JP2009/002744
Other languages
English (en)
French (fr)
Inventor
赤松則男
Original Assignee
Akamatsu Norio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akamatsu Norio filed Critical Akamatsu Norio
Priority to CN2009801225029A priority Critical patent/CN102217186A/zh
Priority to CA2737525A priority patent/CA2737525A1/en
Priority to US12/736,852 priority patent/US8232583B2/en
Priority to EP09766429.6A priority patent/EP2346156A4/en
Priority to KR1020107027842A priority patent/KR20120099808A/ko
Publication of WO2009153981A1 publication Critical patent/WO2009153981A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/008Alleged electric or magnetic perpetua mobilia

Definitions

  • the present invention relates to an apparatus for generating power using the effect of an electric field.
  • the energy obtained by burning fossils such as coal and oil is difficult to use for a very long time due to the deterioration of the global environment and the limited reserves.
  • the field effect power generation device of the present invention When the field effect power generation device of the present invention is used, it becomes possible to efficiently convert the kinetic energy of electrons accelerated by an electric field into electric energy. Therefore, if the field effect power generation device of the present invention is spread, the total amount of oxygen dioxide that causes global warming is suppressed, the amount of harmful waste is reduced, and coal, oil, gas, nuclear power, etc. Since the depletion problem associated with the fossil energy is also eliminated, there is a possibility that the energy required for long-term survival of civilization can be stably supplied by the field electron power generation device of the present invention.
  • the present invention uses the field effect to inject carriers from a carrier output material into a channel forming material, and the injected carriers are accelerated in an accelerating channel on the surface of the channel forming material.
  • the present invention relates to an apparatus that performs efficient power generation by pre-supplying the carrier, breaking through the potential barrier through the quantum mechanical tunnel effect, and collecting the carrier in a carrier absorption collector.
  • Coal power generation When fossil fuels such as coal and oil are burned, carbon dioxide is released into the atmosphere. The released carbon dioxide acts as a greenhouse gas, and global warming proceeds. However, civilization needs energy to maintain civilization. It is necessary to obtain electrical energy by power generation. Therefore, the problems of the conventional power generator are shown below.
  • Coal power generation (a) Coal is abundant on the earth, its price is low, and its supply system is stable. However, when coal is burned, a large amount of carbon dioxide is discharged into the atmosphere, and the discharged carbon dioxide acts as a greenhouse gas, causing global warming. (B) When coal is burned, a large amount of nitrogen oxides and sulfur oxides are discharged into the atmosphere, causing acid rain and adversely affecting the global environment.
  • All conventional power generation systems are devices that convert an existing energy source into electrical energy.
  • Energy conversion devices have various drawbacks, and considering the finite nature of fossil resources and the global environment, it is necessary to create a new sustainable energy source.
  • a civilized society almost all equipment and transportation devices consume a large amount of energy, so it is desirable to develop a power generation device with good efficiency.
  • materials and structures that do not increase the manufacturing cost of the power generation device.
  • the field effect power generation device of the present invention is different in principle from a conventional energy conversion device, and can generate true electric energy.
  • the field effect power generation of the present invention is a novel system that is fundamentally different from conventional power generation. Therefore, since it is necessary to use the term strictly, the definition of the term is described below.
  • FIG. 1 shows the normal state of the substance.
  • the carrier output substance 1 contains almost equal amounts of positively charged holes 49 and negatively charged electrons 50, which attract each other by electrostatic force according to Coulomb's law.
  • the positive charge or the negative charge is released from the output substance 1 and is hardly released to the outside.
  • a case will be considered in which a positive charge or a negative charge is released from a substance by applying some kind of treatment to a normal substance and moves to another substance.
  • FIG. 1 shows the normal state of the substance.
  • one substance is the carrier output substance 1 and the other substance is the electron absorption collector 26.
  • the carrier output substance 1 is the carrier output substance 1 and the electron absorption collector 26.
  • the channel forming material 2 is arranged in contact with the carrier output material 1 as an intermediate medium.
  • a potential barrier generating portion 20 exists between the carrier output material 1 and the channel forming material 2, Prevent carrier movement.
  • a potential barrier corresponding to the irreversible process generation portion exists between the channel forming material 2 and the vacuum, and prevents electrons from being emitted.
  • kinetic energy is given to the electrons.
  • kinetic energy is given to electrons using the action of an electric field. That is, an acceleration electrode is arranged to accelerate carriers, and a positive voltage is supplied from the power source to the acceleration electrode, so that a positive charge is accumulated in the electrode and a region where the negative voltage is applied to the positive electrode.
  • an electric field is generated between the electrodes in which electric charges are accumulated and the electrons are accelerated by the action of the generated electric field, the electrons are in a state of holding kinetic energy.
  • the electrons having kinetic energy become carriers and move inside the acceleration channel 9 shown in FIG.
  • the operation of the electron is divided into the case of performing injection and the case of performing emission.
  • the potential barrier When the potential barrier is high, the number of electrons passing through the potential barrier through the quantum mechanical tunnel effect is small. Therefore, in order to overcome the high potential barrier, it is necessary that the carriers existing inside the substance A have sufficiently large kinetic energy. However, the kinetic energy possessed by the ultra-hot-carrier is sufficiently large so that it is possible to overcome the high potential barrier. This phenomenon is called ultra-hot-carrier injection.
  • an ultra-hot-carrier In the field effect power generation device of the present invention, an ultra-hot-carrier is generated by effectively using an electric field, and is increased by ultra-hot-carrier injection. By passing through the potential barrier through the quantum mechanical tunnel effect, many carriers are accumulated in the substance B, and efficient power generation is performed by obtaining a high power generation voltage.
  • the acceleration channel 9 shown in FIG. 9 electrons injected from the carrier output material 1 to the channel forming material 2 move on the surface of the channel forming material 2. In the figure, the surface movement 23 of carriers indicates that electrons move on the surface of the channel forming material 2.
  • emission When an electron emits (emission) When an electron leaves a substance and is released into a vacuum, it is called emission. There are two types of emissions: thermal emission and cold emission.
  • thermal emission When heat energy is applied to a substance (cathode), electrons have a large kinetic energy, so that electrons are emitted in a vacuum even in a weak electric field due to a thermal emission phenomenon.
  • B When a substance having a very thin tip is prepared and an electric field is concentrated on the tip, electrons are emitted into a vacuum in a strong electric field due to a cold emission (or field emission) phenomenon. In order to emit electrons from a substance into a vacuum, it is necessary for the electrons to possess a sufficiently large kinetic energy.
  • a high generated voltage can be obtained by penetrating and passing through a high potential barrier by the quantum mechanical tunnel effect.
  • the electrons when the electrons have a sufficiently large kinetic energy, the electrons are released from the surface of the channel forming material 2 and are emitted into a vacuum. The movement of the electrons is indicated by the emission 22 arrow.
  • the electrons emitted in the vacuum are accelerated inside the acceleration channel 9, collide with the electron absorption collector 26, and are absorbed therein. Therefore, electrons become excessive in the electron absorption collector 26 and become a negative potential.
  • a positive charge remains in the carrier output substance 1 that has output electrons and becomes a positive potential.
  • the positive potential carrier output substance 1 is a power source positive voltage terminal and the negative potential electron absorption collector is a power source negative voltage terminal, electrical energy is generated at both ends.
  • the electrode that generates the electric field is disposed inside the insulator 8, there is almost no current leaking from the electrode, and thus efficient power generation is performed.
  • the generated electric energy is the result of the electrons being accelerated by the effect of the electric field to acquire kinetic energy. Therefore, the field effect power generation of the present invention is the creation of electrical energy, which is different from energy conversion, so there is no need to apply the energy conservation law.
  • Injection is the movement of carriers between two different materials that are electrically connected. When carriers penetrate through the potential barrier that exists at the boundary between two different materials through the quantum mechanical tunnel effect, injection is performed. Since the two different materials are both conductive materials or semiconductor materials, the potential barrier existing at the boundary between the two different materials is relatively low, so that the kinetic energy possessed by the carrier is relatively low. It is possible to perform injection even in the case of a small size.
  • the conductive material exists in a vacuum, electrons are emitted from the conductive material into the vacuum, and the emitted electrons are collected by the collector, thereby realizing power generation. In this case, it is relatively easy to collect electrons that are emitted in a vacuum and fly to the collector.
  • Electrons are accelerated in the acceleration channel 9 on the approximately two-dimensional surface of the P-type semiconductor, and a large kinetic energy can be given to the electrons.
  • [Power generation condition 1] Carrier injection is performed between two different substances.
  • [Power generation condition 2] Let the electrons perform sliding & emission.
  • [Power generation condition 3] Electrons in the substance are emitted in vacuum.
  • [Power generation condition 4] Electrons emitted in vacuum are collected in the collector.
  • Power generation condition 5 A positive charge and a negative charge move to the energy storage.
  • An electrical load is connected to both ends of the energy accumulator, and when a current flows through the electrical load, the positive charge and the negative charge disappear.
  • pre-processing described below is performed on electrons before emission.
  • An electrode is used to move the carrier, and a voltage is applied to the electrode. Different electrodes are used corresponding to each state of electrons. There are five types of electrodes as shown below. (1) Injection electrode (2) Sliding electrode (3) Tunneling electrode (4) Emission electrode (5) Accelerating electrode Details of these five types of electrodes will be described below.
  • Injection electrode There are two types of conductive or semiconductor substances, which are called substance A and substance B. Substance A and substance B are placed in electrical contact with each other. Consider the case where carriers are injected (injected) from substance A to substance B by the effect of an electric field. An insulator is disposed on the upper surface of the substance B, and an injection electrode is disposed inside the insulator. Since the carrier is injected from the substance A, the substance A is called a carrier output substance. A positive charge is supplied from the power source to the injection electrode, and a negative charge is supplied to the carrier output substance. An electric field is generated between the injection electrode supplied with the positive charge and the carrier output material supplied with the negative charge. Carriers are injected from the carrier output substance to the substance B by the effect of the generated electric field.
  • the injected carrier moves in a channel formed on the surface of the substance B. Since a channel is formed on the surface of the substance B, the substance B is called a channel forming substance.
  • anti-carrier injection from the channel forming material to the carrier output material is performed by the reaction.
  • the carrier is an electron
  • the anti-carrier is a hole
  • the reaction causes a hole injection from the channel forming substance to the carrier output substance. Is done.
  • the anti-carrier is an electron
  • the reaction causes the reaction from the channel forming substance to the carrier output substance.
  • Electronic injection is performed. Since the injection electrode is disposed in the insulator, the impedance between the carrier output material and the channel forming material and the injection electrode is kept high. Therefore, even if a voltage is applied from the power source to the injection electrode, the current flowing out from the power source is very small, so the power supplied from the power source is also very small, and the power generation efficiency is improved, so that the practicality is satisfied. .
  • An insulator is disposed on the surface of the channel forming material.
  • An acceleration channel is formed near the boundary between the surface of the channel forming material and the insulator.
  • a sliding electrode is used to move electrons in the acceleration channel in a sliding manner.
  • the sliding electrode is disposed in the insulator.
  • Tunneling electrode There is an accelerating channel on the surface of the channel forming material, and an irreversible process generating part is located at the end of the accelerating channel. That is, an insulator is disposed at the end of the channel forming material. When the insulator disposed is very thin, it is called an insulating thin film. The insulating thin film acts as an irreversible process generating part on the carrier, and the irreversible process generating part has a potential barrier. If the insulator is thick, carriers cannot pass across the potential barrier. However, considering quantum mechanics, carriers have wave properties, and when the insulator is a thin film, there are carriers through which the carriers pass through the potential barrier by the tunnel effect.
  • the hot carrier passes through the potential barrier by the quantum mechanical tunnel effect.
  • a tunneling electrode is used to generate hot carriers. Since an insulator such as silicon dioxide is disposed between the tunnel electrode and the channel forming material, the current flowing out from the tunnel electrode is extremely small. Therefore, very little power is input from the power source in order for the tunnel electrode to generate an electric field. Charges stored in the tunnel electrode and carriers in the channel are accelerated by the attractive force based on Coulomb's law. Therefore, carriers pass through the potential barrier by the quantum mechanical tunnel effect. The carriers that have passed through the potential barrier are finally collected by the carrier absorption collector. Since the carriers collected by the carrier absorption collector cannot return to the original state, the process of passing through the potential barrier by the tunnel effect is irreversible. New energy is generated by the carrier passing through an irreversible process.
  • Emission electrode When the insulator disposed at the end of the channel forming material is a thin film, carriers pass through the potential barrier based on the quantum mechanical tunnel effect by the action of the tunnel electrode. However, different phenomena occur when the insulator disposed at the end of the channel forming material is vacuum. If the carriers are electrons and there is a vacuum at the end of the channel-forming material, an emission electrode is used to emit electrons into the vacuum. The vacuum at the end of the channel-forming material becomes a nonreciprocal process generator, and there is a potential barrier there. This potential barrier corresponds to the work function of the material. When the kinetic energy possessed by the electron is small, it cannot pass through the potential barrier at the boundary between the channel forming material and the vacuum.
  • the wavelength of the electron exhibiting wave characteristics is sufficiently short, and a potential barrier at the boundary between the channel forming material and the vacuum is formed by the quantum mechanical tunnel effect. It is possible to pass through.
  • An electric field is generated by the positive charges accumulated in the sliding electrode, and electrons are accelerated in the channel by the electric field effect, so that the electrons have sufficiently large kinetic energy.
  • Electrons possessing a sufficiently large kinetic energy are emitted into the vacuum from the edge of the channel forming material.
  • a high resistance state is maintained between the emission electrode and the channel forming material by disposing a material having good insulating properties such as silicon dioxide.
  • Accelerating electrode An electric field is generated by the positive charges stored in the emission electrode, and electrons are emitted from the channel forming material by the effect of the electric field.
  • the emitted electrons fly in the direction of the electron absorption collector.
  • the flying electrons In the initial state, since no charge is accumulated in the electron absorption collector, the flying electrons easily reach the electron absorption collector and are absorbed therein.
  • a repulsive force based on Coulomb's law acts between the accumulated negative charge and the negative charge held by the flying electrons. Therefore, the electrons receive a repulsive force from the electron absorption collector and cannot approach the electron absorption collector.
  • an accelerating electrode is used.
  • the accelerating electrode is disposed in front of the flight direction of electrons and accumulates positive charges therein. By adjusting the position of the acceleration electrode and the position of the insulator, the flying electrons cannot reach the acceleration electrode. Flying electrons are accelerated by the positive charge supplied from the power source to the accelerating electrode acting on the negative charge held by the electrons.
  • the electron absorption collector that collects the electrons accumulates negative charges, which can be used as electrical energy.
  • the electron absorption collector is disposed inside the insulator in order to prevent the negative charge accumulated in the electron absorption collector from leaking.
  • Patent Document 1 Japanese Patent No. 3449623 (Title of Invention: Solar Energy Converter, Inventor: Norio Akamatsu, Same as the Inventor)
  • power generation is performed using sunlight, which is an energy source outside the apparatus. That is, in Patent Document 1, sunlight is received by a substance and converted into thermal energy, and thermal electrons are emitted from the heated substance, and thermal energy is converted into electrical energy using this thermal electron emission.
  • a power generation method is described.
  • Patent Document 1 merely converts external energy into electric energy, and the method of Patent Document 1 does not conform to the above-mentioned [Definition of power generation]. Is essentially different.
  • the solar energy conversion device of Patent Document 1 cannot be used at night or rainy weather when sunlight is almost lost.
  • the field effect power generator of the present invention does not require external energy. That is, since the kinetic energy obtained by accelerating electrons in the field effect power generator of the present invention is converted into electric energy, it can be said to be a true power generator.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-189646 (Invention name: solar energy conversion device and solar energy conversion system, inventor: Norio Akamatsu, same as the present inventor) Also in this patent document 2, it produces electric power using sunlight which is an energy source outside the apparatus. That is, Patent Document 2 relates to an energy conversion device that converts sunlight into electrical energy and a system thereof. In conclusion, since Patent Document 2 does not meet the above-mentioned [Definition of power generation], it is described only with respect to an energy conversion device, which is essentially different from the present invention. There is a drawback that the solar energy conversion device of Patent Document 2 cannot be used at night or in the rain when the sunlight is almost lost. However, the field effect power generator of the present invention does not require external energy. That is, since the kinetic energy obtained by accelerating electrons in the field effect power generator of the present invention is converted into electric energy, it can be said to be a true power generator.
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-250285 (Title of Invention: Thermoelectric generator, thermoelectric generator system, one of the inventors is the same as the inventor of the present invention (Norio Akamatsu))
  • Patent Document 3 a large amount of heat energy is input in order to extract electric energy. That is, in these inventions, only an apparatus capable of converting thermal energy into electrical energy is proposed.
  • Patent Document 3 describes an energy conversion device that converts thermal energy into electrical energy. In Patent Document 3, power generation is performed using a thermal energy source outside the apparatus.
  • Patent Document 3 does not meet the above-mentioned [Definition of power generation], it is described only with respect to an energy conversion device, which is essentially different from the present invention.
  • thermoelectric generator of Patent Document 3 can be used to obtain harmful effects such as generation of carbon dioxide and global warming are unavoidable.
  • the field effect power generator of the present invention does not require any external energy. That is, since the kinetic energy obtained by accelerating electrons in the field effect power generator of the present invention is converted into electric energy, it can be said to be a true power generator. In addition, since it turned out that it was very difficult to implement
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2003-258326 (Inventor: Norio Akamatsu, same as the present inventor)
  • Patent Document 4 describes an energy conversion device that converts thermal energy into electrical energy.
  • power generation is performed using a thermal energy source outside the apparatus.
  • Thermal energy can be obtained by burning fossil fuels such as coal and petroleum.
  • the thermoelectric generator of Patent Document 4 when used, harmful effects such as the generation of carbon dioxide and the progress of global warming are unavoidable.
  • the field effect power generator of the present invention does not require any external energy. That is, since the kinetic energy obtained by accelerating electrons in the field effect power generator of the present invention is converted into electric energy, it can be said to be a true power generator.
  • Patent Document 5 JP 2004-140288 A (Inventor: Norio Akamatsu, same as the present inventor)
  • Patent Document 5 describes an energy conversion device that converts thermal energy into electrical energy.
  • power generation is performed using a thermal energy source outside the apparatus.
  • Thermal energy can be obtained by burning fossil fuels such as coal and petroleum.
  • the thermoelectric generator of Patent Document 5 when used, harmful effects such as the generation of carbon dioxide and the progress of global warming are unavoidable.
  • the field effect power generator of the present invention does not require any external energy. That is, since the kinetic energy obtained by accelerating electrons in the field effect power generator of the present invention is converted into electric energy, it can be said to be a true power generator.
  • Patent Document 6 JP 49-67594A, (Inventor: Toshio Hosokawa, 1974)
  • Patent Document 6 a large amount of thermal energy is input in order to extract electric energy. That is, in these inventions, only an apparatus capable of converting thermal energy into electrical energy is proposed. Strictly speaking, the present invention describes an energy conversion device capable of converting thermal energy into electrical energy. However, in the present invention, a true electrical energy generator is proposed instead of an energy converter.
  • power generation is performed using a thermal energy source outside the apparatus.
  • Thermal energy can be obtained by burning fossil fuels such as coal and petroleum.
  • thermoelectric generator of Patent Document 6 when used, adverse effects such as generation of carbon dioxide and global warming are unavoidable. That is, the power generation device of the present invention is not a simple energy conversion device, and can perform true power generation.
  • external energy is not used at all, carriers are injected by the effect of an electric field, and further emission is performed, so that electric energy is generated inside the apparatus and the obtained electric energy is used for an electric load. Therefore, the conventional invention apparatus and the power generation apparatus of the present invention are fundamentally different.
  • Patent Document 7 Japanese Patent Publication No. 11-510307
  • the invention of Patent Document 7 discloses a field electron emission material and a field electron emission device.
  • the field electron emission device is a device that uses the emitted electron itself, such as a discharge device, an electron gun, a display, etc., and the technical idea of using it for power generation is completely described.
  • the present invention does not violate the law of conservation of energy. If the energy conservation law is described strictly, it should be called “energy conservation law concerning energy conversion”. In other words, when energy conversion is performed, before and after the energy is converted into new energy, including the loss, the total increase or decrease in energy is not before or after the conversion. The “energy conservation law” is strictly established.
  • the “energy conservation law in energy conversion” means that when energy that has already been generated is converted into another form of energy, the total amount of energy before and after the conversion is stored.
  • the energy conservation law is not applied when creating new energy using the wave nature and mobility of electrons as in the present invention.
  • the “energy conservation law in energy conversion” does not apply.
  • the “energy conservation law for energy conversion” cannot be applied to the energy generated inside the sun or the energy generated by nuclear fusion.
  • the present inventor has proposed a method shown in the following patent document as a power generator capable of obtaining electrical energy even when almost no energy is supplied from the outside.
  • Patent Document 8 WO 2007/116524 (PCT / JP2006 / 307607) (Title of Invention: Field Emission Power Generation Device, Inventor: Norio Akamatsu, Same as the Inventor)
  • Patent Document 9 WO2007 / 122709 (PCT / JP2006 / 308277) (Title of Invention: Linear Acceleration Generator, Inventor: Norio Akamatsu, Same as the Inventor)
  • Patent Document 10 WO2007 / 135717 (PCT / JP2006 / 310026) (Invention name: field emission power generation device, inventor: Norio Akamatsu, same as the present inventor)
  • Patent Document 11 PCT / JP2006 / 317778 (Title of Invention: Electronic Power Generation Device, Inventor: Norio Akamatsu, Same as the Inventor)
  • the inventor of the present invention makes further improvements in order to overcome these drawbacks, and proposes the power generation apparatus of the present invention.
  • [Patent Document 8], [Patent Document 9], [Patent Document 10] and [Patent Document 11], [Power generation condition 1], [Power generation condition 2] and [Power generation condition 5] described above are used. Not. That is, [Power generation condition 1] Carrier injection is performed between two different substances. [Power generation condition 2] Let the electrons perform sliding & emission. [Power generation condition 5] A positive charge and a negative charge move to the energy storage.
  • the amount of emitted electrons is usually small. Even when electrons leave the material and are released into a vacuum, the electrons need to have a sufficiently large kinetic energy. Electrons move on the surface of the material while accelerating and acquiring sufficient kinetic energy, so that the electrostatic force according to Coulomb's law is overcome and emitted out of the material. If the injected electrons are accelerated on the surface of the material and sufficient kinetic energy is obtained, and then electrons are emitted from the material, the energy required for the material is reduced and the efficiency is increased. Sliding emission refers to the fact that electrons move while accelerating on the surface of a material and then emitted into a vacuum.
  • the electrons injected into the channel forming material 2 receive acceleration force and Sliding emission is performed.
  • the electrons perform sliding emission, the electrons acquire kinetic energy, after which the electrons are completely detached from the material, and the electrons are emitted into the vacuum.
  • the electrode since the electrode is in an insulator, almost no current flows out of the electrode, so that the energy loss is almost zero. Therefore, in the present invention, it is possible to perform power generation with good efficiency by using electronic sliding emission.
  • the power generation efficiency is not good due to the following drawbacks. That is, in power generation using electrons, the electrons in the carrier output substance are realized by moving to the electron collection collector by emission. There are two types of electron emissions: (1) Abrupt emission (2) Increase the kinetic energy held by the electron just before emission. That is, energy is pre-supplied to electrons.
  • the kinetic energy possessed by the electrons was not increased by pre-supplying the electrons immediately before the emission. That is, no treatment was performed on the electrons during the period in which the electrons were present inside the carrier output substance. Accordingly, since electrons in the substance suddenly emit due to an electric field, the number of electrons that emit is extremely small, and practical power generation cannot be performed.
  • the kinetic energy possessed by the electrons is increased by pre-supplying the electrons immediately before the emission, so that the number of electrons to be emitted is increased. Power generation output increases and practicality increases.
  • a channel forming material is arranged between the carrier output material and the electron collecting collector, and it is utilized that electrons are easily injected from the carrier output material into the channel forming material by the action of the injection electrode.
  • a sliding electrode is arranged to increase the kinetic energy possessed by the electrons inside the channel forming material, and the electrons pass through the potential barrier by the quantum mechanical tunnel effect by the action of the tunnel electrode. Electrons are emitted from the substance into the vacuum by the action of the emission electrode.
  • an energy storage device is introduced, and a pair of electrons and holes is formed in the energy storage device, so that almost no energy is supplied from an external power source. Therefore, when power generation is performed using the apparatus of the present invention, energy loss is almost eliminated and efficient power generation can be performed. Furthermore, in order to improve the power generation efficiency, an acceleration channel is set in the present invention. In the above acceleration channel, a carrier acceleration device is applied to accelerate the carrier. Accelerated carriers break through the potential barrier and create usable electrical energy by going through an irreversible process, but in the past patent literature, before crossing the potential barrier, carriers in the acceleration channel Since no method for accelerating the power generation has been proposed, there is a drawback that the power generation efficiency cannot be improved.
  • Patent Literature 1 In [Patent Literature 1], [Patent Literature 2], [Patent Literature 3], [Patent Literature 4], [Patent Literature 5] and [Patent Literature 6], fossil such as coal / petroleum is used to generate power. Use external energy such as fuel and sunlight. Power generation using external energy cannot address the problem of fossil fuel depletion and global environmental destruction. Furthermore, in the case of using solar energy, power generation cannot be performed at night or in the rain, so that it cannot serve as a main source of energy supply. In the field effect power generation of the present invention, power generation is realized without using an external energy source.
  • [Patent Document 7], [Patent Document 8], [Patent Document 9] and [Patent Document 10] the present inventor proposes power generation without using an external energy source.
  • [Patent Document 7], [Patent Document 8], [Patent Document 9], and [Patent Document 10] are methods in which electrons in a substance are directly emitted into a vacuum using an electric field. That is, if it is compared with the takeoff of an airplane and a rocket described above, the electron emission method proposed in [Patent Document 7], [Patent Document 8], [Patent Document 9] and [Patent Document 10] is a rocket. Corresponding to takeoff.
  • the method of emitting electrons from the substances described in the past patent documents suddenly emits electrons, and is called abrupt emission. That is, when electrons are emitted based on the abrupt emission method, the amount of emitted electrons is very small, and thus the power generated cannot be increased.
  • Abrupt emission method is equivalent to rocket takeoff method and requires a lot of energy.
  • the sliding emission method which is a method of taking off after an airplane has slid, is applied, it is possible to increase the amount of emitted electrons even when supplying a small amount of energy. Increase the kinetic energy held by the electron just before the emission. That is, pre-supplying energy to electrons is a problem in the field effect power generation of the present invention.
  • the carrier is pre-supplied with energy by using an injection electrode, a sliding electrode, a tunnel electrode, an emission electrode, and an acceleration electrode.
  • an injection electrode When electric energy is generated in field effect power generation, adopting a method in which electrons in a substance perform abrupt emission, the amount of electron emission is small and power generation efficiency is reduced.
  • the amount of electron emission is small and power generation efficiency is reduced.
  • kinetic energy is supplied to an electron just before the electron emits, the amount of electron emission increases and power generation efficiency is improved. That is, in order to improve the power generation efficiency of field effect power generation, it is necessary to pre-supply energy to electrons.
  • power generation is realized by moving carriers using an electric field.
  • carriers are injected from the carrier output material into the channel-forming material and the carriers are accelerated by sliding motion on the surface of the channel-forming material, the kinetic energy of the carrier increases, contributing to power generation The number of carriers to increase.
  • the number of carriers contributing to power generation is increased by pre-supplying energy to the carrier during a period in which the carrier is confined in the substance. To do.
  • cascade method (or relay method) is adopted, and the kinetic energy held by the electrons emitted and accelerated in the past is pre-supplied to the electrons scheduled to be emitted next (pre -Supply) to effectively use the generated energy.
  • cascade methods There are two types of cascade methods as follows.
  • the direct electron emission method is also called secondary electron emission method.
  • the electrons flying in the vacuum are called primary electrons, and when the primary electrons collide with the secondary electron emitting member, the electrons are knocked out from the secondary electron emitting member by the kinetic energy held by the primary electrons.
  • the knocked-out electrons are called secondary electrons.
  • the cathode of a vacuum tube includes a direct heat tube and a side heat tube.
  • a cathode direct heating type vacuum tube the temperature of the cathode is raised by passing a current through the cathode.
  • a heater is used separately from the cathode. The current of the heater is increased by passing a current through the heater, and the heat of the heated heater is indirectly transmitted to the cathode. Increase temperature.
  • the heat generated by the electron collision is conducted to the material to which the next electron to be emitted belongs. That is, the temperature of the carrier output substance and the channel forming substance in contact with the carrier output substance rises. Accordingly, the kinetic energy of electrons existing in the carrier output material increases. Therefore, the number of electrons injected from the carrier output material into the channel forming material increases. Furthermore, the kinetic energy of electrons existing in the channel forming material increases. An increase in electron kinetic energy contributes to an increase in power generation output.
  • the thermal energy of the first-stage electron absorption collector is conducted to the second-stage carrier output material and the channel-forming material, and further, the thermal energy is propagated to the third and subsequent stages. Thermal energy propagates to the eye's electron collector.
  • the number of electrons contributing to power generation is increased by performing pre-supply of energy to the electrons during a period in which the electrons are confined in the substance.
  • the method of feeding back the thermal energy generated in the Nth stage electron collector to the first stage carrier output substance and channel forming substance belongs to the thermal feedback system described below.
  • the problems to be solved by the field effect power generator of the present invention are shown below.
  • (1) In the field electron power generation device of the present invention by performing pre-supply of energy to the carrier, the number of electrons contributing to the injection increases, and the power generation output of the field effect power generation device of the present invention Increase (2) In the field effect power generation device of the present invention, since energy is pre-supplied to electrons based on the effect of the electric field, the number of electrons contributing to emission increases and is lost due to electric field generation. Electricity will also be very small, increasing power generation efficiency. (3) In the field effect power generation device of the present invention, the energy is pre-supplied to the electrons by applying the thermal feedback method, thereby reducing the weight, size, and high-efficiency power generation.
  • the characteristics of the field effect power generator of the present invention are shown below.
  • the energy is pre-supplied to the electrons by applying the thermal feedback method, so that it is lightweight and small in size, so that highly efficient power generation can be performed. .
  • the field effect power generation device of the present invention is manufactured using glass or stainless steel plate as a carbon-based material, an insulator and a vacuum vessel, and has almost no deteriorated portion, so it is durable and has a service life of long.
  • the device can be manufactured simply by mounting the electric field generating electrode, the carbon member and the insulator in the container, the structure is simple and the manufacture is easy. It is.
  • the electrodes are arranged in the glass container, only deterioration of the electron emitting member is a part to be replaced. Can withstand.
  • the field effect power generation device of the present invention When the field effect power generation device of the present invention is compared with the conventional power generation device, the field effect power generation device of the present invention has the following effects. (1) In the conventional power generation apparatus, when electrons are emitted into a vacuum, abrupt emission is performed, so that the number of electrons to be emitted is small. Therefore, the power generation output of the conventional power generator is very small. However, in the field electron power generation device of the present invention, the number of electrons involved in emission increases by pre-supplying energy to electrons. Therefore, the power generation output of the field effect power generation device of the present invention is improved.
  • the field effect power generation device of the present invention since energy is pre-supplied to electrons based on the effect of the electric field, the power lost due to the generation of the electric field becomes very small and the power generation efficiency is increased. . (3) In the field effect power generation device of the present invention, the energy is pre-supplied to the electrons by applying the thermal feedback method, so that it is lightweight and small in size, so that highly efficient power generation can be performed. . (4) In the field effect power generation device of the present invention, it is manufactured using glass or stainless steel plate as a carbon-based material, an insulator and a vacuum vessel, and has almost no deteriorated portion, so it is durable and has a service life of long.
  • the field effect power generation device of the present invention since the device can be manufactured simply by mounting the electric field generating electrode, the carbon member and the insulator in the container, the structure is simple and the manufacture is easy. It is. (6) Even if the field effect power generation device of the present invention is used in a large amount, it does not cause any environmental damage because no special substance is used. (7) In the field effect power generation device of the present invention, since the electrodes are arranged in the glass container, only deterioration of the electron emitting member is a part to be replaced. Can withstand. Due to the above effects, the field effect power generator of the present invention is assumed to be very practical.
  • the carrier output substance 1 and the channel forming substance 2 are provided on the substrate 19 as schematically shown in a block diagram of the main part of the present invention in FIG. Deploy.
  • the carrier output substance 1 and the channel forming substance 2 are electrically connected, the insulator 8 is arranged on the entire surface or a part of the surface of the channel forming substance 2, and the electrode 60 of the carrier accelerator is arranged in the insulator 8.
  • the carrier accelerator 3 is configured by applying a voltage to the electrode 60 of the carrier accelerator using a power source, and a portion of the acceleration channel 9 is formed on the surface of the channel forming material 2 on the insulator 8 side by the action of the carrier accelerator 3.
  • FIG. 12 shows a block diagram of the inside of the carrier acceleration device in the field effect power generation of the present invention.
  • the carrier acceleration device 3 includes a power source 30, an electrode 60 of the carrier acceleration device, and an insulator 8.
  • the electrode 60 of the carrier accelerator is disposed in the insulator 8.
  • the power source 30 and the electrode 60 of the carrier accelerator are electrically connected, and positive or negative charges are supplied from the power source 30 to the electrode 60 of the carrier accelerator.
  • Carriers present in the carrier output substance 1 are injected from the carrier output substance 1 into the channel forming substance 2 by the effect of the electric field generated by the electrode 60 of the carrier accelerator.
  • the carriers injected into the channel forming substance 2 are accelerated and move in the acceleration channel 9. That is, the carrier performs sliding movement, and the carrier acquires kinetic energy. Carriers that have acquired sufficiently large kinetic energy can pass through the high potential barrier existing in the irreversible process generating unit 4 by the quantum mechanical tunnel effect.
  • the carriers moving at high speed are collected by the carrier absorption collector 28 arranged at the end of the acceleration channel 9.
  • Carriers collected by the carrier absorption collector 28 are input to one input terminal of the energy storage 15, and anti-carriers remaining in the carrier output material 1 are input to the other input terminal of the energy storage 15, And the anti-carrier form a pair and are stored in the energy storage unit 15, so that it is not hindered that the carrier and the anti-carrier that are injected later in time are moved while being accelerated.
  • the amount of energy stored in the. By connecting the energy storage 15 to the electrical load 5 in parallel, carriers and anti-carriers are supplied to the electrical load 5. As a result, electric energy obtained by the generation of carriers and anti-carriers is consumed in the electric load 5. If integrated circuit technology is applied, it is easy to manufacture a device for injecting a carrier.
  • the field effect power generation device of the present invention can generate electric energy more efficiently than the conventional power generation device. . Moreover, in the field effect power generation device of the present invention, since both the carrier and the anti-carrier move to the energy accumulator 15 at an early stage, electric energy can be stored in the energy accumulator 15, so that the energy generation efficiency is good. become.
  • the energy storage unit 15 will be described in detail.
  • FIG. 13 shows the energy storage 15. The figure shows the positive charge input / output unit 16 of the energy storage 15 and the negative charge input / output unit 17 of the energy storage 15. The energy storage 15 has an energy input mode and an energy output mode.
  • FIG. 14 shows the energy input mode of the energy storage 15.
  • a positive charge is input to the positive charge input / output unit 16 of the energy storage 15.
  • a typical example of a positive charge is a hole.
  • negative charges are input to the negative charge input / output unit 17 of the energy storage 15.
  • a typical example of a positive charge is an electron.
  • the positive charge and negative charge input to the energy storage 15 may be stored by forming a dipole or may be stored after being converted to other energy.
  • Other energy may be electrochemical ions.
  • Examples of electrochemical conversion include rechargeable batteries and conversion to hydrogen. It is converted into hydrogen and stored in the energy accumulator 15.
  • the hydrogen can be converted into electric energy and output by applying a fuel cell or the like.
  • FIG. 15 shows the energy output mode of the energy storage 15.
  • carriers having positive charges are output from the positive charge input / output unit 16 and carriers having negative charges are output from the negative charge input / output unit 17.
  • the output positive charge carriers and negative charge carriers are neutralized by recombination of the positive charge carriers and the negative charge carriers in the electric load 5, and at that time, electric energy is supplied to the electric load.
  • Monopole is monopolar and dipole is bipolar.
  • a monopole when electrons are absorbed by a conductive material, it becomes a monopole, and the two conductive materials are electrically insulated from each other, and the positive and negative charges are individually separated from the two conductive materials. If both are located at a close distance, the state is considered to form a dipole.
  • a monopole consider the case where a large number of negatively charged carriers are absorbed in the conductive material, as shown in FIG. A lot of negative charges are accumulated in the conductive material, and the negative potential is high. Therefore, an electric field in the direction indicated by the arrow in the figure exists in the vicinity of the conductive substance.
  • a method of improving the power generation efficiency is to store the carrier generated by the power generation device in a dipole state.
  • FIG. 17 shows a case where the electrons 50 approach the dipole.
  • the electric lines of force starting from a positive charge and ending with a negative charge are indicated by curves with arrows. Since the positive and negative charges are very close to each other, almost all lines of electric force are in the vicinity of the positive and negative charges, and the electric field generated between the positive and negative charges is positive and negative.
  • the dipole input mode if the positive and negative charges generated by power generation are in the dipole state, new carriers are supplied to the conductive substance via the acceleration channel 9 and the positive charge of the dipole is supplied. It becomes possible to increase the amount of negative charges. As the amount of positive and negative charges stored increases, the voltage between the positive and negative charge storage conductors 14 and 13 of the dipole increases.
  • the output mode of the dipole when the electric load 5 is connected to the positive and negative electrodes of the dipole, the positive charge accumulated in the positive charge accumulation conductor 14 and the negative charge accumulated in the negative charge accumulation conductor 13 are transferred to the electric load 5. When the current flows, recombination occurs, neutralizes and disappears.
  • the dipole has an input mode and an output mode, this dipole is called a dipole capable of separating positive charge and negative charge.
  • the power generation efficiency can be improved by using a separable dipole.
  • a dipole that is difficult to separate there is an example in which an atom is configured by arranging an electron having a negative charge around an atomic nucleus having a positive charge. It is also energetically difficult to separate electrons and protons from atoms.
  • the present invention is a dipole system, it is possible to supply a sufficient current. There is a feature that guarantees high practicality. Furthermore, in the field effect power generation device of the present invention, it is not necessary to supply energy for penetrating / breaking through a large work function required for emitting electrons into a vacuum, and within the substance. Only the energy required for the injection performed is supplied to the carrier by the effect of the electric field. As a result, since the kinetic energy of the carrier can be increased, it is possible to generate electric power by converting the kinetic energy of the carrier into electric energy. The electric field is generated by being placed in the insulator 8 and supplying electric charges to the electrodes.
  • the electric power generation efficiency is extremely high. That is, the energy supplied from an external power source is extremely small, and as a result, the power generation efficiency of the field effect power generation device of the present invention is improved, and it can be said that this device is sufficiently practical.
  • the carrier accelerator includes a plurality of power supplies and a plurality of electrodes.
  • the electrodes of the carrier accelerator are electrically connected to a plurality of power sources, and the electrodes of the plurality of carrier accelerators are arranged around the channel forming material via an insulator to constitute an acceleration channel.
  • An electric field generated by the action of a voltage applied to the electrode of the carrier accelerator acts on the carrier, and the carrier is injected from the carrier output substance into the channel forming substance.
  • FIG. 20 shows a case where the carrier acceleration device is constituted by a plurality of electrodes.
  • the insulator 8 is disposed on the upper surface of the channel forming material 2, and the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator are disposed in the insulator 8.
  • the power source 30 is an external DC power source, but is drawn near the electrodes in the drawing.
  • FIG. 21 shows a case where an acceleration channel is formed between the channel forming material and the insulator. When a voltage is applied to the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator using the power supply 30, electric lines of force shown in FIG. 21 are generated. An acceleration channel 9 is formed near the boundary between the channel forming material 2 and the insulator 8. The injected carriers are in the acceleration channel 9 and move on the surface of the channel forming material 2.
  • Carriers are accelerated in the acceleration channel 9 by the effect of the electric field generated by the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator.
  • carriers are accelerated by the effect of the electric field, so that the carriers acquire kinetic energy. Therefore, based on the kinetic energy acquired by the carriers injected into the channel-forming substance, the carriers can pass through the irreversible process generation part by the quantum mechanical tunnel effect, which has been proposed in the past.
  • the number of carriers collected by the carrier absorption collector is larger than that of the power generation method. Carriers collected by the carrier absorption collector are input to one input terminal of the energy storage device, and anti-carriers remaining in the carrier output material are input to the other input terminal of the energy storage device.
  • the voltage generated in the field effect power generation device of the present invention to the parallel connection of a plurality of capacitors, all of the plurality of capacitors are charged at once, and when the plurality of charged capacitors are connected in series, a high voltage is obtained. Is obtained.
  • a high voltage generated by the series connection of capacitors to the electrodes, an electric field can be generated, and the generated electric field is used to accelerate carriers and perform sliding movement in the field effect power generation device of the present invention. be able to.
  • an N-type semiconductor is used as the carrier output material, and P as the carrier input material.
  • a PN junction is formed by electrically connecting an N type semiconductor and a P type semiconductor.
  • An insulator is arranged on the entire surface or a part of the surface of the P-type semiconductor, an electrode of the carrier accelerator is arranged in the insulator, and a voltage is applied to the electrode of the carrier accelerator using a power source.
  • a portion of the acceleration channel is formed on the surface of the P-type semiconductor on the insulator side by the action of the carrier accelerator.
  • the carrier output substance 1 shows the operation of carriers in the vicinity of the channel forming substance 2.
  • the carrier output material 1 is disposed in electrical connection with the channel forming material 2.
  • the N-type semiconductor 11 is used as an example of the carrier output substance 1
  • the N-type semiconductor 11 is heavily doped with impurities and is in a heavy doping state.
  • the P-type semiconductor 10 is used as an example of the channel forming material 2
  • the P-type semiconductor 10 and the N-type semiconductor 11 form a PN junction.
  • the positive potential terminal of the first power supply 31 is connected to the first electrode 61 of the carrier accelerator, and the negative potential terminal of the first power supply 31 is connected to the carrier output material 1.
  • An electric field formed by the carrier accelerator 3 is generated between the first electrode 61 of the carrier accelerator and the carrier output material 1 (N-type semiconductor 11). Carriers are injected from the carrier output material 1 into the channel forming material 2 by the generated electric field. In the example of forming a PN junction, electrons are injected as carriers. The injected carrier moves in a sliding manner in the acceleration channel 9, the carrier is accelerated, and the carrier acquires a large kinetic energy. The electric field generated by the carrier accelerator 3 determines the direction and magnitude of carrier movement. A Coulomb force 81 acting on the carrier by the electric field is indicated by a vector.
  • the positive potential terminal of the second power source 32 is connected to the second electrode 62 of the carrier accelerator, and the negative potential terminal of the second power source 32 is connected to the carrier output material 1.
  • An electric field is generated between the second electrode 62 of the carrier accelerator and the carrier output material 1.
  • the direction and magnitude of the carrier moving by this electric field is indicated by a Coulomb force 81 acting on the carrier.
  • Coulomb force 81 acting on the carrier is a vector.
  • Coulomb forces 81 acting on the two carriers shown in the figure are both vectors, and when they are combined, a combined vector 82 is obtained.
  • the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator are both disposed in the insulator 8.
  • a typical example of the insulator 8 is silicon dioxide.
  • the carrier output material 1 is an N-type semiconductor 11 and the channel forming material 2 is a P-type semiconductor 10 and a PN junction is formed will be considered as a specific example.
  • the majority carrier of the N-type semiconductor 11 which is the carrier output material 1 is an electron
  • the electron is injected into the P-type semiconductor 10 which is the channel forming material 2. Is done.
  • the injected electrons are minority carriers, and an inversion layer is formed on the P-type semiconductor insulator 8 side. That is, when an inversion layer is formed on the surface of the channel forming material 2 and carriers move inside the inversion layer, the inversion layer becomes a channel.
  • the injected carrier slides in the acceleration channel 9 and acquires a large kinetic energy.
  • the injected electrons are subjected to Coulomb force by the action of the electric field.
  • the illustrated combined vector 82 is formed.
  • the voltage of the first power supply 31 and the voltage of the second power supply 32 are adjusted, the combined vector is directed toward the boundary between the insulator 8 and the P-type semiconductor 10. Therefore, when the voltages of the two power supplies are appropriately adjusted, electrons injected into the P-type semiconductor 10 slide on the surface of the P-type semiconductor 10 close to the insulator 8. Eventually, the electrons injected into the P-type semiconductor 10 are absorbed by the electron absorption collector 26 (not shown).
  • Electrons existing in the N-type semiconductor are injected from the N-type semiconductor to the P-type semiconductor by the effect of the electric field generated by the electrode of the carrier accelerator. Electrons injected into the P-type semiconductor are accelerated by sliding movement in the acceleration channel 9. Since the carriers acquire kinetic energy by being accelerated, electrons in a high energy state can pass through the potential barrier existing in the irreversible process generating portion by the quantum mechanical tunnel effect. Electrons traveling at high speed are collected in an electron absorption collector located at the end of the acceleration channel. The electrons collected by the electron absorption collector are input to one input terminal of the energy storage, the holes remaining in the N-type semiconductor are input to the other input terminal of the energy storage, and the electrons and holes are paired.
  • the amount of energy stored in the energy storage device is large because the electrons and holes that are injected later in time are prevented from moving while being accelerated. Become. Electrons and holes are supplied to the electrical load by connecting the energy storage in parallel to the electrical load. As a result, the electrical energy obtained by the generation of electrons and holes is consumed in the electrical load. If integrated circuit technology is applied, it is easy to produce a device for injecting electrons and holes. Therefore, the field effect power generator of the present invention can generate electrical energy more efficiently than the conventional power generator. It becomes possible. In addition, in the field effect power generation device of the present invention, since both electrons and holes move to the energy accumulator at an early stage, electric energy can be stored in the energy accumulator, so that energy generation efficiency is improved.
  • a PN junction is formed by electrically connecting the P-type semiconductor and the N-type semiconductor.
  • An insulator is arranged on the entire surface or a part of the surface of the N-type semiconductor, an electrode of the carrier accelerator is arranged in the insulator, and a voltage is applied to the electrode of the carrier accelerator using a power source.
  • a part of the acceleration channel is formed on the insulator-side surface of the N-type semiconductor by the action of the carrier accelerator. Holes existing in the P-type semiconductor are injected from the P-type semiconductor to the N-type semiconductor by the effect of the electric field generated by the electrode of the carrier accelerator.
  • the holes injected into the N-type semiconductor are accelerated by sliding movement in the acceleration channel 9. Since the carriers acquire kinetic energy by being accelerated, holes in a high energy state can pass through the irreversible process generating portion. Holes moving at high speed are collected in a hole absorbing collector located at the end of the acceleration channel. Holes collected in the hole absorption collector are input to one input terminal of the energy storage, electrons remaining in the P-type semiconductor are input to the other input terminal of the energy storage, and electrons and holes are By forming a pair and accumulating in the energy accumulator, the electrons and holes injected later in time are prevented from moving while being accelerated, so the amount of energy accumulated in the energy accumulator is reduced. Become more.
  • Electrons and holes are supplied to the electrical load by connecting the energy storage in parallel to the electrical load. As a result, the electrical energy obtained by the generation of electrons and holes is consumed in the electrical load. If integrated circuit technology is applied, it is easy to produce a device for injecting electrons and holes. Therefore, the field effect power generator of the present invention can generate electrical energy more efficiently than the conventional power generator. It becomes possible. In addition, in the field effect power generation device of the present invention, since both electrons and holes move to the energy accumulator at an early stage, electric energy can be stored in the energy accumulator, so that energy generation efficiency is improved. In conclusion, in the field effect power generation device of the present invention, it is not necessary to supply the carrier with the large work function breakthrough energy required to emit electrons into the vacuum.
  • FIG. 23 shows a case where the insulator 8 is disposed on the P-type semiconductor 10.
  • the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator are arranged in the insulator 8.
  • the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator are arranged at positions very close to the P-type semiconductor 10.
  • the first electrode 61 of the carrier accelerator is connected to the negative electrode of the power source 30 and accumulates negative charges.
  • the second electrode 62 of the carrier accelerator is connected to the positive electrode of the power supply 30 and accumulates positive charges. Therefore, an electric field is generated between the second electrode 62 of the carrier accelerator and the first electrode 61 of the carrier accelerator. Since both electrodes are both disposed in an insulator, no current flows between the electrodes.
  • FIG. 24 shows lines of electric force from the second electrode 62 of the carrier accelerator to the first electrode 61 of the carrier accelerator.
  • an electric field is generated from the positive electrode toward the negative electrode, and the lines of electric force are indicated by curves with arrows.
  • the electric lines of force pass through both the insulator 8 and the P-type semiconductor 10. Therefore, an acceleration channel 9 is generated near the boundary between the P-type semiconductor 10 and the insulator 8 by an electric field, and there is a horizontal electric field near the surface of the P-type semiconductor 10, which is injected into the P-type semiconductor 10. Electrons as carriers move in a sliding manner in the right direction in the figure. That is, the electric field generated by the voltage of the power supply 30 accelerates the electrons in the right direction. When only a plurality of the electrodes of the carrier accelerator are arranged, the speed of electrons increases and the electrons have large kinetic energy.
  • the nonreciprocal process generator is configured by an insulator or a vacuum. This makes it possible to perform field effect power generation satisfactorily.
  • it is necessary to introduce an irreversible process That is, if carriers move from the carrier output material 1 to the channel forming material 2 by passing through the potential barrier generator 20 by the quantum mechanical tunnel effect, an irreversible process is realized.
  • FIG. 25 consider the case where there are a carrier output substance 1 and a channel forming substance 2 and a potential barrier generating unit 20 is formed between the carrier output substance 1 and the channel forming substance 2. It is assumed that the carrier output substance 1 and the channel forming substance 2 are conductive.
  • a substance in which carriers and anti-carriers exist in an electrically neutral state is called a carrier output substance 1.
  • the electrons move through the potential barrier generator 20 and are injected into the channel forming material 2. That is, in the case where the potential barrier generator 20 exists between the carrier output substance 1 and the channel forming substance 2, the potential barrier generator 20 is quantized from the carrier output substance 1 to the channel forming substance 2 based on the wave nature of the carriers.
  • the carriers are accumulated in the channel forming material 2 by passing through the mechanical tunnel effect.
  • the electrons in the carrier output substance 1 have a negative charge, when they approach the positive charge, they attract each other based on Coulomb's law. By using this attractive force, kinetic energy can be given to the electrons by increasing the speed of the electrons. If the electrons have sufficient kinetic energy, they can pass through the potential barrier generator 20 existing between the carrier output material 1 and the channel forming material 2 by the quantum mechanical tunnel effect due to the wave nature. Become.
  • the carrier output substance 1 and the channel forming substance 2 are arranged on the substrate 19, the carrier output substance 1 and the channel forming substance 2 are electrically connected, and an insulator is arranged on the entire surface or part of the surface of the channel forming substance 2.
  • the electrode of the carrier accelerator 3 is arranged in an insulator, and the carrier accelerator 3 is configured by applying a voltage to the electrode 60 of the carrier accelerator using a power source.
  • the channel is formed by the action of the carrier accelerator 3.
  • a portion of the acceleration channel is formed on the surface of the material 2 on the insulator 8 side.
  • Carriers present in the carrier output material 1 are injected from the carrier output material 1 into the channel forming material 2 by the effect of the electric field generated by the electrode 60 of the carrier accelerator.
  • the carriers injected into the channel forming material 2 are accelerated and move in the acceleration channel. Since carriers acquire kinetic energy by being accelerated, carriers in a high energy state can pass through the irreversible process generator 4 by the quantum mechanical tunnel effect.
  • Carriers moving at high speed are collected by a carrier absorption collector disposed at the end of the acceleration channel 9. Carriers collected by the carrier absorption collector are input to one input terminal of the energy storage 15, and anti-carriers remaining in the carrier output material 1 are input to the other input terminal of the energy storage 15, Since the anti-carriers form a pair and are stored in the energy storage unit 15, the carrier that is injected later in time and the anti-carriers are prevented from moving while being accelerated. The amount of energy stored increases. By connecting the energy storage 15 to the electrical load 5 in parallel, carriers and anti-carriers are supplied to the electrical load 5. As a result, electric energy obtained by the generation of carriers and anti-carriers is consumed in the electric load 5.
  • the field effect power generation device of the present invention can generate electric energy more efficiently than the conventional power generation device. . Moreover, in the field effect power generation device of the present invention, since both the carrier and the anti-carrier move to the energy accumulator 15 at an early stage, electric energy can be stored in the energy accumulator 15, so that the energy generation efficiency is good. become. Furthermore, in the field effect power generation device of the present invention, it is not necessary to supply the carrier with a breakthrough energy of a large work function required for emitting electrons into a vacuum, which is necessary for injection performed in a substance. It is possible to generate power by supplying only a small amount of energy to the apparatus, and the energy supplied from an external power source becomes extremely small, and as a result, the power generation efficiency is improved.
  • the carrier output substance 1 and the channel forming substance 2 are disposed on the substrate, the carrier output substance 1 and the channel forming substance 2 are electrically connected, and the channel
  • the insulator 8 By disposing the insulator 8 on the entire surface or part of the surface of the forming material 2, disposing the electrode 60 of the carrier accelerator in the insulator 8, and applying a voltage to the electrode 60 of the carrier accelerator using a power source
  • the carrier acceleration device 9 is configured, and a part of the acceleration channel 9 is formed on the surface of the channel forming material 2 on the insulator 8 side by the action of the carrier acceleration device 9.
  • Electrons existing in the carrier output material 1 are injected from the carrier output material 1 into the channel forming material 2 by the effect of the electric field generated by the electrode 60 of the carrier accelerator.
  • the carrier output material 11 and the channel forming material 2 are different materials, and both are in an electrically bonded state. That is, the potential barrier generator 20 exists at the boundary between the carrier output substance 1 and the channel forming substance 2, and carriers cannot freely move to other substances.
  • the carrier output substance 1 the number of electrons that are carriers and the number of holes that are anti-carriers are almost the same, maintaining an electrically neutral state.
  • the number of electrons as carriers and the number of holes as anti-carriers are almost the same, and the electrical neutral state is maintained.
  • a positive voltage is applied to the electrode 60 of the carrier accelerator, electrons carrying a negative charge move due to the effect of the electric field generated by the positive voltage.
  • the electrons of the carrier output material 1 pass through the potential barrier generation unit 20 and move to the channel forming material 2. This phenomenon is called electron injection. That is, when the potential barrier generating unit 20 exists between the carrier output material 1 and the channel forming material 2, electrons from the carrier output material 1 to the channel forming material 2 quantumize the potential barrier generating unit 20 based on wave nature.
  • the electrons In order for electrons to emit, the electrons need to acquire sufficient kinetic energy. In order to give kinetic energy to electrons, the effect of the electric field generated by the electrode 60 of the carrier accelerator is used. Since the electrons in the channel forming material 2 have a negative charge, when they approach the positive charge, they attract each other based on Coulomb's law. By utilizing this attractive force, the speed of electrons can be increased. That is, when electrons are accelerated by the field effect, the kinetic energy possessed by the electrons increases. When electrons have sufficient kinetic energy in the channel forming material 2, they pass through the potential barrier generator 20 existing at the boundary between the channel forming material 2 and the vacuum by a quantum mechanical tunnel effect due to wave nature. Is possible.
  • electrons are injected from the carrier output substance 1 into the two-channel forming substance 2 and accelerated in the acceleration channel 9 by the electric field effect, so that the electrons are emitted by the quantum mechanical tunnel effect.
  • the feature is to increase the probability.
  • the emission in this case is an irreversible process.
  • the emitted electrons fly at a high speed in the acceleration channel 9 and are collected by the electron absorption collector 26 disposed at the end of the acceleration channel 9.
  • the electrons collected by the electron absorption collector 26 are input to one input terminal of the energy storage 15, and the holes remaining in the carrier output material 1 are input to the other input terminal of the energy storage 15, Since holes form a pair and are stored in the energy storage 15, the electrons and holes that are injected later in time are prevented from moving while being accelerated, so that they are stored in the energy storage 15. The amount of energy to be increased.
  • integrated circuit technology it is easy to produce a device for injecting electrons. Therefore, the field effect power generation device of the present invention can generate electrical energy more efficiently than a conventional power generation device. .
  • the field effect power generation device of the present invention since both electrons and holes move to the energy storage unit 15 at an early stage, electric energy can be stored in the energy storage unit 15, so that the energy generation efficiency is good. Become. Furthermore, in the field effect power generation apparatus of the present invention, it is not necessary to supply the electrons with a large work function breakthrough energy required to emit electrons into a vacuum, which is necessary for injection performed in a substance. It is possible to generate power by supplying only a small amount of energy to the apparatus, and the energy supplied from an external power source becomes extremely small, and as a result, the power generation efficiency is improved.
  • the energy storage 15 stores electrons and holes in pairs. When either one of electrons and holes is supplied from the power source, the positive charge and the negative charge disappear through recombination via the electrical load 5. In this case, power consumption of the external power source occurs, and power generation efficiency decreases. Therefore, the power generation efficiency is improved by supplying the electrons and holes accumulated in the energy accumulator 15 from the carrier output material 1.
  • the specific resistance of the member is lowered, the leakage current is increased, and the power generation efficiency is lowered. Further, the deterioration of the member brings about disadvantages such as a decrease in durability.
  • the temperature rise of the electron absorption collector 26 and its peripheral part brings about a temperature rise of the entire device, it becomes a fatal defect in the mobile device, and the use range of the power generating device where the temperature rises is limited. Therefore, when electrons having kinetic energy approach the electron absorption collector 26, it is necessary to reduce the kinetic energy held by the electrons before colliding with the electron absorption collector 26.
  • Electrons have a negative charge. According to Coulomb's law, negative charges attract each other while positive charges repel each other. Therefore, the electrons are accelerated when approaching a positive charge and decelerated when approaching a negative charge. Therefore, in the initial stage of power generation, electrons are accelerated by the action of positive charges to generate hot electrons. However, when electrons are sufficiently accelerated to break through the potential barrier and approach the electron absorption collector 26, negative charges are generated. It is necessary to slow down by the action.
  • the deceleration electrode is disposed around the electron absorption collector 26.
  • the deceleration electrode is disposed around the electron absorption collector 26.
  • electrons approaching the electron absorption collector 26 are subjected to Coulomb repulsive force due to the negative charges accumulated in the electron absorption collector 26. Accordingly, the speed of the electrons approaching the electron absorption collector 26 decreases.
  • the structure of the electron absorption collector 26 is determined for the purpose of reducing the speed of electrons approaching the electron absorption collector 26.
  • the conductor 8 is disposed immediately before the electron absorption collector 26, as shown in FIG. This is called a suppressor 25.
  • An insulator 8 is disposed between the suppressor 25 and the electron absorption collector 26, and the suppressor 25 and the electron absorption collector 26 are electrically insulated.
  • a power source is arranged between the electron absorption collector 26 and the suppressor 25, and the potential of the suppressor 25 is set to a value lower than the potential of the electron absorption collector 26.
  • the negative charges accumulated in the suppressor 25 and the repulsive action of Coulomb are received. Accordingly, electrons approaching the electron absorption collector 26 are decelerated.
  • the electron absorption collector 26 In order for negative charges to always remain in the electron absorption collector 26, it is necessary to manufacture a device that increases the number of electrons approaching the electron absorption collector 26.
  • the electron absorption collector 26 has a structure capable of supplying a large amount of electrons. Furthermore, if electrons are brought closer to the electron absorption collector 26 than necessary, the adhesion around the negative charge of the electrons may adversely affect the operation of the subsequent electrons. Therefore, the number of electrons to be accelerated is reduced. If it is controlled depending on the potential, it is a necessary condition for realizing a device having excellent efficiency and durability.
  • the structure of the electron absorption collector 26 is determined for the purpose of reducing the speed of electrons approaching the electron absorption collector 26. If the electron absorption collector 26 has a flat structure, electrons collide with the electron absorption collector 26 without being decelerated. Therefore, fine irregularities are arranged on the surface of the electron absorption collector 26. As an example of very fine irregularities, it is an effective method to dispose a carbon-based material on the surface of the electron absorption collector 26. When a very small carbon-based material is disposed on the surface of the electron absorption collector 26, the electrons approach the carbon-based material immediately before approaching the conductive portion of the electron absorption collector 26.
  • the electron When an electron approaches a carbon-based substance, the electron is decelerated due to the repulsive action of Coulomb due to the negative charge held by the electron that has arrived before in time, and then collides with the electron absorption collector 26. Since the speed of collision with the collector 26 is reduced and the temperature rise of the electron absorption collector 26 is suppressed, the carbon-based substance disposed on the surface of the electron absorption collector 26 increases the durability of the field effect power generation device of the present invention, thereby generating power. It has the effect of improving efficiency.
  • electrons pass through the potential barrier generator 20 by the quantum mechanical tunnel effect, are injected from the carrier output material 1 into the channel forming material 2, and are accelerated by moving on the surface of the channel forming material 2. It is necessary to The carrier output material 1 containing almost equal amounts of electrons and holes is irradiated with electromagnetic waves, electrons, photons, and the like. By utilizing the wave nature of the electrons, the electrons move through the potential barrier generator 20, and the electrons are favorably injected into the channel forming material 2. That is, in the case where the potential barrier generator 20 exists between the carrier output substance 1 and the channel forming substance 2, the potential barrier is generated by irradiating the channel forming substance 2 from the carrier output substance 1 with electromagnetic waves, electrons, photons, etc.
  • FIG. 33 shows a statistical energy distribution of electrons in the substance. According to the figure, the number of electrons having large energy is small and the number of electrons having small energy is small, but the number of electrons having energy near the average value tends to be the largest. When the energy held by the electron is small, it is called cold electron, and when the energy held by the electron is large, it is called hot electron.
  • the threshold value of the potential barrier with respect to the energy of the electrons is represented by T. If the energy held by the electrons is large and can exceed the threshold T of the potential barrier, they are called elite electrons.
  • the energy held by the electrons is small and cannot exceed the threshold T of the potential barrier, they are called non-elite electrons.
  • they can contribute to power generation, but non-elite electrons do not exceed the threshold T of the potential barrier. Because it is possible, it cannot contribute to power generation.
  • no kinetic energy is given to the electrons in the material from the outside, almost all of the electrons in the material are non-elite electrons.
  • the kinetic energy is given to the electrons by irradiating the carrier output substance 1 and the channel forming substance 2 with electromagnetic waves, electrons, photons, and the like that exhibit quantum mechanical wave properties, the number of elite electrons increases. Can exceed the threshold T of the potential barrier.
  • An insulator 8 is disposed between the positive electrode and the negative electrode. Since the impedance of the insulator 8 is high, there is almost no current flowing between the positive electrode and the negative electrode.
  • the energy consumed to generate the electric field is very small, the energy consumed to create elite electrons is small, and thus there is a possibility that power generation with high power generation efficiency can be realized.
  • the number of elite electrons contributing to power generation is increased by irradiating the carrier output substance 1 and the channel forming substance 2 with electromagnetic waves, electrons, photons and the like.
  • the carrier output substance 1 and the channel forming substance 2 are disposed on the substrate 19, the carrier output substance 1 and the channel forming substance 2 are electrically connected, and the insulator 8 is provided on the entire surface or part of the surface of the channel forming substance 2.
  • the carrier accelerator 3 is arranged by disposing the electrode of the carrier accelerator 3 in the insulator 8 and applying a voltage to the electrode 60 of the carrier accelerator using a power source.
  • a part of the acceleration channel 9 is formed on the surface of the channel forming material 2 on the insulator 8 side. Electrons existing in the carrier output material 1 are injected from the carrier output material 1 into the channel forming material 2 by the effect of the electric field generated by the electrode 60 of the carrier accelerator.
  • the carrier output material 1 By irradiating the carrier output material 1 with electromagnetic waves, electrons, photons and the like that exhibit quantum mechanical wave properties, the number of electrons injected into the channel forming material 2 increases.
  • the electrons injected into the channel forming material 2 are accelerated and move in the acceleration channel 9.
  • the electrons By irradiating the channel-forming substance 2 with electromagnetic waves, electrons, and photons that exhibit quantum mechanical wave properties, the electrons acquire a large kinetic energy, so that the electrons in the high energy state cause the irreversible process generating unit 4 to quantum mechanics. Can pass through by the effective tunnel effect, and electrons are emitted into the vacuum. The emitted electrons are collected by an electron absorption collector 26 disposed at the end of the acceleration channel 9.
  • the electrons collected by the electron absorption collector 26 are input to one input terminal of the energy storage 15, and the holes remaining in the carrier output material 1 are input to the other input terminal of the energy storage 15,
  • the holes form a pair and are stored in the energy storage 15 so that the electrons and holes that are emitted later in time are prevented from moving while being accelerated, so that they are stored in the energy storage 15.
  • the amount of energy to be increased By connecting the energy storage 15 in parallel to the electrical load 5, electrons and holes are supplied to the electrical load 5. As a result, electric energy obtained by generation of electrons and holes is consumed in the electric load 5. If integrated circuit technology is applied, it is easy to manufacture a device for injecting a carrier.
  • the field effect power generation device of the present invention can generate electric energy more efficiently than the conventional power generation device. . Moreover, in the field effect power generation device of the present invention, since both electrons and holes move to the energy storage unit 15 at an early stage, electric energy can be stored in the energy storage unit 15, so that the energy generation efficiency is good. Become. In conclusion, in the field effect power generation device of the present invention, the carrier output substance 1 and the channel forming substance 2 are irradiated with electromagnetic waves, electrons, photons and the like that exhibit quantum mechanical wave properties and the synergistic effect of the field effect. Thus, it is possible to realize a field effect power generation device with good power generation efficiency.
  • the first power supply 31 is used to inject electrons as carriers from the N-type semiconductor 11 to the P-type semiconductor 10.
  • the first power supply 31 generates an electric field between the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator, and electrons pass through the acceleration channel 9 between the insulator 8 and the channel forming material 2. It advances and advances in the direction of the second electrode 62 of the carrier accelerator in which positive charges are accumulated. Furthermore, an electric field is generated between the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator by the second power source 32 and travels while being accelerated under the third electrode 63 of the accelerator. On the right side of the acceleration channel 9, irregularities are set on the surface of the channel forming material 2.
  • the unevenness provided on the surface of the channel forming substance 2 is extremely small.
  • an electric field is generated between the third electrode 63 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator by the third power source 33, and the electrons as carriers have sufficient kinetic energy, the depression region of the channel forming material 2 Pass through the surface of the. Due to the action of the electric field generated from the electrode of the carrier accelerator, the velocity of electrons gradually increases, and passes through the uneven surface of the channel forming material 2 through the potential barrier by the tunnel effect. Eventually, when the velocity of the electrons becomes sufficiently large and the kinetic energy possessed becomes large, the electrons are released from the surface of the channel forming material 2 and emitted into a vacuum as shown by e in FIG.
  • FIG. 36 shows a case where the secondary electron emission member 80 is disposed in the convex region of the channel forming material 2.
  • an electric field is generated between the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator by the first power source 31, and the electrons are accelerated channels between the insulator 8 and the channel forming material 2. It progresses while being accelerated in the direction of the second electrode 62 of the carrier accelerator in which positive charges are accumulated.
  • an electric field is generated between the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator by the second power source 32, and proceeds while being accelerated immediately below the third electrode 63 of the accelerator. Electrons having large kinetic energy due to the electric field acceleration collide with the secondary electron emission member 80 and emit secondary electrons. The electrons that collide with the secondary electron emission member 80 are called primary electrons. Both primary electrons and secondary electrons travel by being accelerated by the electric field between the third electrode 63 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator generated by the third power source 33.
  • the holes paired with them remain in the channel forming material 2, and they are channeled material 2 To the carrier output substance 1.
  • the injected carrier is accelerated by the carrier acceleration device 3, so that the carrier can have a large kinetic energy.
  • a path along which the carrier travels is called an acceleration channel 9.
  • electrons as carriers travel through the acceleration channel 9 between the channel forming material 2 and the insulator 8.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator by the first power supply 31, and the electrons travel on the surface of the insulator 8 of the channel forming material 2 as well.
  • the second electrode 62 of the carrier accelerator proceeds in the direction of the second electrode 62 of the carrier accelerator in which is accumulated.
  • the velocity of the electrons becomes sufficiently large, the kinetic energy possessed by the electrons increases, and the electrons are emitted from between the insulator 8 and the channel forming material 2 so that the electrons fly.
  • the flying electrons collide with the secondary electron emission material 80 and emit a large number of secondary electrons.
  • an electric field is generated between the second electrode 62 of the carrier acceleration device and the third electrode 63 of the carrier acceleration device by the second power source 32, and proceeds while accelerating immediately below the third electrode 63 of the acceleration device.
  • the flying electrons collide with the secondary electron emission material 80, and a large number of secondary electrons are emitted.
  • the third power source 33 When the third power source 33 generates an electric field between the third electrode 63 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator, and the electrons as carriers have sufficient kinetic energy, the flying electrons become secondary electrons. It collides with the emitting material 80 and emits many secondary electrons. As the above process continues, the number of flying electrons increases rapidly.
  • the electrons that collide with the secondary electron emission member 80 are called primary electrons.
  • Both primary electrons and secondary electrons travel while being accelerated by the electric field between the third electrode 63 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator generated by the third power source 33.
  • the secondary electrons are emitted from the secondary electron emission member 80 installed on the surface of the channel forming material 2, the holes paired with them remain in the channel forming material 2, and they are channeled material 2
  • the carrier is injected into the carrier output substance.
  • the secondary electron emission member 80 is also used for an imaging tube or the like, and lead oxide, silicon oxide based material, or the like is used.
  • the energy of the primary electrons that emit the most secondary electrons is several hundred electron volts (eV).
  • the electrons that are carriers are accelerated by the electric field, so that the kinetic energy possessed by the electrons increases.
  • the kinetic energy possessed by the electrons increases, even when many electrons are accumulated in the collector, it becomes possible to overcome the repulsive force of Coulomb and collide with the collector, and the voltage generated by power generation increases.
  • the secondary electron emitting member 80 is arranged in the acceleration channel 9 and electrons traveling at high speed become primary electrons and many secondary electrons are emitted, the number of electrons contributing to power generation increases, and the power generation device Since the number of electrons that can be taken out increases, the current that can flow through the electrical load 5 increases. Since the product of the voltage and current is electric power, the electric power obtained by power generation is increased by arranging the secondary electron emission member 80, and the power generation efficiency is improved.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the N-type semiconductor 11, and the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the N-type semiconductor 11. Electrons that are carriers are injected from the N-type semiconductor 11 to the P-type semiconductor 10 by the generated electric field, and move in the acceleration channel 9.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the first power source 31 is electrically connected to the second electrode 62 of the carrier accelerator. An electric field is generated between the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator.
  • Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • An electric field is generated between the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator.
  • Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • An electric field is generated between the third electrode 63 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator.
  • Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • An electric field is generated between the fourth electrode 64 of the carrier accelerator and the fifth electrode 65 of the carrier accelerator. Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • FIG. 39 shows an overview of the upper surface when electrons are subjected to electric field deflection in the acceleration channel and the trajectory is bent and collected by the electron absorption collector in the field effect power generation of the present invention.
  • the N-type semiconductor 11 and the P-type semiconductor 10 form a PN junction.
  • the positive voltage terminal of the power supply 30 is electrically connected to the fifth electrode 65 of the carrier accelerator, and the negative voltage terminal of the power supply 30 is electrically connected to the N-type semiconductor 11.
  • An electric field is generated between the fifth electrode 65 of the carrier accelerator and the N-type semiconductor 11. Electrons are injected from the N-type semiconductor 11 to the P-type semiconductor 10 by the generated electric field. The injected electrons move in the acceleration channel 9 on the surface of the P-type semiconductor 10.
  • the injected electrons are absorbed in the sixth electrode 66 of the carrier accelerator in the acceleration channel 9. Move in the direction.
  • an electric field generated by another acceleration electrode disposed in the insulator 8 also contributes.
  • the P-type semiconductor 10 is not linear but bent, and even if it moves linearly on the surface of the P-type semiconductor 10, it can reach the fifth electrode 65 of the carrier accelerator.
  • the insulator 8 is arranged in the linear direction.
  • the positive voltage terminal of the carrier trajectory deflection power supply 90 is electrically connected to the carrier trajectory deflection positive electrode 91, and the negative voltage terminal of the carrier trajectory deflection power supply 90 is electrically connected to the carrier trajectory deflection negative electrode 92.
  • the electric field generated between the carrier trajectory deflection positive electrode 91 and the carrier trajectory deflection negative electrode 92 bends the flight trajectory of electrons injected into the surface of the P-type semiconductor. As a result, the injected electrons travel in the direction of the electron absorption collector 26 and are finally collected by the electron absorption collector 26.
  • the electron absorption collector 26 is electrically connected to the negative voltage terminal of the carrier storage 15, and the N-type semiconductor 11 is electrically connected to the positive voltage terminal of the carrier storage 15.
  • the electrons absorbed by the electron absorption collector 26 reach the negative electrode of the carrier accumulator 15.
  • the holes injected from the P-type semiconductor 10 to the N-type semiconductor 11 reach the positive electrode of the carrier storage 15.
  • positive charges and negative charges are accumulated in the carrier accumulator 15. Therefore, when an electrical load is connected to both terminals of the carrier storage 15, the holes and electrons stored in the carrier storage 15 are recombined via the electrical load. At that time, electric energy can be supplied to the electric load.
  • FIG. 40 shows a case where the electron trajectory, which is the injected carrier, is bent and absorbed by the collector.
  • the P-type semiconductor 10 and the N-type semiconductor 11 form a PN junction.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the first power supply 31 is electrically connected to the second electrode 62 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator. Electrons as carriers are injected from the N-type semiconductor 11 to the P-type semiconductor 10 by the generated electric field and move in the acceleration channel 9.
  • the negative voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the third electrode 63 of the carrier accelerator. An electric field is generated between the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator. Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the negative voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the fourth electrode 64 of the carrier accelerator. An electric field is generated between the third electrode 63 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator. Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • An electric field is generated between the fourth electrode 64 of the carrier accelerator and the fifth electrode 65 of the carrier accelerator. Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator, and the positive voltage terminal of the fifth power source 35 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • An electric field is generated between the fifth electrode 65 of the carrier accelerator and the sixth electrode 66 of the carrier accelerator. Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the N-type semiconductor 11 and the P-type semiconductor 10 form a PN junction. Since the power sources of the first power source 31, the second power source 32, the third power source 33, the fourth power source 34, and the fifth power source 35 are connected in series, they are combined and represented by the power source 30.
  • the positive voltage terminal of the power supply 30 is electrically connected to the sixth electrode 66 of the carrier accelerator. An electric field is generated by the positive charge of the sixth electrode 66 of the carrier accelerator. Electrons are injected from the N-type semiconductor 11 to the P-type semiconductor 10 by the generated electric field. The injected electrons move in the acceleration channel 9 on the surface of the P-type semiconductor 10.
  • the injected electrons move in the direction of the sixth electrode 66 of the carrier accelerator.
  • an electric field generated by another acceleration electrode disposed in the insulator also contributes.
  • the P-type semiconductor 10 is not linear but is bent, and even if it moves linearly on the surface of the P-type semiconductor 10, it cannot reach the sixth electrode 66 of the carrier accelerator, and in the linear direction An insulator 8 is disposed.
  • the positive voltage terminal of the carrier trajectory deflection power supply 90 is electrically connected to the carrier trajectory deflection positive electrode 91, and the negative voltage terminal of the carrier trajectory deflection power supply 90 is electrically connected to the carrier trajectory deflection negative electrode 92.
  • the electric field generated between the carrier trajectory deflection positive electrode 91 and the carrier trajectory deflection negative electrode 92 bends the flight trajectory of electrons injected into the surface of the P-type semiconductor. As a result, the injected electrons move toward the electron absorption collector 26 and are finally collected by the electron absorption collector 26.
  • the electron absorption collector 26 is electrically connected to the negative voltage terminal of the carrier storage 15, and the N-type semiconductor 11 is electrically connected to the positive voltage terminal of the carrier storage 15.
  • the electrons absorbed by the electron absorption collector 26 reach the negative electrode of the carrier accumulator 15.
  • the holes injected from the P-type semiconductor 10 to the N-type semiconductor 11 reach the positive electrode of the carrier storage 15.
  • positive charges and negative charges are accumulated in the carrier accumulator 15. Therefore, when an electrical load is connected to both terminals of the carrier storage 15, the holes and electrons stored in the carrier storage 15 are recombined via the electrical load. At that time, electric energy can be supplied to the electric load.
  • an electric field is used to bend the trajectory of injected electrons, but a magnetic field can be used to bend the flight trajectory of electrons.
  • a method of creating a magnetic field by arranging magnets around the injected electron trajectory and bending the flight trajectory of the generated electron by the magnetic field is also included in the present invention.
  • FIG. 41 shows a case where the trajectory of electrons that are injected carriers is bent and collected by the electron absorption collector 26.
  • the P-type semiconductor 10 and the N-type semiconductor 11 form a PN junction.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the N-type semiconductor 11, and the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the N-type semiconductor 11.
  • Electrons that are carriers are injected from the N-type semiconductor 11 into the P-type semiconductor 10 by the generated electric field.
  • the injected carrier moves in the acceleration channel 9.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the first power source 31 is electrically connected to the second electrode 62 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the second electrode 62 of the carrier accelerator.
  • Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • An electric field is generated between the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator. Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • An electric field is generated between the third electrode 63 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator. Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator. An electric field is generated between the fourth electrode 64 of the carrier accelerator and the fifth electrode 65 of the carrier accelerator. Electrons injected by the generated electric field are accelerated in the acceleration channel 9.
  • the N-type semiconductor 11 forms a PN junction with the P-type semiconductor 10. Since the power sources of the first power source 31, the second power source 32, the third power source 33, the fourth power source 34, and the fifth power source 35 are connected in series, they are combined and indicated by the power source 30 in FIG.
  • the positive voltage terminal of the power supply 30 is electrically connected to the fifth electrode 65 of the carrier accelerator, and the negative voltage terminal of the power supply 30 is electrically connected to the N-type semiconductor 11. An electric field is generated between the fifth electrode 65 of the carrier accelerator and the N-type semiconductor 11.
  • Electrons are injected from the N-type semiconductor 11 to the P-type semiconductor 10 by the generated electric field.
  • the injected electrons move in the acceleration channel 9 on the surface of the P-type semiconductor 10. Since the positive charges accumulated in the fifth electrode 65 of the carrier accelerator attract the injected electrons by the attractive force based on Coulomb's law, the injected electrons move toward the fifth electrode 65 of the carrier accelerator.
  • an electric field generated by another acceleration electrode disposed in the insulator also contributes.
  • the P-type semiconductor 10 is not linear but bent, and even if it moves linearly on the surface of the P-type semiconductor 10, it can reach the fifth electrode 65 of the carrier accelerator.
  • the insulator 8 is arranged in the linear direction. As shown in FIG.
  • a carrier trajectory deflection N magnetic pole 93 and a carrier trajectory deflection S magnetic pole 94 are arranged on both sides of the P-type semiconductor.
  • the magnetic field lines starting from the carrier trajectory deflecting N magnetic pole 93 are directed to the carrier trajectory deflecting S magnetic pole 94 to generate a magnetic field from the bottom to the top of the P-type semiconductor.
  • the trajectory along which the electrons move is bent. That is, when the electrons move on the surface of the P-type semiconductor due to the generated magnetic field, the trajectory is bent by the Lorentz force.
  • FIG. 42 the trajectory in which electrons move is bent and reaches the electron absorption collector 26 and is collected by the electron absorption collector 26.
  • the electron absorption collector 26 is electrically connected to the negative voltage terminal of the energy storage 15, and the N-type semiconductor 11 is electrically connected to the positive voltage terminal of the energy storage 15.
  • the electrons absorbed by the electron absorption collector 26 reach the negative electrode of the energy storage 15.
  • the holes injected from the P-type semiconductor 10 to the N-type semiconductor 11 reach the positive electrode of the energy storage 15.
  • positive charges and negative charges are accumulated in the energy accumulator 15. Therefore, when an electrical load is connected to both terminals of the energy storage 15, the holes and electrons stored in the energy storage 15 are recombined via the electrical load. At that time, electric energy can be supplied to the electric load.
  • the heat energy generated in the electron absorption collector 26 is used to generate electrical energy. Use it effectively. That is, the heat conductor is arranged in a state where the heat energy generated in the electron absorption collector 26 is well conducted to the heat conductor. When electrons collide with the electron absorption collector 26, thermal energy is generated in the electron absorption collector 26. The generated thermal energy is well transferred to the heat conductor and the temperature of the heat conductor rises. The heat conductor is arranged in a state of good heat conduction with the carrier output material 1 and the channel forming material 2. The thermal energy transmitted to the heat conductor is favorably conducted to the carrier output material 1 and the channel forming material 2. As a result, the temperature of the channel forming material 2 increases. The following describes the emission of electrons when the temperature of a material increases.
  • Fig. 43 shows the thermal electron emission formula derived by S. Dushman (1923) described on page 45 of the reference book “Electronic Engineering” Principles, “by John” D. “Ryder” (Prentice-Hall, Inc.). is there.
  • the emitted current is proportional to the square of the absolute temperature T of the cathode.
  • FIG. 44 shows electron emission characteristics in which a characteristic curve is calculated in the case of tungsten based on the thermionic emission formula of S. Dushman (1923). The figure shows that the number of emitted electrons increases exponentially with respect to the absolute temperature T of the cathode.
  • thermal energy is conducted from the heat conductor to the channel forming material 2 and the absolute temperature T of the channel forming material 2 rises, so that a large amount of electrons are emitted from the channel forming material 2. .
  • the electrical energy stored in the energy accumulator 15 is increased by the emission of a large amount of electrons.
  • the above energy circulation path forms a positive feedback system, and the amount of power generation increases with time, and the temperature of each part rises. Therefore, when the power generation amount or the temperature of the parts is set and the power generation system exceeds the limit area, it is necessary to set the steady operation by reducing the voltage of the power source supplied to the electrode 60 of the carrier accelerator. is there.
  • the temperature rise of the channel forming material 2 is a result of conversion of the kinetic energy of the flying electrons into thermal energy. That is, the energy of the root of this power generation device is generated by the effect of the electric field acting on the electrons.
  • a positive feedback system is constructed using energy generated by acceleration of the field effect of electrons, it is possible to generate electrical energy very well. Note that. Since almost no energy is lost by applying an electric field, it can be said that the power generation efficiency of the field effect power generation device of the present invention is extremely good.
  • FIG. 45 shows a case where a carbon-based material is used as the channel forming substance 2.
  • a carbon-based material 76 is disposed on the upper surface of the substrate 19 and a sub-nanometer material 75 is disposed on the upper surface thereof.
  • Examples of the carbon-based material 76 include graphene and graphite.
  • Specific examples of the sub-nanometer material 75 include ruthenium dioxide.
  • the carbon-based material 76 and the sub-nanometer material 75 are enlarged and shown in FIG.
  • Ruthenium tetroxide which is a sub-nanometer material 75, is deposited on the surface of the carbon-based material 76 by the reaction between the ruthenium tetroxide and the carbon-based material. Since ruthenium dioxide has a size of 1 nanometer or less, the electrons injected into the channel-forming material 2 are accelerated and travel while flying between the sub-nanometer materials 75. Since the concentration effect of the electric field is remarkably exhibited by using the sub-nanometer material 75, the number of emitted electrons is increased, and the efficiency of the field effect power generation device of the present invention is improved.
  • FIG. 47 shows a cross-section of a field effect power generation device that controls the output voltage by switching.
  • the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the carrier output substance 1 via the mode 1 start switch 101.
  • a first power supply 31 is used to inject electrons as carriers from the carrier input / output material 1 into the channel forming material 2.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • FIG. 48 shows an enlarged view of the periphery of the first-stage emitter 105.
  • An electric field is generated between the first electrode 61 of the carrier accelerator to which a positive voltage is applied and the carrier output material 1 to which a negative voltage is applied, and electrons acting as carriers from the carrier output material 1 are channel forming materials by the action of the electric field. 2 is injected.
  • the potential barrier between the carrier output material 1 and the channel forming material 2 allows electrons to penetrate through the tunnel effect due to the electric field generated between the first electrode 61 of the carrier accelerator and the carrier output material 1. Pass through.
  • the injected electrons move on the surface of the channel forming material 2 in the acceleration channel 9. It is assumed that the radius of curvature at the tip of the channel forming material 2 is sufficiently small.
  • Examples of the channel forming material 2 include carbon nanotubes, carbon walls, and graphene.
  • the carrier output substance 1 and the channel forming substance 2 are electrically connected.
  • the channel forming material 2 is a carbon-based material, it is necessary to apply a special bonding method in order to electrically connect the carrier output material 1 and the channel forming material 2. That is, when titanium is used as an example of the carrier output material 1, good electrical connection is made with the carbon-based channel forming material 2 at the 1100 ° C. position.
  • the carrier output substance 1 is heated to a high temperature. Therefore, the power generation efficiency is improved by electrically connecting the carrier output substance 1 and the channel forming substance 2 in a high temperature state. Is obtained.
  • the electrons injected into the channel forming material 2 are accelerated in the acceleration channel 9 by the electric field generated from the first electrode 61 of the carrier accelerator, and the kinetic energy of the electrons increases. Electrons having large kinetic energy reach the irreversible process generation unit 4 and are emitted from the channel forming material 2. At this time, the potential barrier corresponding to the work function between the channel forming material 2 and the vacuum passes through the tunnel due to the generated electric field, and electrons are emitted into the vacuum.
  • the shape of the field effect power generation device is cylindrical, electrons as carriers receive axially symmetric force, travel in the direction of the axis, collide with the first-stage electron absorption collector 127, and are absorbed therein. The electrons absorbed by the first-stage electron absorption collector 127 move to the mode 1 energy storage 115.
  • positive-charged holes remain in the first-stage emitter 105 that has output electrons as carriers. The holes move to the mode 1 energy store 115 where the electrons and holes form a dipole. The electrons that reach the first-stage electron absorption collector 127 move to the mode 1 energy storage 115 and almost no electrons remain in the first-stage electron absorption collector 127.
  • the electron path approaching the electron absorption collector 127 is hardly obstructed. That is, in the mode 1 energy storage 115, the electrons and holes form a dipole, so that the negative charge held by the electrons hardly affects the moving direction of the subsequent electrons.
  • the holes also move from the first-stage emitter 105 to the mode 1 energy storage 115 where the electrons and holes form a dipole, so that the positive charges held by the holes are transferred from the carrier output material 1 to the channel forming material. It is a feature of the power generation apparatus of the present invention that the movement of the electrons moving to 2 is hardly obstructed and good power generation is performed. In the preceding power generation apparatus, electrons and holes remain in the original substance and obstruct the movement of subsequent carriers, and it has been difficult to realize highly efficient power generation.
  • the temperature of the first stage electron absorption collector 127 rises.
  • the thermal energy of the first stage electron absorption collector 127 is conducted to the second stage emitter 106 via the mode 1 heat conductor 120, and the temperature of the second stage emitter 106 rises.
  • the kinetic energy possessed by the electrons in the second-stage emitter 106 increases.
  • the mode 1 start switch 101 is in a non-conductive state, and the mode 2 start switch 102 is in a conductive state.
  • the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the carrier output material 1 via the mode 2 start switch 102.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the fifth electrode 65 of the carrier accelerator, and the positive voltage terminal of the sixth power source 36 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the negative voltage terminal of the seventh power source 37 is electrically connected to the sixth electrode 66 of the carrier accelerator, and the positive voltage terminal of the seventh power source 37 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the negative voltage terminal of the eighth power source 38 is electrically connected to the seventh electrode 67 of the carrier accelerator, and the positive voltage terminal of the eighth power source 38 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • FIG. 48 is an enlarged view of the vicinity of the second-stage emitter 106.
  • An electric field is generated between the fifth electrode 65 of the carrier acceleration device to which a positive voltage is applied and the carrier output material 1 to which a negative voltage is applied, and electrons acting as carriers from the carrier output material 1 are channel forming materials by the action of the electric field. 2 is injected.
  • the potential barrier between the carrier output material 1 and the channel forming material 2 allows electrons to penetrate through the tunnel effect due to the electric field generated between the fifth electrode 65 of the carrier accelerator and the carrier output material 1. Pass through.
  • the injected electrons move in the acceleration channel 9. It is assumed that the radius of curvature at the tip of the channel forming material 2 is sufficiently small.
  • Examples of the channel forming material 2 include carbon nanotubes, carbon walls, and graphene.
  • the carrier output substance 1 and the channel forming substance 2 are electrically connected.
  • the channel forming material 2 is a carbon-based material, it is necessary to apply a special bonding method in order to electrically connect the carrier output material 1 and the channel forming material 2. That is, it is one of the specific examples to achieve good electrical connection by using high-temperature titanium and a carbon-based substance.
  • the electrons injected into the channel forming material 2 are accelerated in the acceleration channel 9 by the electric field generated from the electrode of the carrier accelerator, and the kinetic energy of the electrons increases. Electrons having large kinetic energy reach the irreversible process generation unit 4 and are emitted from the channel forming material 2. At this time, the potential barrier corresponding to the work function between the channel forming material 2 and the vacuum passes through the tunnel due to the generated electric field, and electrons are emitted into the vacuum.
  • the shape of the field effect power generation device is cylindrical, electrons as carriers receive axially symmetric force, travel in the direction of the axis, collide with the second-stage electron absorption collector 128, and are absorbed therein.
  • the electrons absorbed by the second-stage electron absorption collector 128 move to the mode 2 energy storage 116.
  • positive-charged holes remain in the second-stage emitter 106 that has output electrons as carriers. The holes move to the mode 2 energy store 116 where the electrons and holes form a dipole.
  • the electrons that reach the second-stage electron absorption collector 128 move to the mode 2 energy storage 116, and almost no electrons remain in the second-stage electron absorption collector 128.
  • the electron path approaching the electron absorption collector 128 is hardly obstructed. That is, in the mode 2 energy storage 116, electrons and holes form a dipole, so that the negative charge held by the electrons hardly affects the moving direction of the subsequent electrons. Holes also move from the carrier output material 1 to the mode 2 energy storage 116, where electrons and holes form a dipole, so that positive charges held by the holes move from the carrier output material 1 to the channel forming material 2. It is a feature of the power generation device of the present invention that when it does, the movement of electrons is hardly obstructed and good power generation is performed.
  • the field effect power generation device of the present invention controls the amount of power generation increases with time. Further, the number of electrons emitted is controlled by opening and closing the mode 1 start switch 101 and the mode 2 start switch 102, so that the temperature rise of the entire apparatus is suppressed. As a result, when the method of controlling the output voltage by switching is adopted and the feedback of thermal energy is performed, the field effect power generation device is durable and the power generation efficiency is improved.
  • a positive charge and a negative charge exist in a substance is shown.
  • a positive voltage terminal of a power supply and a negative voltage terminal of the power supply are shown.
  • the case where an insulator exists between a power supply positive voltage terminal and a power supply negative voltage terminal is shown.
  • a case where an energy storage is connected to a power supply positive voltage terminal and a power supply negative voltage terminal is shown.
  • the case where an electrical load is connected in parallel with the energy storage is shown.
  • the case where the carrier output substance and the channel forming substance are electrically connected and the channel forming substance is disposed between the carrier output substance and the electron absorption collector is shown.
  • the potential barrier generating unit between the carrier output material and the channel forming material and the nonreciprocal process generating unit at the boundary of the channel forming material is shown.
  • an acceleration channel on the surface of a channel forming material is shown.
  • a case where carriers move in a sliding manner on the surface of the channel forming material is shown.
  • the field effect power generation device of the present invention a case where electrons are emitted from a channel forming material is shown.
  • it is a block diagram of the field effect power generation device.
  • an internal block diagram of the carrier acceleration device is shown.
  • an energy accumulator is shown.
  • an input mode of an energy storage is shown.
  • the output mode of the energy storage is shown.
  • a specific example of a monopole is shown.
  • a dipole composed of a positive charge and a negative charge is shown.
  • the case where a dipole is formed in a positive charge storage conductor and a negative charge storage conductor is shown.
  • the case where an electron approaches a dipole is shown.
  • the case where the carrier acceleration device is constituted by a plurality of electrodes is shown.
  • an acceleration channel is formed between the channel forming material and the insulator.
  • the operation of carriers in the vicinity of a carrier output substance and a channel forming substance is shown.
  • the electrodes of two carrier acceleration devices in an insulator when the channel forming material is a P-type semiconductor are shown.
  • the electric field lines are formed by the first electrode of the carrier accelerator and the second electrode of the carrier accelerator.
  • the case where there is a potential barrier generating portion existing between the carrier output material and the channel forming material is shown.
  • the case where electrons pass from the carrier output material to the channel forming material by the quantum mechanical tunnel effect is shown.
  • a case where positive charges are accumulated in the carrier output substance and negative charges are accumulated in the channel forming substance is shown. This is a reversible phenomenon, and shows a case where electrons return from a channel forming material to a carrier output material. This shows the case where electrons pass through the potential barrier by quantum mechanical tunneling.
  • the field effect power generation device of the present invention a case where a secondary electron emission member is arranged in a convex region of a channel forming material and electrons are emitted is shown.
  • the case where electrons as carriers proceed while colliding with the secondary electron emission member in the acceleration channel is shown.
  • the case where electrons as carriers advance while their flight trajectories are bent in the acceleration channel is shown.
  • a top view in the case where electrons are subjected to electric field deflection in an acceleration channel and the trajectory is bent and collected by an electron absorption collector is shown.
  • a top view in a case where electrons are subjected to electric field deflection, move in an acceleration channel, and are collected by an electron absorption collector is shown.
  • a case where electrons are subjected to magnetic field deflection, move in an acceleration channel, and are collected by an electron absorption collector is shown.
  • a top view in a case where electrons are subjected to magnetic field deflection in an acceleration channel, and a trajectory is bent and collected by an electron absorption collector is shown.
  • the thermionic emission formula derived by S. Dushman is shown.
  • the electron emission characteristic of tungsten calculated based on the thermionic emission formula is shown.
  • a case where a carbon-based material is used as a channel forming substance is shown.
  • a carbon-based material and a sub-nanometer material are shown enlarged as channel forming materials.
  • a section of a device for controlling an output voltage by a switching method is shown.
  • the periphery of the first stage emitter is shown enlarged.
  • FIG. 3 shows a cross-sectional view when an N-type semiconductor is used as a carrier output material and a P-type semiconductor is used as a channel forming material in the field effect power generation device according to the first embodiment of the present invention.
  • Sectional drawing in the case of applying a two-stage cascade feedback system in the field effect power generator which concerns on the 2nd Embodiment of this invention is shown.
  • the field effect power generation device concerning a 2nd embodiment of the present invention shows a part of appearance view at the time of applying a two-stage cascade feedback system.
  • Sectional drawing of the periphery of the carrier output substance of the 1st stage in the case of applying a 2 stage cascade feedback system to the field effect power generation device which concerns on the 2nd Embodiment of this invention is shown.
  • paragraph is shown, when applying a 2 step
  • paragraph of a return path is shown, when applying a 2 step
  • paragraph cascade feedback system to the field effect power generation apparatus which concerns on the 2nd Embodiment of this invention is shown.
  • Sectional drawing in the case of using a heat conductor in the example which applies a two-stage cascade feedback system to the field effect power generation device which concerns on the 2nd Embodiment of this invention is shown.
  • adopting a three-stage cascade system in the field effect electric power generating apparatus which concerns on the 3rd Embodiment of this invention is shown.
  • the field effect power generation device concerning a 3rd embodiment of the present invention shows the sectional view of the circumference of the carrier output substance of the 3rd step, when adopting the 3 step cascade system.
  • Sectional drawing in the case of using four electrodes as a carrier acceleration apparatus in the field effect electric power generating apparatus which concerns on the 4th Embodiment of this invention is shown.
  • the periphery of a carrier output substance is expanded and sectional drawing is shown.
  • sectional drawing in the state of mode 0 is shown.
  • sectional drawing in the state of mode 1 is shown.
  • sectional drawing in the state of mode 2 is shown.
  • the field effect power generator concerning the 5th embodiment of the present invention shows the appearance figure in the state of mode 1 when adopting the alternate power generation method. Sectional drawing in the case of using a N-type semiconductor as a carrier output material and using a P-type semiconductor as a channel formation material in the field effect power generation device which concerns on the 6th Embodiment of this invention is shown. In the field effect power generation device concerning a 7th embodiment of the present invention, a sectional view in case an N type semiconductor is used as a carrier output substance and a P type semiconductor is used as a channel formation substance is shown.
  • Sectional drawing in the case of using a N-type semiconductor as a carrier output material and using a P-type semiconductor as a channel formation material in the field effect power generation device concerning the 8th Embodiment of this invention is shown.
  • sectional drawing in the case of using both a hole and an electron as a carrier and insulating an electrode is shown.
  • sectional drawing in the case of using both a hole and an electron as a carrier and not insulating an electrode is shown.
  • an N-type semiconductor is used as a carrier output material
  • a P-type semiconductor is used as a channel forming material
  • a cross-sectional view when the channel forming material is inclined is shown.
  • the external view in the case of using a graphene as a channel formation material is shown.
  • Sectional drawing in the case of using a graphene as a channel formation substance in the field effect electric power generating apparatus which concerns on the 12th Embodiment of this invention is shown.
  • the field effect power generation device concerning a 12th embodiment of the present invention when graphene is used as a channel formation material, the neighborhood of an electron absorption collector is expanded and a sectional view is shown.
  • arrangement of carrier absorption graphene and carrier discharge graphene is shown.
  • the field effect power generation device concerning a 12th embodiment of the present invention shows a sectional view at the time of adopting a thermal feedback system using carrier absorption graphene and carrier discharge graphene.
  • adopting a thermal feedback system is shown.
  • the field effect power generation device when the thermal feedback system is adopted, the periphery of the forward carrier output material is enlarged and a sectional view is shown.
  • the thermal feedback method when the thermal feedback method is adopted, the periphery of the return carrier output material is enlarged and a sectional view is shown.
  • adopting a thermal feedback system is shown.
  • sectional drawing of the state of the mode 1 is shown.
  • FIG. 49 shows a cross section of an example in which an N-type semiconductor is used as the carrier output material 1 and a P-type semiconductor is used as the channel forming material 2 in the field effect power generation device according to the first embodiment of the present invention.
  • the negative voltage terminal of the first power supply 31 is connected to the N-type semiconductor 11.
  • the positive voltage terminal of the first power supply 31 is connected to the first electrode 61 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the N-type semiconductor 11, and electrons as carriers are injected from the N-type semiconductor 11 into the P-type semiconductor 10.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • Carriers acquire kinetic energy when electrons as carriers move in the acceleration channel 9 between the insulator 8 and the P-type semiconductor 10.
  • the positive voltage terminal of the second power source 32 is connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the second power supply 32 is connected to the first electrode 61 of the carrier accelerator.
  • An electric field is generated between the second electrode 62 of the carrier accelerator and the first electrode 61 of the carrier accelerator, and electrons serving as carriers pass through the acceleration channel 9 between the insulator 8 and the P-type semiconductor 10. By moving, the electrons gain kinetic energy. That is, the second electrode 62 of the carrier accelerator functions as a sliding electrode.
  • the positive voltage terminal of the third power source 33 is connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is connected to the second electrode 62 of the carrier accelerator.
  • An electric field is generated between the third electrode 63 of the carrier accelerator and the second electrode 62 of the carrier accelerator, and electrons as carriers are transferred through the acceleration channel 9 between the insulator 8 and the P-type semiconductor 10.
  • the electrons gain kinetic energy. In other words, energy is pre-supplied to electrons.
  • the end of the P-type semiconductor 10 is in contact with the vacuum.
  • the third electrode 63 of the carrier accelerator functions as an emission electrode. That is, electrons move in a sliding manner in the acceleration channel 9 on the surface of the P-type semiconductor 10 due to the electric field effect, and the electrons are emitted into vacuum by the action of the third electrode 63 of the carrier accelerator.
  • the positive voltage terminal of the fourth power supply 34 is connected to the fourth electrode 64 of the carrier accelerator.
  • the negative voltage terminal of the fourth power supply 34 is connected to the third electrode 63 of the carrier accelerator.
  • An electric field is generated between the fourth electrode 64 of the carrier accelerator and the third electrode 63 of the carrier accelerator, and the electrons as carriers are accelerated in the acceleration channel 9 so that the electrons acquire kinetic energy. . That is, the fourth electrode 64 of the carrier accelerator functions as an accelerating electrode.
  • the negative voltage terminal of the fifth power source 35 is connected to the fifth electrode 65 of the carrier accelerator.
  • the positive voltage terminal of the fifth power source 35 is connected to the fourth electrode 64 of the carrier accelerator.
  • An electric field is generated between the fifth electrode 65 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator, and electrons serving as carriers are decelerated in the acceleration channel 9. Since the electrons flying due to the action of the deceleration electric field are decelerated before colliding with the electron absorption collector 26, the velocity at the time of collision is reduced. That is, the fifth electrode 65 of the carrier accelerator functions as a suppressor electrode. When the speed of the flying electrons decreases and collides with the electron absorption collector 26, the energy that the electron absorption collector 26 receives from the flying electrons decreases. Therefore, the temperature rise of the electron absorption collector 26 is reduced, and the electron absorption collector 26 can be avoided from reaching a high temperature.
  • the negative voltage terminal of the sixth power supply 36 is connected to the N-type semiconductor 11.
  • the positive voltage terminal of the sixth power source 36 is connected to the sixth electrode 66 of the carrier accelerator. An electric field is generated between the sixth electrode 66 of the carrier accelerator and the N-type semiconductor 11, and electrons as carriers are injected from the N-type semiconductor 11 into the P-type semiconductor 10.
  • the sixth electrode 66 of the carrier accelerator functions as an injection electrode. Carriers acquire kinetic energy as electrons, which are carriers, move between the insulator 8 and the lower surface of the P-type semiconductor 10.
  • the positive voltage terminal of the seventh power source 37 is connected to the seventh electrode 67 of the carrier accelerator.
  • the negative voltage terminal of the seventh power source 37 is connected to the sixth electrode 66 of the carrier accelerator.
  • An electric field is generated between the seventh electrode 67 of the carrier accelerator and the sixth electrode 66 of the carrier accelerator, and electrons as carriers move on the oblique cross section of the P-type semiconductor 10 and reach the acceleration channel 9.
  • the seventh electrode 67 of the carrier acceleration device functions as a sliding electrode.
  • the positive voltage terminal of the eighth power source 38 is connected to the eighth electrode 68 of the carrier accelerator.
  • the negative voltage terminal of the eighth power source 38 is connected to the seventh electrode 67 of the carrier accelerator. An electric field is generated between the eighth electrode 68 of the carrier accelerator and the N-type semiconductor 11, and electrons as carriers move in the acceleration channel 9 between the insulator 8 and the P-type semiconductor 10. Electrons gain kinetic energy.
  • the positive voltage terminal of the ninth power source 39 is connected to the ninth electrode 69 of the carrier accelerator.
  • the negative voltage terminal of the ninth power source 39 is connected to the eighth electrode 68 of the carrier accelerator. An electric field is generated between the ninth electrode 69 of the carrier accelerator and the N-type semiconductor 11, and electrons as carriers move in the acceleration channel 9 between the insulator 8 and the P-type semiconductor 10. Electrons gain kinetic energy.
  • the eighth electrode 68 of the carrier accelerator and the ninth electrode 69 of the carrier accelerator act as acceleration electrodes.
  • the positive voltage terminal of the tenth power supply 40 is connected to the tenth electrode 70 of the carrier accelerator.
  • the negative voltage terminal of the tenth power supply 40 is connected to the ninth electrode 69 of the carrier accelerator.
  • An electric field is generated between the tenth electrode 70 of the carrier accelerator and the N-type semiconductor 11, and electrons as carriers move in the acceleration channel 9 between the insulator 8 and the P-type semiconductor 10. Electrons gain kinetic energy. In the figure, when the carrier sufficiently acquires kinetic energy by the action of the carrier acceleration device 3 and reaches the end point on the cross section of the P-type semiconductor 10, electrons are emitted (emitted) into the vacuum.
  • the emitted electrons are accelerated by being attracted by the force based on the Coulomb force by the positive charges accumulated on the positive electrode of the carrier acceleration device 3.
  • the accelerated electrons reach the electron absorption collector 26 and are absorbed by the electron absorption collector 26.
  • an electric field is also generated between the positive charge stored on the positive electrode of the upper carrier accelerator and the positive charge stored on the positive electrode of the lower carrier accelerator.
  • the generated electric field acts in a direction in which flying electrons easily reach the electron absorption collector 26.
  • the cross section of the P-type semiconductor 10 is inclined, an angle is generated at the edge, and electrons are emitted from a region having a small radius of curvature, so that the efficiency of electron emission is improved.
  • the cross section of the electron absorption collector 26 is also an oblique structure. Since the flying electrons collide with the electron absorption collector 26 at a non-perpendicular angle, the electrons are reflected and reach a narrow region of the ridge, so that the efficiency with which the electrons are absorbed by the electron absorption collector 26 is improved.
  • the electron absorption collector 26 is electrically connected to the negative voltage terminal of the energy storage 15, and the N-type semiconductor 11 is electrically connected to the positive voltage terminal of the energy storage 15.
  • the electrons absorbed by the electron absorption collector 26 reach the negative electrode of the energy storage 15.
  • the holes injected from the P-type semiconductor 10 to the N-type semiconductor 11 reach the positive electrode of the energy storage 15.
  • FIG. 50 shows a cross section of an example to which the two-stage cascade feedback system is applied in the field effect power generation apparatus according to the second embodiment of the present invention.
  • the field effect power generation device has a cylindrical shape, and the upper left part of the figure is taken out, and FIG. 51 shows a part of its appearance.
  • the entire field effect power generation device is stored in a vacuum vessel 300.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the carrier output substance 131 in the first stage, and the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator. Connected.
  • a first power supply 31 is used to inject electrons as carriers from the carrier input / output material 1 into the channel forming material 2.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the carrier output substance 132 in the second stage, and the positive voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the fifth electrode 65 of the carrier accelerator, and the positive voltage terminal of the sixth power source 36 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the negative voltage terminal of the first power source 231 on the return path is electrically connected to the carrier output substance 131 in the first stage, and the positive voltage terminal of the first power source 31 on the return path is electrically connected to the first electrode 261 of the return carrier acceleration device.
  • the negative voltage terminal of the return second power supply 32 is electrically connected to the first electrode 261 of the return carrier accelerator, and the positive voltage terminal of the return second power supply 32 is connected to the second electrode 262 of the return carrier accelerator.
  • the negative voltage terminal of the return third power source 33 is electrically connected to the second electrode 262 of the return carrier accelerator, and the positive voltage terminal of the return third power source 33 is connected to the third electrode 263 of the return carrier accelerator. Electrically connected.
  • the negative voltage terminal of the return fourth power source 34 is electrically connected to the carrier output substance 132 in the second stage, and the positive voltage terminal of the return fourth power source 34 is electrically connected to the fourth electrode 264 of the return carrier accelerator.
  • the negative voltage terminal of the return fifth power source 35 is electrically connected to the fourth electrode 264 of the return carrier accelerator, and the positive voltage terminal of the return fifth power source 35 is connected to the fifth electrode 265 of the return carrier accelerator.
  • the negative voltage terminal of the return sixth power source 36 is electrically connected to the fifth electrode 265 of the return carrier accelerator, and the positive voltage terminal of the return sixth power source 36 is connected to the sixth electrode 266 of the return carrier accelerator. Electrically connected.
  • the structure around the first-stage carrier output substance 131 is the same as that shown in FIG. 52, and the channel-forming substance 2 is electrically coupled to the first-stage carrier output substance 131.
  • An electric field is generated between the first electrode 61 of the carrier acceleration device to which a positive voltage is applied and the first-stage carrier output material 131 to which a negative voltage is applied. Electrons as carriers are injected into the channel forming material 2.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the electrons injected into the channel forming material 2 are emitted to the acceleration channel 9 via the irreversible process generating unit 4.
  • the first electrode 61 of the carrier accelerator also functions as an emission electrode.
  • the emitted electrons are accelerated in the acceleration channel 9 by the first electrode 61 of the carrier accelerator, the second electrode 62 of the carrier accelerator, and the third electrode 63 of the carrier accelerator.
  • the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator act as acceleration electrodes.
  • the accelerated electrons collide with the first-stage electron absorption collector 127 and are absorbed therein.
  • the electrons absorbed by the first stage electron absorption collector 127 move to the first stage energy storage 111. Since electrons are emitted from the first-stage carrier output material 131, holes remain in the first-stage carrier output material 131. The remaining holes move to the first-stage energy storage 111. In the energy storage device 111 in the first stage, holes and electrons are stored by forming a dipole.
  • the kinetic energy possessed by the electrons emitted from the first-stage carrier output substance 131 is converted into thermal energy by colliding with the first-stage electron absorption collector 127. Accordingly, the temperature of the first-stage electron absorption collector 127 rises, and the generated heat is conducted to the insulator 8, and the temperature of the insulator 8 rises. The heat of the insulator 8 is conducted to the second-stage carrier output material 132, and the temperature of the second-stage carrier output material 132 rises. The kinetic energy of the electrons in the second-stage carrier output material 132 that has reached a high temperature increases.
  • the structure around the second-stage carrier output material 132 is the same as the structure shown in FIG.
  • the channel-forming material 2 is electrically coupled to the second-stage carrier output material 132.
  • An electric field is generated between the fourth electrode 64 of the carrier acceleration device to which a positive voltage is applied and the second-stage carrier output material 132 to which a negative voltage is applied. Electrons as carriers are injected into the channel forming material 2.
  • the fourth electrode 64 of the carrier acceleration device acts as an injection electrode. Due to the action of high temperature and electric field, electrons injected into the channel forming material 2 are emitted to the acceleration channel 9 via the irreversible process generating unit 4.
  • the fourth electrode 64 of the carrier acceleration device also functions as an emission electrode.
  • the emitted electrons are accelerated in the acceleration channel 9 by the fourth electrode 64 of the carrier accelerator, the fifth electrode 65 of the carrier accelerator, and the sixth electrode 66 of the carrier accelerator.
  • the fifth electrode 65 of the carrier accelerator and the sixth electrode 66 of the carrier accelerator act as an acceleration channel.
  • the accelerated electrons collide with the second-stage electron absorption collector 128 and are absorbed therein.
  • Electrons absorbed by the second stage electron absorption collector 128 move to the second stage energy storage 112. Since electrons are emitted from the second-stage carrier output material 132, holes remain in the second-stage carrier output material 132. The remaining holes move to the energy storage 112 in the second stage. In the energy storage 112 in the second stage, holes and electrons are stored by forming a dipole. The kinetic energy held by the electrons output from the second-stage carrier output substance 132 is converted into thermal energy by colliding with the second-stage electron absorption collector 128. Accordingly, the temperature of the second-stage electron absorption collector 128 rises, and the generated heat is conducted to the mode 1 heat conductor 120, and the temperature of the mode 1 heat conductor 120 rises.
  • the heat of the mode 1 heat conductor 120 is conducted to the heat energy supply 226, and the temperature of the heat energy supply 226 increases.
  • the heat of the heat energy supplier 226 that has reached a high temperature is transferred to the insulator 8, and the temperature of the insulator 8 rises.
  • the heat of the insulator 8 is transferred to the first-stage carrier output substance 331 on the return path, and the temperature of the first-stage carrier output substance 331 on the return path rises.
  • FIG. 54 shows the structure around the carrier output substance 331 in the first stage of the return path.
  • the channel forming material 2 is electrically coupled to the carrier output material 331 in the first stage of the return path.
  • An electric field is generated between the first electrode 261 of the return carrier acceleration device to which a positive voltage is applied and the first-stage carrier output material 331 to which a negative voltage is applied. Electrons as carriers are injected into the channel forming material 2 from the carrier output material 331.
  • the first electrode 261 of the return carrier acceleration device acts as an injection electrode. The electrons injected into the channel forming material 2 are emitted to the acceleration channel 9 via the irreversible process generating unit 4.
  • the first electrode 261 of the return carrier acceleration device also functions as an emission electrode. The emitted electrons are accelerated in the acceleration channel 9 by the first electrode 261 of the return carrier accelerator, the second electrode 262 of the return carrier accelerator, and the third electrode 263 of the return carrier accelerator.
  • the second electrode 262 of the return carrier acceleration device and the third electrode 263 of the return carrier acceleration device act as acceleration electrodes.
  • the accelerated electrons collide with the first-stage electron absorption collector 227 and are absorbed therein.
  • the electrons absorbed by the first-stage electron absorption collector 227 move to the first-stage energy storage 211 on the return path. Since electrons are emitted from the first-stage carrier output substance 331 on the return path, holes remain in the first-stage carrier output substance 331 on the return path. The remaining holes move to the first-stage energy storage 211 on the return path. In the first-stage energy storage 211 on the return path, holes and electrons are stored by forming a dipole.
  • the kinetic energy possessed by the electrons emitted from the first-stage carrier output substance 331 on the return path is converted into thermal energy by colliding with the first-stage electron absorption collector 227. Accordingly, the temperature of the first-stage electron absorption collector 227 rises, and the generated heat is conducted to the insulator 8, and the temperature of the insulator 8 rises. The heat of the insulator 8 is conducted to the second-stage carrier output material 332 on the return path, and the temperature of the second-stage carrier output material 332 on the return path rises. The kinetic energy of the electrons in the second-stage carrier output material 332 on the return path that has become high temperature increases.
  • FIG. 55 shows a structure around the carrier output material 332 in the second stage of the return path.
  • the channel forming material 2 is electrically coupled to the second-stage carrier output material 332 on the return path.
  • An electric field is generated between the fourth electrode 264 of the return carrier acceleration device to which a positive voltage is applied and the second-stage carrier output material 332 to which a negative voltage is applied. From the carrier output material 332 is injected into the channel forming material 2.
  • the fourth electrode 264 of the return carrier acceleration device acts as an injection electrode. Due to the action of high temperature and electric field, electrons injected into the channel forming material 2 are emitted to the acceleration channel 9 via the irreversible process generating unit 4.
  • the fourth electrode 264 of the return carrier acceleration device also acts as an emission electrode.
  • the emitted electrons are accelerated in the acceleration channel 9 by the fourth electrode 264 of the return carrier accelerator, the fifth electrode 265 of the return carrier accelerator, and the sixth electrode 266 of the return carrier accelerator.
  • the fifth electrode 265 of the return carrier acceleration device and the sixth electrode 266 of the return carrier acceleration device act as acceleration electrodes.
  • the accelerated electrons collide with the second-stage electron absorption collector 228 and are absorbed therein.
  • the electrons absorbed by the second-stage electron absorption collector 228 move to the second-stage energy storage 212 on the return path. Since electrons are emitted from the second-stage carrier output substance 332 on the return path, holes remain in the second-stage carrier output substance 332 on the return path. The remaining holes move to the energy storage 212 in the second stage of the return path. In the second-stage energy storage 212 on the return path, holes and electrons are stored by forming a dipole.
  • the kinetic energy held by the electrons output from the second-stage carrier output material 332 on the return path is converted into thermal energy by colliding with the second-stage electron absorption collector 228. Therefore, the temperature of the second-stage electron absorption collector 228 rises, and the generated heat is conducted to the mode 2 heat conductor 121, and the temperature of the mode 2 heat conductor 121 rises.
  • the heat of the mode 2 heat conductor 121 is conducted to the heat energy supply 126, and the temperature of the heat energy supply 126 increases.
  • the heat of the heat energy supplier 126 that has reached a high temperature is transmitted to the insulator 8, and the temperature of the insulator 8 rises.
  • the heat of the insulator 8 is transferred to the first-stage carrier output material 131, and the temperature of the first-stage carrier output material 131 rises.
  • the temperature of the first-stage carrier output substance 131 is low, so that the amount of emitted electrons is small.
  • the temperature of the second-stage carrier output material 132 rises, and the amount of electrons emitted therefrom increases.
  • the emitted electrons collide with the second-stage electron absorption collector 128, and the temperature rises.
  • the generated heat is conducted through the mode 1 heat conductor 120, the temperature of the carrier output material 331 in the first stage of the return path rises, the amount of electrons emitted from it increases, and the emitted electrons Collides with the first-stage electron absorption collector, the temperature of the second-stage carrier output material 332 on the return path rises, and the amount of electrons emitted therefrom increases.
  • the emitted electrons collide with the second electron absorption collector 228, and the temperature rises.
  • the heat of the second electron absorption collector 228 is conducted to the thermal energy supplier 126 via the mode 2 heat conductor 121, the temperature thereof rises, and the amount of emitted electrons increases.
  • the stored electrical energy is consumed by the current flowing through the electrical load 5.
  • the electrical load 5 is connected in parallel to the energy storage 112 in the second stage, the stored electrical energy is consumed by the current flowing through the electrical load 5.
  • the electrical load 5 is connected in parallel to the first-stage energy accumulator 211 on the return path, the accumulated electrical energy is consumed when a current flows through the electrical load 5.
  • a first-stage energy accumulator 111, a second-stage energy accumulator 112, a return-stage first-stage energy accumulator 211, and a return-stage second-stage energy accumulator 212 are connected in series.
  • an electrical load 5 is connected in parallel to the electrical energy, electrical energy is consumed.
  • multi-stage energy accumulators are connected in series, the terminal voltage becomes higher, the electric energy consumed is larger than that emitted individually, and the power generation efficiency is further improved.
  • FIG. 56 is a side view / sectional view of an embodiment of a two-stage cascade feedback system using a heat conductor of a field effect power generation device.
  • the role of the second-stage electron absorption collector 128 used in FIG. 50 is also shared by the mode 1 heat conductor 120 in FIG. Further, the role of the thermal energy supplier 226 used in FIG. 50 is shared by the mode 1 heat conductor 120 in FIG. The role of the second-stage electron absorption collector 228 used in FIG. 50 is shared by the mode 2 heat conductor 121 in FIG. The role of the thermal energy supplier 126 used in FIG. 50 is shared by the mode 2 heat conductor 121 in FIG. A material having good thermal conductivity is preferable as the mode 1 heat conductor 120 and the mode 2 heat conductor 121 in FIG.
  • One example of the material of the mode 1 heat conductor 120 is graphene.
  • One example of the material of the mode 2 heat conductor 121 is graphene.
  • graphene six-membered rings of carbon are arranged in layers on a substantially flat surface. The thermal conductivity in the layers is high and little heat is conducted between the layers. Therefore, when electrons emitted in vacuum collide with the surface layer of graphene and absorb it, the temperature of the surface layer becomes high. Since heat conducts well through the surface layer, the efficiency of emitting electrons from the hot emitter in the next mode is improved.
  • the heat stored in the surface layer of graphene has a low efficiency of conduction to the inner layer, so there is little loss of heat energy and the heat energy is preserved, so that the efficiency of electron emission in the next mode is improved. Therefore, when graphene is used as a specific material constituting the electron absorption collector 26, the mode 1 heat conductor 120, and the mode 2 heat conductor 121, it is possible to improve the power generation efficiency of the field effect power generation device. Become.
  • FIG. 57 shows a cross section when the three-stage cascade method is adopted in the field effect power generation device according to the third embodiment of the present invention.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the carrier output substance 131 in the first stage, and the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • a first power supply 31 is used to inject electrons as carriers from the carrier input / output material 1 into the channel forming material 2.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the carrier output substance 132 in the second stage, and the positive voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the fifth electrode 65 of the carrier accelerator, and the positive voltage terminal of the sixth power source 36 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the negative voltage terminal of the seventh power source 37 is electrically connected to the third-stage carrier output material 133, and the positive voltage terminal of the seventh power source 37 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the negative voltage terminal of the eighth power source 38 is electrically connected to the seventh electrode 67 of the carrier accelerator, and the positive voltage terminal of the eighth power source 38 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the negative voltage terminal of the ninth power source 39 is electrically connected to the eighth electrode 68 of the carrier accelerator, and the positive voltage terminal of the ninth power source 39 is electrically connected to the ninth electrode 69 of the carrier accelerator.
  • the structure around the first-stage carrier output substance 131 is the same as that shown in FIG. 52, and the channel-forming substance 2 is electrically coupled to the first-stage carrier output substance 131.
  • An electric field is generated between the first electrode 61 of the carrier acceleration device to which a positive voltage is applied and the first-stage carrier output material 131 to which a negative voltage is applied. Electrons as carriers are injected into the channel forming material 2.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the electrons injected into the channel forming material 2 are emitted to the acceleration channel 9 via the irreversible process generating unit 4.
  • the first electrode 61 of the carrier accelerator also functions as an emission electrode.
  • the emitted electrons are accelerated in the acceleration channel 9 by the first electrode 61 of the carrier accelerator, the second electrode 62 of the carrier accelerator, and the third electrode 63 of the carrier accelerator.
  • the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator act as acceleration electrodes.
  • the accelerated electrons collide with the first-stage electron absorption collector 127 and are absorbed therein.
  • the electrons absorbed by the first stage electron absorption collector 127 move to the first stage energy storage 111. Since electrons are emitted from the first-stage carrier output material 131, holes remain in the first-stage carrier output material 131. The remaining holes move to the first-stage energy storage 111. In the energy storage device 111 in the first stage, holes and electrons are stored by forming a dipole.
  • the kinetic energy possessed by the electrons emitted from the first-stage carrier output substance 131 is converted into thermal energy by colliding with the first-stage electron absorption collector 127. Accordingly, the temperature of the first-stage electron absorption collector 127 rises, and the generated heat is conducted to the insulator 8, and the temperature of the insulator 8 rises. The heat of the insulator 8 is conducted to the second-stage carrier output material 132, and the temperature of the second-stage carrier output material 132 rises. The kinetic energy of the electrons in the second-stage carrier output material 132 that has reached a high temperature increases.
  • the structure around the second-stage carrier output material 132 is the same as the structure shown in FIG.
  • the channel-forming material 2 is electrically coupled to the second-stage carrier output material 132.
  • An electric field is generated between the fourth electrode 64 of the carrier acceleration device to which a positive voltage is applied and the second-stage carrier output material 132 to which a negative voltage is applied. Electrons as carriers are injected into the channel forming material 2.
  • the fourth electrode 64 of the carrier acceleration device acts as an injection electrode. Due to the action of high temperature and electric field, electrons injected into the channel forming material 2 are emitted to the acceleration channel 9 via the irreversible process generating unit 4.
  • the fourth electrode 64 of the carrier acceleration device also functions as an emission electrode.
  • the emitted electrons are accelerated in the acceleration channel 9 by the fourth electrode 64 of the carrier accelerator, the fifth electrode 65 of the carrier accelerator, and the sixth electrode 66 of the carrier accelerator.
  • the fifth electrode 65 of the carrier accelerator and the sixth electrode 66 of the carrier accelerator act as an acceleration electrode.
  • the accelerated electrons collide with the second-stage electron absorption collector 128 and are absorbed therein.
  • the electrons absorbed by the second stage electron absorption collector 128 move to the second stage energy storage 112. Since electrons are emitted from the second-stage carrier output material 132, holes remain in the second-stage carrier output material 132. The remaining holes move to the energy storage 112 in the second stage. In the energy storage 112 in the second stage, holes and electrons are stored by forming a dipole.
  • the kinetic energy held by the electrons output from the second-stage carrier output substance 132 is converted into thermal energy by colliding with the second-stage electron absorption collector 128. Therefore, the temperature of the second-stage electron absorption collector 128 rises, and the generated heat is conducted to the insulator 8, and the temperature of the insulator 8 rises. The heat of the insulator 8 is conducted to the third-stage carrier output material 133, and the temperature of the third-stage carrier output material 133 rises. The kinetic energy of the electrons in the third-stage carrier output material 133 that has reached a high temperature increases.
  • the structure around the third-stage carrier output substance 133 is the same as that shown in FIG. 58, and the channel-forming substance 2 is electrically coupled to the third-stage carrier output substance 133.
  • An electric field is generated between the seventh electrode 67 of the carrier acceleration device to which a positive voltage is applied and the third-stage carrier output material 133 to which a negative voltage is applied. From 133, electrons as carriers are injected into the channel forming material 2.
  • the seventh electrode 67 of the carrier acceleration device acts as an injection electrode. Electrons injected into the channel forming material 2 by the action of high temperature and electric field are emitted to the acceleration channel 9 via the irreversible process generating unit 4.
  • the seventh electrode 67 of the carrier acceleration device also functions as an emission electrode. The emitted electrons are accelerated in the acceleration channel 9 by the seventh electrode 67 of the carrier accelerator, the eighth electrode 68 of the carrier accelerator, and the ninth electrode 69 of the carrier accelerator.
  • the eighth electrode 68 of the carrier accelerator and the ninth electrode 69 of the carrier accelerator act as acceleration electrodes.
  • the accelerated electrons collide with the third-stage electron absorption collector 129 and are absorbed therein.
  • the electrons absorbed by the third-stage electron absorption collector 129 move to the third-stage energy storage 113. Since electrons are emitted from the third-stage carrier output material 133, holes remain in the third-stage carrier output material 133. The remaining holes move to the third-stage energy storage 113.
  • holes and electrons are stored by forming a dipole.
  • the electrical load 5 When the electrical load 5 is connected in parallel to the energy storage 112 in the second stage, the stored electrical energy is consumed by the current flowing through the electrical load 5.
  • the electrical load 5 When the electrical load 5 is connected in parallel to the third-stage energy accumulator 113, the accumulated electrical energy is consumed by the current flowing through the electrical load 5.
  • the electrical load 5 is connected in parallel at both ends thereof, the electrical energy is reduced. Is consumed.
  • the terminal voltage becomes high, and the electric energy consumed is larger than that emitted individually, thereby improving the power generation efficiency.
  • the thermal energy supply device 126 when thermal energy is supplied to the thermal energy supply device 126, the temperature of the first-stage carrier output material 131 rises due to heat conduction, so that electrons emitted from the first-stage carrier output material 131 The number increases and the amount of electricity generated in subsequent stages increases. Therefore, when the heat energy is supplied to the heat energy supplier 126 by heating the heater, the electric energy generated is larger than the electric energy consumed for the heater heating, so that the power generation efficiency is improved overall. . In addition, as long as energy is supplied to the thermal energy supplier 126, it is possible to improve power generation efficiency even if any kind of energy is supplied. Therefore, the energy supplied to the thermal energy supplier 126 is not limited in the present invention, but examples of the supplied energy include electromagnetic wave energy and thermal energy.
  • the heat energy includes geothermal heat, solar heat, and heat generated when burning fossil fuel.
  • FIG. 59 the cross section of the Example of the field effect electric power generating apparatus which concerns on the 4th Embodiment of this invention is shown.
  • the first power supply 31 and the like are described in two pieces in the upper and lower directions, but only one is actually provided. That is, since this power generation device is cylindrical, it is symmetrical with respect to the horizontal axis, and the same display is described vertically.
  • the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the carrier output material 1.
  • a first power supply 31 is used to inject electrons as carriers from the carrier output material 1 into the channel forming material 2.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the area around the carrier output substance 1 is enlarged and shown in FIG.
  • An electric field is generated between the first electrode 61 of the carrier accelerator to which a positive voltage is applied and the carrier output material 1 to which a negative voltage is applied, and electrons acting as carriers from the carrier output material 1 are channel forming materials by the action of the electric field. 2 is injected.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode. During the injection, the potential barrier between the carrier output material 1 and the channel forming material 2 is caused by the quantum mechanical tunnel effect caused by the electric field generated between the first electrode 61 of the carrier accelerator and the carrier output material 1. Based on this, electrons penetrate and pass.
  • the first electrode 61 of the carrier accelerator also functions as a tunnel electrode. The injected electrons move in the acceleration channel 9.
  • the radius of curvature at the tip of the channel forming material 2 is sufficiently small.
  • Examples of the channel forming material 2 include carbon nanotubes and carbon walls.
  • the carrier output substance 1 and the channel forming substance 2 are electrically connected.
  • the channel forming material 2 is a carbon-based material, it is necessary to apply a special bonding method in order to electrically connect the carrier output material 1 and the channel forming material 2.
  • the carrier output substance 1 is heated to a high temperature, it is very difficult to electrically connect the carrier output substance 1 and the channel forming substance 2 in a high temperature state.
  • the power generator of the present invention is superior in durability to the prior art thermoelectric generator.
  • the electrons injected into the channel forming material 2 are accelerated in the acceleration channel 9 by the electric field generated from the electrode of the carrier accelerator, and the kinetic energy of the electrons increases.
  • the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator act as an acceleration electrode. Electrons having large kinetic energy reach the irreversible process generation unit 4 and are emitted from the channel forming material 2.
  • the first electrode 61 of the carrier accelerator also functions as an emission electrode. When the emission is performed, the potential barrier corresponding to the work function between the channel forming material 2 and the vacuum penetrates and breaks based on the tunnel effect by the generated electric field, and electrons are emitted into the vacuum.
  • FIG. 59 electric lines of force generated from each electrode of the carrier accelerator are shown by curves with arrows. Since the power generation device has a cylindrical shape, electrons serving as carriers receive an axially symmetric force, travel in the direction of the axis, collide with the electron absorption collector 26, and are absorbed therein. The electrons absorbed by the electron absorption collector 26 move to the energy storage 15. On the other hand, positive holes having positive charges remain in the carrier output material 1 that outputs electrons as carriers. The holes move to the energy store 15, where the electrons and holes form a dipole.
  • Electrons that reach the electron absorption collector 26 move to the energy storage 15, and almost no electrons remain in the electron absorption collector 26, so that there is almost no obstruction to the path of electrons that subsequently approach the electron absorption collector 26. . That is, in the energy storage 15, electrons and holes form a dipole, so that the negative charge held by the electrons hardly affects the moving direction of the subsequent electrons. Holes also move from the carrier output material 1 to the energy storage 15 where the electrons and holes form a dipole, so that the positive charge held by the holes moves from the carrier output material 1 to the carrier input material. It is a feature of the power generation apparatus of the present invention that good power generation is performed. In the preceding power generation apparatus, electrons and holes remain in the original substance and obstruct the movement of subsequent carriers, and it has been difficult to realize highly efficient power generation.
  • FIG. 61 shows a cross-sectional view in a mode 0 state when an alternating power generation method is adopted in a field effect power generation device according to a fifth embodiment of the present invention.
  • mode 0 which is the initial state
  • the electrode temperature is low
  • electrons do not have sufficient kinetic energy.
  • FIG. 62 shows a cross section in the mode 1 state when the alternating power generation method is adopted in the field effect power generation device according to the fourth embodiment of the present invention.
  • FIG. 63 is a cross-sectional view in the mode 2 state when the alternating power generation method is adopted in the field effect power generation device according to the fifth embodiment of the present invention.
  • this state is referred to as alternate power generation mode 2.
  • an AC power supply 28 is connected to the first electrode 61 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator. Since nothing is connected to the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator, these electrodes are in a high impedance state.
  • a negative voltage is applied to the fourth electrode 64 of the carrier accelerator.
  • the voltage of the AC power supply 28 is sufficiently high, electrons are emitted from the fourth electrode 64 of the carrier accelerator, and the emitted electrons collide with the first electrode 61 of the carrier accelerator. Since the voltage applied to the electrode is sufficiently high, the emitted electrons collide with the first electrode 61 of the carrier accelerator while retaining a large kinetic energy, so that the temperature of the first electrode 61 of the carrier accelerator rises. .
  • the heat energy of the first electrode 61 of the carrier accelerator is transmitted to the carrier output material 1 and the channel forming material 2 by the heat dissipation effect, and the electrons in the carrier output material 1 and the channel forming material 2 are in a high kinetic energy state.
  • a positive voltage is applied to the fourth electrode 64 of the carrier accelerator.
  • the voltage of the AC power supply 28 is sufficiently high, electrons are emitted from the first electrode 61 of the carrier accelerator, and the emitted electrons collide with the fourth electrode 64 of the carrier accelerator. Since the voltage applied to the electrode is sufficiently high, the emitted electrons collide with the fourth electrode 64 of the carrier accelerator while retaining a large kinetic energy, so that the temperature of the fourth electrode 64 of the carrier accelerator rises. .
  • the thermal energy of the fourth electrode 64 of the carrier accelerator is transmitted to the carrier output material 1 and the channel forming material 2 by the heat dissipation effect, and the electrons in the carrier output material 1 and the channel forming material 2 are in a high kinetic energy state.
  • the temperature of the first electrode 61 of the carrier accelerator and the temperature of the fourth electrode 64 of the carrier accelerator both rise and become high.
  • the thermal energy stored in the first electrode 61 of the carrier accelerator increases the temperatures of the carrier output substance 1 and the channel forming substance 2 on the A side in FIG. 61 due to the indirect heating effect. Accordingly, the temperature in the carrier output substance 1 rises, and the electrons in the carrier output substance have large kinetic energy, so that the injection becomes easy.
  • the temperature in the channel-forming substance 2 also rises, and the electrons inside it have a large kinetic energy, so that emission becomes easy.
  • the thermal energy stored in the fourth electrode 64 of the carrier accelerator increases the temperatures of the carrier output substance 1 and the channel forming substance 2 on the B side in FIG.
  • the temperature in the carrier output substance 1 rises, and the electrons in the carrier output substance have large kinetic energy, so that the injection becomes easy. Since the temperature in the channel forming material 2 rises and the electrons inside the channel-forming substance 2 have large kinetic energy, many electrons can be easily emitted.
  • FIG. 64 shows an external view in the mode 1 state when the alternate power generation method is adopted in the field effect power generation device according to the fifth embodiment of the present invention.
  • the carrier output substance 1 and the channel forming substance 2 are enlarged and shown in FIG.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the carrier output material 1 on the A side
  • the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • a first power supply 31 is used to inject electrons as carriers from the carrier output material 1 into the channel forming material 2.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the channel forming substance 2 is electrically coupled to the tip of the carrier output substance 1.
  • An electric field is generated between the carrier output material 1 and the first electrode 61 of the carrier accelerator, and electrons in the carrier output material 1 are injected into the channel forming material 2.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode. Since the tip of the channel forming material 2 is extremely thin, the electric field concentrates on the tip. As shown in FIG. 60, electrons are emitted from the channel forming material 2 to the acceleration channel 9 via the irreversible process generating unit 4 by an electric field.
  • the first electrode 61 of the carrier accelerator functions as an emission electrode.
  • the temperature of the carrier output substance 1 and the channel forming substance 2 is low, so that the number of emitted electrons is small.
  • the critical state is reached, the electrons in the carrier output substance 1 and the channel forming substance 2 are reduced. It possesses high kinetic energy, the number of injected electrons increases, and the number of emitted electrons also increases.
  • the electrons emitted to the acceleration channel 9 accumulate in the positive charge accumulated in the first electrode 61 of the carrier accelerator, the positive charge accumulated in the second electrode 62 of the carrier accelerator, and the third electrode 63 of the carrier accelerator. Is accelerated by the Coulomb force acting between the positive charge and finally reaches the fourth electrode 64 of the carrier accelerator.
  • the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator act as an acceleration electrode.
  • the fourth electrode 64 of the carrier accelerator serves as the collector 4 that absorbs electrons.
  • the charges accumulated in the fourth electrode 64 of the carrier accelerator move to the first-stage energy accumulator 111 via the switch 351.
  • FIG. 63 the carrier output substance 1 and the channel forming substance 2 are enlarged and shown in FIG.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the carrier output material 1 on the B side, and the positive voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • a fifth power source 35 is used to inject electrons as carriers from the carrier output material 1 into the channel forming material 2.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the sixth power source 36 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the seventh power source 37 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the seventh power source 37 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the channel forming substance 2 is electrically coupled to the tip of the carrier output substance 1.
  • the temperature of the fourth electrode 64 of the carrier accelerator increases, and the B side becomes high. Since the fourth electrode 64 of the carrier accelerator is disposed close to the B-side carrier output material 1 and the channel-forming material 2, the temperature of the B-side carrier output material 1 and the channel-forming material 2 is caused by the indirect heating effect. Are heated by mode 1 operation, and their internal electrons acquire high kinetic energy.
  • the fourth electrode 64 of the carrier accelerator acts as an injection electrode. Since the channel forming material 2 has a thin structure, the electric field concentrates on the tip portion thereof. As shown in FIG. 60, since the temperature of the channel forming material 2 on the B side is high due to the operation of mode 1, electrons are generated from the channel forming material 2 via the irreversible process generating unit 4 by the generated electric field. To the acceleration channel 9.
  • the fourth electrode 64 of the carrier accelerator functions as an emission electrode. In the initial state, since the temperature of the carrier output material 1 and the channel forming material 2 is low, the number of emitted electrons is small.
  • Electrons emitted to the acceleration channel 9 accumulate in the positive electrode accumulated in the fourth electrode 64 of the carrier accelerator, the positive charge accumulated in the third electrode 63 of the carrier accelerator, and the second electrode 62 of the carrier accelerator. Is accelerated by the Coulomb force acting between the positive charge and the first electrode 61 of the carrier accelerator.
  • the fourth electrode 64 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the second electrode 62 of the carrier accelerator act as an acceleration electrode.
  • the first electrode 61 of the carrier accelerator serves as the collector 4 that absorbs electrons. Electrons accumulated in the first electrode 61 of the carrier accelerator move to the second-stage energy accumulator 112 via the switch 350.
  • the electrons emitted from the B-side channel forming material 2 are accelerated and collide with the first electrode 61 of the carrier accelerator, so that the kinetic energy of the electrons is absorbed by the first electrode 61 of the carrier accelerator.
  • the temperature of the first electrode 61 of the carrier accelerator increases. Since the first electrode 61 of the carrier accelerator is disposed in the vicinity of the carrier output substance 1 and the channel forming substance 2, the temperature of the carrier output substance 1 and the channel forming substance 2 is caused by the operation of mode 2 due to the indirect heating effect. It becomes hot and the electrons inside them get high kinetic energy.
  • mode 1 and mode 2 By repeating mode 1 and mode 2, the temperature of the carrier output material 1 and the channel forming material 2 on the A side and B side rises, and the electrons existing inside them retain a lot of kinetic energy, thereby injecting. The number of electrons emitted and the number of electrons emitted is increased.
  • the carrier output material 1 and the channel forming material 2 on the A side and the B side become high temperature, and electric energy whose polarity is changed can be obtained efficiently, and the electric load A large current flows by applying the generated voltage. Therefore, it is possible to efficiently supply electric energy to the electric load 5 by the above power generation.
  • FIG. 65 shows a cross section when an N-type semiconductor is used as the carrier output material and a P-type semiconductor is used as the channel forming material in the field effect power generation device according to the sixth embodiment of the present invention.
  • a P-type semiconductor 10 and an N-type semiconductor 11 form a PN junction.
  • An insulator 8 is disposed around the PN junction.
  • first power source 31, second power source 32, third power source 33, fourth power source 34, fifth power source 35, sixth power source 36, seventh power source 37, eighth power source 38, ninth power source 39 and the tenth power source 40 are used.
  • the first power supply 31 is used to inject electrons as carriers from the N-type semiconductor 11 to the P-type semiconductor 10.
  • a negative voltage terminal of the first power supply 31 is electrically connected to the N-type semiconductor 11.
  • a positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the N-type semiconductor 11, and electric lines of force travel from the first electrode 61 of the carrier accelerator to the N-type semiconductor 11. Due to the effect of the electric field, electrons that are majority carriers of the N-type semiconductor 11 are injected from the N-type semiconductor 11 into the P-type semiconductor 10.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the electrons injected into the P-type semiconductor 10 are attracted to the first electrode 61 of the carrier accelerator and reach directly below the first electrode 61 of the carrier accelerator, and an inversion layer (inversion layer) is formed on the upper surface of the P-type semiconductor 10. ).
  • the inversion layer becomes the acceleration channel 9.
  • the negative voltage terminal of the second power supply 32 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the positive voltage terminal of the second power supply 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the electric field generated between the second electrode 62 of the carrier accelerator and the first electrode 61 of the carrier accelerator accelerates the electrons injected into the P-type semiconductor 10 in the acceleration channel 9.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the electric field generated between the third electrode 63 of the carrier accelerator and the second electrode 62 of the carrier accelerator accelerates electrons in the acceleration channel 9 on the upper surface of the P-type semiconductor 10.
  • the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator act as a sliding electrode.
  • the negative voltage terminal of the fourth power supply 34 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the positive voltage terminal of the fourth power supply 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • An electric field generated between the fourth electrode 64 of the carrier accelerator and the third electrode 63 of the carrier accelerator accelerates electrons in the acceleration channel 9 on the upper surface of the P-type semiconductor 10.
  • the electrons accelerated on the upper surface of the P-type semiconductor 10 have sufficient kinetic energy, reach the end point of the upper surface of the P-type semiconductor, and emit electrons into the space.
  • the fourth electrode 64 of the carrier accelerator functions as an emission electrode.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the electric field generated between the fifth electrode 65 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator accelerates the emitted electrons in the acceleration channel 9.
  • the fifth electrode 65 of the carrier accelerator functions as an acceleration electrode.
  • the accelerated electrons have sufficient kinetic energy, overcome the repulsive force from the negative charge accumulated in the electron absorption collector 26, and are finally absorbed by the electron absorption collector 26.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the N-type semiconductor 11.
  • a positive voltage terminal of the sixth power source 36 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • An electric field is generated between the sixth electrode 66 of the carrier accelerator and the N-type semiconductor 11, and electric lines of force travel from the sixth electrode 66 of the carrier accelerator to the N-type semiconductor 11. By this electric field, electrons that are majority carriers of the N-type semiconductor 11 are injected from the N-type semiconductor 11 to the lower surface of the P-type semiconductor 10.
  • the sixth electrode 66 of the carrier accelerator functions as an injection electrode.
  • the electrons injected into the lower surface of the P-type semiconductor 10 are attracted to the sixth electrode 66 of the carrier accelerator, reach just below the sixth electrode 66 of the carrier accelerator, and an inversion layer is formed on the lower surface of the P-type semiconductor 10. (inversion layer) is formed.
  • the inversion layer becomes the acceleration channel 9.
  • the negative voltage terminal of the seventh power source 37 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the positive voltage terminal of the seventh power source 37 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the electric field generated between the seventh electrode 67 of the carrier accelerator and the sixth electrode 66 of the carrier accelerator accelerates the electrons injected into the lower surface of the P-type semiconductor 10.
  • the negative voltage terminal of the eighth power supply 38 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the positive voltage terminal of the eighth power supply 38 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the electric field generated between the eighth electrode 68 of the carrier accelerator and the seventh electrode 67 of the carrier accelerator accelerates electrons in the acceleration channel 9 on the lower surface of the P-type semiconductor 10.
  • the seventh electrode 67 of the carrier accelerator and the eighth electrode 68 of the carrier accelerator act as a sliding electrode.
  • the negative voltage terminal of the ninth power source 39 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the positive voltage terminal of the ninth power source 39 is electrically connected to the ninth electrode 69 of the carrier accelerator.
  • the electric field generated between the ninth electrode 69 of the carrier accelerator and the eighth electrode 68 of the carrier accelerator accelerates electrons in the acceleration channel 9 on the lower surface of the P-type semiconductor 10.
  • the electrons accelerated on the lower surface of the P-type semiconductor 10 have sufficient kinetic energy, reach the end point of the lower surface of the P-type semiconductor, and emit electrons into the space.
  • the ninth electrode 69 of the carrier accelerator functions as an emission electrode.
  • the negative voltage terminal of the tenth power supply 40 is electrically connected to the ninth electrode 69 of the carrier accelerator.
  • the positive voltage terminal of the tenth power supply 40 is electrically connected to the tenth electrode 70 of the carrier accelerator.
  • the electric field generated between the tenth electrode 70 of the carrier accelerator and the ninth electrode 69 of the carrier accelerator accelerates the emitted electrons.
  • the tenth electrode 70 of the carrier accelerator functions as an acceleration electrode.
  • the accelerated electrons have sufficient kinetic energy, overcome the repulsive force from the negative charge accumulated in the electron absorption collector 26, and are finally absorbed by the electron absorption collector 26.
  • the electrons accelerated on the upper surface and the lower surface of the P-type semiconductor 10 have sufficient kinetic energy, reach the end points of the upper surface and the lower surface of the P-type semiconductor, and repel each other at the two end points, so that the electrons are Good emissions in space.
  • the N-type semiconductor 11 is electrically connected to the positive voltage terminal of the energy storage 15, and the electron absorption collector 26 is electrically connected to the negative voltage terminal of the energy storage 15.
  • the holes accumulated in the N-type semiconductor 11 from the P-type semiconductor 10 move to the positive voltage terminal of the energy storage 15, and the electrons accumulated in the electron absorption collector 26 move to the negative voltage terminal of the energy storage 15. .
  • the holes stored in the positive electrode of the energy storage 15 and the electrons stored in the negative electrode of the energy storage 15 are close to each other and attract each other based on Coulomb's law.
  • One terminal of the electrical load 5 is connected to the positive electrode of the energy storage 15, and the other terminal of the electrical load 5 is connected to the negative electrode of the energy storage 15. Both holes and electrons stored in the energy storage 15 recombine in the electrical load 5 to supply electrical energy to the electrical load 5.
  • FIG. 66 shows a cross section when an N-type semiconductor is used as the carrier output material and a P-type semiconductor is used as the channel forming material in the field effect power generation device according to the seventh embodiment of the present invention.
  • a P-type semiconductor 10 and an N-type semiconductor 11 form a PN junction.
  • An insulator 8 is disposed around the PN junction.
  • first power source 31, second power source 32, third power source 33, fourth power source 34, fifth power source 35, sixth power source 36, seventh power source 37, eighth power source 38, ninth power source 39 and the tenth power source 40 are used.
  • the first power supply 31 is used to inject electrons as carriers from the N-type semiconductor 11 to the P-type semiconductor 10.
  • a negative voltage terminal of the first power supply 31 is electrically connected to the N-type semiconductor 11.
  • a positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the N-type semiconductor 11, and electric lines of force travel from the first electrode 61 of the carrier accelerator to the N-type semiconductor 11. Electrons that are majority carriers of the N-type semiconductor 11 are injected from the N-type semiconductor 11 into the P-type semiconductor 10 by this electric field.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the electrons injected into the P-type semiconductor 10 are attracted to the first electrode 61 of the carrier accelerator and reach directly below the first electrode 61 of the carrier accelerator, and an inversion layer (inversion layer) is formed on the upper surface of the P-type semiconductor 10. ).
  • the inversion layer becomes the acceleration channel 9 through which carriers move.
  • the negative voltage terminal of the second power supply 32 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the positive voltage terminal of the second power supply 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the electric field generated between the second electrode 62 of the carrier accelerator and the first electrode 61 of the carrier accelerator accelerates the electrons injected into the P-type semiconductor 10.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the electric field generated between the third electrode 63 of the carrier accelerator and the second electrode 62 of the carrier accelerator accelerates electrons on the upper surface of the P-type semiconductor 10, and the electrons move in the acceleration channel 9.
  • the negative voltage terminal of the fourth power supply 34 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the positive voltage terminal of the fourth power supply 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the electric field generated between the fourth electrode 64 of the carrier accelerator and the third electrode 63 of the carrier accelerator accelerates electrons in the acceleration channel 9 on the upper surface of the P-type semiconductor 10.
  • the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator act as a sliding electrode.
  • the electrons accelerated in the acceleration channel 9 on the upper surface of the P-type semiconductor 10 have sufficient kinetic energy, reach the end point of the upper surface of the P-type semiconductor, and are emitted into space.
  • the fourth electrode 64 of the carrier accelerator functions as an emission electrode. When the emission is performed, the end surface of the P-type semiconductor is inclined and the curvature radius at the end point of the upper surface is small, so that the electron emission is performed well.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the positive voltage terminal of the fifth power supply 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the electric field generated between the fifth electrode 65 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator accelerates the electrons emitted in the acceleration channel 9.
  • the fifth electrode 65 of the carrier accelerator functions as an acceleration electrode. The accelerated electrons have sufficient kinetic energy, overcome the repulsive force from the negative charge accumulated in the electron absorption collector 26, and are finally absorbed by the electron absorption collector 26.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the N-type semiconductor 11.
  • a positive voltage terminal of the sixth power source 36 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • An electric field is generated between the sixth electrode 66 of the carrier accelerator and the N-type semiconductor 11, and electric lines of force travel from the sixth electrode 66 of the carrier accelerator to the N-type semiconductor 11. By this electric field, electrons that are majority carriers of the N-type semiconductor 11 are injected from the N-type semiconductor 11 to the lower surface of the P-type semiconductor 10.
  • the sixth electrode 66 of the carrier accelerator functions as an injection electrode.
  • the electrons injected into the lower surface of the P-type semiconductor 10 are attracted to the sixth electrode 66 of the carrier accelerator, reach just below the sixth electrode 66 of the carrier accelerator, and an inversion layer is formed on the lower surface of the P-type semiconductor 10. (inversion layer) is formed.
  • the inversion layer becomes the acceleration channel 9 through which electrons move.
  • the negative voltage terminal of the seventh power source 37 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the positive voltage terminal of the seventh power source 37 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the electric field generated between the seventh electrode 67 of the carrier accelerator and the sixth electrode 66 of the carrier accelerator accelerates the electrons injected into the lower surface of the P-type semiconductor 10 in the acceleration channel 9.
  • the negative voltage terminal of the eighth power supply 38 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the positive voltage terminal of the eighth power supply 38 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the electric field generated between the eighth electrode 68 of the carrier accelerator and the seventh electrode 67 of the carrier accelerator accelerates electrons on the lower surface of the P-type semiconductor 10.
  • the seventh electrode 67 of the carrier accelerator and the eighth electrode 68 of the carrier accelerator act as a sliding electrode.
  • the negative voltage terminal of the ninth power source 39 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the positive voltage terminal of the ninth power source 39 is electrically connected to the ninth electrode 69 of the carrier accelerator.
  • the electric field generated between the ninth electrode 69 of the carrier accelerator and the eighth electrode 68 of the carrier accelerator accelerates electrons on the lower surface of the P-type semiconductor 10.
  • the electrons accelerated in the acceleration channel 9 on the lower surface of the P-type semiconductor 10 have sufficient kinetic energy, reach the end point of the lower surface of the P-type semiconductor, and emit electrons into the space.
  • the ninth electrode 69 of the carrier accelerator functions as an emission electrode. When the emission is performed, the end surface of the P-type semiconductor is inclined and the radius of curvature at the end point of the lower surface is small, so that the electron emission is performed well.
  • the negative voltage terminal of the tenth power supply 40 is electrically connected to the ninth electrode 69 of the carrier accelerator.
  • the positive voltage terminal of the tenth power supply 40 is electrically connected to the tenth electrode 70 of the carrier accelerator.
  • the electric field generated between the tenth electrode 70 of the carrier accelerator and the ninth electrode 69 of the carrier accelerator accelerates the emitted electrons in the acceleration channel 9.
  • the tenth electrode 70 of the carrier accelerator functions as an acceleration electrode.
  • the accelerated electrons have sufficient kinetic energy, overcome the repulsive force from the negative charge accumulated in the electron absorption collector 26, and are finally absorbed by the electron absorption collector 26.
  • the N-type semiconductor 11 is electrically connected to the positive voltage terminal of the energy storage 15, and the electron absorption collector 26 is electrically connected to the negative voltage terminal of the energy storage 15.
  • the holes accumulated in the N-type semiconductor 11 from the P-type semiconductor 10 move to the positive voltage terminal of the energy storage 15, and the electrons accumulated in the electron absorption collector 26 move to the negative voltage terminal of the energy storage 15. .
  • the holes stored in the positive voltage terminal of the energy storage 15 and the electrons stored in the negative voltage terminal of the energy storage 15 are close to each other and attract each other based on Coulomb's law.
  • One terminal of the electrical load 5 is connected to the positive voltage terminal of the energy storage 15, and the other terminal of the electrical load 5 is connected to the negative voltage terminal of the energy storage 15. Both holes and electrons stored in the energy storage 15 recombine in the electrical load 5 to supply electrical energy to the electrical load 5.
  • FIG. 67 shows a cross section when an N-type semiconductor is used as the carrier output material and a P-type semiconductor is used as the channel forming material in the field effect power generation device according to the eighth embodiment of the present invention.
  • a P-type semiconductor 10 and an N-type semiconductor 11 form a PN junction.
  • An insulator 8 is disposed around the PN junction.
  • first power source 31, second power source 32, third power source 33, fourth power source 34, fifth power source 35, sixth power source 36, seventh power source 37, eighth power source 38, ninth power source 39 and the tenth power source 40 are used.
  • the first power supply 31 and the sixth power supply 36 are used.
  • a negative voltage terminal of the first power supply 31 is electrically connected to the N-type semiconductor 11.
  • a positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the N-type semiconductor 11, and electric lines of force travel from the first electrode 61 of the carrier accelerator to the N-type semiconductor 11. Electrons that are majority carriers of the N-type semiconductor 11 are injected from the N-type semiconductor 11 into the P-type semiconductor 10 by this electric field.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the electrons injected into the P-type semiconductor 10 are attracted to the first electrode 61 of the carrier accelerator and reach directly below the first electrode 61 of the carrier accelerator, and an inversion layer (inversion layer) is formed on the upper surface of the P-type semiconductor 10. ).
  • the inversion layer becomes the acceleration channel 9.
  • the negative voltage terminal of the second power supply 32 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the positive voltage terminal of the second power supply 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the electric field generated between the second electrode 62 of the carrier accelerator and the first electrode 61 of the carrier accelerator accelerates the electrons injected into the P-type semiconductor 10 in the acceleration channel 9.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the electric field generated between the third electrode 63 of the carrier accelerator and the second electrode 62 of the carrier accelerator accelerates electrons in the acceleration channel 9 on the upper surface of the P-type semiconductor 10.
  • the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator act as a sliding electrode.
  • the negative voltage terminal of the fourth power supply 34 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the positive voltage terminal of the fourth power supply 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the electric field generated between the fourth electrode 64 of the carrier accelerator and the third electrode 63 of the carrier accelerator accelerates electrons on the upper surface of the P-type semiconductor 10.
  • Electrons accelerated on the upper surface of the P-type semiconductor 10 have sufficient kinetic energy, reach the end points of the P-type semiconductor, and emit electrons into the space.
  • the fourth electrode 64 of the carrier accelerator functions as an emission electrode.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the electric field generated between the fifth electrode 65 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator accelerates the emitted electrons in the acceleration channel 9.
  • the fifth electrode 65 of the carrier accelerator functions as an acceleration electrode.
  • the accelerated electrons have sufficient kinetic energy, overcome the repulsive force from the negative charge accumulated in the electron absorption collector 26, and are finally absorbed by the electron absorption collector 26.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the N-type semiconductor 11.
  • a positive voltage terminal of the sixth power source 36 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • An electric field is generated between the sixth electrode 66 of the carrier accelerator and the N-type semiconductor 11, and electric lines of force travel from the sixth electrode 66 of the carrier accelerator to the N-type semiconductor 11. By this electric field, electrons that are majority carriers of the N-type semiconductor 11 are injected from the N-type semiconductor 11 to the lower surface of the P-type semiconductor 10.
  • the sixth electrode 66 of the carrier accelerator functions as an injection electrode.
  • the electrons injected into the lower surface of the P-type semiconductor 10 are attracted to the sixth electrode 66 of the carrier accelerator, reach just below the sixth electrode 66 of the carrier accelerator, and an inversion layer is formed on the lower surface of the P-type semiconductor 10. (inversion layer) is formed.
  • This inversion layer becomes the acceleration channel 9.
  • the negative voltage terminal of the seventh power source 37 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the positive voltage terminal of the seventh power source 37 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the electric field generated between the seventh electrode 67 of the carrier accelerator and the sixth electrode 66 of the carrier accelerator accelerates the electrons injected into the lower surface of the P-type semiconductor 10 in the acceleration channel 9.
  • the negative voltage terminal of the eighth power supply 38 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the positive voltage terminal of the eighth power supply 38 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the electric field generated between the eighth electrode 68 of the carrier accelerator and the seventh electrode 67 of the carrier accelerator accelerates electrons in the acceleration channel 9 on the lower surface of the P-type semiconductor 10.
  • the seventh electrode 67 of the carrier accelerator and the eighth electrode 68 of the carrier accelerator act as an acceleration electrode.
  • the negative voltage terminal of the ninth power source 39 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the positive voltage terminal of the ninth power source 39 is electrically connected to the ninth electrode 69 of the carrier accelerator.
  • the electric field generated between the ninth electrode 69 of the carrier accelerator and the eighth electrode 68 of the carrier accelerator accelerates electrons on the lower surface of the P-type semiconductor 10.
  • the electrons accelerated in the acceleration channel 9 on the lower surface of the P-type semiconductor 10 have sufficient kinetic energy, reach the end point of the P-type semiconductor, and are emitted into the space.
  • the ninth electrode 69 of the carrier accelerator functions as an emission electrode.
  • the negative voltage terminal of the tenth power supply 40 is electrically connected to the ninth electrode 69 of the carrier accelerator.
  • the positive voltage terminal of the tenth power supply 40 is electrically connected to the tenth electrode 70 of the carrier accelerator.
  • the electric field generated between the tenth electrode 70 of the carrier accelerator and the ninth electrode 69 of the carrier accelerator accelerates the emitted electrons in the acceleration channel 9.
  • the tenth electrode 70 of the carrier accelerator functions as an acceleration electrode.
  • the accelerated electrons have sufficient kinetic energy, overcome the repulsive force from the negative charge accumulated in the electron absorption collector 26, and are finally absorbed by the electron absorption collector 26.
  • the N-type semiconductor 11 is electrically connected to the positive voltage terminal of the energy storage 15, and the electron absorption collector 26 is electrically connected to the negative voltage terminal of the energy storage 15.
  • the holes accumulated in the N-type semiconductor 11 from the P-type semiconductor 10 move to the positive voltage terminal of the energy storage 15, and the electrons accumulated in the electron absorption collector 26 move to the negative voltage terminal of the energy storage 15. .
  • the holes stored in the positive electrode of the energy storage 15 and the electrons stored in the negative electrode of the energy storage 15 are close to each other and attract each other based on Coulomb's law.
  • One terminal of the electrical load 5 is connected to the positive voltage terminal of the energy storage 15, and the other terminal of the electrical load 5 is connected to the negative voltage terminal of the energy storage 15. Both holes and electrons stored in the energy storage 15 recombine in the electrical load 5 to supply electrical energy to the electrical load 5.
  • FIG. Shown in A PN junction is formed using the P-type semiconductor 10 and the N-type semiconductor 11.
  • An insulator 8 is disposed around the PN junction.
  • Six power supplies 30 are used to accelerate the carriers.
  • a first power source 31 As the six power sources 30, a first power source 31, a second power source 32, a third power source 33, a fourth power source 34, a fifth power source 35, and a sixth power source 36 are used.
  • the first power supply 31 is used to inject electrons as carriers from the N-type semiconductor 11 to the P-type semiconductor 10.
  • three positive electrodes 41 of the carrier accelerator and three negative electrodes 42 of the carrier accelerator are arranged.
  • a negative voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • a positive voltage terminal of the first power supply 31 is electrically connected to the second electrode 62 of the carrier accelerator.
  • An electric field is generated between the second electrode 62 of the carrier accelerator and the first electrode 61 of the carrier accelerator, and electric lines of force travel from the second electrode 62 of the carrier accelerator to the first electrode 61 of the carrier accelerator. By this electric field, electrons that are majority carriers of the N-type semiconductor 11 are injected from the N-type semiconductor 11 to the P-type semiconductor 10.
  • the second electrode 62 of the carrier acceleration device functions as an injection electrode.
  • the electrons injected into the P-type semiconductor 10 are attracted to the second electrode 62 of the carrier accelerator and reach directly below the second electrode 62 of the carrier accelerator, and an inversion layer is formed on the surface of the P-type semiconductor 10. Form.
  • the inversion layer forms the acceleration channel 9.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the electric field generated between the third electrode 63 of the carrier accelerator and the second electrode 62 of the carrier accelerator accelerates the electrons injected into the P-type semiconductor 10 through the acceleration channel 9.
  • the third electrode 63 of the carrier accelerator functions as a sliding electrode.
  • the negative voltage terminal of the fourth power supply 34 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the positive voltage terminal of the fourth power supply 34 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the electric field generated between the seventh electrode 67 of the carrier accelerator and the third electrode 63 of the carrier accelerator accelerates the electrons injected into the P-type semiconductor 10 through the acceleration channel 9. Since the electrons accelerated on the surface of the P-type semiconductor 10 have sufficient kinetic energy, they penetrate through the potential barrier of the irreversible process generating part 4 existing at the end of the P-type semiconductor 10 by the quantum mechanical tunnel effect. Passes and is finally absorbed by the electron absorption collector 26. That is, the seventh electrode 67 of the carrier accelerator functions as a tunnel electrode.
  • the positive voltage terminal of the second power source 32 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • a second power source 32 is used to inject holes, which are carriers, from the P-type semiconductor 10 using the P-type semiconductor 10 as the carrier output material 1 and using the N-type semiconductor 11 as the channel forming material 2 to the N-type semiconductor 11.
  • a negative voltage terminal of the second power supply 32 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • An electric field is generated between the fifth electrode 65 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator, and electric lines of force are directed from the fourth electrode 64 of the carrier accelerator to the fifth electrode 65 of the carrier accelerator. By this electric field, holes that are majority carriers of the P-type semiconductor 10 are injected from the P-type semiconductor 10 to the N-type semiconductor 11.
  • the fifth electrode 65 of the carrier acceleration device functions as an injection electrode.
  • the holes injected into the N-type semiconductor 11 are attracted to the fifth electrode 65 of the carrier accelerator and reach directly below the fifth electrode 65 of the carrier accelerator, and an inversion layer is formed on the surface of the N-type semiconductor 11. (inversion layer) is formed.
  • the inversion layer forms the acceleration channel 9.
  • the positive voltage terminal of the fifth power supply 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the negative voltage terminal of the fifth power supply 35 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the electric field generated between the sixth electrode 66 of the carrier accelerator and the fifth electrode 65 of the carrier accelerator accelerates the holes injected into the N-type semiconductor 11 through the acceleration channel 9.
  • the positive voltage terminal of the sixth power source 36 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the electric field generated between the sixth electrode 66 of the carrier accelerator and the eighth electrode 68 of the carrier accelerator accelerates the holes injected into the N-type semiconductor 11 through the acceleration channel 9.
  • the sixth electrode 66 of the carrier accelerator functions as a sliding electrode. Since the holes accelerated in the acceleration channel on the surface of the N-type semiconductor 11 have sufficient kinetic energy, the potential barrier of the irreversible process generation unit 4 existing at the end of the N-type semiconductor 11 is caused by the quantum mechanical tunnel effect. Pass through.
  • the eighth electrode 68 of the carrier accelerator functions as a tunnel electrode. The holes that are carriers are finally absorbed by the hole absorption collector 27.
  • the hole absorption collector 27 is electrically connected to the positive voltage terminal of the energy storage 15, and the electron absorption collector 26 is electrically connected to the negative voltage terminal of the energy storage 15.
  • the holes accumulated in the hole absorption collector 27 move to the positive electrode of the energy storage 15, and the electrons accumulated in the electron absorption collector 26 move to the negative electrode of the energy storage 15.
  • the holes stored in the positive electrode of the energy storage 15 and the electrons stored in the negative electrode of the energy storage 15 are close to each other and attract each other based on Coulomb's law.
  • One terminal of the electrical load 5 is connected to the positive electrode of the energy storage 15, and the other terminal of the electrical load 5 is connected to the negative electrode of the energy storage 15. Both holes and electrons stored in the energy storage 15 recombine in the electrical load 5 to supply electrical energy to the electrical load 5.
  • FIG. 69 shows a cross section of the field effect power generator according to the ninth embodiment of the present invention, in which both holes and electrons are used as carriers and the electrodes are not insulated.
  • a PN junction is formed using the P-type semiconductor 10 and the N-type semiconductor 11.
  • An insulator 8 is disposed around the PN junction.
  • the first power supply 31 is used to inject electrons as carriers from the N-type semiconductor 11 to the P-type semiconductor 10.
  • a negative voltage terminal of the first power supply 31 is electrically connected to the N-type semiconductor 11.
  • a positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the N-type semiconductor 11, and electric lines of force travel from the first electrode 61 of the carrier accelerator to the N-type semiconductor 11. Electrons that are majority carriers of the N-type semiconductor 11 are injected from the N-type semiconductor 11 into the P-type semiconductor 10 by this electric field.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the electrons injected into the P-type semiconductor 10 are attracted to the first electrode 61 of the carrier accelerator and reach directly below the first electrode 61 of the carrier accelerator, and an inversion layer (inversion layer) is formed on the surface of the P-type semiconductor 10. ).
  • the inversion layer becomes the acceleration channel 9.
  • the negative voltage terminal of the third power source 33 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the positive voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the electric field generated between the second electrode 62 of the carrier accelerator and the first electrode 61 of the carrier accelerator accelerates the electrons injected into the P-type semiconductor 10 through the acceleration channel 9.
  • the second electrode 62 of the carrier accelerator functions as a sliding electrode.
  • the negative voltage terminal of the fourth power supply 34 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the positive voltage terminal of the fourth power supply 34 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the electric field generated between the fifth electrode 65 of the carrier accelerator and the second electrode 62 of the carrier accelerator accelerates the electrons injected into the P-type semiconductor 10 through the acceleration channel 9. Since the electrons accelerated in the acceleration channel 9 on the surface of the P-type semiconductor 10 have sufficient kinetic energy, the potential barrier of the irreversible process generating portion 4 existing at the end of the P-type semiconductor 10 is caused to have a quantum mechanical tunnel effect. Pass through.
  • the fifth electrode 65 of the carrier accelerator functions as a tunnel electrode. The electrons that are carriers are finally absorbed by the electron absorption collector 26.
  • the positive voltage terminal of the second power supply 32 is electrically connected to the P-type semiconductor 10.
  • a first power supply 32 is used to inject holes, which are carriers, from the P-type semiconductor 10 to the N-type semiconductor 11.
  • a negative voltage terminal of the second power supply 32 is electrically connected to the third electrode 63 of the carrier accelerator.
  • An electric field is generated between the third electrode 63 of the carrier accelerator and the P-type semiconductor 10, and electric lines of force travel from the P-type semiconductor 10 to the third electrode 63 of the carrier accelerator. By this electric field, holes which are majority carriers of the P-type semiconductor 10 are injected from the P-type semiconductor 10 to the N-type semiconductor 11.
  • the third electrode 63 of the carrier accelerator functions as an injection electrode.
  • the holes injected into the N-type semiconductor 11 are attracted to the third electrode 63 of the carrier accelerator and reach directly below the third electrode 63 of the carrier accelerator, and the inversion layer is formed on the surface of the N-type semiconductor 11. (inversion layer) is formed.
  • the inversion layer becomes the acceleration channel 9.
  • the positive voltage terminal of the fifth power source 35 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the electric field generated between the fourth electrode 64 of the carrier accelerator and the third electrode 63 of the carrier accelerator accelerates the holes injected into the N-type semiconductor 11 through the acceleration channel 9.
  • the fourth electrode 64 of the carrier accelerator functions as a sliding electrode.
  • the positive voltage terminal of the sixth power source 36 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the electric field generated between the fourth electrode 64 of the carrier accelerator and the sixth electrode 66 of the carrier accelerator accelerates the holes injected into the N-type semiconductor 11 through the acceleration channel 9. Holes accelerated in the accelerating channel 9 on the surface of the N-type semiconductor 11 have sufficient kinetic energy. Therefore, the potential barrier of the irreversible process generation unit 4 existing at the end of the N-type semiconductor 11 is quantum tunneled. Pass through by effect.
  • the sixth electrode 66 of the carrier accelerator functions as a tunnel electrode. The holes that are carriers are finally absorbed by the hole absorption collector 27.
  • the hole absorption collector 27 is electrically connected to the positive voltage terminal of the energy storage 15, and the electron absorption collector 26 is electrically connected to the negative voltage terminal of the energy storage 15.
  • the holes accumulated in the hole absorption collector 27 move to the positive electrode of the energy storage 15, and the electrons accumulated in the electron absorption collector 26 move to the negative electrode of the energy storage 15.
  • the holes stored in the positive electrode of the energy storage 15 and the electrons stored in the negative electrode of the energy storage 15 are close to each other and attract each other based on Coulomb's law.
  • One terminal of the electrical load 5 is connected to the positive electrode of the energy storage 15, and the other terminal of the electrical load 5 is connected to the negative electrode of the energy storage 15. Both holes and electrons stored in the energy storage 15 recombine in the electrical load 5 to supply electrical energy to the electrical load 5.
  • FIG. 70 shows a cross section of the field effect power generation device according to the ninth embodiment of the present invention in which both holes and electrons are used as carriers and the channel forming material is inclined.
  • a P-type semiconductor 10 is used as the carrier output material 1
  • an N-type semiconductor 11 is used as the channel forming material 2.
  • a PN junction is formed using the P-type semiconductor 10 and the N-type semiconductor 11.
  • An insulator 8 is disposed around the PN junction.
  • Five power supplies 30 are used to accelerate the carriers. As the five power sources 30, a first power source 31, a second power source 32, a third power source 33, a fourth power source 34, and a fifth power source 35 are used.
  • the first power supply 31 is used to inject electrons as carriers from the N-type semiconductor 11 to the P-type semiconductor 10.
  • a negative voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • a positive voltage terminal of the first power supply 31 is electrically connected to the second electrode 62 of the carrier accelerator.
  • An electric field is generated between the second electrode 62 of the carrier accelerator and the first electrode 61 of the carrier accelerator, and electric lines of force travel from the second electrode 62 of the carrier accelerator to the first electrode 61 of the carrier accelerator. Electrons that are majority carriers of the N-type semiconductor 11 are injected from the N-type semiconductor 11 into the P-type semiconductor 10 by this electric field.
  • the second electrode 62 of the carrier acceleration device functions as an injection electrode.
  • the electrons injected into the P-type semiconductor 10 are attracted to the second electrode 62 of the carrier accelerator and reach directly below the second electrode 62 of the carrier accelerator, and an inversion layer (inversion) is formed on the inclined surface of the P-type semiconductor 10. layer).
  • the inversion layer becomes the acceleration channel 9.
  • the negative voltage terminal of the second power supply 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the positive voltage terminal of the second power supply 32 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the electric field generated between the third electrode 63 of the carrier accelerator and the second electrode 62 of the carrier accelerator accelerates electrons injected into the P-type semiconductor 10 and moves on the surface of the P-type semiconductor.
  • the third electrode 63 of the carrier accelerator functions as a sliding electrode.
  • the negative voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the positive voltage terminal of the third power source 33 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the electric field generated between the fifth electrode 65 of the carrier accelerator and the third electrode 63 of the carrier accelerator accelerates the electrons injected into the P-type semiconductor 10 through the acceleration channel 9, and the surface of the P-type semiconductor.
  • the acceleration channel 9 is moved.
  • the electrons accelerated in the acceleration channel 9 on the surface of the P-type semiconductor 10 have sufficient kinetic energy, so that the potential barrier of the irreversible process generating unit 4 existing at the end of the P-type semiconductor 10 is quantum tunneled. Pass through by effect.
  • the fifth electrode 65 of the carrier accelerator functions as a tunnel electrode.
  • the electrons that are carriers are finally absorbed by the electron absorption collector 26.
  • the positive voltage terminal of the fourth power source 34 is electrically connected to the first electrode 61 of the carrier accelerator.
  • a negative voltage terminal of the fourth power supply 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • a first power supply 34 is used to inject holes, which are carriers, from the P-type semiconductor 10 to the N-type semiconductor 11.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the fourth electrode 64 of the carrier accelerator, and electric lines of force travel from the first electrode 61 of the carrier accelerator to the fourth electrode 64 of the carrier accelerator. By this electric field, holes which are majority carriers of the P-type semiconductor 10 are injected from the P-type semiconductor 10 to the N-type semiconductor 11.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the holes injected into the N-type semiconductor 11 are attracted to the fourth electrode 64 of the carrier accelerator, reach directly below the fourth electrode 64 of the carrier accelerator, and are inverted to the inclined surface of the N-type semiconductor 11. Form an inversion layer.
  • the inversion layer becomes the acceleration channel 9.
  • the positive voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the negative voltage terminal of the fifth power supply 35 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the electric field generated between the fourth electrode 64 of the carrier accelerator and the sixth electrode 66 of the carrier accelerator accelerates the holes injected into the N-type semiconductor 11 through the acceleration channel 9.
  • the fourth electrode 64 of the carrier accelerator functions as a sliding electrode.
  • the holes accelerated in the accelerating channel 9 on the surface of the N-type semiconductor 11 have sufficient kinetic energy, so that the potential barrier of the irreversible process generating unit 4 existing at the end of the N-type semiconductor 11 is quantum mechanically affected. Pass through by tunnel effect.
  • the sixth electrode 66 of the carrier accelerator functions as a tunnel electrode. The holes that are carriers are finally absorbed by the hole absorption collector 27.
  • the hole absorption collector 27 is electrically connected to the positive voltage terminal of the energy storage 15, and the electron absorption collector 26 is electrically connected to the negative voltage terminal of the energy storage 15.
  • the holes accumulated in the hole absorption collector 27 move to the positive electrode of the energy storage 15, and the electrons accumulated in the electron absorption collector 26 move to the negative electrode of the energy storage 15.
  • the holes stored in the positive electrode of the energy storage 15 and the electrons stored in the negative electrode of the energy storage 15 are close to each other and attract each other based on Coulomb's law.
  • One terminal of the electrical load 5 is connected to the positive electrode of the energy storage 15, and the other terminal of the electrical load 5 is connected to the negative electrode of the energy storage 15. Both holes and electrons stored in the energy storage 15 recombine in the electrical load 5 to supply electrical energy to the electrical load 5.
  • FIG. 71 shows a top view of an example in which both holes and electrons are used as carriers in the field effect power generation device according to the ninth embodiment of the present invention.
  • the P-type semiconductor 10 is PN-junctioned with the N-type semiconductor 11. Both the P-type semiconductor 10 and the N-type semiconductor 11 are bent at a right angle, and the occupied area can be reduced. Since the energy accumulator 15 can also be disposed at a close distance between the P-type semiconductor 10 and the N-type semiconductor, the manufacturing is simplified. Electrons that reach the electron absorption collector 26 are stored in the negative electrode of the energy storage 15, and holes that reach the hole absorption collector 27 are stored in the positive electrode of the energy storage 15 and attract each other by Coulomb force, Form a dipole. Therefore, by injecting many carriers from the P-type semiconductor 10 and the N-type semiconductor 11, the amount of electricity stored in the energy storage 15 can be increased, and the power generation efficiency is improved.
  • FIG. 72 shows an upper cross-section when an N-type semiconductor is used as the carrier output material and a P-type semiconductor is used as the two parallel channel forming materials in the field effect power generation device according to the tenth embodiment of the present invention.
  • a PN junction is formed by a P-type semiconductor 10 and an N-type semiconductor 11.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the N-type semiconductor 11, and the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the first power supply 31 is used to inject electrons as carriers from the N-type semiconductor 11 to the P-type semiconductor 10.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the fifth electrode 65 of the carrier accelerator, and the positive voltage terminal of the sixth power source 36 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the negative voltage terminal of the seventh power source 37 is electrically connected to the sixth electrode 66 of the carrier accelerator, and the positive voltage terminal of the seventh power source 37 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the negative voltage terminal of the eighth power source 38 is electrically connected to the seventh electrode 67 of the carrier accelerator, and the positive voltage terminal of the eighth power source 38 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator to which a positive potential is applied and the N-type semiconductor 11 to which a negative potential is applied. Electrons as carriers are transferred from the N-type semiconductor 11 to the P-type semiconductor 10 by the electric field. Injected.
  • the first electrode 61 of the carrier acceleration device acts as an injection electrode. Electron injection is performed in the acceleration channel 9 on the surface where the P-type semiconductor 10 is in contact with the insulator 8. The injected electrons are added to the first electrode 61, the second electrode 62, the third electrode 63, the fourth electrode 64, the fifth electrode 65, the sixth electrode 66, the seventh electrode 67, and the eighth electrode 68 to be positive.
  • the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, the fourth electrode 64 of the carrier accelerator, the fifth electrode 65 of the carrier accelerator, and the sixth electrode 66 of the carrier accelerator are electrons in the acceleration channel. Acts as a sliding electrode for movement.
  • the seventh electrode 67 of the carrier accelerator is used as an emission electrode.
  • the electron absorption collector 26 is electrically connected to the negative voltage terminal of the energy storage 15, and the electrons absorbed by the electron absorption collector 26 are stored in the negative electrode of the energy storage 15.
  • holes are injected from the P-type semiconductor 10 to the N-type semiconductor 11 by the generated electric field. Since the N-type semiconductor is electrically connected to the positive voltage terminal of the energy storage 15, the holes injected into the N-type semiconductor 11 are stored in the positive electrode of the energy storage 15. When an electrical load is connected in parallel to the energy storage 15, the positive charge and the negative charge stored in the energy storage 15 are recombined by moving via the electrical load. As a result, electrical energy is supplied to the electrical load.
  • FIG. 72 shows two P-type semiconductors 10 as an example, but actually, a large number of P-type semiconductors 10 are formed in parallel, and many electrons, which are carriers, reach the electron absorption collector 26. However, it is also possible to increase the generated electrical energy.
  • the three first electrodes 61 of the carrier acceleration device are shown in FIG. Since the carriers in the P-type semiconductor 11 on both sides thereof are accelerated by the first electrode 61 of one carrier accelerator, electric energy can be efficiently obtained by using the field effect power generator of this structure. Become.
  • FIG. 73 shows a cross section when an N-type semiconductor is used as a carrier output material, a P-type semiconductor is used as a channel formation material, and the channel formation material is inclined. Show.
  • a PN junction is formed by a P-type semiconductor 10 and an N-type semiconductor 11.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the N-type semiconductor 11, and the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the first power supply 31 is used to inject electrons as carriers from the N-type semiconductor 11 to the P-type semiconductor 10.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • An electric field is generated between the first electrode 61 of the carrier accelerator to which a positive potential is applied and the N-type semiconductor 11 to which a negative potential is applied. Electrons as carriers are transferred from the N-type semiconductor 11 to the P-type semiconductor 10 by the electric field. Injected.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode. Electrons are injected on the surface where the P-type semiconductor 10 is in contact with the insulator 8, and the electrons move in the acceleration channel 9. The injected electrons are added to the first electrode 61 of the carrier accelerator, the second electrode 62 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator, and are accelerated by an electric field generated by a positive voltage.
  • the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator act as a sliding electrode.
  • the third electrode of the carrier accelerator is arranged at the upper part, and the surface of the P-type semiconductor 10 is inclined upward. Therefore, when the injected electrons move on the boundary surface between the P-type semiconductor 10 and the insulator 8, the trajectory of the electron moving plane is not linear due to the inclination of the P-type semiconductor 10, and the surface shape is changed.
  • holes are injected from the P-type semiconductor 10 to the N-type semiconductor 11 by the effect of the generated electric field. Since the N-type semiconductor is electrically connected to the energy storage 15, the holes injected into the N-type semiconductor 11 are stored in the positive electrode of the energy storage 15. When the electrical load 5 is connected in parallel to the energy storage 15, the charge stored in the energy storage 15 is recombined via the electrical load 5. As a result, electric energy is supplied to the electric load 5, where electric energy is consumed.
  • FIG. 74 shows an external appearance when graphene is used as the channel forming material in the field effect power generation device according to the twelfth embodiment of the present invention.
  • a carrier output material 1 and a channel forming material 2 are disposed on the substrate 19.
  • the carrier output substance 1 is a conductive substance, and specific examples include titanium, nickel, copper, gold and silver.
  • An insulator 8 is disposed on the substrate, and a first electrode 61 of the carrier accelerator, a second electrode 62 of the carrier accelerator, a third electrode 63 of the carrier accelerator, and a carrier accelerator on the insulator 8.
  • a fourth electrode 64 is disposed. The case where graphene is used as the channel forming material 2 is shown.
  • carbon atoms When carbon atoms are chemically bonded by sp2 hybrid orbitals, they form a two-dimensionally bonded carbon hexagonal network.
  • An aggregate of carbon atoms having this planar structure is called graphene.
  • Graphene having a structure in which carbon atoms are arranged in a hexagonal network form one layer of graphite, and multilayer graphene is laminated to constitute the entire graphite.
  • the thickness is on the order of molecules, and the electrical conductivity is very good in the planar direction.
  • the mobility of electrons in graphene is very large, reaching 200,000 cm 2 / Vs, and the electrons move in a planar manner from a 6-membered ring to a 6-membered ring with almost no resistance.
  • FIG. 75 shows a cross section when graphene is used as a channel forming material in the field effect power generation device according to the twelfth embodiment of the present invention.
  • a carrier output material 1 and a channel forming material 2 are disposed on the substrate 19.
  • An insulator 8 is disposed on the top of the substrate, and the insulator 8 has a first electrode 61 of the carrier accelerator, a second electrode 62 of the carrier accelerator, a third electrode 63 of the carrier accelerator, and a first electrode of the carrier accelerator.
  • Four electrodes 64 are arranged.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the carrier output substance 1, and the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • a first power supply 31 is used to inject electrons as carriers from the carrier input / output material 1 into the channel forming material 2.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • An electric field is formed by a positive voltage applied from the first power supply 31 to the first electrode 61 of the carrier accelerator and a negative voltage applied to the carrier output substance 1. Electrons as carriers are injected from the carrier output material 1 to the graphene-like channel forming material 2 by the electric field formed in the direction from the first electrode 61 of the carrier accelerator to the carrier output material 1.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode. The injected electrons are added to the first electrode 61 of the carrier accelerator, the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator in the acceleration channel 9. Accelerated by positive voltage.
  • the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator act as a sliding electrode in which electrons are accelerated and moved on the surface of graphene.
  • FIG. 76 shows an enlarged cross section of the vicinity of the electron absorption collector when graphene is used as the channel forming material in the field effect power generation device according to the twelfth embodiment of the present invention.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the fifth electrode 65 of the carrier accelerator, and the positive voltage terminal of the sixth power source 36 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the fifth electrode 65 of the carrier accelerator and the sixth electrode 66 of the carrier accelerator are also disposed in the insulator 8 below and are electrically connected to the sixth power source 36 and the like.
  • the electrons move at high speed on the surface of the channel forming material 2 that is graphene, the electrons acquire sufficiently large kinetic energy.
  • the accelerated electrons are detached from the surface of the channel forming material 2 and are emitted into a vacuum.
  • the fifth electrode 65 of the carrier accelerator functions as an emission electrode. At the time of emission, electrons pass through the potential barrier which is the irreversible process generation unit 4 by the quantum mechanical tunnel effect.
  • the emitted electrons are accelerated by a positive voltage applied to the sixth electrode 66 of the carrier accelerator. That is, the sixth electrode 66 of the carrier accelerator functions as an acceleration electrode.
  • FIG. 77 shows an arrangement of carrier absorption graphene and carrier emission graphene in the field effect power generation device according to the twelfth embodiment of the present invention.
  • the carrier absorption graphene 71 and the carrier emission graphene 72 are thermally well connected. That is, the carrier-absorbing graphene 71 is very thin, and heat is conducted well two-dimensionally on the surface, and the heat is conducted well to the carrier-releasing graphene 72.
  • the carrier-absorbing graphene 71 and the carrier-releasing graphene 72 are manufactured integrally and bent at a substantially right angle.
  • the carrier absorption substrate 73 and the carrier emission substrate 74 are arranged substantially at right angles to each other, and they are substrates for holding the carrier absorption graphene 71 and the carrier emission graphene 72.
  • Both the carrier absorption substrate 73 and the carrier discharge substrate 74 are preferably defective heat conductors. That is, if heat is conducted two-dimensionally in the graphene and the amount of heat energy released outside via the carrier absorption substrate 73 and the carrier emission substrate 74 is small, the power generation efficiency is improved. Therefore, when a graphene film of carbon like graphite is laminated, the thermal conductivity between the laminations is small, and heat is blocked between the layers, good power generation efficiency can be obtained.
  • FIG. 77 The object having the structure shown in FIG. 77 is called an emitter / collector complex. Two emitter / collector complexes are arranged point-symmetrically.
  • FIG. 78 shows a cross-sectional view of the field effect power generation device according to the twelfth embodiment of the present invention when carrier absorption graphene and carrier emission graphene are used and the thermal feedback method is adopted.
  • a carrier emission substrate 74 shown in the lower part of the figure is a defective conductor of heat, and carrier emission graphene 72 is arranged on one surface thereof.
  • An insulator 8 is disposed on the surface of the carrier emission graphene 72.
  • a first electrode 61 of a carrier accelerator, a second electrode 62 of a carrier accelerator, a third electrode 63 of a carrier accelerator, and carrier acceleration A fourth electrode 64 of the device is arranged.
  • the display of the first power supply 31, the second power supply 32, the third power supply 33, the fourth power supply 34, the fifth power supply 35, and the sixth power supply 36 shown in FIGS. 75 and 76 is omitted.
  • the display of the fifth electrode 65 of the carrier acceleration device and the sixth electrode 66 of the carrier acceleration device shown in FIG. 76 is also omitted.
  • a positive voltage is applied from the first power supply 31 to the first electrode 61 of the carrier accelerator shown in the lower part of FIG.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the injected electrons are accelerated by the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator, and are emitted into vacuum.
  • the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator serve as a sliding electrode. The emitted electrons 50 move upward.
  • the emitted electrons 50 collide with and are absorbed by the carrier absorption graphene 71 disposed in the upper part of the figure. At the time of collision, the kinetic energy possessed by the electrons 50 is converted into thermal energy. Therefore, the temperature of the carrier absorption graphene 71 rises. The thermal energy of the carrier-absorbing graphene 71 is transmitted to the carrier-releasing graphene 72 shown in the upper part of the figure, and the temperature of the carrier-releasing graphene 72 rises and becomes high. Both the carrier absorption substrate 73 and the carrier absorption substrate 74 shown in the upper part of the figure are defective conductors of heat, and little heat energy flows out to the outside.
  • the electrons 50 absorbed by the carrier absorption graphene 71 shown in the upper part of the figure are transferred to the energy storage 15 and stored there.
  • the carrier emission graphene 72 is arranged on one surface of the carrier emission substrate 74 shown in the upper part of the figure.
  • An insulator 8 is disposed on the surface of the carrier emission graphene 72.
  • a first electrode 61 of a carrier accelerator, a second electrode 62 of a carrier accelerator, a third electrode 63 of a carrier accelerator, and carrier acceleration is arranged in the insulator 8.
  • a positive voltage is applied from the first power supply 31 to the first electrode 61 of the carrier acceleration device, and a negative voltage is applied from the first power supply 31 to the carrier output material 1, thereby causing the carrier from the first electrode 61 of the carrier acceleration device.
  • An electric field is formed in the direction of the output substance 1.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode. Since the carrier emission graphene 72 becomes a high temperature and the electrons therein acquire a large kinetic energy, the injected electrons are the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the first of the carrier accelerator. It is accelerated by the four electrodes 64 and is well emitted into the vacuum.
  • the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator serve as a sliding electrode.
  • the electrons 50 emitted in the vacuum move toward the lower part of the figure, collide with the carrier absorption graphene 71 arranged at the lower part of the figure, and are absorbed therein. At that time, the kinetic energy possessed by the electrons 50 is converted into thermal energy. Therefore, the temperature of the carrier absorption graphene 71 is increased. The thermal energy of the carrier-absorbing graphene 71 is transmitted to the carrier-releasing graphene 72 disposed in the lower part of the figure, and the temperature of the carrier-releasing graphene 72 rises and becomes high. Electrons absorbed by the carrier absorption graphene 71 shown in the lower part of the figure are transferred to the energy storage 15 and stored there. On the other hand, holes remain in the carrier emission graphene 72 shown in the upper part of FIG. The remaining holes move to the energy accumulator 15 where electrons and holes form a pair and are accumulated therein.
  • both the carrier absorption graphene 71 and the carrier emission graphene 72 become high temperature, and the number of electrons 50 emitted into the vacuum increases. It is also possible to store part of the emitted electrons 50 in the energy storage 15 and distribute the remaining electrons to the next emission. This case is called continuous field effect power generation.
  • a pulsed voltage is applied to the electrode 60 of the carrier accelerator, it is called time-division field effect power generation.
  • time-division field effect power generation there are a carrier emission period and a carrier accumulation period.
  • the carrier emission period electrons are emitted from the carrier emission graphene 72 and absorbed by the carrier absorption graphene 71.
  • the carrier accumulation period electrons absorbed in the carrier absorption graphene 71 are accumulated in the energy accumulator 15.
  • the present invention includes continuous field effect power generation and time division field effect power generation.
  • Electrons are emitted from the forward channel forming material 2, electrons are collected in the forward electron absorption collector, the electrons give collision energy to the forward electron absorption collector, the forward electron absorption collector is heated, and the forward electron absorption collector Is transferred to the channel forming material 2 on the return path, and the temperature of the channel forming material 2 on the return path rises, so that a large amount of electrons are emitted from the channel forming material 2 on the return path, and a large amount Electrons are collected, a large amount of electrons give collision energy to the return electron absorption collector, the return electron absorption collector is heated, and the heat energy of the return electron absorption collector is conducted to the channel forming material 2 in the return path, As the temperature of the channel forming material 2 rises, a larger amount of electricity is generated from the channel forming material 2 in the forward path. There By repeating the process of being emissions, called a device power output increases the field effect power generation of the thermal feedback system.
  • FIG. 79 shows a cross-sectional view of the field effect power generator according to the thirteenth embodiment of the present invention when the thermal feedback method is adopted.
  • FIG. 80 when the start switch 101 in mode 1 is in a conductive state, FIG. 80 is an enlarged view of the periphery of the forward carrier output material 107.
  • the field effect power generation device according to the thirteenth embodiment of the present invention when the thermal feedback method is adopted, the periphery of the carrier output material on the return path is enlarged and the cross section is shown in FIG.
  • FIG. 79 when the start switch 102 in mode 2 is in the conductive state, FIG. 81 is an enlarged view of the vicinity of the carrier output material 108 on the return path.
  • the operation of the thermal feedback field effect power generation is divided into three modes.
  • [Mode 1] starts in the initial state of thermal feedback field effect power generation. If the temperature of the channel forming material 2 in the forward path and the channel forming material 2 in the return path exceed a certain threshold value after a certain period of time has elapsed, the operation proceeds to the operation of [Mode 1]. By shifting to the operation of [Mode 2] and then repeating the operation of [Mode 1] and [Mode 2], the field effect power generation reaches a steady state.
  • a first power supply 31, a second power supply 32, a third power supply 33, and a fourth power supply 34 are used as power supplies for the outward path.
  • the channel forming material 2 is electrically connected to the forward carrier output material 107.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the forward carrier output substance 107
  • the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the positive voltage applied to the first electrode 61 of the carrier accelerator and the negative voltage applied to the forward carrier output material 107 generate an electric field, and electrons are generated from the forward carrier output material 107 based on the effect of the generated electric field. It is injected into the channel forming substance 2.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the injected electrons move through the acceleration channel 9 on the surface of the channel-forming material 2 and pass through the potential barrier existing in the irreversible process generating part 4 by the quantum mechanical tunnel effect, so that the electrons are emitted into the vacuum. Is done.
  • the first electrode 61 of the carrier accelerator also functions as an emission electrode. The emitted electrons are accelerated in the acceleration channel 9 and travel.
  • the emitted electrons are accelerated in the acceleration channel 9 by the positive voltage applied by the second power source 32 to the second electrode 62 of the carrier acceleration device. Due to the positive voltage applied by the third power source 33 to the third electrode 63 of the carrier accelerator, the emitted electrons are further accelerated in the acceleration channel 9 and travel. Due to the positive voltage applied by the fourth power source 34 to the fourth electrode 64 of the carrier accelerator, the emitted electrons are further accelerated in the acceleration channel 9 and travel.
  • the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator act as an acceleration electrode.
  • the emitted and accelerated electrons collide with the electron absorption collector 229 in the forward path, and are collected by this.
  • the kinetic energy possessed by the accelerated electrons is supplied to the forward electron absorption collector 229, and the temperature of the forward electron absorption collector 229 rises.
  • negative charges are accumulated in the electron absorption collector 229 in the forward path where electrons are collected.
  • the thermal energy supplied to the outward electron absorption collector 229 is conducted to the return carrier output material 108 via the outward heat conductor 123.
  • the electrons accumulated in the outward electron absorption collector 229 reach the return carrier output material 108 via the outward heat conductor 123.
  • a fifth power source 35, a sixth power source 36, a seventh power source 37, and an eighth power source 38 are used as power sources for the return path.
  • the channel forming material 2 is electrically connected to the carrier output material 108 on the return path.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the return carrier output material 108
  • the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • a positive voltage applied to the fifth electrode 65 of the carrier accelerator and a negative voltage applied to the return carrier output material 108 generate an electric field, and electrons are generated from the return carrier output material 108 based on the effect of the generated electric field. It is injected into the channel forming substance 2.
  • the fifth electrode 65 of the carrier acceleration device functions as an injection electrode.
  • the injected electrons move on the surface of the channel forming material 2 and pass through the potential barrier existing in the irreversible process generating portion 4 by quantum mechanical tunneling, so that the electrons are emitted into the vacuum.
  • the fifth electrode 65 of the carrier acceleration device also functions as an emission electrode. The emitted electrons are accelerated in the acceleration channel 9 and travel.
  • the emitted electrons are accelerated in the acceleration channel 9 by the positive voltage applied by the sixth power source 36 to the sixth electrode 66 of the carrier accelerator, and travel. Due to the positive voltage that the seventh power source 37 applies to the seventh electrode 67 of the carrier accelerator, the emitted electrons are further accelerated in the acceleration channel 9 and travel. Due to the positive voltage applied by the eighth power source 38 to the eighth electrode 68 of the carrier accelerator, the emitted electrons are further accelerated in the acceleration channel 9 and travel.
  • the sixth electrode 66 of the carrier accelerator, the seventh electrode 67 of the carrier accelerator, and the eighth electrode 68 of the carrier accelerator act as an acceleration electrode.
  • the emitted and accelerated electrons collide with the electron absorption collector 230 on the return path, and are collected in this.
  • the kinetic energy possessed by the accelerated electrons is supplied to the return electron absorption collector 230, and the temperature of the return electron absorption collector 230 rises. Further, negative charges are accumulated in the return electron absorption collector 230 that collected the electrons.
  • the thermal energy supplied to the return electron absorption collector 230 is conducted to the forward carrier output material 107 via the return heat conductor 124.
  • the electrons accumulated in the return electron absorption collector 230 reach the forward carrier output material 107 via the return heat conductor 124. Electrons reach the forward carrier output material 107, and further, heat energy is conducted to the forward carrier output material 107, so that a large amount of electrons are injected from the forward carrier output material 107 into the channel forming material 2 to form a channel. The number of electrons emitted from the substance 2 increases. By repeating the above process, the temperatures of the forward carrier output material 107 and the return carrier output material 108 both rise.
  • both the forward carrier output material 107 and the return carrier output material 108 reach a high temperature state, and electrons inside them hold a large kinetic energy, so that a large amount of energy is transferred from the carrier output material 108 to the channel forming material 2. Electrons are injected. The temperature in the channel forming material 2 also rises, and the electrons inside the channel forming material 2 have large kinetic energy, so that a large amount of electrons are emitted from the channel forming material 2. When this state is reached, since full-scale power generation can be performed, the mode is shifted to mode 1.
  • Mode 1 When the mode is switched to 1, the mode 1 start switch 101 is set to the conductive state and the mode 2 start switch 102 is set to the non-conductive state in FIG.
  • a first power supply 31, a second power supply 32, a third power supply 33, and a fourth power supply 34 are used as power supplies for the outward path.
  • the channel forming material 2 is electrically connected to the forward carrier output material 107.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the forward carrier output substance 107, and the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator. Connected.
  • the positive voltage applied to the first electrode 61 of the carrier accelerator and the negative voltage applied to the forward carrier output material 107 generate an electric field, and electrons are generated from the forward carrier output material 107 based on the effect of the generated electric field. It is injected into the channel forming substance 2.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode. Since the temperature of the forward carrier output material 107 is high in the process of mode 0, the kinetic energy possessed by the electrons in the forward carrier output material 107 increases, and is injected from the forward carrier output material 107 into the channel forming material 2. The number of electrons to be increased.
  • a large amount of injected electrons move on the surface of the channel forming material 2 and pass through the potential barrier existing in the irreversible process generating part 4 by quantum mechanical tunneling, so that a large amount of electrons are emitted into the vacuum. Is done.
  • the first electrode 61 of the carrier accelerator also functions as an emission electrode. The emitted electrons are accelerated in the acceleration channel 9 and travel. Due to the positive voltage applied by the second power source 32 to the second electrode 62 of the carrier accelerator, a large amount of emitted electrons are accelerated in the acceleration channel 9 and travel. Due to the positive voltage applied by the third power source 33 to the third electrode 63 of the carrier accelerator, a large amount of the emitted electrons are further accelerated in the acceleration channel 9 and travel.
  • the fourth power source 34 Due to the positive voltage applied by the fourth power source 34 to the fourth electrode 64 of the carrier accelerator, a large amount of emitted electrons are further accelerated in the acceleration channel 9 and travel.
  • the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator act as an acceleration electrode.
  • a large amount of electrons that have been emitted and accelerated collide with the electron absorption collector 229 in the forward path and are collected by this. At this time, the kinetic energy possessed by the accelerated electrons is supplied to the forward electron absorption collector 229, and the temperature of the forward electron absorption collector 229 rises.
  • the thermal energy supplied to the outward electron absorption collector 229 is conducted to the return carrier output material 108 via the outward heat conductor 123. Negative charges are accumulated in the forward electron absorption collector 229 that collected a large amount of electrons. On the other hand, a large amount of holes remain in the forward carrier output material 107 into which a large amount of electrons have been injected. A large amount of electrons collected in the forward electron absorption collector 229 move to the mode 1 energy storage 115, and a large amount of holes remaining in the forward carrier output material 107 move to the mode 1 energy storage 115. Accumulated there.
  • mode 1 start switch 101 When switched to mode 2, in FIG. 79, mode 1 start switch 101 is set to a non-conductive state, and mode 2 start switch 102 is set to a conductive state.
  • a fifth power source 35, a sixth power source 36, a seventh power source 37, and an eighth power source 38 are used as power sources for the return path.
  • the channel forming material 2 is electrically connected to the return carrier output material 108.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the return carrier output material 108
  • the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator. Connected.
  • a positive voltage applied to the fifth electrode 65 of the carrier accelerator and a negative voltage applied to the return carrier output material 108 generate an electric field, and electrons are generated from the return carrier output material 108 based on the effect of the generated electric field. It is injected into the channel forming substance 2.
  • the fifth electrode 65 of the carrier acceleration device acts as an injection electrode. Since the temperature of the carrier output material 108 on the return path is high due to the process of mode 0, the kinetic energy possessed by the electrons in the carrier output material 108 on the return path increases, and is injected into the channel forming material 2 from the carrier output material 108 on the return path. The number of electrons to be increased.
  • a large amount of injected electrons move on the surface of the channel forming material 2 and pass through the potential barrier existing in the irreversible process generating part 4 by quantum mechanical tunneling, so that a large amount of electrons are emitted into the vacuum. Is done.
  • the emitted electrons are accelerated in the acceleration channel 9 and travel. Due to the positive voltage applied by the sixth power source 36 to the sixth electrode 66 of the carrier accelerator, a large amount of emitted electrons are accelerated in the acceleration channel 9 and travel. Due to the positive voltage applied by the seventh power source 37 to the seventh electrode 67 of the carrier accelerator, a large amount of the emitted electrons are further accelerated in the acceleration channel 9 and travel.
  • the sixth electrode 66 of the carrier accelerator, the seventh electrode 67 of the carrier accelerator, and the eighth electrode 68 of the carrier accelerator act as an acceleration electrode.
  • a large amount of the emitted and accelerated electrons collide with the electron absorption collector 230 on the return path, and are collected in this.
  • the kinetic energy held by the accelerated electrons is supplied to the return electron absorption collector 230, and the temperature of the return electron absorption collector 230 is increased.
  • the thermal energy supplied to the return electron absorption collector 230 is conducted to the forward carrier output material 107 via the return heat conductor 124.
  • Negative charges are accumulated in the return electron absorption collector 230 that collected a large amount of electrons.
  • a large amount of holes remain in the return carrier output material 108 after the injection of a large amount of electrons.
  • a large amount of electrons collected in the return electron absorption collector 230 move to the mode 2 energy storage 116, and a large amount of holes remaining in the return carrier output material 108 move to the mode 2 energy storage 116.
  • the start switch 101 in mode 1 is in a non-conducting state, and no electric field acts on the return circuit, so that the electrons injected from the forward carrier output material 108 are almost zero. Accordingly, all of the electrons collected in the return electron absorption collector 230 are transferred to the mode 2 energy storage 116.
  • the electrical load 5 is connected in parallel to the mode 2 energy storage 116, the generated electrical energy is consumed.
  • the temperatures of the forward carrier output material 107, the return carrier output material 108, and the forward and return channel forming materials 2 are increased. Therefore, the mode 1 and the mode 2 When the switching time is shortened, the high temperature state is maintained. The number of electrons injected from the forward carrier output material 107 and the return carrier output material 108 into the forward and return channel forming materials 2 increases. Furthermore, since the number of electrons emitted from the channel forming material 2 in the forward path and the return path into the vacuum increases, the electric power obtained by power generation increases.
  • the kinetic energy and charge possessed by the electrons accelerated by the effect of the electric field are effectively used for power generation, so the field effect power generation device can generate power with good efficiency and spread it all over the world.
  • the problem of energy depletion and the difficulty of destroying the global environment caused by the burning of fossil fuels can be solved simultaneously.
  • FIG. 82 shows a cross section of the field effect power generator according to the fourteenth embodiment of the present invention when the thermal feedback method is employed.
  • the thermal feedback type field effect power generation device is divided into power generation in the forward path and power generation in the return path, and uses the first power source 31, the second power source 32, the third power source 33, and the fourth power source 34 as power sources for the forward path.
  • the forward carrier output material 333, the forward channel forming material 335, and the forward electron absorption collector 229 are disposed on the surface of the substrate 19.
  • Graphene is used as an example of the forward channel forming material 335.
  • the forward channel forming material 335 that is graphene is electrically connected to the forward carrier output material 333.
  • An insulator 8 is disposed on the upper surfaces of the forward carrier output material 333, the forward channel forming material 335, and the forward electron absorption collector 229.
  • the first electrode 61 of the forward carrier accelerator, the second electrode 62 of the forward carrier accelerator, the third electrode 63 of the forward carrier accelerator, and the fourth electrode of the forward carrier accelerator 64 is arranged.
  • the thermal feedback type field effect power generation device there are an outward operation and a return operation, and they operate in parallel.
  • the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the forward carrier output material 333.
  • An electric field is generated between the first electrode 61 of the carrier accelerator and the forward carrier output material 333. Electrons are injected from the forward carrier output material 333 into the forward channel forming material 335 by the effect of the generated electric field.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the first power supply 31 is used to inject electrons, which are carriers, from the forward carrier output material 333 to the forward channel forming material 335.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator act as a sliding electrode.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the fourth electrode 64 of the carrier accelerator functions as an emission electrode.
  • An electric field is generated between the first electrode 61 of the carrier acceleration device to which the positive voltage of the first power supply 31 is applied and the forward carrier output material 333 to which the negative voltage of the first power supply 31 is applied. From the carrier output material 333 is injected into the forward channel forming material 335. At that time, the potential barrier between the forward carrier output material 333 and the forward channel forming material 335 is tunneled by an electric field generated between the first electrode 61 of the carrier accelerator and the forward carrier output material 333.
  • the first electrode 61 of the carrier accelerator functions as a tunnel electrode.
  • the injected electrons move in the acceleration channel 9.
  • the injected electrons are generated by a positive voltage applied to the first electrode 61 of the carrier accelerator, the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator. Is accelerated in the acceleration channel 9 and the kinetic energy of electrons increases.
  • the fourth electrode 64 of the carrier acceleration device also functions as an acceleration electrode. Electrons having large kinetic energy reach the irreversible process generation unit 4 and are emitted from the channel forming material 335 in the forward path.
  • the potential barrier corresponding to the work function between the forward channel forming material 335 and the vacuum passes through the tunnel based on the tunnel effect by the generated electric field, and electrons are emitted into the vacuum.
  • the fourth electrode 64 of the carrier acceleration device also functions as an emission electrode.
  • the emitted electrons fly between the insulator 8 and the substrate 19 and reach the electron absorption collector 229 in the forward path.
  • the electrons that have reached the forward electron absorption collector 229 move to the forward energy storage 213.
  • holes remain in the forward carrier output substance 333 that has output electrons as carriers. The holes move to the forward energy storage 213, where the electrons and holes form a dipole.
  • the electrons that reach the forward electron absorption collector 229 move to the forward energy storage 213, and almost no electrons remain in the forward electron absorption collector 229. Therefore, the electrons that subsequently approach the forward electron absorption collector 229 There is almost no obstruction to the course. Holes also move from the forward carrier output material 333 to the forward energy storage 213, where electrons and holes form a dipole, so that the positive charge held by the holes is transferred from the forward carrier output material 333 to the forward channel. It is a feature of the power generation device of the present invention that the movement of the electrons moving to the forming substance 335 is hardly obstructed, and good power generation is performed. In the preceding power generation apparatus, electrons and holes remain in the original substance and obstruct the movement of subsequent carriers, and it has been difficult to realize highly efficient power generation.
  • the temperature of the electron absorption collector 229 in the forward path rises.
  • the temperature of the outgoing electron absorption collector 229 rises, and the thermal energy is conducted to the return carrier output material 334 via the outgoing heat conductor 123. Accordingly, the kinetic energy of the electrons in the carrier output material 334 on the return path increases, so that the number of electrons emitted on the return path increases. In other words, when electrons are accelerated and their kinetic energy increases, the kinetic energy is converted into thermal energy by electron collision, and the thermal energy increases the number of electrons emitted on the return path. Since all generated energy is used effectively, power generation efficiency is improved.
  • a return carrier output material 334, a return channel forming material 336, and a return electron absorption collector 230 are disposed below the substrate 19.
  • Graphane is used as an example of the return channel forming material 336.
  • the return channel forming material 336, which is graphene, is electrically connected to the return carrier output material 334.
  • An insulator 8 is disposed on the lower surface of the return carrier output material 334, the return channel forming material 336, and the return electron absorption collector 230.
  • the first electrode 261 of the return carrier accelerator, the second electrode 262 of the return carrier accelerator, the third electrode 263 of the return carrier accelerator, and the fourth electrode of the return carrier accelerator H.264 is arranged on the lower surface of the insulator 8.
  • the first electrode 261 of the return carrier acceleration device acts as an injection electrode.
  • the second electrode 262 of the return carrier accelerator and the third electrode 263 of the return carrier accelerator act as a sliding electrode.
  • the fourth electrode 264 of the return carrier acceleration device acts as an emission electrode and an acceleration electrode.
  • a heat feedback type field effect power generation device it is possible to perform two operations, an outward operation and a return operation.
  • the forward heat conductor 123 and the return heat conductor 124 are insulators
  • the power generation in the forward path and the power generation in the return path are electrically insulated, so that both operate independently. Therefore, the power generation on the forward path and the power generation on the return path can be simultaneously performed in parallel, and the power generation efficiency is improved.
  • an insulating material such as silicon dioxide, ceramic, mica, or the like is used as an example of the insulator.
  • the outward heat conductor 123 and the return heat conductor 124 are electrically conductive, it is necessary to temporally switch between the power generation in the outward path and the power generation in the return path, and therefore the concept of mode is introduced. That is, in the mode 1, the forward power generation is performed, in the mode 2, the return power generation is performed, and the field effect power generation is realized by switching these by an electronic switching operation.
  • the positive voltage terminal of the first power source 231 on the return path is electrically connected to the first electrode 261 of the carrier accelerator on the return path.
  • the negative voltage terminal of the first power supply 231 on the return path is electrically connected to the carrier output material 334 on the return path.
  • a return first power source 231 is used to inject electrons as carriers from the return carrier output material 334 to the return channel forming material 336.
  • the negative voltage terminal of the return second power source 232 is electrically connected to the first electrode 261 of the return carrier accelerator, and the positive voltage terminal of the return second power source 232 is connected to the second electrode 262 of the return carrier accelerator. Electrically connected.
  • the negative voltage terminal of the return third power source 233 is electrically connected to the second electrode 262 of the return carrier accelerator, and the positive voltage terminal of the return third power source 233 is connected to the third electrode 263 of the return carrier accelerator. Electrically connected.
  • the negative voltage terminal of the return fourth power source 234 is electrically connected to the third electrode 263 of the return carrier accelerator, and the positive voltage terminal of the return fourth power source 234 is connected to the fourth electrode 264 of the return carrier accelerator. Electrically connected.
  • the first electrode 261 of the return carrier acceleration device acts as an injection electrode.
  • the potential barrier between the return carrier output material 334 and the return channel forming material 336 is generated by the electric field generated between the first electrode 261 of the return carrier accelerator and the return carrier output material 334. Due to the tunnel effect, electrons pass through.
  • the first electrode 261 of the return carrier acceleration device also functions as a tunnel electrode.
  • the injected electrons move in the acceleration channel 9.
  • the injected electrons are added to the first electrode 261 of the return carrier accelerator, the second electrode 262 of the return carrier accelerator, the third electrode 263 of the return carrier accelerator, and the fourth electrode 264 of the return carrier accelerator.
  • the accelerating channel 9 is accelerated by the electric field generated by the generated positive voltage, and the kinetic energy of electrons increases. Electrons having large kinetic energy reach the irreversible process generation unit 4 and are emitted from the channel forming material 336 on the return path.
  • the second electrode 262 of the return carrier accelerator and the third electrode 263 of the return carrier accelerator act as a sliding electrode.
  • the fourth electrode 264 of the return carrier acceleration device acts as an emission electrode.
  • the potential barrier corresponding to the work function between the channel forming material 336 on the return path and the vacuum passes through the tunnel based on the tunnel effect by the generated electric field, and electrons are emitted into the vacuum.
  • the emitted electrons fly between the insulator 8 and the substrate 19 and reach the return electron absorption collector 230.
  • the electrons that have reached the return electron absorption collector 230 move to the return energy storage 214.
  • holes remain in the return carrier output substance 334 that outputs electrons as carriers. The holes move to the return energy store 214 where the electrons and holes form a dipole.
  • Electrons that reach the return electron absorption collector 230 move to the return energy storage 214 and almost no electrons remain in the return electron absorption collector 230, so that the electrons that subsequently approach the return electron absorption collector 230. There is almost no obstruction to the course. Holes also move from the return carrier output material 334 to the return energy storage 214 where the electrons and holes form a dipole so that the positive charge carried by the holes is returned from the return carrier output material 334 to the return channel. It is a feature of the power generation device of the present invention that the movement of the electrons moving to the forming material 336 is hardly obstructed and good power generation is performed. In the preceding power generation apparatus, electrons and holes remain in the original substance and obstruct the movement of subsequent carriers, and it has been difficult to realize highly efficient power generation.
  • the temperature of the return electron absorption collector 230 rises.
  • the temperature of the return electron absorption collector 230 rises, and thermal energy is conducted to the forward carrier output material 333 via the return heat conductor 124. Accordingly, since the kinetic energy of electrons in the forward carrier output material 333 increases, the number of electrons emitted in the forward path increases. In other words, when electrons are accelerated and their kinetic energy increases, the kinetic energy is converted into thermal energy due to electron collision, and the thermal energy increases the number of electrons emitted in the forward path, so a field effect power generator of the thermal feedback system Since all generated energy is used effectively, power generation efficiency is improved.
  • the thermal energy increases the number of electron emissions in the next forward path.
  • the collision of the emitted electrons in the forward path raises the temperature of the electron absorption collector 229 in the forward path, and the collision of the emitted electrons in the backward path increases the temperature of the electron absorption collector 230 in the backward path.
  • the number increases, and the power generation efficiency of the thermal feedback field effect power generator improves.
  • the optimal temperature for the apparatus is set. Long-term use of the field effect power generator becomes possible.
  • FIG. 83 shows a cross section of the mode 1 when the alternating power generation method is adopted.
  • the first power source 31, the second power source 32, the third power source 33, the fourth power source 34, the fifth power source 35, the sixth power source 36, the seventh power source 37 and the eighth power source are used as the power sources.
  • the power source 38 is connected to the electrode of the carrier accelerator as in the case of FIG. 79, but these displays are omitted in FIG.
  • the channel forming material 2 and the electron absorption collector 26 are disposed on the surface of the substrate 19.
  • An insulator 8 is disposed on the upper surfaces of the channel forming material 2 and the electron absorption collector 26.
  • Graphene is used for both the channel forming material 2 and the electron absorption collector 26.
  • the channel forming material 2 that is graphene and the carrier output material 1 are electrically connected.
  • the channel forming material 2 is carbon-based graphene, it is necessary to apply a special bonding method in order to electrically connect the carrier output material 1 and the channel forming material 2. That is, when titanium is used as an example of the carrier output material 1, good electrical connection is made with the carbon-based channel forming material 2 at the 1100 ° C. position.
  • the carrier output substance 1 is heated by switching the mode and becomes high temperature, so that the carrier output substance 1 and the channel forming substance 2 are electrically connected in a high temperature state. As a result, good power generation efficiency can be obtained.
  • the electron absorption collector 26 and the collector 24, which are graphene, are electrically connected.
  • the alternating power generation type field effect power generation device has mode 1 and mode 2. Switching between mode 1 and mode 2 is performed using the start switch 101 in mode 1 and the start switch 102 in mode 2.
  • the start switch 101 in mode 1 and the start switch 102 in mode 2 are connected between the power source and the electrodes of the carrier accelerator as in the case shown in FIG. 79, but their display is omitted in FIG.
  • the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the carrier output substance 1 via the mode 1 start switch 101.
  • a first power source 31 is used to inject electrons as carriers from the carrier input / output material 1 into the channel forming material 2.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, and the fourth electrode 64 of the carrier accelerator serve as a sliding electrode.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the fifth power source 35 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the eighth electrode 68 of the carrier accelerator, and the positive voltage terminal of the sixth power source 36 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the negative voltage terminal of the seventh power source 37 is electrically connected to the seventh electrode 67 of the carrier accelerator, and the positive voltage terminal of the seventh power source 37 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the negative voltage terminal of the eighth power source 38 is electrically connected to the sixth electrode 66 of the carrier accelerator, and the positive voltage terminal of the eighth power source 38 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the eighth electrode 68 of the carrier accelerator, the seventh electrode 67 of the carrier accelerator, the sixth electrode 66 of the carrier accelerator, and the fifth electrode 65 of the carrier accelerator act as an emission electrode and an acceleration electrode.
  • the mode 1 start switch 101 is in a conductive state and the mode 2 start switch 102 is in a nonconductive state.
  • the carrier output substance 1 is conductive, and usually a metal is used.
  • An electric field is generated between the first electrode 61 of the carrier accelerator to which a positive voltage is applied and the carrier output material 1 to which a negative voltage is applied, and electrons acting as carriers from the carrier output material 1 are channel forming materials by the action of the electric field. 2 is injected.
  • the potential barrier between the carrier output material 1 and the channel forming material 2 allows electrons to penetrate through the tunnel effect due to the electric field generated between the first electrode 61 of the carrier accelerator and the carrier output material 1. Pass through.
  • the first electrode 61 of the carrier accelerator functions as a tunnel electrode. The injected electrons move in the acceleration channel 9.
  • the injected electrons are the first electrode 61 of the carrier accelerator, the second electrode 62 of the carrier accelerator, the third electrode 63 of the carrier accelerator, the fourth electrode 64 of the carrier accelerator, the eighth electrode 68 of the carrier accelerator,
  • the accelerating channel 9 is accelerated by the electric field generated by the positive voltage applied to the seventh electrode 67 of the carrier accelerator, the sixth electrode 66 of the carrier accelerator, and the fifth electrode 65 of the carrier accelerator, and the kinetic energy of the electrons is increased. Become.
  • the seventh electrode 67, the sixth electrode 66 of the carrier accelerator, and the fifth electrode 65 of the carrier accelerator act as an emission electrode and an acceleration electrode. Electrons having large kinetic energy reach the irreversible process generation unit 4 and are emitted from the channel forming material 2. At this time, the potential barrier corresponding to the work function between the channel forming material 2 and the vacuum passes through the tunnel due to the generated electric field, and electrons are emitted into the vacuum. The emitted electrons fly between the insulator 8 and the substrate 19, reach the electron absorption collector 26, and finally reach the collector 24.
  • the electrons reaching the collector 24 move to the mode 1 energy storage 115.
  • holes remain in the carrier output material 1 that has output electrons as carriers.
  • the holes move to the mode 1 energy store 115 where the electrons and holes form a dipole.
  • Electrons that reach the collector 24 move to the mode 1 energy storage 115, and almost no electrons remain in the collector 24, so that the path of electrons that subsequently approach the collector 24 is hardly obstructed.
  • Holes also move from the carrier output material 1 to the mode 1 energy storage 115 where the electrons and holes form a dipole, so that the positive charge held by the holes moves from the carrier output material 1 to the channel forming material 2 It is a feature of the power generation device of the present invention that the movement of the electrons is hardly obstructed and good power generation is performed. In the preceding power generation apparatus, electrons and holes remain in the original substance and obstruct the movement of subsequent carriers, and it has been difficult to realize highly efficient power generation. Since the emitted electrons are accelerated and collide with the electron absorption collector 26, the temperature of the electron absorption collector 26 rises.
  • the kinetic energy of the electrons in it increases, so when switched to mode 2, the number of electrons emitted increases. That is, when an electron is accelerated and its kinetic energy increases, the kinetic energy is converted into thermal energy due to electron collision, and the thermal energy increases the number of electrons emitted in the next mode, so the field effect of the alternating power generation method Since all the generated energy is used effectively, the power generation efficiency is improved.
  • the mode 1 start switch 101 is in a non-conductive state
  • the mode 2 start switch 102 is in a conductive state.
  • the first power source 31, the second power source 32, the third power source 33, the fourth power source 34, the fifth power source 35, the sixth power source 36, and the seventh power source 37 are used as power sources.
  • the eighth power source 38 is connected to the electrode of the carrier acceleration device as shown in FIG. 79, but they are omitted in FIG.
  • FIG. 84 shows a cross section of the mode 2 when the alternating power generation method is adopted in the field effect power generator according to the fifteenth embodiment of the present invention.
  • the positive voltage terminal of the first power supply 31 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the carrier output substance 1 via the mode 2 start switch 102.
  • a first power source 31 is used to inject electrons as carriers from the carrier input / output material 1 into the channel forming material 2.
  • the fifth electrode 65 of the carrier accelerator functions as an injection electrode for injecting electrons from the carrier input / output material 1 to the channel forming material 2.
  • the negative voltage terminal of the second power source 32 is electrically connected to the fifth electrode 65 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the sixth electrode 66 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the sixth electrode 66 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the seventh electrode 67 of the carrier accelerator.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the seventh electrode 67 of the carrier accelerator, and the positive voltage terminal of the fourth power source 34 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the eighth electrode 68 of the carrier accelerator.
  • the sixth electrode 66 of the carrier accelerator, the seventh electrode 67 of the carrier accelerator, and the eighth electrode 68 of the carrier accelerator serve as a sliding electrode.
  • the positive voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the negative voltage terminal of the sixth power source 36 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the sixth power source 36 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the seventh power source 37 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the seventh power source 37 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the eighth power source 38 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the eighth power source 38 is electrically connected to the first electrode 61 of the carrier accelerator.
  • the fourth electrode 64 of the carrier accelerator, the third electrode 63 of the carrier accelerator, the second electrode 62 of the carrier accelerator, and the first electrode 61 of the carrier accelerator act as an emission electrode and an acceleration electrode.
  • the mode 2 start switch 102 is in a conductive state
  • the mode 1 start switch 101 is in a nonconductive state.
  • the carrier output substance 1 is conductive, and usually a metal is used.
  • the channel forming material 2 and the electron absorption collector 26 are disposed on the surface of the substrate 19. Graphene is used for both the channel forming material 2 and the electron absorption collector 26.
  • the channel forming material 2 that is graphene and the carrier output material 1 are electrically connected.
  • the channel forming material 2 is carbon-based graphene
  • a special adhesion method needs to be applied to electrically connect the carrier output material 1 and the channel forming material 2. That is, when titanium is used as an example of the carrier output material 1, good electrical connection is made with the carbon-based channel forming material 2 at the 1100 ° C. position.
  • the carrier output substance 1 is heated by switching the mode and becomes high temperature, so that the carrier output substance 1 and the channel forming substance 2 are electrically connected in a high temperature state. As a result, good power generation efficiency can be obtained.
  • the electron absorption collector 26 and the collector 24, which are graphene, are electrically connected.
  • An electric field is generated between the first electrode 61 of the carrier accelerator to which a positive voltage is applied and the carrier output material 1 to which a negative voltage is applied, and electrons acting as carriers from the carrier output material 1 are channel forming materials by the action of the electric field. 2 is injected.
  • the potential barrier between the carrier output material 1 and the channel forming material 2 allows electrons to penetrate through the tunnel effect due to the electric field generated between the first electrode 61 of the carrier accelerator and the carrier output material 1. Pass through.
  • the first electrode 61 of the carrier accelerator functions as a tunnel electrode. The injected electrons move in the acceleration channel 9.
  • the injected electrons are the fifth electrode 65 of the carrier accelerator, the sixth electrode 66 of the carrier accelerator, the seventh electrode 67 of the carrier accelerator, the eighth electrode 68 of the carrier accelerator, the fourth electrode 64 of the carrier accelerator,
  • the accelerating channel 9 is accelerated by the electric field generated by the positive voltage applied to the third electrode 63 of the carrier accelerator, the second electrode 62 of the carrier accelerator, and the first electrode 61 of the carrier accelerator, and the kinetic energy of the electrons is increased.
  • Electrons having large kinetic energy reach the irreversible process generation unit 4 and are emitted from the channel forming material 2.
  • the potential barrier corresponding to the work function between the channel forming material 2 and the vacuum passes through the tunnel due to the generated electric field, and electrons are emitted into the vacuum.
  • the emitted electrons fly between the insulator 8 and the substrate 19, reach the electron absorption collector 26, and finally reach the collector 24.
  • the electrons that have reached the collector 24 move to the mode 2 energy storage 116.
  • holes remain in the carrier output material 1 that has output electrons as carriers.
  • the holes move to the mode 2 energy store 116 where the electrons and holes form a dipole.
  • the electrons that reach the collector 24 move to the mode 2 energy storage 116, and almost no electrons remain in the collector 24, so that the path of the electrons that subsequently approach the collector 24 is hardly obstructed. Holes also move from the carrier output material 1 to the mode 2 energy storage 116, where electrons and holes form a dipole, so that positive charges held by the holes move from the carrier output material 1 to the channel forming material 2.
  • electrons and holes remain in the original substance and obstruct the movement of subsequent carriers, and it has been difficult to realize highly efficient power generation.
  • the temperature of the electron absorption collector 26 rises.
  • the kinetic energy held by the electrons in the electron absorption collector 26 increases. Therefore, when the mode 2 is switched to the mode 1, the number of emitted electrons increases. That is, when an electron is accelerated and its kinetic energy increases, the kinetic energy is converted into thermal energy by electron collision, and the thermal energy increases the number of electron emissions in the next mode.
  • the mode 1 and the mode 2 the number of emitted electrons increases, and the power generation efficiency of the alternating power generation field effect power generation device is improved.
  • the temperature rise of the electron absorption collector 26 becomes extremely large, the durability of the device is lost. Therefore, by adjusting the conduction period of the start switch 101 in mode 1 and the start switch 102 in mode 2, the temperature is optimized for the device.
  • the field effect power generator is used for a long time by setting.
  • FIG. 85 shows a cross-sectional view of the field effect power generator according to the sixteenth embodiment of the present invention when a four-stage thermal feedback system is employed.
  • four power generation units are arranged with a rotation angle of 90 degrees.
  • Four power generation units are indicated by using the same reference numerals for corresponding parts.
  • the emitted electrons collide with one of the four electron absorbing collectors 26.
  • the electron absorption collector 26 with which the electrons collide is sequentially heated in the clockwise direction. Since all the operations of the four power generation units are the same, the description will be made by paying attention to the power generation unit shown in the upper left of FIG.
  • the substrate 19 is formed using an insulator such as silicon dioxide.
  • a carrier output material 1 and a channel forming material 2 are disposed on the substrate 19.
  • the carrier output material 1 is a conductive material, and specific examples include titanium, nickel, copper, gold, and silver.
  • An insulator 8 is disposed on the channel forming material 2.
  • a first electrode 61 of a carrier accelerator, a second electrode 62 of a carrier accelerator, a third electrode 63 of a carrier accelerator, and a carrier are disposed on the insulator 8.
  • a fourth electrode 64 of the acceleration device and a fifth electrode 65 of the carrier acceleration device are arranged. The case where graphene is used as the channel forming material 2 is shown.
  • graphene When carbon atoms are chemically bonded by sp2 hybrid orbitals, a two-dimensionally bonded carbon hexagonal network is formed. An aggregate of carbon atoms having this planar structure is called graphene. Graphene having a structure in which carbon atoms are arranged in a hexagonal network form one layer of graphite, and multilayer graphene is laminated to constitute the entire graphite. In graphene, six-membered rings of carbon are bonded in a planar shape, the thickness is on the order of molecules, and the electrical conductivity is very good in the planar direction.
  • a first power source 31 a second power source 32, a third power source 33, a fourth power source 34, and a fifth power source 35 are used, but these power sources are not shown in FIG.
  • the negative voltage terminal of the first power supply 31 is electrically connected to the carrier output substance 1, and the positive voltage terminal of the first power supply 31 is electrically connected to the first electrode 61 of the carrier accelerator.
  • a first power supply 31 is used to inject electrons as carriers from the carrier input / output material 1 into the channel forming material 2.
  • the negative voltage terminal of the second power source 32 is electrically connected to the first electrode 61 of the carrier accelerator, and the positive voltage terminal of the second power source 32 is electrically connected to the second electrode 62 of the carrier accelerator.
  • the negative voltage terminal of the third power source 33 is electrically connected to the second electrode 62 of the carrier accelerator, and the positive voltage terminal of the third power source 33 is electrically connected to the third electrode 63 of the carrier accelerator.
  • the negative voltage terminal of the fourth power source 34 is electrically connected to the third electrode 63 of the carrier accelerator, and the positive voltage terminal of the fourth power source 34 is electrically connected to the fourth electrode 64 of the carrier accelerator.
  • the negative voltage terminal of the fifth power source 35 is electrically connected to the fourth electrode 64 of the carrier accelerator, and the positive voltage terminal of the fifth power source 35 is electrically connected to the fifth electrode 65 of the carrier accelerator.
  • An electric field is formed by a positive voltage applied from the first power supply 31 to the first electrode 61 of the carrier accelerator and a negative voltage applied to the carrier output substance 1. Electrons as carriers are injected from the carrier output material 1 to the graphene-like channel forming material 2 by the effect of the electric field formed in the direction of the carrier output material 1 from the first electrode 61 of the carrier accelerator.
  • the first electrode 61 of the carrier acceleration device functions as an injection electrode. The injected electrons are accelerated in the acceleration channel 9 by a positive voltage applied to the first electrode 61 of the carrier accelerator, the second electrode 62 of the carrier accelerator, and the third electrode 63 of the carrier accelerator.
  • the second electrode 62 of the carrier accelerator and the third electrode 63 of the carrier accelerator act as a sliding electrode in which electrons are accelerated and moved on the surface of graphene.
  • the fourth electrode 64 of the carrier accelerator and the fifth electrode 65 of the carrier accelerator are also disposed in the insulator 8 below, and a voltage is applied to these electrodes from the power source.
  • the fourth electrode 64 of the carrier accelerator functions as an emission electrode. At the time of emission, electrons pass through the potential barrier which is the irreversible process generation unit 4 by the quantum mechanical tunnel effect.
  • the emitted electrons are accelerated by a positive voltage applied to the fifth electrode 65 of the carrier accelerator. That is, the fifth electrode 65 of the carrier accelerator functions as an acceleration electrode.
  • the flying electrons When the flying electrons are accelerated and their kinetic energy becomes sufficiently large, they overcome the repulsive force according to Coulomb's law received from the electron absorption collector 26, collide with the electron absorption collector 26, and are collected by this.
  • the electron absorption collector 26 As shown in FIG. 50, the electron absorption collector 26 is electrically connected to one terminal of the energy storage 15, but the energy storage is omitted in FIG.
  • the electrons that have reached the electron absorption collector 26 reach one terminal of the energy storage 15.
  • the holes remaining in the carrier output substance 1 reach the other terminal of the energy storage 15, and the holes and electrons form a pair in the energy storage 15 and are stored therein.
  • the electron absorption collector 26 is made of a material having good thermal conductivity.
  • the electron absorption collector 26 is bonded to the substrate 19 with good thermal conductivity.
  • An insulating material such as mica or silicon dioxide is used as the substrate 19 and its thickness is very thin.
  • Both the carrier output material 1 and the channel forming material 2 are materials having good thermal conductivity.
  • Both the carrier output material 1 and the channel forming material 2 are connected to the substrate 19 with good thermal conductivity. Since the flying electrons are accelerated and collide with the electron absorption collector 26, the temperature of the electron absorption collector 26 rises. The thermal energy supplied to the electron absorption collector 26 is conducted well to the substrate 19.
  • the thermal energy of the substrate 19 in a high temperature state is conducted from the substrate 19 to the carrier output material 1 and the channel forming material 2, and the temperatures of the carrier output material 1 and the channel forming material 2 rise. Electrons emitted from the first power generation unit shown in the upper left of FIG. 85 raise the temperatures of the carrier output material 1 and the channel forming material 2 of the second power generation unit shown in the upper right of the same figure. The kinetic energy possessed by the electrons in the carrier output material 1 and the channel forming material 2 of the second power generation unit is increased. That is, energy is pre-supplied to the carrier output material 1 and the channel forming material 2 of the second power generation unit. Since the kinetic energy possessed by the electrons in the carrier output material 1 and the channel forming material 2 of the second power generation unit increases, the number of electrons emitted from the channel forming material 2 increases.
  • the circulation of the thermal energy described above is sequentially repeated to the first power generation unit, the second power generation unit, the third power generation unit, and the fourth power generation unit, so that the emission from each channel forming material 2 is performed.
  • the number of electrons that are played increases gradually.
  • the optimum number of emission electrons is determined in consideration of the durability of the device and the power generation efficiency. For that purpose, the value of the voltage of the power supply supplied from the outside is controlled so that the power generation output is in an optimum state.
  • the number of electrons contributing to power generation is increased by accelerating the emitted electrons, increasing the kinetic energy, and increasing the temperature of the electron absorption collector 26.
  • the electric energy obtained in the field electron power generation device is caused by the effect of the electric field on the electrons, and hardly supplies other energy from the outside, so it can be said that this is a true power generation device different from the conventional energy converter. .
  • the present invention solves environmental problems caused by the burning of fossil energy by performing efficient power generation using the effect of electric field, eliminates the fossil energy depletion problem, and is necessary for the long-term survival of humankind. Energy can be supplied stably.
  • first-stage carrier output substance 332 on return route ... Second of Eye carrier output material 333 .
  • Outward carrier output material 334 ...
  • Return carrier output material 335 ...
  • Outward channel forming material 336 ...
  • Return channel forming material 350 ...
  • Switch 351 ... Switch

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

【課題】外部から化石燃料などの燃焼エネルギーを供給することをしないで、効率の良好な発電を行い、得られる電気エネルギーを有効に利用する装置を開発する。 【解決手段】電界の効果を用いて、キャリアがポテンシャル障壁を通過することにより電気エネルギーが得られるので、キャリアにエネルギーの前供給(pre-supply)を行うことにより、多くのキャリアが電気エネルギーの発生に寄与する事になり、高効率の電界効果発電装置が実現される。

Description

電界効果発電装置
 本発明は、電界の効果を用いて発電を行う装置に関する。石炭や石油などの化石を燃焼させることにより得られるエネルギーは地球環境の劣化とそれらの埋蔵量に限界があることにより、非常に長期的にそれらを使用することは困難である。しかし、電界効果発電装置を開発することにより、環境問題を解決し、化石エネルギー枯渇問題から解放されることは人類の生存には必要である。本発明の電界効果発電装置を用いると、電界により加速された電子の運動エネルギーを電気エネルギーに効率良く変換することが可能になる。従って、本発明の電界効果発電装置を普及させると、地球温暖化の原因である二酸化酸素の総排出量が押さえられ、有害な廃棄物の排出量も減少し、石炭、石油、ガス、原子力などの化石エネルギーに付随した枯渇問題も解消されるので、人類の長期的な生存に必要なエネルギーが本発明の電界電子発電装置によって安定的に供給される可能性がある。
 本発明は、電界効果を利用して、キャリア出力物質からチャネル形成物質にキャリアのインジェクションを行い、インジェクションされたキャリアがチャネル形成物質の表面にある加速チャネル内において加速される事により、キャリアにエネルギーの前供給を行い、ポテンシャル障壁を量子力学的なトンネル効果によりキャリアが貫通して突破し、キャリア吸収コレクタにキャリアが収集されることにより効率的な発電を行う装置に関する。
 石炭・石油などの化石燃料を燃焼すると、大気中に二酸化炭素が放出される。放出された二酸化炭素は温室効果ガスとして作用することにより、地球温暖化が進行する。しかし、人類が文明を維持するにはエネルギーを必要とする。発電により電気エネルギーを得ることは必要である。従って、従来の発電装置の問題点を下記に示す。
(1)石炭発電
(a)石炭は地球上に多く存在し、価格は安く、供給体制も安定している。しかし、石炭を燃焼すると、2酸化炭素を大気中に多量に排出し、排出された2酸化炭素は温室効果ガスとして作用し、地球温暖化の原因となる。
(b)石炭を燃焼すると、窒素酸化物や硫黄酸化物を大気中に多く排出し、酸性雨の原因となり、地球環境に悪影響を与える。
(c)石炭燃焼後には石炭灰が残存し、その処理を行うためには費用や場所などの難問が発生する。
(2)石油発電
(a)石油を燃焼すると、2酸化炭素を大気中に多量に排出し、排出された2酸化炭素は温室効果ガスとして作用し、地球温暖化の原因となる。
(b)石油の埋蔵量は有限であり、原油価格が高騰し、供給体制が不安定になる可能性がある。
(3)原子力発電
(a)原子核から放射線が排出され、これが人体に悪影響を与える可能性が高い。
(b)核燃料の使用後の廃棄処理には費用と場所の難問がある。
(c)地震などにより原子力発電の安全性が問題となる場合もある。
(4)太陽電池
(a)2酸化炭素を排出しないが、発電効率が良好でない。
(b)シリコンを用いるので、製造価格が高い。
(c)夜間や太陽が出ていない期間には使用することができない。
(5)風力発電
(a)2酸化炭素を排出しないが、発電効率が良好でない。
(b)装置が大型になるので、製造価格が高い。
(c)風が吹かない期間には使用することができない。
 従来の発電方式の全ては既に存在するエネルギー源を電気エネルギーに変換する装置である。エネルギー変換装置には種々の欠点があり、化石資源の有限性と地球環境を考慮すると、持続可能な新規のエネルギー源を創出する必要がある。文明社会においては、殆ど全ての機器や輸送装置が多量のエネルギーを消費するので、効率の良好な発電装置の開発が望まれる。さらに、発電装置の製造価格が高くならない材料や構造を用いる必要がある。発電された電気エネルギーの価格が使用者の負担にならないようにするには、発電装置の耐久性が充分に確保されている装置の開発が望ましい。本発明の電界効果発電装置は従来のエネルギー変換装置とは原理的に異なり、真の電気エネルギー創出を行うことができる。
 本発明の電界効果発電は従来の発電とは根元的に異なる新規の方式である。従って、用語を厳密に使い分ける必要があるので、用語の定義を以下に記述する。
[発電の定義]
 装置内に2個の導電性物質およびそれらの導電性物質の間に絶縁物質が存在する場合において、外部のエネルギー源である熱エネルギーや太陽光エネルギーを装置に供給することを行わずに、2個の導電性物質の内の1個の導電性物質から正電荷あるいは負電荷を有するキャリアが他の1個の導電性物質に移動することにより、1個の導電性物質が正電荷を有する正電極となり、他の導電性物質が負電荷を有する負電極になることにより電気エネルギーを供給することが可能となれば、電気エネルギーが創出される。この現象を真の発電と定義する。
[発電とエネルギー変換の差異]
 装置の外部にエネルギー源があり、外部エネルギーを装置内に取り入れ、取り入れたエネルギーを電気エネルギーに変換することをエネルギー変換と呼ぶ。外部から装置にエネルギーが供給されずに、装置の内部で出力エネルギーの全てが生成される場合には、それは純粋の発電装置であると言える。装置から出力されるエネルギーが外部から入力するエネルギーよりも大きい場合には、装置の内部において発電が行われたと見なされるので、それは広義の発電装置である。
[電界効果発電の理論]
 図1には、物質の通常の状態を示す。同図において、キャリア出力物質1の中には正電荷を有する正孔49および負電荷を有する電子50が殆ど等量に含まれており、それらが互いにクーロンの法則に従う静電気力により引き合うので、キャリア出力物質1から正電荷あるいは負電荷が離脱して外部に放出されることは殆どない。ところが、通常の物質に何らかの処置を施すことにより物質内から正電荷あるいは負電荷が放出され、他の物質に移動する場合を考察する。図2に示すように、例として物質内から負電荷を保有する電子が他の物質に移動する場合には、電子が過剰になり負電荷が蓄積する物質は電源負電圧端子44となり、電子が不足して正電荷が残存する物質は電源正電圧端子43となる。この状態になると、電気エネルギーが発生する。電子が1つの物質から他の物質に移動すれば、移動先の物質には負電荷が蓄積され、移動元の物質には正電荷が残存する。従って、電源正電圧端子43と電源負電圧端子44を導電線で接続すると、電子が電源負電圧端子44から電源正電圧端子43に移動することにより、電流が電源正電圧端子43から電源負電圧端子44に流れる。上記の現象をエネルギーの観点から考察すると、電子が移動先の物質から放出され、移動元の物質に移動することにより発電が行われ、電気エネルギーが発生する。実際には、図3に示すように、電源正電圧端子43と電源負電圧端子44の間には絶縁物8が存在する。電気エネルギーを効果的に発生するには、発生した電気エネルギーを一時的にエネルギー蓄積器15に蓄える必要がある。図4に示すように、電源正電圧端子43と電源負電圧端子44の間にエネルギー蓄積器15を接続すると、電源正電圧端子43から正孔が出力されてエネルギー蓄積器15の一方の端子に移動し、電源負電圧端子44から電子が出力されてエネルギー蓄積器15の他方の端子に移動する事により電気エネルギーがエネルギー蓄積器15に蓄積される。図5に示すように、エネルギー蓄積器15に電気的負荷5を並列的に接続すると、エネルギー蓄積器15から出力される電流が電気的負荷5に流れることにより、発生した電気エネルギーが消費される。電子を1つの物質から他の物質に移動すると、電気エネルギーが発生するので、電子を効果的に移動する方法を考察する。図6に示すように、1つの物質をキャリア出力物質1として、他の物質を電子吸収コレクタ26とする。キャリア出力物質1と電子吸収コレクタ26の間には絶縁物がある。なぜならば、絶縁物がなければ、キャリア出力物質1の内部に存在する正電荷と電子吸収コレクタ26の内部に存在する負電荷がクーロンの法則に従う静電気力を受けて、電子がキャリア出力物質1に帰還することにより電気エネルギーとして利用できないからである。キャリア出力物質1と電子吸収コレクタ26の間に絶縁物8として真空がある場合を考察する。キャリア出力物質1から電子吸収コレクタ26に電子を移動するために、中間媒体としてチャネル形成物質2をキャリア出力物質1に接触して配置する。図7に示すように、キャリア出力物質1とチャネル形成物質2が電気的に良好に接続する場合には、キャリア出力物質1とチャネル形成物質2の間にポテンシャル障壁発生部20が存在し、これがキャリアの移動を阻止する。さらに、チャネル形成物質2と真空との間には、非可逆過程発生部に相当するポテンシャル障壁が存在し、電子がエミッションすることを阻止する。従って、キャリア出力物質1の中にある電子を電子吸収コレクタ26に移動するために、電子に運動エネルギーを与える。本発明の電界効果発電においては、電界の作用を利用して電子に運動エネルギーを与える。すなわち、キャリアを加速するために加速電極を配置し、前記の加速電極に電源から正電圧が供給されることにより、前記の電極に正電荷が蓄積され、負電圧が加えられる領域と前記の正電荷が蓄積された電極の間に電界が発生し、発生する電界の作用により電子が加速されると、電子は運動エネルギーを保有する状態になる。運動エネルギーを保有する前記の電子はキャリアとなり、図8に示す加速チャネル9の内部を移動する。電子に充分な運動エネルギーが与えられると、電子の動作はインジェクションを行う場合とエミッションを行う場合に分かれる。
(1)電子がインジェクション(injection)を行う場合
 一般的には、電子又は正孔などのキャリアに充分な運動エネルギー(kinetic energy)を与える事によりホット・キャリア(Hot carrier)を生成し、ホット・キャリアがポテンシャル障壁(potential barrier)を通過することにより、ホット・キャリアが異なる領域に移動する事をインジェクションと言う。この現象は量子力学的なトンネル(quantum tunneling)である。すなわち、キャリアが波動性を有するので、量子力学的なトンネル効果によってキャリアがポテンシャル障壁を貫通して移動する。キャリアが保有する運動エネルギーを充分に大きくすると、超ホット・キャリア(ultra-hot-carrier)が発生する。一方の物質Aと他方の物質Bの間のポテンシャル障壁が低い場合には、物質Bに多くの電子が蓄積されると、物質Bから物質Aに漏洩する電子が発生し、発電電圧を高くすることができない。従って、発電電圧を高くするために物質Aと物質Bの間のポテンシャル障壁を高く設定する。ポテンシャル障壁が高い場合には、ポテンシャル障壁を量子力学的なトンネル効果により貫通して通過する電子の数が少ない。従って、高いポテンシャル障壁を越えるためには、物質Aの内部に存在するキャリアが充分に大きい運動エネルギーを保有する必要がある。ところが、超ホット・キャリア(ultra-hot-carrier)が保有する運動エネルギーは充分に大きいので、高いポテンシャル障壁を越えることが可能となる。この現象を超ホット・キャリアのインジェクション(ultra-hot-carrier injection)と呼ぶ。本発明の電界効果発電装置においては、電界を効果的に利用することにより超ホット・キャリア(ultra-hot-carrier)を生成し、超ホット・キャリアのインジェクション(ultra-hot-carrier injection)によって高いポテンシャル障壁を量子力学的トンネル効果により貫通して通過することにより物質Bに多くのキャリアを蓄積させ、高い発電電圧を得ることにより効率的な発電を行う。図9に示す加速チャネル9の内部において、キャリア出力物質1からチャネル形成物質2にインジェクションされた電子がチャネル形成物質2の表面を移動する。同図において、キャリアの表面移動23は電子がチャネル形成物質2の表面を移動することを示す。
(2)電子がエミッション(emission)を行う場合
 電子が物質から離脱し、真空に放出されることをエミッションと呼ぶ。エミッションには、熱エミッション(thermal emission)と冷エミッション(cold emission)の2種類がある。
(a)物質(cathode)に熱エネルギーを与える場合には、電子が大きな運動エネルギーを保有するので、熱エミッション現象により弱電界中においても真空中に電子のエミッションが行われる。
(b)極めて細い先端をもつ物質を作成し、その先端部に電界を集中すると、冷エミッション(あるいは電界放出)現象により強電界中において電子が真空中にエミッションされる。
 電子を物質中から真空中にエミッションするには、電子が充分に大きい運動エネルギー(sufficient kinetic energy)を保有する必要がある。すなわち、充分に大きい運動エネルギー(sufficient kinetic energy)を保有する電子を生成することにより、高いポテンシャル障壁を量子力学的なトンネル効果により貫通・通過すれば、高い発電電圧が得られる。図10に示すように、電子が充分に大きい運動エネルギーを保有する場合には、電子がチャネル形成物質2の表面から離脱して、真空中にエミッションされる。電子の動きはエミッション22の矢印によって示される。真空中にエミッションされた電子は加速チャネル9の内部において加速され、電子吸収コレクタ26に衝突し、それに吸収される。従って、電子吸収コレクタ26には電子が過剰になり、負電位になる。一方、電子を出力したキャリア出力物質1には正電荷が残存し、正電位になる。故に、正電位のキャリア出力物質1を電源正電圧端子とし、負電位の電子吸収コレクタを電源負電圧端子とすると、両端には電気エネルギーが発生する。以上の発電過程においては、外部から供給するエネルギーは殆どない。電界を発生する電極は絶縁物8の内部に配置するので、電極から漏洩する電流が殆どないので、効率の良好な発電が行われる。発生する電気エネルギーは電界の効果により電子が加速されて運動エネルギーを獲得して結果である。従って、本発明の電界効果発電は電気エネルギーの創出であり、エネルギー変換とは異なるので、エネルギー保存則を適用する必要性はない。
[エネルギー蓄積器]
 発電現象により正電荷を有する正電極と負電荷を有する負電極が発生すると、発生した正電荷と負電荷は、次の時刻に発生する正電荷と負電荷の各々が正電極と負電極に移動することを妨げる。従って、正電荷が正電極に到達すると、正電荷をエネルギー蓄積器の一方の端子に移動し、負電荷が負電極に到達すると、負電荷をエネルギー蓄積器の他方の端子に移動することにより効率的な発電が可能となる。
[電気エネルギーの消費]
 正電荷を保有する物質と負電荷を保有する物質の間に電気的負荷が接続されると、電気的負荷に電流が流れ、正電荷と負電荷が消滅する現象を電気エネルギーの消費と呼ぶ。
[キャリアの加速]
 物質中に存在する正電荷が移動すれば、正電荷キャリアとなり、負電荷が移動すれば、負電荷キャリアとなる。通常においては、正電荷キャリアを正孔とよび、負電荷キャリアを電子と呼ぶ。正電荷キャリアおよび負電荷キャリアがクーロンの法則に従う静電気力により移動することをキャリアの加速と言う。
[キャリアの収集]
 正電荷キャリアあるいは負電荷キャリアがコレクタに収集されること。
[ポテンシャル障壁]
 正電荷あるいは負電荷の移動がクーロンの法則に従う静電気力によって妨げられる場合にはポテンシャル障壁が存在する。
[インジェクションとエミッションにおけるポテンシャル障壁の差異]
 インジェクションは電気的に接続された2個の異なる物質間におけるキャリアの移動である。2個の異なる物質の境界に存在するポテンシャル障壁をキャリアが量子力学的なトンネル効果により貫通して突破すれば、インジェクションが行われる。上記の2個の異なる物質は共に導電性物質あるいは半導体物質であるので、2個の異なる物質の境界に存在するポテンシャル障壁は比較的に低い状態にあるので、キャリアが保有する運動エネルギーが比較的に小さい場合においてもインジェクションを行うことは可能である。導電性物質が真空中に存在する場合には、上記の導電性物質から電子が真空中へのエミッションが行われ、エミッションされた電子がコレクタに収集されることにより発電が実現する。この場合には、真空中にエミッションされて飛翔する電子をコレクタに収集することは比較的に容易である。しかし、導電性物質から真空中に電子をエミッションさせることは非常に困難である。仮に、外部に存在するエネルギーを導電性物質に供給することができる場合には、導電性物質の内部に存在する電子が大きい運動エネルギーを獲得することができるので、物質内から真空中に電子をエミッションさせる事は比較的に容易となる。しかし、この場合には発電現象ではなく、単なるエネルギー変換が行なわれた事となり、本発明の発電装置とは根本的に異なる。従って、外部から供給されるエネルギーが存在しない場合において、導電性物質の内部に存在する電子が大きい運動エネルギーを獲得する事を実現し、その運動エネルギーを利用して、導電性物質と真空との間にあるポテンシャル障壁を量子力学的なトンネル効果により電子の真空中へのエミッションが実現される条件を考察する。
[スライディング・エミッション(sliding & emission)]
 電界効果発電を実施するには、電子を物質内から離脱させる必要がある。電界の効果を用いて電子を放出することは可能であるが、通常では電子の放出量が少ない。従って、発電効率を良好にするため、電子の放出量を増加する手法を開発する。電子が物質内の正電荷によりクーロンの法則に従う静電気力による拘束から離脱する事を考察するには、飛翔物体が地球引力からの離脱する場合を参考にする。ニュートンの万有引力の法則により物体は地球に引き寄せられ、そこから離脱することは困難な状態にある。ロケット噴射の場合には、燃料を爆発的に反応させる事により地球引力に打ち勝ち、地球表面から離陸する。ところが、飛翔体である飛行機はロケットとは異なる方法で離陸する。すなわち、飛行機は離陸する前に滑空を行う。すなわち、飛行機は離陸直前に滑走路の表面を移動し、加速することにより、機体が充分に運動エネルギーを保有する状態に達すると、離陸が可能になる。電子が物質から離脱し、真空中に放出される場合にも電子が充分に大きい運動エネルギーを保有する必要がある。電子も物質の表面上において加速しながらスライディング移動を行うことにより充分な運動エネルギーを獲得することが可能となり、クーロンの法則に従う静電気力に打ち勝って物質外に放出される。飛行機の離陸とロケットの離陸において使用する燃料の大差を考慮すると、電子を物質表面で加速し、充分に運動エネルギーを獲得した後に、物質から電子を放出すると、物質からの離脱に必要なエネルギーが少なくなり、効率的になる。電子が物質の表面において加速しながら移動し、その後に真空中にエミッションされる事をスライディング・エミッション(sliding emission)と呼ぶ。チャネル形成物質2の表面に配置する絶縁物8の中に複数個の電極を配置し、それらの電極に正電荷を供給すると、チャネル形成物質2にインジェクションされた電子が加速力を受けて電子のスライディング・エミッションを起こす。電子がスライディング・エミッションを行うことにより、電子が運動エネルギーを獲得し、その後に、電子は物質から完全に離脱し、真空中にエミッションされる。この際に電極は絶縁物の中にあるので、電極から流れ出る電流が殆ど皆無であるので、エネルギーの損失は殆ど零である。従って、本発明においては電子のスライディング・エミッションを利用する事により、効率の良好な発電を行う。導電性物質あるいは半導体物質の表面において、電子を高速に移動させる事が実現されると、電子が物質から離脱して真空中にエミッションさせることが比較的に容易になり、発電現象が実現される。導電性物質あるいは半導体物質の表面において、電子を高速に移動する状態は電子の2次元面における移動である。ところが、通常の物質は3次元であるので、物質内における電子の2次元面における移動を実現するには特別な工夫を行う必要がある。すなわち、電子が移動する次元を1個だけ減少することにより、物質内における電子の2次元面における移動を実現する事が可能となる。物質内における電子の2次元面における移動を実現するには次に示す方法がある。
(1)非常に厚さが薄い物質を作成する。
(2)キャリアである電子が少ない物質を作成する。
 カーボン系の材料を用いてグラフェンを製作すると、非常に厚さが薄い物質ができ、その表面を電子が水平方向に移動することが可能となり、加速チャネル9において電子を加速し、電子に大きい運動エネルギーを与えることが可能となる。さらに、P型半導体とN型半導体を用いてPN接合を形成し、電界効果を適用して、N型半導体のマジョリティ・キャリアである電子をP型半導体にインジェクションすれば、P型半導体中において電子がマイノリティ・キャリアであるので、電子がP型半導体の表面の加速チャネルにおいてスライディング移動を行う。P型半導体の概2次元表面にある加速チャネル9において電子を加速し、電子に大きい運動エネルギーを与えることが可能となる。
[発電条件1]2個の異なる物質の間においてキャリアのインジェクションが行われる。
[発電条件2]電子にスライディング・エミッション(sliding & emission)を行わせる。
[発電条件3]物質中の電子を真空中にエミッションさせる。
[発電条件4]真空中にエミッションされた電子がコレクタに収集される。
[発電条件5]正電荷と負電荷がエネルギー蓄積器に移動する。
[発電条件6]エネルギー蓄積器の両端に電気的負荷が接続され、電気的負荷に電流が流れることにより、正電荷と負電荷が消滅する。
[エネルギーの前供給(pre-supply)]
 電界効果発電を良好に行うために、物質内にある電子に予めエネルギーを供給する。物質の中から電子が真空中にエミッションされる現象は、以下に示す2種類に分類される。
(1)急なエミッション(abrupt emission)
 温度の低い物質に外部から電界を加えると、電子が物質から電界放出される。これを冷陰極エミッションと言う。この際には、電子放出物質の中の電子が保有する運動エネルギーが小さいが、高電界の効果によってエミッションを行う。冷陰極から電子を電界放出するには、次に示す条件を満たす必要がある。
 (1)充分に高い電界を電子放出物質に加える。
 (2)電子放出物質の端の曲率半径を充分に小さくすることにより、その先端部に電界を集中する。
 冷陰極から電子を電界放出する場合には、物質内の電子に対して何の前処理も行わずに、高電界の効果により物質の中から電子を真空中にエミッションをするので、エミッションを行う電子の数が非常に少ないなどの欠点がある。冷陰極から電子を電界放出する現象を急なエミッション(abrupt emission)と言う。急なエミッションを行うには、物質の外部から加える電界を充分に強くする必要がある。電子に急なエミッションを行うと、エミッション量が少ないので、良好な効率で発電を行うことは非常に困難であった。すなわち、加える電界を強くすると、電極から漏洩する電流が多くなり、電子放出物質の先端の曲率半径を小さくすると、その耐久性に難点が発生し、実用的な発電を行うことが困難であった。そこで、本発明においては、下記に記述する前処理をエミッション前の電子に施す。
(2)スライディング後のエミッション
 急なエミッションを行うと、発電効率が低下するので、電子がエミッションを行う前に適切な処理を施す。電子に予め運動エネルギーを供給する過程をエネルギーの前供給(pre-supply)と言う。電子がエミッションを行う直前に電子にエネルギーの前供給を行うことにより、エミッションを行う電子の数が増加するので、発電効率が向上する。本発明においては、電子放出物質の内部にある電子にエネルギーの前供給を行う。
 以下には、電子放出物質の内部にある電子にエネルギーの前供給を行う処置の詳細を記述する。キャリアを移動するために電極を用い、電極に電圧を加える。電子の各状態に対応して電極を使い分ける。電極は下記に示す5種類がある。
 (1)インジェクション電極(injection electrode)
 (2)スライディング電極(sliding electrode)
 (3)トンネル電極(tunneling electrode)
 (4)エミッション電極(emission electrode)
 (5)加速電極(accelerating electrode)
 以下には、これらの5種類の電極の詳細を記述する。
(1)インジェクション電極(injection electrode)
 2種類の導電性又は半導体の物質があり、それらを物質Aと物質Bとする。物質Aと物質Bは互いに電気的に接触して配置される。電界の効果によってキャリアを物質Aから物質Bにインジェクション(注入)する場合を考察する。物質Bの上表面に絶縁物を配置し、絶縁物の内部にインジェクション電極(injection electrode)を配置する。物質Aからキャリアがインジェクションされるので、物質Aをキャリア出力物質と呼ぶ。電源からインジェクション電極に正電荷を供給し、キャリア出力物質には負電荷を供給する。正電荷が供給されるインジェクション電極と負電荷が供給されるキャリア出力物質の間には電界が発生する。発生する電界の効果によってキャリア出力物質から物質Bにキャリアのインジェクションが行われる。インジェクションが行われたキャリアは物質Bの表面に形成されるチャネル(channel)内を移動する。物質Bの表面にチャネルが形成されるので、物質Bをチャネル形成物質と呼ぶ。キャリア出力物質からチャネル形成物質にキャリアのインジェクションが行われると、その反作用により、チャネル形成物質からキャリア出力物質にアンチ・キャリアのインジェクションが行われる。キャリアが電子である場合には、アンチ・キャリアは正孔であり、キャリア出力物質からチャネル形成物質に電子のインジェクションが行われると、その反作用により、チャネル形成物質からキャリア出力物質に正孔のインジェクションが行われる。逆に、キャリアが正孔である場合には、アンチ・キャリアは電子であり、キャリア出力物質からチャネル形成物質に正孔のインジェクションが行われると、その反作用により、チャネル形成物質からキャリア出力物質に電子のインジェクションが行われる。インジェクション電極は絶縁物の中に配置されるので、キャリア出力物質およびチャネル形成物質とインジェクション電極との間のインピーダンスは高い状態で保持される。従って、電源からインジェクション電極に電圧が加えられても、電源から流出する電流は極めて微少量であるので、電源から供給する電力も極めて微少量となり、発電効率が向上するので、実用性が満たされる。
(2)スライディング電極(sliding electrode)
 チャネル形成物質の表面には絶縁物が配置される。チャネル形成物質の表面と絶縁物の境界付近に加速チャネルが形成される。加速チャネル内にある電子がスライディング状に移動するためにスライディング電極(sliding electrode)を用いる。スライディング電極は上記の絶縁物の中に配置される。キャリアが電子である場合には、スライディング電極には正電荷が蓄積される。スライディング電極に蓄えられた正電荷と電子が保有する負電荷の間にはクーロンの法則に従う引力が働く。従って、電界の効果によって電子はチャネル内をスライディング状に移動し、次第に加速される。キャリアが正孔である場合には、スライディング電極に負電荷を蓄積する。スライディング電極に蓄えられた負電荷と正孔が保有する正電荷の間にはクーロンの法則に従う引力が働く。従って、電界の効果によって正孔はチャネル内をスライディング状に移動し、次第に加速される。スライディング電極は絶縁物の中に配置されるので、キャリア出力物質およびチャネル形成物質とスライディング電極との間のインピーダンスは高い状態で保持される。従って、電源からスライディング電極に電圧が加えられても、電源から流出する電流は極めて微少量であるので、電源から供給する電力も極めて微少量であり、発電効率が向上するので、実用性が満たされる。
(3)トンネル電極(tunneling electrode)
 チャネル形成物質の表面には加速チャネルがあり、加速チャネルの終端には非可逆過程発生部がある。すなわち、チャネル形成物質の端には絶縁物が配置されている。配置される絶縁物は非常に薄い場合には、絶縁薄膜と呼ばれる。キャリアに対して絶縁薄膜は非可逆過程発生部として作用し、非可逆過程発生部にはポテンシャル障壁が存在する。絶縁物が厚い場合には、キャリアはポテンシャル障壁を越えて通過することができない。しかし、量子力学的に考察すると、キャリアには波動性があり、絶縁物が薄膜である場合には、キャリアがポテンシャル障壁をトンネル効果により貫通して通過するキャリアが存在する。すなわち、キャリアが充分に大きい運動エネルギーを保有する事により、キャリアがホット・キャリア(hot carrier)となる場合には、ホット・キャリアが量子力学的トンネル効果によりポテンシャル障壁を貫通して通過する。この場合において、ホット・キャリアを発生させるためにトンネル電極(tunneling electrode)が用いられる。トンネル電極とチャネル形成物質の間には二酸化シリコンなどの絶縁物が配置されるので、トンネル電極から流出する電流は極めて微少である。従って、トンネル電極が電界を発生するために電源から投入する電力は極めて少ない。トンネル電極に蓄えられる電荷とチャネル内にあるキャリアが互いにクーロンの法則に基づく引力によってキャリアが加速される。故に、量子力学的なトンネル効果によってキャリアはポテンシャル障壁を貫通して通過する。ポテンシャル障壁を貫通して通過したキャリアは最終的にキャリア吸収コレクタに収集される。キャリア吸収コレクタに収集されたキャリアは元の状態に逆戻りすることができないので、トンネル効果によりポテンシャル障壁を貫通して通過する過程は非可逆的である。キャリアが非可逆的な過程を通過することにより新規のエネルギーが発生する。
(4)エミッション電極(emission electrode)
 チャネル形成物質の端に配置されている絶縁物が薄膜である場合には、トンネル電極の作用により、量子力学的なトンネル効果に基づきキャリアがポテンシャル障壁を貫通して通過する。しかし、チャネル形成物質の端に配置されている絶縁物が真空である場合には、異なる現象が発生する。キャリアが電子であり、チャネル形成物質の端に真空がある場合には、真空中に電子を放出するためにエミッション電極(emission electrode)を用いる。チャネル形成物質の端にある真空は非可逆過程発生部となり、そこにポテンシャル障壁が存在する。このポテンシャル障壁は物質の仕事関数(work function)に対応する。電子が保有する運動エネルギーが小さい場合には、チャネル形成物質と真空の境界にあるポテンシャル障壁を通過することができない。しかし、電子が保有する運動エネルギーが充分に大きい場合には、波動性特性を示す電子の波長が充分に短くなり、量子力学的なトンネル効果により、チャネル形成物質と真空の境界にあるポテンシャル障壁を貫通して通過することが可能となる。スライディング電極に蓄積される正電荷によって電界が発生し、電界効果によって電子がチャネル内において加速され、電子が充分に大きい運動エネルギーを保有する。充分に大きい運動エネルギーを保有する電子はチャネル形成物質の端から真空中にエミッションされる。エミッション電極とチャネル形成物質との間には、二酸化シリコンなどの絶縁性の良好な物質を配置する事により高抵抗状態が保持される。エミッション電極とチャネル形成物質との間は高抵抗状態になっているので、電源からエミッション電極に電圧を加えてもエミッション電極から漏洩する電流は極めて微少となる。従って、エミッション電極を配置しても、この部分で消費される電力損は極めて少ないので、発電効率が良好になる。
(5)加速電極(accelerating electrode)
 エミッション電極に蓄えられた正電荷によって電界が発生し、電界の効果によってチャネル形成物質から電子がエミッションされる。エミッションされた電子は電子吸収コレクタの方向に飛翔する。初期状態においては、電子吸収コレクタに電荷が蓄積されていないので、飛翔する電子は容易に電子吸収コレクタに到達し、それに吸収される。電子吸収コレクタに負電荷が蓄積されている場合には、蓄積されている負電荷と飛翔電子が保有する負電荷の間にはクーロンの法則に基づく反発力が働く。従って、電子は電子吸収コレクタから反発力を受けて電子吸収コレクタに接近することができない。飛翔する電子が電子吸収コレクタからの反発力に打ち勝って、電子吸収コレクタに接近するには、飛翔する電子が保有する運動エネルギーを充分に大きくする必要がある。飛翔する電子の速度を上げるためには加速電極(accelerating electrode)を用いる。加速電極は電子の飛翔方向の前方に配置し、これに正電荷を蓄積する。加速電極の位置と絶縁物の位置を調整することにより、飛翔電子は加速電極には到達することはできない。電源から加速電極に供給された正電荷が電子の保有する負電荷に作用する事により飛翔電子が加速される。飛翔電子が加速されて保有する運動エネルギーが充分に大きくなると、電子吸収コレクタに蓄積された負電荷からの反発力に打ち勝つので、電子が電子吸収コレクタに接近する。電子が電子吸収コレクタに充分に接近すると、静電気誘導により電子吸収コレクタの表面に正電荷が出現する。電子吸収コレクタの表面に出現する正電荷と電子が保有する負電荷がクーロンの法則に基づく力により引き合うので、飛翔電子は電子吸収コレクタの表面に出現する正電荷に衝突し、電子吸収コレクタに収集される。電子を収集した電子吸収コレクタは負電荷が蓄積され、これを電気エネルギーとして利用することができる。なお、電子吸収コレクタに蓄積された負電荷が漏洩することを阻止するために、電子吸収コレクタは絶縁物の内部に配置される。
 石炭や石油などの化石燃料を使用しない発電として下記の特許文献がある。
 [特許文献1]:特許第3449623号公報(発明の名称:太陽光エネルギー変換装置、発明者:赤松則男、本発明者と同一)
 この特許文献1においては、装置の外部にあるエネルギー源である太陽光を用いて発電を行う。すなわち、特許文献1においては、太陽光を物質に受光させて熱エネルギーに変換し、これによって加熱された物質から熱電子を放出させ、この熱電子放出を利用して熱エネルギーを電気エネルギーに変換することによる発電方法が記述されている。結論として、特許文献1においては外部エネルギーを電気エネルギーに変換することにすぎず、特許文献1の方法は上記に記載の[発電の定義]に合致しないので、単なるエネルギー変換装置であり、本発明とは本質的に異なる。なお、太陽光が殆ど無くなる夜間や雨天には、特許文献1の太陽光エネルギー変換装置を利用することが出来ないなどの欠点がある。しかし、本発明の電界効果発電装置は外部のエネルギーを必要としない。すなわち、本発明の電界効果発電装置内で電子を加速する事により得られる運動エネルギーを電気エネルギーに変換するので、真の発電装置であると言える。
 [特許文献2]:特開2003-189646号公報(発明の名称:太陽光エネルギー変換装置および太陽光エネルギー変換システム、発明者:赤松則男、本発明者と同一)
 この特許文献2においても、装置の外部にあるエネルギー源である太陽光を用いて発電を行う。すなわち、特許文献2は太陽光を電気エネルギーに変換するエネルギー変換装置およびそのシステムに関する。結論として、特許文献2は上記に記載の[発電の定義]に合致しないので、単なるエネルギー変換装置に関して記載されており、本発明とは本質的に異なる。太陽光が殆ど無くなる夜間や雨天には、特許文献2の太陽光エネルギー変換装置を利用することが出来ないなどの欠点がある。しかし、本発明の電界効果発電装置は外部のエネルギーを必要としない。すなわち、本発明の電界効果発電装置内で電子を加速する事により得られる運動エネルギーを電気エネルギーに変換するので、真の発電装置であると言える。
 [特許文献3]:特開2003-250285号公報(発明の名称:熱発電装置、熱発電システム、発明者の一人は本発明の発明者(赤松則男)と同一)
 この特許文献3においては、電気エネルギーを取り出すために、多量の熱エネルギーを投入している。すなわち、これらの発明においては、熱エネルギーを電気エネルギーに変換することが可能な装置を提案しているにすぎない。特許文献3は熱エネルギーを電気エネルギーに変換するエネルギー変換装置に関する記述がなされている。この特許文献3においては、装置の外部にある熱エネルギー源を用いて発電を行う。結論として、特許文献3は上記に記載の[発電の定義]に合致しないので、単なるエネルギー変換装置に関して記載されており、本発明とは本質的に異なる。熱エネルギーは石炭・石油などの化石燃料を燃焼させる事により得られるが、特許文献3の熱発電装置を利用すると、二酸化炭素が発生し、地球温暖化が進行するなどの弊害は避けられない。しかし、本発明の電界効果発電装置は外部のエネルギーを全く必要としない。すなわち、本発明の電界効果発電装置内で電子を加速する事により得られる運動エネルギーを電気エネルギーに変換するので、真の発電装置であると言える。なお、特許文献3の方法を適用しても発電を実現することが極めて困難であることが判明したので、特許文献3の審査請求は行われずに、放棄された。
 [特許文献4]:特開2003-258326号公報(発明者:赤松則男、本発明者と同一)
 この特許文献4においては、電気エネルギーを取り出すために、多量の熱エネルギーを投入している。特許文献4は熱エネルギーを電気エネルギーに変換するエネルギー変換装置に関する記述がなされている。この特許文献4においては、装置の外部にある熱エネルギー源を用いて発電を行う。結論として、特許文献4は上記に記載の[発電の定義]に合致しないので、単なるエネルギー変換装置に関して記載されており、本発明とは本質的に異なる。熱エネルギーは石炭・石油などの化石燃料を燃焼させる事により得られるが、特許文献4の熱発電装置を利用すると、二酸化炭素が発生し、地球温暖化が進行するなどの弊害は避けられない。しかし、本発明の電界効果発電装置は外部のエネルギーを全く必要としない。すなわち、本発明の電界効果発電装置内で電子を加速する事により得られる運動エネルギーを電気エネルギーに変換するので、真の発電装置であると言える。
 [特許文献5]:特開2004-140288号公報(発明者:赤松則男、本発明者と同一)
 この特許文献5においては、電気エネルギーを取り出すために、多量の熱エネルギーを投入している。特許文献5は熱エネルギーを電気エネルギーに変換するエネルギー変換装置に関する記述がなされている。この特許文献5においては、装置の外部にある熱エネルギー源を用いて発電を行う。結論として、特許文献5は上記に記載の[発電の定義]に合致しないので、単なるエネルギー変換装置に関して記載されており、本発明とは本質的に異なる。熱エネルギーは石炭・石油などの化石燃料を燃焼させる事により得られるが、特許文献5の熱発電装置を利用すると、二酸化炭素が発生し、地球温暖化が進行するなどの弊害は避けられない。しかし、本発明の電界効果発電装置は外部のエネルギーを全く必要としない。すなわち、本発明の電界効果発電装置内で電子を加速する事により得られる運動エネルギーを電気エネルギーに変換するので、真の発電装置であると言える。
 [特許文献6]:JP 49-67594A,(発明者:細川俊夫、1974年)
 特許文献6においては、電気エネルギーを取り出すために、多量の熱エネルギーを投入している。すなわち、これらの発明においては、熱エネルギーを電気エネルギーに変換することが可能な装置を提案しているにすぎない。厳密に言えば、この発明においては、熱エネルギーを電気エネルギーに変換する事ができるエネルギー変換装置が記述されている。しかし、本発明においては、エネルギー変換装置の提案ではなく、真の電気エネルギー発生装置を提案する。特許文献6においては、装置の外部にある熱エネルギー源を用いて発電を行う。結論として、特許文献6は上記に記載の[発電の定義]に合致しないので、単なるエネルギー変換装置に関して記載されており、本発明とは本質的に異なる。熱エネルギーは石炭・石油などの化石燃料を燃焼させる事により得られるが、特許文献6の熱発電装置を利用すると、二酸化炭素が発生し、地球温暖化が進行するなどの弊害は避けられない。すなわち、本発明の発電装置は単純なエネルギー変換装置ではなく、真の発電を行う事が可能である。本発明においては、外部エネルギーを全く利用せずに、電界の効果によりキャリアをインジェクションし、さらにエミッションを行うので、装置の内部で電気エネルギーを発生し、得られた電気エネルギーを電気的負荷に利用する事ができるので、従来の発明装置と本発明の発電装置とは根元的に異なる。
 [特許文献7]:特表平11-510307号公報
 特許文献7の発明には、電界電子放出材料、電界電子放出装置が開示されている。しかし電界電子放出装置において示されたものは、電子の電界放出を放電装置、電子ガン、ディスプレイ等、何れも放出電子そのものを利用した装置であり、発電に利用するといった技術思想に関しては全く記述されていない。なお、この本発明はエネルギー保存則に反するものではない。エネルギー保存則を厳密に記述するならば、「エネルギー変換に関するエネルギー保存則」と言うべきである。すなわち、エネルギー変換を行う際には、エネルギーが変換される前と新規のエネルギーに変換された後においては、損失分も含めると、エネルギーの総計の増減は変換の前後では無く、「エネルギー変換におけるエネルギー保存則」は厳密に成立する。換言すると、「エネルギー変換におけるエネルギー保存則」は既に発生しているエネルギーが他の形態のエネルギーに変換される際には、変換の前後におけるエネルギーの総量が保存される事を意味する。しかし、本発明のように、電子の波動性と可動性を利用して新規のエネルギーを創出する場合には、エネルギー保存則が適用されない事は明らかである。例として、原子力発電においてウラニュームから発生する多量のエネルギーに関しては、単純なエネルギー変換ではないので、「エネルギー変換におけるエネルギー保存則」は適用されない。さらに、太陽の内部で発生するエネルギーも核融合において発生するエネルギーに対しても、「エネルギー変換に関するエネルギー保存則」を適用する事はできない。さらに、本発明者は、外部からエネルギーの供給が殆ど無い場合でも電気エネルギーを得ることができる発電装置として下記の特許文献に示される方法を提示した。
 [特許文献8]:WO2007/116524(PCT/JP2006/307607)(発明の名称:電界放出発電装置、発明者:赤松則男、本発明者と同一)
 [特許文献9]:WO2007/122709(PCT/JP2006/308277)(発明の名称:線形加速発電装置、発明者:赤松則男、本発明者と同一)
 [特許文献10]:WO2007/135717(PCT/JP2006/310026)(発明の名称:電界放出発電装置、発明者:赤松則男、本発明者と同一)
 [特許文献11]:PCT/JP2006/317778(発明の名称:電子発電装置、発明者:赤松則男、本発明者と同一)
 上述の[特許文献8]、[特許文献9]、[特許文献10]および[特許文献11]の発明者はいずれも本発明の発電装置の発明者と同一である。これらの特許文献においては、電子を放出し、放出された電子を収集することが記載されている。しかし、[特許文献8]、[特許文献9]、[特許文献10]および[特許文献11]に提案されている方法においては、電界が弱い場合には放出される電子の数が少なく、電界が強い場合には電子を収集することが困難となり、電子が外部電源の正電圧によって漏洩し、損失分が多く、効率が良好な発電を行うことが困難であった。本発明の発明者は、これらの欠点を克服するために更なる工夫を行い、本発明の発電装置を提案する。[特許文献8]、[特許文献9]、[特許文献10]および[特許文献11]においては、上記に記載する[発電条件1]、[発電条件2]および[発電条件5]が用いられていない。すなわち、[発電条件1]2個の異なる物質の間においてキャリアのインジェクションが行われる。[発電条件2]電子にスライディング・エミッション(sliding & emission)を行わせる。[発電条件5]正電荷と負電荷がエネルギー蓄積器に移動する。
 従って、[特許文献8]、[特許文献9]、[特許文献10]および[特許文献11]に記載された方法を適用しても、電子が殆ど真空中放出しないので、実用的な発電装置を実現することが不可能であった。その理由は、本発明が指摘するように、[発電条件1]、[発電条件2]および[発電条件5]の3項の発電条件を用いることにより、電界の効果による電子の放出量が飛躍的に増加するからであり、この3項の発電条件は過去の文献には全く記載されていない。電界効果発電を実施するには、電子を物質内から離脱させる必要がある。電界の効果を用いて電子を放出することは可能であるが、通常では電子の放出量が少ない。電子が物質から離脱し、真空中に放出される場合にも電子が充分に大きい運動エネルギーを保有する必要がある。物質の表面上において電子が加速しながら移動することにより充分な運動エネルギーを獲得することにより、クーロンの法則に従う静電気力に打ち勝って物質外に放出される。インジェクションされた電子を物質表面で加速し、充分に運動エネルギーを獲得した後に、物質から電子を放出すると、それに必要なエネルギーが少なくなり、効率的になる。電子が物質の表面において加速しながら移動し、その後に真空中にエミッションされる事をスライディング・エミッションと呼ぶ。チャネル形成物質2の表面に配置する絶縁物8の中に複数個の電極を配置し、それらの電極に正電荷を供給すると、チャネル形成物質2にインジェクションされた電子が加速力を受けて電子のスライディング・エミッションが行われる。電子がスライディング・エミッションを行うことにより、電子が運動エネルギーを獲得し、その後に、電子は物質から完全に離脱し、真空中に電子のエミッションが行われる。この際に電極は絶縁物の中にあるので、電極から流れ出る電流が殆ど皆無であるので、エネルギーの損失は殆ど零である。従って、本発明においては電子のスライディング・エミッションを利用する事により、効率の良好な発電を行う事が可能となる。さらに、[特許文献8]、[特許文献9]、[特許文献10]および[特許文献11]に記載の方法においては、下記に記載する欠点があるために発電効率が良好でなかった。すなわち、電子を利用する発電においては、キャリア出力物質の内にある電子が電子収集コレクタにエミッションにより移動することにより実現される。電子のエミッションは次の2種類に分かれる。
(1)急なエミッション(abrupt emission)
(2)エミッションを行う直前に電子が保有する運動エネルギーを大きくする。すなわち、電子にエネルギーを前供給(pre-supply)する。
 過去に発表された発電に関する特許文献には、エミッションを行う直前に電子にエネルギーを前供給(pre-supply)することにより電子が保有する運動エネルギーを増加する事は行われていなかった。すなわち、電子がキャリア出力物質の内部に存在する期間には電子に何らかの処置を施すことは全く無かった。従って、電界によって物質内の電子が突然のエミッション(abrupt emission)を行うので、エミッションを行う電子の数が極めて少ないので、実用性のある発電を行うことができなかった。しかし、本発明の電界効果発電のように、エミッションを行う直前に電子にエネルギーを前供給(pre-supply)することにより電子が保有する運動エネルギーを増加するので、エミッションを行う電子の数を多くすることが可能になり、発電出力が増加し、実用性が増す。この欠点を克服するために、キャリア出力物質と電子収集コレクタの間にチャネル形成物質を配置し、インジェクション電極の作用により、キャリア出力物質から電子がチャネル形成物質に容易にインジェクションが行われることを利用する。さらに、スライディング電極を配置し、チャネル形成物質の内部において電子が保有する運動エネルギーを増加し、ポテンシャル障壁をトンネル電極の作用によって量子力学的なトンネル効果により、電子を通過する。エミッション電極の作用により物質内から真空中に電子のエミッションを行わせる。さらに、エミッションされて電子を加速電極の作用により電子を加速することにより、電子の保有する運動エネルギーが増加するので、高いポテンシャル障壁を持つ電子吸収コレクタに到達することが可能となり、エミッションを行う電子の数を多くすることに成功した。その結果として、発電出力を増加することが可能となる。しかし、[特許文献8]、[特許文献9]、[特許文献10]および[特許文献11]に記載の方法においては、エミッションを行う直前の電子に対してエネルギーの前供給(pre-supply)を行うことは全く記述されていなかったので、エミッションを行う電子の数が少なく、発電効率が良好でなかった。さらに、[特許文献8]、[特許文献9]、[特許文献10]および[特許文献11]に記載の方法においては、電子を収集する際に、それまでに蓄積された電子と新規に蓄積する電子の間でクーロンの法則に従う反発力が働き、蓄積する電荷を増加することが出来なかった。すなわち、本発明において提案するエネルギー蓄積器が従来の装置には無かった。外部電源の正電極と収集する電子がペアを組むことは従来の方法においても可能であるが、この方法では、キャリアが保有する電荷とその逆の符号をもつ電荷が構成するペアを解消して電気エネルギーとして使用する際に外部の電源から正電荷が供給されるので、発電損失が増加し、発電効率を向上することが困難であった。本発明においては、エネルギー蓄積器を導入し、電子と正孔のペアがエネルギー蓄積器の中で形成される事により、外部電源から供給するエネルギーが殆ど無くなる。従って、本発明の装置を用いて発電を行う際には、エネルギー損失が殆どなくなり、効率の良好な発電を行うことが可能となる。さらに、発電効率を向上するために、本発明においては加速チャネルを設定する。上記の加速チャネルにおいて、キャリア加速装置を適用してキャリアを加速する。加速されたキャリアがポテンシャル障壁を突破し、非可逆的な過程を経由する事により使用可能な電気エネルギーが創出されるが、過去の特許文献においては、ポテンシャル障壁を越える前に、加速チャネルにおいてキャリアを加速する方法は全く提案されていないので、発電効率を向上することが出来なかった欠点がある。さらに、電子が電界の効果により加速されると、電子の保有する運動エネルギーが増加する。ところが、過去に発表されている特許文献に記載の発電方式においては、電子が保有する運動エネルギーを電気エネルギーに変換する概念が全く無かった。しかし、電子が保有する運動エネルギーが増加すると、電子が飛翔する速度が増加する。従って、高速の電子が物質に衝突すると、電子が保有する運動エネルギーが失われて、物質の温度が上昇する。すなわち、飛翔電子が保有する運動エネルギーは電子が物質に衝突する際に、物質中の電子の運動エネルギーに変換される。従って、電子が衝突した物質中にある電子が保有する運動エネルギーが増加する。物質中にある電子が保有する運動エネルギーを電気エネルギーに変換して利用することは、従来の発電装置では行われていなかった。しかし、エネルギーは常に変換することにより利用可能であるので、本発明においては衝突する電子が保有する運動エネルギーを最終的には電気エネルギーとして利用することが可能である事を示す。
特許第3449623号公報 特開2003-189646号公報 特開2003-250285号公報 特開2003-258326号公報 特開2004-140288号公報 JP 49-67594A 特表平11-510307号公報 WO2007/116524 WO2007/122709 WO2007/135717 PCT/JP2006/317778
 [特許文献1]、[特許文献2]、[特許文献3]、[特許文献4]、[特許文献5]および[特許文献6]においては、発電を行うために、石炭・石油などの化石燃料や太陽光などの外部エネルギーを利用する。外部エネルギーを利用する発電では、化石燃料の枯渇問題および地球環境の破壊の問題に対処することができない。さらに、太陽エネルギーを利用する場合においては、夜間や雨天の際に発電を行うことができないので、エネルギー供給源の主役になることができない。本発明の電界効果発電においては、外部のエネルギー源を用いずに発電を実現する。さらに、[特許文献7]、[特許文献8]、[特許文献9]および[特許文献10]においては、外部エネルギー源を用いない発電が本発明者によって提案されている。しかし、[特許文献7]、[特許文献8]、[特許文献9]および[特許文献10]においては、電界を用いて物質中の電子を直接的に真空中に放出する手法である。すなわち、上記に記載する飛行機とロケットの離陸に例えるならば、[特許文献7]、[特許文献8]、[特許文献9]および[特許文献10]において提案されている電子放出の方法はロケットの離陸に対応する。従って、過去の特許文献に記載されている物質からの電子放出の方法は突発的に電子を放出するので、急なエミッション(abrupt emission)と呼ばれる。すなわち、急なエミッション(abrupt emission)法に基づいて電子をエミッションすると、電子の放出量が非常に少ないので、発電される電力を大きくすることができなかった。アブラプトなエミッション(abrupt emission)法はロケットの離陸法に相当し、大きなエネルギーを必要とする。しかし、飛行機が滑走した後に離陸する方法であるスライディング・エミッション法を適用すると、少ないエネルギーを供給する場合においてもエミッションされる電子を多くすることが可能となる。エミッションを行う直前に電子が保有する運動エネルギーを大きくする。すなわち、電子にエネルギーを前供給(pre-supply)することが本発明の電界効果発電における課題である。本発明においては、この課題を克服するために、インジェクション電極、スライディング電極、トンネル電極、エミッション電極および加速電極を用いることにより、キャリアにエネルギーの前供給(pre-supply)を行う。電界効果発電において電気エネルギーを発生する際には、物質内の電子が急なエミッション(abrupt emission)を行う方法を採用すると、電子のエミッション量が少なく、発電効率が低下する。しかし、電子がエミッションを行う直前に、電子に運動エネルギーを供給すると、電子のエミッション量が多くなり、発電効率が向上する。すなわち、電界効果発電の発電効率を向上するには、電子にエネルギーの前供給(pre-supply)を行う事が必要である。エネルギーの前供給(pre-supply)の方法は以下に示す3種類がある。
(1)本発明の電界効果発電において、電界を用いてキャリアを移動することにより発電を実現する。キャリアをキャリア出力物質からチャネル形成物質にインジェクションを行い、チャネル形成物質の表面においてキャリアがスライディング(sliding)状の運動を行うことにより加速されると、キャリアの運動エネルギーが増加するので、発電に寄与するキャリアの数が増加する。すなわち、インジェクション電極とスライディング電極の作用を用いることにより、物質内にキャリアが拘束されている期間において、キャリアにエネルギーの前供給(pre-supply)を行う事により発電に寄与するキャリアの数を増加する。
(2)本発明の電界効果発電において、カスケード方式(あるいはリレー方式)を採用し、過去に放出されて加速された電子が保有する運動エネルギーを次にエミッションを行う予定の電子に前供給(pre-supply)を行うことにより、発生するエネルギーを有効に利用する。
カスケード方式は次に示す2種類の方法がある。
(2.1)電子の直接エミッション法
 電子の直接エミッション法は2次電子放出法とも言われる。真空中を飛翔する電子を1次電子と呼び、1次電子が2次電子放出部材に衝突すると、1次電子が保有する運動エネルギーによって2次電子放出部材から電子が叩き出される。叩き出された電子を2次電子と呼ぶ。1次電子が保有する運動エネルギーが大きい場合には、多くの2次電子を叩き出すことにより物質中から電子が放出され、放出された電子は電子吸収コレクタに収集されることにより、発電に寄与する電子の数が増加するので、電子の直接エミッション法により発電出力は増加する。すなわち、2次電子放出法を適用する事により、物質内に電子が拘束されている期間において、電子にエネルギーの前供給(pre-supply)を行う事により発電に寄与するキャリアの数を増加する。
(2.2)電子の間接エミッション法
 真空管(電子管)のカソードには直熱管と傍熱管がある。カソード直熱方式の真空管においては、カソードに電流を流すことによりカソードの温度を上昇する。カソード傍熱方式の真空管においては、カソードとは別にヒータを用いて、ヒータに電流を流すことによりヒータの温度を上昇し、高温になったヒータの熱をカソードに伝える事により間接的にカソードの温度を上昇する。真空中にエミッションされて加速された電子が電子吸収コレクタに衝突する際には、電子が保有する運動エネルギーが衝突によって熱エネルギーに変換される。電子の衝突により発生する熱は、次にエミッションを行う予定の電子が所属する物質に伝導される。すなわち、キャリア出力物質、およびこれに接触するチャネル形成物質の温度が上昇する。従って、キャリア出力物質の中に存在する電子の運動エネルギーが増加する。故に、キャリア出力物質からチャネル形成物質にインジェクションされる電子の数が増加する。さらに、チャネル形成物質の中に存在する電子の運動エネルギーが増加する。電子の運動エネルギーの増加は発電出力の増加に寄与する。N段のカスケード方式においては、1段目の電子吸収コレクタの熱エネルギーが2段目のキャリア出力物質およびチャネル形成物質に伝導され、さらに、3段目以降にも熱エネルギーが伝搬され、N段目の電子収集コレクタまで熱エネルギーが伝搬される。すなわち、カスケード方式を適用する場合には、物質内に電子が拘束されている期間において、電子にエネルギーの前供給(pre-supply)を行う事により、発電に寄与する電子の数が増加する。しかし、N段目の電子収集コレクタに発生する熱エネルギーが1段目のキャリア出力物質およびチャネル形成物質にフィードバックする方法は次に記載する熱フィードバック方式に属する。
(3)本発明の電界効果発電において熱フィードバック方式を採用する場合には、電子吸収コレクタに熱伝導器を接触して配置し、電子が電子吸収コレクタに衝突する際に発生する熱エネルギーをキャリア出力物質およびチャネル形成物質にフィ-ドバックを行うことにより、加速された電子の運動エネルギーを次にエミッションを行う予定の電子に前供給(pre-supply)を行う。N段のカスケード方式と熱フィードバック方式の両方を適用すると、1段目、2段目、・・・、N段目のキャリア出力物質およびチャネル形成物質の温度は飛翔電子の衝突により上昇し、N段目の電子吸収コレクタに発生する熱エネルギーが1段目のキャリア出力物質およびチャネル形成物質にフィードバックされる事により、非常に高効率の発電装置を実現することが可能となる。すなわち、熱フィードバック方式を適用する事により、物質内に電子が拘束されている期間において、電子にエネルギーの前供給(pre-supply)を行う事ができるので、発電に寄与する電子の数が増加し、発電効率が向上する。本発明の電界効果発電においては、上記に記載のエネルギーの前供給(pre-supply)を適用することにより、過去に提案されている全ての発電方式よりも格段に発電効率が向上することを以下に記述する。
 本発明の電界効果発電装置が解決しようとする課題を以下に示す。
(1)本発明の電界電子発電装置においては、キャリアにエネルギーの前供給(pre-supply)を行うことにより、インジェクションに寄与する電子の数が多くなり、本発明の電界効果発電装置の発電出力を大きくする。
(2)本発明の電界効果発電装置においては、電界の効果に基づいて電子にエネルギーの前供給(pre-supply)を行うので、エミッションに寄与する電子の数が多くなり、電界発生により失われる電力も微少量となり、発電効率を高くする。
(3)本発明の電界効果発電装置においては、熱フィードバック方式を適用する事により電子にエネルギーの前供給を行うことにより、軽量となり、小型となり、高効率の発電を行う。
 本発明の電界効果発電装置の特徴を以下に示す。
(1)本発明の電界電子発電装置においては、電子にエネルギーの前供給(pre-supply)を行うことにより、エミッションに関与する電子の数が多くなる。従って、本発明の電界効果発電装置の発電出力が大きい。
(2)本発明の電界効果発電装置においては、電界の効果に基づいて電子にエネルギーの前供給(pre-supply)を行うので、電界発生により失われる電力が微少量となり、発電効率が高くなる。
(3)本発明の電界効果発電装置においては、熱フィードバック方式を適用する事により電子にエネルギーの前供給を行うので、軽量となり、小型であるので、高効率の発電を行うことが可能となる。
(4)本発明の電界効果発電装置においては、炭素系物質、絶縁物および真空容器としてガラスやステンレス板を用いて製造されており、劣化部がほとんど無いので、耐久性があり、耐用年数は長い。
(5)本発明の電界効果発電装置においては、電界発生電極、炭素部材および絶縁物を容器内に装着するだけで装置を製作することが可能であるので、構造が簡単であり、製造が容易である。
(6)本発明の電界効果発電装置を多量に使用しても、特殊な物質を使用していないので、環境を破壊する要因にはならない。
(7)本発明の電界効果発電装置においては、ガラスの容器内に電極を配置するので、電子を放出する部材の劣化のみが交換すべき部品であるので、保守費用がわずかでも長期的な使用に耐えることができる。
 本発明の電界効果発電装置を従来の発電装置と比較すると、本発明の電界効果発電装置には次に示す効果がある。
(1)従来の発電装置においては、真空中に電子を放出する際には、急なエミッション(abrupt emission)が行われるので、エミッションが行われる電子の数が少ない。従って、従来の発電装置の発電出力が微少量である。しかし、本発明の電界電子発電装置においては、電子にエネルギーの前供給(pre-supply)を行うことにより、エミッションに関与する電子の数が多くなる。従って、本発明の電界効果発電装置の発電出力が向上する。
(2)本発明の電界効果発電装置においては、電界の効果に基づいて電子にエネルギーの前供給(pre-supply)を行うので、電界発生により失われる電力が微少量となり、発電効率が高くなる。
(3)本発明の電界効果発電装置においては、熱フィードバック方式を適用する事により電子にエネルギーの前供給を行うので、軽量となり、小型であるので、高効率の発電を行うことが可能となる。
(4)本発明の電界効果発電装置においては、炭素系物質、絶縁物および真空容器としてガラスやステンレス板を用いて製造されており、劣化部がほとんど無いので、耐久性があり、耐用年数は長い。
(5)本発明の電界効果発電装置においては、電界発生電極、炭素部材および絶縁物を容器内に装着するだけで装置を製作することが可能であるので、構造が簡単であり、製造が容易である。
(6)本発明の電界効果発電装置を多量に使用しても、特殊な物質を使用していないので、環境を破壊する要因にはならない。
(7)本発明の電界効果発電装置においては、ガラスの容器内に電極を配置するので、電子を放出する部材の劣化のみが交換すべき部品であるので、保守費用がわずかでも長期的な使用に耐えることができる。
以上の効果により、本発明の電界効果発電装置は実用性が非常に高いと想定される。
[発明の効果1]
 請求項(1)に記載の電界効果発電装置によれば、図11に本発明の主要部のブロック図を概略的に示すように、基板19の上にキャリア出力物質1とチャネル形成物質2を配置する。キャリア出力物質1とチャネル形成物質2を電気的に接続し、チャネル形成物質2の表面の全面又は1部分に絶縁物8を配置し、絶縁物8の中にキャリア加速装置の電極60を配置する。電源を用いてキャリア加速装置の電極60に電圧を加えることによりキャリア加速装置3を構成し、キャリア加速装置3の作用によりチャネル形成物質2の絶縁物8側の表面に加速チャネル9の1部分を形成する。以下には、キャリア加速装置3に関して詳細を記述する。図12には、本発明の電界効果発電においけるキャリア加速装置の内部のブロック図を示す。キャリア加速装置3は電源30、キャリア加速装置の電極60および絶縁物8によって構成される。絶縁物8の中にキャリア加速装置の電極60を配置する。電源30とキャリア加速装置の電極60は電気的に接続され、キャリア加速装置の電極60には正または負の電荷が電源30から供給される。
 キャリア加速装置の電極60によって発生する電界の効果によってキャリア出力物質1の中に存在するキャリアがキャリア出力物質1からチャネル形成物質2にインジェクションされる。チャネル形成物質2にインジェクションされたキャリアが加速チャネル9の中で加速されて移動する。すなわち、キャリアがスライディング移動を行い、キャリアが運動エネルギーを獲得する。充分に大きい運動エネルギーを獲得したキャリアは、非可逆過程発生部4に存在する高いポテンシャル障壁を量子力学的なトンネル効果により通過することが可能となる。最終的には、高速で移動するキャリアは加速チャネル9の終端部に配置されたキャリア吸収コレクタ28に収集される。キャリア吸収コレクタ28に収集されたキャリアはエネルギー蓄積器15の一方の入力端子に入力され、キャリア出力物質1の中に残存するアンチ・キャリアがエネルギー蓄積器15の他方の入力端子に入力され、キャリアとアンチ・キャリアがペアを形成し、エネルギー蓄積器15に蓄積されることにより、時間的に後にインジェクションされるキャリアとアンチ・キャリアが加速されながら移動する事が妨害されなくなるので、エネルギー蓄積器15に蓄積されるエネルギーの量が多くなる。エネルギー蓄積器15が電気的負荷5に並列的に接続される事により、キャリアとアンチ・キャリアが電気的負荷5に供給される。その結果として、キャリアとアンチ・キャリアの発生により得られる電気エネルギーが電気的負荷5において消費される。集積回路技術を適用すれば、キャリアをインジェクションするデバイスを製作する事は容易であるので、本発明の電界効果発電装置においては従来の発電装置よりも効率良く電気エネルギーを発生させることが可能となる。しかも、本発明の電界効果発電装置においてはキャリアとアンチ・キャリアが共に早期にエネルギー蓄積器15に移動することにより、エネルギー蓄積器15に電気エネルギーを蓄えることができるので、エネルギーの発生効率が良好になる。以下には、エネルギー蓄積器15に関して詳細に記述する。図13にはエネルギー蓄積器15を示す。同図には、エネルギー蓄積器15の正電荷の入出力部16およびエネルギー蓄積器15の負電荷の入出力部17を示す。エネルギー蓄積器15にはエネルギー入力モードとエネルギー出力モードがある図14には、エネルギー蓄積器15のエネルギー入力モードを示す。エネルギー入力モードにおいて、エネルギー蓄積器15の正電荷の入出力部16に正電荷が入力される。正電荷の代表的な例は正孔である。エネルギー入力モードにおいて、エネルギー蓄積器15の負電荷の入出力部17に負電荷が入力される。正電荷の代表的な例は電子である。
 エネルギー蓄積器15に入力された正電荷と負電荷はダイポールを形成して蓄積される場合と他のエネルギーに変換されて蓄積される場合がある。他エネルギーとして、電気化学的なイオンとなる場合もある。電気化学的な変換の例として、充電可能な電池および水素への変換などがある。水素に変換されてエネルギー蓄積器15に蓄えられ、水素は燃料電池などを適用して電気エネルギーに変換されて出力することが可能である。本発明の発電装置により得られるキャリアがコレクタに残存すると、次に発生するキャリアがコレクタに到達することを妨げるので、コレクタに到達したキャリアをエネルギー蓄積器に送る必要がある。コレクタに残存するキャリアが少ない場合には、次にコレクタに到達するキャリアは妨害を受けずにコレクタに到達し、コレクタに吸収されることが可能となる。
 図15には、エネルギー蓄積器15のエネルギー出力モードを示す。エネルギー蓄積器15に蓄積されたエネルギーを出力する場合には、正電荷入出力部16から正電荷を持つキャリアが出力され、負電荷入出力部17から負電荷を持つキャリアが出力される。出力される正電荷キャリアと負電荷キャリアは電気的負荷5において正電荷キャリアと負電荷キャリアが再結合を行うことにより中性化され、その際に電気的負荷に電気エネルギーが供給される。
 モノポールとは単極であり、ダイポールは双極である。例として、電子が導電性物質に吸収されると、モノポールとなり、2個の導電性物質が互いに電気的に絶縁されていて、正電荷と負電荷が上記の2個の導電性物質に個別に蓄積され、両者が近接距離に配置されている場合には、その状態はダイポールを形成するとみなされる。モノポールの具体例として、図16に示すように、導電性物質に負電荷をもつキャリアが多く吸収される場合を考察する。導電性物質には負電荷が多く蓄積されており、負の電位が高い状態にある。従って、導電性物質の近傍には同図に矢印で示す方向の電界が存在する。多くの負電荷を保有する導電性物質に電子50が接近すると、導電性物質中の負電荷と電子50の負電荷の間にはクーロンの法則に支配される反発力が働き、電子50は導電性物質に接近する事ができない。電子50が多くの負電荷を保有する導電性物質に接近するには、電子50が多くの運動エネルギーを保有する必要がある。そのためには加速チャネル9において電子50を高速になるまで加速する必要がある。高速に加速するには強い電界が必要であり、強電界を発生するには高い電圧が必要である。高い電圧を電極に与えると、正電極と負電極の間にある絶縁物8を経由して電荷が漏洩する。漏洩する電荷を外部電源から補う必要がある。すなわち、外部電源に電力消費が増加する。外部の電力損失が増加すると、発電システム全体の発電効率が低下し、実用性が少なくなる。従って、必要以上に高い電圧を外部電源から供給することは損失が増加することになり、好ましいことではない。従って、比較的に低い電圧を用いて効率の良好な発電システムを確立するには、発電された電気をモノポール状態に放置することから回避する必要がある。そのためには、発電装置により発生するキャリアをダイポール状態にして保存することが発電効率を向上させる方法である。
 ダイポールの例として、図17に示すように、正電荷と負電荷が非常に接近して存在する状態を考察する。実際には、図18に示すように、負電荷は負電荷蓄積導体13の中に蓄積し、正電荷は正電荷蓄積導体14の中に蓄積し、両者の間には絶縁物8が配置され、正電荷と負電荷が互いに結合することを阻止する。ダイポールに電子50が接近する場合を図19に示す。同図には正電荷を出発し、負電荷に終わる電気力線が矢印を付けた曲線で示される。正電荷と負電荷が非常に接近して存在するので、殆ど全ての電気力線は正電荷と負電荷の近傍に存在し、正電荷と負電荷の間に発生する電界は正電荷と負電荷の存在する局所的な領域に留まる。従って、外部から電子がダイポール状態の負電荷に接近してもダイポールから接近する電子に及ぼす電界は殆どない。すなわち、ダイポール状態にある負電荷と正電荷の存在は遠隔的な位置からみると、殆ど中性(almost neutral)化されており、外部に対してクーロンの法則に従う力を殆ど発揮しない。従って、外部からダイポールに接近する電子50は、正電荷と負電荷の接近効果により、同符号の電荷に発生するクーロンの反発力がキャンセルされることにより、電子50の運動エネルギーが少ない場合にも、負電荷に接近することが可能となる。負の電荷を保有する電子50が充分に負電荷蓄積導体13に接近すれば、負電荷蓄積導体13の表面に電気誘導現象により正電荷が出現し、出現する正電荷と外部から接近する電子との間にクーロンの法則に従う引力が働き、外部から接近する電子は負電荷蓄積導体13に衝突し、それに吸収される。
 以上の考察により、ダイポールの入力モードにおいては、発電により発生する正電荷と負電荷をダイポール状態にすれば、加速チャネル9を経由して新規のキャリアを導電性物質に供給し、ダイポールの正電荷と負電荷の量を多くすることが可能になる。蓄積される正電荷と負電荷の量が増加すると、ダイポールの正電荷蓄積導体14と負電荷蓄積導体13との間の電圧が増加する。ダイポールの出力モードにおいては、ダイポールの正極と負極に電気的負荷5を接続すると、正電荷蓄積導体14に蓄積された正電荷と負電荷蓄積導体13に蓄積された負電荷は電気的負荷5に電流が流れる事により再結合を行い、中性化され消滅する。この際に電気的負荷に電流が流れることにより電気エネルギーが供給され、消費される。電気的な負荷に流れる電流の総量は蓄積されている正電荷と負電荷の量であるので、多くの正電荷と負電荷を蓄積すれば、大きな発電電力が得られる。ダイポールに入力モードと出力モードがある場合には、このダイポールは正電荷と負電荷を分離することが可能なダイポール(separable dipole)と呼ぶ。本発明の発電装置においては分離可能ダイポールを用いることにより発電効率の向上が可能となる。なお、分離することが困難なダイポールとして、正電荷を保有する原子核の周辺に負電荷を保有する電子を配置することにより原子を構成する例がある。原子から電子と陽子を分離することはエネルギー的にも困難である。実験によると、発電により発生する負電荷をモノポールに蓄積すると、モノポールの電位は急激に増加し、短時間で数千ボルトに到達する。しかし、モノポールに蓄積される電荷の量は非常に少ないので、電気的負荷5を経由して電荷を放出すると、少ない電流が流れることにより蓄積された電荷は消滅する。結論として、モノポールを用いる発電方式においては、得られる電圧は高いが得られる電流が少ない。すなわち、電力は電圧と電流の積であるので、モノポール方式の発電は大きい電力をえることができないので、実用性が非常に少ない。従来の発電に関する発明は全てモノポール方式であったので、実用的に利用される機会は殆どなかったが、本発明はダイポール方式であるので、充分な電流を供給することが可能となり、非常に高い実用性が保証される特徴がある。さらに、本発明の電界効果発電装置においては、電子を真空中にエミッションするために必要とされる大きなワーク・ファンクションを貫通・突破するためのエネルギーをキャリアに供給する必要はなく、物質の内部において行われるインジェクションに必要なエネルギーのみを電界の効果によりキャリアに供給する。その結果として、キャリアの運動エネルギーを大きくすることができるので、キャリアの運動エネルギーを電気エネルギーに変換することにより発電を行う事が可能となる。電界は絶縁物8の中に配置されて電極に電荷を供給する事によって発生する。電極から漏洩する電流は殆ど零であるので、外部電源から供給する電力が極めて小さい状態において大きな電力が得られるので、本発明の電界効果発電装置においては発電効率が極めて高くなる。すなわち、外部の電源から供給するエネルギーが極めて小さくなり、その結果として本発明の電界効果発電装置の発電効率が良好になる特徴があり、この装置は実用性が充分にあると言える。
[発明の効果2]
 請求項(2)に記載の電界効果発電装置によれば、上記の請求項(1)に記載の構成による作用・効果に加えて、キャリア加速装置が複数個の電源および複数個の電極を含み、キャリア加速装置の電極が複数個の電源に電気的に接続され、複数個のキャリア加速装置の電極がチャネル形成物質の周辺に絶縁物を介して配置されることにより加速チャネルを構成する。キャリア加速装置の電極に加えられる電圧の作用により発生する電界がキャリアに作用し、キャリア出力物質からチャネル形成物質にキャリアがインジェクションされる。本発明の電界効果発電において、キャリア加速装置が複数個の電極によって構成される場合を図20に示す。同図に示すように、チャネル形成物質2の上表面に絶縁物8を配置し、絶縁物8の中にキャリア加速装置の第一電極61およびキャリア加速装置の第二電極62を配置する。同図において電源30は外部にある直流電源であるが、図面としては電極の近くに描いた。チャネル形成物質と絶縁物の間に加速チャネルが形成される場合を図21に示す。キャリア加速装置の第一電極61およびキャリア加速装置の第二電極62に電源30を用いて電圧を加えると、図21に示す電気力線が発生する。チャネル形成物質2と絶縁物8の境界付近に加速チャネル9が形成される。インジェクションされたキャリアは加速チャネル9の中にあり、しかもチャネル形成物質2の表面を移動する。キャリア加速装置の第一電極61およびキャリア加速装置の第二電極62によって発生する電界の効果によってキャリアが加速チャネル9の中で加速される。加速チャネル9の中において電界の効果によりキャリアが加速される事によりキャリアが運動エネルギーを獲得する。従って、チャネル形成物質中にインジェクションされたキャリアが獲得する運動エネルギーに基づいて、キャリアが非可逆過程発生部を量子力学的なトンネル効果により通過する事が可能となり、過去に提案されている従来型の発電方式よりもキャリア吸収コレクタに収集されるキャリアの数が多くなる。キャリア吸収コレクタに収集されたキャリアはエネルギー蓄積器の一方の入力端子に入力され、キャリア出力物質の中に残存するアンチ・キャリアがエネルギー蓄積器の他方の入力端子に入力され、キャリアとアンチ・キャリアがペアを形成し、エネルギー蓄積器に蓄積されることにより、時間的に後にインジェクションされるキャリアとアンチ・キャリアの加速と移動が妨害されなくなるので、エネルギー蓄積器に蓄積されるエネルギーの量が多くなる。エネルギー蓄積器を電気的負荷に並列接続を行うことにより、キャリアとアンチ・キャリアが電気的負荷に供給される。従って、キャリアとアンチ・キャリアにより発生する電気エネルギーが電気的負荷において消費される。キャリアをインジェクションすることは集積回路技術を適用すれば容易である。結論として、本発明の電界効果発電装置においては、加速チャネルの中でキャリアを加速するので、加速チャネルにおいて消費するエネルギー損失が絶縁物中に電極を配置する事により殆ど零に近いという決定的な特徴があり、従来の発電装置よりも効率良く電気エネルギーを発生させることが可能となる。電界を発生する電源を複数個だけ用い、キャリア加速装置3の電極も複数個だけ配置すると、電子の保有する運動エネルギーが増加し、発電の電力が増加し、発電効率も向上する。この際に、複数個の電源として複数個のバッテリを用いることができる。複数個の電源を変圧器と整流素子を用いて交流から直流への変換器により発生させることも可能である。さらに、本発明の電界効果発電装置に発生する電圧を複数個のキャパシタの並列接続に加えることにより、複数のキャパシタの全てを一度に充電し、充電した複数のキャパシタを直列に接続すると、高い電圧が得られる。キャパシタの直列接続により発生する高い電圧を電極に加えることにより、電界を発生することが可能となり、発生する電界を用いて本発明の電界効果発電装置においてキャリアの加速とスライディング的な移動を行わせることができる。
[発明の効果3]
 請求項(3)に記載の電界効果発電装置によれば、上記の請求項(1)に記載の構成による作用・効果に加えて、キャリア出力物質としてN型半導体を用い、キャリア入力物質としてP型半導体を用いる場合には、N型半導体とP型半導体を電気的に接続する事によりPN接合を形成する。P型半導体の表面の全面又は1部分に絶縁物を配置し、絶縁物の中にキャリア加速装置の電極を配置し、電源を用いてキャリア加速装置の電極に電圧を加えることによりキャリア加速装置を構成し、キャリア加速装置の作用によりP型半導体の絶縁物側の表面に加速チャネルの1部分を形成する。図22には、キャリア出力物質1はチャネル形成物質2の近傍におけるキャリアの動作を示す。キャリア出力物質1はチャネル形成物質2と電気的に接続して配置される。キャリア出力物質1の例としてN型半導体11を用いる場合には、N型半導体11は不純物が高濃度にドーピングされており、heavy doping状態である。チャネル形成物質2の例としてP型半導体10を用いると、P型半導体10とN型半導体11がPN接合を形成する。第一電源31の正電位端子はキャリア加速装置の第一電極61に接続され、第一電源31の負電位端子はキャリア出力物質1に接続される。キャリア加速装置の第一電極61とキャリア出力物質1(N型半導体11)の間にはキャリア加速装置3によって形成された電界が発生する。発生する電界によってキャリア出力物質1からチャネル形成物質2にキャリアがインジェクションされる。PN接合を形成する例においては、キャリアとして電子がインジェクションされる。インジェクションされたキャリアは加速チャネル9においてスライディング的な移動を行い、キャリアが加速され、キャリアが大きな運動エネルギーを獲得する。キャリア加速装置3によって発生する電界がキャリアの移動方向と大きさを決定する。電界によってキャリアに働くクーロン力81をベクトルで示す。第二電源32の正電位端子はキャリア加速装置の第二電極62に接続され、第二電源32の負電位端子はキャリア出力物質1に接続される。キャリア加速装置の第二電極62とキャリア出力物質1の間には電界が発生する。この電界によってキャリアが移動する方向と大きさをキャリアに働くクーロン力81で示す。キャリアに働くクーロン力81はベクトルである。図示の2個のキャリアに働くクーロン力81は共にベクトルであり、それらを合成すると、合成ベクトル82になる。キャリア加速装置の第一電極61とキャリア加速装置の第二電極62は共に絶縁物8の中に配置されている。絶縁物8の代表例は2酸化シリコンである。キャリア出力物質1がN型半導体11であり、チャネル形成物質2がP型半導体10であり、PN接合が形成される場合を具体例として以下に考察する。PN接合に合成ベクトル82が作用することにより、キャリア出力物質1であるN型半導体11のマジョリティ・キャリア(majority carrier)は電子であり、電子がチャネル形成物質2であるP型半導体中10にインジェクションされる。P型半導体中においてはインジェクションされた電子はマイノリティ・キャリア(minority carrier)であり、P型半導体の絶縁物8の側に反転層(inversion layer)が形成される。すなわち、チャネル形成物質2の表面に反転層が形成され、反転層の内部をキャリアが移動する場合には反転層がチャネルになる。インジェクションされたキャリアは加速チャネル9においてスライディング移動を行い、大きな運動エネルギーを獲得する。チャネル形成物質2の表面にあるチャネルにおいてはインジェクションされた電子は電界の作用によりクーロン力を受ける。矢印で示した2個のベクトルをベクトル演算に基づいて合成すると、図示の合成ベクトル82が形成される。第一電源31の電圧と第二電源32の電圧を調整すると、合成ベクトルは絶縁物8とP型半導体10の境界の方向に向かう。従って、2個の電源の電圧が適切に調整されると、P型半導体中10にインジェクションされた電子はP型半導体10の絶縁物8に近い表面においてスライディング移動を行う。最終的には、P型半導体中10にインジェクションされた電子は電子吸収コレクタ26(図示省略)に吸収される。
 N型半導体11からP型半導体10に電子がインジェクションされると、P型半導体10からN型半導体11に正孔がインジェクションされる。従って、N型半導体11には正孔が到達し、正電荷が蓄積される。キャリア出力物質1であるN型半導体11と電子吸収コレクタ26の間にエネルギー蓄積器15を接続すると、その中に正孔と電子がペアを形成して蓄積される。エネルギー蓄積器15に並列に電気的負荷5を接続すると、電子吸収コレクタ26に蓄積された電子とN型半導体11に蓄積された正孔が電気的負荷5を経由して中和が行われ、両者が電気的には消滅する。この際に、電気的負荷5に電気エネルギーが供給されることになる。この電気的エネルギーは電界の効果に基づいてキャリアを加速することにより創出される。キャリア加速装置の電極によって発生する電界の効果によってN型半導体の中に存在する電子がN型半導体からP型半導体にインジェクションされる。P型半導体にインジェクションされた電子が加速チャネル9の中でスライディング移動を行うことにより加速される。キャリアは加速される事により運動エネルギーを獲得するので、高エネルギー状態の電子が非可逆過程発生部に存在するポテンシャル障壁を量子力学的なトンネル効果により通過することが可能となる。高速で移動する電子は加速チャネルの終端部に配置された電子吸収コレクタに収集される。電子吸収コレクタに収集された電子はエネルギー蓄積器の一方の入力端子に入力され、N型半導体の中に残存する正孔がエネルギー蓄積器の他方の入力端子に入力され、電子と正孔がペアを形成し、エネルギー蓄積器に蓄積されることにより、時間的に後にインジェクションされる電子と正孔が加速されながら移動する事が妨害されなくなるので、エネルギー蓄積器に蓄積されるエネルギーの量が多くなる。エネルギー蓄積器が電気的負荷に並列的に接続される事により、電子と正孔が電気的負荷に供給される。その結果として、電子と正孔の発生により得られる電気エネルギーが電気的負荷において消費される。集積回路技術を適用すれば、電子および正孔をインジェクションするデバイスを製作する事は容易であるので、本発明の電界効果発電装置においては従来の発電装置よりも効率良く電気エネルギーを発生させることが可能となる。しかも、本発明の電界効果発電装置においては電子と正孔が共に早期にエネルギー蓄積器に移動することにより、エネルギー蓄積器に電気エネルギーを蓄えることができるので、エネルギーの発生効率が良好になる。キャリア出力物質としてP型半導体を用い、キャリア入力物質としてN型半導体を用いる場合には、P型半導体とN型半導体を電気的に接続する事によりPN接合を形成する。N型半導体の表面の全面又は1部分に絶縁物を配置し、絶縁物の中にキャリア加速装置の電極を配置し、電源を用いてキャリア加速装置の電極に電圧を加えることによりキャリア加速装置を構成し、キャリア加速装置の作用によりN型半導体の絶縁物側の表面に加速チャネルの1部分を形成する。キャリア加速装置の電極によって発生する電界の効果によってP型半導体の中に存在する正孔がP型半導体からN型半導体にインジェクションされる。N型半導体にインジェクションされた正孔が加速チャネル9の中でスライディング移動を行うことにより加速される。キャリアは加速される事により運動エネルギーを獲得するので、高エネルギー状態の正孔が非可逆過程発生部を通過することが可能となる。高速で移動する正孔は加速チャネルの終端部に配置された正孔吸収コレクタに収集される。正孔吸収コレクタに収集された正孔はエネルギー蓄積器の一方の入力端子に入力され、P型半導体の中に残存する電子がエネルギー蓄積器の他方の入力端子に入力され、電子と正孔がペアを形成し、エネルギー蓄積器に蓄積されることにより、時間的に後にインジェクションされる電子と正孔が加速されながら移動する事が妨害されなくなるので、エネルギー蓄積器に蓄積されるエネルギーの量が多くなる。エネルギー蓄積器が電気的負荷に並列的に接続される事により、電子と正孔が電気的負荷に供給される。その結果として、電子と正孔の発生により得られる電気エネルギーが電気的負荷において消費される。集積回路技術を適用すれば、電子および正孔をインジェクションするデバイスを製作する事は容易であるので、本発明の電界効果発電装置においては従来の発電装置よりも効率良く電気エネルギーを発生させることが可能となる。しかも、本発明の電界効果発電装置においては電子と正孔が共に早期にエネルギー蓄積器に移動することにより、エネルギー蓄積器に電気エネルギーを蓄えることができるので、エネルギーの発生効率が良好になる。結論として、本発明の電界効果発電装置においては、電子を真空中にエミッションするために必要とされる大きなワーク・ファンクションの突破エネルギーをキャリアに供給する必要がないので、物質の中で行うインジェクションに必要なエネルギーのみを装置に供給することにより発電を行う事が可能となり、外部の電源から供給するエネルギーが極めて小さくなり、その結果として発電効率が良好になる特徴がある。さらに、本発明の電界効果発電装置においては、加速チャネルの中でキャリアを加速するので、加速チャネルにおいて消費するエネルギー損失が絶縁物中に電極を配置する事により殆ど零に近いという決定的な特徴があり、従来の発電装置よりも効率良く電気エネルギーを発生させることが可能となる。チャネル形成物質2の具体例としてP型半導体10を用いる場合を以下に記述する。図23には、P型半導体10の上に絶縁物8が配置される場合を示す。キャリア加速装置の第一電極61およびキャリア加速装置の第二電極62は絶縁物8の中に配置される。キャリア加速装置の第一電極61およびキャリア加速装置の第二電極62はP型半導体10に非常に近い位置に配置される。キャリア加速装置の第一電極61は電源30の負電極に接続され、負電荷が蓄積される。キャリア加速装置の第二電極62は電源30の正電極に接続され、正電荷が蓄積される。従って、キャリア加速装置の第二電極62とキャリア加速装置の第一電極61の間には電界が発生する。両方の電極は共に絶縁物の中に配置されているので、両電極間には電流が流れない。キャリア加速装置の第二電極62からキャリア加速装置の第一電極61に向かう電気力線を図24に示す。同図に示すように、正電極から負電極に向かって電界が発生し、電気力線を矢印のある曲線で示す。電気力線は絶縁物8の中もP型半導体10の中も通過する。従って、P型半導体10と絶縁物8との境界付近に電界によって加速チャネル9が発生し、P型半導体10の表面付近には水平方向の電界があり、P型半導体10の中にインジェクションされたキャリアである電子は同図において右方向にスライディング的な移動を行う。すなわち、電源30の電圧によって発生する電界は電子を右方向に加速する。キャリア加速装置の電極を複数個だけ配置すると、電子の速度が増加し、電子は大きい運動エネルギーを保有する。この運動エネルギーは電界により発生したが、この状態では電気的に利用することが出来ないので、キャリアの運動エネルギーをポテンシャル・エネルギーに変換する。運動エネルギーを充分に保有する電子はポテンシャル障壁を越えることが可能となり、最終的には電子吸収コレクタ26に到達し、それに吸収されることにより電子吸収コレクタ26は電荷を獲得する。電子吸収コレクタ26に蓄えられた電荷は発電に寄与する。発電を行うために必要なエネルギーを外部から供給する必要が殆どないので、本発明の電界効果発電装置の発電効率は極めて良好になる。
[発明の効果4]
 請求項(4)に記載の電界効果発電装置によれば、上記の請求項(1)に記載の構成による作用・効果に加えて、絶縁物あるいは真空によって非可逆過程発生部が構成される事により電界効果発電を良好に行うことが可能となる。電界効果発電現象を実現するには、非可逆的な過程を導入する必要がある。すなわち、キャリアがポテンシャル障壁発生部20を量子力学的トンネル効果により通過することにより、キャリア出力物質1からチャネル形成物質2に移動すれば、非可逆的な過程が実現される。図25に示すように、キャリア出力物質1とチャネル形成物質2があり、キャリア出力物質1とチャネル形成物質2の間にポテンシャル障壁発生部20が構成される場合を考察する。なお、キャリア出力物質1とチャネル形成物質2は導電性であるとする。
 具体的な例としてキャリアが電子であり、アンチ・キャリアが正孔である場合を考察する。図26に示すように、キャリア加速装置3の作用によって、キャリア出力物質1からチャネル形成物質2へ電子が量子力学的トンネル現象によりポテンシャル障壁発生部20を通過する。キャリアがポテンシャル障壁発生部20を通過すると、図27に示すように、チャネル形成物質2には負電荷を保有する電子が蓄積され、キャリア出力物質1には電子の抜け孔である正電荷を保有する正孔が蓄積される。キャリア出力物質1の正孔の数とチャネル形成物質2の電子の数が増加すると、正孔が保有する正電荷と電子が保有する負電荷がクーロンの法則により互いに引き合う。従って、キャリア加速装置3の作用が停止し、チャネル形成物質2の中の電子が充分に多くなると、図28に示すように、チャネル形成物質2の中にある電子がチャネル形成物質2に移動する。すなわち、可逆過程が発生し、チャネル形成物質2に蓄えられた電子を電気エネルギーとして有効に利用することができない。故に、キャリアの移動の際には、非可逆的な過程を導入しなければ、効率的な発電を実現する事はできない。
 電界効果発電を実現するために、キャリアの移動を詳細に考察する。キャリアとアンチ・キャリアが電気的な中性状態で存在する物質をキャリア出力物質1と呼ぶ。電子の波動性を利用することにより、電子がポテンシャル障壁発生部20を通過して移動し、チャネル形成物質2にインジェクションされる。すなわち、キャリア出力物質1とチャネル形成物質2との間にポテンシャル障壁発生部20が存在する場合において、キャリア出力物質1からチャネル形成物質2にキャリアの波動性に基づいてポテンシャル障壁発生部20を量子力学的トンネル効果により通過することにより、チャネル形成物質2にキャリアが蓄積される。
 次に、電子がキャリア出力物質1から離脱する例を考察する。電子がキャリア出力物質1から離脱するには、電子が運動エネルギーを充分に保有する必要がある。電子に運動エネルギーを与えるには次に示す2つの方法がある。
(1)キャリア出力物質1にエネルギーを供給すると、キャリア出力物質1の中に存在する電子が運動エネルギーを保有する。キャリア出力物質1に供給するエネルギーとして、電磁波照射および熱を加えるなどの方法がある。キャリア出力物質1を加熱することによりその温度を高くすると、キャリア出力物質1から離脱するにはポテンシャル障壁発生部20を越える必要がある。キャリア出力物質1中に存在する電子の運動エネルギーが充分に大きい場合には、電子はキャリア出力物質1から離脱する。しかし、電子の離脱によりキャリア出力物質1には正電荷が残存し、離脱した電子を正電荷がクーロンの力により引き戻す作用が発生し、チャネル形成物質2に移動する確率は低くなる。以上の原理に基づいて熱発電が実現される。熱発電においては、キャリア出力物質1の全体の温度を高くする必要があり、効率の良好な発電装置を実現することは困難である。
(2)キャリア出力物質1中にある電子は負電荷を保有するので、正電荷を接近すると、クーロンの法則に基づいて互いに引き合う。この引き合う力を利用することにより電子の速度を大きくすることにより電子に運動エネルギーを与えることが可能となる。電子が充分に運動エネルギーを保有すると、キャリア出力物質1とチャネル形成物質2との間に存在するポテンシャル障壁発生部20を波動性により量子力学的なトンネル効果により貫通して通過することが可能となる。基板19の上にキャリア出力物質1とチャネル形成物質2を配置し、キャリア出力物質1とチャネル形成物質2を電気的に接続し、チャネル形成物質2の表面の全面又は1部分に絶縁物を配置し、絶縁物の中にキャリア加速装置3の電極を配置し、電源を用いてキャリア加速装置の電極60に電圧を加えることによりキャリア加速装置3を構成し、キャリア加速装置3の作用によりチャネル形成物質2の絶縁物8の側の表面に加速チャネルの1部分を形成する。キャリア加速装置の電極60によって発生する電界の効果によってキャリア出力物質1の中に存在するキャリアがキャリア出力物質1からチャネル形成物質2にインジェクションされる。チャネル形成物質2にインジェクションされたキャリアが加速チャネルの中で加速されて移動する。キャリアは加速される事により運動エネルギーを獲得するので、高エネルギー状態のキャリアが非可逆過程発生部4を量子力学的トンネル効果により通過することが可能となる。高速で移動するキャリアは加速チャネル9の終端部に配置されたキャリア吸収コレクタに収集される。キャリア吸収コレクタに収集されたキャリアはエネルギー蓄積器15の一方の入力端子に入力され、キャリア出力物質1の中に残存するアンチ・キャリアがエネルギー蓄積器15の他方の入力端子に入力され、キャリアとアンチ・キャリアがペアを形成し、エネルギー蓄積器15に蓄積されることにより、時間的に後にインジェクションされるキャリアとアンチ・キャリアが加速されながら移動する事が妨害されなくなるので、エネルギー蓄積器15に蓄積されるエネルギーの量が多くなる。エネルギー蓄積器15が電気的負荷5に並列的に接続される事により、キャリアとアンチ・キャリアが電気的負荷5に供給される。その結果として、キャリアとアンチ・キャリアの発生により得られる電気エネルギーが電気的負荷5において消費される。集積回路技術を適用すれば、キャリアをインジェクションするデバイスを製作する事は容易であるので、本発明の電界効果発電装置においては従来の発電装置よりも効率良く電気エネルギーを発生させることが可能となる。しかも、本発明の電界効果発電装置においてはキャリアとアンチ・キャリアが共に早期にエネルギー蓄積器15に移動することにより、エネルギー蓄積器15に電気エネルギーを蓄えることができるので、エネルギーの発生効率が良好になる。さらに、本発明の電界効果発電装置においては、電子を真空中にエミッションするために必要とされる大きなワーク・ファンクションの突破エネルギーをキャリアに供給する必要がないので、物質の中で行うインジェクションに必要なエネルギーのみを装置に供給することにより発電を行う事が可能となり、外部の電源から供給するエネルギーが極めて小さくなり、その結果として発電効率が良好になる特徴がある。
[発明の効果5]
 請求項(5)に記載の電界効果発電装置によれば、基板の上にキャリア出力物質1とチャネル形成物質2を配置し、キャリア出力物質1とチャネル形成物質2を電気的に接続し、チャネル形成物質2の表面の全面又は1部分に絶縁物8を配置し、絶縁物8の中にキャリア加速装置の電極60を配置し、電源を用いてキャリア加速装置の電極60に電圧を加えることによりキャリア加速装置9を構成し、キャリア加速装置9の作用によりチャネル形成物質2の絶縁物8の側の表面に加速チャネル9の1部分を形成する。キャリア加速装置の電極60によって発生する電界の効果によってキャリア出力物質1の中に存在する電子がキャリア出力物質1からチャネル形成物質2にインジェクションされる。電子のインジェクションを実現するためには、電子の物体内における移動を詳細に考察する必要がある。キャリア出力物質11とチャネル形成物質2が異なる物質であり、それらが共に電気的な接合状態にあるとする。すなわち、キャリア出力物質1とチャネル形成物質2の境界にはポテンシャル障壁発生部20が存在し、キャリアが他物質に自由に移動することができない。キャリア出力物質1の中には、キャリアである電子とアンチ・キャリアである正孔が殆ど同じ数であり、電気的な中性状態を保っています。チャネル形成物質2の中にも、キャリアである電子とアンチ・キャリアである正孔が殆ど同じ数であり、電気的な中性状態を保っている。キャリア加速装置の電極60に正電圧が加えられると、負電荷を保有する電子は正電圧により発生する電界の効果により移動します。電子の波動性を利用することにより、キャリア出力物質1の電子がポテンシャル障壁発生部20を通過してチャネル形成物質2に移動する。この現象を電子のインジェクションと呼ぶ。すなわち、キャリア出力物質1とチャネル形成物質2との間にポテンシャル障壁発生部20が存在する場合において、キャリア出力物質1からチャネル形成物質2に電子が波動性に基づいてポテンシャル障壁発生部20を量子力学的トンネル効果により通過することにより、チャネル形成物質2に電荷が蓄積される。チャネル形成物質2にインジェクションされたキャリアが加速チャネル9の中で加速されて移動する。電子は加速される事により運動エネルギーを獲得するので、高エネルギー状態の電子が非可逆過程発生部4を量子力学的なトンネル効果により通過し、電子が真空中にエミッションされる。電子が真空中にエミッションされる現象を以下に説明する。図29に示すように、物質中に存在する電子が量子力学的なトンネル効果によってポテンシャル障壁(barrier)を貫通して通過する事により電子がエミッションされる。古典力学的にはポテンシャル障壁が高い場合には、電子はこれを越えることはできない。しかし、量子力学によると、電子の波動性により、電子が高いポテンシャル障壁を貫通して通過する場合があり。これをトンネル効果と言う。
 図30に示すように、電子が熱電子放出を行うには、加熱により電子が保有するエネルギーが仕事関数(work function)よりも大きくなると、真空中に放出される。図31に示すように、外部電界が強くなると、ポテンシャル障壁の厚さが薄くなり、カソードを加熱しない場合でも電子が真空中に電界効果によりエミッションが行われる。これは電子の波動性による量子力学的なトンネル効果に依存する。本発明の電界効果発電装置においては、外部から熱エネルギーを電子に与えることを行わずに、電子を真空中にエミッションさせる。電子が物質から真空中にエミッションするのは、物質と真空の境界にあるポテンシャル障壁を越える必要がある。電子がエミッションを行うには、電子が運動エネルギーを充分に獲得する必要がある。電子に運動エネルギーを与えるためにキャリア加速装置の電極60によって発生する電界の効果を利用する。チャネル形成物質2の中にある電子は負電荷を保有するので、正電荷を接近すると、クーロンの法則に基づいて互いに引き合う。この引き合う力を利用することにより電子の速度を大きくすることが可能となる。すなわち、電界効果により電子を加速すると、電子が保有する運動エネルギーが大きくなる。電子がチャネル形成物質2の中で充分に運動エネルギーを保有すると、チャネル形成物質2と真空の境界に存在するポテンシャル障壁発生部20を波動性による量子力学的なトンネル効果により貫通して通過することが可能となる。本発明においては、電子をキャリア出力物質1から2チャネル形成物質2にインジェクションを行い、加速チャネル9の中で電子を電界効果によって加速することにより、電子が量子力学的なトンネル効果によりエミッションされる確率を高くすることが特徴である。この場合のエミッションは非可逆過程である。エミッションされた電子は加速チャネル9の中で高速に飛翔し、加速チャネル9の終端部に配置された電子吸収コレクタ26に収集される。電子吸収コレクタ26に収集された電子はエネルギー蓄積器15の一方の入力端子に入力され、キャリア出力物質1の中に残存する正孔がエネルギー蓄積器15の他方の入力端子に入力され、電子と正孔がペアを形成し、エネルギー蓄積器15に蓄積されることにより、時間的に後にインジェクションされる電子と正孔が加速されながら移動する事が妨害されなくなるので、エネルギー蓄積器15に蓄積されるエネルギーの量が多くなる。エネルギー蓄積器15が電気的負荷5に並列的に接続される事により、電子と正孔が電気的負荷5に供給される。その結果として、電子と正孔の発生により得られる電気エネルギーが電気的負荷5において消費される。集積回路技術を適用すれば、電子をインジェクションするデバイスを製作する事は容易であるので、本発明の電界効果発電装置においては従来の発電装置よりも効率良く電気エネルギーを発生させることが可能となる。しかも、本発明の電界効果発電装置においては電子と正孔が共に早期にエネルギー蓄積器15に移動することにより、エネルギー蓄積器15に電気エネルギーを蓄えることができるので、エネルギーの発生効率が良好になる。さらに、本発明の電界効果発電装置においては、電子を真空中にエミッションするために必要とされる大きなワーク・ファンクションの突破エネルギーを電子に供給する必要がないので、物質の中で行うインジェクションに必要なエネルギーのみを装置に供給することにより発電を行う事が可能となり、外部の電源から供給するエネルギーが極めて小さくなり、その結果として発電効率が良好になる特徴がある。
[発明の効果6]
 請求項(9)に記載の電界効果発電装置によれば、上記の請求項(5)に記載の構成による作用・効果に加えて、以下に記述する作用・効果がある。負電荷を有するキャリアである電子が電子吸収コレクタ26に吸収される場合を考察する。電子吸収コレクタ26に蓄積された電子が電気的負荷5を経由して移動し、正電荷と再結合を行うことにより消滅すれば、発電された電力が消費される。電子吸収コレクタ26に電子が蓄積され、この電子が電力消費に使用されるためには下記に示す条件が必要である。
(1)電子が電子吸収コレクタ26に効率よく到達する。
(2)電子吸収コレクタ26に蓄積された電子が漏洩する事により消滅する量が最少となり、殆どの電子が電力消費に使用される。
(3)電子吸収コレクタ26の周辺にはキャリア加速装置3が配置されており、キャリア加速装置3の電極には正電荷が蓄積されるので、電子吸収コレクタ26に吸収される前に電子がキャリア加速装置3の電極に接近する可能性がある。従って、電子吸収コレクタ26に接近する電子がキャリア加速装置3の正電極の作用によって逆方向に移動する事を防止する構造であること。
(4)電子吸収コレクタ26に電子が蓄積されると、次に電子吸収コレクタ26に接近する電子に電子吸収コレクタ26に蓄積した負電荷によりクーロンの法則に従う反発力が作用するので、電子吸収コレクタ26に吸収された電子を早急にエネルギー蓄積器15に移動する必要がある。
(5)エネルギー蓄積器15には、電子と正孔がペアを形成して蓄積される。電子と正孔のどちらか一方が電源から供給されると、電気的負荷5を経由して正電荷と負電荷が再結合することにより消滅する。この場合には外部電源の電力消費が発生し、発電効率が低下する。従って、エネルギー蓄積器15に蓄積される電子と正孔にキャリア出力物質1から供給される事により発電効率が向上する。
 キャリア加速装置3の正電極に蓄積された正電荷によって加速された電子は運動エネルギーを保有する。運動エネルギーを保有する電子が電子吸収コレクタ26に接近する。電子が電子吸収コレクタ26に衝突すると、電子が保有する運動エネルギーが放出されて電子吸収コレクタ26に熱エネルギーを与える。電子吸収コレクタ26に供給された熱エネルギーにより電子吸収コレクタ26の温度が上昇する。電子吸収コレクタ26の温度が上昇すると、電子吸収コレクタ26の熱が周辺部に伝達され、周辺部の温度が上昇する。電子吸収コレクタ26およびその周辺部の温度上昇は電子吸収コレクタ26およびその周辺部の材質が劣化する。材質が劣化すると、部材の固有抵抗が低下し、漏れ電流が多くなり発電効率が低下する。さらに、部材の劣化は耐久性が短くなる等の欠点をもたらす。その上、電子吸収コレクタ26およびその周辺部の温度上昇が装置全体の温度上昇をもたらすので、モバイル機器においては致命的な欠点となり、温度が上昇する発電装置の使用範囲が限定される。従って、運動エネルギーを保有する電子が電子吸収コレクタ26に接近する際には、電子が保有する運動エネルギーを減少させてから電子吸収コレクタ26に衝突させる必要がある。
 電子は負電荷を保有する。クーロンの法則によって、負電荷は正電荷とは互いに引き合うが、負電荷とは互いに反発する。従って、電子は正電荷に接近すると加速され、負電荷に接近すると減速される。故に、発電の初期においてはホット・エレクトロンを生成するために電子を正電荷の作用により加速するが、電子が充分に加速されてポテンシャル障壁を突破し、電子吸収コレクタ26に接近すると、負電荷の作用により減速する必要がある。
 運動エネルギーを保有する電子が電子吸収コレクタ26に接近する場合には、その速度を遅くするために、下記に示す方法を採用する。
(1)減速電極を電子吸収コレクタ26の周辺に配置する。
(2)電子吸収コレクタ26に負電荷が蓄積される場合には、電子吸収コレクタ26に接近する電子は電子吸収コレクタ26に蓄積されている負電荷によってクーロンの反発力を受ける。従って、電子吸収コレクタ26に接近する電子の速度は低下する。
(3)電子吸収コレクタ26に接近する電子の速度が低下する事を目的として電子吸収コレクタ26の構造を決定する。
 上記の3つの減速方法の詳細を以下に記述する。
(1)電子が電子吸収コレクタ26に接近する場合には、図32に示すように、電子吸収コレクタ26の直前に導電物8を配置する。これをサプレッサ25と呼ぶ。サプレッサ25と電子吸収コレクタ26の間には絶縁物8が配置され、サプレッサ25と電子吸収コレクタ26は電気的に絶縁される。電子吸収コレクタ26とサプレッサ25の間に電源を配置し、サプレッサ25の電位を電子吸収コレクタ26の電位よりも低い値に設定する。電子が電子吸収コレクタ26に接近する直前にサプレッサ25に蓄積されている負電荷とクーロンの反発作用を受ける。従って、電子吸収コレクタ26に接近する電子が減速される。運動エネルギーを保有する電子が電子吸収コレクタ26に接近する際には、サプレッサ25によって運動エネルギーの一部を失うことにより電子が電子吸収コレクタ26に衝突する速度が低下するので、電子吸収コレクタ26に供給されるエネルギーが少なくなり、電子吸収コレクタ26の温度上昇が少なくなる。さらに、電子吸収コレクタ26に相突した電子が反発されて後戻りをする場合には、サプレッサ25の負電荷の反発作用により再び電子吸収コレクタ26に電子が向かうので、サプレッサ25は電子のバウンド離脱を抑制する効果も発揮し、電子吸収コレクタ26が電子を収集する能力が良好となる。
(2)電子吸収コレクタ26に負電荷を蓄積すると、後から電子吸収コレクタ26に接近する電子は電子吸収コレクタ26に蓄積されている負電荷によるクーロンの反発力によって電子吸収コレクタ26に接近する電子の速度が低下する。従って、電子の衝突により電子吸収コレクタ26に供給されるエネルギーが少なくなり、電子吸収コレクタ26の温度上昇が抑えられる。電子吸収コレクタ26に負電荷が蓄積されていると、発電電圧が高くなり、電気エネルギーが大きくなる。従って、電子吸収コレクタ26に負電荷が残存すると、大きい電気エネルギーを供給することが可能となり、電子吸収コレクタ26の温度上昇も抑えられるので、効率の良好な発電装置が実現される。電子吸収コレクタ26に負電荷が常に残存するには、電子吸収コレクタ26に接近させる電子の数が多くなる装置を製作する必要がある。すなわち、電子吸収コレクタ26に電子を多く供給する能力のある構造とする。さらに、必要以上に電子を電子吸収コレクタ26に接近させる事は電子の負電荷の周辺における付着が後の電子の動作に悪影響を与える可能性があるので、加速する電子の数を電子吸収コレクタ26の電位に依存して制御すると、効率と耐久性の優れた装置を実現するためには必要な条件である。
(3)電子吸収コレクタ26に接近する電子の速度が低下する事を目的として電子吸収コレクタ26の構造を決定する。電子吸収コレクタ26が平坦な構造であると、電子は減速されずに電子吸収コレクタ26に相突する。従って、電子吸収コレクタ26の表面に細かい凹凸を配置する。非常に細かい凹凸の例として、電子吸収コレクタ26の表面にカーボン系の材料を配置する事は有効な方法である。非常に小さいカーボン系の物質を電子吸収コレクタ26の表面に配置すると、電子が電子吸収コレクタ26の導電部に接近する直前にカーボン系の物質に接近する。カーボン系の物質に電子が接近すると、時間的に以前に到達している電子が保有する負電荷によりクーロンの反発作用により電子が減速作用を受けた後に電子吸収コレクタ26に衝突するので、電子吸収コレクタ26に衝突する速度が低下し、電子吸収コレクタ26の温度上昇が抑えられるので、電子吸収コレクタ26の表面に配置するカーボン系の物質が本発明の電界効果発電装置の耐久性を増し、発電効率も良好にする作用がある。
[発明の効果7]
 請求項(10)に記載の電界効果発電装置によれば、上記の請求項(5)に記載の構成による作用・効果に加えて、電磁波、電子、光子などは量子力学的には波動性を有するので、これらの波動性エネルギーをキャリア出力物質1およびチャネル形成物質2に照射すると、ポテンシャル障壁発生部20を通過する電子の数が増加する。この現象の詳細を以下に記述する。
 本発明の電界効果発電現象においては、電子吸収コレクタ26に収集された電子が逆方向に移動することを阻止するために、非可逆過程発生部4を導入する必要がある。電子が非可逆過程発生部4を通過するために、電子に運動エネルギーを与える必要がある。そのためには、電子がポテンシャル障壁発生部20を量子力学的なトンネル効果により通過することにより、キャリア出力物質1からチャネル形成物質2にインジェクションされ、チャネル形成物質2の表面を移動することにより加速される必要がある。電子と正孔が殆ど等量の状態で含まれているキャリア出力物質1に電磁波、電子、光子などを照射する。電子の波動性を利用することにより、電子がポテンシャル障壁発生部20を通過して移動し、チャネル形成物質2に電子が良好にインジェクションされる。すなわち、キャリア出力物質1とチャネル形成物質2との間にポテンシャル障壁発生部20が存在する場合において、キャリア出力物質1からチャネル形成物質2に電磁波、電子、光子などを照射する事によりポテンシャル障壁発生部20を量子力学的なトンネル効果により通過することにより、チャネル形成物質2にキャリアが蓄積される。図33には物質中にある電子の統計的なエネルギー分布を示す。同図によれば、大きいエネルギーを保有する電子の数は少なく、小さいエネルギーを保有する電子の数も少ないが、平均値付近のエネルギーを保有する電子の数が最も多くなる傾向がある。電子が保有するエネルギーが小さい場合には、コールド・エレクトロン(cold electron)と呼ばれ、電子が保有するエネルギーが大きい場合には、ホット・エレクトロン(hot electron)と呼ばれる。図34には、電子のもつエネルギーに対するポテンシャル障壁の閾値をTで表す。電子が保有するエネルギーが大きく、ポテンシャル障壁の閾値Tを越えることができるならば、それらをエリート電子(elite electrons)と呼ぶ。逆に、電子が保有するエネルギーが小さく、ポテンシャル障壁の閾値Tを越えることができないならば、それらを非エリート電子(non-elite electrons)と呼ぶ。本発明の電界効果発電装置においては、エリート電子はポテンシャル障壁の閾値Tを越えることが可能であるので、発電に寄与することができるが、非エリート電子はポテンシャル障壁の閾値Tを越えることが不可能であるので、発電に寄与することができない。外部から物質内の電子に運動エネルギーを与えない場合には、物質内の電子の殆ど全ては非エリート電子である。量子力学的に波動性を示すところの電磁波、電子、光子などをキャリア出力物質1およびチャネル形成物質2に照射する事により、電子に運動エネルギーを与えると、エリート電子の数が増加するので、多くの電子がポテンシャル障壁の閾値Tを越える事が可能となる。
 電子を電界中に配置すると、電界を発生する正電極には正の電荷が蓄積されているので、電子が正電荷に接近する方向に移動し、電界を発生する負電極には負の電荷が蓄積されているので、電子が負電荷から離れる方向に移動する。従って、電子が電界によって移動すると、電子が移動速度を増加するので、電子は加速される。電子が電界によって加速されることおよび波動性エネルギーの照射の相乗効果により、電子が保有する運動エネルギーが増加し、ポテンシャル障壁の閾値Tを越えることができるエリート電子の数が増加するので、インジェクションされる電子の数が増加し、さらにエミッションされる電子の数も増加する。故に、発電に寄与する電子数が増加するので、発電量が増加する。
 本発明の電界効果発電装置の特徴を以下に記述する。電界の効果に加えて量子力学的に波動性を示すところの電磁波、電子、光子などをキャリア出力物質1およびチャネル形成物質2に照射する事により、出力される電子の運動エネルギーを増加する方法の特徴を以下に記述する。正電極に正電荷を蓄積し、負電極に負電荷を蓄積すると、正電極と負電極の間に電界が発生する。正電極と負電極の間には絶縁物8を配置する。絶縁物8のインピーダンスは高いので、正電極と負電極の間に流れる電流は殆ど無い。従って、電界を発生するために消費するエネルギーは極めて少ないので、エリート電子を作り出すために消費するエネルギーが少ないので、発電効率が高い発電を実現することができる可能性がある。本発明の装置において電界の効果に併用して、電磁波、電子、光子などをキャリア出力物質1およびチャネル形成物質2に照射する事により発電に寄与するエリート電子の数が増加する。基板19の上にキャリア出力物質1とチャネル形成物質2を配置し、キャリア出力物質1とチャネル形成物質2を電気的に接続し、チャネル形成物質2の表面の全面又は1部分に絶縁物8を配置し、絶縁物8の中にキャリア加速装置3の電極を配置し、電源を用いてキャリア加速装置の電極60に電圧を加えることによりキャリア加速装置3を構成し、キャリア加速装置3の作用によりチャネル形成物質2の絶縁物8の側の表面に加速チャネル9の1部分を形成する。キャリア加速装置の電極60によって発生する電界の効果によってキャリア出力物質1の中に存在する電子がキャリア出力物質1からチャネル形成物質2にインジェクションされる。キャリア出力物質1に量子力学的に波動性を示すところの電磁波、電子、光子などを照射する事によりチャネル形成物質2にインジェクションされる電子の数が増加する。チャネル形成物質2にインジェクションされた電子が加速チャネル9の中で加速されて移動する。チャネル形成物質2に量子力学的に波動性を示すところの電磁波、電子、光子を照射する事により電子は大きな運動エネルギーを獲得するので、高エネルギー状態の電子が非可逆過程発生部4を量子力学的なトンネル効果により通過することが可能となり、電子が真空中にエミッションされる。エミッションされた電子は加速チャネル9の終端部に配置された電子吸収コレクタ26に収集される。電子吸収コレクタ26に収集された電子はエネルギー蓄積器15の一方の入力端子に入力され、キャリア出力物質1の中に残存する正孔がエネルギー蓄積器15の他方の入力端子に入力され、電子と正孔がペアを形成し、エネルギー蓄積器15に蓄積されることにより、時間的に後にエミッションされる電子と正孔が加速されながら移動する事が妨害されなくなるので、エネルギー蓄積器15に蓄積されるエネルギーの量が多くなる。エネルギー蓄積器15が電気的負荷5に並列的に接続される事により、電子と正孔が電気的負荷5に供給される。その結果として、電子と正孔の発生により得られる電気エネルギーが電気的負荷5において消費される。集積回路技術を適用すれば、キャリアをインジェクションするデバイスを製作する事は容易であるので、本発明の電界効果発電装置においては従来の発電装置よりも効率良く電気エネルギーを発生させることが可能となる。しかも、本発明の電界効果発電装置においては電子と正孔が共に早期にエネルギー蓄積器15に移動することにより、エネルギー蓄積器15に電気エネルギーを蓄えることができるので、エネルギーの発生効率が良好になる。結論として、本発明の電界効果発電装置においては、量子力学的に波動性を示すところの電磁波、電子、光子などをキャリア出力物質1およびチャネル形成物質2に照射することおよび電界効果の相乗作用により、発電効率が良好な電界効果発電装置を実現することが可能となる。
[発明の効果8]
 請求項(11)に記載の電界効果発電装置によれば、上記の請求項(5)に記載の構成による作用・効果に加えて、キャリア入力物質の表面の全面あるいは1部分に2次電子放出部材を配置する事により電界効果発電を良好に行うことが可能となる。
 キャリア出力物質1からチャネル形成物質2の中にインジェクションされたキャリアはキャリア加速装置3によって加速されることにより、キャリアは運動エネルギーを獲得する。キャリアが進行する場所を加速チャネル9と言う。キャリアが電子である例を以下に示す。図35に示すように、キャリア出力物質1からチャネル形成物質2の中にインジェクションされた電子は、チャネル形成物質2と絶縁物8の間にある加速チャネル9の中を進行する。N型半導体11からP型半導体10にキャリアである電子をインジェクションするために第一電源31を用いる。第一電源31によってキャリア加速装置の第一電極61とキャリア加速装置の第二電極62の間に電界が発生し、電子は絶縁物8とチャネル形成物質2の間にある加速チャネル9の中を進行し、正電荷が蓄積されたキャリア加速装置の第二電極62の方向に進む。さらに、第二電源32によってキャリア加速装置の第二電極62とキャリア加速装置の第三電極63の間に電界が発生し、加速装置の第三電極63の下で加速されながら進行する。加速チャネル9の右側にはチャネル形成物質2の表面に凹凸を設定する。チャネル形成物質2の表面に設けられた凹凸は極めて微小な大きさである。第三電源33によってキャリア加速装置の第三電極63とキャリア加速装置の第四電極64の間に電界が発生し、キャリアである電子が充分に運動エネルギーを保有すると、チャネル形成物質2の窪み領域の表面を通過する。キャリア加速装置の電極から発生する電界の作用により、電子の速度は次第に大きくなり、チャネル形成物質2の凹凸表面をトンネル効果により電位障壁を貫通して通過する。最終的には電子の速度が充分に大きくなり、保有する運動エネルギーが大きくなると、同図に示すeのように、電子がチャネル形成物質2の表面から離脱して真空中にエミッションされる。本発明においては、エミッションされた電子は電子吸収コレクタ26に衝突し、コレクタに吸収される。コレクタに吸収された電子は電気エネルギーとして利用される。
 図36には、2次電子放出部材80をチャネル形成物質2の凸領域に配置する場合を示す。同図において、第一電源31によってキャリア加速装置の第一電極61とキャリア加速装置の第二電極62の間に電界が発生し、電子は絶縁物8とチャネル形成物質2の間にある加速チャネル9の中を進行し、正電荷が蓄積されたキャリア加速装置の第二電極62の方向に加速されながら進行する。さらに、第二電源32によってキャリア加速装置の第二電極62とキャリア加速装置の第三電極63の間に電界が発生し、加速装置の第三電極63の直下に加速されながら進行する。電界加速により大きな運動エネルギーを保有する電子が2次電子放出部材80に衝突し、2次電子を放出する。2次電子放出部材80に衝突する電子を1次電子と呼ぶ。1次電子と2次電子は共に第三電源33により発生するキャリア加速装置の第三電極63とキャリア加速装置の第四電極64の間の電界により加速されて進行する。2次電子がチャネル形成物質2の表面に設置された2次電子放出部材80から放出されると、それらとペアを組んでいた正孔がチャネル形成物質2に残存し、それらはチャネル形成物質2からキャリア出力物質1にインジェクションされるキャリアとなる。インジェクションされたキャリアがキャリア加速装置3によって加速されることにより、キャリアは大きい運動エネルギーを保有することができる。キャリアが進行する経路を加速チャネル9と言う。図37に示すように、キャリアである電子はチャネル形成物質2と絶縁物8の間にある加速チャネル9を進行する。第一電源31によってキャリア加速装置の第一電極61とキャリア加速装置の第二電極62の間に電界が発生し、電子はチャネル形成物質2の絶縁物8も側の表面を進行し、正電荷が蓄積されたキャリア加速装置の第二電極62の方向に進む。電子の速度が充分に大きくなると、電子が保有する運動エネルギーが大きくなり、電子が絶縁物8とチャネル形成物質2の間からエミッションされて電子が飛翔する。飛翔する電子は2次電子放出材80に衝突し、多数の2次電子を放出する。さらに、第二電源32によってキャリア加速装置の第二電極62とキャリア加速装置の第三電極63の間に電界が発生し、加速装置の第三電極63の直下に加速しながら進行する。電子の速度が充分に大きくなると、電子が保有する運動エネルギーが大きくなり、飛翔する電子が2次電子放出材80に衝突し、多数の2次電子を放出する。第三電源33によってキャリア加速装置の第三電極63とキャリア加速装置の第四電極64の間に電界が発生し、キャリアである電子が充分に運動エネルギーを保有すると、飛翔する電子が2次電子放出材80に衝突し、多数の2次電子を放出する。以上の過程を続けると、飛翔する電子の数が急激に増加する。2次電子放出部材80に衝突する電子を1次電子と呼ぶ。1次電子と2次電子は共に第三電源33により発生するキャリア加速装置の第三電極63とキャリア加速装置の第四電極64の間の電界により加速されながら進行する。2次電子がチャネル形成物質2の表面に設置された2次電子放出部材80から放出されると、それらとペアを組んでいた正孔がチャネル形成物質2に残存し、それらはチャネル形成物質2からキャリア出力物質にインジェクションされるキャリアとなる。なお、2次電子放出部材80は撮像管などにも用いられており、酸化鉛や酸化珪素系の物質などが用いられる。電子が2次電子放出部材80に衝突する際には、最も2次電子を多く放出する1次電子のエネルギーは数百エレクトロン・ボルト(eV)である。
 キャリアである電子が電界によって加速されることにより電子が保有する運動エネルギーが大きくなる。電子が保有する運動エネルギーが大きくなると、コレクタに多くの電子が蓄積される場合においても、クーロンの反発力に打ち勝ってコレクタに衝突することが可能となり、発電により発生する電圧が高くなる。さらに、加速チャネル9に2次電子放出部材80と配置し、高速で進行する電子が1次電子となり、多くの2次電子を放出すると、発電に寄与する電子の数が増加し、発電装置から取り出すことが可能な電子の数が増加するので、電気的負荷5に流すことができる電流が増加する。電圧と電流の積が電力であるので、2次電子放出部材80を配置することにより発電により得られる電力が大きくなり、発電効率が向上する。
[発明の効果9]
 請求項(12)に記載の電界効果発電装置によれば、上記の請求項(5)に記載の構成による作用・効果に加えて、偏向電極および偏向磁極を用いてエミッションされた電子の軌道を偏向する事を特徴とする。以下には偏向電極を用いる偏向方式の詳細を記述する。キャリア出力物質1としてN型半導体11を用い、チャネル形成物質2としてP型半導体10を用いる場合を以下に示す。インジェクションされたキャリアである電子の軌道が曲げられて電子吸収コレクタ26に収集される場合を図38に示す。P型半導体10とN型半導体11はPN接合を形成する。第一電源31の負電圧端子はN型半導体11に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。キャリア加速装置の第一電極61とN型半導体11の間には電界が発生する。発生する電界によってキャリアである電子がN型半導体11からP型半導体10にインジェクションされ、加速チャネル9内を移動する。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。キャリア加速装置の第一電極61とキャリア加速装置の第二電極62の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9の中で加速される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。キャリア加速装置の第二電極62とキャリア加速装置の第三電極63の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9内で加速される。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。キャリア加速装置の第三電極63とキャリア加速装置の第四電極64の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9内で加速される。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第四電極64とキャリア加速装置の第五電極65の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9内で加速される。図39には本発明の電界効果発電において、加速チャネル内で電子が電界偏向を受けて軌道が曲げられて、電子吸収コレクタに収集される場合の上面の概観を示す。N型半導体11とP型半導体10はPN接合を形成する。同図に示す第一電源31と第二電源32と第三電源33と第四電源34と第五電源35の電源を直列接続されているので、これらを合成して電源30で表す。電源30の正電圧端子はキャリア加速装置の第五電極65に電気的に接続され、電源30の負電圧端子はN型半導体11に電気的に接続される。キャリア加速装置の第五電極65とN型半導体11の間には電界が発生する。発生した電界によってN型半導体11からP型半導体10に電子がインジェクションされる。インジェクションされた電子はP型半導体10の表面にある加速チャネル9の中を移動する。キャリア加速装置の第五電極65に蓄積された正電荷はインジェクションされた電子をクーロンの法則に基づく引力によって引き寄せるので、インジェクションされた電子は加速チャネル9の中においてキャリア加速装置の第六電極66の方向に移動する。インジェクションされた電子が移動する際には絶縁物8の中に配置された他の加速電極が発生する電界も寄与する。同図に示すように、P型半導体10は直線状ではなく、曲げられており、P型半導体10の表面を直線的に移動してもキャリア加速装置の第五電極65には到達することができず、直線方向には絶縁物8が配置されている。
 図39に示すように、キャリア軌道偏向電源90の正電圧端子はキャリア軌道偏向正電極91に電気的に接続され、キャリア軌道偏向電源90の負電圧端子はキャリア軌道偏向負電極92に電気的に接続される。キャリア軌道偏向正電極91とキャリア軌道偏向負電極92の間に発生する電界はP型半導体の表面にインジェクションされた電子の飛翔軌道を曲げる。その結果として、インジェクションされた電子は電子吸収コレクタ26の方向に進行し、最終的には電子吸収コレクタ26に収集される。
 電子吸収コレクタ26はキャリア蓄積器15の負電圧端子と電気的に接続され、N型半導体11はキャリア蓄積器15の正電圧端子と電気的に接続される。電子吸収コレクタ26に吸収された電子はキャリア蓄積器15の負電極に到達する。P型半導体10からN型半導体11にインジェクションされた正孔はキャリア蓄積器15の正電極に到達する。その結果として、キャリア蓄積器15には正電荷と負電荷が蓄積される。従って、キャリア蓄積器15の両端子に電気的負荷を接続すると、キャリア蓄積器15に蓄積された正孔と電子が電気的負荷を経由して再結合する。その際に電気的負荷に電気エネルギーを供給することができる。
 インジェクションされたキャリアである電子の軌道が曲げられてコレクタに吸収される場合を図40に示す。P型半導体10とN型半導体11はPN接合を形成する。第一電源31の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。キャリア加速装置の第一電極61とキャリア加速装置の第二電極62の間には電界が発生する。発生する電界によってキャリアである電子がN型半導体11からP型半導体10にインジェクションされ、加速チャネル9の中を移動する。第二電源32の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第2電源32の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。キャリア加速装置の第二電極62とキャリア加速装置の第三電極63の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9の中で加速される。第三電源33の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。キャリア加速装置の第三電極63とキャリア加速装置の第四電極64の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9の中で加速される。第四電源34の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第4電極64とキャリア加速装置の第五電極65の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9内で加速される。第五電源35の負電圧端子はキャリア加速装置の第五電極65に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第六電極66に電気的に接続される。キャリア加速装置の第五電極65とキャリア加速装置の第六電極66の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9の中で加速される。N型半導体11とP型半導体10はPN接合を形成する。第一電源31と第二電源32と第三電源33と第四電源34と第五電源35の電源を直列接続されているので、これらを合成して電源30で表す。電源30の正電圧端子はキャリア加速装置の第六電極66に電気的に接続される。キャリア加速装置の第六電極66の正電荷によって電界が発生する。発生した電界によってN型半導体11からP型半導体10に電子がインジェクションされる。インジェクションされた電子はP型半導体10の表面にある加速チャネル9の中を移動する。キャリア加速装置の第六電極66に蓄積された正電荷はインジェクションされた電子をクーロンの法則に基づく引力によって引き寄せるので、インジェクションされた電子はキャリア加速装置の第六電極66の方向に移動する。インジェクションされた電子が移動する際には絶縁物中に配置された他の加速電極が発生する電界も寄与する。P型半導体10は直線状ではなく、曲げられており、P型半導体10の表面を直線的に移動してもキャリア加速装置の第六電極66には到達することができず、直線方向には絶縁物8が配置されている。キャリア軌道偏向電源90の正電圧端子はキャリア軌道偏向正電極91に電気的に接続され、キャリア軌道偏向電源90の負電圧端子はキャリア軌道偏向負電極92に電気的に接続される。キャリア軌道偏向正電極91とキャリア軌道偏向負電極92の間に発生する電界はP型半導体の表面にインジェクションされた電子の飛翔軌道を曲げる。その結果として、インジェクションされた電子は電子吸収コレクタ26の方向に移動し、最終的には電子吸収コレクタ26に収集される。
 電子吸収コレクタ26はキャリア蓄積器15の負電圧端子と電気的に接続され、N型半導体11はキャリア蓄積器15の正電圧端子と電気的に接続される。電子吸収コレクタ26に吸収された電子はキャリア蓄積器15の負電極に到達する。P型半導体10からN型半導体11にインジェクションされた正孔はキャリア蓄積器15の正電極に到達する。その結果として、キャリア蓄積器15には正電荷と負電荷が蓄積される。従って、キャリア蓄積器15の両端子に電気的負荷を接続すると、キャリア蓄積器15に蓄積された正孔と電子が電気的負荷を経由して再結合する。その際に電気的負荷に電気エネルギーを供給することができる。なお、同図においては、インジェクションされた電子の軌道を曲げるために電界を利用するが、電子の飛翔軌道を曲げるには磁界を利用することも可能である。インジェクションされた電子の軌道の周辺に磁石を配置することにより磁界を作り、作られて磁界により電子の飛翔軌道を曲げる方式も本発明には含まれる。
 以下には、偏向磁極を用いる偏向方式の詳細を記述する。キャリア出力物質1としてN型半導体11を用い、チャネル形成物質2としてP型半導体10を用いる場合を以下に示す。インジェクションされたキャリアである電子の軌道が曲げられて電子吸収コレクタ26に収集される場合を図41に示す。P型半導体10とN型半導体11はPN接合を形成する。第一電源31の負電圧端子はN型半導体11に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。キャリア加速装置の第一電極61とN型半導体11の間には電界が発生する。発生する電界によってキャリアである電子がN型半導体11からP型半導体10にインジェクションされる。インジェクションされたキャリアは加速チャネル9の中を移動する。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。キャリア加速装置の第一電極61とキャリア加速装置の第二電極62の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9の中で加速される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。キャリア加速装置の第二電極62とキャリア加速装置の第三電極63の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9の中で加速される。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。キャリア加速装置の第三電極63とキャリア加速装置の第四電極64の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9の中で加速される。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第四電極64とキャリア加速装置の第五電極65の間には電界が発生する。発生する電界によってインジェクションされた電子は加速チャネル9の中で加速される。
 図42には本発明の電界効果発電において、加速チャネル内で電子が磁界偏向を受けて軌道が曲げられて、電子吸収コレクタに収集される場合の上面図を示す。N型半導体11はP型半導体10とPN接合を形成する。第一電源31と第二電源32と第三電源33と第四電源34と第五電源35の電源を直列接続されているので、これらを合成して同図には電源30で示す。電源30の正電圧端子はキャリア加速装置の第五電極65に電気的に接続され、電源30の負電圧端子はN型半導体11に電気的に接続される。キャリア加速装置の第五電極65とN型半導体11の間には電界が発生する。発生した電界によってN型半導体11からP型半導体10に電子がインジェクションされる。インジェクションされた電子はP型半導体10の表面にある加速チャネル9の中を移動する。キャリア加速装置の第五電極65に蓄積された正電荷はインジェクションされた電子をクーロンの法則に基づく引力によって引き寄せるので、インジェクションされた電子はキャリア加速装置の第五電極65の方向に移動する。インジェクションされた電子が移動する際には絶縁物中に配置された他の加速電極が発生する電界も寄与する。同図に示すように、P型半導体10は直線状ではなく、曲げられており、P型半導体10の表面を直線的に移動してもキャリア加速装置の第五電極65には到達することができず、直線方向には絶縁物8が配置されている。図41に示すように、P型半導体の両側にはキャリア軌道偏向N磁極93とキャリア軌道偏向S磁極94が配置されている。キャリア軌道偏向N磁極93から出発する磁力線はキャリア軌道偏向S磁極94に向う事によりP型半導体の上下に下から上に磁界が発生する。磁界中をキャリアである電子が移動することにより電子の移動する軌道が曲げられる。すなわち、発生した磁界により、電子がP型半導体の表面を移動する際にローレンツの力を受けて軌道が曲げられる。図42に示すように、電子が移動する軌道が曲げられて電子吸収コレクタ26に到達し、電子吸収コレクタ26に収集される。電子吸収コレクタ26はエネルギー蓄積器15の負電圧端子と電気的に接続され、N型半導体11はエネルギー蓄積器15の正電圧端子と電気的に接続される。電子吸収コレクタ26に吸収された電子はエネルギー蓄積器15の負電極に到達する。P型半導体10からN型半導体11にインジェクションされた正孔はエネルギー蓄積器15の正電極に到達する。その結果として、エネルギー蓄積器15には正電荷と負電荷が蓄積される。従って、エネルギー蓄積器15の両端子に電気的負荷を接続すると、エネルギー蓄積器15に蓄積された正孔と電子が電気的負荷を経由して再結合する。その際に電気的負荷に電気エネルギーを供給することができる。
[発明の効果10]
 請求項(13)に記載の電界効果発電装置によれば、上記の請求項(5)に記載の構成による作用・効果に加えて、電子吸収コレクタ26に発生する熱エネルギーを電気エネルギーの発生に有効に利用する。すなわち、電子吸収コレクタ26に発生する熱エネルギーが熱伝導器に良好に伝導する状態で熱伝導器を配置する。電子吸収コレクタ26に電子が衝突すると、熱エネルギーが電子吸収コレクタ26に発生する。発生する熱エネルギーは熱伝導器に良好に伝達され、熱伝導器の温度が上昇する。熱伝導器はキャリア出力物質1およびチャネル形成物質2と熱伝導が良好な状態で配置されている。熱伝導器に伝達された熱エネルギーがキャリア出力物質1およびチャネル形成物質2に良好に伝導される。その結果として、チャネル形成物質2の温度が上昇する。物質の温度が上昇する場合における電子のエミッションに関して以下に記述する。
 図43には、参考書籍「Electronic Engineering Principles, by John D. Ryder (Prentice-Hall, Inc.)」の45ページに記載されているS.Dushman(1923) により導出された熱電子放出の公式である。同式において、エミッションされる電流はカソードの絶対温度Tの約2乗に比例する。図44には、S.Dushman(1923) の熱電子放出の公式に基づいてタングステンの場合に特性曲線を算出した電子のエミッション特性である。同図にはエミッションされる電子の数がカソードの絶対温度Tに関して指数関数的に増加することを示す。本発明の電界効果発電装置においては、熱エネルギーが熱伝導器からチャネル形成物質2に伝導され、チャネル形成物質2の絶対温度Tが上昇するので、チャネル形成物質2から多量の電子がエミッションされる。多量の電子のエミッションによりエネルギー蓄積器15に蓄えられる電気エネルギーが増加する。以上のエネルギー循環経路はポシティブ・フィードバック系を形成し、時間経過と共に発電量は増加し、各パーツの温度が上昇する。従って、発電量あるいはパーツの温度に制限を設定し、その制限領域を発電システムが越える場合には、キャリア加速装置の電極60に供給する電源の電圧を低下させることにより定常運転に設定する必要がある。なお、チャネル形成物質2の温度上昇は飛翔電子の運動エネルギーが熱エネルギーに変換された結果である。すなわち、本発電装置の根源のエネルギーは、電界が電子に作用する効果によって発生する。結論として、電子の電界効果加速により発生するエネルギーを用いてポジティブ・フィードバック系を構成すると、極めて良好に電気エネルギーを発生することが可能となる。なお。電界を加える事により失われるエネルギーは殆どないので、本発明の電界効果発電装置の発電効率は極めて良好であると言える。
[発明の効果11]
 請求項(14)に記載の電界効果発電装置によれば、上記の請求項(5)に記載の構成による作用・効果に加えて、キャリア入力物質として炭素系物質を用い、炭素系物質の表面にサブ・ナノメータ物質を配置する事により効率の良好な発電装置を構成することが可能となる。チャネル形成物質2の表面にサブ・ナノメータの大きさの凹凸を設定する場合を以下に記述する。図45にはチャネル形成物質2として炭素系の材料を用いる場合を示す。同図において、基板19の上表面に炭素系物質76を配置し、その上表面にサブ・ナノメータ物質75を配置する。炭素系物質76としてグラフェンおよびグラファイトなどがある。サブ・ナノメータ物質75の具体的な例として二酸化ルテニウムなどがある。炭素系物質76とサブ・ナノメータ物質75を拡大して、図46に示す。四酸化ルテニウムと炭素系物質が反応することにより炭素系物質76の表面にサブ・ナノメータ物質75である二酸化ルテニウムが堆積する。二酸化ルテニウムの大きさは1ナノ・メータ以下の大きさであるので、チャネル形成物質2にインジェクションされた電子がサブ・ナノメータ物質75の間を飛翔しながら加速されて進行する。サブ・ナノメータ物質75を用いることにより電界の集中効果が顕著に発揮されるので、エミッションされる電子の数が増加し、本発明の電界効果発電装置の効率が向上する。
[発明の効果12]
 請求項(15)に記載の電界効果発電装置によれば、上記の請求項(5)に記載の構成による作用・効果に加えて、キャリア加速装置に用いる電源の電圧を調整する事により出力電圧を制御する事ができるので、温度上昇が抑えられ、耐久性のある装置を開発することが可能となる。図47には、スィッチングにより出力電圧を制御する方式の電界効果発電装置の断面を示す。同図において、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。第一電源31の負電圧端子はモード1の開始スィッチ101を介してキャリア出力物質1に電気的に接続される。キャリア入出力物質1からチャネル形成物質2にキャリアである電子をインジェクションするために第一電源31を用いる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。
 電界効果発電のモード1においては、モード1の開始スイッチ101が導通状態であり、モード2の開始スイッチ102が非導通状態である。第一段目のエミッタ105の周辺を拡大して、図48に示す。正電圧が加えられるキャリア加速装置の第一電極61と負電圧が加えられるキャリア出力物質1の間には電界が発生し、その電界の作用によってキャリア出力物質1からキャリアである電子がチャネル形成物質2にインジェクションされる。その際には、キャリア出力物質1とチャネル形成物質2との間にあるポテンシャル障壁は、キャリア加速装置の第一電極61とキャリア出力物質1の間に発生する電界によってトンネル効果により電子が貫通して通過する。インジェクションされた電子は加速チャネル9内においてチャネル形成物質2の表面を移動する。チャネル形成物質2の先端の曲率半径は充分に小さいとする。チャネル形成物質2の例としてカーボン・ナノチューブ、カーボン・ウォールおよびグラフェンなどがある。キャリア出力物質1とチャネル形成物質2は電気的に接続される。しかし、チャネル形成物質2がカーボン系の物質である場合には、キャリア出力物質1とチャネル形成物質2を電気的に接続するには、特殊な接着方法を適用する必要がある。すなわち、キャリア出力物質1の例としてチタンを用いると、1100度C位においてカーボン系のチャネル形成物質2と良好に電気的な接続が行われる。本発明のフィードバック方式の電界電子発電装置においては、キャリア出力物質1が加熱され、高温になるので、キャリア出力物質1とチャネル形成物質2を高温状態で電気的に接続することにより良好な発電効率が得られる。
 チャネル形成物質2の中にインジェクションされた電子は、キャリア加速装置の第一電極61から発生する電界によって加速チャネル9において加速され、電子の運動エネルギーが大きくなる。大きな運動エネルギーを保有する電子が非可逆過程発生部4に到達し、チャネル形成物質2からエミッションされる。この際に、チャネル形成物質2と真空との間にある仕事関数に相当するポテンシャル障壁は、発生する電界によりトンネル効果に基づいて貫通して通過し、電子が真空中にエミッションされる。
 電界効果発電装置の形状は円筒状であるので、キャリアである電子は軸対称の力を受け、軸の方向に進行し、第一段目の電子吸収コレクタ127に衝突し、それに吸収される。第一段目の電子吸収コレクタ127に吸収された電子はモード1のエネルギー蓄積器115に移動する。一方、キャリアである電子を出力した第一段目のエミッタ105には正電荷を保有する正孔が残存する。正孔はモード1のエネルギー蓄積器115に移動し、そこで電子と正孔がダイポールを形成する。第一段目の電子吸収コレクタ127に到達する電子はモード1のエネルギー蓄積器115に移動し、第一段目の電子吸収コレクタ127には電子が殆ど残存しないので、後続して第一段目の電子吸収コレクタ127に接近する電子の進路を妨害することは殆ど無い。すなわち、モード1のエネルギー蓄積器115において、電子と正孔がダイポールを形成するので、電子が保有する負電荷が後続の電子の移動方向に影響を及ぼすことは殆どない。正孔も第一段目のエミッタ105からモード1のエネルギー蓄積器115に移動し、そこで電子と正孔がダイポールを形成するので、正孔が保有する正電荷がキャリア出力物質1からチャネル形成物質2に移動する電子の動きを妨害することも殆どなくなり、良好な発電が行われる事が本発明の発電装置の特徴である。先行する発電装置においては、電子と正孔が元の物質に残存し、後続のキャリアの動きを妨害するので、高効率の発電を実現することが困難であった。
 エミッションされた電子が加速されて第一段目の電子吸収コレクタ127に衝突するので、第一段目の電子吸収コレクタ127の温度が上昇する。第一段目の電子吸収コレクタ127の熱エネルギーはモード1の熱伝導器120を経由して第二段目のエミッタ106に伝導され、第二段目のエミッタ106の温度が上昇する。第二段目のエミッタ106の温度が上昇する事により、第二段目のエミッタ106の中にある電子が保有する運動エネルギーが大きくなる。
 電界効果発電のモード2においては、モード1の開始スイッチ101が非導通状態であり、モード2の開始スイッチ102が導通状態である。図47において、第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。第5電源35の負電圧端子はモード2の開始スィッチ102を介してキャリア出力物質1に電気的に接続される。第六電源36の負電圧端子はキャリア加速装置の第五電極65に電気的に接続され、第六電源36の正電圧端子はキャリア加速装置の第六電極66に電気的に接続される。第七電源37の負電圧端子はキャリア加速装置の第六電極66に電気的に接続され、第七電源37の正電圧端子はキャリア加速装置の第七電極67に電気的に接続される。第八電源38の負電圧端子はキャリア加速装置の第七電極67に電気的に接続され、第八電源38の正電圧端子はキャリア加速装置の第八電極68に電気的に接続される。
 第二段目のエミッタ106の周辺を拡大して、図48に示す。正電圧が加えられるキャリア加速装置の第五電極65と負電圧が加えられるキャリア出力物質1の間には電界が発生し、その電界の作用によってキャリア出力物質1からキャリアである電子がチャネル形成物質2にインジェクションされる。その際には、キャリア出力物質1とチャネル形成物質2との間にあるポテンシャル障壁は、キャリア加速装置の第五電極65とキャリア出力物質1の間に発生する電界によってトンネル効果により電子が貫通して通過する。インジェクションされた電子は加速チャネル9内を移動する。チャネル形成物質2の先端の曲率半径は充分に小さいとする。チャネル形成物質2の例としてカーボン・ナノチューブ、カーボン・ウォールおよびグラフェンなどがある。キャリア出力物質1とチャネル形成物質2は電気的に接続される。しかし、チャネル形成物質2がカーボン系の物質である場合には、キャリア出力物質1とチャネル形成物質2を電気的に接続するために特殊な接着方法を適用する必要がある。すなわち、高温のチタンとカーボン系の物質を用いることにより良好に電気的接続を実現することは具体例の1つである。チャネル形成物質2にインジェクションされた電子は、キャリア加速装置の電極から発生する電界によって加速チャネル9において加速され、電子の運動エネルギーが大きくなる。大きな運動エネルギーを保有する電子が非可逆過程発生部4に到達し、チャネル形成物質2からエミッションされる。この際に、チャネル形成物質2と真空との間にある仕事関数に相当するポテンシャル障壁は、発生する電界によりトンネル効果に基づいて貫通して通過し、電子が真空中にエミッションされる。
 電界効果発電装置の形状は円筒状であるので、キャリアである電子は軸対称の力を受け、軸の方向に進行し、第二段目の電子吸収コレクタ128に衝突し、それに吸収される。第二段目の電子吸収コレクタ128に吸収された電子はモード2のエネルギー蓄積器116に移動する。一方、キャリアである電子を出力した第二段目のエミッタ106には正電荷を保有する正孔が残存する。正孔はモード2のエネルギー蓄積器116に移動し、そこで電子と正孔がダイポールを形成する。第二段目の電子吸収コレクタ128に到達する電子はモード2のエネルギー蓄積器116に移動し、第二段目の電子吸収コレクタ128には電子が殆ど残存しないので、後続して第二段目の電子吸収コレクタ128に接近する電子の進路を妨害することは殆ど無い。すなわち、モード2のエネルギー蓄積器116において、電子と正孔がダイポールを形成するので、電子が保有する負電荷が後続の電子の移動方向に影響を及ぼすことは殆どない。正孔もキャリア出力物質1からモード2のエネルギー蓄積器116に移動し、そこで電子と正孔がダイポールを形成するので、正孔が保有する正電荷がキャリア出力物質1からチャネル形成物質2に移動する際に、電子の動きを妨害することも殆どなくなり、良好な発電が行われる事が本発明の発電装置の特徴である。先行する発電装置においては、電子と正孔が元の物質に残存し、後続のキャリアの動きを妨害するので、高効率の発電を実現することが困難であった。エミッションされた電子が加速されて第二段目の電子吸収コレクタ128に衝突するので、第二段目の電子吸収コレクタ128の温度が上昇する。第二段目の電子吸収コレクタ128の熱エネルギーはモード2の熱伝導器121を経由して第一段目のエミッタ105に伝導され、第一段目のエミッタ105の温度が上昇する。第一段目のエミッタ105の温度が上昇する事により、第一段目のエミッタ105の中にある電子が保有する運動エネルギーが大きくなる。従って、再びモード1が開始されると、第一段目のエミッタ105にある電子が保有する運動エネルギーが大きいので、エミッションされる電子の数が多くなる。電界効果発電のモード1とモード2を交互に繰り返して行うことにより、第一段目のエミッタと第二段目のエミッアの温度が次第に上昇し、エミッションされる電子の数が増加する。従って、本発明の電界効果発電装置においては時間経過と共に発電量が増加する。さらに、モード1の開始スィッチ101とモード2の開始スィッチ102を開閉することにより、エミッションされる電子の数が制御されるので、装置全体の温度上昇が抑制される。その結果として、スィッチングにより出力電圧を制御する方式を採用し、熱エネルギーのフィードバックを行うと、電界効果発電装置は耐久性があり、発電効率が良好になる。
物質内に正電荷と負電荷が存在する場合を示す。 本発明の電界効果発電装置において、電源の正電圧端子と電源の負電圧端子を示す。 本発明の電界効果発電装置において、電源正電圧端子と電源負電圧端子との間に絶縁物が存在する場合を示す。 本発明の電界効果発電装置において、電源正電圧端子と電源負電圧端子にエネルギー蓄積器を接続する場合を示す。 本発明の電界効果発電装置において、エネルギー蓄積器と並列に電気的負荷を接続する場合を示す。 本発明の電界効果発電装置において、キャリア出力物質とチャネル形成物質を電気的に接続し、チャネル形成物質をキャリア出力物質と電子吸収コレクタの間に配置する場合を示す。 本発明の電界効果発電装置において、キャリア出力物質とチャネル形成物質の間にあるポテンシャル障壁発生部およびチャネル形成物質の境界にある非可逆過程発生部である。 本発明の電界効果発電装置において、チャネル形成物質の表面にある加速チャネルを示す。 本発明の電界効果発電装置において、チャネル形成物質の表面においてキャリアがスライディング的に移動する場合を示す。 本発明の電界効果発電装置において、チャネル形成物質から電子がエミッションを行う場合を示す。 本発明の電界効果発電装置において、電界効果発電装置のブロック図である。 本発明の電界効果発電装置において、キャリア加速装置の内部のブロック図を示す。 本発明の電界効果発電装置において、エネルギー蓄積器を示す。 本発明の電界効果発電装置において、エネルギー蓄積器の入力モードを示す。 本発明の電界効果発電装置において、エネルギー蓄積器の出力モードを示す。 モノポールの具体例を示す。 正電荷と負電荷により構成されるダイポールを示す。 正電荷蓄積導体と負電荷蓄積導体の中にダイポールが形成される場合を示す。 ダイポールに電子が接近する場合を示す。 本発明の電界効果発電装置において、キャリア加速装置が複数個の電極によって構成される場合を示す。 本発明の電界効果発電装置において、チャネル形成物質と絶縁物の間に加速チャネルが形成される場合である。 本発明の電界効果発電装置において、キャリア出力物質とチャネル形成物質の近傍におけるキャリアの動作を示す。 本発明の電界効果発電装置において、チャネル形成物質がP型半導体である場合における絶縁物中の2個のキャリア加速装置の電極を示す。 本発明の電界効果発電装置において、キャリア加速装置の第一電極とキャリア加速装置の第二電極によって形成される電気力線である。 本発明の電界効果発電装置において、キャリア出力物質とチャネル形成物質の間に存在するポテンシャル障壁発生部がある場合を示す。 量子力学的なトンネル効果によりキャリア出力物質からチャネル形成物質へ電子が通過する場合を示す。 キャリア出力物質に正電荷が蓄積され、チャネル形成物質に負電荷が蓄積される場合を示す。 可逆的な現象であり、チャネル形成物質からキャリア出力物質へ電子が逆戻りする場合を示す。 電子がポテンシャル障壁を量子力学的なトンネル効果により貫通して通過する場合を示す。 電子が熱電子放出によりポテンシャル障壁を越えてエミッションされる場合を示す。 強電界によりポテンシャル障壁の厚さが薄くなり、量子力学的なトンネル効果により電子が貫通して通過する場合を示す。 本発明の電界効果発電装置において、飛翔する電子がサプレッサ電極を通過して電子吸収コレクタに接近する場合を示す。 物質中にある電子の統計的なエネルギー分布を示す。 電子のポテンシャル障壁に対応するエネルギーの閾値をTで示す。 本発明の電界電子発電において、チャネル形成物質と絶縁物との境界に出現する加速チャネルを示す。 本発明の電界効果発電装置において、チャネル形成物質の凸領域に2次電子放出部材を配置し、電子がエミッションされる場合を示す。 本発明の電界効果発電装置において、キャリアである電子が加速チャネル内において2次電子放出部材に衝突しながら進行する場合を示す。 本発明の電界効果発電装置において、キャリアである電子が加速チャネル内において、その飛翔軌道が曲げられて進行する場合を示す。 本発明の電界効果発電装置において、加速チャネル内で電子が電界偏向を受けて軌道が曲げられて、電子吸収コレクタに収集される場合の上面図を示す。 本発明の電界効果発電装置において、電子が電界偏向を受けて加速チャネル内を移動し、電子吸収コレクタに収集される場合の上面図を示す。 本発明の電界効果発電装置において、電子が磁界偏向を受けて加速チャネル内を移動し、電子吸収コレクタに収集される場合を示す。 本発明の電界効果発電装置において、加速チャネル内で電子が磁界偏向を受けて軌道が曲げられて、電子吸収コレクタに収集される場合の上面図を示す。 S.Dushmanによって導出された熱電子放出の公式を示す。 熱電子放出の公式に基づいて算出されたタングステンの電子エミッション特性を示す。 本発明の電界効果発電装置において、チャネル形成物質として炭素系の材料を用いる場合を示す。 本発明の電界効果発電装置において、チャネル形成物質として炭素系物質とサブ・ナノメータ物質を拡大して示す。 本発明の電界効果発電装置において、スィッチング方式により出力電圧を制御する装置の断面を示す。 本発明の電界効果発電装置において、第一段目のエミッタの周辺を拡大して示す。 本発明の第1の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、チャネル形成物質としてP型半導体を用いる場合の断面図を示す。 本発明の第2の実施形態に係る電界効果発電装置において、2段カスケード・フィードバック方式を適用する場合の断面図を示す。 本発明の第2の実施形態に係る電界効果発電装置において、2段カスケード・フィードバック方式を適用する場合の外観図の一部を示す。 本発明の第2の実施形態に係る電界効果発電装置に2段カスケード・フィードバック方式を適用する場合において、第一段目のキャリア出力物質の周辺の断面図を示す。 本発明の第2の実施形態に係る電界効果発電装置に2段カスケード・フィードバック方式を適用する場合において、第二段目のキャリア出力物質の周辺の断面図を示す。 本発明の第2の実施形態に係る電界効果発電装置に2段カスケード・フィードバック方式を適用する場合において、帰路の第一段目のキャリア出力物質の周辺の断面図を示す。 本発明の第2の実施形態に係る電界効果発電装置に2段カスケード・フィードバック方式を適用する場合において、帰路の第二段目のキャリア出力物質の周辺の断面図を示す。 本発明の第2の実施形態に係る電界効果発電装置に2段カスケード・フィードバック方式を適用する例において、熱伝導器を用いる場合の断面図を示す。 本発明の第3の実施形態に係る電界効果発電装置において、3段カスケード方式を採用する場合の断面図を示す。 本発明の第3の実施形態に係る電界効果発電装置において、3段カスケード方式を採用する場合に第三段目のキャリア出力物質の周辺の断面図を示す。 本発明の第4の実施形態に係る電界効果発電装置において、キャリア加速装置として4個の電極を用いる場合の断面図を示す。 本発明の第4の実施形態に係る電界効果発電装置において、キャリア出力物質の周辺を拡大して断面図を示す。 本発明の第5の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード0の状態における断面図を示す。 本発明の第5の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード1の状態における断面図を示す。 本発明の第5の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード2の状態における断面図を示す。 本発明の第5の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード1の状態における外観図を示す。 本発明の第6の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、チャネル形成物質としてP型半導体を用いる場合の断面図を示す。 本発明の第7の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、チャネル形成物質としてP型半導体を用いる場合の断面図を示す。 本発明の第8の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、チャネル形成物質としてP型半導体を用いる場合の断面図を示す。 本発明の第9の実施形態に係る電界効果発電装置において、キャリアとして正孔と電子を共に用い、電極を絶縁する場合の断面図を示す。 本発明の第9の実施形態に係る電界効果発電装置において、キャリアとして正孔と電子を共に用い、電極を絶縁しない場合の断面図を示す。 本発明の第9の実施形態に係る電界効果発電装置において、キャリアとして正孔と電子を共に用い、チャネル形成物質に傾斜がある場合の断面図を示す。 本発明の第9の実施形態に係る電界効果発電装置において、キャリアとして正孔と電子を共に用いる場合の上面図を示す。 本発明の第10の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、2個の並列チャネル形成物質としてP型半導体を用いる場合の上断面図を示す。 本発明の第11の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、チャネル形成物質としてP型半導体を用い、チャネル形成物質に傾斜がある場合の断面図を示す。 本発明の第12の実施形態に係る電界効果発電装置において、チャネル形成物質としてグラフェンを用いる場合の外観図を示す。 本発明の第12の実施形態に係る電界効果発電装置において、チャネル形成物質としてグラフェンを用いる場合の断面図を示す。 本発明の第12の実施形態に係る電界効果発電装置において、チャネル形成物質としてグラフェンを用いる場合に電子吸収コレクタ付近を拡大して断面図を示す。 本発明の第12の実施形態に係る電界効果発電装置において、キャリア吸収グラフェンおよびキャリア放出グラフェンの配置を示す。 本発明の第12の実施形態に係る電界効果発電装置において、キャリア吸収グラフェンおよびキャリア放出グラフェンを用い、熱フィードバック方式を採用する場合の断面図を示す。 本発明の第13の実施形態に係る電界効果発電装置において、熱フィードバック方式を採用する場合の断面図を示す。 本発明の第13の実施形態に係る電界効果発電装置において、熱フィードバック方式を採用する場合に往路のキャリア出力物質の周辺を拡大して断面図を示す。 本発明の第13の実施形態に係る電界効果発電装置において、熱フィードバック方式を採用する場合に帰路のキャリア出力物質の周辺を拡大して断面図を示す。 本発明の第14の実施形態に係る電界効果発電装置において、熱フィードバック方式を採用する場合の断面図を示す。 本発明の第15の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード1の状態の断面図を示す。 本発明の第15の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード2の状態の断面図を示す。 本発明の第16の実施形態に係る電界効果発電装置において、4段の熱フィードバック方式を採用する場合の断面図を示す。
[本発明の第1の実施例]
 本発明の第1の実施形態に係る電界効果発電装置において、キャリア出力物質1としてN型半導体を用い、チャネル形成物質2としてP型半導体を用いる場合の実施例の断面を図49に示す。図49に示すように、第一電源31の負電圧端子をN型半導体11に接続する。第一電源31の正電圧端子をキャリア加速装置の第一電極61に接続する。キャリア加速装置の第一電極61とN型半導体11の間に電界が発生し、キャリアである電子はN型半導体11からP型半導体10にインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。絶縁物8とP型半導体10との間にある加速チャネル9内をキャリアである電子が移動する事により、キャリアは運動エネルギーを獲得する。第二電源32の正電圧端子をキャリア加速装置の第二電極62に接続する。第二電源32の負電圧端子をキャリア加速装置の第一電極61に接続する。キャリア加速装置の第二電極62とキャリア加速装置の第一電極61の間に電界が発生し、キャリアである電子は絶縁物8とP型半導体10との間にある加速チャネル9内を電子が移動する事により、電子は運動エネルギーを獲得する。すなわち、キャリア加速装置の第二電極62はスライディング電極として作用する。第三電源33の正電圧端子をキャリア加速装置の第三電極63に接続する。第三電源33の負電圧端子をキャリア加速装置の第二電極62に接続する。キャリア加速装置の第三電極63とキャリア加速装置の第二電極62の間に電界が発生し、キャリアである電子は絶縁物8とP型半導体10との間にある加速チャネル9内を電子が移動する事により、電子は運動エネルギーを獲得する。すなわち、電子にエネルギーの前供給(pre-supply)が行われる。P型半導体10の端は真空と接している。キャリア加速装置の第三電極63はエミッション電極として作用する。すなわち、電界効果によりP型半導体10の表面にある加速チャネル9において、電子がスライディング的に移動し、キャリア加速装置の第三電極63の作用により、電子が真空中にエミッションされる。第四電源34の正電圧端子をキャリア加速装置の第四電極64に接続する。第四電源34の負電圧端子をキャリア加速装置の第三電極63に接続する。キャリア加速装置の第四電極64とキャリア加速装置の第三電極63の間に電界が発生し、キャリアである電子は加速チャネル9内で電子が加速される事により、電子は運動エネルギーを獲得する。すなわち、キャリア加速装置の第四電極64は加速電極(accelerating electrode)として作用する。第五電源35の負電圧端子をキャリア加速装置の第五電極65に接続する。第五電源35の正電圧端子をキャリア加速装置の第四電極64に接続する。キャリア加速装置の第五電極65とキャリア加速装置の第四電極64の間に電界が発生し、キャリアである電子は加速チャネル9内で電子が減速される。この減速電界の作用により飛翔する電子は電子吸収コレクタ26に衝突する前に減速を受けているので、衝突する際の速度は小さくなる。すなわち、キャリア加速装置の第五電極65はサプレッサ電極として作用する。飛翔電子の速度が低下して電子吸収コレクタ26に衝突すると、電子吸収コレクタ26が飛翔電子から受けるエネルギーが少なくなる。従って、電子吸収コレクタ26の温度上昇が少なくなり、電子吸収コレクタ26が高温になることが避けられる。電子吸収コレクタ26が高温になると、絶縁破壊や材料の劣化などをもたらすが、同図に示す飛翔電子の減速電界により温度上昇が少なく抑えられるなどの長所が発揮される。発電出力を増加する場合には、サプレッサ電極を用いることにより、電子吸収コレクタ26の耐久性を確保ことができるので、発電の連続運転を行うことが可能となる。第六電源36の負電圧端子をN型半導体11に接続する。第六電源36の正電圧端子をキャリア加速装置の第六電極66に接続する。キャリア加速装置の第六電極66とN型半導体11の間に電界が発生し、キャリアである電子はN型半導体11からP型半導体10にインジェクションされる。キャリア加速装置の第六電極66はインジェクション電極として作用する。絶縁物8とP型半導体10の下表面の間をキャリアである電子が移動する事により、キャリアは運動エネルギーを獲得する。第七電源37の正電圧端子をキャリア加速装置の第七電極67に接続する。第七電源37の負電圧端子をキャリア加速装置の第六電極66に接続する。キャリア加速装置の第七電極67とキャリア加速装置の第六電極66の間に電界が発生し、キャリアである電子はP型半導体10の斜断面を移動し、加速チャネル9に到達する。キャリア加速装置の第七電極67はスライディング電極として作用する。第八電源38の正電圧端子をキャリア加速装置の第八電極68に接続する。第八電源38の負電圧端子をキャリア加速装置の第七電極67に接続する。キャリア加速装置の第八電極68とN型半導体11の間に電界が発生し、キャリアである電子は絶縁物8とP型半導体10との間にある加速チャネル9内を電子が移動する事により、電子は運動エネルギーを獲得する。第九電源39の正電圧端子をキャリア加速装置の第九電極69に接続する。第九電源39の負電圧端子をキャリア加速装置の第八電極68に接続する。キャリア加速装置の第九電極69とN型半導体11の間に電界が発生し、キャリアである電子は絶縁物8とP型半導体10との間にある加速チャネル9内を電子が移動する事により、電子は運動エネルギーを獲得する。キャリア加速装置の第八電極68およびキャリア加速装置の第九電極69は加速電極として作用する。第十電源40の正電圧端子をキャリア加速装置の第十電極70に接続する。第十電源40の負電圧端子をキャリア加速装置の第九電極69に接続する。キャリア加速装置の第十電極70とN型半導体11の間に電界が発生し、キャリアである電子は絶縁物8とP型半導体10との間にある加速チャネル9内を電子が移動する事により、電子は運動エネルギーを獲得する。同図において、キャリア加速装置3の作用によりキャリアが充分に運動エネルギーを獲得し、P型半導体10の断面にある端点に到達すると、電子は真空中にエミッション(放出)される。放出された電子は、キャリア加速装置3の正電極に蓄積された正電荷によりクーロン力に基づく力により引き寄せられることにより加速される。加速された電子は電子吸収コレクタ26に到達し、電子吸収コレクタ26に吸収される。同図において、上部のキャリア加速装置の正電極に蓄えられた正電荷と下部のキャリア加速装置の正電極に蓄えられた正電荷との電極の間にも電界が発生する。発生する電界は飛翔する電子が電子吸収コレクタ26に到達しやすい方向に作用する。なお、同図においてP型半導体10の断面が斜めになっていると、エッジに角度が発生し、曲率半径の小さい領域から電子が放出されるので、電子放出の効率が向上する。
 さらに、同図において、電子吸収コレクタ26の断面も斜め構造になっている。飛翔電子が電子吸収コレクタ26に直角でない角度で衝突するので、電子が反射されて奧の狭い領域まで到達し、電子吸収コレクタ26に電子が吸収される効率が向上する。電子吸収コレクタ26はエネルギー蓄積器15の負電圧端子と電気的に接続され、N型半導体11はエネルギー蓄積器15の正電圧端子と電気的に接続される。電子吸収コレクタ26に吸収された電子はエネルギー蓄積器15の負電極に到達する。P型半導体10からN型半導体11にインジェクションされた正孔はエネルギー蓄積器15の正電極に到達する。その結果として、エネルギー蓄積器15には正電荷と負電荷が蓄積される。従って、エネルギー蓄積器15の両端子に電気的負荷を接続すると、エネルギー蓄積器15に蓄積された正孔と電子が電気的負荷を経由して再結合する。その際に電気的負荷に電気エネルギーを供給することができる。
[本発明の第2の実施例]
 本発明の第2の実施形態に係る電界効果発電装置において、2段カスケード・フィードバック方式を適用する実施例の断面を図50に示す。電界効果発電装置は円筒形であり、同図の左上部を取り出して、図51にその概観の一部を示す。図50に示すように電界効果発電装置の全体は真空容器300の中に格納される。同図において、第一電源31の負電圧端子は第一段目のキャリア出力物質131に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。キャリア入出力物質1からチャネル形成物質2にキャリアである電子をインジェクションするために第一電源31を用いる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の負電圧端子は第二段目のキャリア出力物質132に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。第六電源36の負電圧端子はキャリア加速装置の第五電極65に電気的に接続され、第六電源36の正電圧端子はキャリア加速装置の第六電極66に電気的に接続される。
 帰路の第一電源231の負電圧端子は第一段目のキャリア出力物質131に電気的に接続され、帰路の第一電源31の正電圧端子は帰路のキャリア加速装置の第一電極261に電気的に接続される。帰路の第二電源32の負電圧端子は帰路のキャリア加速装置の第一電極261に電気的に接続され、帰路の第二電源32の正電圧端子は帰路のキャリア加速装置の第二電極262に電気的に接続される。帰路の第三電源33の負電圧端子は帰路のキャリア加速装置の第二電極262に電気的に接続され、帰路の第三電源33の正電圧端子は帰路のキャリア加速装置の第三電極263に電気的に接続される。帰路の第四電源34の負電圧端子は第二段目のキャリア出力物質132に電気的に接続され、帰路の第四電源34の正電圧端子は帰路のキャリア加速装置の第四電極264に電気的に接続される。帰路の第五電源35の負電圧端子は帰路のキャリア加速装置の第四電極264に電気的に接続され、帰路の第五電源35の正電圧端子は帰路のキャリア加速装置の第五電極265に電気的に接続される。帰路の第六電源36の負電圧端子は帰路のキャリア加速装置の第五電極265に電気的に接続され、帰路の第六電源36の正電圧端子は帰路のキャリア加速装置の第六電極266に電気的に接続される。第一段目のキャリア出力物質131の周辺の構造は、図52に示す構造と同様であり、第一段目のキャリア出力物質131にはチャネル形成物質2が電気的に結合している。正電圧が加えられるキャリア加速装置の第一電極61と負電圧が加えられる第一段目のキャリア出力物質131の間には電界が発生し、その電界によって第一段目のキャリア出力物質131からキャリアである電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。チャネル形成物質2にインジェクションされた電子は非可逆過程発生部4を経由して、加速チャネル9にエミッションされる。キャリア加速装置の第一電極61はエミッション電極としても作用する。エミッションされた電子は加速チャネル9内でキャリア加速装置の第一電極61、キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63によって加速される。キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63は加速電極として作用する。加速された電子は第一段目の電子吸収コレクタ127に衝突し、これに吸収される。第一段目の電子吸収コレクタ127に吸収された電子は第一段目のエネルギー蓄積器111に移動する。第一段目のキャリア出力物質131から電子が放出されたので、第一段目のキャリア出力物質131には正孔が残存する。残存する正孔は第一段目のエネルギー蓄積器111に移動する。第一段目のエネルギー蓄積器111において、正孔と電子がダイポールを形成する事により蓄積される。第一段目のキャリア出力物質131から放出された電子が保有する運動エネルギーは第一段目の電子吸収コレクタ127に衝突することにより熱エネルギーに変換される。従って、第一段目の電子吸収コレクタ127の温度が上昇し、発生する熱は絶縁物8に伝導し、絶縁物8の温度が上昇する。絶縁物8の熱は第二段目のキャリア出力物質132に伝導され、第二段目のキャリア出力物質132の温度が上昇する。高温になった第二段目のキャリア出力物質132の内の電子の運動エネルギーが大きくなる。第二段目のキャリア出力物質132の周辺の構造は、図53に示す構造と同様であり、第二段目のキャリア出力物質132にはチャネル形成物質2が電気的に結合している。正電圧が加えられるキャリア加速装置の第四電極64と負電圧が加えられる第二段目のキャリア出力物質132の間には電界が発生し、その電界によって第二段目のキャリア出力物質132からキャリアである電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第四電極64はインジェクション電極として作用する。高温と電界の作用により、チャネル形成物質2にインジェクションされた電子は非可逆過程発生部4を経由して加速チャネル9にエミッションされる。キャリア加速装置の第四電極64はエミッション電極としても作用する。エミッションされた電子は加速チャネル9内でキャリア加速装置の第四電極64、キャリア加速装置の第五電極65およびキャリア加速装置の第六電極66によって加速される。キャリア加速装置の第五電極65およびキャリア加速装置の第六電極66は加速チャネルとして作用する。加速された電子は第二段目の電子吸収コレクタ128に衝突し、これに吸収される。
 第二段目の電子吸収コレクタ128に吸収された電子は第二段目のエネルギー蓄積器112に移動する。第二段目のキャリア出力物質132から電子が放出されたので、第二段目のキャリア出力物質132には正孔が残存する。残存する正孔は第二段目のエネルギー蓄積器112に移動する。第二段目のエネルギー蓄積器112において、正孔と電子がダイポールを形成する事により蓄積される。第二段目のキャリア出力物質132から出力された電子が保有する運動エネルギーは第二段目の電子吸収コレクタ128に衝突することにより熱エネルギーに変換される。従って、第二段目の電子吸収コレクタ128の温度が上昇し、発生する熱はモード1の熱伝導器120に伝導し、モード1の熱伝導器120の温度が上昇する。モード1の熱伝導器120の熱は熱エネルギー供給器226に伝導され、熱エネルギー供給器226の温度が上昇する。高温になった熱エネルギー供給器226の熱は絶縁物8に伝達され、絶縁物8の温度が上昇する。絶縁物8の熱は帰路の第一段目のキャリア出力物質331に伝達され、帰路の第一段目のキャリア出力物質331の温度が上昇する。その結果として、帰路の第一段目のキャリア出力物質331の内の電子の運動エネルギーが大きくなる。帰路の第一段目のキャリア出力物質331の周辺の構造を図54に示す。帰路の第一段目のキャリア出力物質331にはチャネル形成物質2が電気的に結合している。正電圧が加えられる帰路のキャリア加速装置の第一電極261と負電圧が加えられる帰路の第一段目のキャリア出力物質331の間には電界が発生し、その電界によって帰路の第一段目のキャリア出力物質331からキャリアである電子がチャネル形成物質2にインジェクションされる。帰路のキャリア加速装置の第一電極261はインジェクション電極として作用する。チャネル形成物質2にインジェクションされた電子は非可逆過程発生部4を経由して、加速チャネル9にエミッションされる。帰路のキャリア加速装置の第一電極261はエミッション電極としても作用する。エミッションされた電子は加速チャネル9内で帰路のキャリア加速装置の第一電極261、帰路のキャリア加速装置の第二電極262および帰路のキャリア加速装置の第三電極263によって加速される。帰路のキャリア加速装置の第二電極262および帰路のキャリア加速装置の第三電極263は加速電極として作用する。加速された電子は第一段目の電子吸収コレクタ227に衝突し、これに吸収される。第一段目の電子吸収コレクタ227に吸収された電子は帰路の第一段目のエネルギー蓄積器211に移動する。帰路の第一段目のキャリア出力物質331から電子が放出されたので、帰路の第一段目のキャリア出力物質331には正孔が残存する。残存する正孔は帰路の第一段目のエネルギー蓄積器211に移動する。帰路の第一段目のエネルギー蓄積器211において、正孔と電子がダイポールを形成する事により蓄積される。
 帰路の第一段目のキャリア出力物質331から放出された電子が保有する運動エネルギーは第一段目の電子吸収コレクタ227に衝突することにより熱エネルギーに変換される。従って、第一段目の電子吸収コレクタ227の温度が上昇し、発生する熱は絶縁物8に伝導し、絶縁物8の温度が上昇する。絶縁物8の熱は帰路の第二段目のキャリア出力物質332に伝導され、帰路の第二段目のキャリア出力物質332の温度が上昇する。高温になった帰路の第二段目のキャリア出力物質332の内の電子の運動エネルギーが大きくなる。帰路の第二段目のキャリア出力物質332の周辺の構造を図55に示す。帰路の第二段目のキャリア出力物質332にはチャネル形成物質2が電気的に結合している。正電圧が加えられる帰路のキャリア加速装置の第四電極264と負電圧が加えられる帰路の第二段目のキャリア出力物質332の間には電界が発生し、その電界によって帰路の第二段目のキャリア出力物質332からキャリアである電子がチャネル形成物質2にインジェクションされる。帰路のキャリア加速装置の第四電極264はインジェクション電極として作用する。高温と電界の作用により、チャネル形成物質2にインジェクションされた電子は非可逆過程発生部4を経由して加速チャネル9にエミッションされる。帰路のキャリア加速装置の第四電極264はエミッション電極としても作用する。エミッションされた電子は加速チャネル9内で帰路のキャリア加速装置の第四電極264、帰路のキャリア加速装置の第五電極265および帰路のキャリア加速装置の第六電極266によって加速される。帰路のキャリア加速装置の第五電極265および帰路のキャリア加速装置の第六電極266は加速電極として作用する。加速された電子は第二段目の電子吸収コレクタ228に衝突し、これに吸収される。第二段目の電子吸収コレクタ228に吸収された電子は帰路の第二段目のエネルギー蓄積器212に移動する。帰路の第二段目のキャリア出力物質332から電子が放出されたので、帰路の第二段目のキャリア出力物質332には正孔が残存する。残存する正孔は帰路の第二段目のエネルギー蓄積器212に移動する。帰路の第二段目のエネルギー蓄積器212において、正孔と電子がダイポールを形成する事により蓄積される。
 帰路の第二段目のキャリア出力物質332から出力された電子が保有する運動エネルギーは第二段目の電子吸収コレクタ228に衝突することにより熱エネルギーに変換される。従って、第二段目の電子吸収コレクタ228の温度が上昇し、発生する熱はモード2の熱伝導器121に伝導し、モード2の熱伝導器121の温度が上昇する。モード2の熱伝導器121の熱は熱エネルギー供給器126に伝導され、熱エネルギー供給器126の温度が上昇する。高温になった熱エネルギー供給器126の熱は絶縁物8に伝達され、絶縁物8の温度が上昇する。絶縁物8の熱は第一段目のキャリア出力物質131に伝達され、第一段目のキャリア出力物質131の温度が上昇する。電界効果発電装置の運転を開始する初期状態においては、第一段目のキャリア出力物質131の温度が低いので、電子の放出量は少ない。しかし、放出された電子が衝突することにより第二段目のキャリア出力物質132の温度が上昇し、それから放出される電子の量が増加する。放出された電子は第二段目の電子吸収コレクタ128に衝突し、その温度が上昇する。発生する熱はモード1の熱伝導器120を経由して伝導され、帰路の第一段目のキャリア出力物質331の温度が上昇し、そこから放出される電子量が増加し、放出された電子が第一段目電子吸収コレクタに衝突することにより、帰路の第二段目のキャリア出力物質332の温度が上昇し、そこから放出される電子の量が増加する。放出される電子が第二の電子吸収コレクタ228に衝突し、その温度が上昇する。第二の電子吸収コレクタ228の熱はモード2の熱伝導器121を経由して熱エネルギー供給器126に伝導され、その温度が上昇し、電子の放出量が増加する。以上のサイクルを繰り返すことにより、時間が経過すると、電子を放出する部材の温度が上昇し、放出される電子の数が増加するので、発電量が増加し、発電効率も向上する。第一段目のエネルギー蓄積器111に並列に電気的負荷5を接続すると、電気的負荷5に電流が流れることにより蓄積された電気エネルギーが消費される。第二段目のエネルギー蓄積器112に並列に電気的負荷5を接続すると、電気的負荷5に電流が流れることにより蓄積された電気エネルギーが消費される。帰路の第一段目のエネルギー蓄積器211に並列に電気的負荷5を接続すると、電気的負荷5に電流が流れることにより蓄積された電気エネルギーが消費される。帰路の第二段目のエネルギー蓄積器212に並列に電気的負荷5を接続すると、電気的負荷5に電流が流れることにより蓄積された電気エネルギーが消費される。第一段目のエネルギー蓄積器111、第二段目のエネルギー蓄積器112、帰路の第一段目のエネルギー蓄積器211および帰路の第二段目のエネルギー蓄積器212を直列接続し、その両端に並列に電気的負荷5を接続すると、電気エネルギーが消費される。多段のエネルギー蓄積器を直列に接続すると、端子電圧が高くなり、消費される電気エネルギーは個別に放出するよりも多くなり、さらに発電効率が向上する。
 図56には、電界効果発電装置の熱伝導器を用いる2段カスケード・フィードバック方式の実施例の側面・断面図で示す。図50に用いられ第二段目の電子吸収コレクタ128の役割は、図56においては、モード1の熱伝導器120が兼用する。さらに、図50に用いる熱エネルギー供給器226の役割は、図56においてはモード1の熱伝導器120が兼用する。図50に用いる第二段目の電子吸収コレクタ228の役割は、図56においてはモード2の熱伝導器121が兼用する。図50に用いる熱エネルギー供給器126の役割は、図56においてはモード2の熱伝導器121が兼用する。図56におけるモード1の熱伝導器120およびはモード2の熱伝導器121として熱伝導率の良好な物質が好ましい。モード1の熱伝導器120の材料の1例としてグラフェンがある。モード2の熱伝導器121の材料の1例としてもグラフェンがある。グラフェンは炭素の6員環が概平面で層状に配置されている。層内における熱伝導率は高く、層と層の間を伝導する熱は少ない。従って、真空中にエミッションされた電子をグラフェンの表面の層に衝突させて吸収すると、表面の層の温度が高くなる。熱が表面の層を良好に伝導するので、次のモードで高温のエミッタから電子をエミッションする効率が向上する。グラフェンの表面の層に蓄積された熱は内部の層に伝導する効率が低いので、熱エネルギーの損失が少なく、熱エネルギーが保存されるので、次のモードにおける電子のエミッションの効率が向上する。従って、電子吸収コレクタ26およびモード1の熱伝導器120とモード2の熱伝導器121を構成する具体的な材料として、グラフェンを用いると、電界効果発電装置の発電効率を向上する事が可能になる。
[本発明の第3の実施例]
 本発明の第3実施形態に係る電界効果発電装置において、3段カスケード方式を採用する場合の断面を図57に示す。同図において、第一電源31の負電圧端子は第一段目のキャリア出力物質131に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。キャリア入出力物質1からチャネル形成物質2にキャリアである電子をインジェクションするために第一電源31を用いる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の負電圧端子は第二段目のキャリア出力物質132に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。第六電源36の負電圧端子はキャリア加速装置の第五電極65に電気的に接続され、第六電源36の正電圧端子はキャリア加速装置の第六電極66に電気的に接続される。第七電源37の負電圧端子は第三段目のキャリア出力物質133に電気的に接続され、第七電源37の正電圧端子はキャリア加速装置の第七電極67に電気的に接続される。第八電源38の負電圧端子はキャリア加速装置の第七電極67に電気的に接続され、第八電源38の正電圧端子はキャリア加速装置の第八電極68に電気的に接続される。第九電源39の負電圧端子はキャリア加速装置の第八電極68に電気的に接続され、第九電源39の正電圧端子はキャリア加速装置の第九電極69に電気的に接続される。
 第一段目のキャリア出力物質131の周辺の構造は、図52に示す構造と同様であり、第一段目のキャリア出力物質131にはチャネル形成物質2が電気的に結合している。正電圧が加えられるキャリア加速装置の第一電極61と負電圧が加えられる第一段目のキャリア出力物質131の間には電界が発生し、その電界によって第一段目のキャリア出力物質131からキャリアである電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。チャネル形成物質2にインジェクションされた電子は非可逆過程発生部4を経由して、加速チャネル9にエミッションされる。キャリア加速装置の第一電極61はエミッション電極としても作用する。エミッションされた電子は加速チャネル9内でキャリア加速装置の第一電極61、キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63によって加速される。キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63は加速電極として作用する。加速された電子は第一段目の電子吸収コレクタ127に衝突し、これに吸収される。第一段目の電子吸収コレクタ127に吸収された電子は第一段目のエネルギー蓄積器111に移動する。第一段目のキャリア出力物質131から電子が放出されたので、第一段目のキャリア出力物質131には正孔が残存する。残存する正孔は第一段目のエネルギー蓄積器111に移動する。第一段目のエネルギー蓄積器111において、正孔と電子がダイポールを形成する事により蓄積される。
 第一段目のキャリア出力物質131から放出された電子が保有する運動エネルギーは第一段目の電子吸収コレクタ127に衝突することにより熱エネルギーに変換される。従って、第一段目の電子吸収コレクタ127の温度が上昇し、発生する熱は絶縁物8に伝導し、絶縁物8の温度が上昇する。絶縁物8の熱は第二段目のキャリア出力物質132に伝導され、第二段目のキャリア出力物質132の温度が上昇する。高温になった第二段目のキャリア出力物質132の内の電子の運動エネルギーが大きくなる。第二段目のキャリア出力物質132の周辺の構造は、図53に示す構造と同様であり、第二段目のキャリア出力物質132にはチャネル形成物質2が電気的に結合している。正電圧が加えられるキャリア加速装置の第四電極64と負電圧が加えられる第二段目のキャリア出力物質132の間には電界が発生し、その電界によって第二段目のキャリア出力物質132からキャリアである電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第四電極64はインジェクション電極として作用する。高温と電界の作用により、チャネル形成物質2にインジェクションされた電子は非可逆過程発生部4を経由して加速チャネル9にエミッションされる。キャリア加速装置の第四電極64はエミッション電極としても作用する。エミッションされた電子は加速チャネル9内でキャリア加速装置の第四電極64、キャリア加速装置の第五電極65およびキャリア加速装置の第六電極66によって加速される。キャリア加速装置の第五電極65およびキャリア加速装置の第六電極66は加速電極として作用する。加速された電子は第二段目の電子吸収コレクタ128に衝突し、これに吸収される。第二段目の電子吸収コレクタ128に吸収された電子は第二段目のエネルギー蓄積器112に移動する。第二段目のキャリア出力物質132から電子が放出されたので、第二段目のキャリア出力物質132には正孔が残存する。残存する正孔は第二段目のエネルギー蓄積器112に移動する。第二段目のエネルギー蓄積器112において、正孔と電子がダイポールを形成する事により蓄積される。第二段目のキャリア出力物質132から出力された電子が保有する運動エネルギーは第二段目の電子吸収コレクタ128に衝突することにより熱エネルギーに変換される。従って、第二段目の電子吸収コレクタ128の温度が上昇し、発生する熱は絶縁物8に伝導し、絶縁物8の温度が上昇する。絶縁物8の熱は第三段目のキャリア出力物質133に伝導され、第三段目のキャリア出力物質133の温度が上昇する。高温になった第三段目のキャリア出力物質133の内の電子の運動エネルギーが大きくなる。第三段目のキャリア出力物質133の周辺の構造は、図58に示す構造と同様であり、第三段目のキャリア出力物質133にはチャネル形成物質2が電気的に結合している。正電圧が加えられるキャリア加速装置の第七電極67と負電圧が加えられる第三段目のキャリア出力物質133の間には電界が発生し、その電界によって高温の第三段目のキャリア出力物質133からキャリアである電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第七電極67はインジェクション電極として作用する。高温と電界の作用により、チャネル形成物質2にインジェクションされた電子は非可逆過程発生部4を経由して、加速チャネル9にエミッションされる。キャリア加速装置の第七電極67はエミッション電極としても作用する。エミッションされた電子は加速チャネル9内でキャリア加速装置の第七電極67、キャリア加速装置の第八電極68およびキャリア加速装置の第九電極69によって加速される。キャリア加速装置の第八電極68およびキャリア加速装置の第九電極69は加速電極として作用する。加速された電子は第三段目の電子吸収コレクタ129に衝突し、これに吸収される。第三段目の電子吸収コレクタ129に吸収された電子は第三段目のエネルギー蓄積器113に移動する。第三段目のキャリア出力物質133から電子が放出されたので、第三段目のキャリア出力物質133には正孔が残存する。残存する正孔は第三段目のエネルギー蓄積器113に移動する。第三段目のエネルギー蓄積器113において、正孔と電子がダイポールを形成する事により蓄積される。第一段目のエネルギー蓄積器111に並列に電気的負荷5を接続すると、電気的負荷5に電流が流れることにより蓄積された電気エネルギーが消費される。第二段目のエネルギー蓄積器112に並列に電気的負荷5を接続すると、電気的負荷5に電流が流れることにより蓄積された電気エネルギーが消費される。第三段目のエネルギー蓄積器113に並列に電気的負荷5を接続すると、電気的負荷5に電流が流れることにより蓄積された電気エネルギーが消費される。
 第一段目のエネルギー蓄積器111、第二段目のエネルギー蓄積器112および第三段目のエネルギー蓄積器113を直列接続し、その両端に並列に電気的負荷5を接続すると、電気エネルギーが消費される。多段のエネルギー蓄積器を直列接続をすると、端子電圧が高くなり、消費される電気エネルギーは個別に放出するよりも多くなり、発電効率が向上する。
 図57において、熱エネルギー供給器126に熱エネルギーを供給すると、熱伝導により第一段目のキャリア出力物質131の温度が上昇するので、第一段目のキャリア出力物質131から放出される電子の数が多くなり、後続の段において発電される電気量が増加する。従って、ヒータ加熱により熱エネルギー供給器126に熱エネルギーを供給する場合において、ヒータ加熱のために消費される電気エネルギーよりも発電される電気エネルギーが多くなるので、総合的には発電効率が向上する。なお、熱エネルギー供給器126にはエネルギーであれば、いかなる種類のエネルギーを供給しても発電効率を向上することが可能である。従って、熱エネルギー供給器126に供給するエネルギーを本発明においては限定しないが、供給するエネルギーの例として、電磁波エネルギーおよび熱エネルギーを含む。熱エネルギーとして、地熱や太陽熱および化石燃料を燃焼する際に発生する熱などが含まれる。
[本発明の第4の実施例]
 図59には、本発明の第4の実施形態に係る電界効果発電装置の実施例の断面を示す。同図の表示において、第一電源31などが上下に2個の記載が行われているが、実際には1個である。すなわち、この発電装置は円筒形であるので、横軸に対称であり、表示として上下に同じものを記載する。同図において、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。第一電源31の負電圧端子はキャリア出力物質1に電気的に接続される。キャリア出力物質1からチャネル形成物質2にキャリアである電子をインジェクションするために第一電源31を用いる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。
 キャリア出力物質1の周辺を拡大して、図60に示す。正電圧が加えられるキャリア加速装置の第一電極61と負電圧が加えられるキャリア出力物質1の間には電界が発生し、その電界の作用によってキャリア出力物質1からキャリアである電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。インジェクションの際には、キャリア出力物質1とチャネル形成物質2との間にあるポテンシャル障壁は、キャリア加速装置の第一電極61とキャリア出力物質1の間に発生する電界によって量子力学的なトンネル効果に基づいて電子が貫通・通過する。キャリア加速装置の第一電極61はトンネル電極としても作用する。インジェクションされた電子は加速チャネル9内を移動する。チャネル形成物質2の先端の曲率半径は充分に小さいとする。チャネル形成物質2の例としてカーボン・ナノチューブおよびカーボン・ウォールなどがある。キャリア出力物質1とチャネル形成物質2は電気的に接続される。しかし、チャネル形成物質2がカーボン系の物質である場合には、キャリア出力物質1とチャネル形成物質2を電気的に接続するには、特殊な接着方法を適用する必要がある。熱発電装置においては、キャリア出力物質1が加熱され、高温になるので、キャリア出力物質1とチャネル形成物質2を高温状態で電気的に接続することは非常に困難であった。しかし、本発明の発電装置においては、キャリア出力物質1を加熱する必要がないので、キャリア出力物質1とチャネル形成物質2を電気的に接続すると、その接続を破壊することが殆ど起こらないので、本発明の発電装置は先行技術である熱発電装置よりも耐久性において優れている。
 チャネル形成物質2にインジェクションされた電子は、キャリア加速装置の電極から発生する電界によって加速チャネル9において加速され、電子の運動エネルギーが大きくなる。キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64は加速電極として作用する。大きな運動エネルギーを保有する電子が非可逆過程発生部4に到達し、チャネル形成物質2からエミッションされる。キャリア加速装置の第一電極61はエミッション電極としても作用する。エミッションを行う際には、チャネル形成物質2と真空との間にある仕事関数に相当するポテンシャル障壁は、発生する電界によりトンネル効果に基づいて貫通・突破し、電子が真空中にエミッションされる。
 図59には、キャリア加速装置の各電極から発生する電気力線を矢印のある曲線で示す。発電装置が円筒形であるので、キャリアである電子は軸対称の力を受け、軸の方向に進行し、電子吸収コレクタ26に衝突し、それに吸収される。電子吸収コレクタ26に吸収された電子はエネルギー蓄積器15に移動する。一方、キャリアである電子を出力したキャリア出力物質1には正電荷を保有する正孔が残存する。正孔はエネルギー蓄積器15に移動し、そこで電子と正孔がダイポールを形成する。電子吸収コレクタ26に到達する電子はエネルギー蓄積器15に移動し、電子吸収コレクタ26には電子が殆ど残存しないので、後続して電子吸収コレクタ26に接近する電子の進路を妨害することは殆ど無い。すなわち、エネルギー蓄積器15において、電子と正孔がダイポールを形成するので、電子が保有する負電荷が後続の電子の移動方向に影響を及ぼすことは殆どない。正孔もキャリア出力物質1からエネルギー蓄積器15に移動し、そこで電子と正孔がダイポールを形成するので、正孔が保有する正電荷がキャリア出力物質1からキャリア入力物質に移動する電子の動きを妨害することも殆どなくなり、良好な発電が行われる事が本発明の発電装置の特徴である。先行する発電装置においては、電子と正孔が元の物質に残存し、後続のキャリアの動きを妨害するので、高効率の発電を実現することが困難であった。
[本発明の第5の実施例]
 電子がエミッタとコレクタから交互にエミッションされることにより電気エネルギーが創出される場合には、これを交互発電方式と呼ぶ。図61には、本発明の第5の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード0の状態における断面図を示す。初期状態であるモード0においては、電極の温度が低いので、電子が充分な運動エネルギーを保有していない。A側とB側の電極に交流電源28を接続し、放電現象により電極を加熱する場合をモード0と呼ぶ。本発明の第4の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード1の状態における断面を図62示す。同図に示すように、電子がA側のキャリア出力物質1からチャネル形成物質2にインジェクションされ、さらにチャネル形成物質2から電子がエミッションされる場合には、この状態を交互発電のモード1と呼ぶ。図63には、本発明の第5の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード2の状態における断面図を示す。電子がB側のキャリア出力物質1からチャネル形成物質2にインジェクションされ、さらにチャネル形成物質2から電子がエミッションされる場合には、この状態を交互発電のモード2と呼ぶ。
〔モード0〕
 初期状態においては、キャリア出力物質1およびチャネル形成物質2を加熱するために、キャリア出力物質1およびチャネル形成物質2に熱エネルギーを与える。熱エネルギーとして、ヒータを用いて加熱する場合、太陽熱を加える場合、他の熱源からの熱エネルギーを加える場合などがある。簡略的な加熱の例として、キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63を高インピーダンス状態に設定し、端子Aと端子Bに交流の高電圧を加えると、A側とB側の電極間で放電が開始され、両方の電極の温度が上昇する。図61において、キャリア加速装置の第一電極61とキャリア加速装置の第四電極64に交流電源28を接続する。キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63には何も接続しないので、これらの電極は高インピーダンス状態にある。
 交流電源28からキャリア加速装置の第一電極61に正電圧が加えられる期間においては、キャリア加速装置の第四電極64に負電圧が加えられる。この期間において、交流電源28の電圧が充分に高い場合には、キャリア加速装置の第四電極64から電子がエミッションされ、エミッションされた電子はキャリア加速装置の第一電極61に衝突する。電極に加えられる電圧が充分に高いので、エミッションされた電子が大きい運動エネルギーを保有した状態でキャリア加速装置の第一電極61に衝突するので、キャリア加速装置の第一電極61の温度が上昇する。キャリア加速装置の第一電極61の熱エネルギーはキャリア出力物質1およびチャネル形成物質2に放熱効果により伝達され、キャリア出力物質1およびチャネル形成物質2の中の電子が高い運動エネルギー状態になる。
 交流電源28からキャリア加速装置の第一電極61に負電圧が加えられる期間においては、キャリア加速装置の第四電極64に正電圧が加えられる。この期間において、交流電源28の電圧が充分に高い場合には、キャリア加速装置の第一電極61から電子がエミッションされ、エミッションされた電子はキャリア加速装置の第四電極64に衝突する。電極に加えられる電圧が充分に高いので、エミッションされた電子が大きい運動エネルギーを保有した状態でキャリア加速装置の第四電極64に衝突するので、キャリア加速装置の第四電極64の温度が上昇する。キャリア加速装置の第四電極64の熱エネルギーはキャリア出力物質1およびチャネル形成物質2に放熱効果により伝達され、キャリア出力物質1およびチャネル形成物質2の中の電子が高い運動エネルギー状態になる。
 交流電源は上記の過程を繰り返すので、キャリア加速装置の第一電極61およびキャリア加速装置の第四電極64の温度が共に上昇し、高温になる。キャリア加速装置の第一電極61に蓄えられた熱エネルギーは、間接ヒーティング効果により、図61においてA側にあるキャリア出力物質1およびチャネル形成物質2の温度を上昇する。従って、キャリア出力物質1の中の温度が上昇し、その内部にある電子が大きい運動エネルギーを保有するので、インジェクションが容易になる。チャネル形成物質2の中の温度もが上昇し、その内部にある電子が大きい運動エネルギーを保有するので、エミッションが容易になる。キャリア加速装置の第四電極64に蓄えられた熱エネルギーは、間接ヒーティング効果により、図61において、B側にあるキャリア出力物質1およびチャネル形成物質2の温度が上昇する。従って、キャリア出力物質1の中の温度が上昇し、その内部にある電子が大きい運動エネルギーを保有するので、インジェクションが容易になる。チャネル形成物質2の中の温度が上昇し、その内部にある電子が大きい運動エネルギーを保有するので、多くの電子のエミッションが容易になる。
〔モード1〕
 本発明の第5の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード1の状態における外観図を図64に示す。図62においてキャリア出力物質1とチャネル形成物質2を拡大して図60に示す。図62に示すように、第一電源31の負電圧端子はA側のキャリア出力物質1に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。キャリア出力物質1からチャネル形成物質2にキャリアである電子をインジェクションするために第一電源31を用いる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。
 図60に示すように、キャリア出力物質1の先端部にチャネル形成物質2が電気的に結合される。キャリア出力物質1とキャリア加速装置の第一電極61の間には電界が発生し、キャリア出力物質1の中の電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。チャネル形成物質2の先端部は極めて細いので、先端部に電界が集中する。図60に示すように、電界によってチャネル形成物質2から電子が非可逆過程発生部4を経由して、加速チャネル9にエミッションされる。キャリア加速装置の第一電極61はエミッション電極として作用する。初期の状態においては、キャリア出力物質1およびチャネル形成物質2の温度は低いのでエミッションされる電子の数は少ないが、臨界状態になれば、キャリア出力物質1およびチャネル形成物質2の中の電子が高い運動エネルギーを保有し、インジェクションされる電子の数が増加し、さらに、エミッションされる電子の数も増加する。
 加速チャネル9にエミッションされた電子は、キャリア加速装置の第一電極61に蓄積される正電荷とキャリア加速装置の第二電極62に蓄積される正電荷とキャリア加速装置の第三電極63に蓄積される正電荷との間に働くクーロン力により加速され、最終的にはキャリア加速装置の第四電極64に到達する。キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64は加速電極として作用する。モード1においてはキャリア加速装置の第四電極64が電子を吸収するコレクタ4の役割になる。キャリア加速装置の第四電極64に蓄積される電荷はスッイチ351を経由して第一段目のエネルギー蓄積器111に移動する。電子をインジェクションしたA側のキャリア出力物質1には正孔が残存し、正孔は第一段目のエネルギー蓄積器111に移動し、そこで正孔と電子がダイポールを形成することにより蓄積される。第一段目のエネルギー蓄積器111に並列に電気的負荷5を接続すると、発生した電気エネルギーが消費される。モード1の動作において、A側のチャネル形成物質2からエミッションされた電子は加速されて、キャリア加速装置の第四電極64に衝突するので、電子の運動エネルギーがキャリア加速装置の第四電極64に吸収される事により、キャリア加速装置の第四電極64の温度が上昇する。
〔モード2〕
 図63においてキャリア出力物質1とチャネル形成物質2を拡大して図60に示す。図62に示すように、第五電源35の負電圧端子はB側のキャリア出力物質1に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。キャリア出力物質1からチャネル形成物質2にキャリアである電子をインジェクションするために第五電源35を用いる。第六電源36の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第六電源36の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第七電源37の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第七電源37の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。
 図60に示すように、キャリア出力物質1の先端部にチャネル形成物質2が電気的に結合される。モード1の動作により、キャリア加速装置の第四電極64の温度が上昇し、B側が高温になる。キャリア加速装置の第四電極64はB側のキャリア出力物質1およびチャネル形成物質2に近接して配置されているので、間接加熱効果により、B側のキャリア出力物質1およびチャネル形成物質2の温度はモード1の動作により高温になり、それらの内部の電子が高い運動エネルギーを獲得する。
 キャリア出力物質1とキャリア加速装置の第四電極64の間には電界が発生し、キャリア出力物質1の中の電子の運動エネルギーが大きくなっているので、電子がキャリア出力物質1からチャネル形成物質2に容易にインジェクションされる。この場合には、キャリア加速装置の第四電極64がインジェクション電極として作用する。チャネル形成物質2は細い構造であるので、その先端部に電界が集中する。図60に示すように、B側のチャネル形成物質2の温度はモード1の動作により高温となっているので、発生する電界によってチャネル形成物質2から電子が非可逆過程発生部4を経由して、加速チャネル9にエミッションされる。キャリア加速装置の第四電極64がエミッション電極として作用する。初期の状態においては、キャリア出力物質1およびチャネル形成物質2の温度は低いのでエミッションされる電子の数は少ない。
 加速チャネル9にエミッションされた電子は、キャリア加速装置の第四電極64に蓄積される正電荷とキャリア加速装置の第三電極63に蓄積される正電荷およびキャリア加速装置の第二電極62に蓄積される正電荷との間に働くクーロン力により加速され、キャリア加速装置の第一電極61に到達する。キャリア加速装置の第四電極64、キャリア加速装置の第三電極63およびキャリア加速装置の第二電極62は加速電極として作用する。モード2においてはキャリア加速装置の第一電極61が電子を吸収するコレクタ4の役割になる。キャリア加速装置の第一電極61に蓄積される電子はスッイチ350を経由して第二段目のエネルギー蓄積器112に移動する。電子をインジェクションしたB側のキャリア出力物質1には正孔が残存し、正孔は第二段目のエネルギー蓄積器112に移動し、そこで正孔と電子がダイポールを形成することにより蓄積される。第二段目のエネルギー蓄積器112に並列に電気的負荷5を接続すると、発生した電気エネルギーが消費される。
 モード2の動作において、B側のチャネル形成物質2からエミッションされた電子は加速されてキャリア加速装置の第一電極61に衝突するので、電子の運動エネルギーがキャリア加速装置の第一電極61に吸収される事により、キャリア加速装置の第一電極61の温度が上昇する。キャリア加速装置の第一電極61はキャリア出力物質1およびチャネル形成物質2に近接して配置されているので、間接加熱効果により、キャリア出力物質1およびチャネル形成物質2の温度はモード2の動作により高温になり、それらの内部の電子が高い運動エネルギーを獲得する。
 モード1とモード2を繰り返すことにより、A側とB側のキャリア出力物質1およびチャネル形成物質2の温度が上昇し、それらの内部に存在する電子が多くの運動エネルギーを保有することにより、インジェクションされる電子およびエミッションされる電子の数が増加する。順次に上述のモード1およびモード2を繰り返すことにより、A側とB側のキャリア出力物質1およびチャネル形成物質2が高温になり、極性が変化する電気エネルギーが効率良く得られ、電気的な負荷に発生した電圧を加えることにより、大きい電流が流れる。従って、上記の発電により電気的負荷5に電気エネルギーを効率良く供給することが可能となる。
 上記の交互発電においては、キャリア出力物質1とチャネル形成物質2の中の電子に高い運動エネルギーを与えるために熱エネルギーを供給する。その他の発電効率を向上する手法として、キャリア入力物質に波長の短い電磁波を照射することにより発電の臨界状態に到達させることも可能である。上記のモード1において、キャリア加速装置の第四電極64に電子が衝突するが、衝突する場所を変化する方が材料の損傷が少ないので、電子の飛翔軌道を時間的に変化する。そのためには、キャリア加速装置の電極60に加える電圧が変化し、偏向作用により電子の衝突ポイントが順次に変化することが耐久性の観点から好ましい。
 上記のモード2において、キャリア加速装置の第一電極61に電子が衝突するが、衝突する場所を変化する方が材料の損傷が少ないので、電子の飛翔軌道を時間的に変化する。そのためには、キャリア加速装置の電極60に加える電圧が変化し、偏向作用により衝突ポイントが順次に変化することが耐久性の観点から好ましい。
[本発明の第6の実施例]
 本発明の第6の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、チャネル形成物質としてP型半導体を用いる場合の断面を図65に示す。同図において、P型半導体10とN型半導体11はPN接合を形成する。PN接合の周辺には絶縁物8を配置する。キャリアを加速するために、第一電源31、第二電源32、第三電源33、第四電源34、第五電源35、第六電源36、第七電源37、第八電源38、第九電源39、および第十電源40を用いる。N型半導体11からP型半導体10にキャリアである電子をインジェクションするために第一電源31を用いる。N型半導体11には第一電源31の負電圧端子が電気的に接続される。キャリア加速装置の第一電極61には第一電源31の正電圧端子が電気的に接続される。キャリア加速装置の第一電極61とN型半導体11の間には電界が発生し、電気力線がキャリア加速装置の第一電極61からN型半導体11に向かう。この電界の効果によってN型半導体11の多数キャリアである電子がN型半導体11からP型半導体10にインジェクション(injection)される。キャリア加速装置の第一電極61はインジェクション電極として作用する。P型半導体10にインジェクションされた電子はキャリア加速装置の第一電極61に引き寄せられて、キャリア加速装置の第一電極61の直下に到達し、P型半導体10の上表面に反転層(inversion layer)を形成する。反転層が加速チャネル9になる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続される。第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。キャリア加速装置の第二電極62とキャリア加速装置の第一電極61の間に発生する電界はP型半導体10にインジェクション(injection)された電子を加速チャネル9において加速する。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。キャリア加速装置の第三電極63とキャリア加速装置の第二電極62の間に発生する電界はP型半導体10の上表面にある加速チャネル9において電子を加速する。キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63はスライディング電極として作用する。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。キャリア加速装置の第四電極64とキャリア加速装置の第三電極63の間に発生する電界はP型半導体10の上表面において電子を加速チャネル9において加速する。P型半導体10の上表面において加速された電子は充分な運動エネルギーを保有し、P型半導体の上表面の端点に到達し、空間に電子がエミッションされる。キャリア加速装置の第四電極64はエミッション電極として作用する。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続される。第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第五電極65とキャリア加速装置の第四電極64の間に発生する電界はエミッションされた電子を加速チャネル9において加速する。キャリア加速装置の第五電極65は加速電極として作用する。加速された電子は充分に運動エネルギーを保有し、電子吸収コレクタ26に蓄積された負電荷からの反発力に打ち勝ち、最終的には電子吸収コレクタ26に吸収される。
 N型半導体11には第六電源36の負電圧端子が電気的に接続される。キャリア加速装置の第六電極66には第六電源36の正電圧端子が電気的に接続される。キャリア加速装置の第六電極66とN型半導体11の間には電界が発生し、電気力線がキャリア加速装置の第六電極66からN型半導体11に向かう。この電界によってN型半導体11の多数キャリアである電子がN型半導体11からP型半導体10の下表面にインジェクション(injection)される。キャリア加速装置の第六電極66はインジェクション電極として作用する。P型半導体10の下表面にインジェクションされた電子はキャリア加速装置の第六電極66に引き寄せられて、キャリア加速装置の第六電極66の直下に到達し、P型半導体10の下表面に反転層(inversion layer)を形成する。反転層が加速チャネル9となる。第七電源37の負電圧端子はキャリア加速装置の第六電極66に電気的に接続される。第七電源37の正電圧端子はキャリア加速装置の第七電極67に電気的に接続される。キャリア加速装置の第七電極67とキャリア加速装置の第六電極66の間に発生する電界はP型半導体10の下表面にインジェクション(injection)された電子を加速する。第八電源38の負電圧端子はキャリア加速装置の第七電極67に電気的に接続される。第八電源38の正電圧端子はキャリア加速装置の第八電極68に電気的に接続される。キャリア加速装置の第八電極68とキャリア加速装置の第七電極67の間に発生する電界はP型半導体10の下表面にある加速チャネル9において電子を加速する。キャリア加速装置の第七電極67およびキャリア加速装置の第八電極68はスライディング電極として作用する。第九電源39の負電圧端子はキャリア加速装置の第八電極68に電気的に接続される。第九電源39の正電圧端子はキャリア加速装置の第九電極69に電気的に接続される。キャリア加速装置の第九電極69とキャリア加速装置の第八電極68の間に発生する電界はP型半導体10の下表面にある加速チャネル9において電子を加速する。P型半導体10の下表面において加速された電子は充分な運動エネルギーを保有し、P型半導体の下表面の端点に到達し、空間に電子がエミッションされる。キャリア加速装置の第九電極69はエミッション電極として作用する。第十電源40の負電圧端子はキャリア加速装置の第九電極69に電気的に接続される。第十電源40の正電圧端子はキャリア加速装置の第十電極70に電気的に接続される。キャリア加速装置の第十電極70とキャリア加速装置の第九電極69の間に発生する電界はエミッションされた電子を加速する。キャリア加速装置の第十電極70は加速電極として作用する。加速された電子は充分に運動エネルギーを保有し、電子吸収コレクタ26に蓄積された負電荷からの反発力に打ち勝ち、最終的には電子吸収コレクタ26に吸収される。
 P型半導体10の上表面と下表面において加速された電子は充分な運動エネルギーを保有し、P型半導体の上表面と下表面の端点に到達し、両者の端点において互いに反発することにより電子が空間に良好にエミッションされる。N型半導体11はエネルギー蓄積器15の正電圧端子に電気的に接続され、電子吸収コレクタ26はエネルギー蓄積器15の負電圧端子に電気的に接続される。P型半導体10からN型半導体11にインジェクション蓄積された正孔はエネルギー蓄積器15の正電圧端子に移動し、電子吸収コレクタ26に蓄積された電子はエネルギー蓄積器15の負電圧端子に移動する。エネルギー蓄積器15の正電極に蓄積された正孔とエネルギー蓄積器15の負電極に蓄積された電子は接近した位置にあり、クーロンの法則に基づいて互いに引き合う。エネルギー蓄積器15の正電極に電気的負荷5の一方の端子を接続し、エネルギー蓄積器15の負電極に電気的負荷5の他方の端子を接続する。エネルギー蓄積器15に蓄えられた正孔と電子は共に電気的負荷5において再結合を行うことにより、電気的負荷5に電気エネルギーを供給する。
[本発明の第7の実施例]
 本発明の第7の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、チャネル形成物質としてP型半導体を用いる場合の断面を図66に示す。同図において、P型半導体10とN型半導体11はPN接合を形成する。PN接合の周辺には絶縁物8を配置する。キャリアを加速するために、第一電源31、第二電源32、第三電源33、第四電源34、第五電源35、第六電源36、第七電源37、第八電源38、第九電源39、および第十電源40を用いる。N型半導体11からP型半導体10にキャリアである電子をインジェクションするために第一電源31を用いる。N型半導体11には第一電源31の負電圧端子が電気的に接続される。キャリア加速装置の第一電極61には第一電源31の正電圧端子が電気的に接続される。キャリア加速装置の第一電極61とN型半導体11の間には電界が発生し、電気力線がキャリア加速装置の第一電極61からN型半導体11に向かう。この電界によってN型半導体11の多数キャリアである電子がN型半導体11からP型半導体10にインジェクション(injection)される。キャリア加速装置の第一電極61はインジェクション電極として作用する。P型半導体10にインジェクションされた電子はキャリア加速装置の第一電極61に引き寄せられて、キャリア加速装置の第一電極61の直下に到達し、P型半導体10の上表面に反転層(inversion layer)を形成する。反転層は加速チャネル9となり、そこをキャリアが移動する。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続される。第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。キャリア加速装置の第二電極62とキャリア加速装置の第一電極61の間に発生する電界はP型半導体10にインジェクション(injection)された電子を加速する。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。キャリア加速装置の第三電極63とキャリア加速装置の第二電極62の間に発生する電界はP型半導体10の上表面において電子を加速し、電子は加速チャネル9内を移動する。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。キャリア加速装置の第四電極64とキャリア加速装置の第三電極63の間に発生する電界はP型半導体10の上表面にある加速チャネル9において電子を加速する。キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63はスライディング電極として作用する。P型半導体10の上表面にある加速チャネル9において加速された電子は充分な運動エネルギーを保有し、P型半導体の上表面の端点に到達し、空間に電子がエミッションされる。キャリア加速装置の第四電極64はエミッション電極として作用する。エミッションを行う際にP型半導体の端表面は傾斜しており、上表面の端点における曲率半径は小さいので、電子のエミッションが良好に行われる。
 第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続される。第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第五電極65とキャリア加速装置の第四電極64の間に発生する電界は加速チャネル9においてエミッションされた電子を加速する。キャリア加速装置の第五電極65は加速電極として作用する。加速された電子は充分に運動エネルギーを保有し、電子吸収コレクタ26に蓄積された負電荷からの反発力に打ち勝ち、最終的には電子吸収コレクタ26に吸収される。
 N型半導体11には第六電源36の負電圧端子が電気的に接続される。キャリア加速装置の第六電極66には第六電源36の正電圧端子が電気的に接続される。キャリア加速装置の第六電極66とN型半導体11の間には電界が発生し、電気力線がキャリア加速装置の第六電極66からN型半導体11に向かう。この電界によってN型半導体11の多数キャリアである電子がN型半導体11からP型半導体10の下表面にインジェクション(injection)される。キャリア加速装置の第六電極66はインジェクション電極として作用する。P型半導体10の下表面にインジェクションされた電子はキャリア加速装置の第六電極66に引き寄せられて、キャリア加速装置の第六電極66の直下に到達し、P型半導体10の下表面に反転層(inversion layer)を形成する。反転層は加速チャネル9となり、そこを電子が移動する。第七電源37の負電圧端子はキャリア加速装置の第6電極66に電気的に接続される。第七電源37の正電圧端子はキャリア加速装置の第七電極67に電気的に接続される。キャリア加速装置の第七電極67とキャリア加速装置の第六電極66の間に発生する電界はP型半導体10の下表面にインジェクション(injection)された電子を加速チャネル9において加速する。第八電源38の負電圧端子はキャリア加速装置の第七電極67に電気的に接続される。第八電源38の正電圧端子はキャリア加速装置の第八電極68に電気的に接続される。キャリア加速装置の第八電極68とキャリア加速装置の第七電極67の間に発生する電界はP型半導体10の下表面において電子を加速する。キャリア加速装置の第七電極67およびキャリア加速装置の第八電極68はスライディング電極として作用する。第九電源39の負電圧端子はキャリア加速装置の第八電極68に電気的に接続される。第九電源39の正電圧端子はキャリア加速装置の第九電極69に電気的に接続される。キャリア加速装置の第九電極69とキャリア加速装置の第八電極68の間に発生する電界はP型半導体10の下表面において電子を加速する。P型半導体10の下表面における加速チャネル9において加速された電子は充分な運動エネルギーを保有し、P型半導体の下表面の端点に到達し、空間に電子がエミッションされる。キャリア加速装置の第九電極69はエミッション電極として作用する。エミッションを行う際にP型半導体の端表面は傾斜しており、下表面の端点における曲率半径は小さいので、電子のエミッションが良好に行われる。
 第十電源40の負電圧端子はキャリア加速装置の第九電極69に電気的に接続される。第十電源40の正電圧端子はキャリア加速装置の第十電極70に電気的に接続される。キャリア加速装置の第十電極70とキャリア加速装置の第九電極69の間に発生する電界はエミッションされた電子を加速チャネル9において加速する。キャリア加速装置の第十電極70は加速電極として作用する。加速された電子は充分に運動エネルギーを保有し、電子吸収コレクタ26に蓄積された負電荷からの反発力に打ち勝ち、最終的には電子吸収コレクタ26に吸収される。
 N型半導体11はエネルギー蓄積器15の正電圧端子に電気的に接続され、電子吸収コレクタ26はエネルギー蓄積器15の負電圧端子に電気的に接続される。P型半導体10からN型半導体11にインジェクション蓄積された正孔はエネルギー蓄積器15の正電圧端子に移動し、電子吸収コレクタ26に蓄積された電子はエネルギー蓄積器15の負電圧端子に移動する。エネルギー蓄積器15の正電圧端子に蓄積された正孔とエネルギー蓄積器15の負電圧端子に蓄積された電子は接近した位置にあり、クーロンの法則に基づいて互いに引き合う。エネルギー蓄積器15の正電圧端子に電気的負荷5の一方の端子を接続し、エネルギー蓄積器15の負電圧端子に電気的負荷5の他方の端子を接続する。エネルギー蓄積器15に蓄えられた正孔と電子は共に電気的負荷5において再結合を行うことにより、電気的負荷5に電気エネルギーを供給する。
[本発明の第8の実施例]
 本発明の第8の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、チャネル形成物質としてP型半導体を用いる場合の断面を図67に示す。同図において、P型半導体10とN型半導体11はPN接合を形成する。PN接合の周辺には絶縁物8を配置する。キャリアを加速するために、第一電源31、第二電源32、第三電源33、第四電源34、第五電源35、第六電源36、第七電源37、第八電源38、第九電源39、および第十電源40を用いる。N型半導体11からP型半導体10にキャリアである電子をインジェクションするために、第一電源31および第六電源36を用いる。N型半導体11には第一電源31の負電圧端子が電気的に接続される。キャリア加速装置の第一電極61には第一電源31の正電圧端子が電気的に接続される。キャリア加速装置の第一電極61とN型半導体11の間には電界が発生し、電気力線がキャリア加速装置の第一電極61からN型半導体11に向かう。この電界によってN型半導体11の多数キャリアである電子がN型半導体11からP型半導体10にインジェクション(injection)される。キャリア加速装置の第一電極61はインジェクション電極として作用する。P型半導体10にインジェクションされた電子はキャリア加速装置の第一電極61に引き寄せられて、キャリア加速装置の第一電極61の直下に到達し、P型半導体10の上表面に反転層(inversion layer)を形成する。反転層が加速チャネル9となる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続される。第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。キャリア加速装置の第二電極62とキャリア加速装置の第一電極61の間に発生する電界はP型半導体10にインジェクション(injection)された電子を加速チャネル9において加速する。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。キャリア加速装置の第三電極63とキャリア加速装置の第二電極62の間に発生する電界はP型半導体10の上表面にある加速チャネル9において電子を加速する。キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63はスライディング電極として作用する。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。キャリア加速装置の第四電極64とキャリア加速装置の第三電極63の間に発生する電界はP型半導体10の上表面において電子を加速する。P型半導体10の上表面において加速された電子は充分な運動エネルギーを保有し、P型半導体の端点に到達し、空間に電子がエミッションされる。キャリア加速装置の第四電極64はエミッション電極として作用する。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続される。第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第五電極65とキャリア加速装置の第四電極64の間に発生する電界はエミッションされた電子を加速チャネル9において加速する。キャリア加速装置の第五電極65は加速電極として作用する。加速された電子は充分に運動エネルギーを保有し、電子吸収コレクタ26に蓄積された負電荷からの反発力に打ち勝ち、最終的には電子吸収コレクタ26に吸収される。
 N型半導体11には第六電源36の負電圧端子が電気的に接続される。キャリア加速装置の第六電極66には第六電源36の正電圧端子が電気的に接続される。キャリア加速装置の第六電極66とN型半導体11の間には電界が発生し、電気力線がキャリア加速装置の第六電極66からN型半導体11に向かう。この電界によってN型半導体11の多数キャリアである電子がN型半導体11からP型半導体10の下表面にインジェクション(injection)される。キャリア加速装置の第六電極66はインジェクション電極として作用する。P型半導体10の下表面にインジェクションされた電子はキャリア加速装置の第六電極66に引き寄せられて、キャリア加速装置の第六電極66の直下に到達し、P型半導体10の下表面に反転層(inversion layer)を形成する。この反転層が加速チャネル9となる。第七電源37の負電圧端子はキャリア加速装置の第六電極66に電気的に接続される。第七電源37の正電圧端子はキャリア加速装置の第七電極67に電気的に接続される。キャリア加速装置の第七電極67とキャリア加速装置の第六電極66の間に発生する電界はP型半導体10の下表面にインジェクション(injection)された電子を加速チャネル9において加速する。第八電源38の負電圧端子はキャリア加速装置の第七電極67に電気的に接続される。第八電源38の正電圧端子はキャリア加速装置の第八電極68に電気的に接続される。キャリア加速装置の第八電極68とキャリア加速装置の第七電極67の間に発生する電界はP型半導体10の下表面にある加速チャネル9において電子を加速する。キャリア加速装置の第七電極67およびキャリア加速装置の第八電極68は加速電極として作用する。第九電源39の負電圧端子はキャリア加速装置の第八電極68に電気的に接続される。第九電源39の正電圧端子はキャリア加速装置の第九電極69に電気的に接続される。キャリア加速装置の第九電極69とキャリア加速装置の第八電極68の間に発生する電界はP型半導体10の下表面において電子を加速する。P型半導体10の下表面にある加速チャネル9において加速された電子は充分な運動エネルギーを保有し、P型半導体の端点に到達し、空間に電子がエミッションされる。キャリア加速装置の第九電極69はエミッション電極として作用する。第十電源40の負電圧端子はキャリア加速装置の第九電極69に電気的に接続される。第十電源40の正電圧端子はキャリア加速装置の第十電極70に電気的に接続される。キャリア加速装置の第十電極70とキャリア加速装置の第九電極69の間に発生する電界はエミッションされた電子を加速チャネル9において加速する。キャリア加速装置の第十電極70は加速電極として作用する。加速された電子は充分に運動エネルギーを保有し、電子吸収コレクタ26に蓄積された負電荷からの反発力に打ち勝ち、最終的には電子吸収コレクタ26に吸収される。
 N型半導体11はエネルギー蓄積器15の正電圧端子に電気的に接続され、電子吸収コレクタ26はエネルギー蓄積器15の負電圧端子に電気的に接続される。P型半導体10からN型半導体11にインジェクション蓄積された正孔はエネルギー蓄積器15の正電圧端子に移動し、電子吸収コレクタ26に蓄積された電子はエネルギー蓄積器15の負電圧端子に移動する。エネルギー蓄積器15の正電極に蓄積された正孔とエネルギー蓄積器15の負電極子に蓄積された電子は接近した位置にあり、クーロンの法則に基づいて互いに引き合う。エネルギー蓄積器15の正電圧端子に電気的負荷5の一方の端子を接続し、エネルギー蓄積器15の負電圧端子に電気的負荷5の他方の端子を接続する。エネルギー蓄積器15に蓄えられた正孔と電子は共に電気的負荷5において再結合を行うことにより、電気的負荷5に電気エネルギーを供給する。
[本発明の第9の実施例]
 本発明の第9の実施形態に係る電界効果発電装置において、キャリア出力物質1としてN型半導体11を用い、チャネル形成物質2としてP型半導体10を用い、電極を絶縁する場合の断面を図68に示す。P型半導体10とN型半導体11を用いてPN接合を形成する。PN接合の周辺には絶縁物8が配置される。キャリアを加速するために6個の電源30を用いる。6個の電源30として、第一電源31、第二電源32、第三電源33、第四電源34、第五電源35および第六電源36を用いる。N型半導体11からP型半導体10にキャリアである電子をインジェクションするために第一電源31を用いる。絶縁物8の中に3個のキャリア加速装置の正電極41および3個のキャリア加速装置の負電極42を配置する。キャリア加速装置の第一電極61には第一電源31の負電圧端子が電気的に接続される。キャリア加速装置の第二電極62には第一電源31の正電圧端子が電気的に接続される。キャリア加速装置の第二電極62とキャリア加速装置の第一電極61の間には電界が発生し、電気力線がキャリア加速装置の第二電極62からキャリア加速装置の第一電極61に向かう。この電界によって、N型半導体11の多数キャリアである電子がN型半導体11からP型半導体10にインジェクション(injection)される。キャリア加速装置の第二電極62はインジェクション電極として作用する。P型半導体10にインジェクションされた電子はキャリア加速装置の第二電極62に引き寄せられて、キャリア加速装置の第二電極62の直下に到達し、P型半導体10の表面に反転層(inversion layer)を形成する。反転層が加速チャネル9を形成する。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。キャリア加速装置の第三電極63とキャリア加速装置の第二電極62の間に発生する電界は、P型半導体10にインジェクション(injection)された電子を加速チャネル9で加速する。キャリア加速装置の第三電極63はスライディング電極として作用する。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の正電圧端子はキャリア加速装置の第七電極67に電気的に接続される。キャリア加速装置の第七電極67とキャリア加速装置の第三電極63の間に発生する電界は、P型半導体10にインジェクション(injection)された電子を加速チャネル9で加速する。P型半導体10の表面において加速された電子は充分な運動エネルギーを保有するので、P型半導体10の端に存在する非可逆過程発生部4のポテンシャル障壁を量子力学的なトンネル効果により貫通して通過し、最終的には電子吸収コレクタ26に吸収される。すなわち、キャリア加速装置の第七電極67はトンネル電極として作用する。
 キャリア加速装置の第四電極64には第二電源32の正電圧端子が電気的に接続される。キャリア出力物質1としてP型半導体10を用い、チャネル形成物質2としてN型半導体11を用いるP型半導体10からN型半導体11にキャリアである正孔をインジェクションするために第二電源32を用いる。キャリア加速装置の第五電極65には第二電源32の負電圧端子が電気的に接続される。キャリア加速装置の第五電極65とキャリア加速装置の第四電極64の間には電界が発生し、電気力線がキャリア加速装置の第四電極64からキャリア加速装置の第五電極65に向かう。この電界によってP型半導体10の多数キャリアである正孔が、P型半導体10からN型半導体11にインジェクション(injection)される。キャリア加速装置の第五電極65はインジェクション電極として作用する。N型半導体11にインジェクション(injection)された正孔はキャリア加速装置の第五電極65に引き寄せられて、キャリア加速装置の第五電極65の直下に到達し、N型半導体11の表面に反転層(inversion layer)を形成する。反転層が加速チャネル9を形成する。第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。第五電源35の負電圧端子はキャリア加速装置の第六電極66に電気的に接続される。キャリア加速装置の第六電極66とキャリア加速装置の第五電極65の間に発生する電界はN型半導体11にインジェクションされた正孔を加速チャネル9で加速する。第六電源36の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。第六電源36の負電圧端子はキャリア加速装置の第八電極68に電気的に接続される。キャリア加速装置の第六電極66とキャリア加速装置の第八電極68の間に発生する電界はN型半導体11にインジェクションされた正孔を加速チャネル9で加速する。キャリア加速装置の第六電極66はスライディング電極として作用する。N型半導体11の表面の加速チャネルにおいて加速された正孔は充分な運動エネルギーを保有するので、N型半導体11の端に存在する非可逆過程発生部4のポテンシャル障壁を量子力学的トンネル効果により貫通して通過する。キャリア加速装置の第八電極68はトンネル電極として作用する。キャリアである正孔は最終的には正孔吸収コレクタ27に吸収される。
 正孔吸収コレクタ27はエネルギー蓄積器15の正電圧端子に電気的に接続され、電子吸収コレクタ26はエネルギー蓄積器15の負電圧端子に電気的に接続される。正孔吸収コレクタ27に蓄積された正孔はエネルギー蓄積器15の正電極に移動し、電子吸収コレクタ26に蓄積された電子はエネルギー蓄積器15の負電極に移動する。エネルギー蓄積器15の正電極に蓄積された正孔とエネルギー蓄積器15の負電極に蓄積された電子は接近した位置にあり、クーロンの法則に基づいて互いに引き合う。エネルギー蓄積器15の正電極に電気的負荷5の一方の端子を接続し、エネルギー蓄積器15の負電極に電気的負荷5の他方の端子を接続する。エネルギー蓄積器15に蓄えられた正孔と電子は共に電気的負荷5において再結合を行うことにより、電気的負荷5に電気エネルギーを供給する。
 本発明の第9の実施形態に係る電界効果発電装置において、キャリアとして正孔と電子を共に用い、電極を絶縁しない場合の断面を図69に示す。P型半導体10とN型半導体11を用いてPN接合を形成する。PN接合の周辺には絶縁物8が配置される。キャリアを加速するために、第一電源31、第二電源32、第三電源33、第四電源34、第五電源35および第六電源36を用いる。N型半導体11からP型半導体10にキャリアである電子をインジェクションするために第一電源31を用いる。N型半導体11には第一電源31の負電圧端子が電気的に接続される。キャリア加速装置の第一電極61には第一電源31の正電圧端子が電気的に接続される。キャリア加速装置の第一電極61とN型半導体11の間には電界が発生し、電気力線がキャリア加速装置の第一電極61からN型半導体11に向かう。この電界によってN型半導体11の多数キャリアである電子がN型半導体11からP型半導体10にインジェクション(injection)される。キャリア加速装置の第一電極61はインジェクション電極として作用する。P型半導体10にインジェクションされた電子は、キャリア加速装置の第一電極61に引き寄せられて、キャリア加速装置の第一電極61の直下に到達し、P型半導体10の表面に反転層(inversion layer)を形成する。反転層は加速チャネル9になる。第三電源33の負電圧端子はキャリア加速装置の第一電極61に電気的に接続される。第三電源33の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。キャリア加速装置の第二電極62とキャリア加速装置の第一電極61の間に発生する電界は、P型半導体10にインジェクション(injection)された電子を加速チャネル9で加速する。キャリア加速装置の第二電極62はスライディング電極として作用する。第四電源34の負電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第四電源34の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第五電極65とキャリア加速装置の第二電極62の間に発生する電界はP型半導体10にインジェクション(injection)された電子を加速チャネル9で加速する。P型半導体10の表面の加速チャネル9において加速された電子は充分な運動エネルギーを保有するので、P型半導体10の端に存在する非可逆過程発生部4のポテンシャル障壁を量子力学的なトンネル効果により貫通して通過する。キャリア加速装置の第五電極65はトンネル電極として作用する。キャリアである電子は最終的には電子吸収コレクタ26に吸収される。
 P型半導体10は第二電源32の正電圧端子が電気的に接続される。P型半導体10からN型半導体11にキャリアである正孔をインジェクションするために第一電源32を用いる。キャリア加速装置の第三電極63には第二電源32の負電圧端子が電気的に接続される。キャリア加速装置の第三電極63とP型半導体10の間には電界が発生し、電気力線がP型半導体10からキャリア加速装置の第三電極63に向かう。この電界によってP型半導体10の多数キャリアである正孔がP型半導体10からN型半導体11にインジェクション(injection)される。キャリア加速装置の第三電極63はインジェクション電極として作用する。N型半導体11にインジェクション(injection)された正孔はキャリア加速装置の第三電極63に引き寄せられて、キャリア加速装置の第三電極63の直下に到達し、N型半導体11の表面に反転層(inversion layer)を形成する。反転層は加速チャネル9になる。第五電源35の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続される。キャリア加速装置の第四電極64とキャリア加速装置の第三電極63の間に発生する電界はN型半導体11にインジェクションされた正孔を加速チャネル9で加速する。キャリア加速装置の第四電極64はスライディング電極として作用する。第六電源36の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。第六電源36の負電圧端子はキャリア加速装置の第六電極66に電気的に接続される。キャリア加速装置の第四電極64とキャリア加速装置の第六電極66の間に発生する電界はN型半導体11にインジェクションされた正孔を加速チャネル9で加速する。N型半導体11の表面の加速チャネル9において加速された正孔は充分な運動エネルギーを保有するので、N型半導体11の端に存在する非可逆過程発生部4のポテンシャル障壁を量子力学的なトンネル効果により貫通して通過する。キャリア加速装置の第六電極66はトンネル電極として作用する。キャリアである正孔は最終的には正孔吸収コレクタ27に吸収される。
 正孔吸収コレクタ27はエネルギー蓄積器15の正電圧端子に電気的に接続され、電子吸収コレクタ26はエネルギー蓄積器15の負電圧端子に電気的に接続される。正孔吸収コレクタ27に蓄積された正孔はエネルギー蓄積器15の正電極に移動し、電子吸収コレクタ26に蓄積された電子はエネルギー蓄積器15の負電極に移動する。エネルギー蓄積器15の正電極に蓄積された正孔とエネルギー蓄積器15の負電極に蓄積された電子は接近した位置にあり、クーロンの法則に基づいて互いに引き合う。エネルギー蓄積器15の正電極に電気的負荷5の一方の端子を接続し、エネルギー蓄積器15の負電極に電気的負荷5の他方の端子を接続する。エネルギー蓄積器15に蓄えられた正孔と電子は共に電気的負荷5において再結合を行うことにより、電気的負荷5に電気エネルギーを供給する。
 本発明の第9の実施形態に係る電界効果発電装置において、キャリアとして正孔と電子を共に用い、チャネル形成物質に傾斜がある場合の断面を図70に示す。キャリア出力物質1としてP型半導体10を用い、チャネル形成物質2としてN型半導体11を用いる。P型半導体10とN型半導体11を用いてPN接合を形成する。PN接合の周辺には絶縁物8が配置される。キャリアを加速するために5個の電源30を用いる。5個の電源30として、第一電源31、第二電源32、第三電源33、第四電源34および第五電源35を用いる。N型半導体11からP型半導体10にキャリアである電子をインジェクションするために第一電源31を用いる。絶縁物8の中に3個のキャリア加速装置の正電極41および3個のキャリア加速装置の負電極42を配置する。キャリア加速装置の第一電極61には第一電源31の負電圧端子が電気的に接続される。キャリア加速装置の第二電極62には第一電源31の正電圧端子が電気的に接続される。キャリア加速装置の第二電極62とキャリア加速装置の第一電極61の間には電界が発生し、電気力線がキャリア加速装置の第二電極62からキャリア加速装置の第一電極61に向かう。この電界によってN型半導体11の多数キャリアである電子がN型半導体11からP型半導体10にインジェクション(injection)される。キャリア加速装置の第二電極62はインジェクション電極として作用する。P型半導体10にインジェクションされた電子は、キャリア加速装置の第二電極62に引き寄せられて、キャリア加速装置の第二電極62の直下に到達し、P型半導体10の傾斜表面に反転層(inversion layer)を形成する。反転層は加速チャネル9になる。
 第二電源32の負電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第二電源32の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。キャリア加速装置の第三電極63とキャリア加速装置の第二電極62の間に発生する電界は、P型半導体10にインジェクション(injection)された電子を加速し、P型半導体の表面を移動する。キャリア加速装置の第三電極63はスライディング電極として作用する。第三電源33の負電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第三電源33の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第五電極65とキャリア加速装置の第三電極63の間に発生する電界は、P型半導体10にインジェクション(injection)された電子を加速チャネル9で加速し、P型半導体の表面の加速チャネル9を移動する。P型半導体10の表面の加速チャネル9において加速された電子は、充分な運動エネルギーを保有するので、P型半導体10の端に存在する非可逆過程発生部4のポテンシャル障壁を量子力学的なトンネル効果により貫通して通過する。キャリア加速装置の第五電極65はトンネル電極として作用する。キャリアである電子は最終的には電子吸収コレクタ26に吸収される。
 キャリア加速装置の第一電極61には第四電源34の正電圧端子が電気的に接続される。キャリア加速装置の第四電極64には第四電源34の負電圧端子が電気的に接続される。P型半導体10からN型半導体11にキャリアである正孔をインジェクションするために第一電源34を用いる。キャリア加速装置の第一電極61とキャリア加速装置の第四電極64の間には電界が発生し、電気力線がキャリア加速装置の第一電極61からキャリア加速装置の第四電極64に向かう。この電界によってP型半導体10の多数キャリアである正孔がP型半導体10からN型半導体11にインジェクション(injection)される。キャリア加速装置の第一電極61はインジェクション電極として作用する。N型半導体11にインジェクション(injection)された正孔はキャリア加速装置の第四電極64に引き寄せられて、キャリア加速装置の第四電極64の直下に到達し、N型半導体11の傾斜表面に反転層(inversion layer)を形成する。反転層は加速チャネル9になる。第五電源35の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。第五電源35の負電圧端子はキャリア加速装置の第六電極66に電気的に接続される。キャリア加速装置の第四電極64とキャリア加速装置の第六電極66の間に発生する電界は、N型半導体11にインジェクションされた正孔を加速チャネル9で加速する。キャリア加速装置の第四電極64はスライディング電極として作用する。N型半導体11の表面の加速チャネル9において加速された正孔は、充分な運動エネルギーを保有するので、N型半導体11の端に存在する非可逆過程発生部4のポテンシャル障壁を量子力学的なトンネル効果により貫通して通過する。キャリア加速装置の第六電極66はトンネル電極として作用する。キャリアである正孔は最終的には正孔吸収コレクタ27に吸収される。
 正孔吸収コレクタ27はエネルギー蓄積器15の正電圧端子に電気的に接続され、電子吸収コレクタ26はエネルギー蓄積器15の負電圧端子に電気的に接続される。正孔吸収コレクタ27に蓄積された正孔はエネルギー蓄積器15の正電極に移動し、電子吸収コレクタ26に蓄積された電子はエネルギー蓄積器15の負電極に移動する。エネルギー蓄積器15の正電極に蓄積された正孔とエネルギー蓄積器15の負電極に蓄積された電子は接近した位置にあり、クーロンの法則に基づいて互いに引き合う。エネルギー蓄積器15の正電極に電気的負荷5の一方の端子を接続し、エネルギー蓄積器15の負電極に電気的負荷5の他方の端子を接続する。エネルギー蓄積器15に蓄えられた正孔と電子は共に電気的負荷5において再結合を行うことにより、電気的負荷5に電気エネルギーを供給する。
 本発明の第9の実施形態に係る電界効果発電装置において、キャリアとして正孔と電子を共に用いる場合の実施例の上面を図71に示す。P型半導体10はN型半導体11とPN接合が行われる。P型半導体10とN型半導体11はともに直角に曲がっており、占有面積を小さくすることができる。エネルギー蓄積器15もP型半導体10とN型半導体の近接距離に配置することが出来るので、製造が簡略化される。電子吸収コレクタ26に到達する電子はエネルギー蓄積器15の負電極に蓄積され、正孔吸収コレクタ27に到達する正孔はエネルギー蓄積器15の正電極に蓄積され、互いにクーロン力により引き合うことにより、ダイポールを形成する。従って、多くのキャリアをP型半導体10とN型半導体11からインジェクションを行うことにより、エネルギー蓄積器15に蓄積する電気量は多くすることができるので、発電効率が向上する。
[本発明の第10の実施例]
 本発明の第10の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、2個の並列チャネル形成物質としてP型半導体を用いる場合の上断面を図72に示す。同図において、P型半導体10とN型半導体11によってPN接合が形成される。第一電源31の負電圧端子はN型半導体11に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。N型半導体11からP型半導体10にキャリアである電子をインジェクションするために第一電源31を用いる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。第六電源36の負電圧端子はキャリア加速装置の第五電極65に電気的に接続され、第六電源36の正電圧端子はキャリア加速装置の第六電極66に電気的に接続される。第七電源37の負電圧端子はキャリア加速装置の第六電極66に電気的に接続され、第七電源37の正電圧端子はキャリア加速装置の第七電極67に電気的に接続される。第八電源38の負電圧端子はキャリア加速装置の第七電極67に電気的に接続され、第八電源38の正電圧端子はキャリア加速装置の第八電極68に電気的に接続される。
 正電位が加えられるキャリア加速装置の第一電極61と負電位が加えられるN型半導体11の間には電界が発生し、その電界によってN型半導体11からキャリアである電子がP型半導体10にインジェクションされる。キャリア加速装置の第一電極61がインジェクション電極として作用する。P型半導体10が絶縁物8と接する表面の加速チャネル9において電子のインジェクションが行われる。インジェクションされた電子は、第一電極61、第二電極62、第三電極63、第四電極64、第五電極65、第六電極66、第七電極67および第八電極68に加えられて正電圧が発生する電界により加速チャネル9において加速され、最終的に電子吸収コレクタ26に吸収される。キャリア加速装置の第二電極62、キャリア加速装置の第三電極63、キャリア加速装置の第四電極64、キャリア加速装置の第五電極65およびキャリア加速装置の第六電極66は加速チャネル内で電子が移動するためのスライディング電極として作用する。P型半導体10から電子をエミッションするために、キャリア加速装置の第七電極67がエミッション電極として使用される。電子吸収コレクタ26はエネルギー蓄積器15の負電圧端子に電気的に接続されており、電子吸収コレクタ26に吸収された電子はエネルギー蓄積器15の負電極に蓄積される。一方、発生する電界によってP型半導体10からN型半導体11に正孔がインジェクションされる。N型半導体はエネルギー蓄積器15の正電圧端子に電気的に接続されるので、N型半導体11にインジェクションされた正孔はエネルギー蓄積器15の正電極に蓄積される。エネルギー蓄積器15に電気的負荷が並列接続されると、エネルギー蓄積器15に蓄積された正電荷と負電荷は電気的負荷を経由して移動することにより再結合を行う。その結果として電気的負荷に電気エネルギーが供給される。
 図72には、2個のP型半導体10を例として示すが、実際には多数個のP型半導体10が平行して作成されており、多くのキャリアである電子が電子吸収コレクタ26に到達し、発生する電気エネルギーを大きくすることも可能である。同図にはキャリア加速装置の第一電極61を3個示すが、実際には個々のP型半導体10の周辺に配置される。1個のキャリア加速装置の第一電極61によってその両側にあるP型半導体11中のキャリアを加速するので、この構造の電界効果発電装置を用いると、効率的に電気エネルギーを得ることが可能となる。
[本発明の第11の実施例]
 本発明の第11の実施形態に係る電界効果発電装置において、キャリア出力物質としてN型半導体を用い、チャネル形成物質としてP型半導体を用い、チャネル形成物質に傾斜がある場合の断面を図73に示す。同図において、P型半導体10とN型半導体11によってPN接合が形成される。第一電源31の負電圧端子はN型半導体11に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。N型半導体11からP型半導体10にキャリアである電子をインジェクションするために第一電源31を用いる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。
 正電位が加えられるキャリア加速装置の第一電極61と負電位が加えられるN型半導体11の間には電界が発生し、その電界によってN型半導体11からキャリアである電子がP型半導体10にインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。P型半導体10が絶縁物8と接触する表面において電子のインジェクションが行われ、電子は加速チャネル9内を移動する。インジェクションされた電子は、キャリア加速装置の第一電極61、キャリア加速装置の第二電極62およびキャリア加速装置の第四電極64に加えられて正電圧によって発生する電界によって加速され、インジェクションされた電子はP型半導体10と絶縁物8の境界表面にある加速チャネル9内を移動する。キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63はスライディング電極として作用する。キャリア加速装置の第三電極は上部に配置されており、P型半導体10の表面は上部に傾斜する。従って、インジェクションされた電子はP型半導体10と絶縁物8の境界面を移動する際には、上記のP型半導体10の傾斜により電子の移動平面の軌道が直線的ではなく、表面の形状に沿って加速チャネル9内を移動する。すなわち、キャリアである電子は、初期状態においてはキャリア加速装置の第四電極64の正電荷に接近する動きを行うが、P型半導体10の表面の傾斜によりキャリア加速装置の第三電極63の方向に向かう。電子が直線的な軌道を変更し、加速チャネル9内を移動して最終的に電子吸収コレクタ26に吸収される。キャリアである電子は電子収集コレクタ26に入力する直前にある非可逆過程発生部4のポテンシャル障壁を量子力学的なトンネル効果により貫通して通過するので、キャリア加速装置の第四電極64はトンネル電極として作用する。電子吸収コレクタ26はエネルギー蓄積器15に電気的に接続されており、電子吸収コレクタ26に吸収された電子はエネルギー蓄積器15の負電極に蓄積される。一方、発生する電界の効果によってP型半導体10からN型半導体11に正孔がインジェクションされる。N型半導体はエネルギー蓄積器15に電気的に接続されているので、N型半導体11にインジェクションされた正孔はエネルギー蓄積器15の正電極に蓄積される。エネルギー蓄積器15に並列に電気的負荷5が接続されると、エネルギー蓄積器15に蓄積された電荷は電気的負荷5を経由して再結合を行う。その結果として電気的負荷5に電気エネルギーが供給され、そこで電気エネルギーが消費される。
[本発明の第12の実施例]
 本発明の第12の実施形態に係る電界効果発電装置において、チャネル形成物質としてグラフェンを用いる場合の外観を図74に示す。基板19上にはキャリア出力物質1およびチャネル形成物質2が配置される。キャリア出力物質1は導電性物質であり、具体例としてチタン、ニッケル、銅、金および銀などがある。基板の上部には絶縁物8が配置され、絶縁物8の上部にはキャリア加速装置の第一電極61、キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64が配置される。チャネル形成物質2としてグラフェンが用いられる場合を示す。炭素原子がsp2混成軌道によって化学結合すると、二次元状に結合した炭素六角網面を形成する。この平面構造を持つ炭素原子の集合体はグラフェンと呼ばれる。炭素原子が6角形の網の目状に並んだ構造のグラフェンがグラファイトの1層を形成し、多層のグラフェンが積層することによりグラファイト全体が構成される。グラフェンにおいては炭素の6員環が平面状に結合しており、厚さは分子のオーダであり、平面方向には電気伝導性が極めて良好である。すなわち、グラフェン中におけるは電子の移動度は非常に大きく、200,000cm2/Vsにも達し、電子が殆ど抵抗を受けずに炭素の6員環から6員環へと平面状に移動する。
 本発明の第12の実施形態に係る電界効果発電装置において、チャネル形成物質としてグラフェンを用いる場合の断面を図75に示す。基板19上にはキャリア出力物質1およびチャネル形成物質2が配置される。基板の上部には絶縁物8が配置され、絶縁物8の上部はキャリア加速装置の第一電極61、キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64が配置される。第一電源31の負電圧端子はキャリア出力物質1に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。キャリア入出力物質1からチャネル形成物質2にキャリアである電子をインジェクションするために第一電源31を用いる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。
 第一電源31からキャリア加速装置の第一電極61に加えられる正電圧およびキャリア出力物質1に加えられる負電圧により電界が形成される。キャリア加速装置の第一電極61からキャリア出力物質1の方向に形成された電界によって、キャリア出力物質1からグラフェン状のチャネル形成物質2にキャリアである電子がインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。インジェクションされた電子は加速チャネル9の内において、キャリア加速装置の第一電極61、キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64に加えられる正電圧によって加速される。キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64は電子がグラッフェンの表面を加速されて移動するスライディング電極として作用する。
 本発明の第12の実施形態に係る電界効果発電装置において、チャネル形成物質としてグラフェンを用いる場合に電子吸収コレクタ付近を拡大して断面を図76に示す。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。第六電源36の負電圧端子はキャリア加速装置の第五電極65に電気的に接続され、第六電源36の正電圧端子はキャリア加速装置の第六電極66に電気的に接続される。キャリア加速装置の第五電極65およびキャリア加速装置の第六電極66は下部にある絶縁物8の中にも配置され、第六電源36等と電気的に接続される。グラフェンであるチャネル形成物質2の表面上を電子が高速に移動することにより、電子は充分に大きな運動エネルギーを獲得する。高速化された電子はチャネル形成物質2の表面から離脱し、真空中にエミッションされる。キャリア加速装置の第五電極65はエミッション電極として作用する。エミッションの際には、非可逆過程発生部4であるポテンシャル障壁を電子が量子力学的なトンネル効果により通過する。エミッションされた電子はキャリア加速装置の第六電極66に加えられた正電圧により加速される。すなわち、キャリア加速装置の第六電極66は加速電極として作用する。飛翔電子が加速されて、その運動エネルギーが充分に大きくなると、電子吸収コレクタ26から受けるクーロンの法則に従う反発力に打ち勝って、電子吸収コレクタ26に衝突し、これに収集される。電子吸収コレクタ26はエネルギー蓄積器15の一方の端子に電気的に接続されているので、電子吸収コレクタ26に到達した電子はエネルギー蓄積器15の一方の端子に到達する。キャリア出力物質1の中に残存する正孔はエネルギー蓄積器15の他方の端子に到達し、エネルギー蓄積器15の中で正孔と電子がペアを形成し、そこに蓄積される。エネルギー蓄積器15の一方の端子に電気的負荷5の一方の端子を接続し、エネルギー蓄積器15の他方の端子に電気的負荷5の他方の端子を接続すると、エネルギー蓄積器15に蓄積されていた正孔と電子が電気的負荷5に到達し、そこで再結合することにより両者は消滅し、この過程において電気的負荷5に電気エネルギーが供給される。
 グラフェンは電気の良導体であり、しかも熱伝導率の高い物質でもあり、これらの性質を利用した熱フィードバック方式の電界電子発電の実施例を以下に記述する。本発明の第12の実施形態に係る電界効果発電装置において、キャリア吸収グラフェンおよびキャリア放出グラフェンの配置を図77に示す。同図において、キャリア吸収グラフェン71およびキャリア放出グラフェン72は熱的に良好に接続されている。すなわち、キャリア吸収グラフェン71は非常に薄く、熱が表面を2次元的に良好に伝導され、キャリア放出グラフェン72へ熱が良好に伝導される。好ましくは、キャリア吸収グラフェン71とキャリア放出グラフェン72は一体化して製作され、概直角に曲げられた構造となっている。キャリア吸収基板73およびキャリア放出基板74は互いに概直角に配置され、それらはキャリア吸収グラフェン71とキャリア放出グラフェン72を保持するための基板である。キャリア吸収基板73およびキャリア放出基板74は共に熱の不良導体が好ましい。すなわち、グラフェン内を2次元的に熱が伝導し、キャリア吸収基板73およびキャリア放出基板74を経由して外部に放出される熱エネルギーの量が少ないならば、発電効率が向上する。従って、グラファイトのように炭素のグラフェン膜が積層され、積層間の熱伝導率が小さく、層間で熱が遮断されると、良好な発電効率が得られる。
 図77に示される構造の物体をエミッタ・コレクタ複合体と呼ぶ。2個のエミッタ・コレクタ複合体を点対称に配置する。本発明の第12の実施形態に係る電界効果発電装置において、キャリア吸収グラフェンおよびキャリア放出グラフェンを用い、熱フィードバック方式を採用する場合の断面図を図78に示す。同図の下部に示すキャリア放出基板74は熱の不良導体であり、その1つの表面にはキャリア放出グラフェン72が配置されている。キャリア放出グラフェン72の表面には絶縁物8が配置され、絶縁物8の中にキャリア加速装置の第一電極61、キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64が配置されている。なお、図78においては、図75および図76に示す第一電源31、第二電源32、第三電源33、第四電源34、第五電源35および第六電源36の表示を省略する。さらに、図78においては、図76に示すキャリア加速装置の第五電極65およびキャリア加速装置の第六電極66の表示も省略する。図78の下部に示すキャリア加速装置の第一電極61には第一電源31から正電圧が加えられ、キャリア出力物質1には第一電源31から負電圧が加えられことにより、キャリア加速装置の第一電極61からキャリア出力物質1の方向に電界が形成される。形成された電界によって、キャリア出力物質1からキャリアである電子がキャリア放出グラフェン72(チャネル形成物質2に相当)にインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。インジェクションされた電子はキャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64によって加速されて真空中にエミッションされる。キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64はスライディング電極として作用する。エミッションされた電子50は上方向に移動する。エミッションされた電子50は同図の上部に配置されたキャリア吸収グラフェン71に衝突し、それに吸収される。衝突する際に、電子50が保有する運動エネルギーは熱エネルギーに変換される。従って、キャリア吸収グラフェン71の温度が上昇する。キャリア吸収グラフェン71の熱エネルギーは同図の上部に示されるキャリア放出グラフェン72に伝えられ、キャリア放出グラフェン72の温度が上昇し、高温になる。同図の上部に示されるキャリア吸収基板73およびキャリア吸収基板74は共に熱の不良導体であり、外部に流出する熱エネルギーは少ない。同図の上部に示されるキャリア吸収グラフェン71に吸収された電子50はエネルギー蓄積器15に移されて、そこで蓄積される。一方、同図の下部に示すキャリア放出グラフェン72には正孔が残存する。残存する正孔はエネルギー蓄積器15に移動し、電子と正孔がペアを形成し、それに蓄積される。
 同図の上部に示すキャリア放出基板74の1つの表面にはキャリア放出グラフェン72が配置されている。キャリア放出グラフェン72の表面には絶縁物8が配置され、絶縁物8の中にキャリア加速装置の第一電極61、キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64が配置されている。キャリア加速装置の第一電極61には第一電源31から正電圧が加えられ、キャリア出力物質1には第一電源31から負電圧が加えられことにより、キャリア加速装置の第一電極61からキャリア出力物質1の方向に電界が形成される。形成された電界によって、キャリア出力物質1からキャリアである電子が同図の上部に示すキャリア放出グラフェン72(チャネル形成物質2に相当)にインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。キャリア放出グラフェン72が高温になり、その中の電子が大きい運動エネルギーを獲得するので、インジェクションされた電子はキャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64によって加速されて真空中に良好にエミッションされる。キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64はスライディング電極として作用する。真空中にエミッションされた電子50は同図の下部の方向に移動し、同図の下部に配置されたキャリア吸収グラフェン71に衝突し、それに吸収される。その際に電子50が保有する運動エネルギーは熱エネルギーに変換される。従って、キャリア吸収グラフェン71の温度が高くなる。キャリア吸収グラフェン71の熱エネルギーは同図の下部に配置されたキャリア放出グラフェン72に伝えられ、キャリア放出グラフェン72の温度が上昇し、高温になる。同図の下部に示すキャリア吸収グラフェン71に吸収された電子はエネルギー蓄積器15に移されて、そこで蓄積される。一方、同図の上部に示すキャリア放出グラフェン72には正孔が残存する。残存する正孔はエネルギー蓄積器15に移動し、電子と正孔がペアを形成し、それに蓄積される。
 キャリア放出グラフェン72の温度が上昇するので、そこから真空中にエミッションされる電子の量が増加する。この過程を繰り返すことにより、同図の上部に示すキャリア放出グラフェン72および同図の下部に示すキャリア放出グラフェン72からエミッションされる電子50の数が増加する。従って、温度上昇に伴いキャリア吸収グラフェン71に吸収される電子50の数が増加する。故に、エネルギー蓄積器15に移動する電子50の数も増加する。一方、電子を放出したキャリア放出グラフェン72には正孔が残存する。残存する正孔はエネルギー蓄積器15に移動し、電子とペアを組み蓄積される。エネルギー蓄積器15の両方の端子に電気的負荷5を接続すると、エネルギー蓄積器15の内部に蓄積された電子と正孔が電気的負荷5に移動し、そこで再結合を行い、両者は消滅する。電子と正孔が消滅する際には電気的負荷5に電気エネルギーが供給される。
 上記の過程が繰り替えされる事によりキャリア吸収グラフェン71およびキャリア放出グラフェン72が共に高温となり、真空中にエミッションされる電子50の数が増加する。放出される電子50の一部をエネルギー蓄積器15に蓄積し、残りの電子を次回のエミッションに振り分ける事も可能である。この場合を連続方式の電界効果発電と呼ぶ。一方、キャリア加速装置の電極60にパルス状の電圧を印加する場合には、時分割方式の電界効果発電と呼ぶ。時分割方式の電界効果発電においては、キャリアをエミッションする期間とキャリアを蓄積期間がある。キャリアのエミッション期間においては、電子がキャリア放出グラフェン72からエミッションされて、キャリア吸収グラフェン71に吸収される。キャリアの蓄積期間においては、キャリア吸収グラフェン71に吸収された電子がエネルギー蓄積器15に蓄積される。本発明においては、連続方式の電界効果発電および時分割方式の電界効果発電が含まれる。
[本発明の第13の実施例]
 往路のチャネル形成物質2から電子がエミッションされ、往路の電子吸収コレクタに電子が収集され、往路の電子吸収コレクタに電子が衝突エネルギーを与え、往路の電子吸収コレクタが加熱され、往路の電子吸収コレクタの熱エネルギーが帰路のチャネル形成物質2に伝導され、帰路のチャネル形成物質2の温度が上昇することにより、帰路のチャネル形成物質2から多量の電子がエミッションされ、帰路の電子吸収コレクタに多量の電子が収集され、帰路の電子吸収コレクタに多量の電子が衝突エネルギーを与え、帰路の電子吸収コレクタが加熱され、帰路の電子吸収コレクタの熱エネルギーが往路のチャネル形成物質2に伝導され、往路のチャネル形成物質2の温度が上昇することにより、往路のチャネル形成物質2から更に多量の電子がエミッションされる過程を繰り返すことにより、発電出力が上昇する装置を熱フィードバック方式の電界効果発電と呼ぶ。
 本発明の第13の実施形態に係る電界効果発電装置において、熱フィードバック方式を採用する場合の断面図を図79に示す。同図において、モード1の開始スイッチ101が導通状態になる場合には、往路のキャリア出力物質107の周辺を拡大して示すと、図80になる。本発明の第13の実施形態に係る電界効果発電装置において、熱フィードバック方式を採用する場合に帰路のキャリア出力物質の周辺を拡大して断面を図81に示す。図79において、モード2の開始スイッチ102が導通状態になる場合には、帰路のキャリア出力物質108の付近を拡大して示すと、図81になる。
 熱フィードバック方式の電界効果発電の動作は3つのモードに分かれる。
〔モード0〕
 図79において、モード1の開始スィッチ101が導通状態にあり、モード2の開始スィッチ102も導通状態にある場合。
〔モード1〕
 図79において、モード1の開始スィッチ101が導通状態にあり、モード2の開始スィッチ102が非導通状態にある場合。
〔モード2〕
 図79において、モード1の開始スィッチ101が非導通状態にあり、モード2の開始スィッチ102が導通状態にある場合。
 熱フィードバック方式の電界効果発電の初期状態においては〔モード1〕の動作を開始する。〔モード1〕の動作がある時間だけ経過することにより、往路のチャネル形成物質2と帰路のチャネル形成物質2の温度がある閾値を越えると、〔モード1〕の動作に移行し、次に〔モード2〕の動作に移行し、次に〔モード1〕の動作と〔モード2〕の動作を繰り返すことにより、電界効果発電は定常状態に到達する。
〔モード0〕
 初期状態においては、往路のチャネル形成物質2および帰路のチャネル形成物質2の温度を上昇するために、往路のチャネル形成物質2および帰路のチャネル形成物質2に熱エネルギーを与える。熱エネルギーとして、ヒータを用いて加熱する場合、太陽熱を加える場合、他の熱源からの熱エネルギーを加える場合などがある。簡略的に往路のチャネル形成物質2および帰路のチャネル形成物質2を加熱する場合には、図79において、モード1の開始スィッチ101を導通状態に設定し、モード2の開始スィッチ102も導通状態に設定する。往路の電源として第一電源31、第二電源32、第三電源33および第四電源34を用いる。図80に示すように、往路のキャリア出力物質107にチャネル形成物質2を電気的に接続する。第一電源31の負電圧端子は往路のキャリア出力物質107に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。キャリア加速装置の第一電極61に加えられた正電圧と往路のキャリア出力物質107に加えられた負電圧が電界を発生し、発生する電界の効果に基づいて往路のキャリア出力物質107から電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。インジェクションされた電子はチャネル形成物質2の表面の加速チャネル9を移動し、非可逆過程発生部4に存在するポテンシャル障壁を量子力学的なトンネル効果により貫通し通過することにより電子が真空中にエミッションされる。キャリア加速装置の第一電極61はエミッション電極としても作用する。エミッションされた電子は加速チャネル9の中で加速されて進行する。
 図79に示すように、第二電源32がキャリア加速装置の第二電極62に加える正電圧によって、エミッションされた電子は加速チャネル9の中で加速されて進行する。第三電源33がキャリア加速装置の第三電極63に加える正電圧によって、エミッションされた電子は加速チャネル9の中で更に加速されて進行する。第四電源34がキャリア加速装置の第四電極64に加える正電圧によって、エミッションされた電子は加速チャネル9の中で更に加速されて進行する。キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64は加速電極として作用する。最終的にはエミッションされ、加速された電子が往路の電子吸収コレクタ229に衝突し、これに収集される。その際に加速された電子が保有する運動エネルギーが往路の電子吸収コレクタ229に供給され、往路の電子吸収コレクタ229の温度が上昇する。さらに、電子を収集した往路の電子吸収コレクタ229には負電荷が蓄積される。往路の電子吸収コレクタ229に供給された熱エネルギーは往路の熱伝導器123を経由して帰路のキャリア出力物資108に伝導される。往路の電子吸収コレクタ229に蓄積された電子は往路の熱伝導器123を経由して帰路のキャリア出力物資108に到達する。帰路の電源として第五電源35、第六電源36、第七電源37および第八電源38を用いる。図81に示すように、帰路のキャリア出力物質108にチャネル形成物質2を電気的に接続する。第五電源35の負電圧端子は帰路のキャリア出力物質108に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第五電極65に加えられた正電圧と帰路のキャリア出力物質108に加えられた負電圧が電界を発生し、発生する電界の効果に基づいて帰路のキャリア出力物質108から電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第五電極65はインジェクション電極として作用する。インジェクションされた電子はチャネル形成物質2の表面を移動し、非可逆過程発生部4に存在するポテンシャル障壁を量子力学的なトンネル効果により貫通し通過することにより電子が真空中にエミッションされる。キャリア加速装置の第五電極65はエミッション電極としても作用する。エミッションされた電子は加速チャネル9の中で加速されて進行する。
 図79に示すように、第六電源36がキャリア加速装置の第六電極66に加える正電圧によって、エミッションされた電子は加速チャネル9の中で加速されて進行する。第七電源37がキャリア加速装置の第七電極67に加える正電圧によって、エミッションされた電子は加速チャネル9の中で更に加速されて進行する。第八電源38がキャリア加速装置の第八電極68に加える正電圧によって、エミッションされた電子は加速チャネル9の中で更に加速されて進行する。
 キャリア加速装置の第六電極66、キャリア加速装置の第七電極67およびキャリア加速装置の第八電極68は加速電極として作用する。最終的にはエミッションされ、加速された電子が帰路の電子吸収コレクタ230に衝突し、これに収集される。その際に加速された電子が保有する運動エネルギーが帰路の電子吸収コレクタ230に供給され、帰路の電子吸収コレクタ230の温度が上昇する。さらに、電子を収集した帰路の電子吸収コレクタ230には負電荷が蓄積される。帰路の電子吸収コレクタ230に供給された熱エネルギーは帰路の熱伝導器124を経由して往路のキャリア出力物資107に伝導される。帰路の電子吸収コレクタ230に蓄積された電子は帰路の熱伝導器124を経由して往路のキャリア出力物資107に到達する。往路のキャリア出力物資107に電子が到達し、さらに、往路のキャリア出力物資107に熱エネルギーが伝導されるので、往路のキャリア出力物資107から多量の電子がチャネル形成物質2にインジェクションされ、チャネル形成物質2からエミッションされる電子の数が増加する。以上の過程を繰り返すことにより、往路のキャリア出力物資107および帰路のキャリア出力物資108の温度は共に上昇する。すなわち、往路のキャリア出力物資107および帰路のキャリア出力物資108がともに高温状態に到達し、それらの内部にある電子が大きい運動エネルギーを保有するので、キャリア出力物資108からチャネル形成物質2に多量の電子がインジェクションされる。チャネル形成物質2の中の温度もが上昇し、その内部にある電子が大きい運動エネルギーを保有するので、チャネル形成物質2から多量の電子がエミッションされる。この状態に到達すると、本格的な発電を行うことができるので、モード1に移行する。
〔モード1〕
 モード1に切り替わると、図79において、モード1の開始スィッチ101を導通状態に設定し、モード2の開始スィッチ102を非導通状態に設定する。往路の電源として第一電源31、第二電源32、第三電源33および第四電源34を用いる。チャネル形成物質2が往路のキャリア出力物質107と電気的に接続される。図80に示すように、第一電源31の負電圧端子は往路のキャリア出力物質107に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。キャリア加速装置の第一電極61に加えられた正電圧と往路のキャリア出力物質107に加えられた負電圧が電界を発生し、発生する電界の効果に基づいて往路のキャリア出力物質107から電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。モード0の過程により往路のキャリア出力物質107の温度が高いので、往路のキャリア出力物質107の内の電子が保有する運動エネルギーが大きくなり、往路のキャリア出力物質107からチャネル形成物質2にインジェクションされる電子の数が多くなる。インジェクションされた多量の電子はチャネル形成物質2の表面を移動し、非可逆過程発生部4に存在するポテンシャル障壁を量子力学的なトンネル効果により貫通し通過することにより多量の電子が真空中にエミッションされる。キャリア加速装置の第一電極61はエミッション電極としても作用する。エミッションされた電子は加速チャネル9の中で加速されて進行する。第二電源32がキャリア加速装置の第二電極62に加える正電圧によって、エミッションされた多量の電子は加速チャネル9の中で加速されて進行する。第三電源33がキャリア加速装置の第三電極63に加える正電圧によって、エミッションされた多量の電子は加速チャネル9の中で更に加速されて進行する。第四電源34がキャリア加速装置の第四電極64に加える正電圧によって、エミッションされた多量の電子は加速チャネル9の中で更に加速されて進行する。キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64は加速電極として作用する。最終的にはエミッションされ、加速された多量の電子が往路の電子吸収コレクタ229に衝突し、これに収集される。その際に加速された電子が保有する運動エネルギーが往路の電子吸収コレクタ229に供給され、往路の電子吸収コレクタ229の温度が上昇する。往路の電子吸収コレクタ229に供給された熱エネルギーは往路の熱伝導器123を経由して帰路のキャリア出力物資108に伝導される。多量の電子を収集した往路の電子吸収コレクタ229には負電荷が蓄積される。一方、多量の電子をインジェクションした往路のキャリア出力物資107には多量の正孔が残存する。往路の電子吸収コレクタ229に収集された多量の電子はモード1のエネルギー蓄積器115に移動し、往路のキャリア出力物資107に残存する多量の正孔はモード1のエネルギー蓄積器115に移動し、そこに蓄積される。上記の過程において、モード2の開始スィッチ102は非導通状態であり、帰路の回路には電界が作用していないので、帰路のキャリア出力物質108からインジェクションされる電子は殆ど零である。従って、往路の電子吸収コレクタ229に収集された電子の全てがモード1のエネルギー蓄積器115に移動する。モード1のエネルギー蓄積器115に並列に電気的負荷5を接続すると、発生した電気エネルギーが消費される。
〔モード2〕
 モード2に切り替えられると、図79において、モード1の開始スィッチ101を非導通状態に設定し、モード2の開始スィッチ102を導通状態に設定する。帰路の電源として第五電源35、第六電源36、第七電源37および第八電源38を用いる。チャネル形成物質2が帰路のキャリア出力物質108と電気的に接続される。図81に示すように、第五電源35の負電圧端子は帰路のキャリア出力物質108に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第五電極65に加えられた正電圧と帰路のキャリア出力物質108に加えられた負電圧が電界を発生し、発生する電界の効果に基づいて帰路のキャリア出力物質108から電子がチャネル形成物質2にインジェクションされる。キャリア加速装置の第五電極65はインジェクション電極として作用する。モード0の過程により帰路のキャリア出力物質108の温度が高いので、帰路のキャリア出力物質108の内の電子が保有する運動エネルギーが大きくなり、帰路のキャリア出力物質108からチャネル形成物質2にインジェクションされる電子の数が多くなる。インジェクションされた多量の電子はチャネル形成物質2の表面を移動し、非可逆過程発生部4に存在するポテンシャル障壁を量子力学的なトンネル効果により貫通し通過することにより多量の電子が真空中にエミッションされる。エミッションされた電子は加速チャネル9の中で加速されて進行する。第六電源36がキャリア加速装置の第六電極66に加える正電圧によって、エミッションされた多量の電子は加速チャネル9の中で加速されて進行する。第七電源37がキャリア加速装置の第七電極67に加える正電圧によって、エミッションされた多量の電子は加速チャネル9の中で更に加速されて進行する。第八電源38がキャリア加速装置の第八電極68に加える正電圧によって、エミッションされた多量の電子は加速チャネル9の中で更に加速されて進行する。キャリア加速装置の第六電極66、キャリア加速装置の第七電極67およびキャリア加速装置の第八電極68は加速電極として作用する。最終的にはエミッションされ、加速された多量の電子が帰路の電子吸収コレクタ230に衝突し、これに収集される。その際に加速された電子が保有する運動エネルギーが帰路の電子吸収コレクタ230に供給され、帰路の電子吸収コレクタ230の温度が上昇する。帰路の電子吸収コレクタ230に供給された熱エネルギーは帰路の熱伝導器124を経由して往路のキャリア出力物資107に伝導される。多量の電子を収集した帰路の電子吸収コレクタ230には負電荷が蓄積される。一方、多量の電子をインジェクションした帰路のキャリア出力物資108には多量の正孔が残存する。帰路の電子吸収コレクタ230に収集された多量の電子はモード2のエネルギー蓄積器116に移動し、帰路のキャリア出力物資108に残存する多量の正孔はモード2のエネルギー蓄積器116に移動し、そこに蓄積される。上記の過程において、モード1の開始スィッチ101は非導通状態であり、帰路の回路には電界が作用していないので、往路のキャリア出力物質108からインジェクションされる電子は殆ど零である。従って、帰路の電子吸収コレクタ230に収集された電子の全てがモード2のエネルギー蓄積器116に移動する。モード2のエネルギー蓄積器116に並列に電気的負荷5を接続すると、発生した電気エネルギーが消費される。
 上記に記載のモード1とモード2を交互に繰り返すことにより、往路のキャリア出力物資107、帰路のキャリア出力物資108および往路と帰路のチャネル形成物質2の温度が上昇するので、モード1とモード2の切り替え時間を短くすると、それらの高温状態が維持される。往路のキャリア出力物資107および帰路のキャリア出力物資108から往路と帰路のチャネル形成物質2にインジェクションされる電子の数が多くなる。さらに、往路と帰路のチャネル形成物質2から真空中にエミッションされる電子の数も多くなるので、発電によって得られる電力が大きくなる。結論として、電界の効果により加速される電子が保有する運動エネルギーと電荷が発電に有効に利用されるので、電界効果発電装置は効率の良好な発電が可能であり、これを世界中に普及することにより、エネルギーの枯渇問題と化石燃料の燃焼により発生する地球環境の破壊の難問を同時に解決することができる。
[本発明の第14の実施例]
 本発明の第14の実施形態に係る電界効果発電装置において、熱フィードバック方式を採用する場合の断面を図82に示す。熱フィードバック方式の電界効果発電装置は往路における発電と帰路における発電に分れ、往路の電源として第一電源31、第二電源32、第三電源33および第四電源34を用いる。同図に示すように、基板19の表面上に往路のキャリア出力物質333,往路のチャネル形成物質335および往路の電子吸収コレクタ229が配置される。往路のチャネル形成物質335の実施例としてグラフェンを用いる。グラフェンである往路のチャネル形成物質335は往路のキャリア出力物質333と電気的に接続される。往路のキャリア出力物質333、往路のチャネル形成物質335および往路の電子吸収コレクタ229の上面には絶縁物8が配置される。絶縁物8の上表面には往路のキャリア加速装置の第一電極61、往路のキャリア加速装置の第二電極62、往路のキャリア加速装置の第三電極63および往路のキャリア加速装置の第四電極64が配置される。
 熱フィードバック方式の電界効果発電装置においては、往路の動作と帰路の動作があり、それらは並列的の動作を行う。図82において、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。第一電源31の負電圧端子は往路のキャリア出力物質333に電気的に接続される。キャリア加速装置の第一電極61と往路のキャリア出力物質333の間には電界が発生する。発生する電界の効果によって往路のキャリア出力物質333から往路のチャネル形成物質335に電子がインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。往路のキャリア出力物質333から往路のチャネル形成物質335にキャリアである電子をインジェクションするために第一電源31が用いられる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63はスライディング電極として作用する。
 第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。キャリア加速装置の第四電極64はエミッション電極として作用する。第一電源31の正電圧が加えられるキャリア加速装置の第一電極61と第一電源31の負電圧が加えられる往路のキャリア出力物質333の間には電界が発生し、その電界の作用によって往路のキャリア出力物質333からキャリアである電子が往路のチャネル形成物質335にインジェクションされる。その際には、往路のキャリア出力物質333と往路のチャネル形成物質335との間にあるポテンシャル障壁は、キャリア加速装置の第一電極61と往路のキャリア出力物質333の間に発生する電界によってトンネル効果により電子が貫通して通過する。すなわち、キャリア加速装置の第一電極61はトンネル電極として作用する。インジェクションされた電子は加速チャネル9内を移動する。インジェクションされた電子はキャリア加速装置の第一電極61、キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64に加えられた正電圧により発生する電界によって加速チャネル9において加速され、電子の運動エネルギーが大きくなる。キャリア加速装置の第四電極64は加速電極としても作用する。大きな運動エネルギーを保有する電子が非可逆過程発生部4に到達し、往路のチャネル形成物質335からエミッションされる。この際に、往路のチャネル形成物質335と真空との間にある仕事関数に相当するポテンシャル障壁は、発生する電界によりトンネル効果に基づいて貫通して通過し、電子が真空中にエミッションされる。キャリア加速装置の第四電極64はエミッション電極としても作用する。エミッションされた電子は絶縁物8と基板19の間を飛翔し、往路の電子吸収コレクタ229に到達する。往路の電子吸収コレクタ229に到達した電子は往路のエネルギー蓄積器213に移動する。一方、キャリアである電子を出力した往路のキャリア出力物質333には正孔が残存する。正孔は往路のエネルギー蓄積器213に移動し、そこで電子と正孔がダイポールを形成する。往路の電子吸収コレクタ229に到達する電子は往路のエネルギー蓄積器213に移動し、往路の電子吸収コレクタ229には電子が殆ど残存しないので、後続して往路の電子吸収コレクタ229に接近する電子の進路を妨害することは殆ど無い。正孔も往路のキャリア出力物質333から往路のエネルギー蓄積器213に移動し、そこで電子と正孔がダイポールを形成するので、正孔が保有する正電荷が往路のキャリア出力物質333から往路のチャネル形成物質335に移動する電子の動きを妨害することも殆どなくなり、良好な発電が行われる事が本発明の発電装置の特徴である。先行する発電装置においては、電子と正孔が元の物質に残存し、後続のキャリアの動きを妨害するので、高効率の発電を実現することが困難であった。
 エミッションされた電子が加速されて往路の電子吸収コレクタ229に衝突するので、往路の電子吸収コレクタ229の温度が上昇する。往路の電子吸収コレクタ229の温度が上昇し、熱エネルギーが往路の熱伝導器123を経由して帰路のキャリア出力物質334に伝導される。従って、帰路のキャリア出力物質334の中にある電子の運動エネルギーが増加するので、帰路においてエミッションされる電子の数が増加する。すなわち、電子が加速されてその運動エネルギーが増加すると、運動エネルギーが電子の衝突により熱エネルギーに変換され、熱エネルギーが帰路においてエミッションする電子の数を増加するので、熱フィードバック方式の電界効果発電装置は全ての発生するエネルギーが有効に利用されるので、発電効率が向上する。
 図82に示す熱フィードバック方式の電界効果発電装置においては、帰路の第一電源231、帰路の第二電源232、帰路の第三電源233および帰路の第四電源234を用いる。同図に示すように、基板19の下部には帰路のキャリア出力物質334,帰路のチャネル形成物質336および帰路の電子吸収コレクタ230が配置される。帰路のチャネル形成物質336の実施例としてグラファンを用いる。グラフェンである帰路のチャネル形成物質336は帰路のキャリア出力物質334と電気的に接続される。帰路のキャリア出力物質334、帰路のチャネル形成物質336および帰路の電子吸収コレクタ230の下面には絶縁物8が配置される。絶縁物8の下表面には帰路のキャリア加速装置の第一電極261、帰路のキャリア加速装置の第二電極262、帰路のキャリア加速装置の第三電極263および帰路のキャリア加速装置の第四電極264が配置される。帰路のキャリア加速装置の第一電極261はインジェクション電極として作用する。帰路のキャリア加速装置の第二電極262および帰路のキャリア加速装置の第三電極263はスライディング電極として作用する。帰路のキャリア加速装置の第四電極264はエミッション電極および加速電極として作用する。
 熱フィードバック方式の電界効果発電装置においては、往路の動作と帰路の2つの動作を行うことが可能である。往路の熱伝導器123および帰路の熱伝導器124が絶縁物である場合には、往路における発電と帰路における発電が電気的に絶縁されるので、両者は独立に動作を行う。従って、往路における発電と帰路における発電が同時に並列的に動作をさせることが可能になり、発電効率は向上する。往路の熱伝導器123および帰路の熱伝導器124として絶縁物を用いることにより並列発電を実現する場合には、絶縁物の例として二酸化シリコン、セラミック、雲母などの絶縁材料が用いられる。往路の熱伝導器123および帰路の熱伝導器124が電気的に導電性である場合には、往路における発電と帰路における発電を時間的に切り替える必要があり、そのためにモードの概念を導入する。すなわち、モード1においては往路の発電を行い、モード2においては帰路の発電を行い、これらを電子的なスッイッチング動作により切り替える事により電界効果発電が実現される。
 図82において、帰路の第一電源231の正電圧端子は帰路のキャリア加速装置の第一電極261に電気的に接続される。帰路の第一電源231の負電圧端子は帰路のキャリア出力物質334に電気的に接続される。帰路のキャリア出力物質334から帰路のチャネル形成物質336にキャリアである電子をインジェクションするために帰路の第一電源231が用いられる。帰路の第二電源232の負電圧端子は帰路のキャリア加速装置の第一電極261に電気的に接続され、帰路の第二電源232の正電圧端子は帰路のキャリア加速装置の第二電極262に電気的に接続される。帰路の第三電源233の負電圧端子は帰路のキャリア加速装置の第二電極262に電気的に接続され、帰路の第三電源233の正電圧端子は帰路のキャリア加速装置の第三電極263に電気的に接続される。帰路の第四電源234の負電圧端子は帰路のキャリア加速装置の第三電極263に電気的に接続され、帰路の第四電源234の正電圧端子は帰路のキャリア加速装置の第四電極264に電気的に接続される。
 帰路の第一電源231の正電圧が加えられる帰路のキャリア加速装置の第一電極261と帰路の第一電源231の負電圧が加えられる帰路のキャリア出力物質334の間には電界が発生し、その電界の作用によって帰路のキャリア出力物質334からキャリアである電子が帰路のチャネル形成物質336にインジェクションされる。帰路のキャリア加速装置の第一電極261はインジェクション電極として作用する。その際には、帰路のキャリア出力物質334と帰路のチャネル形成物質336との間にあるポテンシャル障壁は、帰路のキャリア加速装置の第一電極261と帰路のキャリア出力物質334の間に発生する電界によってトンネル効果により電子が貫通して通過する。帰路のキャリア加速装置の第一電極261はトンネル電極としても作用する。インジェクションされた電子は加速チャネル9内を移動する。インジェクションされた電子は帰路のキャリア加速装置の第一電極261、帰路のキャリア加速装置の第二電極262、帰路のキャリア加速装置の第三電極263および帰路のキャリア加速装置の第四電極264に加えられた正電圧により発生する電界によって加速チャネル9において加速され、電子の運動エネルギーが大きくなる。大きな運動エネルギーを保有する電子が非可逆過程発生部4に到達し、帰路のチャネル形成物質336からエミッションされる。帰路のキャリア加速装置の第二電極262および帰路のキャリア加速装置の第三電極263はスライディング電極として作用する。帰路のキャリア加速装置の第四電極264はエミッション電極として作用する。この際に、帰路のチャネル形成物質336と真空との間にある仕事関数に相当するポテンシャル障壁は、発生する電界によりトンネル効果に基づいて貫通して通過し、電子が真空中にエミッションされる。エミッションされた電子は絶縁物8と基板19の間を飛翔し、帰路の電子吸収コレクタ230に到達する。帰路の電子吸収コレクタ230に到達した電子は帰路のエネルギー蓄積器214に移動する。一方、キャリアである電子を出力した帰路のキャリア出力物質334には正孔が残存する。正孔は帰路のエネルギー蓄積器214に移動し、そこで電子と正孔がダイポールを形成する。帰路の電子吸収コレクタ230に到達する電子は帰路のエネルギー蓄積器214に移動し、帰路の電子吸収コレクタ230には電子が殆ど残存しないので、後続して帰路の電子吸収コレクタ230に接近する電子の進路を妨害することは殆ど無い。正孔も帰路のキャリア出力物質334から帰路のエネルギー蓄積器214に移動し、そこで電子と正孔がダイポールを形成するので、正孔が保有する正電荷が帰路のキャリア出力物質334から帰路のチャネル形成物質336に移動する電子の動きを妨害することも殆どなくなり、良好な発電が行われる事が本発明の発電装置の特徴である。先行する発電装置においては、電子と正孔が元の物質に残存し、後続のキャリアの動きを妨害するので、高効率の発電を実現することが困難であった。
 エミッションされた電子が加速されて帰路の電子吸収コレクタ230に衝突するので、帰路の電子吸収コレクタ230の温度が上昇する。帰路の電子吸収コレクタ230の温度が上昇し、熱エネルギーが帰路の熱伝導器124を経由して往路のキャリア出力物質333に伝導される。従って、往路のキャリア出力物質333の中にある電子の運動エネルギーが増加するので、往路においてエミッションされる電子の数が増加する。すなわち、電子が加速されてその運動エネルギーが増加すると、運動エネルギーが電子の衝突により熱エネルギーに変換され、熱エネルギーが往路においてエミッションする電子の数を増加するので、熱フィードバック方式の電界効果発電装置は全ての発生するエネルギーが有効に利用されるので、発電効率が向上する。すなわち、電子が加速されてその運動エネルギーが増加すると、運動エネルギーが電子の衝突により熱エネルギーに変換され、熱エネルギーが次の往路における電子のエミッション数を増加する。往路におけるエミッションされた電子の衝突により往路の電子吸収コレクタ229の温度が上昇し、帰路におけるエミッションされた電子の衝突により帰路の電子吸収コレクタ230の温度が上昇するので、全体のエミッションされる電子の数が増加し、熱フィードバック方式の電界効果発電装置の発電効率が向上する。実際には往路の電子吸収コレクタ229および帰路の電子吸収コレクタ230の温度上昇が著しく大きくなると、装置の耐久性がなくなるので、電源電圧を制御することにより装置に最適な温度に設定することにより、電界効果発電装置の長期的な使用が可能となる。
[本発明の第15の実施例]
 本発明の第15の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード1の状態の断面を図83に示す。交互発電方式の電界効果発電装置においては、電源として第一電源31、第二電源32、第三電源33、第四電源34、第五電源35、第六電源36、第七電源37および第八電源38を図79の場合と同様にキャリア加速装置の電極に接続するが、同図にはこれらの表示を省略する。図83に示すように、基板19の表面上にチャネル形成物質2と電子吸収コレクタ26が配置される。チャネル形成物質2と電子吸収コレクタ26の上面には絶縁物8が配置される。チャネル形成物質2および電子吸収コレクタ26は共にグラフェンが用いられる。グラフェンであるチャネル形成物質2とキャリア出力物質1は電気的に接続される。しかし、チャネル形成物質2がカーボン系のグラフェンである場合には、キャリア出力物質1とチャネル形成物質2を電気的に接続するには、特殊な接着方法を適用する必要がある。すなわち、キャリア出力物質1の例としてチタンを用いると、1100度C位においてカーボン系のチャネル形成物質2と良好に電気的な接続が行われる。本発明の交互発電方式の電界電子発電装置においては、モードを切り替えることによりキャリア出力物質1が加熱され、高温になるので、キャリア出力物質1とチャネル形成物質2を高温状態で電気的に接続することにより良好な発電効率が得られる。グラフェンである電子吸収コレクタ26とコレクタ24は電気的に接続される。
 交互発電方式の電界効果発電装置においては、モード1とモード2がある。モード1とモード2の切り替えは、モード1の開始スィッチ101およびモード2の開始スィッチ102を用いて行う。モード1の開始スィッチ101およびモード2の開始スィッチ102は図79に示す場合と同様に電源とキャリア加速装置の電極の間にそれらを接続するが、図83においてはそれらの表示を省略する。図83において、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。第一電源31の負電圧端子はモード1の開始スィッチ101を介してキャリア出力物質1に電気的に接続される。キャリア入出力物質1からチャネル形成物質2にキャリアである電子をインジェクションするために第一電源31が用いられる。キャリア加速装置の第一電極61はインジェクション電極として作用する。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。キャリア加速装置の第二電極62、キャリア加速装置の第三電極63およびキャリア加速装置の第四電極64はスライディング電極として作用する。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第八電極68に電気的に接続される。第六電源36の負電圧端子はキャリア加速装置の第八電極68に電気的に接続され、第六電源36の正電圧端子はキャリア加速装置の第七電極67に電気的に接続される。第七電源37の負電圧端子はキャリア加速装置の第七電極67に電気的に接続され、第七電源37の正電圧端子はキャリア加速装置の第六電極66に電気的に接続される。第八電源38の負電圧端子はキャリア加速装置の第六電極66に電気的に接続され、第八電源38の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。キャリア加速装置の第八電極68、キャリア加速装置の第七電極67、キャリア加速装置の第六電極66およびキャリア加速装置の第五電極65はエミッション電極および加速電極として作用する。電界効果発電のモード1においては、モード1の開始スイッチ101が導通状態であり、モード2の開始スイッチ102が非導通状態である。キャリア出力物質1は導電性であり、通常は金属が用いられる。正電圧が加えられるキャリア加速装置の第一電極61と負電圧が加えられるキャリア出力物質1の間には電界が発生し、その電界の作用によってキャリア出力物質1からキャリアである電子がチャネル形成物質2にインジェクションされる。その際には、キャリア出力物質1とチャネル形成物質2との間にあるポテンシャル障壁は、キャリア加速装置の第一電極61とキャリア出力物質1の間に発生する電界によってトンネル効果により電子が貫通して通過する。キャリア加速装置の第一電極61はトンネル電極として作用する。インジェクションされた電子は加速チャネル9内を移動する。インジェクションされた電子はキャリア加速装置の第一電極61、キャリア加速装置の第二電極62、キャリア加速装置の第三電極63、キャリア加速装置の第四電極64、キャリア加速装置の第八電極68、キャリア加速装置の第七電極67、キャリア加速装置の第六電極66およびキャリア加速装置の第五電極65に加えられた正電圧により発生する電界によって加速チャネル9において加速され、電子の運動エネルギーが大きくなる。キャリア加速装置の第一電極61、キャリア加速装置の第二電極62、キャリア加速装置の第三電極63、キャリア加速装置の第四電極64、キャリア加速装置の第八電極68、キャリア加速装置の第七電極67、キャリア加速装置の第六電極66およびキャリア加速装置の第五電極65はエミッション電極および加速電極として作用する。大きな運動エネルギーを保有する電子が非可逆過程発生部4に到達し、チャネル形成物質2からエミッションされる。この際に、チャネル形成物質2と真空との間にある仕事関数に相当するポテンシャル障壁は、発生する電界によりトンネル効果に基づいて貫通して通過し、電子が真空中にエミッションされる。エミッションされた電子は絶縁物8と基板19の間を飛翔し、電子吸収コレクタ26に到達し、最終的にはコレクタ24に到達する。コレクタ24に到達した電子はモード1のエネルギー蓄積器115に移動する。一方、キャリアである電子を出力したキャリア出力物質1には正孔が残存する。正孔はモード1のエネルギー蓄積器115に移動し、そこで電子と正孔がダイポールを形成する。コレクタ24に到達する電子はモード1のエネルギー蓄積器115に移動し、コレクタ24には電子が殆ど残存しないので、後続してコレクタ24に接近する電子の進路を妨害することは殆ど無い。正孔もキャリア出力物質1からモード1のエネルギー蓄積器115に移動し、そこで電子と正孔がダイポールを形成するので、正孔が保有する正電荷がキャリア出力物質1からチャネル形成物質2に移動する電子の動きを妨害することも殆どなくなり、良好な発電が行われる事が本発明の発電装置の特徴である。先行する発電装置においては、電子と正孔が元の物質に残存し、後続のキャリアの動きを妨害するので、高効率の発電を実現することが困難であった。エミッションされた電子が加速されて電子吸収コレクタ26に衝突するので、電子吸収コレクタ26の温度が上昇する。電子吸収コレクタ26の温度が上昇すると、その中にある電子の運動エネルギーが増加するので、モード2に切り替えられると、エミッションされる電子の数が増加する。すなわち、電子が加速されてその運動エネルギーが増加すると、運動エネルギーが電子の衝突により熱エネルギーに変換され、熱エネルギーが次のモードにおいてエミッションする電子の数を増加するので、交互発電方式の電界効果発電装置は全ての発生するエネルギーが有効に利用されるので、発電効率が向上する。
 電界効果発電のモード2においては、モード1の開始スイッチ101が非導通状態であり、モード2の開始スイッチ102が導通状態である。モード2の交互発電方式の電界効果発電装置においては、電源として第一電源31、第二電源32、第三電源33、第四電源34、第五電源35、第六電源36、第七電源37および第八電源38を図79に示す場合のようにキャリア加速装置の電極に接続するが、同図においてはそれらを省略する。
 本発明の第15の実施形態に係る電界効果発電装置において、交互発電方式を採用する場合にモード2の状態の断面を図84に示す。同図において、第一電源31の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。第一電源31の負電圧端子はモード2の開始スィッチ102を介してキャリア出力物質1に電気的に接続される。キャリア入出力物質1からチャネル形成物質2にキャリアである電子をインジェクションするために第一電源31が用いられる。キャリア加速装置の第五電極65はキャリア入出力物質1からチャネル形成物質2に電子をインジェクションするためのインジェクション電極として作用する。第二電源32の負電圧端子はキャリア加速装置の第五電極65に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第六電極66に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第六電極66に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第七電極67に電気的に接続される。第四電源34の負電圧端子はキャリア加速装置の第七電極67に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第八電極68に電気的に接続される。第五電源35の負電圧端子はキャリア加速装置の第八電極68に電気的に接続される。キャリア加速装置の第六電極66、キャリア加速装置の第七電極67およびキャリア加速装置の第八電極68はスライディング電極として作用する。第五電源35の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。第六電源36の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第六電源36の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第七電源37の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第七電源37の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第八電源38の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第八電源38の正電圧端子はキャリア加速装置の第1電極61に電気的に接続される。
 キャリア加速装置の第四電極64、キャリア加速装置の第三電極63、キャリア加速装置の第二電極62およびキャリア加速装置の第1電極61はエミッション電極および加速電極として作用する。電界効果発電のモード2においては、モード2の開始スイッチ102が導通状態であり、モード1の開始スイッチ101が非導通状態である。キャリア出力物質1は導電性であり、通常は金属が用いられる。基板19の表面上にチャネル形成物質2と電子吸収コレクタ26が配置される。チャネル形成物質2および電子吸収コレクタ26は共にグラフェンが用いられる。グラフェンであるチャネル形成物質2とキャリア出力物質1は電気的に接続される。しかし、チャネル形成物質2がカーボン系のグラフェンである場合には、キャリア出力物質1とチャネル形成物質2を電気的に接続するには、特殊な接着方法を適用する必要がある。すなわち、キャリア出力物質1の例としてチタンを用いると、1100度C位においてカーボン系のチャネル形成物質2と良好に電気的な接続が行われる。本発明の交互発電方式の電界電子発電装置においては、モードを切り替えることによりキャリア出力物質1が加熱され、高温になるので、キャリア出力物質1とチャネル形成物質2を高温状態で電気的に接続することにより良好な発電効率が得られる。グラフェンである電子吸収コレクタ26とコレクタ24は電気的に接続される。
 正電圧が加えられるキャリア加速装置の第一電極61と負電圧が加えられるキャリア出力物質1の間には電界が発生し、その電界の作用によってキャリア出力物質1からキャリアである電子がチャネル形成物質2にインジェクションされる。その際には、キャリア出力物質1とチャネル形成物質2との間にあるポテンシャル障壁は、キャリア加速装置の第一電極61とキャリア出力物質1の間に発生する電界によってトンネル効果により電子が貫通して通過する。キャリア加速装置の第一電極61はトンネル電極として作用する。インジェクションされた電子は加速チャネル9内を移動する。インジェクションされた電子はキャリア加速装置の第五電極65、キャリア加速装置の第六電極66、キャリア加速装置の第七電極67、キャリア加速装置の第八電極68、キャリア加速装置の第四電極64、キャリア加速装置の第三電極63、キャリア加速装置の第二電極62およびキャリア加速装置の第一電極61に加えられた正電圧により発生する電界によって加速チャネル9において加速され、電子の運動エネルギーが大きくなる。大きな運動エネルギーを保有する電子が非可逆過程発生部4に到達し、チャネル形成物質2からエミッションされる。この際に、チャネル形成物質2と真空との間にある仕事関数に相当するポテンシャル障壁は、発生する電界によりトンネル効果に基づいて貫通して通過し、電子が真空中にエミッションされる。エミッションされた電子は絶縁物8と基板19の間を飛翔し、電子吸収コレクタ26に到達し、最終的にはコレクタ24に到達する。
 コレクタ24に到達した電子はモード2のエネルギー蓄積器116に移動する。一方、キャリアである電子を出力したキャリア出力物質1には正孔が残存する。正孔はモード2のエネルギー蓄積器116に移動し、そこで電子と正孔がダイポールを形成する。コレクタ24に到達する電子はモード2のエネルギー蓄積器116に移動し、コレクタ24には電子が殆ど残存しないので、後続してコレクタ24に接近する電子の進路を妨害することは殆ど無い。正孔もキャリア出力物質1からモード2のエネルギー蓄積器116に移動し、そこで電子と正孔がダイポールを形成するので、正孔が保有する正電荷がキャリア出力物質1からチャネル形成物質2に移動する電子の動きを妨害することも殆どなくなり、良好な発電が行われる事が本発明の発電装置の特徴である。先行する発電装置においては、電子と正孔が元の物質に残存し、後続のキャリアの動きを妨害するので、高効率の発電を実現することが困難であった。
 エミッションされた電子が加速されて電子吸収コレクタ26に衝突するので、電子吸収コレクタ26の温度が上昇する。電子吸収コレクタ26の温度が上昇すると、電子吸収コレクタ26の中の電子が保有する運動エネルギーが増加するので、モード2からモード1に切り替えられると、エミッションされる電子の数が増加する。すなわち、電子が加速されてその運動エネルギーが増加すると、運動エネルギーが電子の衝突により熱エネルギーに変換され、熱エネルギーが次ぎのモードにおける電子のエミッション数を増加する。モード1とモード2を繰り返すことによりエミッションされる電子の数が増加し、交互発電方式の電界効果発電装置の発電効率が向上する。実際には電子吸収コレクタ26の温度上昇が著しく大きくなると、装置の耐久性がなくなるので、モード1の開始スイッチ101およびモード2の開始スイッチ102の導通期間を調整することにより装置に最適な温度に設定することにより電界効果発電装置を長期的に使用する。
[本発明の第16の実施例]
 本発明の第16の実施形態に係る電界効果発電装置において、4段の熱フィードバック方式を採用する場合の断面図を図85に示す。同図には、4個の発電ユニットが90度の回転角を保持して配置される。4個の発電ユニットは対応するパーツには同じ符号を用いて示す。エミッションされた電子が4個の電子吸収コレクタ26の1個に衝突する。電子が衝突した電子吸収コレクタ26は時計の回転方向に順次に加熱される。4個の発電ユニットの動作は全て同じであるので、図85の左上に記載されている発電ユニットに注目して説明する。
 図85に示す基板19は絶縁性である。すなわち、二酸化シリコンなどの絶縁物を用いて基板19を作成する。基板19の上にはキャリア出力物質1およびチャネル形成物質2が配置される。キャリア出力物質1は導電性物質であり、具体例としてチタン、ニッケル、銅、金および銀などがある。チャネル形成物質2の上には絶縁物8が配置され、絶縁物8の上部にはキャリア加速装置の第一電極61、キャリア加速装置の第二電極62、キャリア加速装置の第三電極63、キャリア加速装置の第四電極64およびキャリア加速装置の第五電極65が配置される。チャネル形成物質2としてグラフェンを用いる場合を示す。炭素原子がsp2混成軌道によって化学結合すると、二次元状に結合した炭素六角網面を形成する。この平面構造を持つ炭素原子の集合体はグラフェンと呼ばれる。炭素原子が6角形の網の目状に並んだ構造のグラフェンがグラファイトの1層を形成し、多層のグラフェンが積層することによりグラファイト全体が構成される。グラフェンにおいては炭素の6員環が平面状に結合しており、厚さは分子のオーダであり、平面方向には電気伝導性が極めて良好である。すなわち、グラフェン中におけるは電子の移動度は非常に大きく、200,000cm2/Vsにも達し、電子が殆ど抵抗を受けずに炭素の6員環から6員環へと平面状に移動する。図75に示すように、第一電源31、第二電源32、第三電源33、第四電源34および第五電源35を用いるが、これらの電源は図85には記載されていない。第一電源31の負電圧端子はキャリア出力物質1に電気的に接続され、第一電源31の正電圧端子はキャリア加速装置の第一電極61に電気的に接続される。キャリア入出力物質1からチャネル形成物質2にキャリアである電子をインジェクションするために第一電源31を用いる。第二電源32の負電圧端子はキャリア加速装置の第一電極61に電気的に接続され、第二電源32の正電圧端子はキャリア加速装置の第二電極62に電気的に接続される。第三電源33の負電圧端子はキャリア加速装置の第二電極62に電気的に接続され、第三電源33の正電圧端子はキャリア加速装置の第三電極63に電気的に接続される。第四電源34の負電圧端子はキャリア加速装置の第三電極63に電気的に接続され、第四電源34の正電圧端子はキャリア加速装置の第四電極64に電気的に接続される。第五電源35の負電圧端子はキャリア加速装置の第四電極64に電気的に接続され、第五電源35の正電圧端子はキャリア加速装置の第五電極65に電気的に接続される。
 第一電源31からキャリア加速装置の第一電極61に加えられる正電圧およびキャリア出力物質1に加えられる負電圧により電界が形成される。キャリア加速装置の第一電極61からキャリア出力物質1の方向に形成された電界の効果によって、キャリア出力物質1からグラフェン状のチャネル形成物質2にキャリアである電子がインジェクションされる。キャリア加速装置の第一電極61はインジェクション電極として作用する。インジェクションされた電子は加速チャネル9の内において、キャリア加速装置の第一電極61、キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63に加えられる正電圧によって加速される。キャリア加速装置の第二電極62およびキャリア加速装置の第三電極63は、電子がグラフェンの表面を加速されて移動するスライディング電極として作用する。キャリア加速装置の第四電極64およびキャリア加速装置の第五電極65は下部にある絶縁物8の中にも配置され、これらの電極にも電源から電圧が加えられている。グラフェンであるチャネル形成物質2の表面上を電子が高速に移動することにより、電子は充分に大きな運動エネルギーを獲得する。高速化された電子はチャネル形成物質2の表面から離脱し、真空中にエミッションされる。キャリア加速装置の第四電極64はエミッション電極として作用する。エミッションの際には、非可逆過程発生部4であるポテンシャル障壁を電子が量子力学的なトンネル効果により通過する。エミッションされた電子はキャリア加速装置の第五電極65に加えられた正電圧により加速される。すなわち、キャリア加速装置の第五電極65は加速電極として作用する。飛翔する電子が加速されて、その運動エネルギーが充分に大きくなると、電子吸収コレクタ26から受けるクーロンの法則に従う反発力に打ち勝って、電子吸収コレクタ26に衝突し、これに収集される。図50に示すように、電子吸収コレクタ26はエネルギー蓄積器15の一方の端子に電気的に接続されるが、図85にはエネルギー蓄積器を省略する。電子吸収コレクタ26に到達した電子はエネルギー蓄積器15の一方の端子に到達する。キャリア出力物質1の中に残存する正孔はエネルギー蓄積器15の他方の端子に到達し、エネルギー蓄積器15の中で正孔と電子がペアを形成し、そこに蓄積される。エネルギー蓄積器15の一方の端子に電気的負荷5の一方の端子を接続し、エネルギー蓄積器15の他方の端子に電気的負荷5の他方の端子を接続すると、エネルギー蓄積器15に蓄積されていた正孔と電子が電気的負荷5に到達し、そこで再結合することにより両者は消滅し、この過程において電気的負荷5に電気エネルギーが供給される。
 図85において、電子吸収コレクタ26は熱伝導性の良好な物質を用いる。電子吸収コレクタ26は基板19と熱伝導性が良好な状態で接合する。基板19としてマイカや二酸化シリコンなどの絶縁性物質を用い、その厚さは非常に薄いものを用いる。キャリア出力物質1およびチャネル形成物質2は共に熱伝導性が良好な物質を用いる。キャリア出力物質1およびチャネル形成物質2は共に基板19と熱伝導性が良好な状態で接続されている。電子吸収コレクタ26には飛翔する電子が加速されて衝突するので、電子吸収コレクタ26の温度は上昇する。電子吸収コレクタ26に供給された熱エネルギーは基板19に良好に伝導される。高温状態になった基板19の熱エネルギーは基板19からキャリア出力物質1およびチャネル形成物質2に伝導され、キャリア出力物質1およびチャネル形成物質2の温度が上昇する。図85の左上に示す第一の発電ユニットからエミッションされた電子が同図の右上に示す第二の発電ユニットのキャリア出力物質1およびチャネル形成物質2の温度を上昇する。第二の発電ユニットのキャリア出力物質1およびチャネル形成物質2の中にある電子が保有する運動エネルギーが大きくなる。すなわち、第二の発電ユニットのキャリア出力物質1およびチャネル形成物質2に対してエネルギーの前供給(pre-supply)が行われる。第二の発電ユニットのキャリア出力物質1およびチャネル形成物質2の中にある電子が保有する運動エネルギーが大きくなるので、チャネル形成物質2からエミッションされる電子の数が増加する。
 上記に記載する熱エネルギーの循環は、第一の発電ユニット、第二の発電ユニット、第三の発電ユニットおよび第四の発電ユニットへと順次に繰り返されることにより、各々のチャネル形成物質2からエミッションされる電子の数が次第に増加する。装置の耐久性と発電効率などを考慮して最適のエミッション電子の数が決定される。そのためには、発電出力が最適な状態になるように、外部から供給する電源の電圧の値を制御する。上記に記載の電界電子発電装置においては、エミッションされた電子を加速し、その運動エネルギーを大きくして、電子吸収コレクタ26の温度を高くすることにより発電に寄与する電子の数を多くする。すなわち、電子の衝突により発生する熱エネルギーを発電現象にフィードバックして利用するので、発電効率が非常に良好になり、実用性が増す。電界電子発電装置において得られる電気エネルギーは電子に対する電界の効果が発生原因であり、外部から他のエネルギーを殆ど供給しないので、これは従来のエネルギー変換器とは異なる真の発電装置であると言える。
 本発明は、電界の効果を利用して効率的な発電を行うことにより、化石エネルギーの燃焼に起因する環境問題を解決し、化石エネルギー枯渇問題も解消して、人類の長期的な生存に必要なエネルギーを安定的に供給できる。
1・・・ キャリア出力物質
2・・・ チャネル形成物質
3・・・ キャリア加速装置
4・・・ 非可逆過程発生部
5・・・ 電気的負荷
8・・・ 絶縁物
9・・・ 加速チャネル
10・・・ P型半導体
11・・・ N型半導体
13・・・ 負電荷蓄積導体
14・・・ 正電荷蓄積導体
15・・・ エネルギー蓄積器
16・・・ 正電荷の入出力部
17・・・ 負電荷の入出力部
19・・・ 基板
20・・・ ポテンシャル障壁発生部
22・・・ エミッション
23・・・ キャリアの表面移動
24・・・ コレクタ
25・・・ サプレッサ
26・・・ 電子吸収コレクタ
27・・・ 正孔吸収コレクタ
28・・・ キャリア吸収コレクタ
30・・・ 電源
31・・・ 第一電源
32・・・ 第二電源
33・・・ 第三電源
34・・・ 第四電源
35・・・ 第五電源
36・・・ 第六電源
37・・・ 第七電源
38・・・ 第八電源
39・・・ 第九電源
40・・・ 第十電源
41・・・ キャリア加速装置の正電極
42・・・ キャリア加速装置の負電極
43・・・ 電源正電圧端子
44・・・ 電源負電圧端子
49・・・ 正孔
50・・・ 電子
60・・・ キャリア加速装置の電極
61・・・ キャリア加速装置の第一電極
62・・・ キャリア加速装置の第二電極
63・・・ キャリア加速装置の第三電極
64・・・ キャリア加速装置の第四電極
65・・・ キャリア加速装置の第五電極
66・・・ キャリア加速装置の第六電極
67・・・ キャリア加速装置の第七電極
68・・・ キャリア加速装置の第八電極
69・・・ キャリア加速装置の第九電極
70・・・ キャリア加速装置の第十電極
71・・・ キャリア吸収グラフェン
72・・・ キャリア放出グラフェン
73・・・ キャリア吸収基板
74・・・ キャリア放出基板
75・・・ サブ・ナノメータ物質
76・・・ 炭素系物質
80・・・ 2次電子放出部材
81・・・ キャリアに働くクーロン力
82・・・ 合成ベクトル
90・・・ キャリア軌道偏向電源
91・・・ キャリア軌道偏向正電極
92・・・ キャリア軌道偏向負電極
93・・・ キャリア軌道偏向N磁極
94・・・ キャリア軌道偏向S磁極
101・・・ モード1の開始スィッチ
102・・・ モード2の開始スィッチ
105・・・ 第一段目のエミッタ
106・・・ 第二段目のエミッタ
107・・・ 往路のキャリア出力物質
108・・・ 帰路のキャリア出力物質
111・・・ 第一段目のエネルギー蓄積器
112・・・ 第二段目のエネルギー蓄積器
113・・・ 第三段目のエネルギー蓄積器
115・・・ モード1のエネルギー蓄積器
116・・・ モード2のエネルギー蓄積器
120・・・ モード1の熱伝導器
121・・・ モード2の熱伝導器
123・・・ 往路の熱伝導器
124・・・ 帰路の熱伝導器
126・・・ 熱エネルギー供給器
127・・・ 第一段目の電子吸収コレクタ
128・・・ 第二段目の電子吸収コレクタ
129・・・ 第三段目の電子吸収コレクタ
131・・・ 第一段目のキャリア出力物質
132・・・ 第二段目のキャリア出力物質
133・・・ 第三段目のキャリア出力物質
211・・・ 帰路の第一段目のエネルギー蓄積器
212・・・ 帰路の第二段目のエネルギー蓄積器
213・・・ 往路のエネルギー蓄積器
214・・・ 帰路のエネルギー蓄積器
226・・・ 熱エネルギー供給器
227・・・ 第一段目の電子吸収コレクタ
228・・・ 第二段目の電子吸収コレクタ
229・・・ 往路の電子吸収コレクタ
230・・・ 帰路の電子吸収コレクタ
231・・・ 帰路の第一電源
232・・・ 帰路の第二電源
233・・・ 帰路の第三電源
234・・・ 帰路の第四電源
235・・・ 帰路の第五電源
236・・・ 帰路の第六電源
261・・・ 帰路のキャリア加速装置の第一電極
262・・・ 帰路のキャリア加速装置の第二電極
263・・・ 帰路のキャリア加速装置の第三電極
264・・・ 帰路のキャリア加速装置の第四電極
265・・・ 帰路のキャリア加速装置の第五電極
266・・・ 帰路のキャリア加速装置の第六電極
300・・・ 真空容器
331・・・ 帰路の第一段目のキャリア出力物質
332・・・ 帰路の第二段目のキャリア出力物質
333・・・ 往路のキャリア出力物質
334・・・ 帰路のキャリア出力物質
335・・・ 往路のチャネル形成物質
336・・・ 帰路のチャネル形成物質
350・・・ スッイチ
351・・・ スッイチ

Claims (15)

  1.  キャリア出力物質と、チャネル形成物質と、キャリア加速装置の電極と、絶縁物と、非可逆過程発生部と、加速チャネルと、エネルギー蓄積器と、キャリア吸収コレクタおよび電気的負荷を備え、
     前記のキャリア出力物質とチャネル形成物質が電気的に接続され、チャネル形成物質の表面の一部に絶縁物が配置され、絶縁物の中にキャリア加速装置の電極が配置され、前記チャネル形成物質の絶縁物側の表面に加速チャネルの1部分が形成され、前記キャリア加速装置の電極によって発生する電界の効果によって前記キャリア出力物質の中に存在するキャリアが前記キャリア出力物質から前記チャネル形成物質にインジェクションされ、
     前記チャネル形成物質にインジェクションされた前記キャリアが前記加速チャネルの中で前記キャリア加速装置の電極による電界の効果によって加速される事によりキャリアにエネルギーの前供給が行われ、前記キャリアが前記非可逆過程発生部を通過して前記キャリア吸収コレクタに収集され、前記キャリア吸収コレクタに吸収されたキャリアは前記エネルギー蓄積器の一方の入力端子に入力され、前記キャリア出力物質の中に残存するアンチ・キャリアが前記エネルギー蓄積器の他方の入力端子に入力され、前記キャリアと前記アンチ・キャリアがペアを形成し、前記エネルギー蓄積器に蓄積され、前記エネルギー蓄積器を前記電気的負荷と電気的に接続し、前記キャリアと前記アンチ・キャリアが前記電気的負荷に移動する事により前記電気的負荷に電気エネルギーを供給する事を特徴とする電界効果発電装置。
  2.  前記キャリア加速装置が複数個の電源および複数個の電極を含み、前記キャリア加速装置の電極が前記電源に電気的に接続され、複数個のキャリア加速装置の電極が前記チャネル形成物質の周辺に絶縁物を介して配置されることにより加速チャネルを構成し、前記加速チャネル内において前記キャリア加速装置の電極の作用によってキャリア出力物質からチャネル形成物質にキャリアのインジェクションを行い、インジェクションされたキャリアを加速する事によりキャリアにエネルギーの前供給を行う事を特徴とする請求項1に記載の電界効果発電装置。
  3.  前記キャリア出力物質としてP型半導体及びN型半導体を用い、前記チャネル形成物質としてN型半導体及びP型半導体を用いる事を特徴とする請求項1に記載の電界効果発電装置。
  4.  前記非可逆過程発生部が絶縁物および真空を含む事を特徴とする請求項1に記載の電界効果発電装置。
  5.  キャリア出力物質と、チャネル形成物質と、キャリア加速装置と、非可逆過程発生部と、加速チャネルと、エネルギー蓄積器と、電子吸収コレクタおよび電気的負荷を備え、
     前記キャリア加速装置が前記キャリア出力物質の中にある電子に作用する事により、前記電子が前記キャリア出力物質から前記非可逆過程発生部を通過して前記チャネル形成物質にインジェクションされ、前記チャネル形成物質にインジェクションされた前記電子が前記加速チャネルに移動され、前記加速チャネルにおいて前記キャリア加速装置の作用によって前記電子が加速される事により電子にエネルギーを前供給する事により、前記電子が前記非可逆過程発生部を通過して真空中にエミッションされ、前記エミッションされた電子が電子吸収コレクタに収集され、前記電子吸収コレクタに収集された電子は前記エネルギー蓄積器の一方の入力端子に入力され、前記キャリア出力物質の中に残存する正孔が前記エネルギー蓄積器の他方の入力端子に入力され、前記電子と前記正孔がペアを形成し、前記エネルギー蓄積器に蓄積され、前記エネルギー蓄積器を前記電気的負荷と電気的に接続し、前記電子と前記正孔が前記電気的負荷に供給される事により前記電気的負荷に電気エネルギーを供給する事を特徴とする電界効果発電装置。
  6.  前記のキャリア加速装置の作用によって加速された電子の運動エネルギーの一部を電気的および電磁気的および熱的なエネルギーに変換し、前記のエネルギーを次にエミッションを行う予定の電子にフィードバックすることにより、次のエミッションを行う予定の電子に前記のエネルギーの一部を前供給することによって前記の電気的負荷に電気エネルギーを供給することを特徴とする請求項1又は請求項5に記載される電界効果発電装置。
  7.  前記のエネルギーのフィードバックを実施するために、電気的および電磁気的なエネルギーの一部を用いて電界を発生し、発生する電界の作用により次にエミッションを行う予定の電子にエネルギーの一部を前供給することを特徴とする請求項6に記載される電界効果発電装置。
  8.  前記のエネルギーのフィードバックを実施するために、電気的および電磁気的なエネルギーの一部を用いて磁界を発生し、発生する磁界の作用により次にエミッションを行う予定の電子にエネルギーの一部を前供給することを特徴とする請求項6に記載される電界効果発電装置。
  9.  前記キャリア吸収コレクタの周辺に配置されるサプレッサを備える事を特徴とする請求項5に記載の電界効果発電装置。
  10.  前記キャリア出力物質およびチャネル形成物質に量子力学的に波動性を示すところの電磁波、電子、光子を照射する事により出力される電子の数を増加する事を特徴とする請求項5に記載の電界効果発電装置。
  11.  前記チャネル形成物質の表面の全面あるいは1部分に2次電子放出部材を配置する事を特徴とする請求項5に記載の電界効果発電装置。
  12.  エミッションされた電子の軌道を偏向する偏向電極および偏向磁極を備える事を特徴とする請求項5に記載の電界効果発電装置。
  13.  熱伝導器を備え、前記電子吸収コレクタに発生する熱エネルギーが熱伝導器を経由して前記キャリア出力物質および前記チャネル形成物質に供給される事により電子に前供給する事を特徴とする請求項5に記載の電界効果発電装置。
  14.  前記チャネル形成物質が炭素系物質で、前記炭素系物質の表面にサブ・ナノメータ物質を配置する事を特徴とする請求項5に記載の電界効果発電装置。
  15.  前記キャリア加速装置に用いる電源の電圧を制御する事により出力電圧を制御する事を特徴とする請求項5に記載の電界効果発電装置。
PCT/JP2009/002744 2008-06-16 2009-06-16 電界効果発電装置 WO2009153981A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801225029A CN102217186A (zh) 2008-06-16 2009-06-16 电场效应发电装置
CA2737525A CA2737525A1 (en) 2009-06-16 2009-06-16 Field effect power generation device
US12/736,852 US8232583B2 (en) 2008-06-16 2009-06-16 Field effect power generation device
EP09766429.6A EP2346156A4 (en) 2008-06-16 2009-06-16 FIELD EFFECT GENERATION COMPONENT
KR1020107027842A KR20120099808A (ko) 2009-06-16 2009-06-16 전계 효과 발전 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008156264A JP2012090358A (ja) 2008-06-16 2008-06-16 電界効果発電装置
JP2008-156264 2008-06-16

Publications (1)

Publication Number Publication Date
WO2009153981A1 true WO2009153981A1 (ja) 2009-12-23

Family

ID=41433899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002744 WO2009153981A1 (ja) 2008-06-16 2009-06-16 電界効果発電装置

Country Status (5)

Country Link
US (1) US8232583B2 (ja)
EP (1) EP2346156A4 (ja)
JP (1) JP2012090358A (ja)
CN (1) CN102217186A (ja)
WO (1) WO2009153981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204648A (ja) * 2013-04-10 2014-10-27 本田技研工業株式会社 モノポール構成の風力発電装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006301A1 (en) * 2010-07-07 2012-01-12 Dynamic Connections, Llc Renewable energy extraction
CN102969211A (zh) * 2011-09-01 2013-03-13 王云峰 一种发电电路及具有该电路的发电设备
US20130061914A1 (en) * 2011-09-14 2013-03-14 Corbin L. Young - Investor Asset IP Trust Flux capacitor solar cell module
US20140049152A1 (en) * 2012-08-14 2014-02-20 David A. Baldwin Vacuum electron power tube
CN104795294B (zh) * 2014-01-20 2017-05-31 清华大学 电子发射装置及电子发射显示器
CN104795293B (zh) * 2014-01-20 2017-05-10 清华大学 电子发射源
CN104795298B (zh) * 2014-01-20 2017-02-22 清华大学 电子发射装置及显示器
CN104795300B (zh) * 2014-01-20 2017-01-18 清华大学 电子发射源及其制备方法
CN104795295B (zh) * 2014-01-20 2017-07-07 清华大学 电子发射源
CN104795297B (zh) * 2014-01-20 2017-04-05 清华大学 电子发射装置及电子发射显示器
CN104795296B (zh) * 2014-01-20 2017-07-07 清华大学 电子发射装置及显示器
CN104795292B (zh) * 2014-01-20 2017-01-18 清华大学 电子发射装置、其制备方法及显示器
CN104795291B (zh) * 2014-01-20 2017-01-18 清华大学 电子发射装置、其制备方法及显示器
US9331603B2 (en) * 2014-08-07 2016-05-03 Ion Power Group, Llc Energy collection
CN106374637A (zh) * 2016-11-14 2017-02-01 李新奇 一种量子场汲能及增能装置
US10320311B2 (en) * 2017-03-13 2019-06-11 Saudi Arabian Oil Company High temperature, self-powered, miniature mobile device
US10560038B2 (en) 2017-03-13 2020-02-11 Saudi Arabian Oil Company High temperature downhole power generating device
CN107947625A (zh) * 2018-01-10 2018-04-20 库尔卡人工智能有限公司 一种自发电装置
US10844694B2 (en) 2018-11-28 2020-11-24 Saudi Arabian Oil Company Self-powered miniature mobile sensing device
US11271163B2 (en) * 2019-04-18 2022-03-08 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming semiconductor device having carbon nanotube
JP7039763B1 (ja) * 2021-11-15 2022-03-22 善文 安藤 真空チャネル型電子素子、光伝送回路及び積層チップ

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967594A (ja) 1972-11-01 1974-07-01
JPH01202182A (ja) * 1988-02-08 1989-08-15 Toshiba Corp イオンエネルギ回収装置
JPH11510307A (ja) 1995-08-04 1999-09-07 プリンタブル フィールド エミッターズ リミテッド 電界電子放出材料および装置
JP2003189646A (ja) 2001-12-14 2003-07-04 Norio Akamatsu 太陽光エネルギー変換装置および太陽光エネルギー変換システム
JP2003250285A (ja) 2002-02-22 2003-09-05 Jgs:Kk 熱発電装置、熱発電システムおよび熱発電方法
JP2003258326A (ja) 2001-12-25 2003-09-12 Daikin Ind Ltd 熱電気素子及び該熱電気素子を備えた熱電気装置
JP3449623B2 (ja) 2000-08-07 2003-09-22 則男 赤松 太陽光エネルギー変換装置
JP2004140288A (ja) 2002-10-21 2004-05-13 Nishizumi Hiroshi 電極、電極製造装置、電極の製造方法、及び熱発電装置
WO2005008073A1 (ja) * 2003-07-18 2005-01-27 Norio Akamatsu 熱発電装置装備自動車
JP2005116736A (ja) * 2003-10-07 2005-04-28 Matsushita Electric Ind Co Ltd 熱電変換素子およびその製造方法、並びにそれを用いた冷却装置
JP2006310026A (ja) 2005-04-27 2006-11-09 I-Pex Co Ltd ソケットコネクタ
JP2006307607A (ja) 2005-05-02 2006-11-09 Masao Masuda 木質系の壁体
JP2006308277A (ja) 2005-03-29 2006-11-09 Aisin Seiki Co Ltd 水冷エンジンヒートポンプ
JP2006317778A (ja) 2005-05-13 2006-11-24 Fuji Photo Film Co Ltd 撮影装置
WO2007070524A2 (en) * 2005-12-14 2007-06-21 Kriisa Research Inc. Device for converting thermal energy into electrical energy
WO2007116524A1 (ja) 2006-04-11 2007-10-18 Norio Akamatsu 電界放出発電装置
WO2007122709A1 (ja) 2006-04-20 2007-11-01 Norio Akamatsu 線形加速発電装置
WO2007135717A1 (ja) 2006-05-19 2007-11-29 Norio Akamatsu 電界放出発電装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3346910B2 (ja) * 1994-10-03 2002-11-18 本田技研工業株式会社 電動車両用電源装置
US5635889A (en) * 1995-09-21 1997-06-03 Permag Corporation Dipole permanent magnet structure
US7204832B2 (en) * 1996-12-02 2007-04-17 Pálomar Medical Technologies, Inc. Cooling system for a photo cosmetic device
TW421962B (en) * 1997-09-29 2001-02-11 Canon Kk Image sensing device using mos type image sensing elements
US5886609A (en) * 1997-10-22 1999-03-23 Dexter Magnetic Technologies, Inc. Single dipole permanent magnet structure with linear gradient magnetic field intensity
JP2000195411A (ja) * 1998-03-23 2000-07-14 Matsushita Electric Ind Co Ltd 電界放出型電子源装置
US6069516A (en) * 1998-04-28 2000-05-30 Maxim Integrated Products, Inc. Compact voltage biasing circuitry for enhancement of power MOSFET
US6704603B1 (en) * 2000-05-16 2004-03-09 Lockheed Martin Corporation Adaptive stimulator for relief of symptoms of neurological disorders

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967594A (ja) 1972-11-01 1974-07-01
JPH01202182A (ja) * 1988-02-08 1989-08-15 Toshiba Corp イオンエネルギ回収装置
JPH11510307A (ja) 1995-08-04 1999-09-07 プリンタブル フィールド エミッターズ リミテッド 電界電子放出材料および装置
JP3449623B2 (ja) 2000-08-07 2003-09-22 則男 赤松 太陽光エネルギー変換装置
JP2003189646A (ja) 2001-12-14 2003-07-04 Norio Akamatsu 太陽光エネルギー変換装置および太陽光エネルギー変換システム
JP2003258326A (ja) 2001-12-25 2003-09-12 Daikin Ind Ltd 熱電気素子及び該熱電気素子を備えた熱電気装置
JP2003250285A (ja) 2002-02-22 2003-09-05 Jgs:Kk 熱発電装置、熱発電システムおよび熱発電方法
JP2004140288A (ja) 2002-10-21 2004-05-13 Nishizumi Hiroshi 電極、電極製造装置、電極の製造方法、及び熱発電装置
WO2005008073A1 (ja) * 2003-07-18 2005-01-27 Norio Akamatsu 熱発電装置装備自動車
JP2005116736A (ja) * 2003-10-07 2005-04-28 Matsushita Electric Ind Co Ltd 熱電変換素子およびその製造方法、並びにそれを用いた冷却装置
JP2006308277A (ja) 2005-03-29 2006-11-09 Aisin Seiki Co Ltd 水冷エンジンヒートポンプ
JP2006310026A (ja) 2005-04-27 2006-11-09 I-Pex Co Ltd ソケットコネクタ
JP2006307607A (ja) 2005-05-02 2006-11-09 Masao Masuda 木質系の壁体
JP2006317778A (ja) 2005-05-13 2006-11-24 Fuji Photo Film Co Ltd 撮影装置
WO2007070524A2 (en) * 2005-12-14 2007-06-21 Kriisa Research Inc. Device for converting thermal energy into electrical energy
WO2007116524A1 (ja) 2006-04-11 2007-10-18 Norio Akamatsu 電界放出発電装置
WO2007122709A1 (ja) 2006-04-20 2007-11-01 Norio Akamatsu 線形加速発電装置
WO2007135717A1 (ja) 2006-05-19 2007-11-29 Norio Akamatsu 電界放出発電装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOHN D. RYDER: "Electronic Engineering Principles", PRENTICE-HALL, INC., pages: 45
See also references of EP2346156A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204648A (ja) * 2013-04-10 2014-10-27 本田技研工業株式会社 モノポール構成の風力発電装置

Also Published As

Publication number Publication date
EP2346156A4 (en) 2013-08-07
JP2012090358A (ja) 2012-05-10
US8232583B2 (en) 2012-07-31
EP2346156A1 (en) 2011-07-20
US20110169276A1 (en) 2011-07-14
CN102217186A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
WO2009153981A1 (ja) 電界効果発電装置
Xiao et al. Thermionic energy conversion for concentrating solar power
Meir et al. Highly-efficient thermoelectronic conversion of solar energy and heat into electric power
Khalid et al. Review on thermionic energy converters
US7456543B2 (en) Closely spaced electrodes with a uniform gap
Lozano et al. Nanoengineered thrusters for the next giant leap in space exploration
US20160232989A1 (en) Energizing energy converters by stimulating three-body association radiation reactions
Jensen et al. Submicrometer-gap thermionic power generation based on comprehensive modeling of charge and thermal transport
KR20020029942A (ko) 태양광 에너지 변환 장치
US20090174282A1 (en) Linear Acceleration Electricity Generating Apparatus
KR20170054778A (ko) 자연력을 이용한 융합형 발전기 및 이를 이용한 발전 방법
De et al. Highly improved thermionic energy converter
KR20120099808A (ko) 전계 효과 발전 장치
Wang et al. The effect of space charge neutralization on the parametric design of photon enhanced thermionic solar converters
Kodihal et al. A review on methods and materials for optimizing thermionic regeneration system
US20090174283A1 (en) Field emission electricity generating apparatus
Zheng et al. Thermoradiative anode for enhanced thermionic energy conversion
WO2014025695A1 (en) Energizing energy converters by stimulating three-body association radiation reactions
Kodihal et al. Prototype Design of a Small Scale Thermionic Energy Generator for Waste Heat Recovery in Hybrid Electric Vehicle
EP2006996A1 (en) Field emitting/electric-power generating device
US20210166926A1 (en) Electric Power Source Employing Field Emission
Elahi et al. Near-field energy harvesting
WO2021112818A1 (en) Electric power source employing field emission
Kodihal et al. A Study and Mathematical Analysis of Thermionic Energy Conversion Materials Based on Their Solid State Emission Properties
Haase et al. Designing microscale gas discharges to enhance thermionic energy conversion

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122502.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766429

Country of ref document: EP

Kind code of ref document: A1

WPC Withdrawal of priority claims after completion of the technical preparations for international publication

Ref document number: 2008-156264

Country of ref document: JP

Date of ref document: 20101105

Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED

ENP Entry into the national phase

Ref document number: 20107027842

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2737525

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12736852

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009766429

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP