WO2009148156A1 - 検知センサ - Google Patents

検知センサ Download PDF

Info

Publication number
WO2009148156A1
WO2009148156A1 PCT/JP2009/060364 JP2009060364W WO2009148156A1 WO 2009148156 A1 WO2009148156 A1 WO 2009148156A1 JP 2009060364 W JP2009060364 W JP 2009060364W WO 2009148156 A1 WO2009148156 A1 WO 2009148156A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable
electrode
fixed
comb teeth
resonance frequency
Prior art date
Application number
PCT/JP2009/060364
Other languages
English (en)
French (fr)
Inventor
原 橋口
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2010515939A priority Critical patent/JP5024803B2/ja
Priority to US12/996,270 priority patent/US8770043B2/en
Priority to CN2009801208610A priority patent/CN102057264B/zh
Publication of WO2009148156A1 publication Critical patent/WO2009148156A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/10Measuring force or stress, in general by measuring variations of frequency of stressed vibrating elements, e.g. of stressed strings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/097Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present invention relates to a detection sensor for detecting external force or acceleration.
  • Examples of sensors that detect external force or acceleration include acceleration sensors and displacement sensors.
  • a method of detecting a static displacement of the movable mass by a capacitance change or a strain resistance method is general.
  • Patent Document 1 below discloses an acceleration sensor that detects displacement based on a change in capacitance.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a detection sensor capable of detecting an external force or acceleration with a simple configuration with high sensitivity.
  • the detection sensor of the present invention includes a comb electrode including a fixed electrode having a plurality of fixed comb teeth, a movable electrode having a plurality of movable comb teeth inserted between the fixed comb teeth, and the movable electrode as a fixed electrode.
  • the interval between one fixed comb teeth and the movable comb teeth is the other It is different from the interval between the fixed comb tooth portion and the movable comb tooth portion.
  • the static frequency of a predetermined resonance frequency is reduced.
  • the electrical characteristics between the fixed electrode and the movable electrode change greatly when an external force is applied. Therefore, the external force or acceleration can be detected with high sensitivity by detecting this change. Also, the configuration of the apparatus is simplified.
  • the power supply provides power at a resonance frequency that causes the movable electrode to vibrate in the arrangement direction of the movable comb teeth.
  • the movable electrode vibrates in the arrangement direction of the movable comb teeth, the external force or acceleration applied in the arrangement direction can be detected with particularly high sensitivity.
  • the power supply provides power having a resonance frequency that causes the movable electrode to vibrate in the extending direction of the movable comb tooth portion.
  • the movable electrode vibrates in the extending direction of the movable comb tooth portion, the external force or acceleration applied in the extending direction can be detected with particularly high sensitivity.
  • the power source is between a first resonance frequency that vibrates a predetermined frequency in the arrangement direction of the movable comb teeth and a second resonance frequency that vibrates in the extending direction of the movable comb teeth.
  • the vibration direction of the movable electrode is changed by switching, and the movable electrode vibrates in the arrangement direction of the movable comb teeth at the first resonance frequency, and vibrates in the extending direction of the movable comb teeth at the second resonance frequency.
  • the movable electrode vibrates in the direction of arrangement of the movable comb teeth
  • the external force or acceleration applied in the arrangement direction can be detected with particularly high sensitivity.
  • the movable electrode vibrates in the direction of extension of the movable comb teeth Can detect the external force or acceleration applied in the extending direction with particularly high sensitivity.
  • the vibration direction of the movable electrode is changed when the power source switches the resonance frequency, the external force or acceleration can be detected with high sensitivity only by switching the resonance frequency according to the direction of the external force or acceleration to be detected.
  • the power source has a first resonance frequency that causes the movable electrode to vibrate in the arrangement direction of the movable comb teeth, and a second resonance frequency that causes the movable electrode to vibrate in the extending direction of the movable comb teeth. It is preferable to generate a superimposed signal.
  • the movable electrode is vibrated at the resonance frequency in the arrangement direction of the movable comb teeth, and the movable electrode is vibrated at the resonance frequency in the extending direction of the movable comb teeth.
  • the resonance frequency that varies depending on the external force or acceleration differs between the arrangement direction of the movable comb teeth and the extending direction, the external force or acceleration in each direction can be detected separately with high sensitivity without switching the frequency. .
  • the power supply provides power at a resonance frequency that causes the movable electrode to vibrate in a direction orthogonal to the extending direction and the arrangement direction of the movable comb teeth portion.
  • the length of the movable comb tooth portion is different, so that by obtaining the electrical characteristics between the fixed electrode and the movable electrode when the movable electrode is vibrated at a predetermined resonance frequency, External force or acceleration can be detected.
  • the power source is preferably generated by superimposing a DC bias signal on a signal having a resonance frequency.
  • the detection sensor by changing the interval between the fixed comb tooth portion and the movable comb tooth portion on the left and right sides, the distance between the fixed electrode and the movable electrode when the electrostatic force at the resonance frequency is applied to the movable electrode.
  • the external force or acceleration can be detected by the change in the electrical characteristics. As a result, the external force or acceleration can be detected with high sensitivity with a simple configuration.
  • FIG. 1 It is a perspective view showing typically the whole external force detection sensor composition concerning an embodiment.
  • (A) to (c) are photographs showing how the movable electrode vibrates. It is a graph which shows the relationship between admittance and a frequency. It is a graph which shows the relationship between a resonant frequency and DC bias. It is a graph which shows the comparison with the analytical value and measured value of an admittance curve. It is a graph which shows the comparison with the analytical value and measured value regarding the direct current bias dependence of the resonant frequency. It is a graph which shows the relationship between a resonant frequency and voltage sensitivity.
  • the detection sensor according to the present invention is applied to an external force detection sensor.
  • the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 1 is a perspective view schematically showing the overall configuration of an external force detection sensor according to an embodiment.
  • FIGS. 2A to 2C are photographs showing how the movable electrode vibrates.
  • FIG. 3 is a graph showing the relationship between admittance and frequency.
  • FIG. 4 is a graph showing the relationship between the resonance point and the DC bias.
  • FIG. 5 is a graph showing a comparison between the analysis value of the admittance curve and the actual measurement value.
  • FIG. 6 is a graph showing a comparison between the analysis value and the actual measurement value regarding the DC bias dependency of the resonance point.
  • FIG. 7 is a graph showing the relationship between the resonance point and the voltage sensitivity.
  • the external force detection sensor 1 includes a comb electrode 2, a power source 3, and a detection unit (detection means) 4.
  • the comb electrode 2 has a fixed electrode 10 and a movable electrode 20.
  • the fixed electrode 10 includes a lower silicon layer 11, an upper silicon layer 12, and an insulating layer 13 sandwiched between the upper and lower silicon layers.
  • the upper silicon layer 12 has a plurality of fixed comb teeth 12a protruding in a convex shape.
  • the movable electrode 20 is made of silicon and supported by an elastic support portion 21.
  • the movable electrode 20 has a plurality of movable comb teeth 20a protruding in a convex shape.
  • the movable comb tooth portion 20a is disposed so as to be inserted between the adjacent fixed comb tooth portions 12a. That is, the fixed comb tooth portion 12a of the fixed electrode 10 and the movable comb tooth portion 20a of the movable electrode 20 are arranged to mesh with each other with a certain gap. As a result, the fixed electrode 10 (upper silicon layer 12) and the movable electrode 20 face each other.
  • the interval (Y 1 in FIG. 1 ) between one fixed comb teeth 12a and the movable comb teeth 20a is fixed to the other fixed comb teeth 12a.
  • the interval (Y 2 in FIG. 1) between the comb tooth portion 12a and the movable comb tooth portion 20a is different.
  • the power source 3 is a device for vibrating the movable electrode 20 with respect to the fixed electrode 10 and includes an AC power source 31, a DC power source 32, and a resistance unit 33.
  • the power source 3 is connected to the fixed electrode 10 and the movable electrode 20.
  • a bias voltage is applied between the fixed electrode 10 and the movable electrode 20 by the DC power source 32, and an AC voltage is superimposed and applied by the AC power source 31, so that the movable electrode 20 vibrates with respect to the fixed electrode 10.
  • the power source 3 vibrates the movable electrode 20 in a specific direction with an electrostatic force having a predetermined resonance frequency.
  • FIG. 2A is a photograph in a state where the movable electrode 20 has not yet vibrated.
  • FIG. 2B is a photograph of a state in which the movable comb tooth portion 20a (movable electrode 20) vibrates in the X direction when a specific resonance frequency (second frequency) is given.
  • FIG. 2C shows a state in which the movable comb tooth portion 20a (movable electrode 20) vibrates in the Y direction when a specific resonance frequency (first resonance frequency) different from the second frequency is given. It is a photograph.
  • the X direction is the extending direction of the fixed comb teeth 12a and the movable comb teeth 20a
  • the Y direction is the arrangement direction of the fixed comb teeth 12a and the movable comb teeth 20a.
  • the power source 3 changes the vibration direction of the movable electrode 20 by switching the resonance frequency.
  • the power source 3 vibrates the movable electrode 20 with an electrostatic force of a signal in which a first resonance frequency that causes the movable electrode 20 to vibrate in the Y direction and a second resonance frequency that causes the movable electrode 20 to vibrate in the X direction are superimposed. Also good. In this case, the movable electrode 20 vibrates in the diagonal direction.
  • the detection unit 4 is a part that detects an external force based on a change in electrical characteristics between the fixed electrode 10 and the movable electrode 20 when the movable electrode 20 is vibrated at a predetermined resonance frequency.
  • the detection unit 4 is connected to the fixed electrode 10 and the movable electrode 20, but may be connected to both ends of the resistance unit 33 or may be connected to both ends of the power source 3. Moreover, you may connect the power supply 3 and the detection part 4 in series.
  • X and Y are amounts of displacement of the movable comb tooth portion 20a in the X and Y directions due to application of the DC voltage E.
  • x and y are displacement amounts of the movable comb tooth portion 20a in the X and Y directions by application of the AC voltage e.
  • v x and v y are moving speeds in the X direction and the Y direction, respectively.
  • m is the mass of the movable electrode 20.
  • k x and k y are spring constants in the X direction and Y direction of the elastic support portion 21 that supports the movable electrode 20, respectively.
  • C (x, y) is a capacitance between the fixed electrode 10 and the movable electrode 20
  • C p is a stray capacitance between the lower silicon layer 11 and the upper silicon layer 12.
  • Q 0 and q are values indicating the amount of charge due to application of a DC voltage and an AC voltage, respectively.
  • the capacitance C (x , Y) is represented by the following formula (2).
  • ⁇ 0 is the dielectric constant of vacuum.
  • X 0 is the initial gap between the fixed comb tooth portion 12a and the movable comb-tooth portion 20a in the X direction (the interval when there is no vibration).
  • Y 1 is the initial distance between one of the fixed comb tooth portion 12a and the movable comb-tooth portion 20a of the fixed comb tooth portion 12a and the movable comb-tooth portion 20a inserted therebetween adjacent
  • Y 2 is other This is the initial interval between the fixed comb tooth portion 12a and the movable comb tooth portion 20a.
  • the energy dissipation function F of the system is given by the following equation (3) as a function of the current i and the speeds v x and v y .
  • R f and R are mechanical resistance and electrical resistance, respectively.
  • Lagrangian equations of motion for the machine coordinate system (X direction and Y direction) and the electrical coordinate system are expressed as follows using the above equations (1) and (2).
  • f x, f y is, X component of each external force, a Y component.
  • D, B, G, C y ′′ are respectively given by the following equations (12) to (15).
  • D and B are electromechanical coupling coefficients in the X direction and Y direction, respectively, and G is X direction ⁇ Y It is the interaction coefficient of mechanical vibration in the direction.
  • X and Y in the equations (11) to (15) are the displacement amounts of the movable comb tooth portion 20a in the X and Y directions due to the application of the DC voltage E as described above. It can be derived from the following simultaneous equations (16) and (17) obtained as the 0th-order term of the Taylor expansion of 7) to (9).
  • the vertical axis and the horizontal axis of the graph of FIG. 3 are admittance (S) and frequency (Hz), respectively.
  • the admittance curve La in FIG. 3 is an analysis result when each parameter is set as follows.
  • the comb electrode 2 has two resonance points (resonance frequencies) R1 and R2.
  • R1 is a resonance point where the movable electrode 20 vibrates in the Y direction (first resonance frequency, hereinafter also referred to as “resonance point in the Y direction”)
  • R2 is a resonance where the movable electrode 20 vibrates in the X direction.
  • the movable electrode 20 is vibrated at a predetermined resonance frequency in the extending direction (X direction) of the movable comb teeth 20a or the arrangement direction (Y direction) of the movable comb teeth 20a, and the external force is measured by measuring the change in admittance.
  • the detection unit 4 includes an impedance analyzer that detects admittance and measures a change in phase, and a calculation device in which a calculation program that applies the above theory is incorporated. The detection unit 4 inputs the detected admittance to the arithmetic device, calculates the direction of the external force, and outputs the calculation result to a display device or another arithmetic device (both not shown).
  • the resonance point in the Y direction shown in FIG. 3 depends on the DC bias E 0 .
  • This dependency is shown in FIG.
  • the left vertical axis, right vertical axis, and horizontal axis of the graph of FIG. 4 are the X-direction resonance frequency (Hz), the Y-direction resonance frequency (Hz), and the DC bias (V), respectively.
  • the broken line Lx in the graph indicates the transition of the resonance point in the X direction
  • the solid line Ly indicates the transition of the resonance point in the Y direction.
  • no significant DC bias dependency is observed at the resonance point in the X direction.
  • the DC bias dependency in the Y direction is similar to the characteristics of the parallel plate actuator.
  • the parallel plate actuator it is known that the force attracting two parallel plates increases as the distance between the plates decreases, so that the resonance frequency of the immittance as viewed from the electric system decreases as the DC bias increases. It is considered that the resonance point in the Y direction of the comb electrode 2 also decreases as the DC bias increases, based on the same principle.
  • the reason why the resonance point in the X direction does not change due to the DC bias is that the attractive force of the fixed electrode 10 and the movable electrode 20 does not change with respect to the displacement in the X direction.
  • the resonance frequency in the X direction hardly depends on the DC bias, but the resonance frequency in the Y direction depends on the DC bias. Therefore, by changing the DC bias, it is possible to make the resonance frequencies coincide in the X direction and the Y direction, or to make one of the resonance frequencies in the X and Y directions a constant multiple of the other. If the resonance frequencies in the X and Y directions are the same or have a constant multiple relationship, the vibration trajectory is an elliptical or Lissajous figure constant trajectory.
  • Conventional MEMS (Micro Electro Mechanical Systems) sensors that use one-dimensional reciprocating motion may cause inaccuracies in the detection of external force due to the reciprocating motion, which causes the speed of the movable electrode to be zero. .
  • FIGS. 5 and 6 are graphs in which the analysis results shown in FIGS. 3 and 4 are overlaid with the experimental results performed under the same conditions as the analysis.
  • the solid line La is the same admittance curve as that in FIG. 3, and the white squares Pa are measured values of admittance.
  • the broken line Lx and the solid line Ly show the same resonance point transition as in FIG. 4, the black square Px is an actual measurement value of the resonance point in the X direction, and the white square Py is a resonance point in the Y direction. Is an actual measurement value.
  • the experimental results regarding the admittance curve and the DC bias dependency of the resonance points in the X and Y directions agree very well with the analysis results.
  • the distance between the fixed comb tooth portion 12a and the movable comb tooth portion 20a differs between the left and right sides of the adjacent fixed comb tooth portions 12a and the movable comb tooth portions 20a inserted therebetween. Therefore, when the movable electrode 20 is vibrated at a predetermined resonance frequency, the electrical characteristics (admittance) between the fixed electrode 10 and the movable electrode 20 change greatly when an external force is applied. Therefore, the external force can be detected with high sensitivity by detecting this change. Also, the configuration of the external force detection sensor 1 is simplified.
  • the external force detection sensor 1 can detect the external force applied in the arrangement direction with particularly high sensitivity, and the movable comb teeth 20a.
  • the external force applied in the stretching direction can be detected with particularly high sensitivity.
  • the vertical axis and horizontal axis of this graph are voltage sensitivity (V / N) and frequency (Hz), respectively.
  • the rhombus mark Mx in the graph indicates voltage sensitivity (output voltage value of the impedance analyzer) when an external force is applied in the extending direction (X direction) of the movable comb tooth portion 20a, and the square mark My indicates the movable comb tooth portion 20a.
  • the voltage sensitivity when an external force is applied in the arrangement direction (Y direction) is shown.
  • the area surrounded by the broken line Ax indicates the vicinity of the resonance point (resonance point in the X direction) where the movable electrode 20 vibrates in the X direction, and the area surrounded by the broken line Ay indicates a resonance point (where the movable electrode 20 vibrates in the Y direction).
  • the vicinity of the resonance point in the Y direction is shown.
  • the direct current bias E 0 is 5V.
  • the external force detection sensor 1 can detect the external forces in the X direction and the Y direction with high sensitivity at the resonance points in the X direction and the Y direction.
  • the external force detection sensor 1 can detect the external force applied in the Y direction with high sensitivity in the vicinity of the resonance point Ay in the Y direction, and is very sensitive to the external force applied in the X direction in the vicinity of the resonance point Ax in the X direction. It can be detected well. Therefore, the direction of the external force to be detected can be detected with high sensitivity by switching the resonance frequency of the power source 3.
  • the movable electrode 20 is vibrated with an electrostatic force in which the first resonance frequency for vibrating the movable electrode 20 in the Y direction and the second resonance frequency for vibrating the movable electrode 20 in the X direction are superimposed,
  • the external force applied in the X direction or the Y direction can be detected with high sensitivity without frequency switching by the power source 3.
  • the external force detection sensor 1 detects an external force in the X direction and the Y direction (two-dimensional space), but may detect an external force in the X, Y, and Z directions (three-dimensional space).
  • the Z direction is a direction orthogonal to the extending direction and the arrangement direction of the fixed comb teeth (or movable comb teeth). In this case, for the adjacent fixed comb teeth and the movable comb teeth inserted between them, the interval between the one fixed comb teeth and the movable comb teeth, and the other fixed comb teeth and the movable comb teeth. And the lengths of the fixed comb-tooth portion and the movable comb-tooth portion are different in the Z direction.
  • the external force in the X and Y directions can be detected with high sensitivity, and the external force in the Z direction. Can be detected with particularly high sensitivity.
  • the detection sensor according to the present invention is applied to the external force detection sensor, but the present invention may be applied to a sensor that detects acceleration.
  • a contact sensor that detects an external force from the probe by attaching a probe to the movable electrode of the detection sensor according to the present invention.
  • a contact sensor can be used, for example, as a probe of an atomic force microscope (AFM).
  • SYMBOLS 1 External force detection sensor, 2 ... Comb electrode, 3 ... Power supply, 4 ... Detection part (detection means), 10 ... Fixed electrode, 12a ... Fixed comb tooth part, 20 ... Movable electrode, 20a ... Movable comb tooth part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)
  • Gyroscopes (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

【課題】簡易な構成で外力または加速度を感度良く検知することを目的とする。 【解決手段】外力検知センサ1は、複数の固定櫛歯部12aを有する固定電極10と、固定櫛歯部12a間に挿入された可動櫛歯部20aを複数有する可動電極20とを有する櫛歯電極2と、可動電極20を固定電極10に対する静電力により所定の共振周波数で振動させるために固定電極10と可動電極20とに接続される電源3と、可動電極20を振動させたときの固定電極10と可動電極20との間の電気特性の変化に基づいて外力を検知する検知部4と、を備え、隣り合う固定櫛歯部12a及びその間に挿入された可動櫛歯部20aについて、一方の固定櫛歯部12aと可動櫛歯部20aとの間隔が、他方の固定櫛歯部12aと可動櫛歯部20aとの間隔と異なる。

Description

検知センサ
 本発明は、外力または加速度を検知する検知センサに関する。
 外力または加速度を検知するセンサとして、例えば加速度センサや変位センサが挙げられる。このうち、加速度センサに関しては、可動マスの静的な変位を容量変化あるいは歪み抵抗方式で検知する手法が一般的である。例えば、下記特許文献1には、静電容量の変化により変位を検知する加速度センサが開示されている。
特開平10-206457号公報
 しかしながら、静電アクチュエータにより静電容量変化を検知する場合には感度を向上させるための工夫が必要であり、歪み抵抗方式は装置の複雑化を招きやすい。
 本発明は、上記課題を解決するためになされたものであり、簡易な構成で外力または加速度を感度良く検知することが可能な検知センサを提供することを目的とする。
 本発明の検知センサは、複数の固定櫛歯部を有する固定電極と、固定櫛歯部間に挿入された可動櫛歯部を複数有する可動電極とを含む櫛歯電極と、可動電極を固定電極に対する静電力により所定の共振周波数で振動させるために固定電極と可動電極とに接続される電源と、可動電極を振動させたときの固定電極と可動電極との間の電気特性の変化に基づいて外力または加速度を検知する検知手段と、を備え、隣り合う固定櫛歯部及びその間に挿入された可動櫛歯部について、一方の固定櫛歯部と該可動櫛歯部との間隔が、他方の固定櫛歯部と該可動櫛歯部との間隔と異なる。
 このような検知センサによれば、隣り合う固定櫛歯部とその間に挿入された可動櫛歯部について固定櫛歯部と可動櫛歯部との間隔が左右で異なるので、所定の共振周波数の静電力で可動電極を振動させると、外力が加えられたときに、固定電極と可動電極との間の電気特性が大きく変化する。したがって、この変化を検知することで外力または加速度を感度良く検知できる。また、装置の構成も簡単になる。
 本発明の検知センサでは、電源が、可動電極を可動櫛歯部の配列方向に振動させる共振周波数の電力を与えることが好ましい。
 この場合、可動櫛歯部の配列方向に可動電極が振動するので、その配列方向に加えられた外力または加速度を特に感度良く検知できる。
 本発明の検知センサでは、電源が、可動電極を可動櫛歯部の延伸方向に振動させる共振周波数の電力を与えることが好ましい。
 この場合、可動櫛歯部の延伸方向に可動電極が振動するので、その延伸方向に加えられた外力または加速度を特に感度良く検知できる。
 本発明の検知センサでは、電源が、所定の周波数を、可動櫛歯部の配列方向に振動させる第1の共振周波数と可動櫛歯部の延伸方向に振動させる第2の共振周波数との間で切り替えることで可動電極の振動方向を変更し、可動電極が、第1の共振周波数では可動櫛歯部の配列方向に振動し、第2の共振周波数では可動櫛歯部の延伸方向に振動することが好ましい。
 この場合、可動櫛歯部の配列方向に可動電極が振動した場合にはその配列方向に加えられた外力または加速度を特に感度良く検知でき、可動櫛歯部の延伸方向に可動電極が振動した場合にはその延伸方向に加えられた外力または加速度を特に感度良く検知できる。そして、電源が共振周波数を切り替えることで可動電極の振動方向が変更されるので、検知したい外力または加速度の方向に応じて共振周波数を切り替えるだけで、外力または加速度を高感度に検知できる。
 本発明の検知センサでは、電源が、可動電極を可動櫛歯部の配列方向に振動させる第1の共振周波数と、可動電極を可動櫛歯部の延伸方向に振動させる第2の共振周波数とを重畳した信号を発生することが好ましい。
 この場合、可動電極を可動櫛歯部の配列方向に共振周波数で振動させ、可動電極を可動櫛歯部の延伸方向に共振周波数で振動させる。この場合、可動櫛歯部の配列方向と延伸方向とでは外力または加速度によって変化する共振周波数が各々異なるので、周波数切替を行わなくても、各方向の外力または加速度を別個に高感度に検知できる。
 本発明の検知センサでは、固定櫛歯部の延伸方向及び配列方向と直交する方向における該固定櫛歯部の長さと、可動櫛歯部の延伸方向及び配列方向と直交する方向における該可動櫛歯部の長さとが異なり、電源が、可動電極を可動櫛歯部の延伸方向及び配列方向と直交する方向に振動させる共振周波数の電力を与えることが好ましい。
 この場合、固定櫛歯部の延伸方向及び配列方向と直交する方向(高さ方向)における該固定櫛歯部の長さと、可動櫛歯部の延伸方向及び配列方向と直交する方向(高さ方向)における該可動櫛歯部の長さとが異なるので、所定の共振周波数で可動電極を振動させたときの、固定電極と可動電極との間の電気特性を取得することで、高さ方向についても外力または加速度を検知できる。
 本発明の検知センサでは、電源が、共振周波数となる信号に直流バイアス信号を重畳して発生することが好ましい。
 このような検知センサによれば、固定櫛歯部と可動櫛歯部との間隔を左右で異ならせることで、可動電極に共振周波数の静電力を与えた際の固定電極と可動電極との間の電気特性の変化により外力または加速度を検知できる。その結果、簡易な構成で外力または加速度を感度良く検知できる。
実施形態に係る外力検知センサの全体構成を模式的に示す斜視図である。 (a)~(c)は可動電極の振動の様子を示す写真である。 アドミタンスと周波数との関係を示すグラフである。 共振周波数と直流バイアスとの関係を示すグラフである。 アドミタンスカーブの解析値と実測値との比較を示すグラフである。 共振周波数の直流バイアス依存性に関する、解析値と実測値との比較を示すグラフである。 共振周波数と電圧感度との関係を示すグラフである。
 以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。本実施形態では、本発明に係る検知センサを外力検知センサに適用する。なお、図面の説明において同一又は同等の要素には同一の符号を付し、重複する説明を省略する。
 図1は実施形態に係る外力検知センサの全体構成を模式的に示す斜視図である。図2(a)~(c)は可動電極の振動の様子を示す写真である。図3はアドミタンスと周波数との関係を示すグラフである。図4は共振点と直流バイアスとの関係を示すグラフである。図5はアドミタンスカーブの解析値と実測値との比較を示すグラフである。図6は、共振点の直流バイアス依存性に関する、解析値と実測値との比較を示すグラフである。図7は共振点と電圧感度との関係を示すグラフである。
 外力検知センサ1は、櫛歯電極2、電源3及び検知部(検知手段)4を備えている。櫛歯電極2は、固定電極10及び可動電極20を有している。
 固定電極10は、下部シリコン層11と、上部シリコン層12と、これら上下のシリコン層に挟まれた絶縁層13とを含んで構成されている。上部シリコン層12は、凸状に突き出た固定櫛歯部12aを複数有している。
 可動電極20はシリコンにより形成されており、弾性支持部21により支持されている。可動電極20は凸状に突き出た可動櫛歯部20aを複数有している。可動櫛歯部20aは、隣り合う固定櫛歯部12aの間に挿入されるように配置されている。すなわち、固定電極10の固定櫛歯部12aと可動電極20の可動櫛歯部20aとは、一定の隙間をおいて噛み合うように配置されている。その結果、固定電極10(上部シリコン層12)と可動電極20とは対向している。
 隣り合う固定櫛歯部12a及びその間に挿入された可動櫛歯部20aについてみると、一方の固定櫛歯部12aと可動櫛歯部20aとの間隔(図1におけるY)は、他方の固定櫛歯部12aと可動櫛歯部20aとの間隔(図1におけるY)とは異なっている。
 電源3は、固定電極10に対して可動電極20を振動させるための装置であり、交流電源31、直流電源32及び抵抗部33を含んで構成されている。電源3は、固定電極10と可動電極20とに接続されている。直流電源32によりバイアス電圧が固定電極10と可動電極20との間に印加され、交流電源31により交流電圧が重畳して印加されることで、固定電極10に対して可動電極20が振動する。電源3は、所定の共振周波数の静電力で可動電極20を特定の方向に振動させる。
 電源3による可動電極20の振動の様子を図2に示す。図2(a)は可動電極20がまだ振動していない状態の写真である。図2(b)は、或る特定の共振周波数(第2周波数)が与えられたことで可動櫛歯部20a(可動電極20)がX方向に振動している状態の写真である。図2(c)は、第2周波数とは異なる特定の共振周波数(第1の共振周波数)が与えられたことで可動櫛歯部20a(可動電極20)がY方向に振動している状態の写真である。ここで、X方向とは、固定櫛歯部12a及び可動櫛歯部20aの延伸方向であり、Y方向とは、固定櫛歯部12a及び可動櫛歯部20aの配列方向である。このように、電源3は共振周波数を切り替えることで可動電極20の振動方向を変更する。
 電源3は、可動電極20をY方向に振動させる第1の共振周波数と、可動電極20をX方向に振動させる第2の共振周波数とが重畳した信号の静電力で可動電極20を振動させてもよい。この場合、可動電極20は対角線方向に振動する。
 検知部4は、可動電極20を所定の共振周波数で振動させたときの固定電極10と可動電極20との間の電気特性の変化に基づいて外力を検知する部分である。なお、図1では、検知部4は固定電極10及び可動電極20と接続されているが、抵抗部33の両端に接続されてもよいし、電源3の両端に接続されてもよい。また、電源3と検知部4とを直列に接続してもよい。
 ここで、検知部4による外力検知の原理を説明する。X方向及びY方向を上述のように決めた場合には、直流電圧E及び交流電圧eの印加によって振動する外力検知センサ1のラグラジアンは下記式(1)で示される。
Figure JPOXMLDOC01-appb-M000001
 ここで、X,Yは、直流電圧Eの印加による、可動櫛歯部20aのX,Y方向への変位量である。x,yは、交流電圧eの印加による、可動櫛歯部20aのX,Y方向への変位量である。v,vは、それぞれX方向、Y方向への移動速度である。mは可動電極20の質量である。k,kは、それぞれ可動電極20を支える弾性支持部21のX方向、Y方向のばね定数である。C(x,y)は、固定電極10と可動電極20との間の静電容量であり、Cは下部シリコン層11と上部シリコン層12との間の浮遊容量である。また、Q,qは、それぞれ直流電圧、交流電圧の印加による電荷量を示す値である。
 固定櫛歯部12a及び可動櫛歯部20aの本数(櫛歯の本数)をn、各櫛歯部の高さ(図1における上下方向の長さ)をbとすると、静電容量C(x,y)は下記式(2)で示される。なお、εは真空の誘電率である。また、XはX方向に沿った固定櫛歯部12aと可動櫛歯部20aとの初期間隔(振動がないときの間隔)である。更に、Yは、隣り合う固定櫛歯部12a及びその間に挿入された可動櫛歯部20aにおける一方の固定櫛歯部12aと可動櫛歯部20aとの初期間隔であり、Yは他方の固定櫛歯部12aと可動櫛歯部20aとの初期間隔である。
Figure JPOXMLDOC01-appb-M000002
 また、系のエネルギー散逸関数Fは、電流i及び速度v,vの関数として次式(3)で与えられる。なお、r,Rは、それぞれ機械抵抗、電気抵抗である。
Figure JPOXMLDOC01-appb-M000003
 機械座標系(X方向及びY方向)、及び電気座標系についてのラグランジュ運動方程式は、上記式(1)、(2)を用いて次のように表される。ここで、f,fは、それぞれ外力のX成分、Y成分である。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上記ラグランジュ運動方程式(4)~(6)を計算すると、外力検知センサ1の動作を表す下記運動方程式(7)~(9)が得られる。なお、式(9)におけるEは直流バイアスである。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 ここで、変位x,y及び交流電圧eが充分小さいと仮定して角周波数ωでの定常状態を考えると、上記式(7)~(9)をテイラー展開してその1次項をとることにより、次の連立式(10)が得られる。
Figure JPOXMLDOC01-appb-M000010
 ここで、Cはe=0での静電容量であり、次式(11)で与えられる。
Figure JPOXMLDOC01-appb-M000011
 また、D,B,G,C”はそれぞれ下記式(12)~(15)で与えられる。D,BはそれぞれX方向、Y方向の電気機械結合係数であり、GはX方向-Y方向の機械振動の相互作用係数である。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 式(11)~(15)中のX,Yは、上述したように、直流電圧Eの印加による、可動櫛歯部20aのX,Y方向への変位量であるが、これは、式(7)~(9)のテイラー展開の0次項として得られる下記連立方程式(16)、(17)から導くことができる。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 上記式(10)においてf=f=0とした場合(外力を0とした場合)の、電気系からみたアドミタンスカーブLaを図3に示す。図3のグラフの縦軸、横軸は、それぞれアドミタンス(S)、周波数(Hz)である。図3のアドミタンスカーブLaは、各パラメータを以下のように設定したときの解析結果である。
 可動電極20の質量m=1.9×10-6(Kg)
 X方向ばね定数k=111(N/m)
 Y方向ばね定数k=51(N/m)
 櫛歯の本数n=1070(本)
 X方向における固定櫛歯部12aと可動櫛歯部20aとの重なりX=10(um)
 隣り合う固定櫛歯部12a及びその間に挿入された可動櫛歯部20aに関する、Y方向における一方の固定櫛歯部12aと可動櫛歯部20aとの間隔Y=2.5(um)
 隣り合う固定櫛歯部12a及びその間に挿入された可動櫛歯部20aに関する、Y方向における他方の固定櫛歯部12aと可動櫛歯部20aとの間隔Y=3.0(um)
 X方向の機械抵抗r=4.0×10-5(Ns/m)
 Y方向の機械抵抗r=1.0×10-6(Ns/m)
 浮遊容量C=4.65(pF)
 直流バイアスE=3V
 図3に示すように、櫛歯電極2は二つの共振点(共振周波数)R1及びR2を持っている。ここで、R1は可動電極20がY方向に振動する共振点(第1の共振周波数、以下では「Y方向の共振点」ともいう)であり、R2は可動電極20がX方向に振動する共振点(第2の共振周波数、以下では「X方向の共振点」ともいう)である。上記式(10)~(14)においてY=Y且つY=0とすると、B及びGが0となり、X,Y両方向の機械結合及びY方向の電気機械結合は生じないことになる。このことから、Y方向の共振の発生は、YとYとが異なることにより励起するといえる。
 したがって、所定の共振周波数で可動電極20を可動櫛歯部20aの延伸方向(X方向)又は可動櫛歯部20aの配列方向(Y方向)に振動させ、アドミタンスの変化を計測することで外力を検知できる。このために、検知部4は、アドミタンスを検知して位相の変化を測定するインピーダンスアナライザと、上記理論を適用した演算プログラムが組み込まれた演算装置を備えている。検知部4は、検知されたアドミタンスを演算装置に入力することで、外力の方向を算出し、算出結果を表示装置や他の演算装置(共に図示せず)に出力する。
 ところで、図3に示したY方向の共振点は直流バイアスEに依存する。この依存関係を図4に示す。図4のグラフの左縦軸、右縦軸及び横軸は、それぞれX方向の共振周波数(Hz)、Y方向の共振周波数(Hz)、直流バイアス(V)である。また、グラフ内の破線LxはX方向の共振点の推移を示し、実線LyはY方向の共振点の推移を示している。Y方向の共振点は直流バイアスEの減少と共に増大する傾向にあり、E=0、すなわちY方向のばね-質量系で決まる自由共振周波数に漸近している。一方、X方向の共振点には顕著な直流バイアス依存性は認められない。
 Y方向の直流バイアス依存性は、平行平板アクチュエータの特性に類似している。平行平板アクチュエータでは、二つの平行平板が引き合う力は平板間の間隔が小さくなると増大するため、電気系からみたイミタンスの共振周波数は直流バイアスを大きくすると小さくなることが知られている。櫛歯電極2のY方向の共振点も、これと同様の原理により、直流バイアスの増加と共に減少していくと考えられる。一方、X方向の共振点が直流バイアスにより変化しないのは、X方向の変位に対して固定電極10及び可動電極20の引き合う力が変化しないためである。
 このように、X方向の共振周波数は直流バイアスにほとんど依存しないが、Y方向の共振周波数は直流バイアスに依存する。したがって、直流バイアスを変化させることにより、X方向とY方向とで共振周波数を一致させたり、X及びY方向の共振周波数について一方を他方の定数倍にしたりすることができる。X及びY方向の共振周波数を同一または定数倍の関係にすれば、振動の軌道は楕円もしくはリサージュ図形状の定軌道となる。従来の一次元の往復運動を利用したMEMS(Micro Electro Mechanical Systems)センサは、往復運動であるが故に可動電極の速度がゼロになる点があり外力の検知に不正確さを生じることがあった。これに対しこの実施形態を採用すれば、可動電極20は常に運動しているので速度がゼロになる点が無く、よって効果的に外力を検知できる。この実施形態は、特にMEMSセンサをジャイロセンサとして用いたときに効果的である。
 図5,6は、図3,4で示す解析結果に、解析と同様の条件で行った実験結果を重ね合わせたグラフである。図5に関して、実線Laは図3と同じアドミタンスカーブであり、白抜き四角印Paはアドミタンスの実測値である。また、図6に関して、破線Lx及び実線Lyは図4と同じ共振点推移を示し、黒塗り四角印PxはX方向の共振点の実測値であり、白抜き四角印PyはY方向の共振点の実測値である。図5,6に示すように、アドミタンスカーブ、及びX,Y方向の共振点の直流バイアス依存性に関する実験結果は、解析結果と非常に良く一致している。
 以上説明したように、本実施形態によれば、隣り合う固定櫛歯部12aとその間に挿入された可動櫛歯部20aについて固定櫛歯部12aと可動櫛歯部20aとの間隔が左右で異なるので、所定の共振周波数で可動電極20を振動させると、外力が加えられたときに固定電極10と可動電極20との間の電気特性(アドミタンス)が大きく変化する。したがって、この変化を検知することで外力を感度良く検知できる。また、外力検知センサ1の構成も簡単になる。
 また、外力検知センサ1は、可動櫛歯部20aの配列方向(Y方向)に可動電極20が振動した場合にはその配列方向に加えられた外力を特に感度良く検知でき、可動櫛歯部20aの延伸方向(X方向)に可動電極20が振動した場合にはその延伸方向に加えられた外力を特に感度良く検知できる。
 このことを図7のグラフで示す。このグラフの縦軸及び横軸はそれぞれ電圧感度(V/N)、周波数(Hz)である。グラフ中の菱形印Mxは可動櫛歯部20aの延伸方向(X方向)に外力が加えられた場合の電圧感度(インピーダンスアナライザの出力電圧値)を示し、正方形印Myは可動櫛歯部20aの配列方向(Y方向)に外力が加えられた場合の電圧感度を示す。破線Axで囲んだエリアは、可動電極20がX方向に振動する共振点(X方向の共振点)付近を示し、破線Ayで囲んだエリアは、可動電極20がY方向に振動する共振点(Y方向の共振点)付近を示している。なお、直流バイアスEは5Vである。
 図7から明らかなように、外力検知センサ1は、X方向及びY方向の共振点において、X方向及びY方向の外力を感度良く検知することができる。特に、外力検知センサ1は、Y方向の共振点付近AyではY方向に加えられた外力を非常に感度良く検知でき、X方向の共振点付近AxにおいてX方向に加えられた外力を非常に感度良く検知できる。したがって、電源3の共振周波数の切替により、検知したい外力の方向を高感度に検知できる。また、可動電極20をY方向に振動させる第1の共振周波数と、可動電極20をX方向に振動させる第2の共振周波数とを重畳した静電力で可動電極20を振動させた場合には、電源3による周波数切替をすることなく、X方向又はY方向に加えられた外力を高感度に検知できる。
 X方向とY方向とで共振周波数を少しだけずらしてX方向の共振運動を発生させた場合には、Y方向の変位があると急激にY方向の振幅が大きくなる。これを利用すれば、Y方向の検知感度が高いセンサを実現できる。
 以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で以下のような様々な変形が可能である。
 上記実施形態では、外力検知センサ1は、X方向及びY方向(二次元空間)における外力を検知したが、X,Y,Z方向(三次元空間)における外力を検知してもよい。ここで、Z方向とは、固定櫛歯部(又は可動櫛歯部)の延伸方向及び配列方向と直交する方向である。この場合には、隣り合う固定櫛歯部及びその間に挿入された可動櫛歯部について、一方の固定櫛歯部と可動櫛歯部との間隔と、他方の固定櫛歯部と可動櫛歯部との間隔とを異ならせると共に、Z方向において固定櫛歯部と可動櫛歯部とで長さを異ならせる。そして、X方向及びY方向の共振点と異なる共振周波数(第3の共振周波数)で可動電極をZ方向に振動させることで、X,Y方向の外力を感度良く検知すると共に、Z方向の外力を特に感度良く検知することが可能になる。
 上記実施形態では本発明に係る検知センサを外力検知センサに適用したが、加速度を検知するセンサに本発明を適用してもよい。
 本発明に係る検知センサの可動電極にプローブを付けて、プローブからの外力を検知する接触センサを実現することも可能である。このような接触センサは、例えば原子間力顕微鏡(Atomic Force Microscope:AFM)のプローブとして用いることができる。
 1…外力検知センサ、2…櫛歯電極、3…電源、4…検知部(検知手段)、10…固定電極、12a…固定櫛歯部、20…可動電極、20a…可動櫛歯部。

Claims (7)

  1.  複数の固定櫛歯部を有する固定電極と、前記固定櫛歯部間に挿入された可動櫛歯部を複数有する可動電極とを含む櫛歯電極と、
     前記可動電極を前記固定電極に対する静電力により所定の共振周波数で振動させるために前記固定電極と前記可動電極とに接続される電源と、
     前記可動電極を振動させたときの前記固定電極と前記可動電極との間の電気特性の変化に基づいて外力または加速度を検知する検知手段と、
    を備え、
     隣り合う前記固定櫛歯部及びその間に挿入された前記可動櫛歯部について、一方の固定櫛歯部と該可動櫛歯部との間隔が、他方の固定櫛歯部と該可動櫛歯部との間隔と異なる、
    検知センサ。
  2.  前記電源が、前記可動電極を前記可動櫛歯部の配列方向に振動させる共振周波数の電力を与える、
    請求項1に記載の検知センサ。
  3.  前記電源が、前記可動電極を前記可動櫛歯部の延伸方向に振動させる共振周波数の電力を与える、
    請求項1に記載の検知センサ。
  4.  前記電源が、前記所定の周波数を、前記可動櫛歯部の配列方向に振動させる第1の共振周波数と前記可動櫛歯部の延伸方向に振動させる第2の共振周波数との間で切り替えることで前記可動電極の振動方向を変更し、
     前記可動電極が、前記第1の共振周波数では前記可動櫛歯部の配列方向に振動し、前記第2の共振周波数では前記可動櫛歯部の延伸方向に振動する、
    請求項1に記載の検知センサ。
  5.  前記電源が、前記可動電極を前記可動櫛歯部の配列方向に振動させる第1の共振周波数と、前記可動電極を前記可動櫛歯部の延伸方向に振動させる第2の共振周波数とを重畳した信号を発生する、
    請求項1に記載の検知センサ。
  6.  前記固定櫛歯部の延伸方向及び配列方向と直交する方向における該固定櫛歯部の長さと、前記可動櫛歯部の延伸方向及び配列方向と直交する方向における該可動櫛歯部の長さとが異なり、
     前記電源が、前記可動電極を前記可動櫛歯部の延伸方向及び配列方向と直交する方向に振動させる共振周波数の電力を与える、
    請求項1~5のいずれか一項に記載の検知センサ。
  7.  前記電源が、前記共振周波数となる信号に直流バイアス信号を重畳して発生する、
    請求項1~6のいずれか一項に記載の検知センサ。
PCT/JP2009/060364 2008-06-05 2009-06-05 検知センサ WO2009148156A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010515939A JP5024803B2 (ja) 2008-06-05 2009-06-05 検知センサ
US12/996,270 US8770043B2 (en) 2008-06-05 2009-06-05 Comb-structured MEMS accelerometer
CN2009801208610A CN102057264B (zh) 2008-06-05 2009-06-05 检测传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-148657 2008-06-05
JP2008148657 2008-06-05

Publications (1)

Publication Number Publication Date
WO2009148156A1 true WO2009148156A1 (ja) 2009-12-10

Family

ID=41398229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060364 WO2009148156A1 (ja) 2008-06-05 2009-06-05 検知センサ

Country Status (4)

Country Link
US (1) US8770043B2 (ja)
JP (1) JP5024803B2 (ja)
CN (1) CN102057264B (ja)
WO (1) WO2009148156A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195601A (zh) * 2010-03-12 2011-09-21 精工爱普生株式会社 振动片、振子、传感器以及电子设备
JP2011185828A (ja) * 2010-03-10 2011-09-22 Fuji Electric Co Ltd 加速度センサ
JP2012173164A (ja) * 2011-02-22 2012-09-10 Yokogawa Electric Corp 振動式トランスデューサとその製造方法
JP2015208160A (ja) * 2014-04-22 2015-11-19 国立大学法人静岡大学 静電アクチュエータ及び電位差検出装置
CN114422923A (zh) * 2022-03-29 2022-04-29 之江实验室 谐振式mems麦克风、声学成像仪和光声光谱检测仪

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5391579B2 (ja) * 2008-05-15 2014-01-15 船井電機株式会社 振動素子
DE102017205979A1 (de) * 2017-04-07 2018-10-11 Robert Bosch Gmbh Mikromechanischer kapazitiver Sensor
US11275099B1 (en) * 2018-07-20 2022-03-15 Hrl Laboratories, Llc Navigational grade resonant MicroElectroMechanical Systems (mems) accelerometer and method of operation
CN114383762B (zh) * 2022-01-11 2022-12-27 西安交通大学 基于多梳齿阵列的mems电容式微力传感器及去耦合测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979921A (ja) * 1995-09-11 1997-03-28 Nissan Motor Co Ltd 力学量センサ
JPH10153429A (ja) * 1996-11-22 1998-06-09 Murata Mfg Co Ltd 小型電子部品およびその製造方法
JP2000131072A (ja) * 1998-10-23 2000-05-12 Toyota Motor Corp 容量変化検出回路装置
JP2002039759A (ja) * 2000-07-26 2002-02-06 Denso Corp 半導体角速度センサ
JP2002323323A (ja) * 2001-04-25 2002-11-08 Mitsubishi Electric Corp 角速度センサ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209117A (en) * 1990-10-22 1993-05-11 Motorola, Inc. Tapered cantilever beam for sensors
US5606214A (en) * 1995-08-31 1997-02-25 The United States Of America As Represented By The Secretary Of The Navy Smart actuator for active surface control
US5948981A (en) * 1996-05-21 1999-09-07 Alliedsignal Inc. Vibrating beam accelerometer
JPH10206457A (ja) 1997-01-22 1998-08-07 Hitachi Ltd 静電容量式加速度センサ及びその製造方法
JP3606164B2 (ja) * 2000-06-02 2005-01-05 株式会社村田製作所 静電容量型外力検出装置
KR20040010746A (ko) * 2001-06-18 2004-01-31 허니웰 인터내셔널 인코포레이티드 소형의 고 커패시턴스 판독 실리콘 베이스의 미세 가공된전자기계적 센서 가속도 측정장치
US6792804B2 (en) * 2001-10-19 2004-09-21 Kionix, Inc. Sensor for measuring out-of-plane acceleration
US7243545B2 (en) * 2003-03-20 2007-07-17 Denso Corporation Physical quantity sensor having spring
CN1273835C (zh) 2003-08-05 2006-09-06 北京大学 一种高灵敏度谐振加速度计芯片
US6874363B1 (en) * 2003-10-31 2005-04-05 Honeywell International, Inc. Trapped charge field bias vibrating beam accelerometer
KR100513346B1 (ko) * 2003-12-20 2005-09-07 삼성전기주식회사 보정전극을 갖는 정전용량형 가속도계
US7556775B2 (en) * 2004-05-25 2009-07-07 The United States Of America As Represented By The Secretary Of The Navy Microelectro-mechanical chemical sensor
JP4591000B2 (ja) * 2004-09-16 2010-12-01 株式会社デンソー 半導体力学量センサおよびその製造方法
US7559242B2 (en) * 2005-03-31 2009-07-14 Intel Corporation Silicon micromachined ultra-sensitive vibration spectrum sensor array (VSSA)
JP4310325B2 (ja) * 2006-05-24 2009-08-05 日立金属株式会社 角速度センサ
US7849745B2 (en) * 2007-09-26 2010-12-14 Intel Corporation Ultra-low noise MEMS piezoelectric accelerometers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979921A (ja) * 1995-09-11 1997-03-28 Nissan Motor Co Ltd 力学量センサ
JPH10153429A (ja) * 1996-11-22 1998-06-09 Murata Mfg Co Ltd 小型電子部品およびその製造方法
JP2000131072A (ja) * 1998-10-23 2000-05-12 Toyota Motor Corp 容量変化検出回路装置
JP2002039759A (ja) * 2000-07-26 2002-02-06 Denso Corp 半導体角速度センサ
JP2002323323A (ja) * 2001-04-25 2002-11-08 Mitsubishi Electric Corp 角速度センサ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185828A (ja) * 2010-03-10 2011-09-22 Fuji Electric Co Ltd 加速度センサ
CN102195601A (zh) * 2010-03-12 2011-09-21 精工爱普生株式会社 振动片、振子、传感器以及电子设备
JP2012173164A (ja) * 2011-02-22 2012-09-10 Yokogawa Electric Corp 振動式トランスデューサとその製造方法
JP2015208160A (ja) * 2014-04-22 2015-11-19 国立大学法人静岡大学 静電アクチュエータ及び電位差検出装置
CN114422923A (zh) * 2022-03-29 2022-04-29 之江实验室 谐振式mems麦克风、声学成像仪和光声光谱检测仪
CN114422923B (zh) * 2022-03-29 2022-12-02 之江实验室 谐振式mems麦克风、声学成像仪和光声光谱检测仪

Also Published As

Publication number Publication date
JPWO2009148156A1 (ja) 2011-11-04
US20110138931A1 (en) 2011-06-16
CN102057264A (zh) 2011-05-11
CN102057264B (zh) 2013-01-16
US8770043B2 (en) 2014-07-08
JP5024803B2 (ja) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5024803B2 (ja) 検知センサ
JP5615967B2 (ja) 水平に向けられた駆動電極を有するmemsジャイロスコープ
JP6191151B2 (ja) 物理量センサ
CN108450009A (zh) 多轴共振加速度计
CN1886669A (zh) 共振磁强计设备
CN107003131B (zh) 用于微机电陀螺仪的正交补偿方法和陀螺仪传感器
JP2018514397A (ja) 微小電気機械静電容量型センサの構造体およびデバイス
WO2013094208A1 (ja) 振動型角速度センサ
JP4561820B2 (ja) 角速度センサ
JP6199574B2 (ja) 電圧センサ
Frangi et al. Optimization of sensing stators in capacitive MEMS operating at resonance
JP2004233088A (ja) 静電可動機構、共振型装置および角速度センサ
JP6627663B2 (ja) 物理量センサ
JP2019039784A (ja) 振動ジャイロ
Lu et al. Research on reference vibration for a two-axis piezoelectric micro-machined gyroscope
JP2009085729A (ja) センサ素子および物理センサ装置
Li et al. A microgyroscope with piezoresistance for both high-performance coriolis-effect detection and seesaw-like vibration control
CN113655300A (zh) 谐振式电场传感器及其制备方法
JP2013108929A (ja) 高精度化された振動型ジャイロ
Jeong et al. Dynamic analysis of a resonant comb-drive micro-actuator in linear and nonlinear regions
JP5193541B2 (ja) 角速度検出装置
JP4568997B2 (ja) 加加速度センサ
JP2020118603A (ja) 角速度センサ
JP2003194543A (ja) 角速度センサ
JP2011047852A (ja) 慣性センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120861.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515939

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12996270

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09758423

Country of ref document: EP

Kind code of ref document: A1