WO2009147950A1 - 車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置 - Google Patents

車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置 Download PDF

Info

Publication number
WO2009147950A1
WO2009147950A1 PCT/JP2009/059309 JP2009059309W WO2009147950A1 WO 2009147950 A1 WO2009147950 A1 WO 2009147950A1 JP 2009059309 W JP2009059309 W JP 2009059309W WO 2009147950 A1 WO2009147950 A1 WO 2009147950A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction element
pressure
engine
idle stop
control
Prior art date
Application number
PCT/JP2009/059309
Other languages
English (en)
French (fr)
Inventor
礼徳 仁平
古閑 雅人
松田 隆
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2010515826A priority Critical patent/JP5343968B2/ja
Priority to US12/994,349 priority patent/US8386138B2/en
Priority to CN2009801210841A priority patent/CN102057179B/zh
Priority to EP09758217.5A priority patent/EP2287488B1/en
Publication of WO2009147950A1 publication Critical patent/WO2009147950A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/504Relating the engine
    • F16D2500/5045Control of engine at idle, i.e. controlling engine idle conditions, e.g. idling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70406Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H2061/66286Control for optimising pump efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0436Pumps
    • F16H57/0439Pumps using multiple pumps with different power sources or a single pump with different power sources, e.g. one and the same pump may selectively be driven by either the engine or an electric motor

Definitions

  • the present invention relates to a vehicle including a transmission that transmits engine power to a drive wheel through a starting friction element under a shift, and performs the above-described shift with hydraulic pressure from an engine-driven oil pump during operation of the engine.
  • idle stop is performed to automatically stop the engine when the predetermined condition is met, and the start friction element is brought into a state immediately before the start of fastening by the hydraulic oil from the electric oil pump.
  • the engine stops the engine is restarted by releasing the idle stop, and when the idle pressure is released, the engine is ready for driving when the hydraulic pressure for shifting control is sufficiently high.
  • the fastening pressure control of the starting friction element at the time is executed in such a manner that the electric oil pump can be reduced in size.
  • the present invention relates to apparatus of the eye.
  • an idle stop control technique for automatically stopping an engine when a predetermined condition such as a stop state without a willingness to start at the time of stopping has been met.
  • This idle stop control technology automatically releases the engine by releasing the idle stop when the driver performs an operation that seems to be intended to start, such as releasing the brake pedal and changing the brake from the active state to the inactive state. Is restarted automatically.
  • the transmission is shift-controlled by hydraulic pressure from an engine-driven oil pump driven by the engine.
  • an engine-driven oil pump driven by the engine.
  • the hydraulic oil from the engine-driven oil pump can start fastening the starting friction element, so that the transmission can be brought into a power transmission-ready state promptly upon restart of the engine. Therefore, the engine torque that is rising due to the restart is not input to the transmission before it is in the power transmission enabled state (power transmission disabled state), which eliminates the problem of adversely affecting the durability of the transmission. can do.
  • the starting friction element fastening pressure control means is engaged when the hydraulic oil from the electric oil pump is used as a medium and the hydraulic oil from the engine drive oil pump is used as a medium.
  • a part of the hydraulic oil (pump discharge pressure) is drained according to the pressure command value to generate a starting frictional element fastening pressure corresponding to the command value.
  • the electric oil pump is provided in order to keep the transmission in a state immediately before the start of power transmission by operating the starting friction element in a state immediately before the start of engagement, and therefore the above engagement pressure command value is Therefore, it is determined to be the hydraulic pressure value achieved just before the start of starting the frictional element satisfying this requirement.
  • a part of the hydraulic fluid (pump discharge pressure) is drained in accordance with the engagement pressure command value set in the state hydraulic pressure value just before starting friction element engagement, and the starting friction for achieving the state immediately before starting friction element engagement is started.
  • the electric oil pump In order to create the element fastening pressure, the electric oil pump generates the starting frictional force at the state immediately before starting the fastening frictional element and generates hydraulic pressure in addition to the amount of hydraulic oil necessary to operate the starting frictional element to the state immediately before starting fastening.
  • the electric oil pump needs to be a small-sized pump electric oil pump with a pump capacity as small as possible due to installation space restrictions and cost restrictions.
  • the required capacity of the electric oil pump increases accordingly, and the electric oil pump The size of the oil pump is increased, and the electric oil pump cannot satisfy the demand for a small pump electric oil pump having a pump capacity as small as possible due to installation space restrictions and cost restrictions.
  • the present invention does not set the hydraulic pressure value achieved immediately before starting the frictional element engagement as the engagement pressure command value of the starting friction element, but instead sets the drain port opening of the clutch hydraulic control valve relative to the engagement pressure command value to normal control. Make it smaller. Specifically, if the maximum control value is set for the fastening pressure command value, In view of the fact that the drain is no longer necessary and the electric oil pump can be made into a small pump electric oil pump with a small pump capacity, this idea is embodied and the above problem can be solved.
  • An object of the present invention is to propose a fastening pressure control device for a starting friction element.
  • the fastening pressure control device for the starting friction element at the time of idle stop control is configured as described in claim 1.
  • this is an engine, a drive wheel, A transmission that transmits the power of the engine to the driving wheels through a starting friction element under a gear shift, and a transmission control of the transmission with hydraulic pressure from an engine oil pump driven by the engine during operation of the engine
  • idle stop is performed to automatically stop the engine when the predetermined conditions are met, and the hydraulic fluid from the electric oil pump is partially drained and generated by the starting frictional element engagement pressure control.
  • the start friction element is brought into the state immediately before the start of fastening by the fastening pressure, and when the predetermined condition is not met, the engine is restarted by releasing the idle stop, and the engine is put into a state corresponding to the driving operation. And a control unit.
  • the engagement pressure command value to the starting friction element engagement pressure control means is set to the maximum control value (that is, with respect to the clutch hydraulic pressure (engagement pressure) command value).
  • the drain port opening of the clutch hydraulic control valve is made smaller than in the normal control).
  • the fastening pressure command value to the starting friction element fastening pressure control means is set to the maximum control value during the operation of the idle stop control device.
  • the starting friction element fastening pressure control means does not drain the hydraulic oil from the electric oil pump when controlling the fastening pressure of the starting friction element. Therefore, the electric oil pump does not need to discharge hydraulic oil including the drain, and can be made into a small pump electric oil pump with a small pump capacity, and can sufficiently meet the restrictions on installation space and cost. .
  • FIG. 3 is a flowchart showing a start friction element engagement pressure control program for idle stop control executed by an engine automatic stop controller in FIG.
  • FIG. 3 is a time chart showing the operation of the starting friction element fastening pressure control for idle stop control according to FIG. 2 when the system is normal.
  • FIG. 3 is a time chart showing an operation when the start friction element engagement pressure control for idle stop control according to FIG. 2 is not performed when the electric oil pump of the system is out of order.
  • 3 is a time chart showing the operation of the starting friction element engagement pressure control for idle stop control according to FIG.
  • FIG. 2 is a flowchart showing a reference example of a control program for canceling an engine idle stop, which is executed by an engine automatic stop controller in FIG. FIG.
  • FIG. 9 is a time chart showing the operation when the engine idle stop release control according to FIG. 8 is not performed even though the starting friction element slips.
  • FIG. 9 is a time chart showing the operation of the engine idle stop release control according to FIG. 8 when the starting friction element is slipping.
  • FIG. 1 shows an embodiment of a starting frictional element engagement pressure control device at the time of idle stop control, which is configured for a vehicle with an idle stop control device equipped with a V-belt continuously variable transmission.
  • a V belt 3 is stretched between the primary pulley 1 and the secondary pulley 2 to constitute a transmission portion of the V belt type continuously variable transmission.
  • the primary pulley 1 is coupled to the engine E via a starting friction element F / E such as a forward clutch and reverse brake and a torque converter T / C in a forward / reverse switching mechanism (not shown), and rotates from the engine E.
  • Such a transmission V-belt continuously variable transmission has one V groove sheave surface (the left movable sheave surface in FIG. 1) of the opposed sheave surfaces forming the V groove of the secondary pulley 2 as the other fixed sheave surface.
  • the V groove width is reduced or increased by approaching or separating.
  • the V groove sheave surface (movable sheave surface) on the right side of the primary pulley 1 in FIG. 1 apart from or approaching the V groove sheave surface (fixed sheave surface) on the opposite side the V groove width is increased or decreased,
  • the continuously variable transmission is performed by continuously changing the winding arc diameter of the V belt 3 around the primary pulley 1 and the secondary pulley 2.
  • Shift control of the V-belt type continuously variable transmission is executed by adjusting the hydraulic pressure applied to the movable sheave surface of the secondary pulley 2,
  • the hydraulic oil from the engine drive oil pump 4 driven by the engine coupled to the primary pulley 1 to the line pressure oil passage 5 is used as a medium, and the shift control circuit 6 (electronic control unit and hydraulic control unit)
  • the gear shift control is performed as follows.
  • the engine-driven oil pump 4 is a non-reversible pump such as a rotary vane pump (a pump that does not cause the hydraulic oil in the oil passage 5 to flow down to the oil pan in the stopped state).
  • the driving state detection means 7 detects the engine throttle opening TVO and the vehicle speed VSP representing the driving state of the vehicle, and the shift control circuit 6 is based on these driving information by a regulator valve (not shown) inside.
  • the hydraulic oil from the oil pump 4 to the oil passage 5 is adjusted to the line pressure P L corresponding to the transmission input torque.
  • This line pressure P L corresponds to the hydraulic pressure for shift control in the present invention, and acts on the movable sheave surface of the primary pulley 1 via the primary pulley pressure oil passage 8, whereby the movable sheave surface of the primary pulley 1 is input to the transmission.
  • the thrust is applied to the fixed sheave surface with a thrust force corresponding to the torque, and the V-belt 3 is clamped between the sheave surfaces with a force corresponding to the transmission input torque.
  • the shift control circuit 6 further selects a target input speed (target) suitable for the current driving state from a planned shift map based on driving information such as the engine throttle opening TVO and the vehicle speed VSP detected by the driving state detecting means 7. Obtain the gear ratio. Then, the transmission control circuit 6 uses the line pressure P L in the oil passage 5 as a source pressure, and reduces the pressure to create a transmission control pressure Pc that achieves the target input rotational speed (target transmission ratio), This shift control pressure Pc is supplied to the secondary pulley 2 as a movable sheave surface pressing hydraulic pressure of the secondary pulley 2 through the shift control pressure oil passage 9.
  • the secondary pulley 2 has a V-belt between the sheave surfaces by the pressing force of the movable sheave surface by the hydraulic pressure and the spring force of a spring (not shown) with a secondary pulley that biases the movable sheave surface toward the fixed sheave surface.
  • the V-belt type continuously variable transmission is controlled to change its input rotational speed (transmission ratio) to the target input rotational speed (target transmission ratio).
  • the shift control pressure Pc also, as with the line pressure P L, corresponding to the speed change control hydraulic in the present invention.
  • the shift control pressure Pc is deviated from the hydraulic pressure necessary to achieve the target input rotation speed (target shift ratio) due to disturbances and the like, and there is a risk of hindering accurate shift control. Therefore, the following feedback control system is added. That is, a hydraulic pressure sensor 10 for detecting the movable sheave surface pressing hydraulic pressure of the secondary pulley 2 is provided, and the movable sheave surface pressing hydraulic pressure detected by the hydraulic sensor 10 is fed back to the shift control circuit 6.
  • the shift control circuit 6 determines how much the feedback of the movable sheave surface pressing hydraulic pressure of the secondary pulley 2 deviated from the command value of the shift control pressure Pc necessary to achieve the target input rotational speed (target gear ratio). And change the command value of the shift control pressure Pc so that this divergence is resolved, This ensures that the shift control pressure Pc does not deviate from the hydraulic pressure required to achieve the target input speed (target gear ratio), even when disturbances are received, and accurate shift control is continuously performed. To be able to.
  • the transmission control circuit 6 further reduces the line pressure P L by a part of its drain to produce a starting element fastening pressure Ps that controls the fastening of the starting friction element F / E, and this starting element fastening pressure Ps is used as the starting element fastening pressure oil. It is supplied to the starting friction element F / E via the road 15. Therefore, the shift control circuit 6 corresponds to the starting friction element fastening pressure control means in the present invention.
  • the starting element fastening pressure Ps is controlled to a value such that the starting friction element F / E is fastened with a torque capacity capable of transmitting the input torque to the primary pulley 1.
  • the engine E coupled to the primary pulley 1 is equipped with an idle stop control device for improving fuel efficiency, and is in a stop determination state in which the vehicle speed is less than a minute set vehicle speed for stop determination. It is assumed that the engine is automatically stopped (idle stop) when a predetermined condition is met such that the state continues for a set time without intention to start.
  • the stop determination state in which the vehicle speed is less than the minute setting vehicle speed for stop determination is set as the idle stop condition, so that the above-described idle stop is included when stopping. Needless to say, it also includes those performed during the low-speed traveling immediately before stopping.
  • the engine is automatically restarted when the driver performs an operation that seems to be intended to start, such as releasing the brake pedal and changing the brake from the active state to the inactive state. The cancellation shall be made.
  • the engine drive oil pump 4 discharges the hydraulic oil by restarting the engine with the release of the idle stop control, thereby generating the line pressure P L , the shift control pressure Pc, and the starting frictional element engagement pressure Ps, and the V belt.
  • the idle stop release control is performed to bring the vehicle drive system (engine) into the state corresponding to the driving operation during such a response delay, the engine torque that is increased thereby becomes the state before the power transmission is enabled (power transmission is impossible). This is input to the V-belt type continuously variable transmission (in the state), causing a problem that the durability of the transmission is adversely affected.
  • the electric oil pump 11 is operated instead of the engine drive oil pump 4, and the V-belt continuously variable transmission is brought into a state immediately before the start of power transmission as will be described later by the hydraulic oil from now on. Try to keep it.
  • the electric oil pump 11 is driven by a dedicated motor 12, and the dedicated motor 12 is a small one having a minimum output necessary for driving the electric oil pump 11.
  • the discharge port of the electric oil pump 11 is connected to the line pressure oil passage 5 by the electric oil pump oil passage 13, and is arranged in the electric oil pump oil passage 13 in a direction to prevent the oil flow from the line pressure oil passage 5.
  • the check valve 14 is inserted. The check valve 13, when the hydraulic oil is discharged from engine-driven oil pump 4, to prevent the hydraulic fluid leaks toward the oil pan via the electric oil pump 11, from not obtained to generate the line pressure P L Is for.
  • the transmission control circuit 6 uses the hydraulic oil from the electric oil pump 11 as a medium, and the transmission is placed in the transmission control oil path including the oil paths 5, 9, and 18 as follows.
  • the speed change control circuit 6 constituting the starting frictional element engagement pressure control means in the present invention has the V belt 3 placed between the opposed sheave surfaces of the primary pulley 1 and the secondary pulley 2 in the oil passages 5 and 9.
  • a hydraulic pressure is created so that there is just no gap between the opposed sheave surfaces, and a starting friction element F / E (forward clutch or reverse brake in the forward / reverse switching mechanism) is provided in the oil passage 15 in the built-in return spring.
  • the hydraulic pressure actually achieved hydraulic pressure immediately before starting frictional element engagement
  • Ps necessary to operate in the state immediately before starting to have the engagement capacity is generated, and the V belt type continuously variable transmission is immediately before the power transmission is started. Can be kept in.
  • the hydraulic pressure starting of the starting friction element is required to start the stroke immediately before the starting friction element F / E (forward clutch or reverse brake in the forward / reverse switching mechanism) starts to have the engagement capacity in the oil passage 15.
  • the shift control circuit 6 sets the starting frictional element engagement pressure command value as the maximum control value as will be described in detail later, so that the starting frictional element engagement pressure oil path is maximized without draining the hydraulic oil in the oil path 5. It is assumed that the starting friction element fastening pressure Ps corresponding to the hydraulic pressure value achieved immediately before starting the starting friction element fastening determined by the amount of hydraulic oil from the electric oil pump 11 is generated.
  • the pump capacity of the electric oil pump 11 is such that the starting friction element fastening pressure Ps in the oil passage 15 is discharged just as much hydraulic oil as is necessary to reach the hydraulic pressure value just before starting the starting friction element fastening.
  • the electric oil pump 11 can be adapted to meet the limitation of installation space and cost.
  • the V-belt type continuously variable transmission is kept in a state immediately before the start of power transmission, so that the hydraulic oil from the engine drive oil pump 4 is immediately obtained when the engine is restarted by releasing the idle stop.
  • the transmission control circuit 6 sets the transmission to the power transmission enabled state based on the hydraulic pressure value just before the start of power transmission, in which the transmission control circuit 6 generates the hydraulic pressure for transmission control using the hydraulic oil from the electric oil pump 11 as the medium.
  • the hydraulic pressure can be increased.
  • the V-belt continuously variable transmission can transmit power without slipping immediately after the engine is restarted to improve the vehicle's re-start response, and the engine output to the transmission before the power transmission is enabled. Is transmitted, and the problem of adversely affecting the durability of the transmission can be avoided.
  • the above-described idle stop control (idle stop ON / OFF command) and the ON / OFF command of the electric oil pump 11 (dedicated motor 12) are executed by the engine automatic stop controller 21 in FIG. Further, for the purpose of the present invention to reduce the size of the electric oil pump 11, the control program shown in FIG. 2 is executed, and the starting friction element fastening pressure for idle stop control as shown in the time chart of FIG. Make control.
  • the engine automatic stop controller 21 A signal from the idle stop permission condition detection unit 22, A signal from the inhibitor switch 23 for detecting the selected range of the V-belt type continuously variable transmission; A signal from the starting friction element input / output rotation sensor 24 for detecting the input side rotational speed Nci and the output side rotational speed Nco of the starting friction element F / E; A signal from the engine output control system failure determination unit 25 that determines whether or not an engine output control system such as a throttle opening electronic control system that controls the output of the engine E has failed, The signal from the hydraulic sensor 10 is input.
  • the idle stop permission condition detected by the idle stop permission condition detection unit 22 includes a pulley ratio that is a rotation speed ratio between pulleys 1 and 2 of a V-belt continuously variable transmission, a transmission oil temperature, and a brake operation state. And vehicle speed VSP, accelerator opening APO, and the slope of the stopping road surface.
  • the pulley ratio is a condition in which the idle stop is permitted to be a pulley ratio in the region near the lowest gear ratio, and the transmission hydraulic oil temperature is a temperature region after the end of the warm-up operation. It is a condition that the idling stop is permitted, the brake is in an operating state, the idling stop is permitted, and the vehicle speed VSP is a value that is less than the above-described minute setting vehicle speed for stopping determination. It is a condition for which the stop is permitted, and that the accelerator opening APO is a value in the region near zero is a condition for which the idle stop is permitted, and the gradient of the stop road surface is a flat road gradient in the region near zero. There is a condition under which idle stop is permitted.
  • the idle stop control (idle stop ON / OFF command) executed by the engine automatic stop controller 21 and the ON / OFF command of the electric oil pump 11 (dedicated motor 12) will be described.
  • Idle stop control permission determination based on the idle stop permission conditions (pulley ratio, transmission hydraulic oil temperature, brake operating state, vehicle speed VSP, accelerator opening APO, and road gradient) detected by the detector 22 Judge whether to allow or forbid.
  • the controller 21 issues an idle stop OFF command to the engine side, and also sends an electric oil pump to the electric oil pump 11 (dedicated motor 12). Issue an OFF command, keep the engine running without idling stop,
  • the V-belt type continuously variable transmission performs shift control as usual with hydraulic oil from the engine drive oil pump 4.
  • the controller 21 first issues an electric oil pump ON command to the electric oil pump 11 (dedicated motor 12) before determining the idle stop ON / OFF command. It is determined from the sensor detection value by the hydraulic sensor 10 whether or not the electric oil pump 11 has performed actual driving in response to the electric oil pump ON command, and the sensor detection value of the hydraulic sensor 10 determines the actual driving of the electric oil pump 11. When the value is shown, it can be determined that the power system and the control system related to the electric oil pump 11 (dedicated motor 12) are normal, and that the electric oil pump 11 has not failed due to foreign object biting.
  • the controller 21 issues an idle stop ON command to the engine side in conjunction with the “permission” of the idle stop control permission determination, and automatically stops the engine. Since the electric oil pump ON command has already been output to the electric oil pump 11 (dedicated motor 12) as described above, the electric oil pump 11 continues to be driven, and after the idle stop, the electric oil pump 11
  • the V-belt continuously variable transmission can be brought into the state immediately before the start of power transmission as described above by the hydraulic oil. Therefore, when the engine is restarted by releasing the idle stop, the V-belt type continuously variable transmission can be immediately brought into a power transmission enabled state with the hydraulic oil from the engine drive oil pump 4.
  • the idle stop is not executed even though the electric oil pump 11 (dedicated motor 12) is out of order, and the forced transmission of the idle stop causes the power transmission when the engine is restarted following the release of the idle stop. It is possible to avoid the problem that the engine rotation is input to the V-belt type continuously variable transmission in the disabled state and the durability of the transmission is adversely affected. Further, when the idle stop control permission determination is “prohibited”, it is possible to prevent the idle stop from being performed as requested.
  • the V-belt type continuously variable transmission is set to the state immediately before the start of power transmission with the hydraulic oil from the electric oil pump 11, and the power cannot be transmitted immediately after the engine is restarted when the idle stop is released.
  • the engine rotation is input to the V-belt continuously variable transmission in the state so that its durability is not adversely affected, but this is supported, and immediately after the engine is restarted, V
  • the controller 21 performs the following engine idle stop release control.
  • the time controller 21 (although in the illustrated example is a shift control pressure Pc, may be the line pressure P L) hydraulic transmission control detected by the oil pressure sensor 10 is checked whether a set hydraulic least.
  • the set hydraulic pressure value is a lower limit value of the shift control hydraulic pressure (shift control pressure Pc or line pressure P L ) that does not adversely affect the durability of the transmission even when the engine output is input to the transmission.
  • the controller 21 uses the low shift control hydraulic pressure (shift control pressure Pc or line pressure P L ). However, an engine torque down command for reducing the engine torque is issued to the engine side as shown in FIG. 1 so that the engine torque does not adversely affect the durability of the transmission.
  • the controller 21 turns the engine torque from the above torque-down value to the torque value corresponding to the driving operation so that there is no shock. As shown in FIG. 1, an engine torque return command for gradually increasing and returning with a change is issued to the engine side to execute engine idle stop release control.
  • the controller 21 applies a starting friction element to the shift control circuit 6.
  • the command value for the fastening pressure (Ps) is determined as shown in the time charts of FIGS. 3 to 5 by executing the control program shown in FIG.
  • step S11 of FIG. 2 it is checked whether or not the V-belt type continuously variable transmission is in the neutral (N) range. While the neutral (N) range is selected, in step S12, the controller 21 sets the command value for the starting frictional element engagement pressure (Ps) to the shift control circuit 6 to the maximum control value in the neutral (N) range. To do.
  • step S11 When it is determined in step S11 that it is other than the neutral (N) range (traveling range), whether or not the shift control hydraulic pressure Pc (or P L ) and the starting frictional element engagement pressure Ps are normally generated in step S13. (Whether or not the electric oil pump 11 has failed), whether or not the engine output control system such as the electronically controlled throttle valve is normal, and the above-described control at the time of releasing the engine idle stop is started. Before being selected, it is checked whether or not the selection range has been switched (select operation).
  • step S13 it is determined that the shift control hydraulic pressure Pc (or P L ) and the starting frictional element engagement pressure Ps are normally generated (the electric oil pump 11 has not failed), and the engine output control system
  • step S14 it is checked whether the selected travel range is the forward travel (D) range or the reverse travel (R) range.
  • step S14 When determining in step S14 that the forward travel (D) range is being selected, the controller 21 determines in step S15 the command value for the starting frictional element engagement pressure (Ps) to the shift control circuit 6 in the forward travel (D) range. The maximum control value of the starting friction element (forward clutch in the forward / reverse switching mechanism) to be engaged is set.
  • step S16 the controller 21 sets the command value for the starting frictional element engagement pressure (Ps) to the shift control circuit 6 in the reverse travel (R) range. The maximum control value of the starting friction element to be engaged (reverse braking in the forward / reverse switching mechanism) is set.
  • FIG. 3 shows that the engine is restarted at an instant t1 with an idle stop OFF command, and the engine speed Ne increases with the time-series change shown in the figure, whereby the hydraulic oil for engine speed change ( The line pressure P L or the shift control pressure Pc) increases as shown in the figure, and the shift control hydraulic pressure (line pressure P L or shift control pressure Pc) reaches the set hydraulic pressure at the instant t2.
  • the line pressure P L or the shift control pressure Pc increases as shown in the figure
  • the shift control hydraulic pressure line pressure P L or shift control pressure Pc
  • the control at the time of releasing the engine idle stop is permitted, so that the engine torque Te is changed from the value reduced by the torque reduction to the value corresponding to the driving operation, and is determined according to a predetermined shock measure It is an operation time chart in the case of returning to ascending with a gradient ⁇ Te1.
  • a command value for the starting frictional element engagement pressure (Ps) to the shift control circuit 6 is set. If the forward travel (D) range is selected, the maximum control value of the forward clutch, which is the starting friction element in the range, is set. If the reverse travel (R) range is selected, the maximum control of the reverse brake, which is the starting friction element, in the range. Value.
  • the shift control circuit 6 receives the above command value and controls the engagement pressure Ps of the starting friction element F / E (the forward clutch in the D range and the reverse brake in the R range), The hydraulic oil will not be drained. Therefore, the electric oil pump 11 does not need to discharge hydraulic oil including the drain, and can be made into a small pump electric oil pump with a small pump capacity, and can sufficiently meet the restrictions on installation space and cost. it can.
  • step S13 of FIG. 2 it is determined that the shift control hydraulic pressure Pc (or P L ) or the starting frictional element engagement pressure Ps is not normally generated (the electric oil pump 11 has failed), or the engine
  • the control proceeds to step S17.
  • step S17 it is checked whether or not the above-described idle stop release control of the engine is permitted, and whether or not the idle stop release control is performed to return the engine torque Te from the torque down value to the driving operation corresponding value.
  • step S18 a speed change is performed so that the starting frictional element has a fastening capacity that can reliably transmit the engine torque Te that has been returned to the rising state under shock prevention.
  • the command value for the starting frictional element engagement pressure (Ps) to the control circuit 6 is gradually increased as usual. If it is determined in step S17 that the engine idling stop release control is not yet permitted (executed), in step S19, the selected travel range is either the forward travel (D) range or the reverse travel (R) range. Check if it is.
  • step S19 When it is determined in step S19 that the forward travel (D) range is being selected, the controller 21 determines in step S20 the command value for the starting frictional element engagement pressure (Ps) to the shift control circuit 6 in the forward travel (D) range.
  • Intermediate shelf pressure smaller than the maximum control value of the starting friction element (forward clutch in the forward / reverse switching mechanism) to be engaged, preferably immediately before starting the engagement against the built-in return spring against the starting friction element (forward clutch)
  • step S19 When it is determined in step S19 that the reverse travel (R) range is being selected, the controller 21 determines in step S21 the command value for the starting frictional element engagement pressure (Ps) to the shift control circuit 6 in the reverse travel (R) range.
  • Intermediate shelf pressure smaller than the maximum control value of the starting friction element to be engaged (reverse braking in the forward / reverse switching mechanism), preferably immediately before the start of engagement against the built-in return spring. The return spring equivalent pressure required to make the state.
  • step S11 The above-described starting element fastening pressure control by a loop including step S11, step S13, step S17, step S19, step S20, and step S21 will be described in detail below with reference to FIGS.
  • FIG. 4 shows the instant t0 when it is determined in step S13 of FIG. 2 that the shift control hydraulic pressure Pc (or P L ) and the starting frictional element engagement pressure Ps are not normally generated (the electric oil pump 11 has failed).
  • the following are operation time charts when the command value for the starting frictional element engagement pressure (Ps) is set to the maximum control value as shown in the figure by executing step S15 and step S16.
  • the starting friction element F / E is caused by a shortage of the starting friction element fastening pressure Ps. Slip, and the input rotational speed Nci may increase as shown in the figure.
  • the initial start friction element Since the deviation between the engagement pressure Ps and the command value set as the maximum control value is large, the start friction element engagement pressure Ps rises rapidly as shown in FIG. 4, and the start friction element F / E is changed to its input speed. As is clear from the sudden drop in Nci, a sudden fastening occurs and a fastening shock occurs.
  • the shift control hydraulic pressure Pc (or P L ) and the starting frictional element engagement pressure Ps are not normally generated in step S13 of FIG. 2 (the electric oil pump 11 has failed).
  • an intermediate shelf pressure (preferably immediately before the start of engagement of the starting friction element), which is smaller than the control maximum value of the command value for the starting friction element engaging pressure (Ps) by executing step S20 or step S21.
  • the return spring equivalent pressure the above-mentioned problem relating to shock can be solved as described below with reference to FIG.
  • FIG. 5 shows an operation time chart under the same conditions as in FIG. 4, but the shift control hydraulic pressure Pc (or P L ) and the starting frictional element engagement pressure Ps are not normally generated in step S13 of FIG.
  • the command value for the starting frictional element engagement pressure (Ps) is obtained by executing step S15 or step S16 after the instant t0 when it is determined that the oil pump 11 has failed) and until the control permission instant t2 at the time of engine idle stop release.
  • Is an operation time chart when an intermediate shelf pressure smaller than the maximum control value (preferably a return spring equivalent pressure that brings the starting friction element into a state immediately before the start of fastening) is shown.
  • the initial start friction element Since the deviation between the engagement pressure Ps and the command value set to a shelf pressure smaller than the maximum control value is small, the start friction element is engaged by executing step S18 after the control permission instant t2 at the time of engine idle stop release.
  • the command value for the pressure (Ps) is gradually increased at a predetermined gradient as shown in FIG.
  • step S17 even when it is determined in step S13 of FIG. 2 that the engine output control system such as the electronic control throttle valve is not normal, before the engine idle stop release control is permitted (step S17).
  • step S20 or step S21 the command value for the starting frictional element engagement pressure (Ps) is set to a shelf pressure that is smaller than the maximum control value, and the following effects can be obtained.
  • the fastening pressure Ps of the starting friction element F / E causes the starting friction element F / E to be fastened.
  • engine power is input to a transmission that is not yet in a state where power can be transmitted, which adversely affects the durability of the transmission, or when the transmission becomes ready for power transmission. This causes a problem of shock.
  • the command value for the starting frictional element engagement pressure (Ps) is obtained by executing step S20 or step S21.
  • the intermediate shelf pressure is smaller than the maximum control value (preferably the return spring equivalent pressure that brings the starting friction element into a state immediately before the start of fastening)
  • Control of the starting friction element fastening pressure Ps based on the command value for the starting friction element fastening pressure (Ps) does not cause the starting friction element F / E to proceed beyond the shelf pressure support state (the state immediately before the start of fastening). Therefore, engine power is no longer input to a transmission that is not yet in a state where power transmission is possible, adversely affecting the durability of the transmission, or when the transmission is in a state where power transmission is possible thereafter. The problem of large shocks can be solved.
  • FIG. 6 shows the switching of the selected range at the instant t1 ′ from the engine restart instant t1 by the idle stop OFF command to the instant t2 at which the engine idle stop release control is permitted in step S13 of FIG.
  • FIG. 10 is an operation time chart when the shelf pressure command control is not performed by executing step S20 or step S21 although it is determined that there has been a D ⁇ R select operation).
  • the forward clutch (starting friction element of the D range) that was engaged in the D range is released and the reverse brake that is the starting friction element of the R range is engaged.
  • the command value of the forward clutch engagement pressure is set to 0 from the maximum control value at the instant t1 ′ as shown in the figure, the forward clutch is released by eliminating the forward clutch pressure, and the reverse brake pressure
  • the command value is set to the precharge pressure for the reverse brake to quickly end the stroke and immediately before the start of engagement, and then the maximum control at a predetermined gradient. Increase to value.
  • step S13 of FIG. 2 from the time of engine restart by the idle stop OFF command to the time when the engine idling stop release control is permitted (step S17),
  • step S17 When it is determined that the selection range has been switched (D ⁇ R selection operation), the shelf pressure command control is performed by executing step S20 or step S21. Therefore, as described below with reference to FIG. The problem can be solved.
  • FIG. 7 shows an operation time chart under the same conditions as in FIG. 6, but in step S13 of FIG. 2, from the engine restart instant t1 according to the idle stop OFF command, the instant t2 at which the engine idle stop release control is permitted.
  • 12 is an operation time chart when shelf pressure command control is performed by executing step S20 or step S21 when it is determined that the selection range has been switched (D ⁇ R selection operation) at the instant t1 ′.
  • the shelf pressure control period is from the D ⁇ R select operation determination instant t1 ′ to the control start instant t2 at the time of engine idle stop release, and the command value of the reverse brake pressure, which is the starting frictional element engagement pressure Ps, is set to the shelf pressure.
  • step S18 the command value of the reverse brake pressure is gradually increased from the shelf pressure with a predetermined gradient as shown in the figure.
  • the reverse brake pressure command value is D ⁇ R selected.
  • a command to apply reverse brake pressure to maintain shelf pressure preferably the return spring equivalent pressure that makes the reverse brake just before the start of engagement
  • the reverse brake pressure does not increase rapidly and is almost at the command value.
  • FIG. 8 shows a reference example of engine idle stop release time control executed by the controller 21 in FIG.
  • tTe Torque down value
  • step S33 When it is determined in step S31 that the torque reduction of the engine should be terminated (control during idle stop release should be permitted), it is checked in step S33 whether or not the starting friction element is slipping.
  • ⁇ Nc slip amount
  • step S34 While it is determined in step S33 that the starting frictional element has not slipped, in step S34, the engine torque command value tTe is increased by a predetermined value ⁇ Te1 (see FIG. 3) determined for shock countermeasures, and the controller 21 Transmits this engine torque command value tTe to the engine side as an engine torque return command as shown in FIG. As a result, the engine torque Te is increased at a time change gradient corresponding to the predetermined value ⁇ Te1 as illustrated in FIG.
  • step S35 the engine torque command value tTe is increased by a predetermined value ⁇ Te2 ( ⁇ Te1), and the controller 21 sets the engine torque command value tTe.
  • the engine torque return command is transmitted to the engine side.
  • the engine torque Te is increased with a time change gradient corresponding to the predetermined value ⁇ Te2, but the predetermined value ⁇ Te2 is made smaller than the predetermined value ⁇ Te1 for shock countermeasures, for example, 0 which does not change the engine torque Te. Is good.
  • FIG. 8 shows an operation time chart when the command value tTe is uniquely increased and returned with a gradient corresponding to ⁇ Te1.
  • FIG. 9 shows that the engine is restarted at an instant t1 with an idle stop OFF command, and the engine speed Ne increases with the time-series change shown in the figure.
  • the hydraulic pressure for the shift control (line pressure P L or the shift control pressure Pc) is increased by the hydraulic oil from the engine drive oil pump 4 as shown in the figure.
  • the engine control at the time of engine idle stop release is permitted based on the torque reduction unnecessary determination made when the hydraulic pressure for shift control (line pressure P L or shift control pressure Pc) reaches the set hydraulic pressure.
  • the engine torque command value tTe is changed from the torque-down value to the value corresponding to the driving operation, and the engine torque Te is increased as shown in the figure by returning the engine torque command value tTe to the value corresponding to the driving operation by a predetermined gradient ⁇ Te1. It is a time chart.
  • the starting friction element slips greatly as shown in the figure, but if the engine torque command value tTe is continuously increased at a predetermined gradient ⁇ Te1 for shock countermeasures, the command value of the starting friction element fastening pressure Ps is Since it is the maximum control value and an increase in the starting frictional element engagement pressure Ps due to the increase may not be desired, the starting frictional element does not easily converge.
  • the engine torque Te rises so as to follow the engine torque command value tTe rising at a predetermined gradient ⁇ Te1, and further delays the slip convergence of the starting friction element. For these reasons, the starting friction element has a problem that durability is remarkably lowered.
  • step S35 when performing the engine idle stop release control based on the determination result in step S31 of FIG. 8, the execution of step S35 is performed while it is determined in step S33 that the starting friction element is slipping. Therefore, the engine torque command value tTe is increased with a predetermined gradient ⁇ Te2 (0 in this embodiment) smaller than the predetermined gradient ⁇ Te1 for shock countermeasure (step S34).
  • FIG. 10 showing an operation time chart in this case As described below, the above problem can be solved.
  • the engine torque Te is moderated or reduced to 0 during the instant t3 to t4, while the starting frictional element fastening pressure Ps is supplied with hydraulic oil from the engine drive oil pump 4 as shown in the figure.
  • the slip of the starting frictional element converges more quickly than in the case of FIG. 9 and is apparent from the magnitude of the differential rotation ⁇ Nc, as is apparent from the difference between the input and output rotational speeds Nci and Nco.
  • the slip amount itself is also smaller than in the case of FIG. Accordingly, it is possible to avoid the above-described problem that the durability of the starting friction element is significantly reduced by slipping.
  • the transmission has a starting friction element F / E.
  • the starting friction element F / E corresponds to a forward / reverse switching clutch in a CVT as in this embodiment, and corresponds to a forward / reverse selection clutch or a reverse selection clutch in a stepped AT.
  • the transmission torque capacity of the starting friction element is a value set according to the magnitude of the input torque, and is set to increase as the input torque increases.
  • this transmission torque capacity is a value determined by the engagement pressure (clutch hydraulic pressure) of the starting friction element, the larger the input torque, the larger the clutch hydraulic pressure and the larger the transmission torque capacity.
  • the clutch oil pressure (engagement pressure) is controlled by a clutch oil pressure control valve (clutch regulator valve) 26.
  • the clutch hydraulic pressure command value is determined according to the input torque, and a current corresponding to the spool position corresponding to the clutch hydraulic pressure command value is applied to the solenoid of the clutch hydraulic pressure control valve 26.
  • the normal control is applied as it is to a vehicle equipped with an idle stop control device (part)
  • the transmission torque capacity of the starting friction element may be 0.
  • clutch hydraulic pressure engagement pressure
  • the fastening start point is the point at which fastening is started in the process where the starting friction element changes from the fully released state to the engaged state.
  • the drain port opening degree of the clutch hydraulic control valve 26 with respect to the clutch hydraulic pressure command value is made smaller than that of the normal control (to make it difficult to drain). (effect) As a result, the amount of drainage can be suppressed and the electric oil pump 11 does not need to be unnecessarily enlarged.
  • the transmission is a V-belt continuously variable transmission.
  • the transmission is a stepped automatic transmission or an automatic manual transmission in which a manual transmission is automatically changed. It goes without saying that the above-described concept of the present invention can be applied as it is to achieve the same effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】発進摩擦要素締結圧指令値の与え方を工夫して、電動オイルポンプの要求吐出容量を少なくし、その小型化を可能にする。 【解決手段】t1のアイドルストップOFF指令でエンジンが再始動され、エンジン駆動オイルポンプからの作動油で変速制御用油圧が上昇し、t2に変速制御用油圧が設定油圧値に達したことでトルクダウン不要判定によりエンジンのアイドルストップ解除時制御が許可され、これによりエンジントルクTeをトルクダウン値から運転操作対応値に向け所定勾配ΔTe1で上昇させる場合、アイドルストップ解除時制御中を含むアイドルストップ制御中、発進摩擦要素締結圧Psの指令値を制御最大値 (クラッチ油圧(締結圧)指令値に対するクラッチ油圧制御弁のドレンポート開度を通常制御に比して小さくする(ドレンし難くする)。よって、この指令値を受けて発進摩擦要素締結圧Psを制御する際、電動オイルポンプからの作動油をドレンしないこととなり、電動オイルポンプはドレン分の作動油を吐出する必要がなく、小型化が可能である。

Description

車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置
 本発明は、発進摩擦要素を介しエンジンの動力を駆動車輪へ変速下に伝達し、エンジンの運転中はエンジン駆動オイルポンプからの油圧で上記の変速を行うようにした変速機を具える車両に関し、特に、停車判定時は所定条件が揃ったところでエンジンを自動的に停止させるアイドルストップを行うと共に、電動オイルポンプからの作動油により発進摩擦要素を締結開始直前状態となし、上記の所定条件が揃わなくなったところで、アイドルストップの解除によりエンジンを再始動させると共に、変速制御用の油圧が十分高くなったときエンジンを運転操作対応の状態にするアイドルストップ解除時制御を行うアイドルストップ制御装置の作動時における発進摩擦要素の締結圧制御を、電動オイルポンプの小型化が可能な態様で実行させるための装置に関するものである。
 車両の燃費を向上させる一手法として、停車時に発進意志のない停車状態が設定時間だけ経過する等の所定条件が揃ったところで、エンジンを自動的に停止させるアイドルストップ制御技術がある。
 このアイドルストップ制御技術は、ブレーキペダルを釈放してブレーキを作動状態から非作動状態にする等の、発進を意図したと思われる操作を運転者が行った時、アイドルストップの解除によりエンジンを自動的に再始動させるものである。
 一方で変速機は、エンジンにより駆動されるエンジン駆動オイルポンプからの油圧によって変速制御される。
 ところで上記のアイドルストップ中は、エンジンが運転されていないことから、エンジン駆動オイルポンプからの油圧もなくて、変速機の発進摩擦要素が解放状態にされ、変速機を動力伝達不能状態にしている。
 この状態からアイドルストップの解除によりエンジンが再始動されると、これにより駆動されるエンジン駆動オイルポンプからの油圧が発生して、変速機の発進摩擦要素が締結されることから、変速機を動力伝達可能状態にし得る。
 しかし、エンジンの再始動によりエンジン駆動オイルポンプが油圧を発生して、発進摩擦要素の締結により変速機が動力伝達可能状態になるまでには応答遅れがある。
 かかる応答遅れの間に、エンジンを運転操作対応の状態にするアイドルストップ解除時制御が行われると、これにより上昇するエンジン出力が、動力伝達可能状態になる前の(動力伝達不能状態の)変速機へ入力され、変速機の耐久性に悪影響が及ぶという問題を生ずる。
 そこで以前から、例えば特許文献1に記載のごとく、アイドルストップ中はエンジン駆動オイルポンプに代えて電動オイルポンプからの作動油により、変速機の発進摩擦要素を締結開始直前状態(締結容量を持ち始める直前の状態)にストローク作動させておき、これにより変速機を動力伝達開始直前状態に保っておく技術が提案されている。
 この技術によればアイドルストップ中、電動オイルポンプからの作動油により、発進摩擦要素を締結開始直前状態にストローク作動させて変速機を動力伝達開始直前状態に保つため、アイドルストップの解除によりエンジンが再始動されたとき速やかに、エンジン駆動オイルポンプからの作動油が発進摩擦要素を締結開始させ得ることとなり、これによりエンジンの再始動に速やかに変速機を動力伝達可能状態にすることができる。
 従って、再始動により上昇中のエンジントルクが、動力伝達可能状態になる前の(動力伝達不能状態の)変速機へ入力されることがなく、変速機の耐久性に悪影響が及ぶという問題を解消することができる。
特開2001-041067号公報(図3、第6欄)
 しかし、発進摩擦要素の締結圧制御に際し発進摩擦要素締結圧制御手段は、電動オイルポンプからの作動油を媒体とする場合も、エンジン駆動オイルポンプからの作動油を媒体とする場合と同じく、締結圧指令値に応じ作動油(ポンプ吐出圧)を一部ドレンして指令値対応の発進摩擦要素締結圧を作り出すのが常套である。
 一方、電動オイルポンプは、前記したごとく、発進摩擦要素を締結開始直前状態にストローク作動させて変速機を動力伝達開始直前状態に保つために設けたものであり、従って上記の締結圧指令値は、この要求を満たす発進摩擦要素締結開始直前状態達成油圧値に定める。
 ところで、かように発進摩擦要素締結開始直前状態達成油圧値に定めた締結圧指令値に応じ作動油(ポンプ吐出圧)を一部ドレンして、発進摩擦要素締結開始直前状態達成用の発進摩擦要素締結圧を作り出すのでは、電動オイルポンプが、発進摩擦要素締結開始直前状態達成油圧を発生させて発進摩擦要素を締結開始直前状態に作動させるのに必要な作動油量に加えて、発進摩擦要素の締結圧制御に際して上記のごとくに行うドレンに相当する量の作動油を吐出する必要が生じ、その分だけ電動オイルポンプへの要求容量が多くなる。
 一方で電動オイルポンプは、設置スペースの制約やコスト上の制約から、できるだけポンプ容量の小さな小型ポンプ電動オイルポンプである必要がある。
 しかしながら、上記のように発進摩擦要素の締結圧制御に際して行うドレンに相当する量の作動油を余分に吐出する必要があるのでは、その分だけ電動オイルポンプへの要求容量が多くなって、電動オイルポンプの大型化を招き、電動オイルポンプを、設置スペースの制約やコスト上の制約から、できるだけポンプ容量の小さな小型ポンプ電動オイルポンプにするとの要求を満足させることができない。
 本発明は、発進摩擦要素の締結圧指令値として、前記の発進摩擦要素締結開始直前状態達成油圧値を設定するのでなく、締結圧指令値に対するクラッチ油圧制御弁のドレンポート開度を通常制御に比して小さくする。詳細には、締結圧指令値を制御最大値を設定するようにすれば、
 前記のドレンが不要になって電動オイルポンプをポンプ容量の小さな小型ポンプ電動オイルポンプにし得るとの観点から、この着想を具体化して、上記の問題を解消可能にした、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置を提案することを目的とする。
 この目的のため、本発明のアイドルストップ制御時における発進摩擦要素の締結圧制御装置は、請求項1に記載のごとくに構成する。
 先ず、本発明の前提となる車両を説明するに、これは、エンジンと、駆動車輪と、
発進摩擦要素を介して該エンジンの動力を該駆動車輪へ変速下に伝達する変速機と、該エンジンの運転中、該エンジンにより駆動されるエンジンオイルポンプからの油圧で該変速機を変速制御する変速制御部と、停車判定時は、所定条件が揃ったところでエンジンを自動的に停止させるアイドルストップを行うと共に、電動オイルポンプからの作動油を発進摩擦要素締結圧制御が一部ドレンして作り出した締結圧により該発進摩擦要素を締結開始直前状態となし、該所定条件が揃わなかったところで、アイドルストップの解除により該エンジンを再始動させると共に、該エンジンを運転操作対応の状態にするアイドルストップ制御部とを備える車両である。 
 本発明は、かかる車両において、前記アイドルストップ制御装置の作動中、前記発進摩擦要素締結圧制御手段への締結圧指令値を制御最大値にしておく(すなわち、クラッチ油圧(締結圧)指令値に対するクラッチ油圧制御弁のドレンポート開度を通常制御に比して小さくする)よう構成したことを特徴とするものである。
 かかる本発明のアイドルストップ制御時における発進摩擦要素の締結圧制御装置によれば、アイドルストップ制御装置の作動中、発進摩擦要素締結圧制御手段への締結圧指令値を制御最大値にしておくため、発進摩擦要素締結圧制御手段が、発進摩擦要素の締結圧制御に際し電動オイルポンプからの作動油をドレンしないこととなる。
 従って電動オイルポンプは、ドレン分を含めて作動油を吐出する必要がなくなり、ポンプ容量の小さな小型ポンプ電動オイルポンプにし得て、設置スペース上の制約やコスト上の制約に十分対応することができる。
Vベルト式無段変速機を搭載する車両用に構成した、アイドルストップ制御時における発進摩擦要素の締結圧制御装置の一実施例を示すシステム図である。 図1におけるエンジン自動停止コントローラが実行するアイドルストップ制御時用発進摩擦要素締結圧制御プログラムを示すフローチャートである。 図2によるアイドルストップ制御時用発進摩擦要素締結圧制御の動作を、システムが正常である場合につき示すタイムチャートである。 システムの電動オイルポンプが故障している場合に、図2によるアイドルストップ制御時用発進摩擦要素締結圧制御を行わなかった時の動作を示すタイムチャートである。 図2によるアイドルストップ制御時用発進摩擦要素締結圧制御の動作を、システムの電動オイルポンプが故障している場合につき示すタイムチャートである。 アイドルストップOFF指令によるエンジン再始動時から、トルクダウン不要判定によりエンジンのアイドルストップ解除時制御が開始されるまでの間に、変速機のレンジ切り替えがあった場合に、図2によるアイドルストップ制御時用発進摩擦要素締結圧制御を行わなかった時の動作を示すタイムチャートである。 図2によるアイドルストップ制御時用発進摩擦要素締結圧制御の動作を、図6におけると同様なレンジ切り替えがあった場合につき示すタイムチャートである。 図1におけるエンジン自動停止コントローラが実行する、エンジンアイドルストップ解除時制御プログラムの参考例を示すフローチャートである。 発進摩擦要素がスリップしているのに、図8によるエンジンアイドルストップ解除時制御を行わなかった場合の動作を示すタイムチャートである。 図8によるエンジンアイドルストップ解除時制御の動作を、発進摩擦要素がスリップしている場合につき示すタイムチャートである。
 以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
 図1は、Vベルト式無段変速機を搭載するアイドルストップ制御装置付き車両用に構成した、アイドルストップ制御時における発進摩擦要素締結圧制御装置の一実施例を示す。
 1は、Vベルト式無段変速機のプライマリプーリ、2は、Vベルト式無段変速機のセカンダリプーリで、これらプライマリプーリ1およびセカンダリプーリ2は、相互に略同じ軸直角面内に整列配置する。
 そして、これらプライマリプーリ1およびセカンダリプーリ2間にVベルト3を掛け渡して、Vベルト式無段変速機の伝動部を構成する。
 プライマリプーリ1には、前後進切り替え機構(図示せず)内における前進クラッチや後退ブレーキなどの発進摩擦要素F/EおよびトルクコンバータT/Cを介してエンジンEを結合し、エンジンEからの回転をトルクコンバータT/Cおよび発進摩擦要素F/Eによりプライマリプーリ1に入力可能にする。
 プライマリプーリ1の回転はVベルト3を介してセカンダリプーリ2へ伝達し、セカンダリプーリ2の回転を駆動車輪へ伝達して車両の走行に供する。
 かかる伝動中Vベルト式無段変速機は、セカンダリプーリ2のV溝を形成する対向シーブ面のうち一方のV溝シーブ面(図1では、左側の可動シーブ面)を他方の固定シーブ面に対し接近、または離間させてV溝幅を小さく、または大きくすると同時に、
 プライマリプーリ1の図1中右側におけるV溝シーブ面(可動シーブ面)を反対側におけるV溝シーブ面(固定シーブ面)に対し離間、または接近させV溝幅を大きく、または小さくすることにより、
 プライマリプーリ1およびセカンダリプーリ2に対するVベルト3の巻き掛け円弧径を連続的に変化させて無段変速を行うものとする。
 Vベルト式無段変速機の変速制御は、セカンダリプーリ2の可動シーブ面押し付け油圧を加減することにより実行し、
 この変速制御に際しては、プライマリプーリ1に結合されたエンジンにより駆動されるエンジン駆動オイルポンプ4からライン圧油路5への作動油を媒体とし、変速制御回路6(電子制御部および油圧制御部)が当該変速制御を以下のごとくに行うものとする。
 ちなみにエンジン駆動オイルポンプ4は、ロータリーベーンポンプなどの、非可逆式のポンプ(停止状態において油路5内の作動油をオイルパンへ流下させることのないポンプ)とする。
 つまり運転状態検出手段7により、車両の運転状態を表すエンジンスロットル開度TVOや車速VSPなどを検出し、変速制御回路6はこれら運転情報をもとに、その内部における図示せざるレギュレータバルブにより、オイルポンプ4から油路5への作動油を変速機入力トルク対応のライン圧PLに調圧する。
 このライン圧PLは、本発明における変速制御用油圧に相当し、プライマリプーリ圧油路8を経てプライマリプーリ1の可動シーブ面に作用させ、これによりプライマリプーリ1の可動シーブ面を変速機入力トルク対応のスラスト力で固定シーブ面に向け附勢して、これらシーブ面間にVベルト3を変速機入力トルク対応の力で挟圧する。
 変速制御回路6は更に、上記運転状態検出手段7で検出したエンジンスロットル開度TVOおよび車速VSPなどの運転情報をもとに予定の変速マップから現在の運転状態に適した目標入力回転数(目標変速比)を求める。
 そして変速制御回路6は、油路5内のライン圧PLを元圧とし、これを減圧して上記の目標入力回転数(目標変速比)が達成されるような変速制御圧Pcを作り出し、この変速制御圧Pcを変速制御圧油路9によりセカンダリプーリ2の可動シーブ面押し付け油圧としてセカンダリプーリ2に供給する。
 セカンダリプーリ2は、上記の油圧による可動シーブ面押し付け力と、可動シーブ面を固定シーブ面に向け附勢するセカンダリプーリ内蔵バネ(図示せず)によるバネ力とで、両シーブ面間にVベルトを挟圧することにより、Vベルト式無段変速機を、その入力回転数(変速比)が目標入力回転数(目標変速比)に一致するよう変速制御する。
 従って変速制御圧Pcも、ライン圧PLと同じく、本発明における変速制御用油圧に相当する。
 ところで変速制御圧Pcは、外乱などを受けて目標入力回転数(目標変速比)を達成するのに必要な油圧値からずれ、正確な変速制御に支障をきたす虞があり、この危惧を排除するために以下のフィードバック制御系を付加する。
 つまり、セカンダリプーリ2の可動シーブ面押し付け油圧を検出する油圧センサ10を設け、この油圧センサ10により検出した可動シーブ面押し付け油圧を変速制御回路6にフィードバックする。
 変速制御回路6は、当該フィードバックしたセカンダリプーリ2の可動シーブ面押し付け油圧が、目標入力回転数(目標変速比)を達成するのに必要な変速制御圧Pcの指令値からどの程度乖離しているかを演算し、この乖離が解消されるよう変速制御圧Pcの指令値を変化させ、
 これにより、外乱などを受けても、変速制御圧Pcが目標入力回転数(目標変速比)を達成するのに必要な油圧値からずれることのないようにし、正確な変速制御を継続的に遂行し得るようにする。
 変速制御回路6は更に、ライン圧PLをその一部ドレンにより減圧して発進摩擦要素F/Eの締結を司る発進要素締結圧Psを作り出し、この発進要素締結圧Psを発進要素締結圧油路15により発進摩擦要素F/Eへ供給する。
 従って変速制御回路6は、本発明における発進摩擦要素締結圧制御手段に相当する。
 ここで発進要素締結圧Psは、発進摩擦要素F/Eがプライマリプーリ1への入力トルクを伝達可能なトルク容量をもって締結されるような値に制御する。
 なお本実施例において、プライマリプーリ1に結合されたエンジンEは燃費向上のためにアイドルストップ制御装置付きとし、車速が停車判定用の微少設定車速未満となる停車判定状態であって、この停車判定状態が発進意思のないまま設定時間に亘って継続する等の所定条件が揃ったところで、エンジンを自動的に停止(アイドルストップ)させるものとする。
 本実施例においては、上記のように車速が停車判定用の微少設定車速未満となる停車判定状態をアイドルストップ条件としたことにより、上記のアイドルストップが停車時に行われるものを含むのは勿論であるが、停車直前における微速走行中から行われるものをも含むことは言うまでもない。
 アイドルストップ制御の解除は、ブレーキペダルを釈放してブレーキを作動状態から非作動状態にする等の、発進を意図したと思われる操作を運転者が行った時、エンジンを自動的に再始動させて当該解除を行うものとする。
 ところで上記のアイドルストップ中は、エンジンが運転されないことから、これにより駆動されるエンジン駆動オイルポンプ4からの吐出油もなくて、ライン圧PLを発生させ得ないと共に、変速制御回路6が変速制御圧Pcおよび発進摩擦要素締結圧Psを作り出すこともできない。
 よって、プライマリプーリ1の対向シーブ面間、および、セカンダリプーリ2の対向シーブ面間にVベルト3を挟圧することができず、発進摩擦要素F/Eを締結させることもできないことから、Vベルト式無段変速機は動力伝達不能状態になっている。
 この状態から、アイドルストップ制御の解除によりエンジンが再始動されると、 これにより駆動されるエンジン駆動オイルポンプ4から作動油が吐出されて、ライン圧PLを発生させ得るようになると共に、変速制御回路6が変速制御圧Pcおよび発進摩擦要素締結圧Psを作り出すことができるようになることから、
 これら油圧の発生によりVベルト式無段変速機が動力伝達可能状態になる。
 ところで、アイドルストップ制御の解除に伴うエンジンの再始動によりエンジン駆動オイルポンプ4が作動油を吐出し、これによりライン圧P、変速制御圧Pcおよび発進摩擦要素締結圧Psが発生してVベルト式無段変速機を動力伝達可能状態にするまでには応答遅れがある。
 かかる応答遅れの間に、車両駆動系(エンジン)を運転操作対応の状態にするアイドルストップ解除時制御を行うと、これにより上昇するエンジントルクが、動力伝達可能状態になる前の(動力伝達不能状態の)Vベルト式無段変速機へ入力され、変速機の耐久性に悪影響が及ぶという問題を生ずる。
 そこで本実施例においては、アイドルストップ中はエンジン駆動オイルポンプ4に代えて電動オイルポンプ11を作動させ、これからの作動油により後述のごとく、Vベルト式無段変速機を動力伝達開始直前状態に保っておくようにする。
 なお電動オイルポンプ11は、専用モータ12により駆動し、専用モータ12は、電動オイルポンプ11を駆動するのに必要な最小限の出力を有した小型のものとする。
 電動オイルポンプ11の吐出ポートを電動オイルポンプ油路13により、ライン圧油路5に接続し、電動オイルポンプ油路13中に、ライン圧油路5からの油流を阻止する向きに配した逆止弁14を挿置する。
 この逆止弁13は、エンジン駆動オイルポンプ4から作動油が吐出される時、この作動油が電動オイルポンプ11を経てオイルパンに向け漏れ、ライン圧PLを発生させ得なくなるのを防止するためのものである。
 かかる構成によれば、エンジンのアイドルストップ中は電動オイルポンプ11からの作動油を媒体として変速制御回路6が、油路5,9,18を含む変速制御油路内に、変速機を以下のごとく動力伝達開始直前状態にする油圧を発生させることができる。
 つまり、前記したごとく本発明における発進摩擦要素締結圧制御手段を成す変速制御回路6は、油路5,9内に、Vベルト3をプライマリプーリ1の対向シーブ面間、および、セカンダリプーリ2の対向シーブ面間に丁度隙間がなくなるよう挟んでおく油圧を生じさせると共に、油路15内に、発進摩擦要素F/E(前後進切り替え機構内の前進クラッチや、後退ブレーキ)が内蔵リターンスプリングに抗して、締結容量を持ち始める直前状態に作動するのに必要な油圧(発進摩擦要素締結開始直前状態達成油圧)Psを発生させ、これらによりVベルト式無段変速機を動力伝達開始直前状態に保っておくことができる。
 なお油路15内に、発進摩擦要素F/E(前後進切り替え機構内の前進クラッチや、後退ブレーキ)が締結容量を持ち始める直前状態にストローク作動させるのに必要な油圧(発進摩擦要素締結開始直前状態達成油圧)Psを発生させるに際し、
 変速制御回路6は、発進摩擦要素締結圧指令値を後で詳述するごとく制御最大値となし、これにより油路5内の作動油をドレンすることなく最大限、発進摩擦要素締結圧油路15に向かわせることにより、電動オイルポンプ11からの作動油量で決まる発進摩擦要素締結開始直前状態達成油圧値相当の発進摩擦要素締結圧Psを作り出すものとする。
 従って、電動オイルポンプ11のポンプ容量は、油路15内の発進摩擦要素締結圧Psを丁度、発進摩擦要素締結開始直前状態達成油圧値にするのに必要な量の作動油を吐出するような、ポンプ容量が限界まで小さな小型の電動オイルポンプにすることができ、
 電動オイルポンプ11を、設置スペースの制約や、コスト上の制約があっても、これに応え得るものとなし得る。
 上記のごとくアイドルストップ中、Vベルト式無段変速機を動力伝達開始直前状態に保っておくことで、アイドルストップの解除によりエンジンが再始動されたとき直ちに、エンジン駆動オイルポンプ4からの作動油を媒体として変速制御回路6が変速制御用油圧を、電動オイルポンプ11からの作動油を媒体として発生させていた上記の動力伝達開始直前状態達成油圧値から、変速機を動力伝達可能状態にする油圧値へと上昇させることができる。
 このため、エンジンの再始動直後からVベルト式無段変速機がスリップ無しに動力伝達を行い得て車両の再発進応答を改善し得ると共に、動力伝達可能状態となる前の変速機へエンジン出力が伝達されて、変速機の耐久性に悪影響が及ぶという問題を回避することができる。
 前記したアイドルストップ制御(アイドルストップON,OFF指令)および電動オイルポンプ11(専用モータ12)のON,OFF指令は、図1におけるエンジン自動停止コントローラ21によってこれらを実行し、エンジン自動停止コントローラ21は更に、電動オイルポンプ11を小型化するという本発明の目的のため、図2に示す制御プログラムを実行して、図3のタイムチャートにより示すような、アイドルストップ制御時用の発進摩擦要素締結圧制御を行うようになす。
 そのためエンジン自動停止コントローラ21には、
 アイドルストップ許可条件検出部22からの信号と、
 Vベルト式無段変速機の選択レンジを検出するインヒビタスイッチ23からの信号と、
 発進摩擦要素F/Eの入力側回転数Nciおよび出力側回転数Ncoを検出する発進摩擦要素入出力回転センサ24からの信号と、
 エンジンEの出力を制御するスロットル開度電子制御システムなどのエンジン出力制御系が故障しているか否かを判定するエンジン出力制御系故障判定部25からの信号と、
 前記した油圧センサ10からの信号とを入力する。
 アイドルストップ許可条件検出部22が検出するアイドルストップ許可条件としては、Vベルト式無段変速機のプーリ1,2間における回転速度比であるプーリ比や、変速機作動油温や、ブレーキ作動状態や、車速VSPや、アクセル開度APOや、停車路面の勾配度などがある。
 ちなみに、プーリ比は、最ロー変速比近辺の領域におけるプーリ比であることが、アイドルストップを許可される条件であり、変速機作動油温は暖機運転終了後の温度域であることが、アイドルストップを許可される条件であり、ブレーキが作動状態であることが、アイドルストップを許可される条件であり、車速VSPが前記した停車判定用の微少設定車速未満の値であることが、アイドルストップを許可される条件であり、アクセル開度APOが零近辺の領域における値であることが、アイドルストップを許可される条件であり、停車路面の勾配度は零近辺の領域における平坦路勾配であることが、アイドルストップを許可される条件である。
 先ず、エンジン自動停止コントローラ21が実行するアイドルストップ制御(アイドルストップON,OFF指令)、および電動オイルポンプ11(専用モータ12)のON,OFF指令を説明する。
 検出部22で検出したアイドルストップ許可条件(プーリ比、変速機作動油温、ブレーキ作動状態、車速VSP、アクセル開度APO、および路面勾配度)に基づく、アイドルストップ制御許可判断を行い、アイドルストップを許可すべきか、禁止すべきかを判断する。
 このアイドルストップ制御許可判断結果が「許可」でない場合(「禁止」である場合)、コントローラ21は、アイドルストップOFF指令をエンジン側に発すると共に、電動オイルポンプ11(専用モータ12)へ電動オイルポンプOFF指令を発し、アイドルストップをさせずにエンジンを運転させ続け、
 Vベルト式無段変速機は、エンジン駆動オイルポンプ4からの作動油によって通常通りに変速制御する。
 上記のアイドルストップ制御許可判断結果が「許可」である場合、
 コントローラ21は、アイドルストップON,OFF指令の決定の前に、先ず電動オイルポンプ11(専用モータ12)へ電動オイルポンプON指令を発する。
 電動オイルポンプ11がこの電動オイルポンプON指令に呼応した実駆動を行ったか否かを、油圧センサ10によるセンサ検出値により判定し、油圧センサ10のセンサ検出値が電動オイルポンプ11の実駆動を示す値であるとき、電動オイルポンプ11(専用モータ12)に係わる電力系および制御系が正常であると共に、電動オイルポンプ11が異物噛み込みによる故障も生じていないと判定し得る。
 電動オイルポンプ11(専用モータ12)が正常である場合、上記アイドルストップ制御許可判断の「許可」と相まって、コントローラ21は、アイドルストップON指令をエンジン側に発し、エンジンを自動停止させる。
 なお、上記したごとく既に電動オイルポンプ11(専用モータ12)へ電動オイルポンプON指令が出力されていることから、電動オイルポンプ11は引き続き駆動されて、アイドルストップ後は、電動オイルポンプ11からの作動油によりVベルト式無段変速機を前記した動力伝達開始直前状態にしておくことができる。
 よって、アイドルストップの解除によりエンジンが再始動されるとき、エンジン駆動オイルポンプ4からの作動油で直ちに、Vベルト式無段変速機を動力伝達可能状態にすることができる。
 電動オイルポンプ11(専用モータ12)が故障している場合、また、電動オイルポンプ11(専用モータ12)正常であっても前記アイドルストップ制御許可判断が「禁止」である場合、コントローラ21は、アイドルストップOFF指令をエンジン側に発し、エンジンを自動停止させるアイドルストップを実行させないと同時に、電動オイルポンプ11(専用モータ12)へ電動オイルポンプOFF指令を発して、電動オイルポンプ11を停止させる。
 よって、電動オイルポンプ11(専用モータ12)が故障しているのにアイドルストップが実行されることがなくなり、当該アイドルストップの強行によって、その後におけるアイドルストップの解除に伴うエンジン再始動時に、動力伝達不能状態のVベルト式無段変速機へエンジン回転が入力されて、変速機の耐久性に悪影響が及ぶという問題を回避することができる。
 また、アイドルストップ制御許可判断が「禁止」である場合は、要求通りにアイドルストップを行わせないようにすることができる。
 前記した通り、アイドルストップ中は電動オイルポンプ11からの作動油でVベルト式無段変速機を動力伝達開始直前状態にしておき、アイドルストップの解除に伴うエンジンの再始動直後に、動力伝達不能状態のVベルト式無段変速機へエンジン回転が入力されてその耐久性に悪影響が及ぶことのないようにするが、これを補佐して、エンジンの再始動直後に、動力伝達不能状態のVベルト式無段変速機へエンジン回転が入力されるのを防止するという上記の機能を一層確実なものにするため、コントローラ21は以下のようなエンジンのアイドルストップ解除時制御を行う。
 この際コントローラ21は、油圧センサ10により検出した変速制御用油圧(図示例では変速制御圧Pcであるが、ライン圧PLでもよい)が設定油圧以上であるか否かをチェックする。
 この設定油圧値は、変速機へエンジン出力が入力されても変速機の耐久性に悪影響が及ぶことのない変速制御用油圧(変速制御圧Pcまたはライン圧PL)の下限値とする。
 変速制御用油圧(変速制御圧Pcまたはライン圧PL)が設定油圧以上になるよりも前においては、コントローラ21は、かかる低い変速制御用油圧(変速制御圧Pcまたはライン圧PL)のもとでも、エンジントルクが変速機の耐久性に悪影響を及ぼすことのないようにエンジントルクを低下させるエンジントルクダウン指令を、図1に示すごとくエンジン側に発する。
 変速制御用油圧(変速制御圧Pcまたはライン圧PL)が設定油圧以上になったら、コントローラ21は、エンジントルクを上記のトルクダウン値から運転操作対応のトルク値に向け、ショックのない時系列変化で徐々に上昇復帰させるエンジントルク復帰指令を、図1に示すごとくエンジン側に発し、エンジンのアイドルストップ解除時制御を実行させる。
 なお、アイドルストップ中に前記したごとく電動オイルポンプ11からの作動油によりVベルト式無段変速機を前記した動力伝達開始直前状態にしておくに際し、コントローラ21は変速制御回路6への発進摩擦要素締結圧(Ps)用の指令値を、図2に示す制御プログラムの実行により、図3~5のタイムチャートに示すごとくに決定する。
 図2のステップS11においては、Vベルト式無段変速機が中立(N)レンジにされているか否かをチェックする。
 中立(N)レンジが選択されている間、コントローラ21はステップS12において、変速制御回路6への発進摩擦要素締結圧(Ps)用の指令値を、中立(N)レンジでの制御最大値とする。
 ステップS11で中立(N)レンジ以外(走行レンジ)であると判定するときは、ステップS13において、変速制御用油圧Pc(またはPL)や発進摩擦要素締結圧Psが正常に発生しているか否かを(電動オイルポンプ11が故障していないか否かを)、また、電子制御スロットルバルブなどのエンジン出力制御系が正常か否かを、更に、前記したエンジンのアイドルストップ解除時制御が開始される前に選択レンジの切り替え(セレクト操作)が無かったか否かをチェックする。
 ステップS13で、変速制御用油圧Pc(またはPL)や発進摩擦要素締結圧Psが正常に発生している(電動オイルポンプ11が故障していない)と判定し、且つ、エンジン出力制御系が正常であると判定し、且つ、エンジンのアイドルストップ解除時制御が開始される前にセレクト操作が無かったと判定するときは、
 ステップS14において、選択中の走行レンジが前進走行(D)レンジおよび後退走行(R)レンジの何れであるのかをチェックする。
 ステップS14で前進走行(D)レンジ選択中と判定するとき、コントローラ21はステップS15において、変速制御回路6への発進摩擦要素締結圧(Ps)用の指令値を、前進走行(D)レンジで締結すべき発進摩擦要素(前後進切り替え機構内における前進クラッチ)の制御最大値とする。
 ステップS14で後退走行(R)レンジ選択中と判定するとき、コントローラ21はステップS16において、変速制御回路6への発進摩擦要素締結圧(Ps)用の指令値を、後退走行(R)レンジで締結すべき発進摩擦要素(前後進切り替え機構内における後退ブレーキ)の制御最大値とする。
 ステップS11、ステップS13、ステップS14、ステップS15、ステップS16を含むループによる上記した発進要素締結圧制御を、図3に基づき以下に詳述する。
 図3は、瞬時t1にアイドルストップOFF指令でエンジンが再始動されて、エンジン回転数Neが図示の時系列変化をもって上昇し、これによりエンジン駆動オイルポンプ4からの作動油で変速制御用油圧(ライン圧PL、または変速制御圧Pc)が図示のように上昇し、瞬時t2に変速制御用油圧(ライン圧PL、または変速制御圧Pc)が前記の設定油圧値に達したことでなされるトルクダウン不要判定により、エンジンのアイドルストップ解除時制御が許可され、これによりエンジントルクTeを、前記のトルクダウンにより低下された値から運転操作対応値に向け、ショック対策用に定めた所定の勾配ΔTe1で上昇復帰させる場合の動作タイムチャートである。
 本実施例においては、アイドルストップ中は勿論、アイドルストップOFF指令後のアイドルストップ解除時制御中を含むアイドルストップ制御中、変速制御回路6への発進摩擦要素締結圧(Ps)用の指令値を、前進走行(D)レンジ選択中なら当該レンジでの発進摩擦要素である前進クラッチの制御最大値とし、後退走行(R)レンジ選択中なら当該レンジでの発進摩擦要素である後退ブレーキの制御最大値とする。
 このため、変速制御回路6が、上記の指令値を受けて発進摩擦要素F/E(Dレンジでは前進クラッチ、Rレンジでは後退ブレーキ)の締結圧Psを制御するに際し、電動オイルポンプ11からの作動油をドレンしないこととなる。
 従って電動オイルポンプ11は、ドレン分を含めて作動油を吐出する必要がなくなり、ポンプ容量の小さな小型ポンプ電動オイルポンプにし得て、設置スペース上の制約やコスト上の制約に十分対応することができる。
 図2のステップS13で、変速制御用油圧Pc(またはPL)や発進摩擦要素締結圧Psが正常に発生していない(電動オイルポンプ11が故障している)と判定したり、または、エンジン出力制御系が正常でないと判定したり、或いは、エンジンのアイドルストップ解除時制御が開始される前にセレクト操作があったと判定するときは、制御をステップS17に進める。
 ステップS17においては、エンジンの前記したアイドルストップ解除時制御が許可され、エンジントルクTeをトルクダウン値から運転操作対応値に向け上昇復帰させるアイドルストップ解除時制御が行われているか否かをチェックする。
 エンジンのアイドルストップ解除時制御が実行されていれば、これにより上昇復帰しているエンジントルクTeを発進摩擦要素が、ショック防止下に確実に伝達し得る締結容量を持つよう、ステップS18において、変速制御回路6への発進摩擦要素締結圧(Ps)用の指令値を通常通りに漸増させる。
 ステップS17で未だエンジンのアイドルストップ解除時制御が許可(実行)されていないと判定する場合は、ステップS19において、選択中の走行レンジが前進走行(D)レンジおよび後退走行(R)レンジの何れであるのかをチェックする。
 ステップS19で前進走行(D)レンジ選択中と判定するとき、コントローラ21はステップS20において、変速制御回路6への発進摩擦要素締結圧(Ps)用の指令値を、前進走行(D)レンジで締結すべき発進摩擦要素(前後進切り替え機構内における前進クラッチ)の制御最大値よりも小さい中間的な棚圧、好ましくは、発進摩擦要素(前進クラッチ)を内蔵リターンスプリングに抗して締結開始直前状態にするのに必要なリターンスプリング相当圧とする。
 ステップS19で後退走行(R)レンジ選択中と判定するとき、コントローラ21はステップS21において、変速制御回路6への発進摩擦要素締結圧(Ps)用の指令値を、後退走行(R)レンジで締結すべき発進摩擦要素(前後進切り替え機構内における後退ブレーキ)の制御最大値よりも小さい中間的な棚圧、好ましくは、発進摩擦要素(後退ブレーキ)を内蔵リターンスプリングに抗して締結開始直前状態にするのに必要なリターンスプリング相当圧とする。
 ステップS11、ステップS13、ステップS17、ステップS19、ステップS20、ステップS21を含むループによる上記した発進要素締結圧制御を、図4,5および図6,7に基づき以下に詳述する。
 図4は、図2のステップS13で変速制御用油圧Pc(またはPL)や発進摩擦要素締結圧Psが正常に発生していない(電動オイルポンプ11が故障している)と判定した瞬時t0以降も、ステップS15やステップS16の実行により発進摩擦要素締結圧(Ps)用の指令値を図示のごとく制御最大値にした場合の動作タイムチャートである。
 電動オイルポンプ11の故障で変速制御用油圧Pc(またはPL)や発進摩擦要素締結圧Psが正常に発生しなくなった異常判定が瞬時t0になされたにもかかわらず、瞬時t1までのアイドルストップ中、および、その後の瞬時t2に、トルクダウン不要判定によってエンジンのアイドルストップ解除時制御が開始されるまでの間において、発進摩擦要素締結圧(Ps)用の指令値を制御最大値にしたのでは、以下のような問題を生ずる。
 つまり電動オイルポンプ11の故障で変速制御用油圧Pc(またはPL)や発進摩擦要素締結圧Psが正常に発生しなくなった場合は、発進摩擦要素締結圧Psの不足によって発進摩擦要素F/Eがスリップし、その入力回転数Nciが図示するごとくに回転上昇することがある。
 この場合、エンジンの再始動後における回転上昇によりエンジン駆動オイルポンプ4が作動油を吐出するようになって発進摩擦要素締結圧Psの制御が可能になった瞬時t2'以降、当初の発進摩擦要素締結圧Psと、制御最大値にされている指令値との偏差が大きいことから、発進摩擦要素締結圧Psが図4に示すように急上昇して、発進摩擦要素F/Eをその入力回転数Nciの急低下から明らかなように急締結させ、締結ショックが生ずる。
 これに対し本実施例のように、図2のステップS13で変速制御用油圧Pc(またはPL)や発進摩擦要素締結圧Psが正常に発生していない(電動オイルポンプ11が故障している)と判定した時は、ステップS20やステップS21の実行により発進摩擦要素締結圧(Ps)用の指令値を制御最大値よりも小さい中間的な棚圧(好ましくは、発進摩擦要素を締結開始直前状態にするリターンスプリング相当圧)にする場合、図5につき以下に説明するように上記のショックに関する問題を解消することができる。
 図5は、図4と同じ条件での動作タイムチャートを示すが、図2のステップS13で変速制御用油圧Pc(またはPL)や発進摩擦要素締結圧Psが正常に発生していない(電動オイルポンプ11が故障している)と判定した瞬時t0以降、エンジンのアイドルストップ解除時制御許可瞬時t2までの間、ステップS15やステップS16の実行により発進摩擦要素締結圧(Ps)用の指令値を図示のごとく、制御最大値よりも小さい中間的な棚圧(好ましくは、発進摩擦要素を締結開始直前状態にするリターンスプリング相当圧)にした場合の動作タイムチャートである。
 この場合、エンジンの再始動後における回転上昇によりエンジン駆動オイルポンプ4が作動油を吐出するようになって発進摩擦要素締結圧Psの制御が可能になった瞬時t2'以降、当初の発進摩擦要素締結圧Psと、制御最大値よりも小さい棚圧にされている指令値との偏差が小さいことから、また、エンジンのアイドルストップ解除時制御許可瞬時t2以降はステップS18の実行により発進摩擦要素締結圧(Ps)用の指令値が図5に示すごとく所定勾配で徐々に増大されることとも相まって、発進摩擦要素締結圧Psが図示のように緩やかに上昇し、発進摩擦要素F/Eをその入力回転数Nciの緩やかな低下から明らかなように徐々に締結させえ、締結ショックが発生するのを防止することができる。
 なお本実施理例においては、図2のステップS13で電子制御スロットルバルブなどのエンジン出力制御系が正常でないと判定する場合も、エンジンのアイドルストップ解除時制御が許可される前は(ステップS17)、ステップS20またはステップS21の実行により発進摩擦要素締結圧(Ps)用の指令値を、制御最大値よりも小さい棚圧にするが、これにより以下の作用効果が奏し得られる。
 つまり、エンジン出力制御系が正常でないにもかかわらず、ステップS15またはステップS16の実行により発進摩擦要素締結圧(Ps)用の指令値を制御最大値にすると、
 エンジン始動によってもエンジン駆動オイルポンプ4から所定量の作動油が吐出させ得ず、変速機が動力伝達可能状態になっていないのに、制御最大値にされた発進摩擦要素締結圧(Ps)用の指令値に基づく発進摩擦要素F/Eの締結圧Psの制御で、この締結圧Psが発進摩擦要素F/Eを締結進行させてしまう。
 この場合、未だ動力伝達可能状態になっていない変速機にエンジン動力が入力されることとなり、変速機の耐久性に悪影響を与えたり、その後に変速機が動力伝達可能状態になったとき、大きなショックが発生するという問題を生ずる。
 これに対し本実施例のように、図2のステップS13でエンジン出力制御系が正常でないと判定した時は、ステップS20やステップS21の実行により発進摩擦要素締結圧(Ps)用の指令値を制御最大値よりも小さい中間的な棚圧(好ましくは、発進摩擦要素を締結開始直前状態にするリターンスプリング相当圧)にする場合、
 発進摩擦要素締結圧(Ps)用の指令値に基づく発進摩擦要素締結圧Psの制御が、発進摩擦要素F/Eを棚圧対応状態(締結開始直前状態)を越えて締結進行させることがなく、従って、未だ動力伝達可能状態になっていない変速機にエンジン動力が入力されることがなくなり、変速機の耐久性に悪影響を与えたり、その後に変速機が動力伝達可能状態になったとき、大きなショックが発生するという問題を解消することができる。
 図6は、図2のステップS13で、アイドルストップOFF指令によるエンジン再始動瞬時t1から、エンジンのアイドルストップ解除時制御が許可される瞬時t2までの間の瞬時t1'において、選択レンジの切り替え(D→Rセレクト操作)があったと判定したにもかかわらず、ステップS20またはステップS21の実行による棚圧指令制御を行わなかった場合の動作タイムチャートである。
 瞬時t1'におけるDレンジからRレンジへのセレクト操作により、Dレンジで締結状態であった前進クラッチ(Dレンジの発進摩擦要素)を解放し、Rレンジの発進摩擦要素である後退ブレーキを締結する必要がある。
 そのため、発進摩擦要素締結圧Psのうち、前進クラッチ締結圧の指令値を図示のごとく瞬時t1'に制御最大値から0にして、前進クラッチ圧の排除により前進クラッチを解放させ、後退ブレーキ圧の指令値を図示のごとく、瞬時t1'からプリチャージ期間中、後退ブレーキが速やかにストロークを終了して締結開始直前状態になるようにするためのプリチャージ圧とし、その後、所定の勾配で制御最大値へと上昇させる。
 ところで、トルクダウン不要判定によるエンジンのアイドルストップ解除時制御(エンジントルク増大復帰制御)が開始される瞬時t2までは、エンジン駆動オイルポンプ4からの作動油量が少なく、後退ブレーキ圧は上記のごとく設定した指令値に追従するとき、これに対し大きな応答遅れを持つことになる。
 この間、それにもかかわらず後退ブレーキ圧の指令値を上記したごとく通常通りに設定して後退ブレーキ圧の制御に資するのでは、瞬時t2のアイドルストップ解除時制御(エンジントルク増大復帰制御)でエンジン駆動オイルポンプ4からの作動油量が多くなったとき、後退ブレーキ圧が図示のごとく急上昇する。
 このため、瞬時t2以降における後退ブレーキの出力回転数Ncoに対する入力回転数Nciの急接近状況から明らかなように、後退ブレーキが急締結されることとなり、ショックを発生するという問題を生ずる。
 これに対し本実施例においては、図2のステップS13で、アイドルストップOFF指令によるエンジン再始動時から、エンジンのアイドルストップ解除時制御が開始される許可されるまでの間に(ステップS17)、選択レンジの切り替え(D→Rセレクト操作)があったと判定した場合は、ステップS20またはステップS21の実行による棚圧指令制御を行うこととしたため、図7につき以下に説明するように上記のショックに関する問題を解消することができる。
 図7は、図6と同じ条件での動作タイムチャートを示すが、図2のステップS13で、アイドルストップOFF指令によるエンジン再始動瞬時t1から、エンジンのアイドルストップ解除時制御が許可される瞬時t2までの間の瞬時t1'に、選択レンジの切り替え(D→Rセレクト操作)があったと判定した場合、ステップS20またはステップS21の実行による棚圧指令制御を行った場合の動作タイムチャートである。
 つまり、D→Rセレクト操作判定瞬時t1'から、エンジンのアイドルストップ解除時制御開始瞬時t2までの間を棚圧制御期間とし、発進摩擦要素締結圧Psである後退ブレーキ圧の指令値を棚圧(好ましくは、後退ブレーキを締結開始直前状態にするリターンスプリング相当圧)に保ち、
 その後ステップS18の実行により、後退ブレーキ圧の指令値を上記の棚圧から図示のごとく所定勾配で徐々に増大させる。
 この場合、エンジンのアイドルストップ解除時制御(エンジントルク増大復帰制御)の開始瞬時t2まで、エンジン駆動オイルポンプ4からの作動油量が少なくても、後退ブレーキ圧の指令値をD→Rセレクト操作判定瞬時t1'から、エンジンのアイドルストップ解除時制御開始瞬時t2までの間、棚圧(好ましくは、後退ブレーキを締結開始直前状態にするリターンスプリング相当圧)に保つため、後退ブレーキ圧がかかる指令値に追従するとき、図7に示すごとくこれに対し大きな応答遅れを持つことがない。
 このため、瞬時t2のアイドルストップ解除時制御(エンジントルク増大復帰制御)でエンジン駆動オイルポンプ4からの作動油量が多くなったときも、後退ブレーキ圧が急上昇することなく、ほぼ指令値の時系列変化に沿って図示のごとく緩やかに上昇する。
 このため、瞬時t2以降における後退ブレーキの出力回転数Ncoに対する入力回転数Nciの急接近状況から明らかなように、後退ブレーキが滑らかに締結されることとなり、後退ブレーキの締結時にショックを発生するという問題を生ずることがない。
 図8は、図1におけるコントローラ21が実行する、エンジンのアイドルストップ解除時制御の参考例を示す。
 ステップS31においては、エンジンの前記したトルクダウンが不要になったとの判定により、エンジントルクを運転操作対応値に増大復帰させるアイドルストップ解除時制御を許可すべきか否かをチェックする。
 アイドルストップ解除時制御を許可すべきでない(エンジンの前記したトルクダウンを継続すべき)間は、ステップS32においてエンジントルク指令値tTeをトルクダウン値とし、コントローラ21はこのエンジントルク指令値tTe(=トルクダウン値)を、図1に示すごとくエンジントルク復帰指令としてエンジン側に送信し、エンジンのトルクダウンを行って前記の要求を実現する。
 ステップS31でエンジンのトルクダウンを終了すべき(アイドルストップ解除時制御を許可すべき)と判定するときは、ステップS33で発進摩擦要素がスリップしているか否かをチェックする。
 このチェックに当たっては、発進摩擦要素の入力回転数Nciおよび出力回転数Nco間の差回転(スリップ量)ΔNc(=Nco-Nci)を算出し、この差回転ΔNcがスリップ発生判定値ΔNcin以上になった時から、差回転ΔNcがスリップ解消判定値ΔNcout(<ΔNcin)未満になった時までをもって、発進摩擦要素がスリップしていると判定することができる。
 ステップS33で発進摩擦要素がスリップしていないと判定する間は、ステップS34において、エンジントルク指令値tTeを、ショック対策用に定めた所定値ΔTe1(図3参照)ずつ大きくなる値とし、コントローラ21はこのエンジントルク指令値tTeを、図1に示すごとくエンジントルク復帰指令としてエンジン側に送信する。
 これによりエンジントルクTeは、図3に例示するごとく所定値ΔTe1に対応した時間変化勾配で増大される。
 ステップS33で発進摩擦要素がスリップしていると判定する間は、ステップS35において、エンジントルク指令値tTeを所定値ΔTe2(<ΔTe1)ずつ大きくなる値とし、コントローラ21はこのエンジントルク指令値tTeを、図1に示すごとくエンジントルク復帰指令としてエンジン側に送信する。
 これによりエンジントルクTeは、所定値ΔTe2に対応した時間変化勾配で増大されるが、所定値ΔTe2はショック対策用の所定値ΔTe1よりも更に小さくし、例えばエンジントルクTeを変化させない0にするのが良い。
 図8によるエンジンのアイドルストップ解除時制御を、図9,10に基づき以下に詳述する。
 ステップS31での判定結果に基づきエンジンのアイドルストップ解除時制御を行うに際し、ステップS33での発進摩擦要素のスリップ判定を行うことなく、従ってステップS35を実行することなく、ステップS34の実行によりエンジントルク指令値tTeを一義的に、ΔTe1に対応した勾配で増大復帰させた場合の動作タイムチャートを図9に示す。
 この図9は、瞬時t1にアイドルストップOFF指令でエンジンが再始動されて、エンジン回転数Neが図示の時系列変化をもって上昇し、
 これによりエンジン駆動オイルポンプ4からの作動油で変速制御用油圧(ライン圧PL、または変速制御圧Pc)が図示のように上昇し、
 瞬時t2に変速制御用油圧(ライン圧PL、または変速制御圧Pc)が前記の設定油圧値に達したことでなされるトルクダウン不要判定により、エンジンのアイドルストップ解除時制御が許可され、 これによりエンジントルク指令値tTeを、トルクダウン値から運転操作対応値に向け、ショック対策用に定めた所定の勾配ΔTe1で上昇復帰させたことで、エンジントルクTeが図示のように上昇する場合の動作タイムチャートである。
 瞬時t2以降、発進摩擦要素が図示のように大きくスリップしているのに、エンジントルク指令値tTeをショック対策用の所定勾配ΔTe1で上昇させ続けるのでは、発進摩擦要素締結圧Psの指令値が制御最大値であってその増大による発進摩擦要素締結圧Psの上昇を望み得ないこともあり、発進摩擦要素のスリップがなかなか収束しない。
 一方でエンジントルクTeは、所定勾配ΔTe1で上昇しているエンジントルク指令値tTeに追従するよう上昇し、発進摩擦要素のスリップ収束を更に遅延させる。
 これらの理由によって発進摩擦要素が、耐久性を著しく低下されるという問題を生ずる。
 ところで本実施例においては、図8のステップS31での判定結果に基づきエンジンのアイドルストップ解除時制御を行うに際し、ステップS33で発進摩擦要素がスリップを生じていると判定する間、ステップS35の実行によりエンジントルク指令値tTeをショック対策用の所定勾配ΔTe1(ステップS34)よりも小さな所定勾配ΔTe2(本実施例では0)で増大させることとしたから、この場合の動作タイムチャートを示す図10につき以下に説明する通り上記の問題を解消することができる。
 図10は、図9と同じ条件での動作タイムチャートを示すが、図8のステップS33で発進摩擦要素の差回転ΔNcがスリップ発生判定値ΔNcin以上であると判定した瞬時t3から、発進摩擦要素の差回転ΔNcがスリップ解消判定値ΔNcout(<ΔNcin)未満であると判定した瞬時t4までの間、発進摩擦要素がスリップを発生期間していると判定して、発進摩擦要素スリップ判定をONにする。
 この間は、図8のステップS35を実行することにより、エンジントルク指令値tTeを所定勾配ΔTe2(=0)で増大させるため、エンジントルク指令値tTeは結果として図10に示すごとく、スリップ発生判定開始時t3の値をスリップ解消判定時t4まで保持する。
 これに呼応してエンジントルクTeは瞬時t3~t4間において、上昇を緩和、若しくは0にされ、一方でこの間、発進摩擦要素締結圧Psがエンジン駆動オイルポンプ4からの作動油供給で図示のごとく上昇する。
 これらにより発進摩擦要素のスリップは、その入出力回転数Nci,Nco間の乖離程度から明らかなように、図9の場合よりも速やかに収束すると共に、差回転ΔNcの大きさから明らかなようにスリップ量そのものも、図9の場合より小さくなる。
 従って、発進摩擦要素がスリップにより耐久性を著しく低下されるという上記の問題を回避することができる。
以下に、図2を参照しつつ本願発明に係る車両のアイドルストップ制御時における
発進摩擦要素の締結圧制御装置の発明ポイントを説明する。
(一般的な発進摩擦要素の制御)
図2に示すように、変速機には、発進摩擦要素F/Eを有する。この発進摩擦要素F/Eとは、本件実施例のようなCVTでは、前後進切替クラッチに相当し、有段ATでは、前後進1速選択クラッチや後進段選択クラッチに相当する。
 発進摩擦要素の伝達トルク容量は、入力トルクの大きさに応じて設定される値であり、入力トルクが大きいほど大きく設定される。この伝達トルク容量は、発進摩擦要素の締結圧(クラッチ油圧)により決まる値であることから、入力トルクが大きいほど、クラッチ油圧を大きくして、伝達トルク容量を大きくすることになる。
クラッチ油圧(締結圧)は、クラッチ油圧制御弁(クラッチレギュレータバルブ)26により制御される。クラッチ油圧制御弁26は、一定元圧を減圧してクラッチ油圧を生成する減圧弁であり、減圧は、元圧をドレンすることで実現している。どの程度ドレンするかはドレンポートの開度で決まる。
 制御上は、入力トルクに応じたクラッチ油圧(=ドレンポート開度)になるよう、スプール位置を制御することになる。つまり、入力トルクに応じてクラッチ油圧指令値が決まり、このクラッチ油圧指令値に対応したスプール位置に相当する電流をクラッチ油圧制御弁26のソレノイドに印加することになる。
(問題点)
 しかしながら、上記通常制御はアイドルストップ制御装置(部)を搭載した車両にそのまま適用した場合、以下のような問題が発生する。すなわち、アイドルストップ中(エンジン停止中)は、発進摩擦要素の入力トルクが0となるため、発進摩擦要素の伝達トルク容量も0で良く、上記通常制御をそのまま使うと、クラッチ油圧(締結圧)指令値を締結開始直前(締結開始点とは、発進摩擦要素が完全解放状態から締結状態になる過程で締結が開始される点を指します。)
(特徴)
アイドルストップ制御が作動中は、クラッチ油圧指令値に対するクラッチ油圧制御弁26のドレンポート開度を通常制御に比して小さくする(ドレンし難くする)。
(効果)
これによりドレン量を抑制でき,電動オイルポンプ11を不要に大きくする必要がなくなる。
 なお、上記では変速機がVベルト式無段変速機である場合について述べたが、変速機が有段式自動変速機や、マニュアルトランスミッションを自動変速化させた自動マニュアルトランスミッションなどである場合も、本発明の前記した着想はそのまま適用して同様な作用効果を奏し得ること勿論である。
  E エンジン
 T/C トルクコンバータ
 F/E 発進摩擦要素
 1 プライマリプーリ
 2 セカンダリプーリ
 3 Vベルト
 4 エンジン駆動オイルポンプ
 5 ライン圧油路
 6 変速制御回路
 7 運転状態検出手段
 8 プライマリプーリ圧油路
 9 変速制御圧油路
 10 油圧センサ
 11 電動オイルポンプ
 12 専用モータ
 13 電動オイルポンプ油路
 14 逆止弁
15発進摩擦要素締結圧油路
21エンジン自動停止コントローラ
22アイドルストップ許可条件検出部
23 インヒビタスイッチ
24 発進摩擦要素入出力回転センサ
25 エンジン出力制御系故障判定部
26 クラッチ油圧制御弁

Claims (7)

  1.  エンジンと、
    駆動車輪と、
    発進摩擦要素を介して該エンジンの動力を該駆動車輪へ変速下に伝達する変速機と、
    該エンジンの運転中、該エンジンにより駆動されるエンジンオイルポンプからの油圧で該変速機を変速制御する変速制御部と、
    停車判定時は、所定条件が揃ったところでエンジンを自動的に停止させるアイドルストップを行うと共に、電動オイルポンプからの作動油を発進摩擦要素締結圧制御が一部ドレンして作り出した締結圧により該発進摩擦要素を締結開始直前状態となし、該所定条件が揃わなかったところで、アイドルストップの解除により該エンジンを再始動させると共に、該エンジンを運転操作対応の状態にするアイドルストップ制御部とを備える車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置であって、前記アイドルストップ制御部の作動中、該発進摩擦要素締結圧制御部への締結圧指令値に対するクラッチ油圧制御弁のドレンポート開度を通常制御に比べて小さくすることを特徴とする、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置。
  2. 請求項1に記載の、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置において、
    前記電動オイルポンプは、前記発進摩擦要素締結圧制御部への締結圧指令値が制御最大値にしておくよう構成したことを特徴とする、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置。
  3.  請求項2に記載の、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置において、
     前記電動オイルポンプは、前記発進摩擦要素締結圧制御部への締結圧指令値が制御最大値であるとき丁度、前記発進摩擦要素を締結開始直前状態となすような量の作動油を吐出するポンプ容量を持つものであることを特徴とする、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置。
  4.  請求項2または3に記載の、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置において、
     前記電動オイルポンプが正規の油圧を発生し得ない故障時は、前記発進摩擦要素締結圧制御部への締結圧指令値を制御最大値に代えて、中間的な棚圧相当値にするよう構成したことを特徴とする、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置。
  5.  請求項1~4のいずれか1項に記載の、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置において、
     前記エンジンの出力制御系が故障している時は、前記発進摩擦要素締結圧制御部への締結圧指令値を制御最大値に代えて、中間的な棚圧相当値にするよう構成したことを特徴とする、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置。
  6.  請求項1~4のいずれか1項に記載の、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置において、
     前記アイドルストップの解除によるエンジン再始動から、前記アイドルストップ解除時制御が開始されるまでの間に、前記変速機の選択レンジが切り替わった時は、前記発進摩擦要素締結圧制御部への締結圧指令値を制御最大値に代えて、中間的な棚圧相当値にするよう構成したことを特徴とする、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置。
  7.  請求項4~6のいずれか1項に記載の、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置において、
     前記中間的な棚圧相当値は、前記発進摩擦要素を内蔵リターンスプリングに抗して締結開始直前状態にするのに必要なリターンスプリング相当圧であることを特徴とする、車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置。
PCT/JP2009/059309 2008-06-04 2009-05-21 車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置 WO2009147950A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010515826A JP5343968B2 (ja) 2008-06-04 2009-05-21 車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置
US12/994,349 US8386138B2 (en) 2008-06-04 2009-05-21 Fastening pressure control device for starting friction element at time of controlling idle stop of vehicle
CN2009801210841A CN102057179B (zh) 2008-06-04 2009-05-21 当控制车辆怠速停止时起动摩擦元件的固紧压力控制装置
EP09758217.5A EP2287488B1 (en) 2008-06-04 2009-05-21 Fastening pressure control device for starting friction element at time of controlling idle stop of vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-146387 2008-06-04
JP2008146387 2008-06-04

Publications (1)

Publication Number Publication Date
WO2009147950A1 true WO2009147950A1 (ja) 2009-12-10

Family

ID=41398026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059309 WO2009147950A1 (ja) 2008-06-04 2009-05-21 車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置

Country Status (5)

Country Link
US (1) US8386138B2 (ja)
EP (1) EP2287488B1 (ja)
JP (1) JP5343968B2 (ja)
CN (1) CN102057179B (ja)
WO (1) WO2009147950A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208689A (ja) * 2010-03-29 2011-10-20 Toyota Motor Corp 変速機の制御装置
JP2012172727A (ja) * 2011-02-18 2012-09-10 Fuji Heavy Ind Ltd 車両用駆動装置
JP2014024449A (ja) * 2012-07-26 2014-02-06 Honda Motor Co Ltd 車両の制御装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5051007B2 (ja) * 2008-06-03 2012-10-17 日産自動車株式会社 車両駆動系のアイドルストップ解除時制御装置
US8416067B2 (en) 2008-09-09 2013-04-09 United Parcel Service Of America, Inc. Systems and methods for utilizing telematics data to improve fleet management operations
US11482058B2 (en) 2008-09-09 2022-10-25 United Parcel Service Of America, Inc. Systems and methods for utilizing telematics data to improve fleet management operations
KR20110069331A (ko) * 2009-12-17 2011-06-23 한국전자통신연구원 고도 정보를 이용한 차량 엔진 제어 장치 및 그 방법
US9208626B2 (en) 2011-03-31 2015-12-08 United Parcel Service Of America, Inc. Systems and methods for segmenting operational data
US9953468B2 (en) 2011-03-31 2018-04-24 United Parcel Service Of America, Inc. Segmenting operational data
JP2013072479A (ja) * 2011-09-27 2013-04-22 Toyota Motor Corp 車両用無段変速機の制御装置
JP5756002B2 (ja) * 2011-12-09 2015-07-29 ジヤトコ株式会社 車両制御装置および車両の制御方法
CN104093585B (zh) 2012-01-11 2017-06-06 伊凡克发展有限公司 有利于车辆在发动机关闭情况下重启的燃料节省系统
CN102806902B (zh) * 2012-08-12 2014-02-12 哈尔滨东安汽车发动机制造有限公司 一种自动变速器起停功能的电子泵辅助控制方法
US9102334B2 (en) 2012-10-29 2015-08-11 Deere & Company Methods and apparatus to control motors
US9805521B1 (en) 2013-12-03 2017-10-31 United Parcel Service Of America, Inc. Systems and methods for assessing turns made by a vehicle
JP6075340B2 (ja) * 2014-07-29 2017-02-08 株式会社デンソー 油圧制御装置
KR101918429B1 (ko) * 2014-11-13 2018-11-13 쟈트코 가부시키가이샤 무단 변속기의 제어 장치 및 제어 방법
US20160334225A1 (en) 2015-05-11 2016-11-17 United Parcel Service Of America, Inc. Determining street segment headings
JP6459774B2 (ja) * 2015-05-22 2019-01-30 株式会社デンソー 内燃機関の制御装置
JP6197842B2 (ja) * 2015-09-02 2017-09-20 トヨタ自動車株式会社 車両制御装置
JP2019507841A (ja) 2016-02-16 2019-03-22 ディベロップメント イフェンコ インコーポレイテッドDeveloppement Effenco Inc. 商用車用拡張機能付きアイドリングストップ燃費低減システム
JP6330849B2 (ja) * 2016-05-19 2018-05-30 マツダ株式会社 自動変速機の制御方法及び制御装置
JP6859631B2 (ja) * 2016-08-29 2021-04-14 日産自動車株式会社 無段変速機の制御方法及び制御装置
JP6426689B2 (ja) * 2016-12-22 2018-11-21 トヨタ自動車株式会社 車載エンジンの制御装置
JP6535365B2 (ja) * 2017-05-26 2019-06-26 本田技研工業株式会社 油圧制御装置
US11378024B2 (en) * 2017-11-22 2022-07-05 Nissan Motor Co., Ltd. Internal combustion engine control method and internal combustion engine control device
US11022010B2 (en) * 2017-12-22 2021-06-01 Ford Global Technologies, Llc Engine variable oil pump diagnostic method
CN118088288A (zh) * 2024-04-26 2024-05-28 潍柴动力股份有限公司 一种发动机机油压力控制方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041067A (ja) 1999-07-26 2001-02-13 Nissan Motor Co Ltd 車 両
JP2006170399A (ja) * 2004-12-20 2006-06-29 Mazda Motor Corp 自動変速機の制御装置
JP3807145B2 (ja) * 1999-04-30 2006-08-09 トヨタ自動車株式会社 車両のエンジン再始動の制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665777A (en) * 1984-09-08 1987-05-19 Mazda Motor Corporation Control for shifting between gears of a vehicle automatic transmission
JP3714164B2 (ja) * 1999-02-08 2005-11-09 トヨタ自動車株式会社 電動機のトルクにより制動する車両及びその制御方法
US6615786B2 (en) * 2001-05-11 2003-09-09 Honda Giken Kogyo Kabushiki Kaisha Starter system for internal combustion engine
US6556910B2 (en) * 2001-08-31 2003-04-29 Aisin Aw Co., Ltd. Control apparatus and method for vehicle having an idle stop function
JP3700776B2 (ja) * 2001-12-07 2005-09-28 アイシン・エィ・ダブリュ株式会社 車両の駆動制御装置
JP3915698B2 (ja) * 2002-12-27 2007-05-16 アイシン・エィ・ダブリュ株式会社 ハイブリッド車輌の制御装置
US8136647B2 (en) * 2005-09-08 2012-03-20 Volvo Lastvagnar Ab Clutch control method and controller therefor
JP4810942B2 (ja) * 2005-09-20 2011-11-09 トヨタ自動車株式会社 内燃機関の自動停止装置
US8162800B2 (en) * 2006-01-05 2012-04-24 Volvo Lastvagnar Ab Method for controlling disengagement of an automated clutch in a vehicle
JP4344378B2 (ja) * 2006-11-28 2009-10-14 ジヤトコ株式会社 ベルト式無段変速機の油圧制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807145B2 (ja) * 1999-04-30 2006-08-09 トヨタ自動車株式会社 車両のエンジン再始動の制御装置
JP2001041067A (ja) 1999-07-26 2001-02-13 Nissan Motor Co Ltd 車 両
JP2006170399A (ja) * 2004-12-20 2006-06-29 Mazda Motor Corp 自動変速機の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2287488A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208689A (ja) * 2010-03-29 2011-10-20 Toyota Motor Corp 変速機の制御装置
JP2012172727A (ja) * 2011-02-18 2012-09-10 Fuji Heavy Ind Ltd 車両用駆動装置
JP2014024449A (ja) * 2012-07-26 2014-02-06 Honda Motor Co Ltd 車両の制御装置

Also Published As

Publication number Publication date
US20110071740A1 (en) 2011-03-24
EP2287488A4 (en) 2013-07-10
EP2287488B1 (en) 2014-01-22
JPWO2009147950A1 (ja) 2011-10-27
CN102057179B (zh) 2013-08-07
EP2287488A1 (en) 2011-02-23
JP5343968B2 (ja) 2013-11-13
US8386138B2 (en) 2013-02-26
CN102057179A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
JP5343968B2 (ja) 車両のアイドルストップ制御時における発進摩擦要素の締結圧制御装置
JP5051007B2 (ja) 車両駆動系のアイドルストップ解除時制御装置
JP5359036B2 (ja) エンジン自動停止制御装置付き車両の変速機に用いる電動オイルポンプの故障判定装置
KR101363309B1 (ko) 차량의 제어 장치
JP3731746B2 (ja) エンジン及びベルト式無段変速機の制御装置
US10507832B2 (en) Vehicle drive control device and control method for vehicle drive control device
JP6353971B2 (ja) 変速機の制御装置及び変速機の制御方法
JP6446122B2 (ja) 変速機の制御装置及び変速機の制御方法
JP6379279B2 (ja) 変速機の制御装置及び変速機の制御方法
JP3116808B2 (ja) 無段変速機のフェイルセーフ制御装置
JP4070739B2 (ja) 無段変速機
KR101935190B1 (ko) 변속기의 제어 장치 및 변속기의 제어 방법
KR101930189B1 (ko) 변속기의 제어 장치 및 변속기의 제어 방법
JP4747059B2 (ja) 車両の制御装置
JP2019148296A (ja) 自動変速機の油圧回路
US11738737B2 (en) Control device for vehicle and control method for vehicle
JP2004100826A (ja) 無段変速機の変速制御装置
JPH08210449A (ja) Vベルト式無段変速機のライン圧制御装置
JP6379280B2 (ja) 変速機の制御装置及び変速機の制御方法
JP4028496B2 (ja) アイドルストップ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121084.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758217

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515826

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12994349

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009758217

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE