WO2009145228A1 - スラグフォーミング鎮静材及びスラグフォーミング鎮静方法 - Google Patents

スラグフォーミング鎮静材及びスラグフォーミング鎮静方法 Download PDF

Info

Publication number
WO2009145228A1
WO2009145228A1 PCT/JP2009/059712 JP2009059712W WO2009145228A1 WO 2009145228 A1 WO2009145228 A1 WO 2009145228A1 JP 2009059712 W JP2009059712 W JP 2009059712W WO 2009145228 A1 WO2009145228 A1 WO 2009145228A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
mass
sedative
molten slag
less
Prior art date
Application number
PCT/JP2009/059712
Other languages
English (en)
French (fr)
Inventor
玲洋 松澤
崇一 新野
昌光 若生
政宣 熊倉
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN2009801156207A priority Critical patent/CN102016081B/zh
Priority to KR1020107024332A priority patent/KR101234483B1/ko
Priority to BR122017006818A priority patent/BR122017006818B1/pt
Priority to BRPI0910543-3A priority patent/BRPI0910543B1/pt
Publication of WO2009145228A1 publication Critical patent/WO2009145228A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0025Adding carbon material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • C21C7/0043Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material into the falling stream of molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • C21C2007/0062Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires with introduction of alloying or treating agents under a compacted form different from a wire, e.g. briquette, pellet
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/04Avoiding foam formation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a slag-forming sedative material and a slag-forming sedation method for calming slag that is forming (foaming).
  • slag Steelmaking slag generated in the process of producing molten steel
  • foams ie, forms
  • Slag volume may expand).
  • slag may overflow from a refining facility such as a converter, a kneading wheel, a waste pan, or a transport container for molten iron or slag. Since this slag is a high temperature of 1300 to 1650 ° C., it overflows and damages the equipment, and a great deal of time and labor is required for its recovery.
  • FeO iron oxide
  • FeO in slag and C in molten iron react at the interface
  • FeO in slag and C in granular iron contained in the slag There are two ways to react. In any of these cases, the longer the time (life) from the arrival at the surface of the slag to the burst, the easier the bubbles stay in the slag. As the diameter of the bubbles is smaller and the viscosity of the slag component is higher, the bubbles are stably present in the slag, so that the life of the bubbles becomes longer (hard to burst).
  • a method is generally used in which a substance that is gasified in the slag is introduced and the volume expansion energy at that time is used to destroy the foam layer.
  • slag having higher viscosity or higher FeO concentration is easier to form.
  • a sedative material that is sedated by promoting coalescence of bubbles or destroying a foam layer is generally used.
  • Patent Document 1 discloses a calming method in which carbon powder (carbon material) is sprayed onto a forming slag at a rate of 5 to 100 kg / min.
  • Patent Document 2 carbon powder (carbon material) having a particle size of 0.1 to 1 mm and 1 to 5 mm is blown from an independent blowing system, and the blowing amount is attached to one suppression work.
  • a sedation method is disclosed in which the amount is 0.1 kg or more and less than 0.8 kg per ton of hot metal, and the blowing speed is 5 to 100 kg / min.
  • the FeO concentration of the slag in the converter is increased, and the C and slag in the hot metal are vigorously reacted at the hot metal interface. Forming. In the slag thus formed, a large amount of granular iron is entrained along with the generation of intense CO bubbles at the interface between the slag and the hot metal. For this reason, immediately after the slag discharged from the converter is discharged into the slag pan, C and FeO in the granular iron contained in the slag react with each other to generate CO bubbles. Easy to do. And even if the forming is once calmed, it is easy to form continuously by the slag discharged one after another.
  • pulp waste slag having a water content of 20% or less as a substance that generates gas by the heat of slag is 50 to 90%, and converter slag 5 to 25% as a substance that increases mass.
  • a solid soothing material for a converter containing 5 to 25% of a binder such as bentonite.
  • a substance that generates gas less than 40% of a pyrolyzable material such as coal, limestone, plastic, paper, etc., fine iron powder, and a binder are mixed to form a briquette, and apparently A sedative material having a specific gravity of 2 to 5 is disclosed.
  • the soothing material described in Patent Document 3 uses CO 2 or CO 2 gas generated by the combustion of pulp waste and H 2 O gas from moisture. .
  • the water content is as low as 20% or less, the amount of gas generated immediately after charging is small. Therefore, a large amount of slag having a high forming speed must be added.
  • the sedative material described in Patent Document 4 uses CO or CO 2 gas generated from a thermally decomposable substance, but the ratio of fine iron powder is higher than that of the thermally decomposable substance. Therefore, the gas generation amount of CO and CO 2 is small. Therefore, as in the case of the above-mentioned Patent Document 3, a large amount of slag having a fast forming must be added.
  • a large amount of these sedatives added to the slag is 1) increase in refining costs, 2) increase in the amount of sedative residue remaining in the slag after gas generation, and 3) white residue as white smoke. There is a problem that the working environment is deteriorated due to an increase in the amount of blowing up.
  • the present invention has been made in view of the above circumstances, and quickly stabilizes the molten slag to be formed with a small amount of use, prevents equipment damage due to overflow of the molten slag, and maintains stable productivity.
  • the object is to provide a slag forming sedative material and a slag forming sedative method.
  • the present invention employs the following means in order to solve the above problems and achieve the object. That is, (1)
  • the slag forming sedative material of the present invention comprises a carbon powder having a particle size of 0.2 mm or more and 2 mm or less and 20% by mass or more and 40% by mass or less, and 30% by mass or more and 60% by mass or less moisture.
  • the mass of the mixture contained in the container may be 1 kg or more and 10 kg or less.
  • the slag forming sedative material described in the above (1) is introduced into foamed molten slag having a basicity of 0.8 or more and 1.5 or less.
  • the slag forming sedative material is introduced into the molten slag discharge position discharged from a converter within 30 seconds from the start of discharge of the molten slag. May be.
  • the other slag forming sedation method of the present invention includes a step of feeding the slag forming sedative material according to (1) above into a slag pan; And a step of introducing molten slag of 0.8 or more and 1.5 or less.
  • Another slag forming sedative material of the present invention comprises a mixture containing water of 30% by mass to 60% by mass and a fuel content of 35% by mass to 65% by mass; A container made of an organic substance and containing the mixture.
  • the mass of the mixture contained in the container may be 1 kg or more and 10 kg or less.
  • Still another slag forming sedation method of the present invention is the slag forming sedative material according to the above (6), wherein the slag forming sedative material is in a foamed molten slag having an iron oxide concentration of 15 mass% or more and 25 mass% or less A step of charging.
  • the slag forming sedative material is introduced into the molten slag discharge position discharged from a converter within 30 seconds from the start of discharge of the molten slag. You may make it do.
  • moisture content and carbon powder in the mixture which comprise the above-mentioned slag forming sedative material are defined as follows.
  • Moisture is a substance that evaporates when heated at 100 ° C. for 2 hours, for example, and the contained mass% is obtained from the mass change rate before and after heating.
  • Carbon powder is a substance containing carbon as a main component (80% by mass or more) such as coke powder, coal powder, and graphite powder.
  • the particle size of the carbon powder is defined by the mesh opening of the sieve that can pass. That is, the particle size of 0.2 mm or more and 2 mm or less means particles that can pass through a sieve with a mesh opening of 2 mm and cannot pass through a sieve with a mesh opening of 0.2 mm.
  • the fuel content is a substance that burns and vaporizes when heated at 815 ° C. for 1 hour in an air atmosphere, and the content mass% is the moisture content mass based on the mass change rate (gasification content) before and after heating. It is calculated by subtracting%.
  • This fuel component is composed of a solid or a mixture of a solid and a liquid, and examples thereof include cellulose, plastics, trays, edible oil, waste oil such as engine oil, and organic substances such as oil-containing sludge in pulp waste.
  • the remainder other than moisture and fuel in the mixture constituting the slag forming sedative material is called ash and corresponds to the residue after gas generation. Since this ash content is unavoidably contained in the mixture at least about 5% by mass, the sum of moisture and fuel is 95% by mass at the maximum.
  • the mixture containing a predetermined amount of moisture and carbon powder is impermeable to water.
  • a sedative material contained in a container made of a combustible material is introduced (used) into the molten slag forming. Therefore, carbon powder can be dispersed in the molten slag by explosive volume expansion energy due to vaporization of moisture.
  • the formation of molten slag can be efficiently suppressed, so that a high sedative effect can be obtained even if the total amount of sedative material is small. Therefore, the cost of the sedative material can be reduced, the workability can be improved by preventing the equipment damage caused by the overflow of the molten slag, and the productivity can be stably maintained in the refining process.
  • FIG. 1 is a graph showing the relationship between the bubble diameter in the molten slag and the lifetime of the bubble.
  • the horizontal axis indicates the bubble diameter, and the vertical axis indicates the bubble life.
  • FIG. 2 is explanatory drawing of the slag forming sedation method which concerns on this embodiment.
  • the slag forming sedative according to this embodiment (hereinafter also simply referred to as sedative) is a mixture of carbon powder and moisture contained in a container made of an impermeable flammable substance. This will be described in detail below.
  • carbon powder can promote the coalescence of bubbles with a bubble diameter of 0.2 mm or more and 2 mm or less, and if the bubble diameter can be increased to more than 2 mm, the life of the bubble is greatly reduced, and forming is performed. It turned out that it becomes possible to suppress.
  • the water content in the mixture is 30% by mass or more and 60% by mass or less.
  • the generated gas water vapor
  • the volume expansion energy becomes insufficient
  • the carbon powder is difficult to disperse inside the molten slag.
  • the amount of water exceeds 60% by mass, the effect of dispersing the carbon powder is saturated, and too much water vapor is generated, so that the molten slag is easily scattered out of the waste pan. In that case, it may cause equipment damage.
  • the water content in the mixture was set to 30% by mass or more and 60% by mass or less.
  • the lower limit is 35% by mass, further 40% by mass
  • the upper limit is 55% by mass, and further 50% by mass. It is good to do.
  • the diameter (particle size) of carbon powder is 0.2 mm or more and 2 mm or less.
  • the diameter of the bubbles to be coarsened is 0.2 mm or more and 2 mm or less.
  • the diameter of the carbon powder needs to be equal to or less than that of the bubbles.
  • the particle size of the carbon powder is too larger than the bubbles, the carbon powder is likely to be sandwiched between the bubbles, so that it is difficult to coalesce.
  • carbon powder having a large particle size is likely to float on the surface of the molten slag and is difficult to disperse in the molten slag, so that it is difficult to obtain a forming suppression effect.
  • the diameter of the carbon powder is 0.2 mm or more and 2 mm or less, which is the same diameter as the bubbles to be coarsened, but carbon powder of less than 0.2 mm or carbon powder of more than 2 mm Some (for example, about 20% by mass or less) may be included. Furthermore, if the carbon powder contains not less than 0.2% by mass and not more than 2% by mass, 65% by mass or more of the above-mentioned forming suppression effect can be obtained.
  • the amount of carbon powder having a particle size of 0.2 mm or more and 2 mm or less contained in the mixture is 20% by mass or more and 40% by mass or less.
  • the amount of carbon powder having a particle diameter in the mixture of 0.2 mm or more and 2 mm or less is less than 20% by mass, the ratio of the carbon powder in the mixture is too small, so that the coalescence of bubbles is insufficient, forming It becomes difficult to suppress.
  • the amount of carbon powder having a particle size of 0.2 mm or more and 2 mm or less exceeds 40% by mass, a remarkable increase in forming suppression effect is not recognized and the effect is estimated to be saturated.
  • the amount of carbon powder in the mixture is set to 20% by mass or more and 40% by mass or less.
  • the lower limit is 21% by mass
  • the upper limit is 35% by mass, and further 30% by mass. good.
  • the remainder other than moisture and carbon powder in the mixture constituting the sedative material shown above is not particularly specified, but when a pyrolyzable substance is used, the volume expansion energy when generating gas in the molten slag is reduced. It is more preferable because it can be used for dispersion of carbon powder.
  • the pyrolyzable material herein include pulp waste, waste plastic, edible oil, organic matter such as waste oil, carbonate such as CaCO 3 , and hydroxylation such as Ca (OH) 2. This applies to things.
  • the mixture contains a large amount of moisture, so that the crushing strength is low even when compression-molded, and the mixture is liable to be deformed when subjected to vibration or impact during transportation or the like. Therefore, in order to surely sink into the molten slag, the mixture is accommodated in a container made of an impermeable flammable substance.
  • the reason why the container is impermeable is to prevent the amount of water from decreasing between the production of the slag-forming sedative material and its introduction.
  • the container is made of a combustible substance because it is gasified early in the molten slag and disappears, and the carbon powder contained in the slag forming sedative material is easily dispersed into the molten slag more quickly. This is because it becomes easy to efficiently suppress forming.
  • a slightly hard container such as a plastic bottle is preferable because it has good workability in transportation and charging, but may be a plastic bag.
  • the mass of the mixture packed in this container is preferably 1 kg or more and 10 kg or less.
  • the mass of the mixture is set to 1 kg or more and 10 kg or less, but the lower limit is preferably 2 kg, more preferably 3 kg, and the upper limit is 8 kg, more preferably 7 kg.
  • the slag forming sedation method according to the present embodiment will be described.
  • the molten slag having a lower basicity has a stronger forming property.
  • the slag forming sedative of the present embodiment can obtain a high sedative effect even for such a molten slag.
  • the case where it uses for a multifunctional converter method as an example is demonstrated, referring FIG.
  • the molten slag S1 in the converter 10 is discharged to the slag pan 11 installed under the furnace.
  • the basicity of the molten slag S1 in the converter 10 is 0.8 or more and 1 during the dephosphorization process.
  • the molten slag S2 discharged from the converter 10 and supplied to the slag pan 11 reacts with C in the granular iron contained in the slag and FeO to generate CO bubbles, and rapidly and continuously. Easy to form.
  • a sedative material (slag forming sedative material) 12 used for the molten slag S2 it is necessary to have characteristics of reducing the lifetime of bubbles remaining on the surface of the molten slag S2 and suppressing forming. It is.
  • the sedative material 12 of the present embodiment makes it possible to uniformly disperse the carbon powder having the coalescing action and the coarsening action of the bubbles in the molten slag S2 by the volume expansion energy when moisture is vaporized,
  • the effect of carbon powder is easily obtained with the entire molten slag S2. This effect can be obtained even with a high-viscosity low basicity slag in which the lifetime of bubbles tends to be long, and the difference in the effect becomes more remarkable as compared with the prior art.
  • the charging position is from the discharge position of the molten slag S1 to the slag pan 11, that is, from the converter 10. It is preferable that the discharged molten slag S ⁇ b> 1 has a position where it reaches the inside of the discharge pan 11. Immediately after the start of slagging, the stirring of the molten slag S2 accompanying the discharge is particularly intense in the slagging pan 11, so that the carbon powder can be evenly dispersed in the molten slag S2 by utilizing the stirring energy.
  • the input amount of the sedative material prior to the start of excretion is more preferably 30 kg or more.
  • the sedative material 12 is concentrated (for example, once, continuously, or divided into multiple times) within 30 seconds from the start of the discharge of the molten slag S1, and the molten slag to the discharge pan 11 is concentrated. It can also be put into the discharge position of S1.
  • the reason is the same as the above-described excretion, and the input amount of the sedative material 12 for 30 seconds from the start of the excretion is more preferably 30 kg or more.
  • the sedative material 12 may be further charged in accordance with the forming situation.
  • the sedative material 12 and a conventionally known sedative material can be used in combination. It is preferable that the sedative material 12 is introduced evenly for 30 seconds (first half) from the start of evacuation of the molten slag S1 and after 30 seconds from the start of evacuation (second half).
  • the input amount of the sedative material 12 per unit time in the first half is preferably 2 to 3 times the input amount of the sedative material 12 in the second half.
  • the number 13 in FIG. 2 is an operation floor, and the number 14 is a moving trolley.
  • waste plastic plastic bottles crushed into flakes
  • water for water adjustment are added to pulp waste, coke powder, and graphite powder with a moisture content of 60% by mass as necessary.
  • the mixture thus mixed is a plastic bag (volume: 13500 cm 3 , thickness: 0.5 mm), a plastic bottle (volume: 12000 cm 3 , thickness: 1.5 mm), or a paper bag (volume: 13500 cm 3 , thickness: 0.5 mm).
  • Table 1 shows the raw material mixing ratio of the sedative material mixture.
  • the particle size (particle size) of the carbon powder in Table 2 is the particle size of the mixture of coke powder and graphite powder in Table 1, and the particle size is less than 0.2 mm, 0.2 mm to 2 mm, 2 mm or more. It is divided into two. Furthermore, Table 2 also describes the mass per sedative, but the container is a plastic bag, a plastic bottle, or a paper bag, and its mass is slight relative to the amount of the mixture. The mass of one material is the amount of mixture per sedative material.
  • the sedative materials (materials A to S) of Examples 1 to 12 and Comparative Examples 1 to 7 shown in Tables 1 and 2 were thrown into the slag pan during spilling in the multi-function converter method.
  • Table 3 shows.
  • the sedative material is (1) when placed in a 4 m high waste pan placed under the furnace body before the start of the molten slag removal, and (2) 30 seconds after the start of the waste discharge. The two conditions of the case where the molten slag was discharged into the discharge pan described above were examined.
  • the converter When the sedative material is introduced within 30 seconds from the start of slagging, after the dephosphorization treatment, the converter is tilted while the hot metal is left in the furnace, and the above mentioned slagging ladle is put into the converter furnace port.
  • sedative material When discharging the molten slag from, sedative material was introduced through the chute from immediately after the start of evacuation until the end of evacuation. As a result, the molten slag that forms in the waste pan is calmed down. The molten slag was discharged for 3 minutes in all cases.
  • the mass of the molten slag during sewage was measured with a weigher attached to a moving carriage on which the slag pan was installed.
  • Example 1 a mixture having a water content of 30% by mass to 60% by mass and a carbon powder having a particle size of 0.2 to 2 mm of 20% by mass to 40% by mass is impervious to water.
  • Sedative materials materials A to L contained in a container made of a combustible substance were used. As a result, 120 kg of this sedative material was added, so that forming could be sedated, and molten slag could be discharged by 10 tons (target value) or more.
  • Example 1 when discharging molten slag having a basicity of 1.1, 40 kg of sedative material (material A) is placed in the slag pan before the start of drainage, and 80 kg of sedative material (material A).
  • Example 2 was put into the molten slab discharge position 30 seconds after the start of evacuation, and the effect of soothing was great, and 14 tons of molten slag could be discharged.
  • the same result was obtained for Example 2 in which 40 kg of sedative material (material B) was introduced within 30 seconds from the start of the molten slag discharge.
  • Example 3 in the used carbon powder, the ratio of particles having a particle size of less than 0.2 mm was high with respect to the total amount. Therefore, compared with Example 2, the effect
  • Example 4 the ratio of particles having a particle diameter exceeding 2 mm was high with respect to the total amount of the carbon powder used.
  • Example 2 the effect
  • Example 5 since the sedative material (material E) having a mass of the mixture packed in the plastic bag of 0.8 kg (less than 1 kg) was used, it was not sufficiently submerged in the molten slag as compared with Example 2 and melted. Slag discharge amounted to 11 tons.
  • Example 6 used a sedative material (material F) in which the mass of the mixture packed in a plastic bottle was 12 kg (over 10 kg). Therefore, the immersion into the molten slag was sufficient, and 14 tons of molten slag could be discharged as in Example 2. However, since the mass of the sedative material was too heavy, workability such as production and conveyance was worse than that of Example 2.
  • Example 7 the sedative material was introduced near the end of the slagging pan. Therefore, compared to Example 2, the sedative material (material G) was less likely to sink into the molten slag, and the discharged amount of molten slag was 10.5. Tons. In Example 8, since the amount of the sedative material (material H) charged from the start of evacuation to 30 seconds was limited to 24 kg, which was smaller than that in Example 2, the amount of molten slag discharged was 11 tons.
  • Example 9 since the sedative material (material I) in which the water content in the mixture constituting the sedative material is lower than that of Example 2 was used, the generated water vapor was insufficient and the carbon powder was inside the molten slag. It was difficult to disperse the molten slag, and the amount of molten slag discharged was 10.5 tons.
  • Example 10 the amount of water in the mixture constituting the sedative and the amount of carbon powder having a particle diameter of 0.2 mm to 2 mm are lower than those of Example 2 (the amount of water is the same as in Example 9).
  • a material (material J) was used. Therefore, in addition to the phenomenon of Example 9, it became difficult to suppress forming, and 10 tons of molten slag less than Example 9 could be discharged.
  • Example 11 a sedative material (material K) in which the moisture content in the mixture constituting the sedative material was lower than that of Example 2 was used, but carbon powder having a particle size of 0.2 mm to 2 mm was used. Since the amount was higher than that of the sedative material of Example 2, the discharged amount of molten slag was 11 tons.
  • Example 12 used a sedative material (material L) in which the amount of water in the mixture constituting the sedative material was higher than that of Example 2, but the amount of carbon powder having a particle size of 0.2 mm to 2 mm was used. Since it was lower than the sedative material of Example 2, the discharge amount of molten slag was 10.5 tons.
  • Examples 1 to 12 shown above are the results for molten slag having a basicity in the range of 0.8 or more and 1.5 or less, but all obtained good results. .
  • Comparative Examples 1 and 2 the amount of water in the mixture constituting the sedative material (materials M and N) was less than 30% by mass and the water content was insufficient, so the carbon powder was not sufficiently dispersed in the molten slag In all cases, the forming amount could not be suppressed with the same amount of input as in Examples 1 to 12, and it was necessary to add about 1.5 times the sedative material. In particular, for Comparative Example 2, although the amount of carbon powder having a particle size of 0.2 mm to 2 mm in the mixture is larger than that of the sedative material of Examples 1 to 12 (over 40% by mass), It was necessary to add an excessive amount of sedative material.
  • Comparative Examples 3 and 4 the amount of carbon powder having a particle size of 0.2 mm to 2 mm in the mixture constituting the soothing material (materials O and P) was less than 20% by mass, and the amount of carbon powder was insufficient. In any case, the coarsening was insufficient, and in all cases, the forming amount could not be suppressed with the same input amount as in Examples 1 to 12, and it was necessary to add about 1.5 times the sedative material. In particular, in Comparative Example 3, the amount of water in the mixture constituting the sedative material was larger than that of Examples 1 to 12 (over 60% by mass), but the sedative material was excessive. It was necessary to throw in.
  • the slag forming sedative material according to one embodiment of the present invention is used, and the method of calming the slag forming at the time of discharge in the multi-function converter method has been described, but the present invention is not limited to this.
  • the present invention can also be applied to calm down slag forming that occurs during refining in a kneading vehicle or a converter, and exhibits the same effect.
  • FIG. 3 is a graph showing an example of the change over time in the gas generation rate per kg of the slag forming sedative material.
  • the horizontal axis shows the time after the sedation material is added, and the vertical axis shows the gas generation rate per kg of the sedation material. Indicates.
  • the slag forming sedative according to the present embodiment (hereinafter, also simply referred to as a sedative) is a mixture of moisture and fuel contained in a container made of an impermeable organic material. This will be described in detail below.
  • the condition of this sedative material is that gas must be generated quickly in the molten slag being formed, and this must be sustained to some extent. There is. Therefore, the present inventors conducted various experiments in order to clarify the rapidity and sustainability of gas generation of various substances.
  • a sedative material having a mixture in which the moisture content and the fuel content were variously changed was manufactured, and a test was performed in which this sedative material was introduced into molten slag that was formed during the evacuation with an actual machine.
  • the amount of the sedative material input was set to a small amount of about 1% by mass of the discharged molten slag amount, there were a sedative material that exhibited a forming suppression effect and a sedative material that did not exhibit a suppression effect. Therefore, the following measurements were performed on some of the sedatives that exhibited a forming suppression effect.
  • FIG. 3 is a result in case the moisture content in the mixture which comprises a sedative material is 45 mass%, and a fuel content is 35 mass%. From FIG. 3, it was found that the gas generation rate converted per kg of the sedative was 2.0 m 3 / (second ⁇ kg) or more immediately after the sedative was added, and it was maintained for 5 seconds or more.
  • the inventors continued the test in order to clarify the preferred range of water content and fuel content in the mixture.
  • the water content in the mixture needs to be 30% by mass or more and 60% by mass or less.
  • the gas generation rate per kg of the sedative material for 1 second after the sedative material is charged is less than 2.0 m 3 / (second ⁇ kg), and rapid gas generation becomes difficult.
  • the gas generation rate per 1 kg of the sedative material for 1 second after the sedative material is charged can be set to 2.0 m 3 / (second ⁇ kg) or more.
  • the amount of water in the mixture was set to 30% by mass or more and 60% by mass or less.
  • the lower limit is 35% by mass, further 40% by mass
  • the upper limit is 55% by mass, and further 50% by mass. It is good to do.
  • the amount of fuel in the mixture needs to be 35% by mass or more and 65% by mass or less.
  • the fuel content in the mixture is less than 35% by mass, the gas generation rate per kg of sedative material from 1 second to 5 seconds after the sedative material is charged is less than 2.0 m 3 / (second ⁇ kg), and continues. Gas generation becomes difficult.
  • the fuel amount exceeds 65% by mass it is estimated that the above-described moisture amount is out of the appropriate range, so that rapid gas generation becomes difficult.
  • the fuel content in the mixture is set to 35% by mass or more and 65% by mass or less.
  • the lower limit is 38% by mass
  • the upper limit is 55% by mass, and further 50% by mass.
  • the fuel one or more of cellulose, plastic, tray, edible oil, waste oil (for example, engine oil), and organic matter (for example, oil-containing sludge) in the above-mentioned pulp waste can be used. .
  • the mixture is accommodated in a container made of an impermeable organic substance.
  • the container is made impermeable so as to prevent the water content from decreasing between the production of the sedative material and its introduction.
  • the container is made of organic material in order to gasify and disappear quickly in the molten slag, making it easier to generate gas immediately after the sedative material is added to the molten slag, and destroying the foam layer more efficiently. This is to make it easier.
  • a plastic bottle, a plastic bag, etc. can be used, for example.
  • the mass of the mixture contained in the container is preferably 1 kg or more and 10 kg or less. If the sedative material is too light, it will be insufficient to sink into the molten slag, making it difficult to obtain a sedative effect. On the other hand, when the sedative material is too heavy, it becomes difficult to handle the sedative material during manufacture or transportation. Therefore, from the viewpoint of achieving both of these, the mass of the mixture is set to 1 kg or more and 10 kg or less, but the lower limit is preferably 2 kg, more preferably 3 kg, and the upper limit is 8 kg, more preferably 7 kg.
  • the slag forming sedation method according to the present embodiment is used in the multi-function converter method will be described with reference to FIG. 2 which is also used in the first embodiment.
  • the hot metal P is dephosphorized in the converter 10
  • the molten slag S ⁇ b> 1 in the converter 10 is discharged to a waste pan 11 installed under the furnace.
  • the FeO (iron oxide) concentration of the molten slag S1 in the converter 10 is 15 mass% or more and 25
  • the evacuation property is improved.
  • the molten slag S2 discharged from the converter 10 to the waste pan 11 reacts with C in the granular iron contained in the slag and FeO to generate CO bubbles, and rapidly and continuously. Easy to form.
  • the sedative material 12 used for the molten slag S2 gas is instantaneously generated from the inside of the molten slag S2 to the outside, and it is easy to form a passage for the gas retained in the molten slag S2. It is preferable to have the property of
  • the sedative material according to this embodiment described above is used for the sedative material 12 having such characteristics. Since this sedative material enables rapid gas generation immediately after charging due to moisture, it is easy to form an escape route for CO gas.
  • the sedative material described above moisture quickly vaporizes to form a CO gas escape route, and subsequently reacts with FeO in the molten slag, so that the fuel component continuously generates gas. Even a high FeO concentration molten slag having strong forming properties can be efficiently sedated. Thus, the effect of the sedative material appears more prominently by introducing the sedative material into the molten slag having an FeO concentration of 15 mass% or more and 25 mass% or less.
  • the sedative material 12 is preferably introduced intensively (for example, once, continuously, or divided into a plurality of times) within 30 seconds from the start of excretion, It is preferable that the molten slag S1 is discharged to the discharge pan 11 at a discharge position. As a result, the soothing material 12 can be more surely sunk into the molten slag S2. Moreover, it is more preferable that the amount of the sedative material 12 is 30 kg or more within 30 seconds from the start of excretion, and after 30 seconds, if the sedative material 12 is further input according to the forming situation. Good.
  • the sedative is made of pulp waste with a water content of 60% by weight and waste plastic (pet bottle crushed into flakes), salad oil, steelmaking slag (average particle size: 0.5 mm), and moisture as needed.
  • the mixture prepared by adding water for adjustment was mixed and stored in a plastic bag or plastic bottle container.
  • Table 4 shows the raw material blending ratio of the sedative material mixture.
  • Table 4 also describes the composition of the mixture obtained by converting each raw material blending ratio into moisture, fuel, and ash.
  • Table 4 also describes the mass per sedative, but the container is a plastic bag or a plastic bottle, and its mass is small relative to the amount of the mixture. The mass is the amount of mixture per sedative material.
  • Table 5 shows the results of putting the sedative materials of Examples 21 to 29 and Comparative Examples 21 to 26 shown in Table 4 into the slag pan at the time of sewage in the multi-function converter method.
  • the sedative material is tilted from the converter furnace by tilting the converter while leaving the hot metal in the furnace, and then being melted from the converter furnace port into a 4 m high ladle installed below the furnace body.
  • the molten slag that forms in the waste pan is calmed down.
  • the molten slag was discharged for 3 minutes in all cases.
  • the mass of the molten slag during sewage was measured with a weigher attached to a moving carriage on which the slag pan was installed.
  • Example 21 a mixture having a water content of 30% by mass or more and 60% by mass or less and a fuel content of 35% by mass or more and 65% by mass or less is contained in a container composed of an impermeable organic material. Sedative material was used. As a result, 120 kg of this sedative material was added to calm the forming, and molten slag could be discharged by 10 tons (target value) or more.
  • a sedative material containing 5 kg of the mixture in a plastic bag was placed in the discharge position at 40 kg in 30 seconds from the start of discharge, and after 30 seconds had elapsed. When 80 kg was introduced between 1 and 3 minutes, the effect of soothing was great and 14 tons of molten slag could be discharged.
  • Example 23 used a sedative material in which the mass of the mixture contained in the plastic bag was set to 12 kg (over 10 kg), so that the submerged into the molten slag was sufficient. I was able to discharge. However, since the mass of the sedative material was too heavy, workability such as production and conveyance was worse than that in Example 21.
  • Example 24 since the FeO concentration of the molten slag was as high as 26% by mass (over 25% by mass), the formability was quite strong, and the discharged amount of the molten slag was 11.5 tons.
  • Example 25 since the sedative material was introduced near the end of the slagging pan, compared to Example 21, it became difficult to sink the sedative material into the molten slag, and the discharge amount of the molten slag became 10 tons. .
  • Example 26 the amount of sedative material introduced from the start of evacuation until 30 seconds was kept at 24 kg, which is smaller than that in Examples 21 to 25, and thus the amount of molten slag discharged was 11 tons.
  • Example 27 a sedative material having a moisture content in the mixture constituting the sedative material was lower than that of Examples 21 to 26, so that the gas generation rate immediately after the sedative material was introduced into the molten slag became slow.
  • the discharge amount of molten slag was 11 tons.
  • Example 28 since the sedative material in the mixture constituting the sedative material used a sedative material higher than the sedative material of Example 27, the effect of sustaining the gas generation is enhanced, which is more than Example 27 12 Ton of molten slag could be discharged.
  • Example 29 a sedative material having a higher moisture content in the mixture constituting the sedative material than the sedative materials of Examples 21 to 26 was used, but the fuel amount was higher than that of the sedative materials of Examples 21 to 26. Since the low sedative material was used, the discharge amount of molten slag was 13 tons close to Example 21.
  • Comparative Examples 21 and 22 the amount of moisture in the mixture constituting the sedative material was less than 30% by mass, and the moisture was insufficient, so the gas generation rate immediately after the sedative material was introduced into the molten slag became insufficient.
  • the forming could not be suppressed, and it was necessary to add about 1.5 times the sedative material.
  • the amount of fuel in the mixture constituting the sedative material was larger than that of Examples 21 to 29 (over 65% by mass), but the sedative material was excessively added. There was a need to do.
  • Comparative Examples 23 and 24 the amount of fuel in the mixture constituting the sedative was less than 35% by mass, and the amount of fuel was insufficient, resulting in insufficient gas generation sustainability. Forming could not be suppressed with the same input amount, and it was necessary to add about 1.5 times as much sedative material.
  • Comparative Example 23 the amount of water in the mixture constituting the sedative material was larger than that of Examples 21 to 29 (over 60% by mass), but the sedative material was added excessively. There was a need to do.
  • the comparative example 25 was used without accommodating a mixture in a container, the sinking of the sedative material to the molten slag to form was small, and the sedative effect was small. For this reason, in order to prevent the overflow of the molten slag, it is necessary to suppress the discharge rate of the molten slag, and the discharged amount of the molten slag remains at 7.5 tons (less than 10 tons). Further, in Comparative Example 26, since the mixture was accommodated in a water-permeable paper bag, the water content was reduced to 24% by mass before the sedative material was added to the molten slag.
  • the slag to be formed can be quickly and surely sedated with a small amount of slag forming sedative material, and the slag overflowing equipment It was confirmed that it was possible to prevent damage and achieve stable maintenance of productivity.
  • the present invention has been described above. However, the present invention is not limited to these embodiments, and other embodiments and modifications conceivable within the scope of the matters described in the claims. Includes examples.
  • the case where the slag forming sedative material and the slag forming sedative method of the present invention are configured by combining some or all of the above embodiments and their modifications are also included in the scope of the right of the present invention.
  • the use of a slag foaming calming material is not restricted only to this. For example, it can also be used to calm down slag forming that occurs during refining in a chaotic car or a converter, and in this case, the same effect is exhibited.
  • the slag forming sedative material and the slag forming sedative method of the present invention since the formation of molten slag can be efficiently suppressed, a high sedative effect can be obtained even if the total amount of sedative material is small. Therefore, the cost of the sedative material can be reduced, the workability can be improved by preventing the equipment damage caused by the overflow of the molten slag, and the productivity can be stably maintained in the refining process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

 このスラグフォーミング鎮静材は、粒度が0.2mm以上かつ2mm以下である20質量%以上かつ40質量%以下の炭素粉と、30質量%以上かつ60質量%以下の水分とを含有する混合物と;不透水性の可燃性物質からなり、前記混合物を収容する容器と;を備える。

Description

スラグフォーミング鎮静材及びスラグフォーミング鎮静方法
 本発明は、フォーミング(泡立ち)しているスラグを鎮静化させるスラグフォーミング鎮静材及びスラグフォーミング鎮静方法に関する。
 本願は、2008年5月27日に、日本に出願された特願2008-138320号に基づき優先権を主張し、その内容をここに援用する。
 溶鋼を製造する過程において発生する製鋼スラグ(以下単にスラグと称す)は、精錬処理中あるいは精錬処理後に、溶鉄との界面あるいはスラグ自身の内部で発生するCO気泡により泡立ち(フォーミング)すること(即ち、スラグの体積が膨張すること)がある。この泡立ちの度合いが激しい場合には、転炉、混銑車、排滓鍋などの精錬設備あるいは溶鉄やスラグの搬送容器からスラグが溢れ出す場合がある。このスラグは、1300~1650℃と高温であるため、溢れ出すと設備を損傷し、その復旧のために多大な時間と労力を必要とする。
 このようなスラグの溢れ出しを回避する方法として、例えば、精錬処理の速度を下げる方法や、あるいは精錬処理を一時中断する方法がある。しかしながら、これらの方法は溶鋼の生産性に悪影響を与えるので好ましくない。
 上記したCO気泡の発生過程には、スラグ中のFeO(酸化鉄)と溶鉄中のCとが界面で反応する場合と、同じくスラグ中のFeOとスラグ内部に含まれる粒鉄中のCとが反応する場合との2通りがある。これら、いずれの場合も、スラグ表面に到達してから破裂するまでの時間(寿命)が長い気泡ほど、スラグ内に滞留し易い。気泡は、その径が小さいほど、またスラグ成分の粘性が高いほど、スラグ中に安定して存在するので、その寿命が長くなる(破裂しづらくなる)。このような観点より、スラグの膨張を抑制するには、微細な気泡の合体を促進させて粗大化するのが良い。
 また、上述の2通りの反応のいずれの場合においても、FeO濃度が高いスラグほどCO気泡が多量に発生することも分かっている。従って、FeO濃度の高いスラグは、特に強いフォーミング性を有しており、急速に膨張して溢れ出し易い。そこで、フォーミングしたスラグの溢れ出しを防止するためには、スラグに気泡が滞留した層(泡沫層)を破壊してスラグを収縮させ、鎮静化させることが必要である。そのため、スラグ内でガス化する物質を投入し、その際の体積膨張エネルギーを泡沫層の破壊に利用する方法が、一般的に行われている。
 以上に説明したように、粘性が高いかあるいはFeO濃度が高いスラグほど、フォーミングしやすいことが分かっている。そして、このフォーミングを低減するための手段として、気泡の合体促進あるいは泡沫層の破壊により鎮静化する鎮静材が一般的に用いられている。
 このような鎮静材の一例として、炭素粉が知られている。
 例えば、下記特許文献1には、フォーミングしているスラグに炭素粉(炭材)を5~100kg/分の速度で吹き付ける鎮静方法が開示されている。
 また、下記特許文献2には、粒子径が0.1~1mmと1~5mmの炭素粉(炭材)とを、各々独立した吹き込み系統から吹き込み、その吹き込み量を1回の抑制作業に付き、溶銑1トン当たり0.1kg以上かつ0.8kg未満とし、なおかつ吹き込み速度を5~100kg/分とする鎮静方法が開示されている。
 また、近年、溶銑を精錬して溶鋼を生産するに際し、転炉で脱燐処理を行った後に炉内スラグの一部を炉下に設置した排滓鍋に排出し、引き続き脱炭処理を行う方法(多機能転炉法)が行われている。
 この方法では、転炉内においてスラグ成分のCaO/SiO比(以下、塩基度と称す)を0.8~1.5に調整し、スラグの粘性を高めてフォーミングし易くすることで、スラグの排出性を良好にしている。転炉から排出された前記スラグは、気泡の径が微細であること、またスラグの粘性が高いことから、排滓鍋に排出された直後より急速にフォーミングし易い。
 また、上述の多機能転炉法では、スラグの排出性を良好にするために、転炉内におけるスラグのFeO濃度を高めて、溶銑中のCとスラグとを溶銑の界面で激しく反応させてフォーミングさせている。このようにフォーミングさせたスラグ中には、スラグと溶銑の界面での激しいCO気泡の発生に伴って、粒鉄が多く巻き込まれている。このため、転炉から排出されたスラグは、排滓鍋に排出された直後から、スラグの内部に含まれる粒鉄中のCとFeOとが反応してCO気泡を発生するので、急速にフォーミングし易い。
 そして、一旦フォーミングを鎮静化させても、次々に排出されてくるスラグによって継続的にフォーミングし易い。
 従って、排滓鍋からのスラグの溢れ出しを防止しつつ、このようなスラグを転炉より短時間で大量に排滓鍋内に排出するには、排滓鍋におけるフォーミングを鎮静化させることがポイントであり、フォーミングを抑制する前記鎮静材の効果が重要な意味を持つ。
 ここで、鎮静材の効果が小さい場合には、スラグの溢れ出しを回避するために排滓量を少なくせざるをえず、この場合には、排滓後の脱炭処理における復P(復燐)の増大や、スロッピングの発生につながり易い。また、この復燐及びスロッピングを抑制するためには、CaOの使用量を多くすればよいが、これでは、CaO濃度が高いスラグの生成量が増加することになり、精錬コストだけでなく、スラグ処理の観点からも好ましくない。
 そこで、例えば、下記特許文献3には、スラグの熱でガスを発生する物質として含水率20%以下のパルプ廃滓50~90%と、質量を増加する物質として転炉滓5~25%と、ベントナイト等の結合剤5~25%とを含む転炉用の固形鎮静材が開示されている。
 また、下記特許文献4には、ガスを発生する物質として、石炭、石灰石、プラスチック、紙等の熱分解性物質40%未満と、微粒鉄粉と、バインダーとを混合してブリケット成形し、見かけ比重を2~5とした鎮静材が開示されている。
特開平4-180507号公報 特開平5-287347号公報 特開昭54-32116号公報 特開平11-50124号公報
 ところで、排滓鍋におけるフォーミングの鎮静化に際して、上記特許文献1のように、炭素粉をスラグ表面に吹き付ける場合、炭素粉は、比重が軽くて体積も小さいため、スラグ内部に入り難い。このため、炭素粉の効果は、スラグの表面側のみに現れ、フォーミングが速いスラグに対しては殆ど効果がない。
 また、上記特許文献2のように、炭素粉をスラグ内部に吹き込む場合、炭素粉は、比重が軽くて体積も小さいため、スラグ全体に分散しにくい。このため、炭素粉の効果は、吹き込んだ位置の近傍のみに現れる。よって、炭素粉の効果をスラグ全体に及ぼすには、多数の位置から吹き込みを行わざるを得なく、作業性が悪くなると共に、設備構成も複雑になる。
 また、排滓鍋におけるフォーミングの鎮静化に際して、上記特許文献3に記載の鎮静材は、パルプ廃滓の燃焼によって発生するCOやCOのガス及び水分からのHOガスを利用している。しかしながら、その水分が20%以下と低いことから、投入直後のガス発生量が少ない。よって、フォーミングが速いスラグに対しては、多量に投入しなければならない。
 また、上記特許文献4に記載の鎮静材は、熱分解性物質から発生するCOやCOのガスを利用するものであるが、この熱分解性物質に比べて微粒鉄粉の比率が高いことから、COやCOのガス発生量が少ない。よって、上記特許文献3の場合と同様に、フォーミングが速いスラグに対しては、多量に投入しなければならない。
 これらの鎮静材のスラグへの多量投入は、1)精錬コストの増加、2)ガス発生後の鎮静材の残渣が不純物としてスラグ内に残留する量の増加、3)残渣が白煙となって吹き上がる量の増大による作業環境の悪化、を招くという問題がある。
 本発明は、上記事情に鑑みてなされたものであって、フォーミングする溶融スラグを少ない使用量で迅速に鎮静化させ、溶融スラグの溢れ出しによる設備損傷を防止して、生産性の安定維持を実現できるスラグフォーミング鎮静材及びスラグフォーミング鎮静方法の提供を目的とする。
 本発明は、上記問題を解決して係る目的を達成するために以下の手段を採用した。すなわち、
(1)本発明のスラグフォーミング鎮静材は、粒度が0.2mm以上かつ2mm以下である20質量%以上かつ40質量%以下の炭素粉と、30質量%以上かつ60質量%以下の水分とを含有する混合物と;不透水性の可燃性物質からなり、前記混合物を収容する容器と;を備える。
(2)上記(1)に記載のスラグフォーミング鎮静材では、前記容器に収容されている前記混合物の質量を、1kg以上かつ10kg以下としてもよい。
(3)本発明のスラグフォーミング鎮静方法は、上記(1)に記載の前記スラグフォーミング鎮静材を、塩基度が0.8以上かつ1.5以下の泡立っている溶融スラグ中に投入する。
(4)上記(3)に記載のスラグフォーミング鎮静方法では、前記スラグフォーミング鎮静材を、転炉より排出される前記溶融スラグの排出位置に、この溶融スラグの排出開始から30秒の間に投入してもよい。
(5)本発明の他のスラグフォーミング鎮静方法は、上記(1)に記載の前記スラグフォーミング鎮静材を排滓鍋に投入する工程と;この工程の後、前記排滓鍋に、塩基度が0.8以上かつ1.5以下の溶融スラグを投入する工程と;を有する。
(6)本発明の他のスラグフォーミング鎮静材は、30質量%以上かつ60質量%以下の水分と、35質量%以上かつ65質量%以下の燃料分とを含有する混合物と;不透水性の有機物からなり、前記混合物を収容する容器と;を備える。
(7)上記(6)に記載のスラグフォーミング鎮静材では、前記容器に収容されている前記混合物の質量が1kg以上かつ10kg以下であってもよい。
(8)本発明のさらに他のスラグフォーミング鎮静方法は、上記(6)に記載の前記スラグフォーミング鎮静材を、酸化鉄濃度が15質量%以上かつ25質量%以下の泡立っている溶融スラグ中に投入する工程を有する。
(9)上記(8)に記載のスラグフォーミング鎮静方法では、前記スラグフォーミング鎮静材を、転炉より排出される前記溶融スラグの排出位置に、この溶融スラグの排出開始から30秒の間に投入するようにしてもよい。
 なお、上記したスラグフォーミング鎮静材(以下、単に鎮静材ともいう)を構成する混合物中の水分と炭素粉を、以下のように定義する。
 水分は、例えば、100℃で2時間加熱したときに気化する物質であり、その含有質量%は、加熱前後の質量変化率から求められる。測定手法上、エタノールのように、HOよりも沸点が低い物質も水分と共に気化するが、鎮静材を製造する際に、このような低沸点の物質を多量に含むことはなく、また少量含んだとしても、HOの鎮静化に対する寄与を阻害するものではないから、これらを含めて本発明では水分と定義する。
 また、炭素粉は、コークス粉、石炭粉、グラファイト粉など、炭素を主成分(80質量%以上)とする物質である。この炭素粉の粒度は、通過できる篩の網目開度で定義する。即ち、粒度0.2mm以上かつ2mm以下とは、網目開度2mmの篩を通過でき、かつ網目開度0.2mmの篩を通過できない粒子を意味する。
 また、燃料分は、大気雰囲気下において815℃で1時間加熱したときに燃焼して気化する物質であり、その含有質量%は、加熱前後の質量変化率(ガス化分)から前記水分含有質量%を減じることで求められる。この燃料分は、固体あるいは固体と液体との混合物からなり、例えば、パルプ廃滓中のセルロース、プラスチック、トレー、食用油、エンジンオイル等の廃油、及び含油スラッジのような有機物が該当する。
 上記スラグフォーミング鎮静材を構成する混合物中の水分及び燃料分以外の残部は灰分といい、ガス発生後の残渣に相当する。この灰分は、混合物中に不可避的に少なくとも5質量%程度含まれるため、水分と燃料分の和は、最大でも95質量%となる。
 以上に示した水分、燃料分、及び灰分の関係を示すと、以下の通りである。
(鎮静材を構成する混合物)=(水分)+(燃料分)+(灰分)=100(質量%)
 本発明の上記(1)又は(6)に記載のスラグフォーミング鎮静材及び上記(3)又は(8)に記載のスラグフォーミング鎮静方法は、水分及び炭素粉を所定量含有する混合物が、不透水性の可燃性物質で構成される容器に収容された鎮静材を、フォーミングしている溶融スラグに対して投入(使用)する。よって、水分の気化による爆発的な体積膨張エネルギーにより炭素粉を溶融スラグ中に分散させることが可能となる。その結果、溶融スラグのフォーミングを効率的に抑制できるので、鎮静材のトータルの投入量が少なくても高い鎮静効果が得られる。よって、鎮静材のコスト低減や、溶融スラグの溢れ出しに起因する設備損傷の防止による作業性の改善、更には精錬工程における生産性の安定維持が可能となる。
溶融スラグ中の気泡の径とその気泡の寿命との関係を示すグラフであり、横軸が気泡径を示し、縦軸が泡寿命を示す。 本発明の一実施形態に係るスラグフォーミング鎮静方法の説明図である。 スラグフォーミング鎮静材1kg当たりのガス発生速度の時間変化の一例を示すグラフであり、横軸が鎮静材投入後の時間を示し、縦軸が鎮静材1kg当たりのガス発生速度を示す。
 本発明のスラグフォーミング鎮静材及びスラグフォーミング鎮静方法の各実施形態について、図面を参照しながら以下に説明する。
[第1実施形態]
 図1は、溶融スラグ中の気泡の径とその気泡の寿命との関係を示すグラフであり、横軸が気泡径を示し、縦軸が泡寿命を示す。また、図2は、本実施形態に係るスラグフォーミング鎮静方法の説明図である。
 本実施形態に係るスラグフォーミング鎮静材(以下、単に鎮静材ともいう)は、炭素粉と水分とを有する混合物を、不透水性の可燃性物質で構成される容器に収容したものである。以下、詳しく説明する。
 炭素粉は、溶融スラグとの濡れ性が悪いため、その表面で溶融スラグを弾く作用を有することから、この炭素粉が、気泡と気泡の間にあるスラグ液膜に入り込むと、スラグ液膜が排除されて気泡が合体する。ここで、気泡の径と気泡の寿命との関係について、図1を参照しながら説明する。
 図1から明らかなように、気泡径が大きくなるに伴ってその泡寿命が短くなる傾向があり、溶融スラグの表面で破裂し易くなる。特に、気泡径が2mm(2.0mm)を超える気泡は、その寿命、即ち破裂するまでの時間に顕著な差がなく、約4秒程度であった。
 従って、気泡径が2mmを超える気泡同士を炭素粉により合体させた場合には、その泡寿命の低下代が小さいため、大きなフォーミング抑制効果は得られにくいことが分かった。一方、気泡径が2mm未満の気泡を合体させた場合は、その寿命の低下代が大きいため、フォーミング抑制効果が得られ易くなるという知見が得られた。
 また、本発明者らが、混銑車、転炉、排滓鍋で各溶融スラグをそれぞれ採取し、その内部に残留した気泡径を調査したところ、0.2~5mmであるという知見が得られた。このことから、気泡径が0.2mm未満の気泡は存在しないか、あるいは存在しても個数が少ないと推測されるので、フォーミングに対する影響は小さいと考えられる。
 ここで、気泡径が2mmを超える気泡については、前記した理由から、鎮静材を投入せずとも、溶融スラグの表面で容易に破裂するので、フォーミングに対する影響は小さいと考えられる。
 これらの知見から、炭素粉により、気泡径が0.2mm以上かつ2mm以下の気泡の合体を促進し、気泡径を2mm超まで粗大化することができれば、気泡の寿命が大きく低下し、フォーミングを抑制することが可能となることが分かった。
 しかしながら、少量の鎮静材で確実にスラグフォーミングを鎮静するには、溶融スラグ内に炭素粉を分散させる必要がある。これは、溶融スラグ中に、炭素粉が偏在するよりも、均等に分散している方が、気泡の合体が溶融スラグの全体に渡って起こり、フォーミング抑制効果が高まるからである。
 そこで、本発明者らは、炭素粉を溶融スラグ内に分散させる手段として、ガス発生物質がガス化する際の体積膨張エネルギーを利用することを考え、以下の試験を行った。
 まず、ガス発生物質として、安価で入手が容易な水、パルプ廃滓、食用油、廃プラスチックを使用し、これらと炭素粉の量を種々変更して混合した混合物を、ビニール袋に詰めて鎮静材を製造し、この鎮静材を、実機で排滓中にフォーミングする溶融スラグに対して投入する試験を行った。
 その結果、鎮静材の投入量を、排出した溶融スラグ量の1質量%程度の少量とした場合に、フォーミング抑制効果が現れたスラグフォーミング鎮静材と、抑制効果が現れないスラグフォーミング鎮静材とがあった。この結果から、スラグフォーミング鎮静材の好適な範囲について、以下のことを見出した。
 まず、混合物中の水分量は、30質量%以上かつ60質量%以下である。
 ここで、水分量が30質量%未満の場合、発生するガス(水蒸気)が不足して、体積膨張エネルギーが不十分となり、炭素粉が溶融スラグの内部に分散し難くなる。一方、水分量が60質量%を超える場合、炭素粉を分散させる効果が飽和すると共に、発生する水蒸気が多過ぎて、溶融スラグが排滓鍋の外に飛散し易くなる。その場合、設備損傷の原因となる可能性がある。
 以上のことから、混合物中の水分量を30質量%以上かつ60質量%以下としたが、好ましくは、下限を35質量%、更には40質量%、上限を55質量%、更には50質量%とするのが良い。
 また、炭素粉の径(粒度)は、0.2mm以上かつ2mm以下である。
 前記したように、粗大化の対象となる気泡の径は、0.2mm以上かつ2mm以下である。これら気泡間にあるスラグ液膜に入り込んで、気泡同士を合体させる作用を果たすには、炭素粉の径を気泡と同等以下とする必要がある。
 ここで、気泡よりも炭素粉の粒径が大き過ぎる場合は、気泡と気泡との間に炭素粉が挟まる形になり易いので、かえって合体しにくい。また、粒径が大きな炭素粉は、溶融スラグ表面に浮上し易く、溶融スラグ中に分散しにくいことから、フォーミング抑制効果が得られにくくなる。
 一方、気泡に対して炭素粉の径が微細過ぎる場合は、スラグ液膜を排除する量が少なくなるので、気泡の合体を促進することが難しい。また、粒径が小さな炭素粉は、表面積が大きくなるため、溶融スラグ中のFeOと反応し易く、微細なCO気泡を発生するので、かえってフォーミングを助長し易くなることから、フォーミング抑制効果が得られ難くなる。
 以上の理由から、炭素粉の径を、粗大化の対象となる気泡と同等の径である0.2mm以上かつ2mm以下としたが、0.2mm未満の炭素粉や、2mmを超える炭素粉が若干(例えば、20質量%以下程度)含まれてもよい。更には、炭素粉は、0.2mm以上かつ2mm以下のものを65質量%以上含めば、上記したフォーミング抑制効果が得られる。
 混合物中に含まれる粒径0.2mm以上かつ2mm以下の炭素粉の量は、20質量%以上かつ40質量%以下である。
 ここで、混合物中の粒径が0.2mm以上かつ2mm以下である炭素粉量が20質量%未満の場合、混合物に占める炭素粉の比率が少な過ぎるので、気泡の合体が不十分で、フォーミングを抑制することが難しくなる。一方、前記した試験の結果より、粒径が0.2mm以上かつ2mm以下の炭素粉量が40質量%を超える場合、フォーミング抑制効果の顕著な上昇が認められず、効果が飽和すると推測される。
 以上のことから、混合物中の炭素粉の量を20質量%以上かつ40質量%以下としたが、好ましくは、下限を21質量%、上限を35質量%、更には30質量%とするのが良い。
 以上に示した鎮静材を構成する混合物における水分と炭素粉以外の残部は、特に規定するものではないが、熱分解性物質を使用すると、溶融スラグ中でガスを発生する際の体積膨張エネルギーを、炭素粉の分散に利用することができるので、より好ましい。なお、ここでいう熱分解性物質には、例えば、パルプ廃滓、廃プラスチック、食用油、廃油のような有機物、あるいはCaCOのような炭酸化物や、Ca(OH)のような水酸化物等が該当する。
 以上に示したように、混合物は多くの水分を含むため、圧縮成形しても圧潰強度が低く、搬送等で振動あるいは衝撃を受けると形崩れし易い。そこで、溶融スラグ中に確実に潜り込ませるため、混合物を不透水性の可燃性物質からなる容器に収容する。
 ここで、容器を不透水性とするのは、スラグフォーミング鎮静材を製造してから投入するまでの間に、水分量が減少するのを防止するためである。また、容器を可燃性物質で構成するのは、溶融スラグ内で早期にガス化して消滅させるためであり、スラグフォーミング鎮静材に含まれる炭素粉が溶融スラグ内へ迅速に分散し易くなり、より効率良くフォーミングを抑制し易くなるからである。このような容器としては、例えば、ペットボトルのような若干硬質のものが、搬送や投入での作業性がよく好ましいが、ビニール袋などでもよい。
 この容器に詰める混合物の質量は、1kg以上かつ10kg以下とするのが好ましい。
 スラグフォーミング鎮静材が軽過ぎる場合は、溶融スラグへの潜り込みが不十分となって、鎮静効果を得にくくなる。一方、スラグフォーミング鎮静材が重過ぎる場合は、スラグフォーミング鎮静材の製造あるいは搬送の際に取り扱いにくくなる。
 従って、これらを両立させるという観点から、混合物の質量を1kg以上かつ10kg以下としたが、下限を2kg、更には3kg、上限を8kg、更には7kgとするのが好ましい。
 続いて、本実施形態に係るスラグフォーミング鎮静方法について説明する。前記したように、塩基度が低い溶融スラグほど、強いフォーミング性を有しているが、本実施形態のスラグフォーミング鎮静材は、このような溶融スラグに対しても、高い鎮静効果が得られる。
 以下、その一例として、多機能転炉法に使用した場合について、図2を参照しながら説明する。
 多機能転炉法では、転炉10内で溶銑Pを脱燐した後、この転炉10内の溶融スラグS1を炉下に設置した排滓鍋11に排出する。なお、ここでは、3分程度の短時間で、10~15トンの溶融スラグS1を排出するため、脱燐処理中に転炉10内での溶融スラグS1の塩基度を0.8以上かつ1.5以下(好ましくは、下限を0.9、上限を1.3)に調整し、溶融スラグS1をフォーミングさせる(泡立たせる)ことで、その排滓性を良好にしている。ここで、塩基度が0.8未満の場合、CaO濃度が低いため溶融スラグS1の脱燐能力が小さくなり、一方、塩基度が1.5を超える場合、溶融スラグS1の粘性が低くなるため、フォーミングしにくくなって排滓性が低下する。
 このように、転炉10から排出され排滓鍋11に供給された溶融スラグS2は、スラグの内部に含まれる粒鉄中のCとFeOが反応してCO気泡が発生し、急速かつ継続的にフォーミングし易い。このような、溶融スラグS2に対して使用する鎮静材(スラグフォーミング鎮静材)12としては、溶融スラグS2の表面に滞留した気泡の寿命を低下させ、フォーミングを抑制するという特性を有することが必要である。
 本実施形態の鎮静材12は、気泡の合体作用及び粗大化作用を有する炭素粉を、水分が気化する際の体積膨張エネルギーにより、溶融スラグS2内に均一に分散させることを可能としているので、溶融スラグS2の全体で炭素粉の効果が得られ易い。この効果は、気泡の寿命が長くなり易い高粘性の低塩基度スラグであっても得ることができ、従来技術と比較すると、その効果の差は更に顕著となる。
 従って、鎮静材12は、排滓開始に先立って、排滓鍋11に投入しておくのが好ましく、その投入位置は、排滓鍋11への溶融スラグS1の排出位置、即ち転炉10から排出された溶融スラグS1が、排滓鍋11内に到達する位置とするのが好ましい。排滓開始直後は、排滓鍋11において、排出に伴う溶融スラグS2の撹拌が特に激しいため、その撹拌エネルギーを利用することで、炭素粉を溶融スラグS2内に均等に分散させることができる。ここで、排滓開始に先立つ鎮静材の投入量は、30kg以上とするのがより好ましい。あるいは、鎮静材12を、溶融スラグS1の排滓開始から30秒の間に集中的に(例えば、一度に、又は連続的に、もしくは複数回に分けて)、排滓鍋11への溶融スラグS1の排出位置に投入することもできる。その理由は、上記した排滓と同様であり、排滓開始から30秒間の鎮静材12の投入量は、30kg以上とするのがより好ましい。
 上記したいずれの投入方法においても、溶融スラグS1の排滓開始から30秒を経過した後は、フォーミングの状況に応じて、鎮静材12を更に投入すればよい。このときは、前記鎮静材12と従来公知の鎮静材とを組み合わせて使用することもできる。
 上記した溶融スラグS1の排滓開始から30秒の間(前半)、及び排滓開始から30秒を経過した後(後半)の鎮静材12の投入は、単位時間当たり均等に行うことが好ましい。このとき、前半における単位時間当たりの鎮静材12の投入量は、後半における鎮静材12の投入量の2倍以上かつ3倍以下にすることが好ましい。
 なお、図2中の番号13は操業床であり、番号14は移動台車である。
 次に、本発明の作用効果を確認するために行った実施例について説明する。
 鎮静材は、水分含有量が60質量%のパルプ廃滓、コークス粉、及びグラファイト粉に対し、必要に応じて、廃プラスチック(フレーク状に粉砕したペットボトル)と水分調整用の水とを添加して混合した混合物を、ビニール袋(容積:13500cm、厚さ:0.5mm)、プラスチックボトル(容積:12000cm、厚さ:1.5mm)、又は紙袋(容積:13500cm、厚さ:0.5mm)の容器に詰めて製造した。この鎮静材の混合物の原料配合比率を表1に示す。また、表2の炭素粉の粒度(粒径)は、表1中のコークス粉とグラファイト粉の混合物の粒度であり、その粒度を、0.2mm未満、0.2mm~2mm、2mm超の3つに区分して示したものである。更に、表2には、鎮静材1個当たりの質量も記載しているが、容器は、ビニール袋、プラスチックボトル、又は紙袋であり、その質量は、混合物量に対して僅かであるため、鎮静材1個の質量が、鎮静材1個当たりの混合物量となる。
                                 表1
Figure JPOXMLDOC01-appb-I000001
                                 表2
Figure JPOXMLDOC01-appb-I000002
 これら表1、2に示した実施例1~12、及び比較例1~7の各鎮静材(材料A~S)を、多機能転炉法において排滓時に排滓鍋へ投入した結果を、表3に示す。ここで、鎮静材は、(1)溶融スラグの排滓開始前に、炉体下方に設置した高さ4mの排滓鍋に配置した場合と、(2)排滓開始から30秒の間に、上記した排滓鍋への溶融スラグの排出位置に投入した場合と、の2条件について検討した。なお、排滓開始から30秒の間に鎮静材を投入する場合、脱燐処理を行った後に溶銑を炉内に残したまま転炉を傾転させ、上記した排滓鍋に転炉炉口から溶融スラグを排出する際に、排滓開始直後から排滓終了まで、鎮静材を、シュートを介して投入した。これにより、排滓鍋内でフォーミングする溶融スラグの鎮静化を図った。この溶融スラグの排出時間は、いずれも3分とした。なお、排滓中の溶融スラグの質量は、排滓鍋を設置する移動台車に取り付けた秤量器で測定した。
                 表3
Figure JPOXMLDOC01-appb-I000003
 実施例1~12は、いずれも水分が30質量%以上かつ60質量%以下、粒径0.2~2mmの炭素粉が20質量%以上かつ40質量%以下である混合物を、不透水性の可燃性物質で構成される容器に収容した鎮静材(材料A~L)を使用した。その結果、この鎮静材を120kg投入することでフォーミングを鎮静化でき、溶融スラグを10トン(目標値)以上排出することができた。特に、実施例1では、塩基度が1.1の溶融スラグを排出するに際し、鎮静材(材料A)を40kg、排滓開始前に排滓鍋に配置し、さらに鎮静材(材料A)80kgを排滓開始30秒後から溶融スラブの排滓位置へ投入したところ、鎮静化の効果が大きく、14トンの溶融スラグを排出できた。なお、溶融スラグの排滓開始から30秒の間に、鎮静材(材料B)を40kg投入した実施例2についても、同様の結果が得られた。
 実施例3では、使用した炭素粉において、その全量に対し、粒径0.2mm未満のものの比率が高かった。そのため、実施例2と比較して、溶融スラグ中の気泡の合体を促進させる作用が小さく、また、微細なCO気泡の発生によりフォーミング抑制効果が得られにくくなり、溶融スラグの排出量が11.5トンとなった。
 一方、実施例4は、使用した炭素粉において、その全量に対し、粒径2mm超のものの比率が高かった。そのため、実施例2と比較して、溶融スラグ中の気泡の合体を促進させる作用が小さく、また溶融スラグ中に分散しづらくフォーミング抑制効果が得られにくくなり、溶融スラグの排出量が11.5トンとなった。
 実施例5は、ビニール袋に詰めた混合物の質量が0.8kg(1kg未満)の鎮静材(材料E)を使用したため、実施例2と比較して溶融スラグへの潜り込みが十分でなく、溶融スラグの排出量が11トンとなった。
 一方、実施例6は、プラスチックボトルに詰めた混合物の質量を12kg(10kg超)とした鎮静材(材料F)を使用した。そのため、溶融スラグへの潜り込みは十分であり、実施例2と同じく14トンの溶融スラグを排出できた。ただし、鎮静材の質量が重過ぎるため、製造や搬送などの作業性が、実施例2より悪くなった。
 実施例7は、鎮静材を排滓鍋の端付近に投入したため、実施例2と比較して、鎮静材(材料G)を溶融スラグに潜り込ませにくくなり、溶融スラグの排出量が10.5トンとなった。
 実施例8は、排滓開始から30秒までの鎮静材(材料H)の投入量を、実施例2よりも少ない24kgに留めたため、溶融スラグの排出量は11トンとなった。
 実施例9は、鎮静材を構成する混合物中の水分量が、実施例2の鎮静材よりも低い鎮静材(材料I)を使用したため、発生する水蒸気が不足して炭素粉が溶融スラグの内部に分散し難くなり、溶融スラグの排出量が10.5トンとなった。
 実施例10は、鎮静材を構成する混合物中の水分量と粒径0.2mm~2mmの炭素粉の量が、実施例2の鎮静材よりも低い(水分量は実施例9と同じ)鎮静材(材料J)を使用した。そのため、実施例9の現象に加え、フォーミングを抑制することが難しくなり、実施例9よりも少ない10トンの溶融スラグを排出できた。
 また、実施例11は、鎮静材を構成する混合物中の水分量が、実施例2の鎮静材よりも低い鎮静材(材料K)を使用したが、粒径0.2mm~2mmの炭素粉の量が、実施例2の鎮静材よりも高かったため、溶融スラグの排出量が11トンであった。
 実施例12は、鎮静材を構成する混合物中の水分量が、実施例2の鎮静材よりも高い鎮静材(材料L)を使用したが、粒径0.2mm~2mmの炭素粉の量が、実施例2の鎮静材よりも低かったため、溶融スラグの排出量が10.5トンであった。
 なお、以上に示した実施例1~12は、塩基度が0.8以上かつ1.5以下の範囲内にある溶融スラグを対象とした結果であるが、いずれも良好な結果が得られた。
 一方、比較例1、2は、鎮静材(材料M、N)を構成する混合物中の水分量が30質量%を下回り、水分が不足したため、溶融スラグ中への炭素粉の分散が不十分であり、いずれの場合も、実施例1~12と同じ投入量ではフォーミングを抑制しきれず、約1.5倍の鎮静材を投入する必要があった。
 特に、比較例2については、混合物中の粒径が0.2mm~2mmの炭素粉の量を、実施例1~12の鎮静材より多くしている(40質量%超)にも関わらず、鎮静材を過剰に投入する必要があった。
 比較例3、4は、鎮静材(材料O、P)を構成する混合物中における粒径0.2mm~2mmの炭素粉の量が20質量%を下回り、炭素粉の量が不足したため、気泡の粗大化が不十分であり、いずれの場合も、実施例1~12と同じ投入量ではフォーミングを抑制しきれず、約1.5倍の鎮静材を投入する必要があった。
 特に、比較例3については、鎮静材を構成する混合物中の水分量を、実施例1~12の鎮静材よりも多くしている(60質量%超)にも関わらず、鎮静材を過剰に投入する必要があった。
 比較例5は、混合物を容器に詰めることなく使用したため、フォーミングする溶融スラグへの鎮静材(材料Q)の潜り込みが小さく、鎮静効果が小さかった。このため、溶融スラグの溢れ出しを防止する目的から、溶融スラグの排出速度を抑えることが必要となり、溶融スラグの排出量が7.5トン(10トン未満)に留まった。
 比較例6は、混合物を透水性の紙袋に詰めたため、鎮静材(材料R)を溶融スラグへ投入する前に、水分量が24質量%まで低下してしまった。このため、溶融スラグの溢れ出しを防止する目的から、溶融スラグの排出速度を抑えることが必要となり、溶融スラグの排出量が9トン(10トン未満)に留まった。
 比較例7は、溶融スラグの塩基度が0.7と低かった(0.8未満)ためフォーミング性がかなり強く、溶融スラグの排出量は9.5トンに留まった。
 以上のことから、本発明のスラグフォーミング鎮静材及びスラグフォーミング鎮静方法を使用することで、フォーミングする溶融スラグを少ない使用量で迅速に鎮静化し、溶融スラグの溢れ出しによる設備損傷を防止して、生産性の安定維持を実現できることを確認した。
 なお、上記実施形態においては、本発明の一実施形態に係るスラグフォーミング鎮静材を使用し、多機能転炉法における排滓時のスラグフォーミングを鎮静化させる方法について説明したが、これに限定されるものではなく、例えば、混銑車や転炉での精錬中に発生するスラグフォーミングの鎮静化にも本発明は適用可能であり、しかも同様の効果を発揮する。
[第2実施形態]
 続いて、添付した図面を参照しつつ、本発明のスラグフォーミング鎮静材及びスラグフォーミング鎮静方法の第2実施形態について、図面を参照しながら以下に説明する。なお、図3は、スラグフォーミング鎮静材1kg当たりのガス発生速度の時間変化の一例を示すグラフであり、横軸が鎮静材投入後の時間を示し、縦軸が鎮静材1kg当たりのガス発生速度を示す。
 本実施形態に係るスラグフォーミング鎮静材(以下、単に鎮静材ともいう)は、水分と燃料分とを有する混合物を、不透水性の有機物で構成される容器に収容したものである。以下、詳しく説明する。
 少量の鎮静材で、溶融スラグのフォーミングを確実に鎮静化するには、この鎮静材の条件として、フォーミングしている溶融スラグ内で、迅速にガス発生が起こり、かつ、それがある程度持続する必要がある。
 そこで本発明者らは、様々な物質のガス発生の迅速性と持続性を明らかにするため、種々の実験を行った。
 まず、水1kgをペットボトルに収容し、これを、フォーミングしている10トンの溶融スラグに投入した。その結果、ガスは、水を溶融スラグへ投入した直後から発生し、投入後約1秒でガスの発生が終了した。
 このことから、水分は、ガス発生の迅速性を満たすのに適していることが判明した。これは、溶融スラグ中に投入した水が、この溶融スラグの熱により爆発的に気化したためと考えられる。
 また、水分が5質量%以下となるように乾燥したパルプ廃滓1kgをペットボトルに収容し、これを、フォーミングしている10トンの溶融スラグに投入した。このパルプ廃滓の主成分は、燃料分であるセルロースである。その結果、ガスは、パルプ廃滓を溶融スラグへ投入した約1秒後から発生し、投入の5秒後までガスの発生が持続した。なお、食用油、廃油、プラスチック(水分が5質量%以下となるまで乾燥)、あるいはこれら有機物の混練物のような他の燃料分についても、同様の試験を実施したが、パルプ廃滓と同様の結果が得られた。
 このことから、燃料分は、ガス発生の持続性を満たすのに適していることが判明した。これは、燃料分が溶融スラグ中のFeOと酸化反応(燃焼)を起こして、CO、CO、HO等のガスを発生したためと考えられる。
 次に、含有水分量と燃料分量とを種々変更した混合物を有する鎮静材を製造し、この鎮静材を、実機で排滓中にフォーミングする溶融スラグに対して投入する試験を行った。その結果、鎮静材の投入量を、排出した溶融スラグ量の1質量%程度の少量とした場合に、フォーミング抑制効果が現れた鎮静材と、抑制効果が現れない鎮静材とがあった。そこで、フォーミング抑制効果が現れた鎮静材のいくつかについて、以下の測定を行った。
 この測定は、実験室において、電気炉内の坩堝で10kgのスラグを溶解し、坩堝に接続したガラス管に流量計を取り付け、鎮静材5gを上記したスラグに投入し、発生したガス体積の時間変化を連続的に測定することで行った。その結果の一例を図3に示す。なお、図3は、鎮静材を構成する混合物中の水分量が45質量%、燃料分量が35質量%の場合の結果である。図3から、鎮静材1kg当たりに換算したガス発生速度は、鎮静材の投入直後から2.0m/(秒・kg)以上となり、それが5秒以上持続していることが分かった。
 更に本発明者らは、混合物中の水分量及び燃料分量の好適な範囲を明確にするため、試験を継続した。その結果、混合物中の水分量は、30質量%以上かつ60質量%以下が必要であることが判った。
 混合物中の水分量が30質量%未満の場合、鎮静材の投入後1秒間における鎮静材1kg当たりのガス発生速度が2.0m/(秒・kg)未満となり、迅速なガス発生が難しくなる。一方、水分量が60質量%を超える場合、鎮静材の投入後1秒間における鎮静材1kg当たりのガス発生速度を2.0m/(秒・kg)以上にはできるが、後述する燃料分量が適正範囲から外れてしまい、継続的なガス発生が難しくなるものと推定される。また、混合物中の水分量が多過ぎると、水蒸気爆発を起こして周辺設備を損傷する虞があるので、水分量は本発明の範囲内とするのが良い。以上のことから、混合物中の水分量を30質量%以上かつ60質量%以下としたが、好ましくは、下限を35質量%、更には40質量%、上限を55質量%、更には50質量%とするのがよい。
 また、混合物中の燃料分量は、35質量%以上かつ65質量%以下が必要であることが判った。
 混合物中の燃料分量が35質量%未満の場合、鎮静材の投入の1秒後から5秒後までの鎮静材1kg当たりのガス発生速度が2.0m/(秒・kg)未満となり、継続的なガス発生が難しくなる。一方、燃料分量が65質量%を超える場合、前記した水分量が適正範囲から外れてしまい、迅速なガス発生が難しくなるものと推定される。
 以上のことから、混合物中の燃料分量を35質量%以上かつ65質量%以下としたが、好ましくは、下限を38質量%、上限を55質量%、更には50質量%とするのが良い。なお、燃料分は、前記したパルプ廃滓中のセルロース、プラスチック、トレー、食用油、廃油(例えば、エンジンオイル)、及び有機物(例えば、含油スラッジ)のいずれか1種又は2種以上を使用できる。
 以上に示したように、混合物は多くの水分を含むため、圧縮成形しても圧潰強度が低く、搬送等の際に振動あるいは衝撃を受けると形崩れし易い。そこで、溶融スラグ中に確実に潜り込ませて、その内部よりガスを発生させるために、混合物を不透水性の有機物からなる容器に収容する。
 ここで、容器を不透水性とするのは、鎮静材を製造してから投入するまでの間に、水分量が減少するのを防止するためである。また、容器を有機物で構成するのは、溶融スラグ内で早期にガス化して消滅させるためであり、溶融スラグへの鎮静材の投入直後からガスを発生し易くし、より効率良く泡沫層を破壊し易くするためである。このような容器としては、例えば、ペットボトルやビニール袋などを使用できる。
 この容器に収容する混合物の質量は、1kg以上かつ10kg以下とするのが好ましい。
 鎮静材が軽過ぎる場合は、溶融スラグへの潜り込みが不十分となって、鎮静効果を得にくくなる。一方、鎮静材が重過ぎる場合は、鎮静材の製造あるいは搬送の際に取り扱いにくくなる。
 従って、これらを両立させるという観点から、混合物の質量を1kg以上かつ10kg以下としたが、下限を2kg、更には3kg、上限を8kg、更には7kgとするのが好ましい。
 続いて、本実施形態に係るスラグフォーミング鎮静方法を、多機能転炉法に使用した場合について、上記第1実施形態でも用いた図2を参照しながら説明する。
 まず、転炉10内で溶銑Pを脱燐した後、この転炉10内の溶融スラグS1を炉下に設置した排滓鍋11に排出する。なお、ここでは、3分程度の短時間で、10~15トンの溶融スラグS1を排出するため、転炉10内での溶融スラグS1のFeO(酸化鉄)濃度を、15質量%以上かつ25質量%以下の範囲内に高め、溶融スラグS1をフォーミングさせる(泡立たせる)ことで、その排滓性を良好にしている。
 このように、転炉10から排滓鍋11に排出された溶融スラグS2は、スラグの内部に含まれる粒鉄中のCとFeOとが反応してCO気泡が発生し、急速かつ継続的にフォーミングし易い。このような、溶融スラグS2に対して使用する鎮静材12としては、溶融スラグS2の内部から外部に向かって瞬間的にガスを発生し、溶融スラグS2内に滞留したガスの抜け道を形成し易くするという特性を有することが好ましい。
 このような特性を有する鎮静材12に、前記した本実施形態に係る鎮静材を使用する。この鎮静材は、水分により投入直後の迅速なガス発生を可能としているので、COガスの抜け道を形成し易い。加えて、鎮静材に含まれる燃料分は、溶融スラグ中に多く含まれるFeOと酸化反応(燃焼)を起こしてガスを発生するので、FeO濃度が高いスラグに対してその効果を得やすいという利点がある。
 従って、前記した鎮静材を使用することで、水分が迅速に気化してCOガスの抜け道を形成し、続いて溶融スラグ中のFeOと反応して燃料分が継続的にガスを発生させるので、強いフォーミング性を有する高FeO濃度の溶融スラグであっても、効率的に鎮静化することが可能となる。
 このように、FeO濃度が15質量%以上かつ25質量%以下の溶融スラグに前記した鎮静材を投入することで、鎮静材の効果がより顕著に現れる。
 なお、溶融スラグS1の排滓開始から30秒の間は、排滓鍋11において、排出に伴う溶融スラグS2の撹拌が特に激しく、溶融スラグS2からCO気泡が多量に発生して泡立っている。よって、鎮静材12は、排滓開始から30秒の間に集中的に(例えば、一度に、又は連続的に、もしくは複数回に分けて)投入するのが好ましく、また、その投入位置を、排滓鍋11への溶融スラグS1の排出位置とするのが好ましい。
 これにより、鎮静材12をより確実に溶融スラグS2に潜り込ませ易くできる。また、鎮静材12の投入量は、排滓開始から30秒の間に、30kg以上とするのがより好ましく、30秒経過した後は、フォーミングの状況に応じて鎮静材12を更に投入すればよい。
 次に、本発明の作用効果を確認するために行った実施例について説明する。
 鎮静材は、水分含有量が60質量%のパルプ廃滓と廃プラスチック(フレーク状に粉砕したペットボトル)に、必要に応じて、サラダ油と、製鋼スラグ(平均粒度:0.5mm)と、水分調整用の水とを添加して混合した混合物を、ビニール袋又はプラスチックボトルの容器に収容して製造した。この鎮静材の混合物の原料配合比率を表4に示す。また、表4には、各原料配合比率を、水分、燃料分、及び灰分に換算して得た混合物の組成も記載している。更に、表4には、鎮静材1個当たりの質量も記載しているが、容器はビニール袋又はプラスチックボトルであり、その質量は、混合物量に対して僅かであるため、鎮静材1個の質量が、鎮静材1個当たりの混合物量となる。
                 表4
Figure JPOXMLDOC01-appb-I000004
 この表4に示した実施例21~29、及び比較例21~26の各鎮静材を、多機能転炉法において排滓時に排滓鍋へ投入した結果を、表5に示す。ここで、鎮静材は、脱燐処理を行った後に溶銑を炉内に残したまま転炉を傾転させ、炉体下方に設置した高さ4mの排滓鍋に、転炉炉口から溶融スラグを排出する際に、排滓開始直後から排滓終了まで、シュートを介して投入した。これにより、排滓鍋内でフォーミングする溶融スラグの鎮静化を図った。この溶融スラグの排出時間は、いずれも3分とした。なお、排滓中の溶融スラグの質量は、排滓鍋を設置する移動台車に取り付けた秤量器で測定した。
                 表5
Figure JPOXMLDOC01-appb-I000005
 実施例21~29は、いずれも水分が30質量%以上かつ60質量%以下、燃料分が35質量%以上かつ65質量%以下である混合物を、不透水性の有機物で構成される容器に収容した鎮静材を使用した。その結果、この鎮静材を120kg投入することでフォーミングを鎮静化でき、溶融スラグを10トン(目標値)以上排出できた。特に、実施例21では、FeO濃度が18質量%のスラグを排出するに際し、混合物をビニール袋に5kg収容した鎮静材を、排滓位置に排滓開始から30秒で40kg、更に30秒経過後から3分までの間に80kg投入したところ、鎮静化の効果が大きく、14トンの溶融スラグを排出できた。
 また、実施例22は、ビニール袋に収容した混合物の質量が0.8kg(1kg未満)の鎮静材を使用したため、実施例21と比較して溶融スラグへの潜り込みが若干浅くなり、溶融スラグの排出量が10トンとなった。
 一方、実施例23は、ビニール袋に収容した混合物の質量を12kg(10kg超)とした鎮静材を使用したため、溶融スラグへの潜り込みは十分であり、実施例21と同じく14トンの溶融スラグを排出できた。ただし、鎮静材の質量が重過ぎるため、製造や搬送などの作業性が、実施例21より悪くなった。
 実施例24は、溶融スラグのFeO濃度が26質量%(25質量%超)と高かったため、フォーミング性がかなり強く、溶融スラグの排出量が11.5トンとなった。
 また、実施例25は、鎮静材を排滓鍋の端付近に投入したため、実施例21と比較して、鎮静材を溶融スラグに潜り込ませにくくなり、溶融スラグの排出量が10トンとなった。そして、実施例26は、排滓開始から30秒までの鎮静材の投入量を、実施例21~25と比較して少ない24kgに留めたため、溶融スラグの排出量は11トンとなった。
 実施例27は、鎮静材を構成する混合物中の水分量が、実施例21~26の鎮静材よりも低い鎮静材を使用したため、鎮静材の溶融スラグへの投入直後のガス発生速度が遅くなり、溶融スラグの排出量が11トンとなった。
 一方、実施例28は、鎮静材を構成する混合物中の燃料分量が、実施例27の鎮静材よりも高い鎮静材を使用したため、ガス発生を持続させる効果が高められ、実施例27より多い12トンの溶融スラグを排出できた。
 また、実施例29は、鎮静材を構成する混合物中の水分量が、実施例21~26の鎮静材よりも高い鎮静材を使用したが、燃料分量が、実施例21~26の鎮静材よりも低い鎮静材を使用したため、溶融スラグの排出量が実施例21に近い13トンであった。
 一方、比較例21、22は、鎮静材を構成する混合物中の水分量が30質量%を下回り、水分が不足したため、鎮静材の溶融スラグへの投入直後のガス発生速度が不十分となり、いずれも実施例21~29と同じ投入量ではフォーミングを抑制しきれず、約1.5倍の鎮静材を投入する必要があった。なお、比較例22については、鎮静材を構成する混合物中の燃料分量を、実施例21~29の鎮静材より多くしている(65質量%超)にも関わらず、鎮静材を過剰に投入する必要があった。
 また、比較例23、24は、鎮静材を構成する混合物中の燃料分量が35質量%を下回り、燃料分が不足したため、ガス発生の持続性が不十分となり、いずれも実施例21~29と同じ投入量ではフォーミングを抑制しきれず、約1.5倍の鎮静材を投入することが必要であった。なお、比較例23については、鎮静材を構成する混合物中の水分量を、実施例21~29の鎮静材より多くしている(60質量%超)にも関わらず、鎮静材を過剰に投入する必要があった。
 そして、比較例25は、混合物を容器に収容することなく使用したため、フォーミングする溶融スラグへの鎮静材の潜り込みが小さく、鎮静効果が小さかった。このため、溶融スラグの溢れ出しを防止する目的から、溶融スラグの排出速度を抑えることが必要となり、溶融スラグの排出量が7.5トン(10トン未満)に留まった。
 更に、比較例26は、混合物を透水性の紙袋に収容したため、鎮静材を溶融スラグへ投入する前に、水分量が24質量%まで低下してしまった。このため、溶融スラグの溢れ出しを防止する目的から、溶融スラグの排出速度を抑えることが必要となり、溶融スラグの排出量が9トン(10トン未満)に留まった。
 以上のことから、本発明のスラグフォーミング鎮静材及びスラグフォーミング鎮静方法を使用することで、フォーミングするスラグを少ない使用量のスラグフォーミング鎮静材で迅速かつ確実に鎮静化させ、スラグの溢れ出しによる設備損傷を防止して、生産性の安定維持を実現できることを確認した。
 以上、本発明の各実施形態を説明してきたが、本発明はこれら実施形態のみに限定されるものではなく、請求の範囲に記載されている事項の範囲内で考えられるその他の実施形態や変形例も含む。例えば、上記各実施形態やそれらの変形例の一部又は全部を組合せて本発明のスラグフォーミング鎮静材及びスラグフォーミング鎮静方法を構成する場合も、本発明の権利範囲に含まれる。
 また、上記実施形態においては、スラグフォーミング鎮静材により、多機能転炉法における排滓時のスラグフォーミングを鎮静化させる方法について説明したが、スラグフォーミング鎮静材の用途はこれのみに限られるものではなく、例えば、混銑車や転炉での精錬中に発生するスラグフォーミングの鎮静化にも使用でき、その場合にも同様の効果を発揮する。
 本発明のスラグフォーミング鎮静材及びスラグフォーミング鎮静方法によれば、溶融スラグのフォーミングを効率的に抑制できるので、鎮静材のトータルの投入量が少なくても高い鎮静効果が得られる。よって、鎮静材のコスト低減や、溶融スラグの溢れ出しに起因する設備損傷の防止による作業性の改善、更には精錬工程における生産性の安定維持が可能となる。
 10 転炉
 11 排滓鍋
 12 鎮静材
 13 操業床
 14 移動台車
 S1 転炉内の溶融スラグ
 S2 排滓鍋に排出された溶融スラグ
 P  溶銑

Claims (9)

  1.  粒度が0.2mm以上かつ2mm以下である20質量%以上かつ40質量%以下の炭素粉と、30質量%以上かつ60質量%以下の水分とを含有する混合物と;
     不透水性の可燃性物質からなり、前記混合物を収容する容器と;
    を備えることを特徴とするスラグフォーミング鎮静材。
  2.  前記容器に収容されている前記混合物の質量が、1kg以上かつ10kg以下であることを特徴とする請求項1に記載のスラグフォーミング鎮静材。
  3.  請求項1に記載の前記スラグフォーミング鎮静材を、塩基度が0.8以上かつ1.5以下の泡立っている溶融スラグ中に投入することを特徴とするスラグフォーミング鎮静方法。
  4.  前記スラグフォーミング鎮静材を、転炉より排出される前記溶融スラグの排出位置に、この溶融スラグの排出開始から30秒の間に投入することを特徴とする請求項3に記載のスラグフォーミング鎮静方法。
  5.  請求項1に記載の前記スラグフォーミング鎮静材を排滓鍋に投入する工程と;
     この工程の後、前記排滓鍋に、塩基度が0.8以上かつ1.5以下の溶融スラグを投入する工程と;
    を有することを特徴とするスラグフォーミング鎮静方法。
  6.  30質量%以上かつ60質量%以下の水分と、35質量%以上かつ65質量%以下の燃料分とを含有する混合物と;
     不透水性の有機物からなり、前記混合物を収容する容器と;
    を備えることを特徴とするスラグフォーミング鎮静材。
  7.  前記容器に収容されている前記混合物の質量が1kg以上かつ10kg以下であることを特徴とする請求項6に記載のスラグフォーミング鎮静材。
  8.  請求項6に記載の前記スラグフォーミング鎮静材を、酸化鉄濃度が15質量%以上かつ25質量%以下の泡立っている溶融スラグ中に投入する工程を有することを特徴とするスラグフォーミング鎮静方法。
  9.  前記スラグフォーミング鎮静材を、転炉より排出される前記溶融スラグの排出位置に、この溶融スラグの排出開始から30秒の間に投入する
    ことを特徴とする請求項8に記載のスラグフォーミング鎮静方法。
PCT/JP2009/059712 2008-05-27 2009-05-27 スラグフォーミング鎮静材及びスラグフォーミング鎮静方法 WO2009145228A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801156207A CN102016081B (zh) 2008-05-27 2009-05-27 炉渣起泡镇静材料及炉渣起泡镇静方法
KR1020107024332A KR101234483B1 (ko) 2008-05-27 2009-05-27 슬래그 포밍 진정재 및 슬래그 포밍 진정 방법
BR122017006818A BR122017006818B1 (pt) 2008-05-27 2009-05-27 métodos para deprimir escória espumante
BRPI0910543-3A BRPI0910543B1 (pt) 2008-05-27 2009-05-27 Material depressor de escória espumante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008138320A JP4580435B2 (ja) 2008-05-27 2008-05-27 排滓鍋スラグのフォーミング鎮静材及びその鎮静方法
JP2008-138320 2008-05-27

Publications (1)

Publication Number Publication Date
WO2009145228A1 true WO2009145228A1 (ja) 2009-12-03

Family

ID=41377099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059712 WO2009145228A1 (ja) 2008-05-27 2009-05-27 スラグフォーミング鎮静材及びスラグフォーミング鎮静方法

Country Status (5)

Country Link
JP (1) JP4580435B2 (ja)
KR (1) KR101234483B1 (ja)
CN (1) CN102016081B (ja)
BR (2) BRPI0910543B1 (ja)
WO (1) WO2009145228A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321846B1 (ko) * 2011-12-12 2013-10-22 주식회사 포스코 슬래그 포밍 진정제 및 이를 이용한 슬래그 포밍 진정 방법
CN103540706B (zh) * 2012-07-11 2015-11-18 攀钢集团研究院有限公司 一种抑制炉渣泡沫化的方法
JP2015224387A (ja) * 2014-05-30 2015-12-14 新日鐵住金株式会社 フォーミング鎮静剤とフォーミング鎮静方法
CN105112580A (zh) * 2015-08-24 2015-12-02 新疆八一钢铁股份有限公司 一种多功能转炉渣罐消泡剂的生产工艺
CN105132605A (zh) * 2015-09-02 2015-12-09 新疆八一钢铁股份有限公司 高炉瓦斯灰用于转炉渣罐进行压渣消泡的工艺
WO2017130837A1 (ja) * 2016-01-28 2017-08-03 新日鐵住金株式会社 排滓方法、スラグの製造方法及び流下スラグのエネルギー減衰構造
KR102227326B1 (ko) * 2016-12-16 2021-03-12 닛폰세이테츠 가부시키가이샤 전기로
KR102186375B1 (ko) * 2016-12-16 2020-12-03 닛폰세이테츠 가부시키가이샤 전기로
CN110023517A (zh) * 2017-01-23 2019-07-16 日本制铁株式会社 抑制炉渣发泡的方法以及转炉精炼方法
KR20190089018A (ko) * 2017-02-08 2019-07-29 닛폰세이테츠 가부시키가이샤 슬래그의 포밍 억제 방법
KR20190086726A (ko) * 2017-02-20 2019-07-23 닛폰세이테츠 가부시키가이샤 슬래그 포밍 진정재 및 슬래그 포밍 진정 방법 그리고 전로 취련 방법
JP6835233B2 (ja) * 2017-08-25 2021-02-24 日本製鉄株式会社 スラグのフォーミング抑制方法および転炉精錬方法
WO2019208303A1 (ja) * 2018-04-24 2019-10-31 日本製鉄株式会社 排出スラグのフォーミング鎮静方法およびこれに用いる精錬設備
JP7147550B2 (ja) * 2018-12-27 2022-10-05 日本製鉄株式会社 スラグのフォーミング抑制方法および転炉精錬方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115716A (en) * 1976-03-25 1977-09-28 Sumitomo Metal Ind Ltd Killing agent for foaming of converter
JPS62202013A (ja) * 1986-03-03 1987-09-05 Sumitomo Metal Ind Ltd 転炉操業方法
JP2001348609A (ja) * 2000-06-07 2001-12-18 Nippon Steel Corp フォーミング抑制剤
JP2004323959A (ja) * 2003-04-28 2004-11-18 Nippon Steel Corp 転炉排滓法
JP2007302951A (ja) * 2006-05-11 2007-11-22 Kurosaki Harima Corp 耐火物廃材を使用した転炉スラグフォーミング鎮静材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1121114A (zh) * 1994-10-20 1996-04-24 刘德生 氧气顶吹转炉用压渣剂及其生产方法
JPH09263817A (ja) * 1996-03-27 1997-10-07 Kawasaki Steel Corp 溶融金属溶製時のスラグフォーミング鎮静方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115716A (en) * 1976-03-25 1977-09-28 Sumitomo Metal Ind Ltd Killing agent for foaming of converter
JPS62202013A (ja) * 1986-03-03 1987-09-05 Sumitomo Metal Ind Ltd 転炉操業方法
JP2001348609A (ja) * 2000-06-07 2001-12-18 Nippon Steel Corp フォーミング抑制剤
JP2004323959A (ja) * 2003-04-28 2004-11-18 Nippon Steel Corp 転炉排滓法
JP2007302951A (ja) * 2006-05-11 2007-11-22 Kurosaki Harima Corp 耐火物廃材を使用した転炉スラグフォーミング鎮静材

Also Published As

Publication number Publication date
BRPI0910543A2 (pt) 2015-09-29
BRPI0910543B1 (pt) 2019-04-24
KR101234483B1 (ko) 2013-02-18
JP2009287050A (ja) 2009-12-10
BR122017006818B1 (pt) 2018-05-08
KR20100126585A (ko) 2010-12-01
CN102016081B (zh) 2013-06-12
JP4580435B2 (ja) 2010-11-10
CN102016081A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
WO2009145228A1 (ja) スラグフォーミング鎮静材及びスラグフォーミング鎮静方法
JP4907411B2 (ja) スラグの鎮静方法
JP4580434B2 (ja) スラグのフォーミング鎮静材及びその鎮静方法
JP6477333B2 (ja) スラグのフォーミング抑制方法
JP6753476B2 (ja) スラグフォーミング鎮静材及びスラグフォーミング鎮静方法並びに転炉吹錬方法
TWI663258B (zh) 抑制爐渣起泡的方法及轉爐精煉方法
CN111712585B (zh) 排出熔渣的起泡镇静方法及用于其的精炼设备
JP2008095136A (ja) 金属帯被覆脱硫用ワイヤー及び溶鉄の脱硫処理方法
JP7464843B2 (ja) スラグのフォーミング鎮静方法および転炉精錬方法
TWI665309B (zh) 爐渣的起泡抑制方法及轉爐精煉方法
JP7147550B2 (ja) スラグのフォーミング抑制方法および転炉精錬方法
JPH09217107A (ja) フォーミングスラグ鎮静材
JP2019108566A (ja) スラグのフォーミング抑制方法および転炉精錬方法
JP2004225108A (ja) 転炉内及び溶滓鍋内のフォーミングスラグ鎮静材
JP2003082410A (ja) 製鋼精錬用スラグフォーミング抑制材
JP2006241502A (ja) 溶銑の脱硫剤及び溶銑の脱硫方法
JP7495615B2 (ja) フォーミング鎮静材
JP5900377B2 (ja) 溶銑の予備処理方法
JP7457236B2 (ja) スラグのフォーミング鎮静方法
JP2018083974A (ja) 溶銑の精錬方法
WO2018146754A1 (ja) スラグのフォーミング抑制方法
JP2004300507A (ja) スラグのフォーミング抑制方法
JP2022109457A (ja) フォーミング鎮静材およびそれを用いたフォーミングの鎮静方法
JPH1150124A (ja) 溶湯及び溶滓の収納容器内のフォーミングスラグの鎮静材
KR20010111208A (ko) 슬로핑 방지제의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115620.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 7085/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107024332

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0910543

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101029