WO2009145144A2 - 太陽電池出力特性評価装置および太陽電池出力特性評価方法 - Google Patents
太陽電池出力特性評価装置および太陽電池出力特性評価方法 Download PDFInfo
- Publication number
- WO2009145144A2 WO2009145144A2 PCT/JP2009/059528 JP2009059528W WO2009145144A2 WO 2009145144 A2 WO2009145144 A2 WO 2009145144A2 JP 2009059528 W JP2009059528 W JP 2009059528W WO 2009145144 A2 WO2009145144 A2 WO 2009145144A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- output
- circuit
- current
- voltage
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000011156 evaluation Methods 0.000 claims description 33
- 239000003990 capacitor Substances 0.000 claims description 21
- 230000006641 stabilisation Effects 0.000 claims description 17
- 238000011105 stabilization Methods 0.000 claims description 17
- 239000004065 semiconductor Substances 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000003071 parasitic effect Effects 0.000 claims description 7
- 230000002265 prevention Effects 0.000 claims description 5
- 238000005259 measurement Methods 0.000 description 33
- 239000000700 radioactive tracer Substances 0.000 description 12
- 238000012937 correction Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000007787 solid Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2801—Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
- G01R31/2803—Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP] by means of functional tests, e.g. logic-circuit-simulation or algorithms therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02016—Circuit arrangements of general character for the devices
- H01L31/02019—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02021—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a solar cell output characteristic evaluation apparatus and a solar cell output characteristic evaluation method provided with a forward bias power supply for supplying to an electronic load device for measuring solar cell output characteristics.
- variable resistors non-patent
- the inventors of the present invention invented a capacitor load type solar cell I / V curve tracer provided with a reverse bias circuit that applies a potential having a polarity opposite to that of the output of the solar cell.
- an object of the present invention is to provide a forward bias current by applying a forward bias current with a minimum power consumption without requiring a bipolar power source for discharging / sinking a large current that causes a high cost.
- An object of the present invention is to provide a solar cell output characteristic evaluation apparatus and method capable of accurately measuring Voc.
- a solar cell output characteristic evaluation apparatus that measures the output characteristics of a solar cell, the solar cell, a voltmeter that measures the voltage of the solar cell, and a value of a current flowing through the solar cell.
- a solar cell output characteristic evaluation device comprising an ammeter, a variable resistance unit connected to the solar cell, a forward bias circuit connected to the solar cell, and a reverse bias circuit connected to the solar cell. Is done.
- the variable resistance unit may be configured by an electronic load control circuit and a load power semiconductor.
- the forward bias circuit may include a forward bias resistor, a forward bias power supply, and a forward bias parasitic current compensation circuit.
- variable resistor section and the reverse bias circuit are included in a reverse bias conversion circuit, and the reverse bias conversion circuit includes a switching transformer, a reverse current prevention diode, a reverse bias stabilization capacitor, and a load circuit. May be.
- a solar cell is obtained by connecting a solar cell with a voltmeter, an ammeter, and an electronic load that is a variable resistance, and obtaining the current-voltage characteristics of the solar cell by changing the electronic load.
- a reverse bias voltage is applied opposite to the output of the solar cell, a forward bias voltage is applied to the solar cell, and a short-circuit current and an open-circuit voltage of the solar cell are measured.
- a characterization method is provided.
- the forward bias power supply may be provided with a function for limiting the maximum output voltage.
- a large-capacity electronic load device using a switching method may be used as the variable resistor.
- the noise component may be removed from the output voltage, output current, and measured value of the monitor cell obtained from the solar cell using known characteristics.
- a solar cell output characteristic evaluation apparatus and method are provided.
- FIG. It is explanatory drawing of the conventional solar cell IV curve tracer 100.
- FIG. It is a graph of the IV characteristic which is a measurement result of the solar cell IV curve tracer 100 when the solar cell 1 has a certain irradiance. It is explanatory drawing of the solar cell output characteristic evaluation apparatus 50.
- FIG. This is a step of obtaining a short-circuit current Isc when performing IV characteristic measurement using the solar cell output characteristic evaluation device 50. It is explanatory drawing about the process of calculating
- FIG. It is a flowchart of an electric current at the time of forward bias operation. It is explanatory drawing of the high capacity
- FIG. 1 is an explanatory diagram of a conventional solar cell IV curve tracer 100 created by the present inventors.
- the solar cell 1 is connected to a voltmeter 2 that measures the output voltage and an ammeter 3 that measures the output current. Further, upstream of the ammeter 3, a reverse bias circuit 10 configured by a parallel arrangement of a reverse bias power supply 20, a backflow prevention diode 22, and a reverse bias stabilization capacitor 24 is provided. Further, the variable resistance portion 30 of the solar cell 1 is provided downstream of the solar cell 1 (upstream of the reverse bias circuit 10).
- a high-speed converter 5 Connected to the voltmeter 2 and the ammeter 3 are a high-speed converter 5 and a data processing variable resistance control device 7 for measuring solar cell output.
- FIG. 2 is a graph of IV characteristics, which are measurement results of the solar cell IV curve tracer 100 when the solar cell 1 has a certain irradiance.
- the load resistance value of the variable resistance section is operated in the range of 0 to ⁇ , and the IV characteristics at that time are measured and graphed to evaluate the characteristics.
- the output current when the load resistance value is small that is, when the output voltage of the solar cell 1 is 0 V
- Isc short-circuit current
- the state where the load resistance value is largest that is, the output current of the solar cell 1 is 0 A.
- the output voltage at that time is the open circuit voltage Voc.
- the connection wiring is actually connected.
- the output voltage of the solar cell 1 does not become 0 V due to resistance or the like, and can only be lowered to a certain voltage (point b in FIG. 2), and the short-circuit current Isc cannot be measured accurately. Therefore, by providing the reverse bias circuit 10 shown in FIG. 1 and applying a voltage opposite to the output voltage of the solar cell 1, the output voltage can be lowered to 0 V or less (for example, to point a in FIG. 2). Thus, the short-circuit current Isc can be accurately measured.
- FIG. 3 is an explanatory diagram of the solar cell output characteristic evaluation device 50 according to the embodiment of the present invention.
- the solar cell 1 is connected with a voltmeter 2 for measuring the output voltage and an ammeter 3 for measuring the output current.
- the variable resistance unit 30 and the reverse bias circuit 10 are connected downstream of the ammeter 3.
- the variable resistance unit 30 is configured by a load power semiconductor 33 and an electronic load control circuit 35 which are, for example, an HFET (Hetero structure Field Effect Transistor).
- HFET Hetero structure Field Effect Transistor
- a forward bias circuit 60 is connected downstream of the ammeter 3 so as to be in parallel with the variable resistance unit 30 and the reverse bias circuit 10 with respect to the solar cell 1.
- the configuration of the reverse bias circuit 10 is the same as that of the IV curve tracer.
- the forward bias circuit 60 is configured such that a forward bias resistor 62, a forward bias power supply 64, and a forward bias parasitic current compensation circuit 66 are connected from the upstream side of the circuit, and the downstream side of the forward bias circuit 60 is a reverse bias circuit. 10, and the forward bias power source 64 and the forward bias parasitic current compensation circuit 66 in the forward bias circuit 60 and the variable resistor 30 and the reverse bias circuit 10 are connected.
- FIG. 4 is an explanatory diagram for the process of obtaining the short-circuit current Isc when performing the IV characteristic measurement using the solar cell output characteristic evaluation device 50.
- the configuration of each part in FIG. Further, FIG. 4 shows the current output from the solar cell 1 as 72 (solid arrow 72) and the forward bias current output from the forward bias power supply 64 as 74 (solid arrow 74).
- the reverse bias power source 20 causes the reverse bias stabilization capacitor 24 to have a polarity opposite to that of the output of the solar cell 1. Is charged.
- a reverse bias voltage is applied to the solar cell 1 by the charge voltage charged in the reverse bias stabilization capacitor 24.
- the value of the point a in FIG. Note that the solar cell output current 72 at this time flows via the load power semiconductor 33 and the reverse bias stabilization capacitor 24.
- the load power semiconductor 33 controlled by the electronic load control circuit 35 performs control such that the load resistance value of the solar cell 1 is increased, and the voltage charged in the reverse bias stabilization capacitor 24 is rapidly discharged. Will be.
- a reverse voltage is applied to the reverse bias stabilization capacitor 24, but is clamped to the forward voltage of the diode 22 by the effect of the reverse current prevention diode 22, and the reverse bias stabilization capacitor 24 has a reverse direction. No voltage is applied to the.
- the value of the voltmeter 2 changes from point a to point b.
- the forward bias current 74 from the forward bias circuit 60 does not flow toward the solar cell 1 but flows toward the load power semiconductor 33 because the resistance value of the load resistor 30 is small. .
- the forward bias current 74 returns to the forward bias power supply 64 via the load power semiconductor 33.
- FIG. 5 is an explanatory diagram for the process of obtaining the open circuit voltage Voc when performing IV characteristic measurement using the solar cell output characteristic evaluation apparatus 50.
- the configuration of each part in FIG. 5 shows the current output from the solar cell 1 as 72 (solid arrow 72) and the forward bias current output from the forward bias power supply 64 as 74 (solid arrow 74).
- the load power semiconductor 33 controlled by the electronic load control circuit 35 performs control such that the load resistance value of the solar cell 1 is increased, and no current flows toward the load power semiconductor 33.
- the current measured by the ammeter 3 changes from the point c to the point d in FIG.
- the open circuit voltage Voc when the output current of the solar cell 1 is set to 0 A can be accurately obtained.
- the forward bias current 74 returns to the forward bias power supply 64 when the load resistance value of the solar cell 1 approaches the point d in FIG.
- FIG. 6 is a current flow diagram during forward bias operation.
- the forward bias current 74 is shown in FIG. As shown, it flows into the solar cell 1 and is stored in the reverse bias stabilization capacitor 24. Therefore, a forward bias parasitic current compensation circuit 66 is provided so that the forward bias current 74 passes through the forward bias parasitic current compensation circuit 66 as indicated by an arrow 75 in FIG. This is because, in the absence of the forward bias parasitic current compensation circuit 66, the forward bias current 74 is supplied and charged to the reverse bias stabilization capacitor 24, and as a result, the charge exceeds the withstand voltage of the reverse bias stabilization capacitor 24. This is because there is a risk of being done and destroyed.
- the short-circuit current Isc and the open-circuit voltage Voc are accurately measured by the process of measuring the IV characteristic, whereby the IV characteristic of the solar cell 1 is more accurate. Evaluation can be performed.
- the maximum output voltage of the forward bias power source 64 in the forward bias circuit 60 in order to use the same solar cell output characteristic evaluation apparatus for various solar cells. While solar cells are becoming larger and larger in capacity, on the other hand, smaller and smaller ones are also being manufactured. In such a small solar cell, when the IV characteristic measurement is performed by the solar cell output evaluation apparatus 50 described in the above embodiment, an overvoltage is applied to the solar cell 1 due to the voltage from the forward bias power source 64 in the forward bias circuit 60. As a result, the solar cell 1 may be broken. Therefore, it is conceivable that the maximum output voltage can be controlled so that the output voltage from the forward bias power supply 64 becomes an appropriate voltage suitable for a small solar cell or the like.
- the voltmeter 2 and the ammeter 3 may be damaged. Connected. Therefore, in the electronic load control circuit 35, the observed values of the voltmeter 2 and the ammeter 3 are monitored, and the observed values are compared with the rated values of the voltmeter 2 and the ammeter 3, and the observed values are rated in the comparison. When the value exceeds the value, it is conceivable to control the load power semiconductor 33 so that the observed values of the voltmeter 2 and the ammeter 3 do not exceed the rated value.
- FIG. 7 is an explanatory diagram of a large-capacity electronic load device 90 using the switching method according to the present invention.
- the components other than the reverse bias circuit 10 and the variable resistance unit 30 have the same configuration as that of the above-described embodiment, and thus the description thereof is omitted.
- a reverse biased conversion circuit 80 is provided downstream of the ammeter 3 in the large-capacity electronic load device 90.
- the reverse biased conversion circuit 80 includes a load switching circuit 85, a switching transformer 82, a backflow prevention diode 89, and a reverse bias stabilization capacitor 87.
- the switching method is to control the power to the load by efficiently changing the ON / OFF ratio of the electronic switch.
- the load switching circuit 85 using this switching method is a load when viewed from the power supply side, and this switching power load can be regarded as an electronic load, and the load of the solar cell 1 can be reduced from infinity in a pseudo manner.
- the load switching circuit 85 using the switching method is used, the extremely low resistance value of the solar cell 1 cannot be realized, and the short-circuit current Isc cannot be measured accurately.
- the reverse bias stabilization capacitor 87 is not charged.
- the load switching circuit 85 is controlled by the electronic load control circuit 35 so that the load resistance value of the solar cell 1 is minimized from infinity.
- the solar cell output current 72 flows.
- a voltage is applied to the switching transformer 82 by the solar cell output current 72, and the reverse bias stabilization capacitor 87 is charged with a polarity opposite to that of the output of the solar cell 1.
- the load resistance value of the solar cell 1 approaches the minimum, the output voltage of the solar cell 1 approaches 0V, and the reverse bias is applied to the solar cell 1 by the charge voltage charged by the reverse bias stabilization capacitor 87. .
- the value of the point b in FIG. since the voltages of the reverse bias power supply 89 and the reverse bias stabilization capacitor 87 are applied to the switching transformer 82 and the load switching circuit 85, the operation of the switching circuit is continued.
- the voltmeter 2 observes the value of point a in FIG. In the above process, the value of the voltmeter 2 changes from point b to point a in FIG. By observing the value of the ammeter 3 at this time, the short-circuit current Isc when the output voltage of the solar cell 1 is 0 V can be accurately obtained.
- the forward bias circuit 60 having the same configuration as that of the above embodiment is used for the open circuit voltage Voc when the output current of the solar cell 1 is set to 0A. It is required accurately. Since this process is the same as that in the above embodiment, a description thereof will be omitted.
- noise data is included in the measurement data of the IV characteristic measurement of the solar cell depending on the measurement environment. Therefore, it is conceivable to apply a method for removing a noise component from the obtained measurement data to the present invention to perform more accurate measurement of the IV characteristics of the solar cell.
- a characteristic function representing the characteristic is known, and a result to be obtained can be predicted.
- a noise component can be removed from each measurement data based on the predicted information. The removal of noise components will be described below.
- the solar cell IV characteristic measurement data measured by the electronic load device includes an output voltage of the solar cell, an output current of the solar cell, an actual measurement value of the monitor cell, and the like.
- the monitor cell is a cell in which the conversion coefficient is accurately measured in advance and the relationship between the output current and the light quantity is clarified. Parameters are determined so that each measurement data is closest to a known function.
- the known function has theoretical / principal validity, and parameter determination can be performed by polynomial approximation, neurocomputer learning result, table search, or the like.
- Isc, Voc, Pmax, Vpm, Ipm, FF, EFF, etc. can be obtained from the obtained coefficients by calculation.
- Vpm the average value of the obtained coefficients
- Ipm the average value of the obtained coefficients
- the correction is performed so that the irradiance is measured at 1000 ⁇ 50 W / m 2 .
- a time zone in which an appropriate light amount is output by the output current of the monitor cell is set.
- the IV characteristics of the solar cell are measured.
- the measurement is performed a plurality of times while shifting the timing of starting the IV characteristic measurement, and the data measured when the appropriate amount of light is output is sequentially The measurement voltage is increased from the short state to the open circuit voltage Voc.
- the light amount of the output current of the solar cell is corrected.
- the value of the light amount is ⁇ 5% or less
- the light amount correction of the output current of the solar cell may be performed using proportional correction.
- a solar cell IV characteristic is created.
- the solar cell IV characteristic created here is referred to as a reference curve.
- a solar cell IV characteristic measurement is performed on a new solar cell having the same characteristics in a light amount range of ⁇ 20%.
- the measurement is performed once, and the noise removal described above is performed on the measured data.
- amendment of the output current of a solar cell is performed using the obtained data.
- the output current of the solar cell is expressed by the following formula, but this formula is non-linear and it is difficult to perform analytical light quantity correction. Therefore, the light amount correction of the output current of the solar cell is performed based on the following formula. That is, the output current value in of the solar cell is obtained using the immediately preceding current value in-1.
- a table in which appropriate values can be set for the diode factor n b , the series resistance r s of the solar cell, and the parallel resistance r sh of the solar cell is prepared in advance. Then, the IV characteristics of the solar cell are obtained based on the values set in the table.
- which parameter is suitable is determined by determining in advance the most consistent solar cell IV characteristic that can be consistent with the above-described solar cell IV characteristic called a reference curve. Become. Thereafter, calculation may be performed by applying the above-described parameters to the measurement result.
- the present invention can be applied to a solar cell output characteristic evaluation apparatus and a solar cell output characteristic evaluation method provided with a forward bias power supply for supplying to an electronic load device for measuring solar cell output characteristics.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- General Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
太陽電池のI-V特性を評価する測定装置および方法としては、可変抵抗を用いるものが一般的であり、可変抵抗としてコンデンサ負荷、バイアス電源、電子負荷を用いるものが知られている(非特許文献1参照)。
また、上記バイアス電源方式による太陽電池のI-V特性評価においては、バイポーラ電源と通称される電源が用いられ、電流・電圧ともに両極性の印加が可能である。しかし、太陽電池のI-V特性評価で用いられる電源には、被測定太陽電池の電力に耐える供受給電力容量が必要とされ、大電流を吐き出す大容量のバイポーラ電源では、大型化による高コスト化が問題となっていた。
2…電圧計
3…電流計
10…逆バイアス回路
20…逆バイアス電源
30…可変抵抗部
50…太陽電池出力特性評価装置
60…順バイアス回路
80…逆バイアス付電換回路
90…大容量電子負荷装置
100…逆バイアス付き太陽電池I-Vカーブトレーサー原理図
図1は、本発明者らが創案した従来の太陽電池I-Vカーブトレーサー100の説明図である。太陽電池1には、その出力電圧を測定する電圧計2と出力電流を測定する電流計3が接続されている。また、電流計3の上流には逆バイアス電源20、逆流防止ダイオード22、逆バイアス安定用コンデンサ24の並列配置によって構成される逆バイアス回路10が設けられている。また、太陽電池1の可変抵抗部30が太陽電池1の下流(逆バイアス回路10の上流)に設けられている。電圧計2および電流計3には太陽電池出力測定を行う高速コンバータ5およびデータ処理可変抵抗制御装置7が接続される。
そこで、図1に示す逆バイアス回路10を設け、太陽電池1の出力電圧と逆の電圧を印加することにより出力電圧を0V以下(例えば図2における点aまで下げることが可能となる。その結果、短絡電流Iscの測定が正確に行えることとなる。
図3は本発明の実施の形態にかかる太陽電池出力特性評価装置50の説明図である。太陽電池1にはその出力電圧を測定する電圧計2と出力電流を測定する電流計3が接続されている。また、電流計3の下流には、上記太陽電池I-Vカーブトレーサー100同様に、可変抵抗部30および逆バイアス回路10が接続されている。ここで、可変抵抗部30は、例えばHFET(Hetero structure Field Effect Transistor)である負荷用電力半導体33と電子負荷制御回路35によって構成される。さらに、電流計3の下流には、太陽電池1に対し可変抵抗部30および逆バイアス回路10と並列になるように順バイアス回路60が接続されている。ここで、逆バイアス回路10の構成については上記I-Vカーブトレーサーと同様である。順バイアス回路60の構成は、回路上流から順バイアス用抵抗62、順バイアス電源64、順バイアス寄生電流補償回路66が接続される構成となっており、順バイアス回路60の下流は、逆バイアス回路10に接続され、また、順バイアス回路60内の順バイアス電源64-順バイアス寄生電流補償回路66間と、可変抵抗30-逆バイアス回路10間は接続されている。
図4における各部の構成については上記同様なので省略する。また、太陽電池1から出力される電流を72(実線矢印72)、順バイアス電源64から出力される順バイアス電流を74(実線矢印74)として図4中に示す。
そして、I-V特性測定が開始されると、逆バイアス安定用コンデンサ24に充電された電荷電圧により、太陽電池1に逆バイアス電圧がかかる。このとき、電圧計2では、図2における点aの値が観測される。なお、このときの太陽電池出力電流72は、負荷用電力半導体33および逆バイアス安定用コンデンサ24を経由して流れる。
図5における各部の構成については上記同様なので省略する。また、太陽電池1から出力される電流を72(実線矢印72)、順バイアス電源64から出力される順バイアス電流を74(実線矢印74)として図5中に示す。
ここで、I-V特性測定が行われる前、太陽電池1に光が供給されていない状態において負荷用電力半導体33の負荷抵抗値が最大となる場合に、順バイアス電流74は、図6に示すように、太陽電池1に流れ込み、逆バイアス安定用コンデンサ24に蓄電される。そこで、順バイアス寄生電流補償回路66を設け、順バイアス電流74を図6中の矢印75に示すように順バイアス寄生電流補償回路66に経由させるようにした。これは、順バイアス寄生電流補償回路66がない場合、順バイアス電流74は逆バイアス安定用コンデンサ24に供給、充電されることとなり、その結果逆バイアス安定用コンデンサ24の耐電圧を超えて充電が行われ、破壊してしまう危険性があるからである。
太陽電池の大型化・大容量化が達成されつつある中、一方では小型化・小容量のものも製造されている。このような小型太陽電池において上記実施の形態に述べた太陽電池出力評価装置50によってI-V特性測定を行う場合、順バイアス回路60内の順バイアス電源64からの電圧によって太陽電池1に過電圧がかかり、太陽電池1が壊れてしまう可能性がある。そこで、順バイアス電源64からの出力電圧を小型太陽電池等に見合った適切な電圧になるように最大出力電圧を制御できるようにすることが考えられる。
そこで、以下にスイッチング方式を用いた大容量電子負荷装置90について図面を参照して説明する。
その後、I-V特性測定が開始されると、電子負荷制御回路35により負荷用スイッチング回路85は太陽電池1の負荷抵抗値が無限大から最小になるように制御される。このとき、太陽電池1の負荷抵抗値は無限大から徐々に減少していくので、太陽電池出力電流72が流れる。太陽電池出力電流72によってスイッチングトランス82に電圧がかかることになり、逆バイアス安定用コンデンサ87に太陽電池1の出力と逆の極性での充電がされることとなる。
以上の過程において、電圧計2の値は図2における点bから点aへ変化する。このときの電流計3の値を観測することにより、太陽電池1の出力電圧を0Vとしたときの短絡電流Iscを正確に求めることができる。
各測定データについて既知関数に最近似するようにパラメータを決定する。ここで、既知関数は、理論的・原理的妥当性のあるもので、パラメータ決定は、多項式近似、ニューロコンピュータの学習結果、テーブル検索等が考えられる。
太陽電池の特性評価においては、フラッシュランプを用いた場合、時間と共に光量が減少する。そのため太陽電池の出力には光量補正が必要となる。以下においては、放射照度が1000±50W/m2で計測されたように補正することとして説明する。
Claims (8)
- 太陽電池の出力特性を測定する太陽電池出力特性評価装置であって、
太陽電池と、
前記太陽電池の電圧を測定する電圧計と、
前記太陽電池に流れる電流値を測定する電流計と、
前記太陽電池に接続される可変抵抗部と、
前記太陽電池に接続される順バイアス回路と、
前記太陽電池に接続される逆バイアス回路とを備える、太陽電池出力特性評価装置。 - 前記可変抵抗部は、電子負荷制御回路と、負荷用電力半導体によって構成される、請求項1に記載の太陽電池出力特性評価装置。
- 前記順バイアス回路は、順バイアス用抵抗と、順バイアス電源と、順バイアス寄生電流補償回路によって構成される、請求項1に記載の太陽電池出力特性評価装置。
- 前記可変抵抗部および前記逆バイアス回路は逆バイアス付電換回路に包含され、前記逆バイアス付電換回路は、スイッチングトランスと、逆流防止ダイオードと、逆バイアス安定用コンデンサと、負荷用回路によって構成される、請求項1に記載の太陽電池出力特性評価装置。
- 太陽電池に電圧計および電流計および可変抵抗である電子負荷を接続し、電子負荷を変化させることによって太陽電池の電流-電圧特性を得る太陽電池の出力特性評価方法において、
前記太陽電池の出力と逆に逆バイアス電圧を印加し、
前記太陽電池に順バイアス電圧を印加し、
前記太陽電池の短絡電流および開放電圧を測定する、太陽電池の出力特性評価方法。 - 前記順バイアス電圧の印加において、順バイアス電源に最大出力電圧を制限する機能を設ける、請求項5に記載の太陽電池の出力特性評価方法。
- 前記可変抵抗としてスイッチング方式を用いた大容量電子負荷装置を使用する、請求項6に記載の太陽電池の出力特性評価方法。
- 既知特性を用いて、前記太陽電池から得られた出力電圧、出力電流、モニターセルの実測値からノイズ成分を除去する、請求項5に記載の太陽電池の出力特性評価方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/736,943 US20110068817A1 (en) | 2008-05-26 | 2009-05-25 | Solar cell output characteristic evaluation apparatus and solar cell output characteristic evaluation method |
EP09754652A EP2287918A2 (en) | 2008-05-26 | 2009-05-25 | Apparatus for evaluating the output characteristic of a solar battery and method for evaluating the output characteristic of a solar battery |
CN2009801291209A CN102105994A (zh) | 2008-05-26 | 2009-05-25 | 太阳电池输出特性评价装置及太阳电池输出特性评价方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-136771 | 2008-05-26 | ||
JP2008136771A JP2009283845A (ja) | 2008-05-26 | 2008-05-26 | 太陽電池出力特性評価装置および太陽電池出力特性評価方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009145144A2 true WO2009145144A2 (ja) | 2009-12-03 |
WO2009145144A3 WO2009145144A3 (ja) | 2010-01-28 |
Family
ID=41377690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059528 WO2009145144A2 (ja) | 2008-05-26 | 2009-05-25 | 太陽電池出力特性評価装置および太陽電池出力特性評価方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110068817A1 (ja) |
EP (1) | EP2287918A2 (ja) |
JP (1) | JP2009283845A (ja) |
KR (1) | KR20110030454A (ja) |
CN (1) | CN102105994A (ja) |
TW (1) | TW201009371A (ja) |
WO (1) | WO2009145144A2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI400459B (zh) * | 2010-06-23 | 2013-07-01 | Nat Univ Tsing Hua | 一種太陽能電池參數之萃取方法 |
TWI723851B (zh) * | 2020-04-21 | 2021-04-01 | 友達光電股份有限公司 | 太陽能電池檢測系統 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8519729B2 (en) * | 2010-02-10 | 2013-08-27 | Sunpower Corporation | Chucks for supporting solar cell in hot spot testing |
JP5618134B2 (ja) * | 2010-06-29 | 2014-11-05 | ソニー株式会社 | 制御装置および方法、並びに、太陽電池 |
TWI499886B (zh) * | 2010-07-15 | 2015-09-11 | Univ Nat Taiwan | 估算電路的最大功率點功率的方法 |
US8471583B1 (en) * | 2010-08-06 | 2013-06-25 | The Boeing Company | Switchable detector array |
KR101151265B1 (ko) * | 2011-01-24 | 2012-06-15 | 한국에너지기술연구원 | 태양전지모듈의 노화 및 성능 측정을 위한 제어장치 및 이의 제어방법 |
DE102011011602A1 (de) | 2011-02-17 | 2012-08-23 | Texas Instruments Deutschland Gmbh | Elektonische Vorrichtung zur Optimierung der Ausgangsleistung einer Solarzelle und Verfahren zum Betreiben der elektronischen Vorrichtung |
KR101213059B1 (ko) | 2011-02-23 | 2012-12-18 | 광운대학교 산학협력단 | 태양전지 측정시스템과 그 제어방법 |
TWI418829B (zh) * | 2011-03-04 | 2013-12-11 | Ritek Corp | 太陽能電池片測試方法 |
JP5691816B2 (ja) * | 2011-05-11 | 2015-04-01 | 日立金属株式会社 | 太陽電池パネルの異常検知装置 |
KR101254008B1 (ko) * | 2011-07-13 | 2013-04-15 | (주)온테스트 | 신재생 에너지 모듈을 위한 성능 검증 장치 및 그 방법 |
JP5015341B1 (ja) * | 2011-07-15 | 2012-08-29 | 株式会社エヌ・ピー・シー | 太陽電池の欠陥検査装置及び検査方法 |
CN102749497B (zh) * | 2012-07-13 | 2015-08-19 | 北京空间飞行器总体设计部 | 卫星太阳电池阵电流输出预测及故障诊断方法 |
CN102759696A (zh) * | 2012-07-24 | 2012-10-31 | 江苏省无线电科学研究所有限公司 | 太阳能电池i-v特性调节和取样装置 |
CN102944828B (zh) * | 2012-11-26 | 2015-02-18 | 河海大学常州校区 | 一种智能太阳能电池组件户外测试平台及其测试方法 |
US9271239B2 (en) * | 2014-02-14 | 2016-02-23 | Qualcomm Incorporated | Current-efficient low noise amplifier (LNA) |
JP6240634B2 (ja) * | 2015-04-20 | 2017-11-29 | 日本カーネルシステム株式会社 | バイパスダイオードの故障検査装置 |
CN105352597B (zh) * | 2015-10-22 | 2018-06-05 | 河海大学常州校区 | 一种辐照传感器用太阳电池最优外接串联电阻的选择方法 |
CN108169702B (zh) * | 2018-03-07 | 2024-02-13 | 国网浙江省电力有限公司电力科学研究院 | 水内冷发电机专用绝缘电阻表检定平台及检定方法 |
FR3088455B1 (fr) * | 2018-11-14 | 2021-10-08 | Commissariat Energie Atomique | Procede de determination d'un modele electrique d'une chaine de modules photovoltaique, procede de diagnostic et dispositif associes |
CN114123969A (zh) * | 2020-08-31 | 2022-03-01 | 中国科学院苏州纳米技术与纳米仿生研究所 | 多结叠层光伏电池子电池电流及匹配度的检测方法 |
CN113030581B (zh) * | 2021-03-19 | 2024-07-26 | 陕西众森电能科技有限公司 | 一种太阳电池组件及组件外接电路阻抗的测试方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02159588A (ja) | 1988-12-13 | 1990-06-19 | Agency Of Ind Science & Technol | コンデンサー負荷方式太陽電池i・vカーブトレーサー |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52135683A (en) * | 1976-05-10 | 1977-11-12 | Nec Corp | Solar battery element characteristics measuring apparatus |
JP3571860B2 (ja) * | 1996-08-23 | 2004-09-29 | キヤノン株式会社 | 非安定電源を電源とする電動機運転装置 |
JP2000243995A (ja) * | 1998-12-25 | 2000-09-08 | Canon Inc | 太陽電池モジュールの検査方法及び製造方法 |
JP4012657B2 (ja) * | 1999-12-15 | 2007-11-21 | 株式会社マキ製作所 | 太陽電池の特性測定装置 |
US6876187B2 (en) * | 2000-07-04 | 2005-04-05 | Canon Kabushiki Kaisha | Method and apparatus for measuring photoelectric conversion characteristics |
JP2004134748A (ja) * | 2002-07-26 | 2004-04-30 | Canon Inc | 光電変換素子の測定方法および装置、光電変換素子の製造方法及び製造装置 |
-
2008
- 2008-05-26 JP JP2008136771A patent/JP2009283845A/ja active Pending
-
2009
- 2009-05-22 TW TW098117183A patent/TW201009371A/zh unknown
- 2009-05-25 CN CN2009801291209A patent/CN102105994A/zh active Pending
- 2009-05-25 WO PCT/JP2009/059528 patent/WO2009145144A2/ja active Application Filing
- 2009-05-25 EP EP09754652A patent/EP2287918A2/en not_active Withdrawn
- 2009-05-25 US US12/736,943 patent/US20110068817A1/en not_active Abandoned
- 2009-05-25 KR KR1020107027933A patent/KR20110030454A/ko not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02159588A (ja) | 1988-12-13 | 1990-06-19 | Agency Of Ind Science & Technol | コンデンサー負荷方式太陽電池i・vカーブトレーサー |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI400459B (zh) * | 2010-06-23 | 2013-07-01 | Nat Univ Tsing Hua | 一種太陽能電池參數之萃取方法 |
TWI723851B (zh) * | 2020-04-21 | 2021-04-01 | 友達光電股份有限公司 | 太陽能電池檢測系統 |
Also Published As
Publication number | Publication date |
---|---|
EP2287918A2 (en) | 2011-02-23 |
JP2009283845A (ja) | 2009-12-03 |
US20110068817A1 (en) | 2011-03-24 |
WO2009145144A3 (ja) | 2010-01-28 |
TW201009371A (en) | 2010-03-01 |
KR20110030454A (ko) | 2011-03-23 |
CN102105994A (zh) | 2011-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009145144A2 (ja) | 太陽電池出力特性評価装置および太陽電池出力特性評価方法 | |
JP4130425B2 (ja) | 二次電池の充放電電気量推定方法および装置、二次電池の分極電圧推定方法および装置、並びに二次電池の残存容量推定方法および装置 | |
KR102347014B1 (ko) | 축전지 잔량 추정 장치, 축전지 잔량 추정 방법, 및 프로그램 | |
JP6310948B2 (ja) | 太陽電池検査システムおよび太陽電池検査方法 | |
US20120146597A1 (en) | Power supply apparatus | |
EP3258282A1 (fr) | Procédé et dispositif d'évaluation d'un indicateur d'état de santé d'une cellule d'une batterie lithium | |
WO2009041370A1 (ja) | 燃料電池の劣化検出装置及び燃料電池システム | |
CN101210950A (zh) | 电子元件耐压测试设备及方法 | |
JP2016003963A (ja) | 電池モデル同定方法 | |
US7969176B2 (en) | Voltage margin test device | |
US10317456B2 (en) | Spike safe floating current and voltage source | |
KR102037149B1 (ko) | 온도 별 저항 값을 이용한 전류 측정 장치 및 그 방법 | |
TW201326829A (zh) | 過電流偵測電路及過電流偵測方法 | |
JP2016211923A (ja) | 充電量推定方法及び充電量推定装置 | |
US8781770B2 (en) | Method and system for estimating battery percentage | |
CN103688228B (zh) | 用于优化太阳能电池单元的输出功率的设备和方法 | |
US20140333319A1 (en) | Characterization of substrate doping and series resistance during solar cell efficiency measurement | |
US10944259B2 (en) | System and method for over voltage protection in both positive and negative polarities | |
CN104682466B (zh) | 充电控制电路的校准方法和校准电路 | |
JP4845953B2 (ja) | 動特性検査装置 | |
RU2013148725A (ru) | Способ коррекции измерения напряжения на контактах датчика | |
JP6230894B2 (ja) | サージ試験装置、サージ試験方法及び電子部品 | |
JP2013225579A (ja) | 太陽電池の特性評価装置及び太陽電池の特性評価方法 | |
KR20150005073A (ko) | 정전류시 soc 추정 방법, 장치, 이를 포함하는 배터리 관리 시스템 및 에너지 저장 시스템 | |
US10333462B2 (en) | Measuring apparatus for solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980129120.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09754652 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12736943 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009754652 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107027933 Country of ref document: KR Kind code of ref document: A |