WO2009145085A1 - 回転角度検出装置 - Google Patents

回転角度検出装置 Download PDF

Info

Publication number
WO2009145085A1
WO2009145085A1 PCT/JP2009/059226 JP2009059226W WO2009145085A1 WO 2009145085 A1 WO2009145085 A1 WO 2009145085A1 JP 2009059226 W JP2009059226 W JP 2009059226W WO 2009145085 A1 WO2009145085 A1 WO 2009145085A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
rotation angle
turns
teeth
angle detection
Prior art date
Application number
PCT/JP2009/059226
Other languages
English (en)
French (fr)
Inventor
正嗣 中野
晋介 逸見
悟 阿久津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010514447A priority Critical patent/JP5127923B2/ja
Priority to US12/994,772 priority patent/US8427142B2/en
Priority to CN2009801194694A priority patent/CN102047079B/zh
Priority to DE112009001282T priority patent/DE112009001282B4/de
Publication of WO2009145085A1 publication Critical patent/WO2009145085A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core

Definitions

  • the present invention relates to a rotation angle detection device for detecting the rotation angle of a rotor such as a motor.
  • a stator that is composed of an iron core having teeth and in which one or more excitation windings and two or more output windings are wound around the teeth;
  • the number of teeth increases proportionally as the shaft angle multiplier increases.
  • An object of the present invention is to provide a rotation angle detection device that can be configured with a small number of teeth even when the shaft multiplication angle is increased, improves winding workability, and has high detection accuracy suitable for mass production.
  • a rotation angle detecting device comprises a stator having a stator and salient poles, each of which is constituted by an iron core having teeth and provided with one or more phase excitation windings and two or more phase output windings.
  • the number of turns of the output winding is different from the absolute value of a sine wave whose spatial order is the sum of the number N of exciting pole pairs and the number M of salient poles and the number N of exciting pole pairs.
  • this is a value obtained by a function including the sum or difference between the absolute value of the difference obtained by subtracting the number M of salient poles from the number N of pole pairs and a sine wave whose order is a different integer L.
  • another rotation angle detection device is a rotation having a stator and salient poles, which are constituted by an iron core having teeth and provided with one or more excitation coils and two or more output coils.
  • the number of turns of the output winding is determined by subtracting the number M of the salient poles from the number N of exciting pole pairs and the number of pole pairs of the exciting magnets. It is a value obtained by a function that is different from the absolute value of N and includes a sum or difference between the absolute value of the sum of the number N of pole pairs and the number M of salient poles and a sine wave whose order is a different integer L.
  • the effect of the rotation angle detection device according to the present invention is that the maximum value of the number of turns can be reduced as compared with the conventional rotation angle detection device, and the winding workability is excellent.
  • the rotation angle detection device is configured with fewer teeth than the conventional rotation angle detection device, which means that the winding workability is excellent and the structure is suitable for mass production. is there.
  • FIG. 1 is a configuration diagram showing the configuration of a rotation angle detection device according to Embodiment 1 of the present invention.
  • the rotation angle detection device according to Embodiment 1 of the present invention includes a stator 3 having a tooth 3 and a winding 4 wound around the tooth 3, and a rotor 2 having salient poles.
  • FIG. 1 shows only main parts, and details such as an insulating member between the winding 4 and the tooth 3 and a crossover or connection of the winding 4 are omitted.
  • FIG. 1 shows a rotation angle detection device in which the number of teeth 3 is 10 and the shaft angle multiplier is 4 (the number of salient poles of the rotor 2 is 4).
  • the numbers shown in the teeth 3 are the tooth numbers of the teeth 3 given for convenience.
  • the winding 4 is composed of an excitation winding and an output winding.
  • the winding 4 shown in FIG. 1 is wound around the tooth 3 in a three-layer structure.
  • the inner peripheral side closest to the teeth 3 is an exciting winding, and a two-phase output winding is wound around the outer peripheral side.
  • the winding method of the winding 4 is not limited to this, and the output winding may be wound on the inner side, or may be wound so that the respective windings are arranged in the radial direction.
  • Embodiment 1 of the present invention An AC voltage is applied to the excitation winding and an excitation current is applied to the excitation winding.
  • the frequency of the AC voltage is, for example, about 10 kHz.
  • a magnetic flux is generated in the gap between the stator 1 and the rotor 2 of the rotation angle detection device by the current flowing in the excitation winding, and the magnetic flux is also linked to the output winding wound around the stator. .
  • a voltage is generated in the output winding.
  • the shape of the rotor 2 is an uneven shape as shown in FIG. In this example, the structure has four salient poles.
  • the magnetic flux generated in the gap portion is also affected by the change in permeance. Therefore, the magnetic flux changes according to the rotation angle of the rotor 2, and as a result, the voltage generated in the output winding also changes. Since the number of turns is selected so that the voltage of the two-phase output winding has a sine wave and cosine wave relationship with respect to the rotation angle, if the voltage of the two-phase output winding is measured, the rotation angle is Can be detected.
  • FIG. 2 is an example of a specific winding 4 in the rotation angle detection device according to Embodiment 1 of the present invention.
  • the positive / negative sign indicates the winding direction
  • the negative sign indicates that the winding is performed in the direction opposite to the positive sign
  • the number indicates the number of turns.
  • the exciting winding plays a role of generating magnetic flux through the exciting current.
  • the excitation winding is wound around all the teeth 3 so that the number of poles is 10, that is, the number of pole pairs is 5.
  • the adjacent teeth 3 are wound by 50 turns so as to have different polarities.
  • the number M of salient poles of the rotor 2 is 4, that is, the spatial order of the change in permeance is the fourth order.
  • a component having a mechanical angle of 360 ° as one cycle was defined as primary. At this time, it is considered how to wind the output winding.
  • the magnetic double angle M is subtracted from the absolute value of the value obtained by adding the shaft double angle M to the number N of pole pairs of the excitation winding or the number N of excitation pole pairs.
  • the absolute value of the value (hereinafter expressed as ⁇
  • each i th (i is an integer from 1 to the number N S of the teeth 3) turns in the tooth 3 of N cos (i)
  • N sin (i) N cos (i)
  • N sin (i) can be expressed by equation (2).
  • N 1 is an arbitrary real number
  • N S is the number of teeth 3
  • ⁇ 1 and ⁇ 2 are arbitrary real numbers.
  • the maximum number of turns of the two-phase output winding is N 1 .
  • the smaller the maximum number of turns the better the mass productivity. That is, when the sine wave is used, the maximum value of the number of turns becomes large, so that the winding work takes time, and there is a problem that mass productivity is lowered. Furthermore, since the number of turns of all the windings is changing, there is a problem that the winding design is difficult to understand.
  • this problem can be solved by adding a component of spatial order different from the spatial primary or spatial 9th order to Equations (1) and (2). To do. Another harmonic component is added to lower the peak value of the sine wave. It should be noted here that a spatial order component corresponding to the number N of excitation pole pairs is avoided. If a spatial order component that matches the number N of excitation pole pairs is included, the order that matches the number of pole pairs generated by the excitation current is picked up, so that the detection accuracy is lowered and the function as a rotation angle detection device is lowered. .
  • a spatial fifth order component is added, for example, a spatial third order component is added.
  • N S is the number of slots
  • N 1 , N 2 , ⁇ 1 , ⁇ 2 , ⁇ 1 , and ⁇ 2 are arbitrary real numbers, and decoding is arbitrarily selected in Equations (3) and (4).
  • the number of turns can be matched between the plurality of teeth 3, and the number of turns design can be easily understood and easily compared to the case where the number of turns is different for all the teeth 3.
  • FIG. 3 is a graph showing the output winding of FIG. 2 with the horizontal axis as the tooth number and the number of turns (including the sign) as the vertical axis.
  • the absolute value of the spatial order obtained by adding the shaft double angle M to the excitation pole pair number N or the difference obtained by subtracting the shaft double angle M from the number N of excitation pole pairs. Determined by a parameter of spatial order equal to.
  • the output voltage is the same because it is determined by N 1 related to the spatial primary. Therefore, according to the winding in the rotation angle detection device according to the first embodiment of the present invention, the output voltage is the same, the maximum value of the number of turns can be reduced, and the winding work efficiency can be improved. There is an effect.
  • FIG. 4 is the number of turns in each tooth rounded off to the integer shown in FIG.
  • FIG. 5 is a plot of the output winding voltage for this winding specification.
  • the horizontal axis represents the rotation angle, which is a mechanical angle
  • the vertical axis represents the voltage peak value.
  • the sign of voltage is the difference in phase.
  • Both the COS winding and the SIN winding are sine waves having a mechanical angle of 90 ° as one cycle. Further, the phase is shifted by 22.5 °. Multiplying 22.5 by the shaft angle multiplier of 4 gives 90 °. That is, the phase difference between the COS winding and the SIN winding is an electrical angle of 90 °. This indicates that it functions as a rotation angle detection device having a shaft angle multiplier of 4.
  • the number of turns of the COS winding in the teeth 3 with the tooth numbers 3 and 8 is zero.
  • the presence of the teeth 3 having zero turns as described above has the effect of improving the efficiency of the winding work because the winding machine does not have to wind the windings around the teeth 3. .
  • FIG. 8 shows the number of turns when decryption is positive in equation (3) and negative in equation (4). Even if the value of N 2 is different, it functions as a rotation angle detection device, and the same effect can be obtained.
  • the L-order sine wave L that is superimposed so as to reduce the maximum number of turns is a value L whose absolute value is different from the absolute value of N in order to avoid being equal to the number N of exciting pole pairs. That is, L satisfies
  • the pole pairs N of the excitation is equal to 1/2 of the number of teeth N S is the space in the distribution of turns
  • L the absolute value of the difference between the absolute value of L is obtained by subtracting the shaft angle multiplier M from pole pairs N of the excitation It may be an integer that is equal. That is, L satisfying
  • a rotation angle detecting device including a stator 1 provided with a one-phase excitation winding and a two-phase output winding, and a rotor 2 having salient poles
  • the number of excitation pole pairs is N and the salient poles of the rotor.
  • the integer L satisfies
  • the number of turns of the two-phase output winding is the space
  • N cos (i) and N sin (i) represent the number of turns of the winding wound around the i-th tooth 3 in the output winding.
  • N is the number of pole pairs of the excitation winding
  • M is the number of salient poles of the rotor
  • N S is the number of teeth.
  • L is an integer
  • N 1 , N 2 , ⁇ 1 , ⁇ 2 , ⁇ 1 , and ⁇ 2 are arbitrary real numbers
  • decoding is arbitrary in equations (6) and (7).
  • the absolute value of the integer L is different from the absolute value of the number N of pole pairs of the excitation winding in order to avoid the N-order component of the number of excitation pole pairs.
  • An integer L is assumed. Further, when the pole pairs N of the excitation is equal to 1/2 of the number of teeth N S is the space in the distribution of turns
  • the integer L is an integer that is considered that the absolute value of the integer L is different from the absolute value of the sum obtained by adding the number M of rotor protrusions to the number N of pole pairs of the excitation winding.
  • an integer L is the number M of the absolute value of rotor pole pairs N of the exciting windings projections integer L
  • the absolute value of the sum obtained by addition may be the same.
  • N cos (i) and N sin (i) represent the number of turns of the winding wound around the i-th tooth 3 in the output winding.
  • N is the number of pole pairs of the excitation winding
  • M is the number of salient poles of the rotor
  • N S is the number of teeth.
  • L is an integer
  • N 1 , N 2 , ⁇ 1 , ⁇ 2 , ⁇ 1 , and ⁇ 2 are arbitrary real numbers
  • decoding is arbitrary in equations (8) and (9).
  • the present invention is pole pairs N of the excitation is established regardless of whether matching 1/2 of the number of teeth N S. Further, although the specific example has been described only for the space first order, if the space
  • the rotation angle detection device since the number of teeth 3 is 10 even if the shaft angle multiplier is 4, even if the shaft angle multiplier is increased, the rotation angle detecting device is less in number of teeth 3 than the conventional example. Can provide. Therefore, the rotation angle detection device according to Embodiment 1 of the present invention has a structure that is excellent in winding workability and suitable for mass production.
  • FIG. 9 is a configuration diagram showing a configuration of a rotation angle detection device according to Embodiment 2 of the present invention.
  • the rotation angle detection device according to Embodiment 2 of the present invention includes a stator 3 having a tooth 3 and a winding 4 wound around the tooth 3, and a rotor 2 having salient poles.
  • FIG. 9 shows only main parts for simplification, and details such as an insulating member between the winding 4 and the tooth 3 and a crossover or connection of the winding 4 are omitted.
  • the number of teeth 3 is 8 and the shaft angle multiplier is 5 (the number of salient poles of the rotor 2 is 5).
  • the numbers shown in the teeth 3 portion are the teeth numbers of the teeth 3 given for convenience.
  • the operating principle of the rotation angle detection device is the same as that of the first embodiment.
  • the number N of exciting pole pairs is 4 and the number M of salient poles of the rotor is 5, the value
  • the spatial primary or spatial 9th order component of the magnetic flux generated in the gap may be picked up by the output winding. Furthermore, it is sufficient to add an order component that reduces the maximum value of the number of turns compared to the case where the number of turns is changed to a conventional sine wave.
  • a spatial primary component is picked up.
  • the order L of the component to be added was third order. At this time, the number of turns is expressed by equations (10) and (11).
  • N S 8
  • N 1 100
  • decoding is positive in equation (10) and negative in equation (11).
  • N cos (1) N cos (2)
  • N 2 / N 1 0.4142.
  • the number of turns at this time is as shown in FIG. FIG. 11 illustrates this as a horizontal axis tooth number and a vertical axis number of turns. The number of turns allows decimal numbers. When the number of turns is a small number, the winding is not wound around the tooth 3 once, but can be configured by moving to the next tooth 3 in the middle of the winding.
  • the maximum value of the number of turns is 100 corresponding to N 1 , but in the rotation angle detection device according to the second embodiment of the present invention, the maximum value of the number of turns of the output winding is 77, which can be reduced by 23%.
  • FIG. 12 is a value obtained by rounding off the number of turns shown in FIG. Of course, even when the number of turns is an integer, it operates as a rotation angle detection device. Moreover, since the number of turns is an integer, there is an effect that the design is easy.
  • FIG. 13 is a plot of the voltage of the output winding in the case of the winding specification of the second embodiment of the present invention.
  • the horizontal axis represents the rotation angle as the mechanical angle
  • the vertical axis represents the voltage peak value.
  • the sign of voltage is the difference in phase.
  • Both the COS winding and the SIN winding are sine waves having a mechanical angle of 72 ° as one cycle. Further, the phase is shifted by 18 °. Multiplying 18 by the shaft angle multiplier of 5 gives 90 °, that is, the phase difference between the COS winding and the SIN winding is an electrical angle of 90 °. This indicates that it functions as a rotation angle detection device having a shaft angle multiplier of 5. Since the waveform of FIG. 13 is a sinusoidal waveform containing almost no harmonics, a highly accurate rotation angle detection device can be obtained by the present invention.
  • the number of teeth 3 is 20 when the shaft angle multiplier is 5, but the rotation angle detection device according to the second embodiment of the present invention has a number of teeth 3 significantly greater than 20. It consists of a small number of 8.
  • the rotation angle detector is configured with a smaller number of teeth 3 than in the conventional example even when the shaft multiple angle is increased, so that the winding workability is excellent and the structure is suitable for mass production. can get.
  • FIG. 14 is a configuration diagram showing a configuration of a rotation angle detection device according to Embodiment 3 of the present invention.
  • a rotation angle detection device according to Embodiment 3 of the present invention includes a stator 1 having a tooth 3 and a winding 4 wound around the tooth 3, and a rotor 2 having a salient pole.
  • FIG. 14 shows only main parts for simplification, and details such as an insulating member between the winding 4 and the tooth 3 and a crossover or connection of the winding 4 are omitted.
  • the rotation angle detection device according to Embodiment 3 of the present invention is an example in which the number of teeth is 12 and the shaft angle multiplier is 5 (the number of salient poles of the rotor 2 is 5).
  • the numbers shown in the teeth portion are the tooth numbers of the teeth 3 given for convenience.
  • the operating principle of the rotation angle detection device is the same as that of the first embodiment.
  • that is, the value
  • an order component that reduces the maximum value of the number of turns is added as compared with the conventional case where the number of turns of the winding is changed by a sine wave with respect to the mechanical angle.
  • the order L of the component to be added is set to 3.
  • the number of turns is expressed by equations (10) and (11).
  • N S 12
  • N 1 100
  • decoding is positive in equation (10) and negative in equation (11).
  • N cos (1) N cos (2) was solved for N 2 / N 1 .
  • the number of turns at this time is as shown in FIG. FIG. 16 illustrates this as a horizontal axis tooth number and a vertical axis winding number. The number of turns allows decimal numbers. When the number of turns is a small number, the winding 4 is not wound around the tooth 3 once, but is moved to the adjacent tooth 3 in the middle of the winding 4.
  • the maximum value of the number of turns corresponds to N 1 and is 100, but in the rotation angle detection device according to the third embodiment, the maximum value of the number of turns of the output winding is 84, which is reduced by 16%.
  • FIG. 17 is a value obtained by rounding off the number of turns shown in FIG. Of course, even when the number of turns is an integer, it operates as a rotation angle detection device. Moreover, since the number of turns is an integer, there is an effect that the design is easy.
  • FIG. 18 is a plot of the voltage of the output winding in the case of the winding specification of the third embodiment of the present invention.
  • the horizontal axis represents the rotation angle as the mechanical angle
  • the vertical axis represents the voltage peak value.
  • the sign of voltage is the difference in phase.
  • Both the COS winding and the SIN winding are sine waves having a mechanical angle of 72 ° as one cycle. Further, the phase is shifted by 18 °. Multiplying 18 by the shaft angle multiplier of 5 gives 90 °, that is, the phase difference between the COS winding and the SIN winding is an electrical angle of 90 °. This indicates that it functions as a rotation angle detection device having a shaft angle multiplier of 5. Since the waveform of FIG.
  • the present invention has an effect of obtaining a highly accurate rotation angle detection device.
  • the same shaft angle multiplier is 5 and the number of teeth is 20.
  • the rotation angle detection device according to the third embodiment of the present invention is established with 12 that the number of teeth 3 is significantly smaller than 20. In other words, even if the shaft multiplication angle is increased, the rotation angle detection device is formed with a smaller number of teeth 3 than in the conventional example, so that an effect of excellent winding workability and a structure suitable for mass production can be obtained. .
  • FIG. 19 is a configuration diagram showing a configuration of a rotation angle detection device according to Embodiment 4 of the present invention.
  • a rotation angle detection device according to Embodiment 4 of the present invention includes a tooth 3, a stator 1 having a winding 4 wound around the tooth 3, and a rotor 2 having salient poles.
  • FIG. 19 shows only main parts for simplification, and details such as an insulating member between the winding 4 and the tooth 3 and a crossover or connection of the winding 4 are omitted.
  • the rotation angle detection device according to Embodiment 4 of the present invention is an example in which the number of teeth 3 is 16, and the shaft angle multiplier is 5 (the number of salient poles of the rotor 2 is 5).
  • the numbers shown in the teeth portion are the tooth numbers of the teeth 3 given for convenience.
  • the operating principle of the rotation angle detection device is the same as that of the first embodiment.
  • the number N of exciting pole pairs is 4 and the number M of salient poles of the rotor is 5, the value
  • an order component is added so as to reduce the maximum value of the number of turns compared to the case where the number of turns of the winding is changed to a sine wave with respect to the mechanical angle as in the prior art.
  • the order L of the added component is set to three.
  • the number of turns is expressed by Expression (10) and Expression (11).
  • N S 16
  • N 1 100
  • the decoding is positive in equation (10) and negative in equation (11).
  • N cos (1) N cos (2) was solved for N 2 / N 1 .
  • the number of turns at this time is as shown in FIG. FIG. 21 shows this as a horizontal axis tooth number and a vertical axis number of turns. The number of turns allows decimal numbers. When the number of turns is a small number, the winding 4 is not wound around the tooth 3 once, but is moved to the next tooth 3 in the middle of the winding 4.
  • the maximum value of the number of turns corresponds to N 1 and becomes 100, but in the rotation angle detection device according to the fourth embodiment, the maximum value of the number of turns of the output winding is about 88, which is 12% reduction.
  • FIG. 22 shows values obtained by rounding off the number of turns shown in FIG. Of course, even when the number of turns is an integer, it operates as a rotation angle detection device. Moreover, since the number of turns is an integer, there is an effect that the design is easy.
  • FIG. 23 plots the voltage of the output winding in the case of the winding specification of the fourth embodiment.
  • the horizontal axis represents the rotation angle and the mechanical angle
  • the vertical axis represents the voltage peak value.
  • the sign of voltage is the difference in phase.
  • Both the COS winding and the SIN winding are sine waves having a mechanical angle of 72 ° as one cycle. Further, the phase is shifted by 18 °. Multiplying 18 by the shaft angle multiplier of 5 gives 90 °, that is, the phase difference between the COS winding and the SIN winding is an electrical angle of 90 °. This indicates that it functions as a rotation angle detection device having a shaft angle multiplier of 5. Since the waveform of FIG.
  • the present invention has an effect of obtaining a highly accurate rotation angle detection device.
  • the same shaft angle multiplier is 5 and the number of teeth 3 is 20.
  • the number of teeth 3 is 16 less than 20. In other words, even if the shaft multiplication angle is increased, the rotation angle detection device is formed with a smaller number of teeth 3 than in the conventional example, so that an effect of excellent winding workability and a structure suitable for mass production can be obtained. .
  • FIG. FIG. 24 is a block diagram showing the configuration of the rotation angle detection device according to Embodiment 5 of the present invention.
  • a rotation angle detection device according to Embodiment 5 of the present invention includes a stator 1 having a tooth 3 and a winding 4 wound around the tooth 3, and a rotor 2 having salient poles.
  • FIG. 24 shows only main parts, and details such as an insulating member between the winding 4 and the tooth 3 and a crossover or connection of the winding 4 are omitted.
  • the rotation angle detection device according to Embodiment 5 of the present invention is an example in which the number of teeth 3 is 10 and the shaft angle multiplier is 7 (the number of salient poles of the rotor 2 is 7).
  • the numbers shown in the teeth portion are the tooth numbers of the teeth 3 given for convenience.
  • the operating principle of the rotation angle detection device is the same as that of the first embodiment.
  • the number N of exciting pole pairs is 5 and the number M of salient poles of the rotor 2 is 7, the value
  • What is necessary is just to pick up the space secondary or space 12 order component of the magnetic flux generated in the gap by the output winding.
  • a case where a spatial secondary component is picked up is considered.
  • the order L of the component to be added is set to 6 unlike the conventional one. At this time, the number of turns is expressed by equations (12) and (13).
  • N S 10
  • N 1 100
  • decoding is positive in equation (12) and negative in equation (13).
  • N cos (3) N cos (4) was solved for N 2 / N 1 .
  • the number of turns at this time is as shown in FIG. FIG. 26 shows this as a horizontal axis tooth number and a vertical axis number of turns. The number of turns allows decimal numbers. When the number of turns is a small number, the winding 4 is not wound around the tooth 3 once, but is moved to the next tooth 3 in the middle of the winding 4.
  • the maximum value of the number of turns is 100 corresponding to N1, but in the rotation angle detection device according to the fifth embodiment, the maximum value of the number of turns of the output winding is 88, which is reduced by 12%.
  • FIG. 27 is a value obtained by rounding off the number of turns shown in FIG. Of course, even when the number of turns is an integer, it operates as a rotation angle detection device. Moreover, since the number of turns is an integer, there is an effect that the design is easy.
  • FIG. 28 plots the voltage of the output winding in the winding specification of the fifth embodiment.
  • the horizontal axis indicates the rotation angle in mechanical angle
  • the vertical axis indicates the voltage peak value.
  • the sign of voltage is the difference in phase.
  • Both the COS winding and the SIN winding are sine waves having a mechanical angle of 360 ° / 7 ⁇ 51.4 ° as one cycle.
  • the waveform of FIG. 28 is a sinusoidal waveform containing almost no harmonics, it can also be seen that the present invention has an effect of obtaining a highly accurate rotation angle detection device.
  • the number of teeth 3 is 28, but in the rotation angle detection device according to Embodiment 5 of the present invention, the number of teeth 3 is 10 which is significantly smaller than 28. It is established. In other words, even if the shaft multiplication angle is increased, the rotation angle detection device is formed with a smaller number of teeth 3 than in the conventional example, so that an effect of excellent winding workability and a structure suitable for mass production can be obtained. .
  • FIG. 29 is a configuration diagram showing a configuration of a rotation angle detection device according to Embodiment 6 of the present invention.
  • a rotation angle detection device according to Embodiment 6 of the present invention includes a stator 1 having a tooth 3 and a winding 4 wound around the tooth 3, and a rotor 2 having a salient pole.
  • FIG. 29 shows only main parts, and details such as an insulating member between the winding 4 and the tooth 3 and a crossover or connection of the winding 4 are omitted.
  • the rotation angle detection device is an example in which the number of teeth 3 is 12 and the shaft angle multiplier is 7 (the number of salient poles of the rotor 2 is 7).
  • the numbers shown in the teeth portion are the tooth numbers of the teeth 3 given for convenience.
  • the operating principle of the rotation angle detection device is the same as that of the first embodiment.
  • the number N of exciting pole pairs is 6 and the number M of salient poles of the rotor is 7, the value
  • the spatial primary or spatial 13 order component of the magnetic flux generated in the gap may be picked up by the output winding. Furthermore, it is sufficient to add an order component that reduces the maximum value of the number of turns compared to the case where the number of turns is changed to a conventional sine wave.
  • the order L of the component to be added is set to 3.
  • the number of turns is expressed by equations (10) and (11).
  • N S 12
  • N 1 100
  • decoding is positive in equation (10) and negative in equation (11).
  • N cos (1) N cos (2) was solved for N 2 / N 1 .
  • the number of turns at this time is as shown in FIG. FIG. 31 shows this as a horizontal axis tooth number and a vertical axis winding number. The number of turns allows decimal numbers. When the number of turns is a small number, the winding 4 is not wound around the tooth 3 once, but is moved to the next tooth 3 in the middle of the winding 4.
  • the maximum value of the number of turns is 100 corresponding to N 1 , but in the rotation angle detection device according to the sixth embodiment of the present invention, the maximum value of the number of turns of the output winding is 84, which can be reduced by 16%. I understand that.
  • FIG. 32 is a value obtained by rounding off the number of turns shown in FIG. Of course, even when the number of turns is an integer, it operates as a rotation angle detection device. Moreover, since the number of turns is an integer, there is an effect that the design is easy.
  • FIG. 33 plots the voltage of the output winding in the winding specification of the sixth embodiment. The horizontal axis indicates the rotation angle in mechanical angle. The vertical axis shows the peak value of the voltage. As in the fifth embodiment, this indicates that it functions as a rotation angle detection device with a shaft angle multiplier of 7. Moreover, since the waveform of FIG. 33 is a sinusoidal waveform containing almost no harmonics, it can also be seen that the present invention has an effect of obtaining a highly accurate rotation angle detection device.
  • the number of teeth 3 is 28.
  • the number of teeth 3 is significantly less than 28. is doing. In other words, even if the shaft multiplication angle is increased, the rotation angle detection device is formed with a smaller number of teeth 3 than in the conventional example, so that an effect of excellent winding workability and a structure suitable for mass production can be obtained. .
  • FIG. 34 is a configuration diagram showing a configuration of a rotation angle detection device according to Embodiment 7 of the present invention.
  • a rotation angle detection device according to Embodiment 7 of the present invention includes a stator 3 having a tooth 3 and a winding 4 wound around the tooth 3, and a rotor 2 having a salient pole.
  • FIG. 34 shows only main parts, and details such as an insulating member between the winding 4 and the tooth 3 and a crossover or connection of the winding 4 are omitted.
  • the rotation angle detection device according to Embodiment 7 of the present invention is an example in which the number of teeth 3 is 16 and the shaft angle multiplier is 7 (the number of salient poles of the rotor 2 is 7).
  • the numbers shown in the teeth portion are the tooth numbers of the teeth 3 given for convenience.
  • the operating principle of the rotation angle detection device is the same as that of the first embodiment.
  • the number N of exciting pole pairs is 8 and the number M of salient poles of the rotor 2 is 7. Therefore, the value
  • an order component that reduces the maximum value of the number of turns may be added as compared with the case where the number of turns is changed to a conventional sine wave shape.
  • the order L of the added component is set to three.
  • the number of turns is expressed by equations (10) and (11).
  • N S 12
  • N 1 100
  • decoding is positive in equation (10) and negative in equation (11).
  • the number of turns at this time is as shown in FIG. FIG. 36 shows this as a horizontal axis tooth number and a vertical axis number of turns. The number of turns allows decimal numbers. When the number of turns is a small number, the winding 4 is not wound around the tooth 3 once, but is moved to the next tooth 3 in the middle of the winding 4.
  • the maximum value of the number of turns coincides with N 1 and becomes 100, but in the rotation angle detection device according to Embodiment 7 of the present invention, the maximum value of the number of turns of the output winding becomes 88, which can be reduced by 12%.
  • FIG. 37 is a value obtained by rounding off the number of turns shown in FIG. Of course, even when the number of turns is an integer, it operates as a rotation angle detection device. Moreover, since the number of turns is an integer, there is an effect that the design is easy.
  • FIG. 38 plots the voltage of the output winding in the winding specification of the seventh embodiment of the present invention. In FIG. 38, the horizontal axis represents the rotation angle and the mechanical angle, and the vertical axis represents the voltage peak value. Similar to the sixth embodiment, this indicates that it functions as a rotation angle detection device with a shaft angle multiplier of 7. Since the waveform of FIG.
  • the present invention has an effect of obtaining a highly accurate rotation angle detection device.
  • the number of teeth 3 is 28.
  • the number of teeth 3 is significantly smaller than 28. It is established with. In other words, even if the shaft multiplication angle is increased, the rotation angle detection device is formed with a smaller number of teeth 3 than in the conventional example, so that an effect of excellent winding workability and a structure suitable for mass production can be obtained. .
  • the number of excitation windings is 50 for each tooth 3.
  • the number of excitation windings is not limited to this, depending on the necessity of electrical characteristics such as input impedance. What is necessary is just to determine suitably.
  • the parameters N 1 and N 2 may be appropriately determined according to the transformation ratio and the like. Further, only the rotation angle detection device with the shaft angle multiplier of 4, 5, 7 has been described. However, the present invention is not limited to this. Can be configured.
  • FIG. 39 is a conceptual diagram of a vehicular electric power steering apparatus equipped with the rotation angle detection apparatus according to the present invention.
  • a column shaft 31 for transmitting a steering force from the steering wheel 30 is provided.
  • the column shaft 31 is connected to a worm gear 32 (details are omitted in FIG. 41, and only the gear box is shown), and the output (torque, rotation speed) of the motor 34 driven by the controller 33 is perpendicular to the rotation direction. , And at the same time decelerate to increase the assist torque.
  • a handle joint 35 is connected to the worm gear 32 to transmit the steering force and change the direction.
  • a steering gear (not shown in detail in FIG.
  • FIG. 40 is a configuration diagram illustrating a configuration of a brushless motor as an example. However, in FIG. 40, only main components are shown and simplified.
  • a stator iron core 21 is fixed to the frame 20 by press-fitting, shrink fitting or adhesion.
  • An armature winding 22 is wound around the stator core 21, and torque is generated when a current is passed through the armature winding 22.
  • the rotor includes a rotor core 23 and a permanent magnet 24.
  • a shaft 25 is press-fitted into the rotor core 23 and is rotatably supported by bearings 26a and 26b. In addition, the shaft 25 may be comprised by the member different from the rotor core 23, and may be comprised by the same member.
  • the frame 20 is fixed to the housing 27.
  • a stator 200 of a rotation angle detection device is fixed to the housing 27, and a winding 201 is wound around the stator 200.
  • the rotor 202 is fixed to the shaft 25 by a method such as press fitting
  • a current is applied to the armature winding 22 of the motor based on the angle of the rotor 202 detected by the rotation angle detection device. If the angle detection accuracy is poor, torque pulsation occurs due to a phase shift or the like, resulting in poor steering feeling. Further, from the viewpoint of mountability, it is desirable that the rotation angle detection device is smaller than the motor.
  • the outer diameter is preferably less than half of the motor as shown in FIG. Naturally, when the outer diameter becomes smaller, the inner diameter of the stator 200 of the rotation angle detecting device also becomes smaller.
  • the number of teeth 3 of the rotation angle detection device increases, the distance between the teeth 3 and the teeth 3 becomes narrower, and the slot for accommodating the winding 4 becomes narrower.
  • the nozzle of the winding machine becomes difficult to enter, winding workability is reduced, and the structure is not suitable for mass production.
  • the outer diameter (diameter) of the motor is 80 mm
  • the outer diameter (diameter) of the rotation angle detection device is 40 mm
  • the inner diameter of the stator 200 is about half 20 mm. If it becomes, the space
  • the rotation angle detection device when used, even if the shaft angle multiplier is 4, 5, or 7, the number of teeth 3 is 16 or less, and further, 12, 10, and 8 are established.
  • the shaft multiple angle is often matched with the number of pole pairs of the motor, so that it is possible to drive an 8-pole, 10-pole or 14-pole motor and to provide an electric power steering apparatus with excellent mass productivity. it can.
  • an 8-pole 12-slot, 10-pole 12-slot, and 14-pole 12-slot concentrated winding multi-pole motor can be designed with low torque pulsation. A good electric power steering device can be obtained.
  • the rotation angle detection device When the rotation angle detection device according to the present invention is used to detect the rotation angle of a permanent magnet type motor mounted on an electric power steering device for a vehicle, the number of teeth 3 can be reduced to 16 or less. Also, the number of teeth 3 can be made smaller than the number obtained by multiplying the shaft angle multiplier by 4. As a result, multipolar motors such as 8-pole, 10-pole, and 14-pole can be driven, so that the torque pulsation of the permanent magnet motor can be reduced, and as a result, the steering feeling in the electric power steering apparatus can be improved. is there.
  • the rotation angle detection device has a configuration suitable for mass production. Further, there is an effect that the selection range of the shaft angle multiplier is widened, that is, the selection range of the number of poles of the motor is widened.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 軸倍角が大きくなっても少ない数のティースで構成でき、巻線作業性を向上し、大量生産に適した検出精度の良い回転角度検出装置を提供する。回転角度検出装置は、ティースを有する鉄心で構成されるとともに1相以上の励磁巻線と2相以上の出力巻線とが設けられる固定子および突極を有する回転子を備える回転角度検出装置において、2相の上記出力巻線の巻数は、上記極対数と上記突極の数との和の絶対値を次数とする正弦波と上記励磁巻線の極対数の絶対値と異なり且つ上記極対数から上記突極の数を減算して得る差の絶対値と異なる整数を次数とする正弦波との和または差を含む関数によって得られる値である。

Description

回転角度検出装置
 この発明は、例えばモータなどの回転子の回転角度を検出する回転角度検出装置に関するものである。
 回転角度検出装置として光学式エンコーダがあるが、使用温度環境が制限され、かつ構造が複雑で高価である。それに対し、構造が簡単で安価であり、かつ、高温度環境にも耐え得るものとして、従来から回転子と固定子間のギャップのパーミアンスの変化を利用した回転角度検出装置が考案されている。例えば、2相の励磁巻線と1相の出力巻線を有する回転角度検出装置、1相の励磁巻線と2相の出力巻線を有する回転角度検出装置、巻数を正弦波に一致するように変化させる回転角度検出装置が開示されている(例えば、特許文献1~4参照)。
 例えば、特許文献1に開示されている回転角度検出装置では、ティースを有する鉄心で構成され且つティースに1相以上の励磁巻線および2相以上の出力巻線が巻き回される固定子と、突極を有する回転子とを具備し、軸倍角が増えるに従い、ティースの数も比例して増える。
特公昭62-58445号公報 特開昭49-124508号公報 特開平08-178610号公報 特開平08-178611号公報
 しかし、従来の回転角度検出装置では、軸倍角が増加するとティースの数が増大し巻線作業性、工作性が低下していくとともに、ティースの数が増大すると、スロットの幅が狭くなり、巻線機のノズルが入りにくくなる。従って、このようにティースが増えてしまった場合は量産には向かない非現実的な構成であるという問題がある。
 また、特許文献3、4のように巻数を正弦波で変化させる場合、僅かの巻数しか巻線を施さないティースが存在し、機械による巻線を考えた場合、ほんの僅かしか巻線をほどこさないティースに自動巻きの巻線機のノズルが移動しなければならず、ノズルの位置決めに時間を要するため巻線作業の効率が良くないという問題がある。
 この発明の目的は、軸倍角が大きくなっても少ない数のティースで構成でき、巻線作業性を向上し、大量生産に適した検出精度の良い回転角度検出装置を提供することである。
 この発明に係る回転角度検出装置は、ティースを有する鉄心で構成されるとともに1相以上の励磁巻線と2相以上の出力巻線とが設けられる固定子および突極を有する回転子を備える回転角度検出装置において、上記出力巻線の巻数は、励磁の極対数Nと上記突極の数Mとの和の絶対値を空間次数とする正弦波と上記励磁の極対数Nの絶対値と異なり且つ上記極対数Nから上記突極の数Mを減算して得る差の絶対値と異なる整数Lを次数とする正弦波との和または差を含む関数によって得られる値である。
 また、この発明に係る他の回転角度検出装置は、ティースを有する鉄心で構成されるとともに1相以上の励磁巻線と2相以上の出力巻線とが設けられる固定子および突極を有する回転子を備える回転角度検出装置において、上記出力巻線の巻数は、励磁の極対数Nから上記突極の数Mを減算して得る差の絶対値を次数とする正弦波と上記励磁の極対数Nの絶対値と異なり且つ上記極対数Nと上記突極の数Mとの和の絶対値と異なる整数Lを次数とする正弦波との和または差を含む関数によって得られる値である。
 この発明に係る回転角度検出装置の効果は、従来の回転角度検出装置と比べて巻数の最大値を小さくすることができ、巻線作業性が優れているということである。
 また、軸倍角が大きくなっても従来の回転角度検出装置と比べて少ないティースで回転角度検出装置が構成されるので、巻線作業性が優れており量産に向いている構造となるということである。
この発明の実施の形態1に係る回転角度検出装置の構成を示した構成図である。 この発明の実施の形態1に係る回転角度検出装置における具体的な巻線の例である。 この発明の実施の形態1に係る回転角度検出装置における具体的な巻線の説明図である。 この発明の実施の形態1に係る回転角度検出装置における具体的な巻線の他の例である。 この発明の実施の形態1に係る回転角度検出装置における出力巻線の電圧を示した説明図である。 従来の回転角度検出出装置における巻数の具体的な例の説明図である。 この発明と従来例との比較の説明図である。 この発明の実施の形態1に係る回転角度検出装置における具体的な巻線の別の例の説明図である。 この発明の実施の形態2に係る回転角度検出装置の構成を示した構成図である。 この発明の実施の形態2に係る回転角度検出装置における具体的な巻線の例である。 この発明の実施の形態2に係る回転角度検出装置における具体的な巻線の説明図である。 この発明の実施の形態2に係る回転角度検出装置における具体的な巻線の他の例である。 この発明の実施の形態2に係る回転角度検出装置における出力巻線の電圧を示した説明図である。 この発明の実施の形態3に係る回転角度検出装置の構成を示した構成図である。 この発明の実施の形態3に係る回転角度検出装置における具体的な巻線の例である。 この発明の実施の形態3に係る回転角度検出装置における具体的な巻線の説明図である。 この発明の実施の形態3に係る回転角度検出装置における具体的な巻線の他の例である。 この発明の実施の形態3に係る回転角度検出装置における出力巻線の電圧を示した説明図である。 この発明の実施の形態4に係る回転角度検出装置の構成を示した構成図である。 この発明の実施の形態4に係る回転角度検出装置における具体的な巻線の例である。 この発明の実施の形態4に係る回転角度検出装置における具体的な巻線の説明図である。 この発明の実施の形態4に係る回転角度検出装置における具体的な巻線の他の例である。 この発明の実施の形態4に係る回転角度検出装置における出力巻線の電圧を示した説明図である。 この発明の実施の形態5に係る回転角度検出装置の構成を示した構成図である。 この発明の実施の形態5に係る回転角度検出装置における具体的な巻線の例である。 この発明の実施の形態5に係る回転角度検出装置における具体的な巻線の説明図である。 この発明の実施の形態5に係る回転角度検出装置における具体的な巻線の他の例である。 この発明の実施の形態5に係る回転角度検出装置における出力巻線の電圧を示した説明図である。 この発明の実施の形態6に係る回転角度検出装置の構成を示した構成図である。 この発明の実施の形態6に係る回転角度検出装置における具体的な巻線の例である。 この発明の実施の形態6に係る回転角度検出装置における具体的な巻線の説明図である。 この発明の実施の形態6に係る回転角度検出装置における具体的な巻線の他の例である。 この発明の実施の形態6に係る回転角度検出装置における出力巻線の電圧を示した説明図である。 この発明の実施の形態7に係る回転角度検出装置の構成を示した構成図である。 この発明の実施の形態7に係る回転角度検出装置における具体的な巻線の例である。 この発明の実施の形態7に係る回転角度検出装置における具体的な巻線の説明図である。 この発明の実施の形態7に係る回転角度検出装置における具体的な巻線の他の例である。 この発明の実施の形態7に係る回転角度検出装置における出力巻線の電圧を示した説明図である。 この発明の実施の形態8に係る電動パワーステアリング装置の構成の説明図である。 この発明の実施の形態8に係る回転電機の構成の説明図である。
 実施の形態1.
 図1は、この発明の実施の形態1に係る回転角度検出装置の構成を示した構成図である。
 この発明の実施の形態1に係る回転角度検出装置は、ティース3およびティース3に巻き回された巻線4を具備した固定子1、突極を有する回転子2から構成されている。但し、図1は簡略化のために、主要な部分だけを示し、巻線4とティース3の間の絶縁部材や巻線4の渡り線や結線など詳細は省略している。図1は、ティース3の数が10、軸倍角4(回転子2の突極の数が4)の回転角度検出装置である。また、ティース3に示した数字は便宜的に与えた各ティース3のティース番号である。
 巻線4は、励磁巻線と出力巻線から構成されている。図1に示した巻線4は、ティース3に3層構造に巻き回されている。例えば、ティース3に一番近い内周側が励磁巻線とし、その外周側に2相の出力巻線が巻き回されている。但し、巻線4の巻き回し方はこれに限ったものではなく、内側に出力巻線を巻き回してもよいし、径方向に各巻線が並ぶように巻き回してもよい。
 次に、この発明の実施の形態1に係る回転角度検出装置の動作原理を説明する。
 励磁巻線に交流電圧を印加し、励磁巻線に励磁電流を通電する。交流電圧の周波数は例えば、10kHz程度の高周波とする。励磁巻線に流れる電流により、回転角度検出装置の固定子1と回転子2の間の空隙には、磁束が発生し、固定子に巻き回されている出力巻線にも磁束が鎖交する。結果として、出力巻線に電圧が発生する。
 ところで、回転子2の形状は図1のように、凹凸のある形状となっている。この例では4つ突極を有する構造である。これにより、固定子1と回転子2の間のパーミアンスが変化するため、空隙部分にできる磁束もこのパーミアンスの変化の影響を受ける。
 したがって、回転子2の回転角度に応じて磁束が変化し、結果として、出力巻線に発生する電圧も変化する。2相の出力巻線の電圧は回転角度に対して、正弦波、余弦波の関係となるように巻数を選定しているので、2相の出力巻線の電圧を測定すれば、回転角度を検出することができる。
 次に、この発明の実施の形態1に係る回転角度検出装置における巻線4の巻数の選定の考え方について説明する。
 図2は、この発明の実施の形態1に係る回転角度検出装置における具体的な巻線4の例である。なお、図2において、正負符号は巻き方向を表し、負符号は正符号とは逆方向に巻き回されていることを示し、数字は巻数を表す。
 まず、励磁巻線から説明する。
 励磁巻線は励磁電流が流れ磁束を発生する役割を担っている。図2の例では、励磁巻線は全てのティース3に巻き回され、極数が10、すなわち極対数が5となるような構成である。具体的には図2の例では50ターンずつ、隣り合うティース3で極性が異なるように巻き回されている。
 一方、回転子2の突極の数Mは4である、すなわち、パーミアンスの変化の空間次数は4次となる。ただし、機械角360°を1周期とする成分を1次とした。
 このときに、出力巻線をどのように巻き回せばよいかについて考察する。
 回転角度検出装置として機能するためには、空隙に発生する磁束のうち、励磁巻線の極対数Nに軸倍角Mを加算した値の絶対値または励磁の極対数Nから軸倍角Mを減算した値の絶対値(以下、数式で表すときには{|(励磁の極対数)±(軸倍角)|、|N±N|}とする。但し、||は絶対値を表す記号である。)に等しい空間次数の磁束を拾う必要がある。
 図1に図示した回転角度検出装置では、励磁巻線の極対数Nが5、軸倍角Mが4であるから、値|(励磁の極対数)±(軸倍角)|、すなわち値|5±4|に等しい空間次数9次または1次の磁束を拾う必要がある(但し、空間1次とは機械角360°を1周期とする成分のことを表す)。
 出力巻線が空間1次の磁束を拾うように設計するには、各ティース3の機械角に対する出力巻線の巻数が空間1次の正弦波にしたがって変化するようにすればよい。2相の出力巻線の一方をCOS巻線、他方をSIN巻線とし、それぞれのi番目(iは1からティース3の数NSまでの整数)のティース3における巻数をNcos(i)、Nsin(i)としたとき、Ncos(i)が式(1)、Nsin(i)が式(2)で表すことができる。但し、N1は任意の実数、NSはティース3の数、θ1、θ2は任意の実数である。
Figure JPOXMLDOC01-appb-M000003
 そして、この場合2相の出力巻線の巻数の最大値はN1となる。ティース3に巻き回す巻線の巻数が小さい方が、ティース3の巻線作業にかかる時間が短くなるため、巻数の最大値は小さい方が望ましい。同じ出力電圧を発生する巻線仕様で比較した場合、巻数の最大値が小さい方が量産性に優れているといえる。すなわち、正弦波とした場合には巻数の最大値が大きくなり、巻線作業に時間を要し、量産性が低下してしまうという課題がある。さらに、全ての巻線の巻数が変化しているため、巻線設計が理解し難いという課題もある。
 そこで、この発明の実施の形態1に係る回転角度検出装置では、空間1次または空間9次とは異なる空間次数の成分を式(1)、式(2)に加えることで、この課題を解決する。正弦波のピーク値を下げるように別の調波成分を加えるのである。ここで注意するべきは、励磁の極対数Nに一致する空間次数の成分を避けることである。励磁の極対数Nに一致する空間次数の成分を含んでいると、励磁電流によって発生した極対数に一致する次数を拾うため検出精度が低下し、回転角度検出装置としての機能が低下してしまう。ここでは、これを回避するため空間5次の成分を避けて、例えば空間3次の成分を加える。このとき、COS巻線の巻数Ncos(i)は式(3)、SIN巻線の巻数Nsin(i)は式(4)となる。但し、NSはスロット数、N1、N2、θ1、θ2、η1、η2は任意の実数であり、式(3)、(4)において復号は任意に選択する。
Figure JPOXMLDOC01-appb-M000004
 さらに、N2の選定の仕方として、COS巻線の1番目と2番目のティースの巻数を一致するような値とした。具体的には、NS=10、θ1=θ2=0、η1=η2=216°として、Ncos(1)=Ncos(2)を解いてN2とN1との比N2/N1は式(5)となる。
Figure JPOXMLDOC01-appb-M000005
 このようにすれば、複数のティース3で巻数を一致させることができ、全てのティース3で巻数が異なっている場合と比べて、巻数設計が理解しやすく容易となるという効果がある。
 図2は、NS=10、θ1=θ2=0、η1=η2=216°、N1=100、N2は式(5)の値とし、復号については、式(3)ではプラス、式(4)ではマイナスを用いたときの各ティース3での巻数を示したものである。ここでは、巻数として小数を許している。
 図3は、図2の出力巻線に関し横軸をティース番号として、巻数(符号も含める)を縦軸にして示したグラフである。
 従来の回転角度検出装置のように正弦波状に巻数が変わる巻線とは異なり、正弦波のピーク値付近、具体的にはCOS巻線におけるティース番号1番、5番、6番、10番のティース3、SIN巻線におけるティース番号3番、8番のティース3において巻数が低減されている。
 従来の回転角度検出装置の巻数を表す式(1)、式(2)において、N1=100したときには、図6のような巻数の分布となる。そして、図3と図6に図示した巻数を対比すると、例えば、図6では最大値となる3番のティースで図3のように巻数が約20%低減されている。
 しかし、最大巻数が小さくなっても、空間次数が励磁の極対数Nに軸倍角Mを加算して得る和の絶対値または励磁の極対数Nから軸倍角Mを減算して得る差の絶対値に等しい空間次数のパラメータで決まる。ここでは、空間1次に関するN1で決まるので、出力電圧は同等である。したがって、この発明の実施の形態1に係る回転角度検出装置における巻線によれば、出力電圧は同等で、巻数の最大値を小さくすることができ、巻線作業効率を向上することができるという効果を奏する。
 図4は、図2に示す巻数を四捨五入して整数とした各ティースでの巻数である。図5は、この巻線仕様のときの出力巻線の電圧をプロットしたものである。図5では、横軸は機械角である回転角度、縦軸は電圧のピーク値を示す。電圧の正負は位相の違いである。COS巻線とSIN巻線はどちらも機械角90°を1周期とした正弦波である。
 また、位相は22.5°ずれている。22.5に軸倍角の4を乗じると90°となる。すなわちCOS巻線、SIN巻線の位相差は電気角90°となっている。これは軸倍角が4の回転角度検出装置として機能することを示している。
 また、このことから巻数は厳密に式(3)、(4)の値に一致していなくても、高精度な回転角度検出装置として機能することが確認できた。ここでは小数点以下四捨五入の例を示したがこれに限ることはなく、小数点以下切捨てなどで整数にした場合も同様の効果が得られる。図5に示す波形が高調波のほとんど含まない正弦波状の波形となっていることから、高精度な回転角度検出装置が得られる。
 また、特許文献3、4のように巻数を正弦波で変化させる場合、少ない巻数しか巻線を巻かないティース3が存在する。機械による巻線4の巻き回しを考えた場合、少ない巻数しか巻線4を巻かないティース3にも自動巻きの巻線機のノズルを移動しなければならず、ノズルの位置決めに時間を要するため巻線作業の効率が悪いという課題があったが、この発明の実施の形態1に係る回転角度検出装置における巻線4の巻数には少ない巻数がないため、巻線作業の効率が向上する。
 また、この発明の実施の形態1に係る回転角度検出装置における巻線仕様では、ティース番号3、8のティース3でのCOS巻線の巻数がゼロとなっている。このように巻数がゼロとなるティース3があると、巻線機でティース3に巻線を巻き回さなくてもすむので巻線作業の効率が向上するという効果があることはいうまでもない。
 図8は、NS=10、θ1=θ2=0、η1=η2=216°、N1=100、N2は式(5)から求める値と異なり、N2=15とした場合の各ティース3での巻数を示したグラフである。なお、図8では、復号について、式(3)ではプラス、式(4)ではマイナスを用いたときの巻数を示したものである。N2の値が違っていても、回転角度検出装置として機能し、同様の効果が得られる。
 次に、この発明の実施の形態1における巻線の巻数の選定の考え方を一般化することを説明する。
 励磁の極対数をNおよび回転子の突極の数をMとしたとき、ギャップに発生する磁束のうち、励磁の極対数Nに軸倍角Mを加算して得る和の絶対値または励磁の極対数Nから軸倍角Mを減算して得る差の絶対値に等しくなる空間次数の成分を拾うために、励磁の極対数Nに軸倍角Mを加算して得る和の絶対値または励磁の極対数Nから軸倍角Mを減算して得る差の絶対値に等しい次数の正弦波と巻数の最大値を減らすようにL次の正弦波とを重ね合わせた波形で巻数が変化するように出力巻線をティース3に巻き回す。
 巻数の最大値を減らすように重ね合わせるL次の正弦波のLとしては、励磁の極対数Nと等しくなることを避けるために絶対値がNの絶対値と異なる値Lである。すなわち、|L|≠|N|を満たすLである。
 また、励磁の極対数Nがティース数NSの1/2の値に一致するときは、巻数の分布において空間|N+M|次と空間|N-M|次は見かけ上同じとなるので、便宜上Lの絶対値が励磁の極対数Nから軸倍角Mを減算して得る差の絶対値と異なるような整数Lである。すなわち、|L|≠|N-M|を満たすLである。
 なお、励磁の極対数Nがティース数NSの1/2の値に一致しないときは、LはLの絶対値が励磁の極対数Nから軸倍角Mを減算して得る差の絶対値と等しくなるような整数であっても良い。すなわち、|L|=|N-M|を満たすLとしてもよい。
 1相の励磁巻線および2相の出力巻線を設けた固定子1と、突極を有する回転子2とを備えた回転角度検出装置において、励磁の極対数をNおよび回転子の突極の数をMとしたとき、整数Lが|L|≠|N|および|L|≠|N-M|を満たし、2相の出力巻線の巻数が、空間|N+M|次の正弦波と空間L次の正弦波の和または差を含む関数によって得られる値である。
 これを、さらに上記を限定して数式で表現すると以下のようになる。
 2相の出力巻線のi番目のティース3に巻き回されている巻線の巻数を式(6)、(7)で表される。但し、Ncos(i)、Nsin(i)は出力巻線においてi番目のティース3に巻き回されている巻線の巻数を表す。Nは励磁巻線の極対数、Mは回転子の突極の数、NSはティースの数を表す。Lは整数であり、N1、N2、θ1、θ2、η1、η2は任意の実数であり、式(6)、(7)において復号は任意である。
Figure JPOXMLDOC01-appb-M000006
 一方、空間|N-M|次の成分を拾うようにした場合は、励磁の極対数N次の成分を避けるために整数Lの絶対値が励磁巻線の極対数Nの絶対値と異なるような整数Lとする。
 また、励磁の極対数Nがティース数NSの1/2の値に一致するときは、巻数の分布において空間|N+M|次と空間|N-M|次は見かけ上同じとなるので、便宜上整数Lは、整数Lの絶対値が励磁巻線の極対数Nに回転子の突起の数Mを加算して得る和の絶対値と異なっていると見なす整数である。
 また、励磁の極対数Nがティース数NSの1/2の値に一致しないときは、整数Lは、整数Lの絶対値が励磁巻線の極対数Nに回転子の突起の数Mを加算して得る和の絶対値と同じとしてもよい。
 これを、さらに上記を限定して数式で表現すると以下のようになる。
 2相の出力巻線のi番目のティース3に巻き回されている巻線の巻数を式(8)、(9)で表される。但し、Ncos(i)、Nsin(i)は出力巻線においてi番目のティース3に巻き回されている巻線の巻数を表す。Nは励磁巻線の極対数、Mは回転子の突極の数、NSはティースの数を表す。Lは整数であり、N1、N2、θ1、θ2、η1、η2は任意の実数であり、式(8)、(9)において復号は任意である。
Figure JPOXMLDOC01-appb-M000007
 なお、この発明は、励磁の極対数Nがティース数NSの1/2の値に一致するしないに関わらずに成立する。
 また、具体例は空間1次についてのみ述べたが、空間|N+M|次を用いると、この本実施の形態ではN+M=5+4=9次となるが、L=3や27とすることで同様巻線が得られ同じ効果が得られる。
 上記のような構成とすることで、従来例と比べて巻数の最大値を小さくすることができ、巻線作業性が優れているという効果がある。
 また、従来例では、ティースの数は軸倍角に比例し、例えば軸倍角4のときはティースの数は軸倍角1のときの4を4倍した数、すなわち4×4=16となっていたようにティース3の数が多くなって巻線作業性が低下していた。一方、本発明によれば、軸倍角が4であってもティース3の数が10で構成されているので軸倍角が大きくなっても従来例と比べて少ないティース3の数で回転角度検出装置が提供し得る。
 従って、この発明の実施の形態1に係る回転角度検出装置は巻線作業性が優れており量産に向いている構造である。
 実施の形態2.
 この発明はティース3の数が10、軸倍角が4に限って成立するものではなく、様々な仕様において成立する。
 図9は、この発明の実施の形態2に係る回転角度検出装置の構成を示した構成図である。
 この発明の実施の形態2に係る回転角度検出装置は、ティース3およびティース3に巻き回された巻線4を具備した固定子1、突極を有する回転子2から構成されている。但し、図9は簡略化のために、主要な部分だけを示し、巻線4とティース3の間の絶縁部材や巻線4の渡り線や結線など詳細は省略している。
 図9に示す回転角度検出装置ではティース3の数が8、軸倍角5(回転子2の突極の数が5)の例である。また、ティース3部分に示した数字は便宜的に与えた各ティース3のティース番号である。
 回転角度検出装置としての動作原理は実施の形態1と同様である。
 ここでは、励磁の極対数Nは4、回転子の突極の数Mは5であるから、値|(励磁の極対数)±(軸倍角)|、すなわち値|N±M|は、1または9となるから、ギャップに発生する磁束のうち空間1次か空間9次の成分を出力巻線で拾うようにすればよい。さらに、従来の正弦波に巻数を変化させた場合と比べて、巻数の最大値を減らすような次数成分を加えればよい。ここでは、空間1次の成分を拾う場合を考える。加える成分の次数Lは3次とした。このとき、巻数は式(10)、(11)で表される。
Figure JPOXMLDOC01-appb-M000008
 ここで、NS=8、N1=100、θ1=θ2=0、η1=η2=225°とし、復号について式(10)ではプラス、式(11)ではマイナスを取った場合について、Ncos(1)=Ncos(2)を解くと、N2/N1=0.4142となる。このときの巻数は図10のようになる。また、これを横軸ティース番号、縦軸巻数として図示したのが図11である。巻数は小数を許している。巻数が小数である場合には、巻線をティース3に1回巻き回すのではなく、巻線の途中で、となりのティース3に移るなどして構成できる。従来例では巻数の最大値はN1に一致して100となるが、この発明の実施の形態2に係る回転角度検出装置では出力巻線の巻数の最大値が77となり、23%低減できていることが分かる。図12は図10に示す巻数を四捨五入した値である。このように巻数を整数とした場合でも、回転角度検出装置として動作するのはいうまでもない。また、巻数が整数なので設計が容易であるという効果がある。
 この発明の実施の形態2の巻線仕様のときの出力巻線の電圧をプロットしたのが、図13である。横軸は回転角度を機械角で、縦軸は電圧のピーク値を示す。電圧の正負は位相の違いである。COS巻線とSIN巻線はどちらも機械角72°を1周期とした正弦波である。また、位相は18°ずれている。18に軸倍角の5を乗じると90°となる、すなわち、COS巻線、SIN巻線の位相差は電気角90°となっている。これは軸倍角が5の回転角度検出装置として機能することを示している。図13の波形が高調波のほとんど含まない正弦波状の波形となっていることから、本発明により高精度な回転角度検出装置が得られる。
 従来例の回転角度検出装置は、軸倍角が5であるときティース3の数が20となるが、この発明の実施の形態2に係る回転角度検出装置は、ティース3の数が20より大幅に少ない8で構成されている。すなわち、軸倍角が大きくなっても従来例と比べて少ないティース3の数で回転角度検出装置が構成されているので、巻線作業性が優れており量産に向いている構造であるという効果が得られる。
 実施の形態3.
 図14は、この発明の実施の形態3に係る回転角度検出装置の構成を示した構成図である。
 この発明の実施の形態3に係る回転角度検出装置は、ティース3とティース3に巻き回された巻線4を具備した固定子1および突極を有する回転子2から構成されている。但し、図14は簡略化のために、主要な部分だけを示し、巻線4とティース3の間の絶縁部材や巻線4の渡り線や結線など詳細は省略している。この発明の実施の形態3に係る回転角度検出装置は、ティースの数が12、軸倍角が5(回転子2の突極の数が5)の例である。また、ティース部分に示した数字は便宜的に与えた各ティース3のティース番号である。
 回転角度検出装置としての動作原理は実施の形態1と同様である。ここでは、励磁の極対数Nは6、回転子の突極の数Mは5であるから、値|(励磁の極対数)±(軸倍角)|、すなわち値|N±M|は1または11となり、ギャップに発生する磁束のうち空間1次か空間11次の成分を出力巻線で拾うようにする。そのとき、従来のように機械角に対して巻線の巻数が正弦波で変化させた場合と比べて、巻数の最大値を減らすような次数成分を加える。ここでは、空間1次の成分を拾う場合を考え、加える成分の次数Lを3とした。このとき、実施の形態2と同様、巻数は式(10)、(11)で表される。ここで、NS=12、N1=100、θ1=θ2=0、η1=η2=210°とし、復号について式(10)ではプラス、式(11)ではマイナスを取った場合について、Ncos(1)=Ncos(2)を解いてN2/N1を求めた。このときの巻数は図15のようになる。また、これを横軸ティース番号、縦軸巻数として図示したのが図16である。巻数は小数を許している。巻数が小数である場合には、巻線4をティース3に1回巻き回すのではなく、巻線4の途中で、隣のティース3に移るなどして構成できる。従来例では巻数の最大値はN1に一致して100となるが、この実施の形態3に係る回転角度検出装置では出力巻線の巻数の最大値が84となり、16%低減できていることが分かる。図17は図15に示した巻数を四捨五入した値である。このように巻数を整数とした場合でも、回転角度検出装置として動作するのはいうまでもない。また、巻数が整数なので設計が容易であるという効果がある。
 この発明の実施の形態3の巻線仕様のときの出力巻線の電圧をプロットしたのが、図18である。横軸は回転角度を機械角で、縦軸は電圧のピーク値を示す。電圧の正負は位相の違いである。COS巻線とSIN巻線はどちらも機械角72°を1周期とした正弦波である。また、位相は18°ずれている。18に軸倍角の5を乗じると90°となる、すなわち、COS巻線、SIN巻線の位相差は電気角90°となっている。これは軸倍角が5の回転角度検出装置として機能することを示している。図18の波形が高調波のほとんど含まない正弦波状の波形となっていることから、本発明により高精度な回転角度検出装置が得られる効果があることもわかる。従来例は同じ軸倍角が5でティースの数が20であったが、この発明の実施の形態3に係る回転角度検出装置はティース3の数が20より大幅に少ない12で成立している。すなわち、軸倍角が大きくなっても従来例と比べて少ないティース3の数で回転角度検出装置が成立するので、巻線作業性が優れており量産に向いている構造であるという効果が得られる。
 実施の形態4.
 図19は、この発明の実施の形態4に係る回転角度検出装置の構成を示した構成図である。
 この発明の実施の形態4に係る回転角度検出装置は、ティース3とティース3に巻き回された巻線4を具備した固定子1および突極を有する回転子2とから構成されている。但し、図19は簡略化のために、主要な部分だけを示し、巻線4とティース3の間の絶縁部材や巻線4の渡り線や結線など詳細は省略している。
 この発明の実施の形態4に係る回転角度検出装置は、ティース3の数が16、軸倍角が5(回転子2の突極の数が5)の例である。また、ティース部分に示した数字は便宜的に与えた各ティース3のティース番号である。
 回転角度検出装置としての動作原理は実施の形態1と同様である。
 ここでは、励磁の極対数Nは4、回転子の突極の数Mは5であるから、値|(励磁の極対数)±(軸倍角)|、すなわち値|N±M|は1と9となるから、ギャップに発生する磁束のうち空間1次または空間9次の成分を出力巻線で拾う。そのとき、従来のように機械角に対して巻線の巻数が正弦波に変化させた場合と比べて、巻数の最大値を減らすような次数成分を加える。ここでは、空間1次の成分を拾う場合を考え、加える成分の次数Lは3とした。このとき、実施の形態2と同様、巻数は式(10)、式(11)で表される。
 ここで、NS=16、N1=100、θ1=θ2=0、η1=η2=210°とし、復号について式(10)ではプラス、式(11)ではマイナスを採用した場合について、Ncos(1)=Ncos(2)を解いてN2/N1を求めた。このときの巻数は図20のようになる。また、これを横軸ティース番号、縦軸巻数として図示したのが図21である。巻数は小数を許している。巻数が小数である場合には、巻線4をティース3に1回巻き回すのではなく、巻線4の途中で、となりのティース3に移るなどして構成できる。従来例では巻数の最大値はN1に一致して100となるが、この実施の形態4に係る回転角度検出装置では出力巻線の巻数の最大値が約88となり、12%低減できていることが分かる。図22は図20に示した巻数を四捨五入した値である。このように巻数を整数とした場合でも、回転角度検出装置として動作するのはいうまでもない。また、巻数が整数なので設計が容易であるという効果がある。
 この実施の形態4の巻線仕様のときの出力巻線の電圧をプロットしたのが、図23である。図23では横軸は回転角度を機械角で、縦軸は電圧のピーク値を示す。電圧の正負は位相の違いである。COS巻線とSIN巻線はどちらも機械角72°を1周期とした正弦波である。また、位相は18°ずれている。18に軸倍角の5を乗じると90°となる、すなわち、COS巻線、SIN巻線の位相差は電気角90°となっている。これは軸倍角が5の回転角度検出装置として機能することを示している。図23の波形が高調波のほとんど含まない正弦波状の波形となっていることから、本発明により高精度な回転角度検出装置が得られる効果があることもわかる。従来例は同じ軸倍角が5でティース3の数が20であったが、この発明の実施の形態4に係る回転角度検出装置ではティース3の数が20より少ない16で成立している。すなわち、軸倍角が大きくなっても従来例と比べて少ないティース3の数で回転角度検出装置が成立するので、巻線作業性が優れており量産に向いている構造であるという効果が得られる。
 実施の形態5.
 図24は、この発明の実施の形態5に係る回転角度検出装置の構成を示した構成図である。
 この発明の実施の形態5に係る回転角度検出装置は、ティース3とティース3に巻き回された巻線4を具備した固定子1および突極を有する回転子2から構成されている。但し、図24は簡略化のために、主要な部分だけを示し、巻線4とティース3の間の絶縁部材や巻線4の渡り線や結線など詳細は省略している。
 この発明の実施の形態5に係る回転角度検出装置は、ティース3の数が10、軸倍角が7(回転子2の突極の数が7)の例である。また、ティース部分に示した数字は便宜的に与えた各ティース3のティース番号である。
 回転角度検出装置としての動作原理は実施の形態1と同様である。
 ここでは、励磁の極対数Nは5、回転子2の突極の数Mは7であるから、値|(励磁の極対数)±(軸倍角)|、すなわち値|N±M|は、2または12となり、ギャップに発生する磁束のうち空間2次か空間12次の成分を出力巻線で拾うようにすればよい。さらに、従来の正弦波に巻数を変化させた場合と比べて、巻数の最大値を減らすような次数成分を加えればよい。ここでは、空間2次の成分を拾う場合を考える。加える成分の次数Lはこれまでとは異なり6とした。このとき、巻数は式(12)、(13)で表される。
Figure JPOXMLDOC01-appb-M000009
 ここで、NS=10、N1=100、θ1=θ2=0、η1=η2=216°とし、復号について式(12)ではプラス、式(13)ではマイナスを取った場合について、Ncos(3)=Ncos(4)を解いてN2/N1を求めた。このときの巻数は図25のようになる。また、これを横軸ティース番号、縦軸巻数として図示したのが図26である。巻数は小数を許している。巻数が小数である場合には、巻線4をティース3に1回巻き回すのではなく、巻線4の途中で、となりのティース3に移るなどして構成できる。従来例では巻数の最大値はN1に一致して100となるが、この実施の形態5に係る回転角度検出装置では出力巻線の巻数の最大値が88となり、12%低減できていることが分かる。図27は図25に示す巻数を四捨五入した値である。このように巻数を整数とした場合でも、回転角度検出装置として動作するのはいうまでもない。また、巻数が整数なので設計が容易であるという効果がある。
 図25~図27に示す巻線4の巻数によればティース番号2、7におけるCOS巻線の巻数がゼロとなっている。このように巻数がゼロとなるティース3があると、そのティース3に巻線機で巻線4を巻き回しする必要がないので巻線作業の効率が向上するという効果があることはいうまでもない
 この実施の形態5の巻線仕様のときの出力巻線の電圧をプロットしたのが、図28である。横軸は回転角度を機械角で示し、縦軸は電圧のピーク値を示す。電圧の正負は位相の違いである。COS巻線とSIN巻線はどちらも機械角360°/7≒51.4°を1周期とした正弦波である。また、位相は360°/28=12.6°ずれている。すなわちCOS巻線、SIN巻線の位相差は電気角90°となっている。これは軸倍角が7の回転角度検出装置として機能することを示している。図28の波形が高調波のほとんど含まない正弦波状の波形となっていることから、本発明により高精度な回転角度検出装置が得られる効果があることもわかる。軸倍角が7の同じ構成の従来例であれば、ティース3の数が28となるが、この発明の実施の形態5に係る回転角度検出装置ではティース3の数が28より大幅に少ない10で成立している。すなわち、軸倍角が大きくなっても従来例と比べて少ないティース3の数で回転角度検出装置が成立するので、巻線作業性が優れており量産に向いている構造であるという効果が得られる。
 実施の形態6.
 図29は、この発明の実施の形態6に係る回転角度検出装置の構成を示した構成図である。
 この発明の実施の形態6に係る回転角度検出装置は、ティース3とティース3に巻き回された巻線4を具備した固定子1および突極を有する回転子2から構成されている。但し、図29は簡略化のために、主要な部分だけを示し、巻線4とティース3の間の絶縁部材や巻線4の渡り線や結線など詳細は省略している。
 この発明の実施の形態6に係る回転角度検出装置では、ティース3の数が12、軸倍角が7(回転子2の突極の数が7)の例である。また、ティース部分に示した数字は便宜的に与えた各ティース3のティース番号である。
 回転角度検出装置としての動作原理は実施の形態1と同様である。
 ここでは、励磁の極対数Nは6、回転子の突極の数Mは7であるから、値|(励磁の極対数)±(軸倍角)|、すなわち値|N±M|は、1または13となるから、ギャップに発生する磁束のうち空間1次か空間13次の成分を出力巻線で拾うようにすればよい。
 さらに、従来の正弦波に巻数を変化させた場合と比べて、巻数の最大値を減らすような次数成分を加えればよい。ここでは、空間1次の成分を拾う場合を考え、加える成分の次数Lを3とした。
 このとき、実施の形態2と同様、巻数は式(10)、(11)で表される。ここで、NS=12、N1=100、θ1=θ2=0、η1=η2=210°とし、復号について式(10)ではプラス、式(11)ではマイナスを取った場合について、Ncos(1)=Ncos(2)を解いてN2/N1を求めた。このときの巻数は図30のようになる。また、これを横軸ティース番号、縦軸巻数として図示したのが図31である。巻数は小数を許している。巻数が小数である場合には、巻線4をティース3に1回巻き回すのではなく、巻線4の途中で、となりのティース3に移るなどして構成できる。
 従来例では巻数の最大値はN1に一致して100となるが、この発明の実施の形態6に係る回転角度検出装置では出力巻線の巻数の最大値が84となり、16%低減できていることが分かる。
 図32は図30に示す巻数を四捨五入した値である。このように巻数を整数とした場合でも、回転角度検出装置として動作するのはいうまでもない。また、巻数が整数なので設計が容易であるという効果がある。
 この実施の形態6の巻線仕様のときの出力巻線の電圧をプロットしたのが、図33である。横軸は回転角度を機械角で示す。縦軸は電圧のピーク値を示す。実施の形態5と同様、これは軸倍角7の回転角度検出装置として機能することを示している。また、図33の波形が高調波のほとんど含まない正弦波状の波形となっていることから、本発明により高精度な回転角度検出装置が得られる効果があることもわかる。
 同じ構成で軸倍角が7の従来例では、ティース3の数が28となるが、この発明の実施の形態6に係る回転角度検出装置では、ティース3の数が28より大幅に少ない12で成立している。すなわち、軸倍角が大きくなっても従来例と比べて少ないティース3の数で回転角度検出装置が成立するので、巻線作業性が優れており量産に向いている構造であるという効果が得られる。
 実施の形態7.
 図34は、この発明の実施の形態7に係る回転角度検出装置の構成を示した構成図である。
 この発明の実施の形態7に係る回転角度検出装置は、ティース3とティース3に巻き回された巻線4を具備した固定子1、突極を有する回転子2から構成されている。ただし、図34は簡略化のために、主要な部分だけを示し、巻線4とティース3の間の絶縁部材や巻線4の渡り線や結線など詳細は省略している。
 この発明の実施の形態7に係る回転角度検出装置は、ティース3の数が16、軸倍角が7(回転子2の突極の数が7)の例である。また、ティース部分に示した数字は便宜的に与えた各ティース3のティース番号である。
 回転角度検出装置としての動作原理は実施の形態1と同様である。
 ここでは、励磁の極対数Nは8、回転子2の突極の数Mは7であるから、値|(励磁の極対数)±(軸倍角)|、すなわち値|N±M|は、1または15となるから、ギャップに発生する磁束のうち空間1次か空間15次の成分を出力巻線で拾うようにすればよい。さらに、従来の正弦波状に巻数を変化させた場合と比べて、巻数の最大値を減らすような次数成分を加えればよい。ここでは、空間1次の成分を拾う場合を考え、加える成分の次数Lは3とした。
 このとき、実施の形態2と同様、巻数は式(10)、(11)で表される。ここで、NS=12、N1=100、θ1=θ2=0、η1=η2=210°とし、復号について式(10)ではプラス、式(11)ではマイナスを取った場合について、Ncos(1)=Ncos(2)が等しくなるときのN2/N1を求めた。このときの巻数は図35のようになる。また、これを横軸ティース番号、縦軸巻数として図示したのが図36である。巻数は小数を許している。巻数が小数である場合には、巻線4をティース3に1回巻き回すのではなく、巻線4の途中で、となりのティース3に移るなどして構成できる。従来例では巻数の最大値はN1に一致して100となるが、この発明の実施の形態7に係る回転角度検出装置では、出力巻線の巻数の最大値が88となり、12%低減できていることが分かる。
 図37は図35に示す巻数を四捨五入した値である。このように巻数を整数とした場合でも、回転角度検出装置として動作するのはいうまでもない。また、巻数が整数なので設計が容易であるという効果がある。
 この発明の実施の形態7の巻線仕様のときの出力巻線の電圧をプロットしたのが、図38である。図38では横軸は回転角度を機械角で、縦軸は電圧のピーク値を示す。実施の形態6と同様、これは軸倍角が7の回転角度検出装置として機能することを示している。図38の波形が高調波のほとんど含まない正弦波状の波形となっていることから、本発明により高精度な回転角度検出装置が得られる効果があることもわかる。
 また、同じ構成で軸倍角が7の従来例では、ティース3の数が28となるが、この発明の実施の形態7に係る回転角度検出装置では、ティース3の数が28より大幅に少ない16で成立している。すなわち、軸倍角が大きくなっても従来例と比べて少ないティース3の数で回転角度検出装置が成立するので、巻線作業性が優れており量産に向いている構造であるという効果が得られる。
 なお、上述の実施の形態1から7においては、励磁巻線の巻数が各ティース3で50ターンとしているが、これに限ったことはなく、入力インピーダンスなどの電気的特性の必要性に応じて適宜定めればよい。
 また、N1、N2のパラメータも変圧比などに応じて適宜定めればよい。
 また、軸倍角が4、5、7の回転角度検出装置についてのみ述べたが、これに限ることはなく、同じ考え方で、軸倍角が1、2、3、6または8以上の回転角度検出装置を構成することができる。
 実施の形態8.
 図39は、この発明に係る回転角度検出装置を搭載する車両用電動パワーステアリング装置の概念図である。
 先ず、車両用の電動パワーステアリング装置について述べる。
 ステアリングホイール30から操舵力を伝えるためのコラムシャフト31が設けられている。コラムシャフト31にはウォームギヤ32(図41では詳細は省略し、ギヤボックスのみ示している)が接続されており、コントローラ33によって駆動されるモータ34の出力(トルク、回転数)を回転方向を直角に変えながら伝達し、同時に減速し、アシストトルクを増加させる。ウォームギヤ32にはハンドルジョイント35が接続され、操舵力を伝えるとともに、方向も変える。ハンドルジョイント35にはステアリングギヤ(図41では詳細は省略し、ギヤボックスのみ示している)36が接続され、コラムシャフト31の回転を減速し、同時にラック37の直線運動に変換し、所要の変位を得る。このラック37の直線運動により車輪を動かし、車両の方向転換等を可能とする。
 上述のような電動パワーステアリング装置ではモータ34にて発生するトルクの脈動がウォームギヤ32とコラムシャフト31を介して、ステアリングホイール30に伝達される。従って、モータ34が大きなトルク脈動を発生する場合、滑らかなステアリング感覚を得ることが出来ない。また、電動機がアシストするためにトルクを発生しない状態においても、電動機が大きなコギングトルクを発生するものであれば、滑らかなステアリング感覚を得ることが出来ない。
 また、モータ34がブラシレスモータの場合には回転子の回転角度を検出する手段が必要である。
 図40は、例としてブラシレスモータの構成を示す構成図である。ただし、図40では主要な部品のみを示し、簡略化している。
 フレーム20に固定子鉄心21が圧入、焼き嵌めまたは接着などで固定されている。固定子鉄心21には電機子巻線22が巻き回されており、電機子巻線22に電流が通電されることでトルクを発生する。回転子は回転子鉄心23と永久磁石24を具備している。回転子鉄心23にはシャフト25が圧入されており、ベアリング26a、26bで回転自在に支持されている。なお、シャフト25は回転子鉄心23と別の部材で構成されていてもよいし、同一部材で構成されてもよい。フレーム20はハウジング27に固定されている。ハウジング27には回転角度検出装置の固定子200が固定され、固定子200には巻線201が巻き回されている。回転子202はシャフト25に圧入などの方法で固定されている。
 回転角度検出装置で検出した回転子202の角度に基づきモータの電機子巻線22に電流を通電する。角度の検出精度が悪いと位相がずれるなどしてトルクの脈動が発生し、操舵感覚が悪くなる。
 また、搭載性の観点から回転角度検出装置はモータに比べて小さい方が望ましく、例えば、外径は図40に示したようにモータの半分以下にすることが望ましい。外径が小さくなると、当然回転角度検出装置の固定子200の内径も小さくなる。回転角度検出装置のティース3の数が増えると、ティース3とティース3の間隔が狭くなり、巻線4を収めるスロットが狭くなる。巻線機のノズルが入り難くなり、巻線作業性が低下し、量産には向かない構造となってしまう。例えばモータの外径(直径)が80mmであれば、回転角度検出装置の外径(直径)は40mmとなる、固定子200の内径はさらに半分の20mm程度となるから、ティース3の数が20になれば、ティース3の間隔は僅か3mm程度となる。
 しかし、この発明に係る回転角度検出装置を用いると、軸倍角が4、5、7の例でもティース3の数は16以下、さらには12、10、8でも成立する。これは、軸倍角はモータの極対数と一致させることが多いため、8極、10極、14極のモータを駆動することができ、かつ量産性に優れた電動パワーステアリング装置を提供することができる。例えば、8極12スロット、10極12スロット、14極12スロットの集中巻の多極のモータは低トルク脈動の設計ができるため、このようなモータを駆動することができるということは、操舵感覚のよい電動パワーステアリング装置を得ることができる。
 この発明に係る回転角度検出装置を用いて、車両用の電動パワーステアリング装置に搭載されている永久磁石型モータの回転角度を検出する場合、ティース3の数を16以下にすることができる。
 また、ティース3の数が軸倍角に4を乗じた数よりも少なくすることが可能である。これにより、8極、10極、14極といった多極のモータを駆動することができるので、永久磁石型モータのトルク脈動が小さくでき、結果として電動パワーステアリング装置における操舵感覚を向上できるという効果がある。
 また、この発明に係る回転角度検出装置は大量生産に適した構成である。
 また、軸倍角の選定の幅が広がる、すなわちモータの極数の選定の幅が広がるという効果がある。

Claims (10)

  1.  ティースを有する鉄心で構成されるとともに1相以上の励磁巻線と2相以上の出力巻線とが設けられる固定子および突極を有する回転子を備える回転角度検出装置において、
     上記出力巻線の巻数は、励磁の極対数Nと上記突極の数Mとの和の絶対値を空間次数とする正弦波と上記励磁の極対数Nの絶対値と異なり且つ上記極対数Nから上記突極の数Mを減算して得る差の絶対値と異なる整数Lを次数とする正弦波との和または差を含む関数によって得られる値であることを特徴とする回転角度検出装置。
  2.  ティースを有する鉄心で構成されるとともに1相以上の励磁巻線と2相以上の出力巻線とが設けられる固定子および突極を有する回転子を備える回転角度検出装置において、
     上記出力巻線の巻数は、励磁の極対数Nから上記突極の数Mを減算して得る差の絶対値を次数とする正弦波と上記励磁の極対数Nの絶対値と異なり且つ上記極対数Nと上記突極の数Mとの和の絶対値と異なる整数Lを次数とする正弦波との和または差を含む関数によって得られる値であることを特徴とする回転角度検出装置。
  3.  2相の上記出力巻線のi番目の上記ティースに巻き回されている巻線の巻数Ncos(i)およびNsin(i)(iは1から上記ティースの数NSまでの整数)は、上記励磁の極対数N、上記回転子の突極の数M、上記励磁巻線の極対数の絶対値と異なり且つ上記極対数から上記突極の数を減算して得る差の絶対値と異なる整数L、任意の実数N1、N2、θ1、θ2、η1およびη2を用いて、
    Figure JPOXMLDOC01-appb-M000001
     で表されることを特徴とする請求項1に記載の回転角度検出装置。
  4.  2相の上記出力巻線のi番目の上記ティースに巻き回されている巻線の巻数Ncos(i)およびNsin(i)(iは1から上記ティースの数NSまでの整数)は、上記励磁の極対数N、上記回転子の突極の数M、上記励磁巻線の極対数の絶対値と異なり且つ上記極対数と上記突極の数との和の絶対値と異なる整数L、任意の実数N1、N2、θ1、θ2、η1およびη2を用いて、
    Figure JPOXMLDOC01-appb-M000002
     で表されることを特徴とする請求項2に記載の回転角度検出装置。
  5.  上記整数Lの絶対値は、上記極対数Nと上記突極の数Mとの和の絶対値の3倍であることを特徴とする請求項1または3に記載の回転角度検出装置。
  6.  上記整数Lの絶対値は、上記極対数Nから上記突極の数Mを減算して得る差の絶対値の3倍であることを特徴とする請求項2または4に記載の回転角度検出装置。
  7.  上記2相の出力巻線が巻き回されていない上記ティースが少なくとも1個あることを特徴とする請求項1または2に記載の回転角度検出装置。
  8.  同じ巻数の上記2相の出力巻線が巻き回されている上記ティースが2個以上あることを特徴とする請求項1または2に記載の回転角度検出装置。
  9.  上記2相の出力巻線の巻数が整数であることを特徴とする請求項1または2に記載の回転角度検出装置。
  10.  車両用の電動パワーステアリング装置に搭載されている永久磁石型モータの回転角度を検出するとともに上記ティースの数が16以下であることを特徴とする請求項1乃至9のいずれかに記載の回転角度検出装置。
PCT/JP2009/059226 2008-05-27 2009-05-19 回転角度検出装置 WO2009145085A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010514447A JP5127923B2 (ja) 2008-05-27 2009-05-19 回転角度検出装置
US12/994,772 US8427142B2 (en) 2008-05-27 2009-05-19 Rotation angle detecting device
CN2009801194694A CN102047079B (zh) 2008-05-27 2009-05-19 旋转角度检测装置
DE112009001282T DE112009001282B4 (de) 2008-05-27 2009-05-19 Drehwinkelerfassungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008138110 2008-05-27
JP2008-138110 2008-05-27

Publications (1)

Publication Number Publication Date
WO2009145085A1 true WO2009145085A1 (ja) 2009-12-03

Family

ID=41376966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059226 WO2009145085A1 (ja) 2008-05-27 2009-05-19 回転角度検出装置

Country Status (5)

Country Link
US (1) US8427142B2 (ja)
JP (1) JP5127923B2 (ja)
CN (1) CN102047079B (ja)
DE (1) DE112009001282B4 (ja)
WO (1) WO2009145085A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098841A1 (ja) * 2011-01-20 2012-07-26 住友金属工業株式会社 鉄道車両用のレゾルバ付き車体高さ調整弁
CN102741660A (zh) * 2010-02-23 2012-10-17 多摩川精机株式会社 旋转角侦测或同步装置用绕组的卷绕方法
JP2013121225A (ja) * 2011-12-07 2013-06-17 Mitsubishi Electric Corp レゾルバ
JP2015027221A (ja) * 2013-07-29 2015-02-05 ミネベア株式会社 Vr型レゾルバのステータ構造およびvr型レゾルバ
WO2015087381A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 回転角度検出装置、回転電機、及びエレベータ用巻上機
WO2016194227A1 (ja) * 2015-06-05 2016-12-08 三菱電機株式会社 レゾルバ、回転電機、及びエレベータ用巻上機

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220406A (ja) * 2011-04-12 2012-11-12 Minebea Co Ltd 角度検出装置
JP6165778B2 (ja) * 2012-01-27 2017-07-19 カヴリコ コーポレイション 補助出力信号を有する回転可変差動変圧器(rvdt)センサ組立体
JP2013221740A (ja) * 2012-04-12 2013-10-28 Jtekt Corp レゾルバ
US20150338244A1 (en) * 2012-11-19 2015-11-26 Daesung Electric Co., Ltd. Stator used in resolvers, and resolver including same
JP6009493B2 (ja) * 2014-05-21 2016-10-19 ミネベア株式会社 レゾルバ
CN104165581B (zh) * 2014-07-25 2016-09-14 浙江大学 磁导式绝对角度检测系统
EP3211382B1 (en) * 2014-10-20 2020-01-08 Mitsubishi Electric Corporation Rotation angle detection device, rotating electrical machine, and elevator hoisting machine
DE102015208837B4 (de) * 2015-05-13 2017-03-30 Schaeffler Technologies AG & Co. KG Sensoranordnung mit einem Winkelsensor sowie Wälzlageranordnung mit Sensoranordnung
KR20170056313A (ko) * 2015-11-13 2017-05-23 엘에스오토모티브 주식회사 레졸버
WO2017115414A1 (ja) * 2015-12-28 2017-07-06 三菱電機株式会社 回転角度検出装置および回転電機
CN106712428A (zh) * 2017-01-16 2017-05-24 上海世昱电子技术有限公司 一种旋转变压器和具有这种旋转变压器的旋转体
CN107499379B (zh) * 2017-09-13 2023-12-01 无锡商业职业技术学院 一种基于双级行星齿轮传动的差动变压器式转向盘角度传感器
JP7084640B2 (ja) * 2017-12-22 2022-06-15 株式会社松尾製作所 回転角度センサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307436A (ja) * 2002-04-15 2003-10-31 Mitsubishi Electric Corp 回転角度検出装置およびそれを用いた回転電機
JP2004151040A (ja) * 2002-11-01 2004-05-27 Mitsubishi Electric Corp 回転角度検出装置および回転電機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124508A (ja) 1973-04-02 1974-11-28
JPS5770406A (en) 1980-10-21 1982-04-30 S G:Kk Rotating angle detecting apparatus
JP3103487B2 (ja) 1994-12-27 2000-10-30 多摩川精機株式会社 バリアブルリラクタンス型角度検出器
JP3182493B2 (ja) 1994-12-27 2001-07-03 多摩川精機株式会社 バリアブルリラクタンス型角度検出器
JP3590622B2 (ja) * 2002-05-16 2004-11-17 三菱電機株式会社 回転角度検出器
JP4199826B2 (ja) * 2003-02-19 2008-12-24 ミネベア株式会社 鉄心巻線を用いたバリアブルリラクタンス型角度検出器およびその鉄心巻線の製造方法
JP2007010329A (ja) * 2005-06-28 2007-01-18 Honda Motor Co Ltd 回転角検出装置及びこれを用いた電動パワーステアリング装置
DE102007013711A1 (de) * 2007-03-22 2008-09-25 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Verfahren und Vorrichtung zur Dreherfassung eines bürstenbetriebenen Gleichstrommotors
EP2078931B1 (en) * 2008-01-11 2020-02-19 Mitsubishi Electric Corporation Rotational angle detection device and method for permanent magnet dynamo-electric machine and electric power steering device
JP5228582B2 (ja) * 2008-04-04 2013-07-03 三菱電機株式会社 永久磁石型回転電機およびそれを用いた電動パワーステアリング装置
JP5424814B2 (ja) * 2009-05-21 2014-02-26 三菱電機株式会社 永久磁石型回転電機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307436A (ja) * 2002-04-15 2003-10-31 Mitsubishi Electric Corp 回転角度検出装置およびそれを用いた回転電機
JP2004151040A (ja) * 2002-11-01 2004-05-27 Mitsubishi Electric Corp 回転角度検出装置および回転電機

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741660A (zh) * 2010-02-23 2012-10-17 多摩川精机株式会社 旋转角侦测或同步装置用绕组的卷绕方法
EP2541215A1 (en) * 2010-02-23 2013-01-02 Tamagawa Seiki Co., Ltd. Method of detecting rotational angle or method of winding for synchronizing device windings
EP2541215A4 (en) * 2010-02-23 2014-03-12 Tamagawa Seiki Co Ltd METHOD FOR DETECTING A TURNING ANGLE OR WRITING METHOD FOR SYNCHRONIZING DEVICE WINDINGS
WO2012098841A1 (ja) * 2011-01-20 2012-07-26 住友金属工業株式会社 鉄道車両用のレゾルバ付き車体高さ調整弁
JPWO2012098841A1 (ja) * 2011-01-20 2014-06-09 新日鐵住金株式会社 鉄道車両用のレゾルバ付き車体高さ調整弁
JP2013121225A (ja) * 2011-12-07 2013-06-17 Mitsubishi Electric Corp レゾルバ
US9772203B2 (en) 2013-07-29 2017-09-26 Minebea Co., Ltd. Stator structure of VR type resolver and VR type resolver
JP2015027221A (ja) * 2013-07-29 2015-02-05 ミネベア株式会社 Vr型レゾルバのステータ構造およびvr型レゾルバ
WO2015087381A1 (ja) * 2013-12-09 2015-06-18 三菱電機株式会社 回転角度検出装置、回転電機、及びエレベータ用巻上機
KR20160088931A (ko) * 2013-12-09 2016-07-26 미쓰비시덴키 가부시키가이샤 회전 각도 검출 장치, 회전 전기, 및 엘리베이터용 권상기
CN105814406A (zh) * 2013-12-09 2016-07-27 三菱电机株式会社 旋转角度检测装置、旋转电机和电梯用曳引机
JP6009101B2 (ja) * 2013-12-09 2016-10-19 三菱電機株式会社 回転角度検出装置、回転電機、及びエレベータ用巻上機
US10254133B2 (en) 2013-12-09 2019-04-09 Mitsubishi Electric Corporation Rotation angle detector, rotating electrical machine, and elevator hoisting machine
WO2016194227A1 (ja) * 2015-06-05 2016-12-08 三菱電機株式会社 レゾルバ、回転電機、及びエレベータ用巻上機
JPWO2016194227A1 (ja) * 2015-06-05 2017-11-09 三菱電機株式会社 レゾルバ、回転電機、及びエレベータ用巻上機
US10222240B2 (en) 2015-06-05 2019-03-05 Mitsubishi Electric Corporation Resolver, rotating electrical machine, and elevator hoisting machine

Also Published As

Publication number Publication date
US20110074400A1 (en) 2011-03-31
CN102047079B (zh) 2013-09-04
US8427142B2 (en) 2013-04-23
JPWO2009145085A1 (ja) 2011-10-06
JP5127923B2 (ja) 2013-01-23
DE112009001282T5 (de) 2011-04-14
DE112009001282B4 (de) 2013-06-06
CN102047079A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
JP5127923B2 (ja) 回転角度検出装置
Du et al. Principle and analysis of doubly salient PM motor with Π-shaped stator iron core segments
Ge et al. Analysis of windings in variable reluctance resolver
JP5751794B2 (ja) 電気式乗物のための牽引モータ
JP4698745B2 (ja) 永久磁石型回転電機
JP3938501B2 (ja) 回転角度検出装置、それを用いた永久磁石型回転電機、及び、永久磁石型回転電機を用いた電動パワーステアリング装置
WO2011064834A1 (ja) 永久磁石型回転電機及びこれを用いた電動パワーステアリング装置
JP4181380B2 (ja) 回転角度検出装置および回転電機
US20100096943A1 (en) Motor and electric power steering apparatus
EP1498699A1 (en) Rotational angle sensor and rotary electric machine comprising it
CN105850014B (zh) 旋转变压器装置、电动机以及驱动器
JP2011149724A (ja) 回転角度検出装置、回転電機装置および電動パワーステアリング装置
JP2008301652A (ja) 永久磁石式回転電機およびそれを用いた電動パワーステアリング装置
JP4397788B2 (ja) 回転角度検出装置
Liu et al. Magnetic gearing effect in Vernier permanent magnet synchronous machines
JP5907813B2 (ja) ブラシレスモータ
Niguchi et al. Torque ripple analysis of a magnetic-geared motor
JP4652382B2 (ja) 電動パワーステアリング装置用永久磁石型ブラシレスモータ
CN111313637B (zh) 磁阻式旋转变压器极槽配合方法
JP2003250254A (ja) 電動パワーステアリング装置用永久磁石型ブラシレスモータ
Liu et al. Comparative study of magnetic gearing effect in integral slot, fractional slot winding and vernier PM machines
JP2007306798A (ja) 電動パワーステアリング装置用永久磁石型ブラシレスモータ
Gorginpour Design modifications for improving modulation flux capability of consequent-pole vernier-PM machine in comparison to conventional vernier-PM machines
JP5337382B2 (ja) 永久磁石式同期モータ
JP2006187131A (ja) 永久磁石回転電機及びそれを用いた車載電動アクチュエータ装置用電機システム並びに電動パワーステアリング装置用電機システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119469.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514447

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12994772

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112009001282

Country of ref document: DE

Date of ref document: 20110414

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09754593

Country of ref document: EP

Kind code of ref document: A1