WO2009143707A1 - 双转子发动机 - Google Patents

双转子发动机 Download PDF

Info

Publication number
WO2009143707A1
WO2009143707A1 PCT/CN2009/000589 CN2009000589W WO2009143707A1 WO 2009143707 A1 WO2009143707 A1 WO 2009143707A1 CN 2009000589 W CN2009000589 W CN 2009000589W WO 2009143707 A1 WO2009143707 A1 WO 2009143707A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
gear
shaped
sector
cylinder
Prior art date
Application number
PCT/CN2009/000589
Other languages
English (en)
French (fr)
Inventor
张振明
Original Assignee
Zhang Zhenming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNA2008100182926A external-priority patent/CN101592072A/zh
Priority claimed from CNA2008100182930A external-priority patent/CN101592073A/zh
Application filed by Zhang Zhenming filed Critical Zhang Zhenming
Priority to JP2011510806A priority Critical patent/JP2011521168A/ja
Priority to CN2009801189446A priority patent/CN101970800B/zh
Priority to US12/994,552 priority patent/US8578908B2/en
Publication of WO2009143707A1 publication Critical patent/WO2009143707A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/063Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them
    • F01C1/077Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them having toothed-gearing type drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an engine, in particular a two-rotor engine having two rotors.
  • twin-rotor engines of which the "scissors" dual-rotor engine is a more common type, and its structure includes: a frame, a cylinder-mounted cylinder assembly, and a first mounting in the cylinder. a rotor, a second rotor, and a controller, a transmission output mechanism for outputting power, a controller, and the like.
  • Each of the rotors is symmetrically provided with a pair of fan-shaped pistons, and the two rotors are mounted on the same output shaft, and the two pairs of fan-shaped pistons of the two rotors are arranged to cross each other, so that the cavity in the cylinder is divided into 4 by the four sector pistons.
  • Work chambers Under the control of the rotor control mechanism, the fan piston rotates one revolution, and each working chamber performs a total of four times of work, which can greatly improve the efficiency. Therefore, in a two-rotor engine, the rotor control mechanism plays a key role in controlling the two pairs of sector pistons to control the rotor to stop or start rotating at precise positions in the precise time sequence required to prevent the rotor from reversing. At the same time, when starting the engine, To ensure that the rotor maintains a precise working condition.
  • the controller structure in the conventional two-rotor engine includes various types such as a step type, a differential type, a cam roller type, and a ratchet spring escapement mechanism.
  • Rotor control mechanisms such as the squat type, the differential type, and the cam roller type cannot make the output shaft run at a constant speed, and cannot be put into practical use at all.
  • the engine designed with anti-rotation reversal measures such as a ratchet spring escapement is basically zero. Therefore, the traditional dual-rotor engines of different designs cannot be put into practical use because the controller cannot actually control the working state of the rotor rotation accurately.
  • An object of the present invention is to provide a two-rotor engine which is reliable in operation in view of the above-described deficiencies of the prior art.
  • a dual-rotor engine includes a cylinder assembly, a transmission output mechanism, a rotor control mechanism, and a lubrication system.
  • the cylinder assembly includes a base, a tubular cylinder fixedly mounted on the base, and a front end mounted at both ends of the tubular cylinder a cover and a rear end cover, a central support shaft rotatably mounted on the base through the tubular cylinder and both ends, and a first rotor and a second rotor; wherein the front end cover and the rear end cover are respectively a rotor neck hole is provided;
  • each of the rotors includes an inner cylinder block, a rotor neck integral with the inner cylinder block, and two sector pistons symmetrically fixedly coupled to the inner cylinder block, the two rotors are fixedly mounted on On the central support shaft, the two rotor necks respectively protrude from the corresponding rotor neck holes, and the four sector pistons of the two rotors are arranged in a cross arrangement,
  • the first rotor gear and the second rotor gear are each on the circumference side Providing two symmetrically arranged missing tooth portions, the length and shape of the missing tooth portion being the same as the portion of the rotor gear meshing with the transmission gear to ensure that the first rotor gear and the second rotor gear are locked.
  • the operation of the first transmission gear and the second transmission gear is not interfered;
  • the two toothed portions of the first rotor gear and the second rotor gear have the same number of teeth, and the teeth located at the starting positions of the two toothed portions
  • the shape is exactly the same to ensure the accuracy of the transmission;
  • the rotor control mechanism is configured to control intermittent rotation and stop of the two rotors, and control the rotation time and the stop time to ensure smooth output of the power at a uniform speed.
  • the sector angle of the sector piston is between 35° and 45°.
  • the sector angle of the sector piston is 40°.
  • each of the fan-shaped pistons adjacent to the inner cylindrical cylinder has a shock absorbing noise reduction surface, and the adjacent two shock absorbing noise reduction surfaces can be in contact with each other.
  • a seal is disposed between the two inner cylindrical cylinders of the two rotors, and a seal is disposed between the sector piston and the cylinder.
  • the shape of the combustion chamber is a large oval head.
  • the rotor gear is a cylindrical spur gear.
  • the central support shaft has a tubular shape, has a central duct 96, and is provided with an injection hole 97 at the position where the rotor is mounted, and two rotors are respectively provided with a hole 94, and an oil discharge pipe 93 is connected to the cylinder wall, and the cylinder body 6 is connected.
  • a plurality of pipes are respectively disposed on the disc-shaped front end cover 5a and the rear end cover 5b, and the center pipe, each of the holes and the pipe are connected to each other.
  • the rotor gear is a cylindrical helical gear, and a convex ring extends outwardly at one end of the cylindrical base of each rotor gear, and an outer circumferential surface of the convex ring is located at a root circle position of the rotor gear, and an outer circumferential surface of the convex ring
  • the upper center is symmetrically provided with two rotor gear positioning straight teeth having a tooth height equal to the rotor gear tooth height, and the two rotor gear positioning straight teeth are respectively disposed near the two missing tooth portions;
  • the transmission gear is in the cylindrical base thereof a convex ring is extended outwardly at one end, and an outer circumferential surface of the convex ring is located at a root circle position of the transmission gear, and a convex gear having a tooth height equal to a tooth height of the transmission gear is disposed on the convex ring, when the first When the rotor is in the positive release lock state, one of the rotor gear positioning straight teeth on the
  • the rotor control mechanism includes a controller bracket fixedly mounted with respect to the cylinder and provided with a plurality of pairs of pulleys, two sector control wheels, two brake necks and two reciprocating members, and the controller bracket is mounted thereon Several pairs of pulleys.
  • the two sector control wheels are respectively mounted on the transmission output shaft and respectively located outside the two transmission gears, and the installation angle between the two sector control wheels is 180°.
  • the sector control wheel includes an inner cylindrical portion mounted to the transmission output shaft, a scallop portion disposed on the inner cylindrical portion, and an outer circular arc surface of the scallop portion is a top support curved surface: the scallop portion a portion extending outwardly from a rear side thereof to form a fan-shaped rear wing; the thickness of the fan-shaped rear wing is smaller than a thickness of the sector, and a surface of the fan-shaped rear wing is located on a surface of the sector The same plane, the other surface is lower than the other surface of the scallop, so that a rearwardly extending wing opening for preventing motional interference is formed above the scalloped rear wing.
  • the brake neck includes an inner ring disposed at an end portion of the rotor neck and integral with the two brake protrusions symmetrically disposed on the inner ring, and diagonal lines of two brake protrusions in the same plane
  • the angle range ZP between the range of 10°-50°; the inner ring and the upper and lower surfaces of the brake protrusion are respectively located in the same plane, and the outer circumferential surface of the inner ring and the adjacent two The sides of the brake projections together form a C-shaped brake groove.
  • the reciprocating member comprises a body, a guide rail disposed on the body to cooperate with a pulley on the controller bracket, a C-shaped brake card disposed on a side of the body and cooperating with a C-shaped brake groove on the rotor neck, a rectangular block disposed on the other side of the main body, wherein the rectangular block is provided with a timing release lifting platform, and the bottom surface of the timing lifting lifting platform is located on the same plane as the rectangular block, and the top surface thereof It is lower than the top surface of the rectangular block, and thus a rear timing notch for preventing the dynamic interference is formed between the top surface of the timing lifting lifting table and the rectangular block.
  • the underside of the timing lifting platform is a slope or a curved surface
  • the upper side of the lifting platform is a top arcing surface
  • the jacking surface and the fan-shaped control wheel are supported by the arc surface.
  • the shape is anastomosed, and the inclined surface and the top curved surface respectively extend to the outer side of the rectangular block.
  • the angle Z P between the diagonals of the two brake lugs is 40°.
  • a portion of the scallop portion of the sector control wheel extends outwardly from a rear side thereof to form a fan-shaped forward wing, the front end portion of the fan-shaped front wing is provided with a guiding rib; the fan-shaped forward wing and the fan-shaped rearward extension
  • the wings are distributed on both sides of the scallop and are staggered; the thickness of the scalloped front wing is smaller than the thickness of the scallop, one surface of the scalloped front wing is in the same plane as one surface of the scallop, and the other surface is low
  • the other surface of the scallop is formed such that a forwardly extending wing opening that prevents operational interference is formed between the fan-shaped forward wing and the scallop.
  • the body of the reciprocating member is a rectangular plate, the C-shaped brake card is fixed at one end of the rectangular block, and the rectangular block is fixed at the other end of the rectangular plate; the C-shaped opening of the C-shaped brake card And the timing of lifting the jacking up of the jacking table is outward.
  • the body of the reciprocating member is a rectangular frame, and the c-shaped brake card and the rectangular block are respectively fixed on two broad sides of the rectangular frame, and the C-shaped opening and the C-shaped brake card At the timing, the top arcing surface of the lifting platform is turned toward the inner side.
  • controller shaft mounted in parallel with the transmission output shaft and a controller gear mounted on the controller shaft
  • one of the sector control wheels is mounted on the controller shaft
  • the controller gear and One of the respective drive gears is in meshing engagement
  • one of the shuttles is mounted between the brake neck of the respective one of the rotors and the sector control wheel.
  • the rotor control mechanism includes a controller bracket fixedly mounted with respect to the cylinder and provided with a plurality of pairs of pulleys, two controller gear shafts parallel to the transmission output shaft, and mounted in front of one of the controller gear shafts a first control gear and a first bow-shaped control wheel, a second control gear mounted on the rear of the other controller gear shaft and a first bow-shaped control wheel, and a reciprocating movement controlled by two bow-shaped control wheels a reciprocating member, a first rotor control gear mounted on the first rotor neck, a second rotor control gear mounted on the second rotor neck, wherein the first control gear meshes with the first rotor control gear, the second control Gear and second rotor control tooth The wheels mesh.
  • the reciprocating member is provided with two rectangular blocks which are symmetric in center and two timing lifting lifting platforms.
  • the bottom surface of the timing lifting lifting platform is located on the same plane as the rectangular block, and the top surface thereof is lower than a top surface of the rectangular block, thereby forming a rear timing gap between the top surface of the lifting platform and the rectangular block to prevent dynamic interference;
  • the timing of the lifting top of the lifting platform is a bevel or
  • the curved surface, the upper side of the timing lifting lifting platform is a top arcing surface, and the inclined surface and the topping curved surface respectively extend to the outer side surface of the rectangular block.
  • the bow-shaped control wheel is a rectangular body having two surfaces, two long faces and two wide faces, and the angle ZP 1 between the diagonals on the surface of the rectangular body ranges from 10° to 50°.
  • the two wide faces of the rectangular body have a circular arc-engaging surface that coincides with the jacking surface of the reciprocating member timing lifting platform, and each long face of the rectangular body is composed of one of the arc tops a plane connecting the face joint, a smooth transition connection with the plane and concave to the arc surface in the rectangular body and a slope connecting the arc surface and the arc top surface, when the first bow shape control wheel is locked,
  • the inclined surface of the reciprocating member is fitted to the inclined surface of the first bow-shaped control wheel, and the top curved surface of the reciprocating frame and the curved surface of the first bow-shaped control wheel are fitted together.
  • the bow-shaped control wheel further includes two forward wings arranged symmetrically in a center, the front wings being formed by extending a rectangular body of the bow-shaped control wheel from an obliquely outward direction thereof, the thickness of the front wings being smaller than the The thickness of the rectangular body, one surface of the front wing and the rectangular body, the other surface of the front wing is lower than the other surface of the rectangular body, and the front end portion of the front wing is provided with a guiding rib, the front wing and The rear wings are respectively located on both sides of the long side of the rectangular body, and are arranged in a center-symmetric manner.
  • the reciprocating member is a rectangular frame, and the two rectangular blocks are the wide sides of the rectangular frame, and the timing of the lifting of the lifting platform is toward the rectangular frame.
  • the reciprocating member is a rectangular block, and the timing of the lifting of the jacking table is outward of the rectangular block.
  • a rotor reverse blocking device including a cam shaft parallel to the transmission output shaft, a swinging follower and a spring, wherein the cam shaft is mounted with a cam gear and a disc cam, a cam gear meshes with the transmission gear; the oscillating follower includes a swinging lever and an L-shaped raised triangular head that is disposed at one end of the oscillating lever and cooperates with a braking protrusion of the brake rim, the triangle The head has a façade and a bevel; the spring presses the yoke onto the brake projection.
  • the method further includes a rotor reversal blocking device, wherein each of the fan-shaped pistons of the rotor has at least one radial hole, and a triangular groove is disposed on the cylinder body corresponding to each radial hole position, and the rotor reversely blocks
  • the apparatus includes a pin and a spring disposed in the radial bore, wherein the pin head has a triangular or wedge shape, has a façade in a direction opposite to the rotor, and has a slope or a circular surface on a side facing the cylinder .
  • balance weights are provided on the transmission output shaft or on the flywheel mounted on the transmission output shaft.
  • At least one through hole is opened in the intake compression region or the middle portion of the cylinder wall of the cylinder block, and an intake pressure relief valve is installed in each of the through holes.
  • the method further includes an electronic processor for receiving and processing vehicle, ship or mechanical operating condition information, engine operating condition information, fuel information, intake or intake boosting information, and cylinder compression ratio information, and further selecting Fuel, selected compression ratio, selected ignition mode, selected booster mode of operation, and then communicated to the actuator to improve Change the compression ratio effect.
  • a casing is arranged outside the double-rotor engine, and the casing is filled with lubricating oil to lubricate and cool the rotor control mechanism and the transmission mechanism.
  • an inlet port and an exhaust port are additionally arranged on the cylinder block, so that the cylinder body has two inlet ports and two exhaust ports, which are spaced apart from each other and arranged in a central symmetry.
  • the dual-rotor engine of the present invention solves the dual-rotor working state control by the mutual synergy of the double rotor, the rotor control mechanism and the transmission mechanism, in particular, the rotor is realized.
  • the timing control integrates the power of the dual rotors into a transmission output shaft at a constant speed and smoothly. This engine is truly operational and has practical value.
  • Figure 1-1 is a cross-sectional view of the first position of the cylinder block assembly of the dual rotor engine of the present invention
  • Figure 1-2 is a cross-sectional view showing a second position of the cylinder block assembly of the dual rotor engine of the present invention
  • FIG. 1-3 are cross-sectional views of a third position of the cylinder block assembly of the dual rotor engine of the present invention.
  • Figure 1-4 is a cross-sectional view of a fourth position of the cylinder assembly of the dual rotor engine of the present invention
  • Figure 1-5 is a longitudinal sectional view of the cylinder assembly of the dual rotor engine of the present invention in a first position, showing the sector piston of the first rotor;
  • Figure 1-6 is a longitudinal sectional view of the cylinder assembly of the dual rotor engine of the present invention in a first position, showing the sector piston of the second rotor;
  • 1-7 is a view showing a cylinder block in a cylinder block assembly of the dual rotor engine of the present invention
  • FIG. 1-8 is a perspective view of a first rotor in a cylinder assembly of a dual rotor engine of the present invention
  • Figure 1-9 is a front view of the first rotor shown in Figures 1-8;
  • Figure 1-10 is a left side view of the first rotor shown in Figures 1-8;
  • Figure 1-11 is a right side view of the first rotor shown in Figures 1-8;
  • Figure 1-12 is a first cross-sectional view taken along line A2-A2 in Figures 1-3, showing the shape of the combustion chamber;
  • Figure 1-13 is a second cross-sectional view taken along line A2-A2 in Figures 1-3, showing the shape of the combustion chamber;
  • Figure 2-1 is a schematic view showing the structure of a transmission output mechanism of the dual-rotor engine of the present invention
  • FIG. 2-2 is a perspective view of a first rotor gear in the dual rotor engine of the present invention
  • Figure 2-3 is a front view of the first rotor gear shown in Figure 2-2;
  • Figure 2-4 shows a schematic structural view of the design of the missing tooth portion of the first rotor gear
  • 2-5 is a schematic structural view of a first transmission gear in the dual rotor engine of the present invention.
  • 2-6 is a schematic structural view showing a relationship between a first rotor gear and a first transmission gear
  • FIG. 2 to 7 are schematic views showing the structure of another transmission output mechanism of the dual rotor engine of the present invention.
  • Fig. 3-1 is a view showing the structure of the control mechanism of the first embodiment of the dual rotor engine of the present invention, State the state of the lock;
  • Figure 3-2 is a plan view of Figure 3-1;
  • Figure 3-3 is a right side view of Figure 3-1;
  • Figure 3-4 is a schematic view showing the structure of the control mechanism of the first embodiment of the dual-rotor engine of the present invention, showing the state during the locking process;
  • Figures 3-5 are schematic views showing the structure of the control mechanism of the first embodiment of the dual-rotor engine of the present invention, showing the state in which the unlocking is started;
  • Figure 3-6 is a perspective view of the first sector control wheel
  • Figure 3-7 is a front view of the first sector control wheel shown in Figure 3-6;
  • 3-8 is a perspective view of the first brake neck in the control mechanism of the first embodiment
  • Figure 3-9 is a top view of Figure 3-8;
  • Figure 3-10 is a perspective view of the first shuttle block in the control mechanism of the first embodiment
  • Figure 3-11 is a left side view of the first reciprocating block in the control mechanism of the first embodiment of Figs. 3-10;
  • Fig. 3-12 is the first of the control mechanisms of the first embodiment of Figs.
  • Figure 3-1 is a perspective view of a first reciprocating block with a timing jacking station;
  • Figure 3- 14 is a perspective view of a first sector control wheel with a fan-shaped forward wing
  • Figure 3- 15 is a plan view of the first sector control wheel with the fan-shaped forward wings shown in Figures 3-14;
  • Figure 3- 16 is a right side view of Figure 3-15;
  • Figure 4-1 is a schematic structural view showing a control mechanism of a second embodiment of the dual-rotor engine of the present invention
  • Figure 4-2 is a plan view of Figure 4-1;
  • Figure 4-3 is a right side view of Figure 4-1;
  • Figure 5 is a schematic view showing the structure of the control mechanism of the third embodiment of the dual-rotor engine of the present invention
  • Figure 5-2 is a plan view of Figure 5-1;
  • Figure 5-3 is a right side view of Figure 5-1;
  • Figure 5-4 is a structural schematic view showing a control mechanism of a fourth embodiment of the dual-rotor engine of the present invention
  • Figure 6-1 is a schematic structural view showing a control mechanism of a fifth embodiment of the dual-rotor engine of the present invention, showing a lock The state of the process
  • Figure 6-2 is a plan view of Figure 6-1;
  • Figure 6-3 is a right side view of Figure 6-1;
  • 6-4 is a schematic structural view showing a control mechanism of a fifth embodiment of the dual-rotor engine of the present invention, showing a state in which the lock is started;
  • 6-5 is a schematic structural view showing a control mechanism of a fifth embodiment of the dual-rotor engine of the present invention, showing a state in which the lock is released;
  • FIG. 6-6 is a perspective view showing a reciprocating frame in a control mechanism of a fifth embodiment of the twin-rotor engine of the present invention
  • Figure 6-7 is a front view of the first reciprocating frame shown in Figures 6-6;
  • 6-8 is a perspective view showing a reciprocating frame with a forward extending wing in a control mechanism of a fifth embodiment of the twin-rotor engine of the present invention
  • FIG. 6-9 are perspective views showing a first bow-shaped control wheel in the control mechanism of the fifth embodiment of the dual-rotor engine of the present invention.
  • Figure 6-10 is a plan view of the first bow-shaped control wheel shown in Figures 6-9;
  • 6-11 is a perspective view showing a first bow-shaped control wheel with a forward wing in a control mechanism of a fifth embodiment of the dual rotor engine of the present invention
  • Figure 6-12 is a left side view of the first bow-shaped control wheel with the forward wings shown in Figures 6-11;
  • Figure 6-13 is a front elevational view of the reciprocating frame with the forward wings shown in Figures 6-8 and 6-12 mated with the first bow-shaped control wheel with the forward wings;
  • Figure 6-14 is a schematic view showing the fan angles of the first bow-shaped control wheel and the angular position and radius of each arc surface;
  • Figure 7-1 is a view showing the configuration of a rotor control mechanism of a sixth embodiment of the twin-rotor engine of the present invention.
  • Figure 7-2 is a plan view of Figure 7-1;
  • Figure 7-3 is a right side view of Figure 7-1;
  • Figure 7-4 is a perspective view showing a reciprocating block in the control mechanism of the sixth embodiment of the twin-rotor engine of the present invention.
  • Figure 7-5 is a perspective view showing a reciprocating block with a forward wing in the rotor control mechanism of the sixth embodiment of the twin-rotor engine of the present invention.
  • Figure 8 is a cross-sectional view taken along line A1-A1 of Figure 1-1, showing a schematic structural view of a lubrication system in the dual-rotor engine of the present invention
  • Figure 9-1 is a schematic view showing a sealing structure of a rotor in the twin-rotor engine of the present invention.
  • Figure 9-2 is a schematic view showing another sealing structure of the rotor in the dual-rotor engine of the present invention
  • Figure 9-3 is a plan view of the sector piston of Figure 9-1;
  • Figure 9-4 is an enlarged view of part G in Figure 1-5;
  • Figure 9-5 is a schematic view showing the structure of the 0-shaped sealing ring shown in Figures 1-5;
  • Figure 10-1 is a structural schematic view showing the first step of the control process of the rotor reverse blocking device in the present invention
  • FIG. 10-2 is a schematic structural view showing a second step of the control process of the rotor reverse blocking device in the present invention
  • FIG. 10-3 is a schematic structural view showing another rotor reverse blocking device in the present invention
  • Figure 11-1 shows a schematic diagram of the balance weight on the output shaft of the transmission
  • Figure 11-2 shows a schematic view of the structure of two symmetrically arranged balance weights on the flywheel
  • Figure 12-1 is a schematic view showing the structure of realizing a variable compression ratio in the present invention
  • Figure 12-2 is a schematic diagram of an electronic control implementing a variable compression ratio technique
  • Figure 13 is a view showing the structure of the outer casing of the dual-rotor engine of the present invention.
  • Fig. 14 is a view showing the structure of the compressor and the pump which can be converted into a double-rotor engine of the present invention. detailed description
  • the dual rotor engine of the present invention includes a cylinder assembly, a transmission output mechanism, a rotor control mechanism, and a lubrication system.
  • the cylinder assembly in the twin-rotor engine of the present invention comprises a tubular cylinder 6 fixedly connected to or integrally formed with a base (not shown), passing through the tubular cylinder 6 and passing through the bearings at both ends A central support shaft 7, a first rotor la and a second rotor lb are coupled to the base.
  • the upper left side of the tubular cylinder 6 is provided with a spark plug 9, and the inlet port 10 and the exhaust port 1 1 are respectively connected below the tubular cylinder 6.
  • the front end portion and the rear end portion of the tubular cylinder 6 are fixedly connected to a disc-shaped front end cover 5a and a rear end cover 5b.
  • a gasket is provided between the front and rear end caps and the cylinder block 6 to ensure the sealing performance of the cylinder block 6.
  • a rotor neck hole is respectively provided in the center of the front end cover 5a and the rear end cover 5b.
  • the first rotor 1a includes an inner cylindrical cylinder 99a (see Figs. 1-8), a first rotor neck 20a coupled to and integral with one end of the inner cylindrical cylinder 99a, and a symmetrically fixed connection to the inner cylindrical cylinder 99a.
  • Two first sector pistons 17a The fan angle of the first sector piston 17a on the first rotor is preferably 40°, and the angle is preferably between 35° and 45°; when the fan angle is less than 35°, the rotor thickness is too thin for the combustion chamber The volume, the force of the rotor, the temperature, and the sealing performance are greatly affected.
  • the diameter of the first rotor neck 20a is smaller than the diameter of the inner cylinder block 99a.
  • the first sector piston 17a protrudes from the inner cylinder block 99a-portion, and the convex portion of the first sector piston 17a and the first rotor neck 20a are respectively distributed at both ends of the inner cylinder block 99a.
  • the inner cylindrical cylinder 99a is provided with an annular groove 19a at an end which is not connected to the first rotor neck 20a as close as possible to the circumference of the bottom surface to reduce the longitudinal sealing depth.
  • the first rotor neck 20a is connected to the inner cylindrical cylinder 99a, and the inner cylindrical cylinder 99a is provided with a seal groove on the circumference thereof. Except for the junction of the first sector piston 17a and the inner cylinder block 99a, there is two parallel sealing grooves around the first sector piston 17a.
  • a central support shaft hole 21a for fitting to the center support shaft 7 is provided at the axial position of the first rotor 10a.
  • Two symmetrical sides of the first sector-shaped piston 17a are respectively provided with two recesses 15a recessed into the first sector-shaped piston 17a. Both side faces of the first sector-shaped piston 17a have a vibration-damping and noise-reducing surface 14a near the root of the inner cylindrical cylinder 99a.
  • the second rotor lb has the same structure as the first rotor la, and includes an inner cylindrical cylinder 99b, a second rotor neck 20b (see FIG. 1 - 5) connected to and integral with one end of the inner cylinder, and a symmetrically fixed connection Two second sector pistons 17b on the inner cylinder.
  • the central axis position of the second rotor lb is provided with a central support shaft hole.
  • Two symmetrical sides of the second sector piston 17b are respectively provided with two recesses recessed into the second sector piston 17b. Both sides of the second sector piston 17b have a shock absorbing noise reduction surface near the root of the inner cylinder.
  • a seal groove is disposed on the inner cylindrical cylinder 99b and the first sector piston 17a.
  • the first rotor 1a and the second rotor 1b are fixedly fitted to the center support shaft 7 through respective center support shaft holes.
  • the roles of the first rotor la and the second rotor lb in the engine are the same, except that the operating conditions at the same time are different.
  • the mounting directions of the first rotor 1a and the second rotor lb on the central support shaft 7 are opposite: the inner cylinder cylinders 99b of the first rotor 1a and the second rotor 1b are located in the cylinder block 6, and the rotor necks of the two are respectively covered by the front end cover 5a, the rotor neck hole of the rear end cover 5b protrudes out of the cylinder 6.
  • the sector-shaped pistons 17a, 17b of the first rotor 1a and the second rotor 1b are located in the cylinder block 6 and are arranged to intersect each other.
  • the inner cylindrical cylinder 99a of the first rotor 1a and the cylindrical cylinder 99b in the second rotor 1b are each provided with an annular sealing groove 19 for reducing the longitudinal sealing depth, and the annular sealing groove 19 is aligned and embedded in the 0 shape.
  • the sealing ring achieves airtightness on the longitudinal contact faces of the two rotors.
  • Two recesses on adjacent sides of the adjacent first sector piston 17a and second sector piston 17b form a combustion chamber 15, and the combustion chamber 15 is provided with a notch toward the spark plug 9 or the fuel injection port.
  • the volume ratio of the combustion chamber 15 to the intake chamber is the compression ratio of the engine.
  • the preferred combustion chamber shape along the vertical plane of the axis is a large oval head shape, and the volume near the gap is large, and the volume near the center support shaft 7 is relatively small.
  • the recesses of the combustion chamber 15 may be symmetrically arranged along the parallel plane of the axis, and the deepest portion of the recess 15 of the combustion chamber 15 may also be asymmetrically arranged, but adjacent to the cylindrical cylinder in the rotor.
  • the body has an offset that gives the rotor better stress conditions.
  • Two shock absorbing noise reduction surfaces of the adjacent two sector piston roots of the two rotors mounted on the central support shaft 7 are in contact with each other to reduce vibration and noise generated by collisions during the operation of the rotor. As the position closer to the central support shaft 7 is made, the angular velocity of the rotation is smaller, so that the shock absorbing noise reduction surface can greatly reduce vibration and noise.
  • Figure 1-1 shows the starting diagram of the dual-rotor engine of the present invention.
  • the first rotor la is locked to the cylinder 6 by the control mechanism (the vertical position in Fig. 1-1), and the second rotor lb is freely rotatable.
  • a pair of adjacent first sector pistons 17a and second sector pistons 17b of the first rotor 1a and the second rotor 1b are brought together to divide the cavity in the cylinder 6 into two working chambers, corresponding to the initial stage. Two strokes: exhaust stroke B and compression stroke D.
  • the combustion chamber 15 formed between the first sector piston 17a and the second sector piston 17b faces the spark plug 9 on the cylinder 6.
  • the mechanism controls the first rotor la to unlock, and the first rotor la and the second rotor lb rely on inertia, flywheel
  • the role of the common word is rotated 40 degrees, when the second rotor lb reaches the vertical position, instead of the first The initial position of the rotor la.
  • the second rotor 1b is locked to the cylinder 6 by the control mechanism, and the first rotor 1a is free to rotate.
  • first sector pistons 17a and second sector pistons 17b of the first rotor 1a and the second rotor 1b are abutted together between the pair of first sector pistons 17a and second sector pistons 17b.
  • the combustion chamber 15 faces the spark plug 9 on the cylinder 6. The spark plug 9 is ignited, and the above-mentioned work process is repeated, so that the cycle is repeated.
  • the transmission output mechanism of the present invention comprises: a transmission output shaft 8, a first rotor gear 2a, a first transmission gear 3a, a second rotor gear 2b, and a second transmission gear 3b. among them
  • the transmission output shaft 8 is disposed outside the cylinder 6 and parallel to the central support shaft 7.
  • the two ends of the transmission output shaft 8 are rotatably mounted on the base through bearings, and the two ends of the transmission output shaft 8 can also be directly fixedly mounted on the base. On the seat.
  • the first rotor gear 2a is a cylindrical bevel gear which is fitted over the rotor neck of the first rotor and fixedly connected by splines and keyways.
  • the second rotor gear 2b is a cylindrical bevel gear that is fitted over the rotor neck of the second rotor and fixedly coupled by splines and keyways.
  • the first transmission gear 3a and the second transmission gear 3b are fixedly coupled to the transmission output shaft 8 via splines and keyways, respectively.
  • the first transmission gear 3a is meshed with the first rotor gear 2a
  • the second transmission gear 3b is meshed with the second rotor gear 2b.
  • the circumference of the first rotor gear 2a and the first transmission gear 3a are strictly required: the circumference of the first transmission gear 3a is equal to half of the circumference of the rotor gear plus the rotor gear 360° A rotor gear 2a is a circumference corresponding to the operating angle of the work. Alternatively, the circumference of the first transmission gear 3a is equal to 360° minus the difference in the angle occupied by the two sector-shaped pistons of the first rotor gear 2a corresponding to the circumference of the first rotor gear 2a. The results obtained by the two calculation methods are the same.
  • the first rotor gear 2a in the present invention has a addendum circle 281 and a root circle 271.
  • the first transmission gear 3a has a addendum circle 282 and a root circle 272.
  • the intermeshing first rotor gear 2a and the two addendum circles 281, 282 of the first transfer gear 3a have two junctions 251, 252.
  • the two diameter lines ⁇ , d 2 made by the two junctions 251, 252 and the center CM of the first rotor gear 2a respectively have two junctions 253, 254 on the addendum circle 281 of the first rotor gear 2a.
  • the four junctions divide the addendum circle 282 into four arcs.
  • the two arc lengths symmetrically arranged that is, the arc length between the junctions 251 and 252 and the arc length between the junctions 253 and 254 are the circumferential length of the missing tooth portion 24 on the first rotor gear 2a: symmetrically arranged
  • the length of the two arcs that is, the arc length between the junctions 251 and 253 and the arc length between the junctions 252 and 254 are the circumferential lengths of the toothed portion of the first rotor gear 2a, and the two segments have a toothed arc at the beginning.
  • the tooth shape of the position is completely uniform, the meshing position of the rotor gear and the transmission gear is fixed, and the teeth meshing with each other on the rotor gear and the transmission gear have a one-to-one correspondence.
  • the missing tooth portion 24 is equivalent to a portion where the first rotor gear 2a meshes with the first transfer gear 3a.
  • the shape of the missing tooth portion 24 is a region surrounded by the addendum circles 281, 282 in the case where the first rotor gear 2a is engaged with the first transfer gear 3a, see the hatching portion in Figs. 2-4.
  • the edentulous portion 24 is designed to ensure that the operation of the transmission gear is not interfered by the rotor gear when the rotor gear is stopped and the transmission gear is rotated when needed.
  • the missing tooth position on the rotor is facing the transmission gear, and the operation of the transmission gear is not interfered.
  • the gear height, tooth thickness, pitch and other factors of the two gears may be slightly longer or slightly larger than the above-mentioned distance.
  • the height of the rotor gear missing portion is designed with the rotor. The principle that the gear is not affected when the gear is stopped does not affect the rotation of the transmission gear.
  • the first rotor gear 2a has a convex ring 26 extending outwardly at one end of its cylindrical base body.
  • the outer circumferential surface of the convex ring 26 is located at the root circle position of the first rotor gear 2a, and is symmetrically disposed on the outer circumferential surface of the convex ring 26.
  • the two rotor gear positioning straight teeth 50 are arranged in a central symmetry, respectively disposed near the two missing tooth portions 24, with the rotation direction being the front, and the rotor gear positioning straight teeth 50 are located behind the rotor gear missing portion 24, and adjacent to the The missing tooth portion 24. It should be pointed out that the rotor gear and the transmission gear do not require a convex ring and a positioning straight tooth design when using a spur gear transmission.
  • the second rotor gear 2b in the present invention is the same as the first rotor gear 2a and will not be described again.
  • the transmission gear meshing with the rotor gear may be a complete cylindrical helical gear without a missing tooth portion; the transmission gear may also be provided with a missing tooth portion.
  • the first rotor gear 2a has two arcs of teeth, that is, an arc between the intersections 251 and 253 and an arc between the intersections 252 and 254, and the teeth on the arcs are at the arc start position.
  • the tooth profile is exactly the same.
  • the arc having teeth on the first rotor gear 2a meshes with a circular arc of the transmission gear which is always at a fixed position.
  • the portion of the transmission gear that does not participate in the engagement may also be designed as a toothless structure if it conflicts with the portion participating in the toothed design.
  • the first transmission gear 3a of the present invention has a convex ring 44 extending outward at one end of the cylindrical base body, and the outer circumferential surface of the convex ring 44 is located at the first transmission gear 3a.
  • the root circle position is provided with a transmission gear positioning straight tooth 51 on the convex ring 44, and the tooth height of the transmission gear positioning straight tooth 51 is equal to the tooth height of the first transmission gear 3a.
  • the second transmission gear 3b in the present invention is the same as the first transmission gear 3a and will not be described again.
  • the rotor control mechanism of the first rotor 1a When the rotor control mechanism of the first rotor 1a is set to the unlocking state at the timing, the first sector piston 17a and the second sector piston 17b adjacent to each other on the first rotor 1a and the second rotor 1b are in close contact At this time, the minimum angle between the rotor gear positioning straight teeth 50 on the second rotor gear 2b and the rotor gear positioning straight teeth 50 on the first rotor gear 2a is equal to the sector angle of one sector piston.
  • the transmission gear positioning straight teeth 51 on the first transmission gear 3a and the transmission gear positioning straight teeth 51 on the second transmission gear 3b are mounted at an angle different by 180°.
  • the rotor gears on the first rotor gear 2a and the second rotor gear 2b The angle between the straight teeth 50 is constantly changing due to rotation and stop.
  • the power output process of the two rotors in the present invention is: at the moment when the first rotor 1a is unlocked by the controller, the first rotor 1a is pushed and rotated by the second rotor 1b, and the angle rotated by the push is a sector
  • the fan angle of the piston, the first rotor la rotates to rotate the first rotor gear 2a fixed on the first rotor neck 20a thereof, and the first rotor gear 2a is further meshed with the first transmission gear 3a;
  • a combustion chamber 15 is formed between the adjacent first sector piston 17a and the second sector piston 17b, and the compressed air containing fuel in the combustion chamber 15 is ignited or compression-ignited.
  • the first rotor 1a starts to work, and the rotation of the first rotor la continues to drive the rotation of the first rotor gear 2a fixed thereto, and the first rotor gear 2a drives the first transmission gear 3a meshed with it to rotate, and then drives the first transmission gear 3a to be fixed.
  • the connected transmission output shaft 8 rotates to realize the power output; the moment after the completion of the work of the first rotor la, and also the moment when the second rotor lb is unlocked by the controller, the second rotor lb is pushed forward by the first rotor la
  • the angle that is also pushed and rotated is a fan-shaped angle of a sector piston.
  • the second rotor lb rotates to rotate the second rotor gear 2b fixed thereto, and the second rotor gear 2b and the second transmission gear 3b mesh with each other.
  • a combustion chamber 15 is formed between the adjacent second sector piston 17b and the first sector piston 17a, and the compressed air containing fuel in the combustion chamber 15 is ignited or pressed. Burning.
  • the second rotor lb starts to work, the second rotor lb continues to drive the second rotor gear 2b fixed thereto, and the second rotor gear 2b drives the second transmission gear 3b that meshes with it to rotate, and then drives the second transmission gear 3b to be fixed.
  • the connected transmission output shaft 8 rotates to realize power output. Therefore, in the present invention, the dynamic forces output by the sequential rotation of the first rotor 11a and the second rotor lb are concentrated on the same transmission output shaft 8.
  • a first transmission wheel 16a may be mounted on the central support shaft 7 between the first rotor gear 2a and the first cylinder head 5a;
  • a second inter-drive wheel 16b is mounted on the central support shaft 7 between the second rotor gear 2b and the second cylinder head 5b.
  • the first inter-drive wheel 16a and the second inter-driver wheel 16b are both complete gears that are only used in the rotor gear drive controller and mesh with the first controller gear 30a and the second controller gear 30b, respectively.
  • the present invention truly realizes the high-reliability synthesis of a dual-rotor to an on-axis output worldwide problem.
  • the design and positioning of the rotor gear at a specific position without teeth is designed to be a straight-toothed rotor anti-rotor gear override design (rotor gear is completely impossible) Hysteresis), the meshing matching problem between the rotor gear and the transmission gear is perfectly solved, achieving one-to-one high-precision meshing without occurrence of toothing and misalignment.
  • This high-precision meshing simultaneously rotates the rotor. Precise positioning.
  • the rotor gear and the transmission gear are wrapped in the casing and immersed in the lubricating oil, the wear and temperature are reduced, and the gear life is greatly extended.
  • the rotor control mechanism of the first embodiment of the present invention includes a controller bracket 32 fixedly mounted with respect to the cylinder block 6, and a first sector control wheel. 64a, a second sector control wheel 64b, a first brake neck 66a, a second brake neck 66b, and a first shuttle block 65a and a second shuttle block 65b.
  • a plurality of pairs of pulleys 34 are mounted on the controller bracket 32.
  • the first sector control wheel 64a is mounted on the transmission output shaft 8 and located outside the first transmission gear 3a
  • the two sector control wheel 64b is mounted on the transmission output shaft 8 and outside the second transmission gear 3b.
  • the angle between the center lines is 180°.
  • the structure of the first sector control wheel 64a includes a first inner cylindrical portion 71 for mounting to the transmission output shaft 8, and a sector portion disposed at the first inner cylindrical portion 71.
  • the outer circular arc surface of the scallop is a top supporting curved surface 69, and the front side of the scallop (the front side in the rotational movement) and the top supporting curved surface 69 are the top end line 70; a part of the scallop is The rear side (the rear side in the rotary motion) extends outward to form a fan-shaped rear extension 691.
  • the intersection of the jack-up rear wing 691 and the rear side is the unlocking control line 692.
  • the thickness of the scalloped rear wing 691 is smaller than the thickness of the scallop, one surface of the scalloped rear wing 691 is in the same plane as one surface of the scallop, and the other surface of the scalloped rear wing 691 is lower than the other surface of the scallop.
  • a rearward extension 68 is formed above the fan-shaped rear extension 691.
  • the fan-shaped angle N of the fan-shaped rear extension 691 is used to push the reciprocating rod to be stuck with the first sector-shaped control wheel 64a, usually between 30° and 50°, which is required by the design. Can vary slightly.
  • the fan-shaped angle ZM of the first sector control wheel 64a that is, the sum of the fan-shaped angle of the sector and the fan-shaped angle ZN of the sector-shaped rear extension 691, is equal to the rotor working angle ⁇ (rotor working angle + 180°) x360° - ZL o where ZL It is the fan angle of the fan-shaped forward wing, please see the description below. ZL is around 30°, and ZL is subtracted from the formula to prevent the first sector control wheel 64a from getting stuck with each other during the movement of the reciprocating rod. Based on this principle, the size of the ZL may be slightly changed due to design requirements. The size of the sector angle ZM of the first sector control wheel 64a is also slightly changed.
  • the first brake neck 66a includes an inner ring 661 disposed at an end portion of the first rotor neck 20a and integrated therewith, and two inner portions symmetrically disposed on the inner ring 661
  • the brake projection 662, the inner ring 661 and the upper and lower surfaces of the brake projection 662 are respectively located in the same plane.
  • a portion of the outer circumferential surface of the inner ring 661 and the side faces of the adjacent two brake projections 662 collectively form a C-shaped brake groove 76. As shown in Fig.
  • the angle ZP between the two diagonal lines of the two brake projections 662 is 40°, and the angle ZP is not limited to 40°, and is feasible at less than 50°, usually The range can be between 10 ° and 50 °.
  • a portion of the arcuate body may be symmetrically removed at the end of the first rotor neck 20a extending from the first rotor gear 2a to form two C-shaped brake grooves 76, which in turn form the first brake neck 66a. .
  • the structure of the first reciprocating block 65a includes a rectangular plate, and a C-shaped brake card 67 disposed at one end of the rectangular plate to cooperate with the C-shaped braking groove 76 on the first rotor neck 20a,
  • a rectangular block 671 is provided at the other end of the rectangular plate and perpendicular thereto.
  • the upper and lower sides of the rectangular plate are respectively provided with the sliding on the controller bracket 32
  • the wheel 34 cooperates with the working guide rail 35.
  • the lower half of the front side of the rectangular block 671 is provided with a timing lifting lifting table 42.
  • the bottom surface of the lifting lifting table 42 is placed on the same plane as the rectangular block 671, and the top surface of the lifting table 42 is released at a timing lower than the rectangular block.
  • the top surface of the 671 thus forms a rear timing gap 43 between the top surface of the lift-up table 432 and the rectangular block 671 at the timing.
  • the outer side of the timing lifting lift-off table 42 is a sloped surface 421, and the outer side of the lift-off table 42 is lifted to form a top curved surface 422.
  • the jacking surface 422 and the first sector-shaped control wheel 64a support the curved surface. 69 shape anastomosis.
  • the inclined surface 421 and the raised curved surface 422 extend to the outer side of the rectangular block 671, respectively.
  • the intersection of the slope 421 and the jacking surface 422 is the lock line 420.
  • the intersection line of the jacking surface 422 and the timing release top surface of the jacking table 42 is an unlocking line 423.
  • the structure of the second reciprocating block 65b is the same as that of the first reciprocating block 65a, and will not be described again.
  • the first reciprocating block 65a is located between the first brake neck 66a of the first rotor 2a and the first sector control wheel 64a, and is controlled by the first sector control wheel 64a to periodically reciprocate linearly, thereby controlling the periodicity of the first rotor 2a. Turn and stop.
  • control mechanism of the first embodiment of the present invention controls the rotation and stop of the first rotor 2a as follows:
  • Figure 3-1 shows the initial state in which the first rotor gear 2a is locked, at which time one of the missing tooth portions 24 on the first rotor gear 2a faces the first transmission gear 3a; the first sector control wheel 64a
  • the jacking end line 70 is slid to the lock line 420 by the inclined surface 421 of the timing of the first reciprocating block 65a.
  • the first reciprocating block 65a is pushed to the leftmost end, and the C-shaped brake card 67 of the first reciprocating block 65a closely cooperates with the C-shaped braking groove 76 of the first brake neck 66a to lock the first brake neck.
  • the 66a cannot be rotated, thereby locking the first rotor gear 2a.
  • the jacking support surface 69 of the first sector control wheel 64a slides along the jacking surface 422 of the timing lifting platform 42, wherein the first sector control wheel 64a is along its circumference.
  • Half of the supporting support curved surface 69 slides along the top curved surface 422 on the rectangular block 671, and the other half of the supporting curved surface 69 and the raised supporting curved surface 69 of the sector-shaped rear extending wing 691 are lifted up along the timing.
  • the jacking surface 422 of the table 42 slides, during the sliding process, the first reciprocating block 65a does not move, and the first brake neck 66a is always locked; see FIG.
  • the second reciprocating block 65b is located between the second brake neck 66b of the second rotor gear 2b and the second sector control wheel 64b, and is controlled by the second sector control wheel 64b to periodically reciprocate linearly, thereby controlling the second rotor gear 2b. Rotate periodically and stop.
  • the operation process of the second reciprocating block 65b is the same as that of the first reciprocating block 65a, and will not be described again.
  • the first rotor gear 2a rotates during the time when the second rotor gear 2b is locked; the second rotor gear 2b rotates during the time when the first rotor gear 2a is locked. In this way, the power on the two rotors is integrated by the transmission mechanism The output is smoothly and uniformly on the same output shaft 8.
  • a timing jacking station 79 may be provided on the side of the rectangular block 671 of the first shuttle block.
  • One of the surfaces of the timing jacking station 79 is on the same plane as the rectangular block 671, and the other surface opposite to the surface is lower than the timing jacking table 79 lower than the corresponding surface of the rectangular block 671, thereby A front timing gap 80 is formed between the starting block 79 and the rectangular block 671.
  • a sector-shaped forward wing 84 may be disposed on the first sector control wheel 64a.
  • the sector-shaped forward wing 84 is formed by a portion of the scallop portion of the first sector-shaped control wheel 64a extending outward from the rear side thereof (the rear side in the rotational movement).
  • a guide rib 78 is provided at a front end portion of the fan-shaped front extension 84.
  • the fan-shaped forward wings 84 and the fan-shaped rear wings 691 are distributed on both sides of the sector and are staggered.
  • the thickness of the scalloped front wing 84 is smaller than the thickness of the scallop, one surface of the scalloped front wing 84 is in the same plane as one surface of the scallop, and the other surface of the scalloped front wing 84 is lower than the other surface of the scallop.
  • a forward winglet 841 is formed between the fan-shaped front extension 84 and the scallop.
  • the fan-shaped front wing 84 has a fan-shaped angle ZL of about 30°, in order to push the first sector-shaped control wheel 64a to be stuck without being stuck during the movement of the reciprocating rod, and the ZL and the addition are equal to the working circumference of the rotor gear. The angle of the same circumference on the drive gear.
  • the fan-shaped front extension 84 cooperates with the timing jacking station 79.
  • the guiding ribs 78 of the sector-shaped forward wings 84 simultaneously advance to the timing jacking station 79.
  • the arrangement of the fan-shaped front extension 84 and the timing jacking station 79 can greatly reduce the wear of the locking line 420 of the first reciprocating block and the jacking end line 70 of the first sector control wheel 64a, which is advantageous for extending the first control mechanism. Service life.
  • the control mechanism of the second embodiment of the present invention includes a controller bracket 321 and a first sector control wheel 64a fixedly mounted with respect to the cylinder block 6.
  • a plurality of pairs of pulleys 34 are mounted on the controller bracket 321 .
  • the control mechanism structure of the second embodiment is different from the control mechanism of the first embodiment only in two points: First, the shape of the controller bracket 321 is different, which is not the focus of the present invention, and the controller bracket can be It is arbitrarily shaped as long as the reciprocating frame or the reciprocating block can freely slide thereon. Another difference is that the shuttle in this embodiment is the first reciprocating frame 45a and the second reciprocating frame 45b.
  • the structure of the first reciprocating frame 45a includes a rectangular frame, and the timing of the inner side of one of the opposite sides of the opposite sides of the rectangular frame is set to lift the lifting table 42 on the other side.
  • a C-shaped brake card 67 is provided.
  • the structure and function of the timing lifting lifting table 42 are the same as those in the control mechanism of the first embodiment, and the first reciprocating frame is reciprocated under the control of the first sector control wheel.
  • the structure and function of the C-shaped brake card 67 are the same as those in the control mechanism of the first embodiment for engaging the C-shaped brake groove of the first brake neck 66a to brake or operate the first rotor l a.
  • the structure of the second reciprocating frame 45b is the same as that of the first reciprocating frame 45a and will not be described.
  • the control mechanism of the third embodiment of the present invention is different from the control mechanism of the first embodiment only in that:
  • the controller bracket 29 is mounted with a controller shaft 31 parallel to the transmission output shaft 8 and a controller gear 30 mounted on the controller shaft 31.
  • the first sector control wheel 64a is mounted on the controller shaft 31.
  • the controller gear 30 is in meshing engagement with the first transmission gear 3a.
  • the first reciprocating block 65a is mounted between the first brake neck 66a of the first rotor 2a and the first sector control wheel 64a.
  • controller gear 30 makes the installation of the controller bracket 322 more convenient, and at the same time, the axial dimension of the motor can be reduced, and the structural parts of the whole machine are compactly arranged, which is advantageous for reducing the volume of the motor.
  • the control mechanism of the fourth embodiment of the present invention is different from the control mechanism of the third embodiment only in that: the reciprocating member in this embodiment is a first reciprocating frame 45a, The second reciprocating frame 45b.
  • the other parts of the control mechanism structure of the fourth embodiment which are identical to the control mechanisms of the first and second embodiments will not be described again.
  • the control mechanism of the fifth embodiment of the present invention includes a controller bracket 29 mounted outside the cylinder 6 and parallel to the transmission output shaft 8.
  • a second rotor control gear 16b on 20b, and a controller bracket 324 fixedly mounted relative to the cylinder block 6, a plurality of pairs of pulleys 34 are mounted on the controller bracket 324.
  • the first control gear 30a meshes with the first rotor control gear i 6a ; the second control gear 30b and the second rotor control gear
  • the structure of the reciprocating frame in the control mechanism of the fifth embodiment of the present invention includes a rectangular frame composed of two long sides and two wide sides.
  • a timing release table 42 and a rear timing notch 43 are provided on each of the two wide sides, and the structure of the timing release table 42 and the control mechanism of the first embodiment of the present invention are
  • the timing release jack 42 of a reciprocating block 65a has the same structure, and includes a slope 421, a jacking surface 422, and an unlocking line 423.
  • a timing jacking station 79 and a front timing gap 80 may be provided, which are the same as those in the first reciprocating block 65a.
  • the individual structures on the two broad sides are arranged in a central symmetry.
  • the first bow-shaped control wheel 4a in the control mechanism of the fifth embodiment of the present invention is a rectangular body 52.
  • the rectangular body 52 has two surfaces, two long faces and two wide faces, and the angle ZP 1 between the diagonals on the surface is the same as that on the first brake neck 66a.
  • the two wide faces of the rectangular body 52 are arc-shaped raised faces 54 that can coincide with the jacking surface 422 of the timing of the reciprocating frame.
  • Each of the long faces of the rectangular body 52 is defined by a plane 40 connected to one of the arc-shaped raised faces 54 and the plane 40
  • the smooth transition is joined to the curved surface 46 in the rectangular body 52, and the inclined surface 38 connecting the curved surface 46 and connected to the circular raised surface 54.
  • the line of intersection of the ramp 38 and the arcuate top surface 54 is the jacking end line 50.
  • the sum of the lengths of the ramps 38 and the cambers 46 is approximately equal to the length of the plane 40.
  • the rectangular body 52 extends outwardly from its plane 40 to form a rearward extending wing 47.
  • the thickness of the rearward extending wing 47 is about 1/3 of the thickness of the rectangular body 52, and a surface of the rearward extending wing 47 is in the same plane as a surface of the rectangular body 52.
  • the rear extension 47 has the same structure as the sector rear extension 691 of the first sector control wheel 64a.
  • the rectangular body 52 of the present embodiment may further extend outwardly from the inclined surface 38 thereof with a forward extending wing 58 having a thickness equal to the thickness of the rectangular body 52.
  • one surface of the front extension wing 58 is in the same plane as one surface of the rectangular body 52, and the other surface of the front extension wing 58 is lower than the other surface of the rectangular body 52.
  • the front end portion of the front extension wing 58 is provided with a guide rib 78.
  • the front extension wings 58 and the rear extension wings 47 are respectively located on both sides of the long side of the rectangular body 52, and are arranged in an erroneous manner.
  • the respective structures formed on the two long faces of the rectangular body 52 are centrally symmetrical.
  • the second bow-shaped control wheel 4b has the same structure as the first bow-shaped control wheel 4a, and will not be described again.
  • the rear extension wing 47 ZN 1 is equal to the front extension wing 58 ZL1 , 180° minus the angle of the rotor work time, and then subtracting the angle ZP 1 between the diagonal lines on the surface of the rectangular body 52.
  • the remaining angle divided by 2 is the angle of ZN 1 or Z L1.
  • 03, 04, 05 are on the same line and the radius is the radius of the bow-shaped control wheel.
  • the radius of the circle with 03, 04, and 05 is the radius of the bow-shaped control wheel, and the arc surface in the rectangular body 52 is drawn. 46.
  • the curved surface 46 coincides with the top arcing surface 422 of the timing lifting lifter 42.
  • Figure 6-4 shows the arc of the first bow-shaped control wheel 4a. 46.
  • the inclined surface 38 is in contact with the jacking surface 422 and the inclined surface 421 of one side of the reciprocating frame 12 respectively, and the first bow-shaped control wheel 4a and the reciprocating frame 12 are locked with each other: at this time, the second bow-shaped control wheel 4b
  • the jacking end line 50 reaches the locking line 420 on the other side of the reciprocating frame, and then the jacking end line 50 passes over the locking line 420, and the arc-shaped rising surface 54 of the second bow-shaped control wheel 4b slides along the jacking surface 422 ( Referring to Fig.
  • the wheel 4b and the reciprocating frame 12 are locked to each other, and enter the next lock-unlocking-locking cycle; the first bow-shaped control wheel 4a is along the reciprocating frame 12
  • the jacking surface 422 slides, and when the circular arc lifting surface 54 on the rear protruding wing 47 of the first bow-shaped control wheel 4a slides over the reciprocating frame 12 to release the top surface of the jacking table 42, the reciprocating frame 12 is unlocked.
  • the second bow-shaped control wheel 4b is moved in the direction of the second bow-shaped control wheel 4b, and thus reciprocates.
  • the front extension 58 cooperates with the timing jacking station 79.
  • the jacking end line 50 of the bow-shaped control wheel reaches the locking line 420 toward the frame, the guiding ribs 78 of the front extending wings 58 reach the timing jacking station 79 simultaneously or in advance.
  • the function of the front extension 58 and the timing jacking station 79 is to reduce the wear of the jacking end line 50 and the locking line 420, which is advantageous for extending the service life of the first rotor control mechanism.
  • the rotor control mechanism structure of the sixth embodiment of the present invention is different from the rotor control mechanism of the fourth embodiment only in that :
  • the shuttle is a reciprocating block 33, not a reciprocating frame.
  • the structure of the reciprocating block 33 includes a rectangular block and two timing release jacks 42 and two rear timing notches 43 which are disposed symmetrically on the rectangular block in the same manner as in the fourth embodiment.
  • two timing jacking stations 79 and two front timing gaps 80 arranged symmetrically in the center can also be arranged on the rectangular block.
  • the rotor control mechanism of the present invention realizes the timing control of the rotor for the first time, precisely controls the rotation time and the length of the rotation of the rotor, and accurately performs the braking on the rotor and unlocks on time.
  • the first rotor neck 20a is connected to the inner cylinder block 99a, and the inner cylindrical cylinder 99a is provided with a seal groove on the circumference thereof.
  • This seal groove can be sealed with a 0-ring seal 85; see Figure 9-2.
  • This seal groove can also be sealed with two C-shaped seals 86.
  • the first sector piston 17a is wound parallel to the axis - two parallel seals are arranged around the circumference. groove.
  • the seal groove must be provided on the surface of the first sector piston 17a so as not to be cross-connected to the combustion chamber.
  • an inner cylindrical cylinder 99a is provided on the end surface of the first sector-shaped piston 17a, and an annular groove 19 is provided as close as possible to the outer circumference of the inner cylinder block 99a. Reduce the depth of the longitudinal seal.
  • the seal groove on the first sector piston 17a is in direct contact with the seal groove of the end surface of the inner cylinder block 99a.
  • the seal groove on the first sector piston 17a is joined to the annular seal groove 19 which is reduced in longitudinal seal by the L-shaped seal groove 73.
  • a circumferential portion of the contact between the two rotors 99a, 99b and an end portion near the circumference are provided with a spring 89, and an L-shaped portion is provided between the spring 89 and the second rotor 99b.
  • the sealing strip 90 is provided with a longitudinal sealing piece 72 between the end faces of the spring 89 and the second rotor 9 9b, between the end faces of the two rotor contacts, and a 0-shaped seal at the end of the longitudinal sealing piece 72 Circle 88.
  • the first sector piston 17a and the inner cylinder block 99a have an end from which the first sector piston 17a projects.
  • the L-shaped seal 90 is embedded in the L-shaped seal groove 73 of the first rotor and is pressed by the spring 89.
  • a small longitudinal sealing piece 72 is provided in close proximity to the L-head of the L-shaped weather strip 90, and a better seal is achieved by the spring 89 in close contact with the reduced longitudinal sealing depth annular groove O-ring 88. If the head of the L-shaped sealing strip 90 is too long, it will be supported on the 0-shaped sealing ring 88 to form a gap with the inner cylindrical cylinder of the other rotor. If it is too small, a gap will be formed between the L-shaped sealing ring 88 and the 0-shaped sealing ring 88. .
  • the head of the L-shaped weather strip 90 has an oversized design with a small longitudinal sealing piece 72 attached to the head to compensate for the formation of a gap with the O-ring seal 88 to achieve a complete seal.
  • the entire sealing strip encloses the first rotor la in a direction parallel to the axis to ensure sealing, compression, work, and work of the first sector piston 17a.
  • the air tightness of the exhaust four-stroke studio Referring to Figure 1 - 10, Figure 1-1, a very small hole 98 is formed in the seal groove on the rotor. The lubricating oil leaks through the small hole to provide lubrication for the operation of the seal, and at the same time, the seal member is airtight.
  • the center support shaft 7 in the twin-rotor engine of the present invention is hollow, has a center duct 96, and is provided with an injection hole 97 at a position where the rotor is mounted.
  • a tunnel 94 is provided in each of the two rotors.
  • An oil outlet pipe 93 is connected to the wall of the cylinder block.
  • the cylinder block 6 and the disc-shaped front end cover 5a and the rear end cover 5b are respectively provided with a plurality of mutually communicating pipes 91.
  • the lubricating oil is pumped into the central duct 96 of the central support shaft 7, and is injected into the interior of the rotor through the injection holes 97 on the central support shaft, under the action of pressure and centrifugal force, through the passage 94 in the rotor, and then into the rotor inner chamber 95.
  • the surface which is in contact with the tubular cylinder 6 of the rotor sector piston 17 flows out from the oil discharge pipe 93 on the cylinder wall when the rotor is braked.
  • a plurality of pipes 91 are disposed on the cylinder block 6 and the disc-shaped front end cover 5a and the rear end cover 5b, respectively, and the pipes are connected, and the pipes are filled with a coolant to cool the engine.
  • the invention creatively solves the fuel injection in the central support shaft, the hollow design of the double rotor, the centrifugal flow of the lubricating oil, the design of the oil outlet of the cylinder body, the cooling in the rotor is realized, and the water cooling system on the cylinder body is matched, thereby
  • the rotor can be maintained in the corresponding temperature range, so that the thermal deformation of the rotor is small and the mechanical strength is not lowered.
  • the lubrication oil is firstly solved by the oil supply to the cylinder through the small hole in the rotor seal.
  • a rotor reverse blocking device may also be provided.
  • a rotor reverse blocking device structure includes a cam shaft 104, a swing follower 105 and a spring 89 which are parallel to the transmission output shaft 8.
  • the cam shaft 104 is mounted with a cam gear 108 and a disc cam 104.
  • the cam gear 108 meshes with the transmission gear.
  • the swing follower 105 includes a swing lever and a brake protrusion 662 disposed at one end of the swing lever and the brake neck.
  • the working L-shaped raised triangular head has a façade 106 and a beveled surface 107; the spring 89 presses the triangular head against the brake projection 662.
  • the cam gear 104 is fixed on the cam shaft 104 parallel to the drive shaft 8, and the cam gear 108 drives the disc cam 107 to rotate, and cooperates with the disc cam 1 10, and the swing follower 105 has an L-shaped tilt on one end.
  • the triangular head the triangular head cooperates with the braking protrusion 662 on the first brake neck 66a, the triangular head faces the rotation direction of the first brake neck 66a, the triangular head has a large inclined surface 107, and the first brake neck 66a has a rotation direction Facade 106.
  • Fig. 10-2 when the first brake neck 66a is braked by the reciprocating rod, the cam gear 108 rotates, and the convex end of the disc cam 1 10 presses the other end of the follower 105 to make the triangular head tilt. As a result, the façade 106 of the triangular head blocks the brake projection 662 to prevent reverse rotation. Then enter the next cycle of blocking a separation and blocking.
  • the spring 89 is used to oscillate the triangular head on the follower 105, and the triangular head and the brake projection 662 can be closely fitted.
  • the present invention mainly employs a reverse blocking means for the cam and the follower, and the above embodiment is only one of them.
  • Another type of reverse blocking device is a centrifugal pin-out type rotor reverse blocking device.
  • the sector piston of each of the rotors has at least one radial hole
  • the cylinder body is provided with a triangular groove corresponding to each radial hole position
  • the rotor reverse blocking device comprises
  • the radial bore has a pin and a spring therein, wherein the pin head has a triangular or wedge shape, has a façade in a direction opposite to the rotor, and has a slope or a circular arc surface on a side facing the cylinder.
  • a balance weight is required in the case where the number of cylinders is not three or the number of cylinders is not a multiple of three.
  • the circumference of the transmission gear Due to the large circumference of the rotor gear, the circumference of the transmission gear is small, so a 360° ratio of 280° is formed.
  • the rotor When the rotor is working on the output shaft of the transmission, it will be evenly divided twice in the 360° rotation range.
  • the output is about 120° each time, so the engine power output of the 1 cylinder and 2 cylinders is not uniform, and the balance weight needs to be balanced. Then, in the 3 cylinders, it can ensure that the power output of the two cylinders is evenly distributed every moment.
  • the balance weight should be set in the case of non-three cylinders or the number of cylinders is not a multiple of three, in order to solve the problem of discontinuity, unevenness and vibration of the work output, because the 360° cycle of the transmission output of the present invention, One cylinder divides the power about 120° in two intervals, so this balance is to be made.
  • two symmetrically arranged counterweights 1 12 are arranged on the transmission output shaft 8; or as shown in Fig. 1 1-2, two symmetrically arranged counterweights 1 12 are arranged on the flywheel 41 to achieve power output. Achieve balance.
  • an exhaust gas turbocharger 1 is installed in each of the intake port 10 and the exhaust port 1 1 , and a connecting rod is connected between the two exhaust gas turbochargers 1 14 .
  • Figure 12-1 shows the naturally aspirated variable compression ratio technique. Is to set a maximum compression ratio for the cylinder, such as the compression ratio of diesel is 18 to 1, based on the diesel compression ratio, set the engine compression ratio is 18 to 1, at this time the engine uses diesel without any problem.
  • a maximum compression ratio for the cylinder such as the compression ratio of diesel is 18 to 1
  • the engine compression ratio is 18 to 1
  • the compression ratio is 18 to 1.
  • An opening is formed in a middle portion of the cylinder wall in the intake compression region of the cylinder block 6, and an intake pressure relief valve 1 13 is attached to the hole.
  • the compression ratio of the engine will be reduced, which can be 10 to 1, that is, the compression ratio is reduced from 18 to 1 to 10 to 1. It can be powered by gasoline.
  • the size of the compression ratio can be adjusted by the size of the intake pressure relief valve 1 13 , or a plurality of intake pressure relief valves can be set on the wall of the cylinder block 13. Which compression value is used, which intake is activated Pressure relief valve.
  • the number of compression ratios may be increased by opening the size of the intake relief valve or the number of intake relief valves.
  • the compression ratio set by the engine under normal conditions can be any compression ratio, such as 18 to 1, or 10 to 1'.
  • the intake pressure boosting mode can also be combined with mechanical supercharging or two supercharging methods.
  • the intelligent variable compression ratio shown in 12-2 can be comprehensively collected by an electronic processor, and processed to obtain an optimal solution such as an electronic processor for receiving and processing vehicles, boats or mechanical operators.
  • the dual-rotor engine of the invention can flexibly adopt a plurality of fuels, can simultaneously use the ignition and compression combustion working modes, and achieve flexible switching between large torque and high power for the first time, effectively improve the working efficiency of the engine, and reduce fuel. Consumption.
  • a casing 1 15 is added to the rotor control system and the transmission system of the engine, which is filled with lubricating oil to lubricate and cool the rotor control mechanism and the transmission mechanism.
  • the dual-rotor engine of the present invention adds an intake port 10 and an exhaust port 11 to form an embodiment of a compressor and a pump: the cylinder block, the control mechanism, and the transmission mechanism are the same as the aforementioned two-rotor engine, except that
  • the same cylinder has two air inlets 10 and two air outlets 1 1 .
  • the two air inlets 10 and the two air outlets 1 1 are spaced apart from each other and arranged in a central symmetry.
  • the double rotor cuts the cylinder into two suctions.
  • the air chamber and the two compression chambers have only two strokes of suction and pressure.
  • the present invention realizes four strokes of intake, compression, work, and exhaust engine work in parallel, and the efficiency is increased four times.
  • the engine is small in size, light in weight, strong in power and power, and is an engine in hybrid applications. And the battery makes a lot of weight and space.
  • the high degree of modularity and flexible assembly can effectively reduce the investment in production equipment.
  • the double-rotor engine of the invention solves the double-rotor working state control by the mutual cooperation of the double rotor, the rotor control mechanism and the transmission mechanism, in particular, realizes the timing control of the rotor, and the power of the double rotor is highly reliable Integrated into a single drive output shaft for smooth and smooth output. This engine is truly operational and has practical value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transmission Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

双转子发动机
技术领域
本发明涉及一种发动机, 特别是一种具有两个转子的双转子发动机。
背景技术
目前使用较普遍的发动机为往复活塞式发动机, 也有使用转子发动机的。 为了提高发 动机的效率, 人们发明了双转子发动机。 双转子发动机的类型多种多样, 其中 "剪刀式" 双转子发动机是较常见的一种类型, 其结构包括: 机架、 安装在机架上的缸体组件、 安装 在缸体内的第一转子、第二转子, 以及控制器、用于输出动力的传动输出机构、控制器等。 其中每个转子上对称设有一对扇形活塞, 两个转子安装在同一根输出轴上, 两个转子的两 对扇形活塞相互交叉布置, 这样缸体内的空腔由 4个扇形活塞分隔成 4个工作腔。在转子 控制机构的控制作用下,扇形活塞转动一周,各个工作腔共作 4次功,可大幅度提高效率。 所以在双转子发动机中, 转子控制机构起着关键作用, 其要控制两对扇形活塞按照所需精 确时间顺序控制转子在精确位置停止转动或开始转动, 防止转子反转; 同时在启动发动机 时, 要保证转子保持精准的工作状态。
传统双转子发动机中的控制器结构包括步进式、 差速式、 凸轮滚子式、 棘轮弹簧擒纵 机构等各种类型。歩进式、差速式、凸轮滚子式等转子控制机构均不能使输出轴匀速运转, 根本无法投入实际应用。 而设计有棘轮弹簧擒纵机构等防转子反转措施的发动机, 其可靠 性基本为零。所以传统的不同设计的各种双转子发动机, 因控制器实际上无法做到精确控 制转子旋转的工作状态, 所以均不能够投入实际应用。
发明内容
本发明的目的是针对上述现有技术的不足的, 提供一种运转可靠的双转子发动 机。
为实现上述目的, 本发明采用如下技术方案-.
双转子发动机, 包括缸体组件、 传动输出机构、 转子控制机构以及润滑系统, 缸 体组件包括基座、 固定安装在基座上的管形缸体、 安装在所述管形缸体两端的前端盖 和后端盖、穿过所述管形缸体且两端可转动安装在所述基座的中心支撑轴, 以及第一 转子和第二转子; 其中所述前端盖和后端盖上各自设有一个转子颈孔; 每个所述转子 包括内圆柱缸体、与该内圆柱缸体一体的转子颈和对称固定连接在内圆柱缸体上的两 个扇形活塞, 两个转子固定安装在所述中心支撑轴上, 两个转子颈各自伸出相应的转 子颈孔, 两个转子的 4个扇形活塞呈交叉布置, 每个扇形活塞的两侧各自设有一个凹 陷, 相邻的两个扇形活塞的相邻凹陷形成燃烧室, 所述燃烧室在朝向所述缸体方向具 有缺口; 其中所述传动输出机构, 包括与所述中心支撑轴平行安装的传动输出轴、 安 装在所述两个转子颈上的第一转子齿轮和第二转子齿轮、安装在所述传动输出轴上的 第一传动齿轮的第二传动齿轮, 其中第一转子齿轮与第一传动齿轮啮合配合, 第二转 子齿轮与第二传动齿轮啮合配合。所述第一转子齿轮、第二转子齿轮上各自在圆周方 向设有两个对称布置的缺齿部分, 所述缺齿部分的长度、形状与转子齿轮与所述传动 齿轮啮合的部分相同, 以保证在第一转子齿轮、第二转子齿轮在锁止情况下不干涉第 一传动齿轮和第二传动齿轮的运转; 所述第一转子齿轮、第二转子齿轮上的两段有齿 部分的齿数相同, 并且位于两段有齿部分的起始位置的齿形完全相同, 以保证传动的 精确性;
所述转子控制机构, 用于控制两个转子间歇转动及停止, 并控制转动时间及停止 时间, 以保证匀速顺畅输出动力。
所述扇形活塞的扇形角在 35°-45°之间。
所述扇形活塞的扇形角为 40°。
其中, 在每个所述扇形活塞两侧面靠近所述内圆柱缸体的根部具有减震降噪面, 相邻两个减震降噪面能够接触配合。
所述两个转子的两个内圆柱缸体之间设有密封件,所述扇形活塞与所述缸体之间 设有密封件。
所述燃烧室形状为一头大一头小的卵形。
所述转子齿轮是圆柱直齿轮。
所述中心支撑轴呈管状, 具有中心管道 96, 并在安装有所述转子位置设置喷射 孔 97, 两个转子内分别设有孔道 94, 缸体壁上连通有出油管道 93, 缸体 6和圆盘形 前端盖 5a、 后端盖 5b上分别设有多道管道, 所述中心管道、 各个孔道和管道互想连 通。
所述转子齿轮是圆柱斜齿轮, 在每个转子齿轮的圆柱基体一端向外延伸有凸环, 该凸环的外圆周面位于转子齿轮的齿根圆位置,在所述凸环的外圆周面上中心对称设 有两个齿高等于转子齿轮齿高的转子齿轮定位直齿,所述两个转子齿轮定位直齿分别 设置在靠近两个缺齿部分位置; 所述传动齿轮在其圆柱基体的一端向外延伸有凸环, 该凸环的外圆周面位于传动齿轮的齿根圆位置,凸环上设有一个齿高等于所述传动齿 轮的齿高的传动齿轮定位直齿, 当第一转子处于正时解除锁止状态时, 第一转子齿轮 上的其中一个转子齿轮定位直齿与第一传动齿轮上的传动齿轮定位直齿紧挨着,第一 转子齿轮与第二转子齿轮上的相邻两个转子齿轮定位直齿之间最小角度等于扇形活 塞的扇形角, 两个传动齿轮上的两个传动齿轮定位直齿之间的安装角度为 180°。
所述转子控制机构包括相对于所述缸体固定安装并设有若干对滑轮的控制器支 架、 两个扇形控制轮、 两个制动颈以及两个往复件, 所述控制器支架上安装有若干对 滑轮。所述两个扇形控制轮均安装在所述传动输出轴上, 并分别位于两个传动齿轮外 侧, 两个扇形控制轮之间的安装夹角为 180°。 所述扇形控制轮, 包括安装到所述传 动输出轴的内圆柱部、设置在该内圆柱部的扇形部, 所述扇形部的外圆弧面为顶起支 撑弧面: 所述扇形部的一部分从其后侧面向外延伸形成扇形后伸翼; 所述扇形后伸翼 的厚度小于所述扇形部的厚度,所述扇形后伸翼的一个表面与扇形部的一个表面位于 同一平面, 另一个表面低于所述扇形部的另一个表面, 从而在扇形后伸翼上方形成了 用于防止动转干涉的后伸翼口。所述制动颈包括设置于所述转子颈端部并与其一体的 内圆环和对称设置在该内圆环上的两个制动凸,在同一平面的两个制动凸的对角线间 的夹角范围 Z P 在 10°-50°范围之间; 所述内圆环与制动凸的上、 下表面分别位于同 一平面内, 所述内圆环的部分外圆周面及邻接的两个制动凸的侧面共同形成了 C 形 制动槽。所述往复件包括本体, 设置在所述本体上与控制器支架上的滑轮配合工作的 导轨、 设置在本体一侧的与转子颈上的 C形制动槽配合工作的 C形制动卡、 设置在 本体一侧的另一侧的矩形块, 所述矩形块上设有正时解除顶起台, 所述正时解除顶起 台的底面与所述矩形块位于同一平面上, 其顶面低于矩形块的顶面, 因而在所述正时 解除顶起台的顶面与矩形块之间形成了防止动转干涉的后正时缺口。所述正时解除顶 起台的外侧下面为斜面或弧形面, 正时解除顶起台的外侧上面为顶起弧面, 该顶起弧 面与所述扇形控制轮的顶起支撑弧面形状吻合,所述斜面和顶起弧面分别延伸至矩形 块的外侧面。
所述两个制动凸的对角线间的夹角 Z P 为 40°。
所述扇形控制轮的扇形部的一部分从其后侧面向外延伸而形成扇形前伸翼,该扇 形前伸翼的前端部设有导向凸条;所述扇形前伸翼与所述扇形后伸翼分布在扇形部的 两侧, 并且错开布置; 所述扇形前伸翼的厚度小于所述扇形部的厚度, 扇形前伸翼的 一个表面与扇形部的一个表面位于同一平面, 另一个表面低于扇形部的另一个表面, 从而在所述扇形前伸翼与扇形部之间形成了防止运转干涉的前伸翼口。
所述往复件的本体是矩形板, 所述 C 形制动卡固定在所述矩形块的一端, 且所 述矩形块固定在所述矩形板在另一端; C形制动卡的 C形开口及所述正时解除顶起台 的顶起弧面均朝向外侧。
所述往复件的本体是矩形框, 所述 c 形制动卡和所述矩形块分别固定在所述矩 形框的两个宽边上, 所述 C形制动卡的 C形幵口及所述正时解除顶起台的顶起弧面 均朝向内侧。
其中,还包括与所述传动输出轴平行安装的控制器轴和安装于该控制器轴上的控 制器齿轮, 所述其中一个扇形控制轮安装在该控制器轴上, 所述控制器齿轮与其中一 个相应的传动齿轮啮合配合,所述其中一个往复件安装在相应的一个转子的制动颈和 所述扇形控制轮之间。
所述转子控制机构包括相对于所述缸体固定安装并设有若干对滑轮的控制器支 架、平行于所述传动输出轴的两根控制器齿轮轴、安装在其中一根控制器齿轮轴前部 的第一控制齿轮和第一蝴蝶结形控制轮、安装在另一根控制器齿轮轴后部的第二控制 齿轮和第一蝴蝶结形控制轮, 以及由两个蝴蝶结形控制轮控制往复移动的往复件、安 装在第一转子颈上的第一转子控制齿轮、 安装在第二转子颈上的第二转子控制齿轮, 其中所述第一控制齿轮与第一转子控制齿轮相啮合,第二控制齿轮与第二转子控制齿 轮相啮合。所述往复件上设有呈中心对称的两个矩形块和两个正时解除顶起台, 所述 正时解除顶起台的底面与所述矩形块位于同一平面上, 其顶面低于矩形块的顶面, 因 而在所述正时解除顶起台的顶面与矩形块之间形成了防止动转干涉的后正时缺口;所 述正时解除顶起台的外侧下面为斜面或弧形面,正时解除顶起台的外侧上面为顶起弧 面, 所述斜面和顶起弧面分别延伸至矩形块的外侧面。所述蝴蝶结形控制轮为一个具 有两个表面、 两个长面和两个宽面的矩形体, 矩形体表面上的对角线间的夹角 ZP 1 的范围在 10°-50°之间; 所述矩形体的两个宽面具有与往复件的正时解除顶起台的顶 起弧面吻合的圆弧顶起面,所述矩形体的每个长面由与其中一个圆弧顶起面连接的平 面、与该平面平滑过渡连接并凹向所述矩形体内的弧面和连接该弧面和圆弧顶起面的 斜面, 当第一蝴蝶结形控制轮被锁止时, 所述往复件的斜面和第一蝴蝶结形控制轮的 斜面贴合在一起, 往复框的顶起弧面和第一蝴蝶结形控制轮的弧面贴合在一起。
所述蝴蝶结形控制轮还包括呈中心对称布置的两个前伸翼,所述前伸翼由蝴蝶结 形控制轮的矩形体从其斜面向外延伸而形成, 该前伸翼的厚度小于所述矩形体的厚 度, 前伸翼的一表面与矩形体的, 前伸翼的另一表面低于矩形体的另一表面, 前伸翼 的前端部设有导向凸条, 所述前伸翼和后伸翼分别位于所述矩形体长面的两侧, 并错 幵布置呈中心对称。
所述往复件为矩形框, 所述两个矩形块为所述矩形框的宽边, 所述正时解除顶起 台的顶起弧面朝向矩形框内。
所述往复件为矩形块, 所述正时解除顶起台的顶起弧面朝向矩形块外。
其中, 还包括转子反转阻挡装置, 该转子反转阻挡装置包括与所述传动输出轴平 行的凸轮轴、 摆动从动件和弹簧, 其中所述凸轮轴上安装有凸轮齿轮和盘形凸轮, 凸 轮齿轮与所述传动齿轮啮合;所述摆动从动件包括摆动杆和设置在该摆动杆一端的与 所述制动颈的制动凸配合工作的 L 形翘起的三角头, 所述三角头具有立面和斜面; 所述弹簧将所述三角头压紧到制动凸上。
其中, 还包括转子反转阻挡装置, 其中每个所述转子的扇形活塞具有至少一个径 向孔, 所述缸体上对应每个径向孔位置设有一个三角槽, 所述转子反转阻挡装置包括 放置在所述径向孔内有销子和弹簧, 其中所述销子头部呈三角形或楔形, 在朝向转子 反转方向具有立面, 在朝向缸体的一面具有斜面或圆弧面。
其中,在所述传动输出轴或者在安装在传动输出轴的飞轮上设置两个对称布置的 平衡重。
其中, 在所述缸体的进气压缩区域或缸体壁的中段开设至少一个通孔, 每个所述 通孔内安装一个进气泄压阀。
其中, 还包括电子处理器, 用于接收并处理车、 船或机械运行工况信息, 发动机 工况信息, 燃料信息, 进气或进气增压信息, 缸体内压缩比信息, 进而选定燃料, 选 定压缩比, 选定点火方式, 选定增压器工作方式, 然后再传达到执行单元, 以提高可 变压缩比效果。
其中, 在所述双转子发动机外设有外壳, 外壳内充装润滑油, 为转子控制机构和 传动机构润滑和降温。
其中, 在所述缸体上另设有一个进气口和一个排气口, 这样缸体上共有两个进气 口和两个排气口, 互相间隔并呈中心对称布置。
本发明的双,转子电动机的优点和积极效果是:本发明通过双转子、转子控制机构、 传动机构的相互协同作用, 本发明的双转子发动机解决了双转子工作状态控制, 特别 是实现了转子的正时控制,将双转子的动力高可靠性地整合到一个传动输出轴上匀速 顺畅地输出。 使这种发动机能够真正运转, 并有了实用的价值。
通过以下参照附图对优选实施例的说明, 本发明的上述以及其它目的、特征和优点将 更加明显。
附图说明
图 1-1是本发明的双转子发动机中缸体组件的第一位置的横剖面图;
图 1-2是本发明的双转子发动机中缸体组件的第二位置的横剖面图;
图 1-3是本发明的双转子发动机中缸体组件的第三位置的横剖面图;
图 1-4是本发明的双转子发动机中缸体组件的第四位置的横剖面图;
图 1-5是本发明的双转子发动机中缸体组件在第一位置的纵剖面图, 表示出第一 转子的扇形活塞;
图 1-6是本发明的双转子发动机中缸体组件在第一位置的纵剖面图, 表示出第二 转子的扇形活塞;
图 1-7是本发明的双转子发动机中缸体组件中的缸体展幵图;
图 1-8是本发明的双转子发动机中缸体组件中的第一转子的立体图;
图 1-9是图 1-8所示的第一转子的主视图;
图 1-10是图 1-8所示的第一转子的左视图;
图 1-11是图 1-8所示的第一转子的右视图;
图 1-12是图 1-3中沿 A2-A2所作的第一种剖视图, 表示燃烧室形状;
图 1-13是图 1-3中沿 A2-A2所作的第二种剖视图, 表示燃烧室形状;
图 2-1表示本发明的双转子发动机中传动输出机构的结构示意图;
图 2-2是本发明的双转子发动机中第一转子齿轮的立体图;
图 2-3是图 2-2所示的第一转子齿轮的主视图;
图 2-4表示第一转子齿轮缺齿部位设计的结构示意图;
图 2-5是本发明的双转子发动机中第一传动齿轮的结构示意图;
图 2-6表示第一转子齿轮与第一传动齿轮安装关系的结构示意图;
图 2-7表示本发明的双转子发动机中的另一种传动输出机构的结构示意图; 图 3-1表示本发明的双转子发动机中第一种实施例的控制机构的结构示意图,表 示锁止幵始的状态;
图 3-2是图 3-1的俯视图;
图 3-3是图 3- 1的右视图;
图 3-4表示本发明的双转子发动机中第一种实施例的控制机构的结构示意图, 表 示锁止过程中的状态;
图 3-5表示本发明的双转子发动机中第一种实施例的控制机构的结构示意图, 表 示解锁开始的状态;
图 3-6是第一扇形控制轮的立体图;
图 3-7是图 3-6所示的第一扇形控制轮的主视图;
图 3-8是第一种实施例的控制机构中的第一制动颈的立体图;
图 3-9是图 3-8的俯视图;
图 3- 10是第一种实施例的控制机构中的第一往复块的立体图;
图 3- 1 1是图 3- 10第一种实施例的控制机构中的第一往复块的左视图图; 图 3- 12是图 3- 10第一种实施例的控制机构中的第一往复块的右视图图; 图 3- 13是带有正时顶起台的第一往复块的立体图;
图 3- 14是带有扇形前伸翼的第一扇形控制轮的立体图;
图 3- 15是图 3-14所示带有扇形前伸翼的第一扇形控制轮的俯视图;
图 3- 16是图 3-15的右视图;
图 4- 1表示本发明的双转子发动机中第二种实施例的控制机构的结构示意图; 图 4-2是图 4- 1的俯视图;
图 4-3是图 4-1的右视图;
图 5- 1表示本发明的双转子发动机中第三种实施例的控制机构的结构示意图; 图 5-2是图 5- 1的俯视图;
图 5-3是图 5- 1的右视图;
图 5-4表示本发明的双转子发动机中第四种实施例的控制机构的结构示意图; 图 6- 1表示本发明的双转子发动机中第五种实施例的控制机构的结构示意图, 表 示锁止过程中的状态;
图 6-2是图 6- 1的俯视图;
图 6-3是图 6- 1的右视图;
图 6-4 表示本发明的双转子发动机中第五种实施例的控制机构的结构示意图, 表示锁止幵始的状态;
图 6-5 表示本发明的双转子发动机中第五种实施例的控制机构的结构示意图, 表示锁止解除的状态;
图 6-6 表示本发明的双转子发动机中第五种实施例的控制机构中的往复框的立 体图; 图 6-7是图 6-6所示第一往复框的主视图;
图 6-8 表示本发明的双转子发动机中第五种实施例的控制机构中带有前伸翼的 往复框的立体图;
图 6-9 表示本发明的双转子发动机中第五种实施例的控制机构中的第一蝴蝶结 形控制轮的立体图;
图 6-10是图 6-9所示第一蝴蝶结形控制轮的俯视图;
图 6-11 表示本发明的双转子发动机中第五种实施例的控制机构中带有前伸翼的 第一蝴蝶结形控制轮的立体图;
图 6-12是图 6-11所示带有前伸翼的第一蝴蝶结形控制轮左侧视图;
图 6-13是图 6-8、 6-12所示带有前伸翼的往复框与带有前伸翼的第一蝴蝶结形 控制轮配合的主视图;
图 6-14是第一蝴蝶结形控制轮的各扇形角度和各弧面的角度位置大小与半径大 小示意图;
图 7-1 表示本发明的双转子发动机中第六种实施例的转子控制机构的结构示意 图;
图 7-2是图 7-1的俯视图;
图 7-3是图 7-1的右视图;
图 7-4 表示本发明的双转子发动机中第六种实施例的控制机构中的往复块的立 体图;
图 7-5 表示本发明的双转子发动机中第六种实施例的转子控制机构中带有前伸 翼的往复块的立体图;
图 8是图 1-1 中沿 A1-A1所作的剖面图,表示本发明的双转子发动机中的润滑系 统的结构示意图;
图 9-1表示本发明的双转子发动机中转子的一种密封结构的示意图;
图 9-2表示本发明的双转子发动机中转子的另一种密封结构的示意图; 图 9-3是图 9-1 中的扇形活塞的俯视图;
图 9-4是图 1-5中 G部分放大图;
图 9-5是图 1-5中所示的 0形密封环的结构示意图;
图 10-1 表示本发明中的一种转子反转阻挡装置控制过程的第一步的结构示意 图;
图 10-2表示本发明中的转子反转阻挡装置控制过程的第二步的结构示意图; 图 10-3表示本发明中的另一种转子反转阻挡装置的结构示意图;
图 11-1表示在传动输出轴上配平衡重的结构示意图;
图 11-2表示在飞轮上配两个对称布置的平衡重的结构示意图;
图 12-1表示本发明中实现可变压缩比的结构示意图; 图 12-2是一种实现可变压缩比技术的电子控制原理图;
图 13表示在本发明的双转子发动机外加外壳的结构示意图;
图 14表示本发明的双转子发动机稍加改造即可成为压缩机、泵机的结构示意图。 具体实施方式
下面将详细描述本发明的具体实施例。应当注意,这里描述的实施例只用于举例说明, 并不用于限制本发明。
本发明的双转子发动机包括缸体组件、传动输出机构、转子控制机构以及润滑系 统。
参见图 1 - 1至图 1 - 1 1。本发明的双转子发动机中的缸体组件包括固定连接在基座 (图中未示出) 上或与基座一体设计的管形缸体 6、 穿过管形缸体 6且两端通过轴承 连接于基座的中心支撑轴 7、 第一转子 l a和第二转子 l b。 其中, 管形缸体 6左上侧 设有火花塞 9, 管形缸体 6下面分别连接有进气口 10和排气口 1 1。 本发明的发动机 中, 可以沿径向进、 排气, 也可以沿圆周方向进、 排气。 管形缸体 6的前、 后端部分 别固定连接有圆盘形的前端盖 5a、 后端盖 5b。 在前、 后端盖与缸体 6之间分别设有 密封垫, 以保证缸体 6的密封性能。 前端盖 5a、 后端盖 5b中央分别设有转子颈孔。
第一转子 l a包括内圆柱缸体 99a (见图 1 -8 ) 、 连接于该与内圆柱缸体 99a的一 端并与其一体的第一转子颈 20a和对称固定连接在内圆柱缸体 99a上的两个第一扇形 活塞 17a。 第一转子上的第一扇形活塞 17 a的扇形角最佳为 40°, 该角度优选方案一 般在 35°-45°之间; 当扇形角小于 35°时, 转子厚度太薄, 对燃烧室的容积、 转子的受 力、 温度、 密封性能等影响较大。 第一转子颈 20a的直径小于内圆柱缸体 99a直径。 第一扇形活塞 17a凸出内圆柱缸体 99a—部分, 第一扇形活塞 17a凸出部分与第一转 子颈 20a分别分布在内圆柱缸体 99a的两端。 内圆柱缸体 99a在不与第一转子颈 20a 连接的一端, 尽可能靠近底面圆周处设有环形凹槽 19a, 用以减小纵向密封深度。 第 一转子颈 20a与内圆柱缸体 99a连接位置, 内圆柱缸体 99a的圆周上设有密封槽。 第 一扇形活塞 17a与内圆柱缸体 99a结合处除外, 环绕第一扇形活塞 17a—周有两道平 行布置的密封槽。 在第一转子 l a中轴线位置设有用于套装到中心支撑轴 7上的中心 支撑轴孔 21 a。 第一扇形活塞 17a的两个对称侧面上分别设有凹向第一扇形活塞 17a 内的两个凹陷 15a。 第一扇形活塞 17a的两侧面在靠近内圆柱缸体 99a的根部具有减 震降噪面 14a。
第二转子 l b的结构与第一转子 l a相同, 包括内圆柱缸体 99b、 连接于该与内圆 柱体的一端并与其一体的第二转子颈 20b (见图 1 -5 ) 和对称固定连接在内圆柱体上 的两个第二扇形活塞 17b。 第二转子 l b的中轴线位置设有中心支撑轴孔。 第二扇形 活塞 17b的两个对称侧面上分别设有凹向第二扇形活塞 17b内的两个凹陷。第二扇形 活塞 17b的两侧面在靠近内圆柱体的根部具有减震降噪面。内圆柱缸体 99b和第一扇 形活塞 17a上布置有密封槽。 第一转子 la和第二转子 lb通过各自的中心支撑轴孔固定套装在中心支撑轴 7 上。 第一转子 l a、 第二转子 lb在发动机中的作用是一样的, 只是在同一时刻所处的 工作状态不一样。 第一转子 la、 第二转子 lb在中心支撑轴 7上的安装方向相反: 第 一转子 la、 第二转子 lb的内圆柱缸体 99b位于缸体 6内, 二者的转子颈分别由前端 盖 5a、 后端盖 5b的转子颈孔伸出缸体 6外。 第一转子 la、 第二转子 lb的扇形活塞 17a, 17b位于缸体 6内, 且相互交叉布置。 第一转子 la的内圆柱缸体 99a和第二转 子 lb内圆柱缸体 99b接触面上各自设有一个减小纵向密封深度的环形密封凹槽 19, 环形密封凹槽 19对正,嵌入 0形密封圈,使两个转子的纵向接触面上实现了气密性。 相邻的第一扇形活塞 17a和第二扇形活塞 17b 的相邻侧面上的两个凹陷形成燃烧室 15, 燃烧室 15的朝向火花塞 9或喷油口位置设有缺口。 当空气被压缩后就储存在相 应的燃烧室 15内, 燃烧室 15与进气工作室的体积比为发动机的压缩比。沿轴线垂直 面上优选的燃烧室形状为一头大一头小的卵形, 并且在靠近缺口处的容积较大, 在靠 近中心支撑轴 7处的容积相对较小。 如图 1 -12、 图 1 - 13所示, 沿轴线平行面上然燃 烧室 15凹陷可以是对称布置的, 燃烧室 15凹陷最深处也可以是非对称布置的, 而是 在靠近转子内圆柱缸体有一个偏置, 使转子的受力条件更好。 安装在中心支撑轴 7 上的两个转子的相邻的两个扇形活塞根部的两个减震降噪面接触配合,以减小转子工 作过程中相互碰撞而产生的振动和噪音。 由于越靠近中心支撑轴 7位置, 转动的角速 度越小, 故减震降噪面可大幅度减小振动和噪声。
参见图 1 -1、 图 1-2、 图 1 -3和图 1 -4。 其中 A表示做功冲程, B表示排气冲程, C表示进气冲程, D表示压缩冲程。 第一转子 la和第二转子 lb的扇形活塞的扇形角 设定为 40度, 做功冲程对应的角度为 100度。本发明的双转子发动机的做功过程为: 图 1-1 表示本发明的双转子发动机开始做功图。 这时, 第一转子 la被控制机构 锁止到缸体 6上 (图 1 -1中的竖直位置) , 第二转子 lb可以自由旋转。 第一转子 la 和第二转子 lb的其中一对相邻的第一扇形活塞 17a和第二扇形活塞 17b紧靠在一起 将缸体 6 内的空腔分成两个工作室, 对应启始阶段的两个冲程: 排气冲程 B和压缩 冲程 D。 形成于该第一扇形活塞 17a和第二扇形活塞 17b之间的燃烧室 15正对缸体 6上的火花塞 9。
见图 1 -2、 图 1-3和图 1 -4。 当火花塞 9点火, 燃烧室 15内含有燃料的压缩空气 膨胀推动能够自由旋转的第二转子 l b旋转做功, 所做的功由传动机构输出。 第二转 子 l b做功过程中, 第二扇形活塞 17b与第一扇形活塞 17a分离, 将缸体 6内的空腔 分成 4个工作室, 对应 4个冲程: 做功冲程 、 排气冲程8、 进气冲程。、 压缩冲程 D, 由进气口 10吸入空气, 排气口 1 1排出废气。 第二转子 lb的做功行程对应的旋 转角度是 100度。当第二转子 l b旋转至其第二扇形活塞 17b与第一转子 la的第一扇 形活塞 17a紧密接触时, 制机构控制第一转子 l a解锁,第一转子 la和第二转子 l b 依靠惯性、 飞轮的作用共词旋转 40度, 这时第二转子 lb到达竖直位置, 代替了第一 转子 l a的初始位置。 此时, 第二转子 l b被控制机构锁止到缸体 6上, 第一转子 l a 可以自由旋转。第一转子 l a和第二转子 lb的另一对相邻的第一扇形活塞 17a和第二 扇形活塞 17b紧靠在一起,形成于该对第一扇形活塞 17a和第二扇形活塞 17b之间的 燃烧室 1 5正对缸体 6上的火花塞 9。 火花塞 9点火, 重复上述做功过程, 如此循环 往复。
参见图 2- 1。 本发明中的传动输出机构包括: 传动输出轴 8、 第一转子齿轮 2a、 第一传动齿轮 3a、 第二转子齿轮 2b、 第二传动齿轮 3b。 其中
传动输出轴 8设置在缸体 6外并与中心支撑轴 7平行,传动输出轴 8的两端分别通过 轴承可转动安装在基座上, 传动输出轴 8的两端也可直接固定安装在基座上。
第一转子齿轮 2a是圆柱斜齿轮, 套装在第一转子的转子颈上, 用花键和键槽固 定连接。
第二转子齿轮 2b是圆柱斜齿轮, 套装在第二转子的转子颈上, 用花键和键槽固 定连接。
第一传动齿轮 3a、 第二传动齿轮 3b分别通过花键和键槽固定连接在传动输出轴 8上。 第一传动齿轮 3a与第了转子齿轮 2a啮合配合, 第二传动齿轮 3b与第二转子 齿轮 2b啮合配合。
参见图 2 - 4, 第一转子齿轮 2a和第一传动齿轮 3a的周长有严格要求: 以转子 齿轮为 360°计, 第一传动齿轮 3a的周长等于转子齿轮周长的一半加上第一转子齿轮 2a做功所运转角度对应的周长。 或者是, 第一传动齿轮 3a的周长等于 360°减去第一 转子齿轮 2a的两个扇形活塞所占角度之差对应的第一转子齿轮 2a的周长。两种计算 方法所得结果相同。
参见图 2-2、 图 2-3、 图 2-4、 图 2-5。本发明中的第一转子齿轮 2a具有齿顶圆 281 和齿根圆 271。 第一传动齿轮 3a具有齿顶圆 282和齿根圆 272。 相互啮合的第一转子 齿轮 2a和第一传动齿轮 3a的两个齿顶圆 281, 282有两个交汇点 251、 252。 分别通 过两个交汇点 251、 252与第一转子齿轮 2a的圆心 CM所作的两条直径线 φ、 d2分别 在第一转子齿轮 2a的齿顶圆 281上有两个交汇点 253、 254。 4个交汇点将齿顶圆 282 分成四段圆弧。其中对称布置的两段弧长, 即交汇点 251与 252之间的弧长以及交汇 点 253与 254之间的弧长为第一转子齿轮 2a上缺齿部分 24的圆周长度:而对称布置 的两段弧长,即交汇点 251与 253之间的弧长以及交汇点 252与 254之间的弧长为第 一转子齿轮 2a上有齿部分的圆周长度, 两段有齿圆弧在起始位置的齿形完全一致, 转子齿轮和传动齿轮啮合位置是固定的,转子齿轮和传动齿轮上相互啮合的齿是一一 对应的关系。 缺齿部分 24等同于第一转子齿轮 2a与第一传动齿轮 3a啮合的部分。 缺齿部分 24的形状为第一转子齿轮 2a与第一传动齿轮 3a啮合情况下, 由二者的齿 顶圆 281, 282围成的区域, 见图 2-4中的剖面线部分。 设计缺齿部位 24是为了保证 在需要时转子齿轮停止而传动齿轮转动时, 传动齿轮的运转不受转子齿轮干涉。 当转 子停止转动时, 转子上的缺齿位正对传动齿轮, 这时传动齿轮的运转不受干涉。 参考 转子齿轮与传动齿轮啮合时两个齿轮的齿高、齿厚、齿距等因素转子齿轮缺齿长度和 高度范围可以略长或略大于上述的距离,转子齿轮缺齿部位的高度设计以转子齿轮停 转时不影响传动齿轮旋转为原则。
第一转子齿轮 2a在其圆柱基体的一端向外延伸有凸环 26, 该凸环 26的外圆周 面位于第一转子齿轮 2a的齿根圆位置,在凸环 26的外圆周面上对称设有两个转子齿 轮定位直齿 50, 转子齿轮定位直齿 50的齿高等于第一转子齿轮 2a的齿高。 两个转 子齿轮定位直齿 50呈中心对称布置, 分别设置在靠近两个缺齿部分 24位置, 以旋转 方向为前, 转子齿轮定位直齿 50位于转子齿轮缺齿部分 24的后方, 并紧邻该缺齿部 分 24。 需要指出的是转子齿轮与传动齿轮采用直齿传动时不需要凸环和定位直齿设 计。
本发明中的第二转子齿轮 2b与第一转子齿轮 2a相同, 不再赘述。
本发明中, 与转子齿轮啮合配合的传动齿轮可以是完整的圆柱斜齿轮, 没有缺齿 部分; 传动齿轮也可以设缺齿部分。第一转子齿轮 2a有齿的两段圆弧, 即交汇点 251 与 253之间的圆弧以及交汇点 252与 254之间的圆弧,这两段圆弧上的齿在圆弧起始 位置的齿形完全一致。 第一转子齿轮 2a上有齿的圆弧与传动齿轮上始终是固定位置 的一段圆弧相啮合。在传动齿轮上不参与啮合的部分, 如果在齿形设计上与参与啮合 的部分有冲突, 那么该部分也可以设计为无齿结构。
如图 2-5、 图 2-6所示, 本发明中的第一传动齿轮 3a在其圆柱基体的一端向外延 伸有凸环 44 , 该凸环 44的外圆周面位于第一传动齿轮 3a的齿根圆位置, 凸环 44上 设有一个传动齿轮定位直齿 51, 传动齿轮定位直齿 51 的齿高等于第一传动齿轮 3a 的齿高。当第一转子齿轮 2a和第一传动齿轮 3a分别在中心支撑轴 7上和传动输出轴 8上安装好后, 当第一转子 l a的转子控制机构设定在正时解除锁止状态上时, 第一 转子齿轮 2a上的其中一个转子齿轮定位直齿 50与第一传动齿轮 3a上的传动齿轮定 位直齿 51紧挨着。 当第一转子齿轮 2a开始旋转时, 转子齿轮定位直齿 50受第一传 动齿轮 3a上的传动齿轮定位直齿 51 的阻挡作用, 使第一转子齿轮 2a不能继续向前 转动, 从而保证转子齿轮和传动齿轮相啮合的齿一一对应, 不会发生错位。 当传动齿 轮采用圆柱直齿轮时, 可以不必设计转子齿轮定位直齿 50和传动齿轮定位直齿 51。
本发明中的第二传动齿轮 3b与第一传动齿轮 3a相同, 不再赘述。
当把第一转子 l a的转子控制机构设定在正时解除锁止状态时,第一转子 l a和第 二转子 l b上相邻的第一扇形活塞 17a和第二扇形活塞 17b是紧靠在一起, 这时第二 转子齿轮 2b上的转子齿轮定位直齿 50与第一转子齿轮 2a上转子齿轮定位直齿 50之 间最小角度等于一个扇形活塞的扇形角。
第一传动齿轮 3a上的传动齿轮定位直齿 51与第二传动齿轮 3b上的传动齿轮定 位直齿 51安装角度相差 180°。 第一转子齿轮 2a与第二转子齿轮 2b上的转子齿轮定 位直齿 50之间的角度因旋转和停转是不断发生变化的。
本发明中的两个转子的动力输出过程为: 在第一转子 l a被控制器解除锁止这一 时刻, 第一转子 l a被第二转子 l b推动旋转, 受推动而转过的角度是一个扇形活塞的 扇形角, 第一转子 l a转动带动固定在其第一转子颈 20a上的第一转子齿轮 2a转动, 第一转子齿轮 2a进而与第一传动齿轮 3a相啮合转动; 当第一转子 l a转过一个扇形 活塞的扇形角度后, 相邻的第一扇形活塞 17a和第二扇形活塞 17b之间形成燃烧室 15, 燃烧室 15内含燃料的压缩空气被点燃或压燃。 第一转子 l a开始做功, 第一转子 l a转动继续带动固定其上的第一转子齿轮 2a转动,第一转子齿轮 2a带动与其啮合的 第一传动齿轮 3a转动, 于是带动与第一传动齿轮 3a固定连接的传动输出轴 8转动, 实现动力输出; 第一转子 l a做功完成后的时刻, 同时也是第二转子 l b被控制器解除 锁止的时刻, 第二转子 l b被第一转子 l a推动向前旋转, 同样受推动而转过的角度是 一个扇形活塞的扇形角度, 第二转子 l b转动带动固定其上的第二转子齿轮 2b转动, 第二转子齿轮 2b进而与第二传动齿轮 3b相啮合旋转, 当第二转子 l b转过一个扇形 活塞的扇形角度后, 相邻的第二扇形活塞 17b和第一扇形活塞 17a之间形成燃烧室 15, 燃烧室 15内含燃料的压縮空气被点燃或压燃。 第二转子 l b幵始做功, 第二转子 l b继续带动固定其上的第二转子齿轮 2b转动, 第二转子齿轮 2b带动与其啮合的第 二传动齿轮 3b转动, 于是带动与第二传动齿轮 3b固定连接的传动输出轴 8转动, 实 现动力输出。 所以, 在本发明中, 第一转子 l a和第二转子 l b的顺序转动所输出的动 力集中在同一根传动输出轴 8上。
如图 2-7所示, 本发明中的传动输出机构中, 还可以在第一转子齿轮 2a与第一 气缸盖 5a之间的中心支撑轴 7上安装一个第一传动间轮 16a; 在第二转子齿轮 2b与 第二气缸盖 5b之间的中心支撑轴 7上安装一个第二传动间轮 16b。第一传动间轮 16a 与第二传动间轮 16b均是完整齿轮, 只在转子齿轮驱动控制器中使用, 分别和第一控 制器齿轮 30a和第二控制器齿轮 30b啮合。
本发明首次真正实现了双转子的动力高可靠性的合成到一个轴上输出世界性难 题, 所采用转子齿轮特定位置缺齿的设计和定位直齿防转子齿轮超越设计(转子齿轮 是完全没有可能滞后的) , 使转子齿轮和传动齿轮之间的啮合匹配问题完美解决, 实 现了一对一的高精准啮合, 不会发生打齿和错齿现象, 这种高精度啮合同时对转子的 旋转角度有精确定位作用。转子齿轮和传动齿轮包裹在机壳里浸入润滑油中, 磨损和 温度都会减小, 齿轮寿命大幅延长。
如图 3- 1、 图 3-2和图 3-3所示, 本发明中的第一种实施例的转子控制机构包括 相对于缸体 6固定安装的控制器支架 32、第一扇形控制轮 64a、第二扇形控制轮 64b、 第一制动颈 66a、 第二制动颈 66b以及第一往复块 65a、 第二往复块 65b。 控制器支 架 32上安装有若干对滑轮 34。
第一扇形控制轮 64a安装在传动输出轴 8上, 并位于第一传动齿轮 3a外侧, 第 二扇形控制轮 64b 安装在传动输出轴 8上, 并位于第二传动齿轮 3b外侧。 当第一扇 形控制轮 64a和第二扇形控制轮 64b在传动输出轴 8上安装好后,二者中心线之间的 夹角为 180°。
如图 3-6和图 3-7所示, 第一扇形控制轮 64a的结构包括用于安装到传动输出轴 8的第一内圆柱部 71、 设置在该第一内圆柱部 71的扇形部。 扇形部的外圆弧面为顶 起支撑弧面 69 , 扇形部的前侧面 (旋转运动时在前面的侧面) 与顶起支撑弧面 69的 交线为顶起端线 70; 扇形部的一部分从其后侧面 (旋转运动时在后面的侧面) 向外 延伸形成扇形后伸翼 691。 扇形后伸翼 691的顶起支撑弧面 69与其后侧面的交线为 解锁控制线 692。 扇形后伸翼 691的厚度小于扇形部的厚度, 扇形后伸翼 691的一个 表面与扇形部的一个表面位于同一平面,扇形后伸翼 691的另一个表面低于扇形部的 另一个表面, 从而在扇形后伸翼 691的上方形成了后伸翼口 68。 扇形后伸翼 691的 扇形角 N的大小, 以推动往复杆运动过程中与第一扇形控制轮 64a互相不被卡住为 原则, 通常在 30°-50°之间, 这个角度大小因设计需要可以略有变化。 第一扇形控制 轮 64a的扇形角 ZM, 即扇形部的扇形角与扇形后伸翼 691的扇形角 ZN之和, 等于 转子做功角度 ÷ (转子做功角度 + 180° ) x360° - ZL o 其中 ZL是扇形前伸翼的扇形 角, 请见后面的描述。 ZL在 30°左右, 公式中减去 ZL 也是为了在推动往复杆运动 过程中与第一扇形控制轮 64a互相不被卡住, 以这个为原则这个 ZL的大小因设计需 要可以略有变化, 因此第一扇形控制轮 64a的扇形角 ZM的大小也因此略有变化。
例 1、 如果设定转子的扇形活塞的扇形角为 40°, 那么做功角度是 180°—
Figure imgf000015_0001
100°。 传动齿轮周长只有转子齿轮的 280°所对应的周长。 则扇形控制轮 64的扇形角 Μ = 100°÷ ( 100°+ 180° ) χ360° - 30°=98.5714° ο扇形控制轮 64的扇形角 Μ = 98·5714°。
例 2、如果设定转子的扇形活塞扇形角为 45° ,那么做功角度是 180°— 45°χ2= 90°。 传动齿轮周长只有转子齿轮的 270°度。 则扇形控制轮 64 的扇形角 Μ = 90°÷ ( 90°+180° ) χ360° - 30° = 90° ο 所以扇形控制轮 64的扇形角 Μ = 90。
如图 3-8和图 3-9所示, 第一制动颈 66a包括设置于第一转子颈 20a端部并与其 一体的内圆环 661和对称设置在该内圆环 661上的两个制动凸 662, 内圆环 661与制 动凸 662的上、下表面分别位于同一平面内。 内圆环 661的部分外圆周面及邻接的两 个制动凸 662的侧面共同形成了 C形制动槽 76。见图 3-9, 两个制动凸 662的两条对 角线之间的夹角 ZP为 40°, 该夹角 ZP不限于 40°, 在小于 50°情况下均是可行的, 通常其范围可以在 10°-50°之间。 加工制作时, 可以在第一转子颈 20a的伸出第一转 子齿轮 2a的端部上对称地去除一部分圆弧体从而形成两个 C形制动槽 76 ,继而形成 了第一制动颈 66a。
如图 3- 10所示, 第一往复块 65a的结构包括矩形板, 设置在矩形板一端部可与 第一转子颈 20a上的 C形制动槽 76配合工作的 C形制动卡 67、设置在矩形板另一端 部并与其垂直的矩形块 671。 矩形板的上、 下侧面分别设有与控制器支架 32上的滑 轮 34配合工作的导轨 35。在矩形块 671前面下半部设有正时解除顶起台 42, 正时解 除顶起台 42的底面与矩形块 671位于同一平面上,正时解除顶起台 42的顶面低于矩 形块 671的顶面,因而在正时解除顶起台 432的顶面与矩形块 671之间形成了后正时 缺口 43。 正时解除顶起台 42的外侧下面为斜面 421, 正时解除顶起台 42的外侧上面 为顶起弧面 422, 该顶起弧面 422与第一扇形控制轮 64a的顶起支撑弧面 69形状吻 合。斜面 421和顶起弧面 422分别延伸至矩形块 671的外侧面。斜面 421与顶起弧面 422的交线为锁止线 420。 顶起弧面 422与正时解除顶起台 42顶面的交线为解锁线 423。
第二往复块 65b的结构与第一往复块 65a的结构相同, 不再赘述。
第一往复块 65a位于第一转子 2a的第一制动颈 66a和第一扇形控制轮 64a之间, 由第一扇形控制轮 64a控制周期性地往复直线运动, 从而控制第一转子 2a周期性转 动、 停止。
如图 3- 1、 图 3-4和图 3-5所示, 本发明中的第一种实施例的控制机构的控制第 一转子 2a转动、 停止的过程为:
图 3- 1所示为第一转子齿轮 2a锁止的幵始状态, 这时第一转子齿轮 2a上的其中 一个缺齿部分 24正对着第一传动齿轮 3a; 第一扇形控制轮 64a的顶起端线 70由第 一往复块 65a的正时解除顶起台 42的斜面 421滑至锁止线 420。 此时, 第一往复块 65a被推动至最左端, 第一往复块 65a的 C形制动卡 67与第一制动颈 66a的 C形制 动槽 76紧密配合, 锁住第一制动颈 66a不能转动, 进而锁住第一转子齿轮 2a。 然后, 见图 3-4, 第一扇形控制轮 64a的顶起支撑弧面 69沿着正时解除顶起台 42的顶起弧 面 422滑动, 其中第一扇形控制轮 64a中沿其周向有一半顶起支撑弧面 69沿着矩形 块 671上的顶起弧面 422滑动, 另一半顶起支撑弧面 69及扇形后伸翼 691 的顶起支 撑弧面 69沿着正时解除顶起台 42的顶起弧面 422滑动, 在该滑动过程中, 第一往复 块 65a不移动, 始终锁住第一制动颈 66a; 见图 3-5, 当第一扇形控制轮 64a的扇形 后伸翼 691上的解锁控制线 692滑过第一往复块 65a的正时解除顶起台 42上的解锁 线 423时, 锁止解除, 第一往复块 65a向第一扇形控制轮 64a方向移动, 带动其上的 C形制动卡 67脱离第一转子颈 20a的 C形制动槽 76 , 第一转子颈 20a即可以自由转 动, 这时第一往复块 65a的正时解除顶起台 42的顶起弧面 422贴靠在第一扇形控制 轮 64a的内圆柱部 71上。 整个从锁止状态到解除锁止状态完成。 随着第一扇形控制 轮 64a的转动进入下一个锁止一解锁的循环。
第二往复块 65b位于第二转子齿轮 2b的第二制动颈 66b和第二扇形控制轮 64b之间, 由第二扇形控制轮 64b控制周期性地往复直线运动, 从而控制第二转子齿轮 2b周期性转 动、 停止。 第二往复块 65b的动作过程与第一往复块 65a的动作过程相同, 不再贅述。 本 发明中, 在第二转子齿轮 2b被锁止的时间内, 第一转子齿轮 2a转动; 在第一转子齿轮 2a 被锁止的时间内, 第二转子齿轮 2b转动。 这样, 通过传动机构将两个转子上的动力整合 在同一根输出轴 8上匀速顺畅输出。
如图 3- 13所示, 在第一种实施例的控制机构中, 还可以在第一往复块的矩形块 671的侧面设有正时顶起台 79。 该正时顶起台 79的其中一个表面与矩形块 671在同 一平面上, 与该表面相对的另一个表面低于正时顶起台 79低于矩形块 671的相应表 面, 从而在正时顶起台 79与矩形块 671之间形成了前正时缺口 80。
如图 3-14、 图 3-15和图 3-16所示, 在第一种实施例的控制机构中, 第一扇形控制轮 64a上还可以设置扇形前伸翼 84。 该扇形前伸翼 84由第一扇形控制轮 64a的扇形部的一 部分从其后侧面 (旋转运动时在后面的侧面) 向外延伸而形成。 扇形前伸翼 84的前端部 设有导向凸条 78。扇形前伸翼 84与扇形后伸翼 691分布在扇形部的两侧,并且错开布置。 扇形前伸翼 84的厚度小于扇形部的厚度,扇形前伸翼 84的一个表面与扇形部的一个表面 位于同一平面, 扇形前伸翼 84的另一个表面低于扇形部的另一个表面, 从而在扇形前伸 翼 84与扇形部之间形成了前伸翼口 841。扇形前伸翼 84的扇形角 ZL在 30°左右, 以推动 往复杆运动过程中与第一扇形控制轮 64a互相不被卡住为原则, ZL和 相加等于转子 齿轮的做功周长所啮合对应在传动齿轮上同样周长所占的角度。 扇形前伸翼 84与正时顶 起台 79 配合工作。 当第一扇形控制轮 64a上的顶起端线 70到达第一往复块的锁止线 420 时, 扇形前伸翼 84的导向凸条 78同时提前到达正时顶起台 79。 扇形前伸翼 84与正时顶 起台 79的设置可以大大减小第一往复块的锁止线 420及第一扇形控制轮 64a的顶起端线 70的磨损, 有利于延长第一控制机构的使用寿命。
如图 4- 1、 图 4-2和图 4-3所示, 本发明中的第二种实施例的控制机构包括相对 于缸体 6固定安装的控制器支架 321、 第一扇形控制轮 64a、 第二扇形控制轮 64b、 第一制动颈 66a、 第二制动颈 66b以及第一往复框 45a、 第二往复框 45b。 控制器支 架 321上安装有若干对滑轮 34。
该第二种实施例的控制机构结构与第一种实施例的控制机构不的同之处仅在于 两点: 一是控制器支架 321的形状不同, 这不是本发明重点所在, 控制器支架可以是 任意形状的, 只要能使往复框或往复块在其上自由滑动即可。 另一个不同点是, 该实 施例中的往复件是第一往复框 45a、 第二往复框 45b。
如图 4-1所示, 第一往复框 45a的结构包括一个矩形框, 在该矩形框的相对的两 个边中其中一个边上内侧设置正时解除顶起台 42,在另一个边上设有 C形制动卡 67。 正时解除顶起台 42的结构、 功能与第一种实施例的控制机构中一样, 均是在第一扇 形控制轮控制下带动第一往复框往复移动。 C形制动卡 67的结构、 功能与第一种实 施例的控制机构中一样, 用于与第一制动颈 66a的 C 形制动槽配合工作, 使第一转 子 l a制动或运转。
第二往复框 45b的结构与第一往复框 45a相同不再赞述。
该第二种实施例的控制机构结构与第一种实施例的控制机构相同的其他部分不 再赘述。 如图 5- 1、 图 5-2和图 5-3所示, 本发明中的第三种实施例的控制机构与第一种 实施例的控制机构的不同之处仅在于: 增加了一根由控制器支架 29安装的平行于传 动输出轴 8的控制器轴 31和一个安装于控制器轴 31上的控制器齿轮 30。 所述第一 扇形控制轮 64a安装在控制器轴 31上。控制器齿轮 30与第一传动齿轮 3a啮合配合。 所述第一往复块 65a安装在第一转子 2a的第一制动颈 66a和第一扇形控制轮 64a之 间。
增加控制器齿轮 30使控制器支架 322的安装更加方便, 同时可以减小电动机的 轴向尺寸, 使整机的各部分结构布置紧凑, 有利于减小电动机的体积。
该第三种实施例的控制机构与第一种实施例的控制机构相同的其他部分不再赘 述。
如图 5-4所示, 本发明中的第四种实施例的控制机构与第三种实施例的控制机构 的不同之处仅在于: 该实施例中的往复件是第一往复框 45a、 第二往复框 45b。 该第 四种实施例的控制机构结构与第一种、第二种实施例的控制机构相同的其他部分不再 赘述。
如图 6- 1、 图 6-2和图 6-3所示, 本发明中的第五种实施例的控制机构结构, 包 括控制器支架 29安装在缸体 6外并平行于传动输出轴 8的两根控制器齿轮轴 31、 安 装在其中一根控制器齿轮轴 31前部的第一控制齿轮 30a和第一蝴蝶结形控制轮 4a、 安装在另一根控制器齿轮轴 31后部的第二控制齿轮 30b和第一蝴蝶结形控制轮 4b、 由两个蝴蝶结形控制轮控制往复移动的往复框 12、 安装在第一转子颈 20a上的第一 转子控制齿轮 16a、 安装在第二转子颈 20b上的第二转子控制齿轮 16b, 以及相对于 缸体 6固定安装的控制器支架 324, 控制器支架 324上装有若干对滑轮 34。第一控制 齿轮 30a与第一转子控制齿轮 i 6a相啮合; 第二控制齿轮 30b与第二转子控制齿轮
16b相啮合。
如图 6-6和图 6-7所示,本发明中的第五种实施例的控制机构中的往复框的结构, 包括由两条长边和两条宽边组成的矩形框架。在两个宽边上各自设有一个正时解除顶 起台 42和一个后正时缺口 43, 该正时解除顶起台 42的结构与本发明中的第一种实 施例的控制机构中第一往复块 65a的正时解除顶起台 42结构相同, 包括斜面 421、 顶起弧面 422、 解锁线 423。 如图 6- 1 1所示, 还可以设有正时顶起台 79和前正时缺 口 80, 该两个结构与第一往复块 65a 中相同。 两个宽边上的各个结构呈中心对称布 置。
如图 6-9、 图 6- 10和图 6- 14所示, 本发明中的第五种实施例的控制机构中的第 一蝴蝶结形控制轮 4a为一个矩形体 52。 矩形体 52具有两个表面、 两个长面和两个 宽面, 表面上的对角线间的夹角 ZP 1与第一制动颈 66a上的 相同。 矩形体 52的 两个宽面是可以与往复框的正时解除顶起台 42 的顶起弧面 422 吻合的圆弧顶起面 54。 矩形体 52的每个长面由与其中一个圆弧顶起面 54连接的平面 40、 与该平面 40 平滑过渡连接并凹向矩形体 52内的弧面 46, 和连接该弧面 46并和圆弧顶起面 54连 接的斜面 38。 斜面 38和圆弧顶起面 54的交线为顶起端线 50。 斜面 38和弧面 46的 长度之和约等于平面 40的长度。 当第一蝴蝶结形控制轮 4a被锁止时, 往复框的斜面 421和第一蝴蝶结形控制轮 4a斜面 38贴合在一起、 往复框的顶起弧面 422和第一蝴 蝶结形控制轮 4a弧面 46贴合在一起。
矩形体 52从其平面 40向外延伸形成后伸翼 47,后伸翼 47的厚度约为矩形体 52 厚度的 1/3 , 后伸翼 47 的一表面与矩形体 52 的一表面在同一平面内。 该后伸翼 47 与第一扇形控制轮 64a的扇形后伸翼 691的结构相同。 如图 6- 1 1和图 6-12所示, 本 实施中的矩形体 52还可以从其斜面 38向外延伸有前伸翼 58, 前伸翼 58的厚度约为 矩形体 52厚度的 1/3, 前伸翼 58的一表面与矩形体 52的一表面在同一平面内, 前伸 翼 58的另一表面低于矩形体 52的另一表面。 前伸翼 58的前端部设有导向凸条 78。 前伸翼 58和后伸翼 47分别位于矩形体 52长面的两侧, 并错幵布置。 形成于矩形体 52两长面的各个结构呈中心对称。
如图 6- 13所示, 第二蝴蝶结形控制轮 4b与第一蝴蝶结形控制轮 4a的结构相同, 不再赘述。
如图 6- 14, 后伸翼 47 ZN 1等于前伸翼 58 ZL1 , 180°先减去转子做功时长所占角 度,再减去矩形体 52表面上的对角线间的夹角 Z P 1最后所剩余角度除以 2就是 ZN 1 或 Z L1的角度。 03、 04、 05在同一直线上且间隔为蝴蝶结形控制轮的半径, 以 03、 04、 05 为圆心做圆的半径都是蝴蝶结形控制轮的半径, 来画出矩形体 52 内的弧面 46, 弧面 46是与正时解除顶起台 42的顶起弧面 422吻合的。
如图 6-4、图 6- 1和图 6-5所示,往复框 12对两个蝴蝶结形控制轮的控制过程为: 图 6-4所示, 第一蝴蝶结形控制轮 4a的弧面 46、 斜面 38分别与往复框 12其中 一侧的顶起弧面 422、 斜面 421接触配合, 第一蝴蝶结形控制轮 4a与往复框 12互相 锁止:此时,第二蝴蝶结形控制轮 4b的顶起端线 50到达往复框另一侧的锁止线 420, 接着顶起端线 50越过锁止线 420 , 第二蝴蝶结形控制轮 4b的圆弧顶起面 54沿着顶 起弧面 422滑动 (见图 6- 1 ) , 直到第二蝴蝶结形控制轮 4b的后伸翼 47上的圆弧顶 起面 54滑过往复框 12正时解除顶起台 42顶面, 往复框 12被解锁 (见图 6-5 ) ; 在 往复框 12被解锁的同时, 第一蝴蝶结形控制轮 4a和第二蝴蝶结形控制轮 4b共同旋 转, 共同旋转的角度是一个扇形活塞的角度, 第一蝴蝶结形控制轮 4a的顶起端线 50 沿着往复框 12的斜面 421滑动,推动往复框 12向第一蝴蝶结形控制轮 4a方向移动; 随着第二蝴蝶结形控制轮 4b继续旋转, 当第二蝴蝶结形控制轮 4b另一个顶起端线 50到达往复框 12另一侧的斜面 421 时, 与此同时当第一蝴蝶结形控制轮 4a顶起端 线 50滑至锁止线 420时, 第二蝴蝶结形控制轮 4b的弧面 46、 斜面 38分别与往复框 12的顶起弧面 422、斜面 421接触配合, 第二蝴蝶结形控制轮 4b与往复框 12互相锁 止, 进入下一个锁止一解锁一锁止的循环; 第一蝴蝶结形控制轮 4a沿着往复框 12的 顶起弧面 422滑动, 当第一蝴蝶结形控制轮 4a的后伸翼 47上的圆弧顶起面 54滑过 往复框 12正时解除顶起台 42顶面时, 往复框 12解锁, 在第二蝴蝶结形控制轮 4b 的作用下向第二蝴蝶结形控制轮 4b方向移动, 如此循环往复。
当该实施例中的蝴蝶结形控制轮具有前伸翼 58, 往复框 12 具有正时顶起台 79 时, 前伸翼 58与正时顶起台 79配合工作。 当蝴蝶结形控制轮的顶起端线 50到达往 复框的锁止线 420时, 前伸翼 58的导向凸条 78同时或提前到达正时顶起台 79。 前 伸翼 58和正时顶起台 79 时的作用在于减小顶起端线 50与锁止线 420的磨损, 有利 于延长第一转子控制机构的使用寿命。
如图 7- 1、 图 7-2和图 7-3所示, 本发明中的第六种实施例的转子控制机构结构, 其与第四种实施例的转子控制机构的不同之处仅在于: 往复件是往复块 33, 而非往 复框。 往复块 33的结构包括矩形块和呈中心对称设置在矩形块上的与第四实施例中 相同的两个正时解除顶起台 42、 两个后正时缺口 43。 见图 7-4 , 还可以在矩形块上 设置两个呈中心对称布置的正时顶起台 79、 两个前正时缺口 80。
该第六种实施例的转子控制机构的其他结构及动作过程与第四种实施例的转子 控制机构相同, 不再赘述。
本发明的转子控制机构首次实现了转子的正时控制,精准地控制了转子的旋转时 长和停转时长, 精确做到对转子的按时制动和按时解除锁止。
参见图 1 -8、 图 1 - 10, 第一转子颈 20a与内圆柱缸体 99a连接位置, 内圆柱缸体 99a的圆周上设有密封槽。
参见图 9- 1, 这个密封槽可以采用 0形密封圈 85密封; 参见图 9-2 , 这个密封 槽也可以采用两个 C形密封条 86密封。 参见图 1 -8、 图 1 - 10和图 1 -1 1, 第一扇形活 塞 17a与内圆柱缸体 99a结合处除外, 平行于轴线环绕第一扇形活塞 17a—周有两道 平行布置的密封槽。密封槽必须设在第一扇形活塞 17a的表面上不能与燃烧室有交叉 连接。
参见图 1 -9、 图 1 - 1 1, 内圆柱缸体 99a在有第一扇形活塞 17a伸出的端面上, 尽 可能靠近内圆柱缸体 99a外圆周处设有环形凹槽 19 , 用以减小纵向密封深度。 第一 扇形活塞 17a上的密封槽与内圆柱缸体 99a端面的密封槽直接相接。 第一扇形活塞 17a上的密封槽通过 L形密封条槽 73与减小纵向密封深度环形凹槽 19相接。参见图 1 -5、 1 -6, 图 9-5, 第一转子 l a的内圆柱缸体 99a和第二转子 l b内圆柱缸体 99b接 触面上的环形减小纵向密封深度凹槽 19对正, 嵌入 0形密封圈 (参见图 9-4 ) , 使 两个转子的纵向接触面上实现了气密性。
参见图 9-5 , 在所述两个转子 99a, 99b之间的接触的圆周部分及靠近该圆周的端 面部分设有弹簧 89, 在所述弹簧 89与第二转子 99b之间设有 L形密封条 90, 在所述 弹簧 89与第二转子 99b端面之间设有纵向密封片 72, 在两个转子接触的端面之间, 并位于所述纵向密封片 72端部设有 0形密封圈 88。 第一扇形活塞 17a和内圆柱缸体 99a有第一扇形活塞 17a伸出的一端之间, L形 密封条 90嵌入在第一转子上 L形密封条槽 73里, 被弹簧 89压紧。 紧贴 L形密封条 90的 L头设一个小纵向密封片 72,在弹簧 89作用下与减小纵向密封深度环形凹槽 O 形密封环 88紧密接触的实现更好的密封。 L形密封条 90的头部如果过长会在 0形密 封环 88上被支起与另一转子的内圆柱缸体形成一道间隙, 如果过小也会与 0形密封 环 88之间形成间隙。 L形密封条 90的头部采用过小设计, 紧贴头部设一个小纵向密 封片 72, 来弥补与 0形密封环 88之间形成间隙, 从而达到完全密封。 参见图 9- 1、 图 9-2、 图 9-3, 整个密封条沿平行于轴线方向上将第一转子 l a围起来实现密封, 以 保证第一扇形活塞 17a前后进气、 压缩、 做功、 排气四冲程工作室的气密性。 参见图 1 - 10、 图 1 -1 1, 转子上密封槽处加工很细小的孔 98 , 润滑油通过小孔渗出, 为密封 件运行提供润滑, 同时配合密封件起到气密作用。
解决了双转子相互咬合时的纵向缝隙易导致漏气的问题,解决了转子复杂几何面 密封如何实现的问题, 从而彻底解决该发动机的密封问题。
如图 8所示, 本发明的双转子发动机中的中心支撑轴 7是中空的, 具有中心管道 96, 并在安装有转子位置设置喷射孔 97。 两个转子内分别设有孔道 94。 缸体壁上连 通有出油管道 93。 缸体 6和圆盘形前端盖 5a、 后端盖 5b上分别设有多道互相连通的 管道 91。
润滑油被泵入中心支撑轴 7的中心管道 96 , 通过中心支撑轴上的喷射孔 97向转 子内部喷射, 在压力和离心力的作用下在经过转子内的孔道 94, 然后进入转子内腔 室 95, 在腔室内旋转热交换后流向转子扇形活塞 17的与管形缸体 6相接触的面, 在 转子制动时由缸体壁上的出油管道 93流出。 缸体 6和圆盘形前端盖 5a、 后端盖 5b 上分别设置许多管道 91, 管道相通, 管道内填充冷却液, 对发动机进行冷却。
本发明创造性地解决了中心支撑轴内喷油,双转子中空设计,润滑油离心式流动, 缸体出油口设计, 实现了转子内的降温, 同时有缸体上的水冷系统相配合, 从而使转 子能够维持在相应的温度范围区间, 使转子的热变形小且机械强度不会降低。 同时润 滑油通过转子密封条上小孔向缸内供油首次解决了缸内润滑问题。
本发明中, 还可以设置转子反转阻挡装置。
如图 10- 1, 一种转子反转阻挡装置的结构, 包括与传动输出轴 8 平行的凸轮轴 104、 摆动从动件 105和弹簧 89。 其中凸轮轴 104上安装有凸轮齿轮 108和盘形凸轮 104 , 凸轮齿轮 108与传动齿轮啮合; 摆动从动件 105包括摆动杆和设置在该摆动杆 一端的与制动颈的制动凸 662 配合工作的 L形翘起的三角头, 三角头具有立面 106 和斜面 107 ; 弹簧 89将三角头压紧到制动凸 662上。
釆用与传动轴 8平行的凸轮轴 104上套装固定凸轮齿轮 108, 凸轮齿轮 108带动 盘形凸轮 107旋转, 与盘形凸轮 1 10相配合, 摆动从动件 105上一头有 L形翘起的三 角头, 三角头与第一制动颈 66a 上的制动凸 662配合, 三角头朝向第一制动颈 66a 旋转方向, 三角头有一个大的斜面 107 , 第一制动颈 66a旋转方向有一立面 106。 当 第一制动颈 66a 上制动凸 662 旋转到与斜面 (或圆弧面) 107接触时, 沿斜面 107 将从动件 105的 L形翘起的三角头压下, 第一制动颈 66a旋转不受影响。
如图 10-2, 当第一制动颈 66a被往复杆制动后, 由凸轮齿轮 108带动旋转, 盘形 凸轮 1 10 的凸起的一头压下从动件 105 另一头, 使三角头翘起, 三角头的立面 106 阻挡制动凸 662, 防止反转。 接着进入阻挡一分离一阻挡的下一轮循环。'弹簧 89作 用于摆动从动件 105上的三角头, 三角头与制动凸 662能紧密配合。本发明主要采用 凸轮和从动件的反转阻挡装置, 上面的实施例只是其中的一种方式。
另一种反转阻档装置是离心甩出销子式转子反转阻档装置。
如图 10-3 , 其中每个所述转子的扇形活塞具有至少一个径向孔, 所述缸体上对 应每个径向孔位置设有一个三角槽,所述转子反转阻挡装置包括放置在所述径向孔内 有销子和弹簧, 其中所述销子头部呈三角形或楔形, 在朝向转子反转方向具有立面, 在朝向缸体的一面具有斜面或圆弧面。
当转子旋转至制动位置时,销子 109在离心力和弹簧弹力共同作用下,迅速甩出, 插在缸体 6上的三角槽 1 1 1上,受燃气膨胀压力推动转子的反向作用力卡住缸体使转 子不能反转。 当转子向前旋转时, 销子的斜面 107在缸体 6压迫下被自动压入转子内 部。 这个防反转装置也可设置到转子颈上。
本发明中在非三缸或者缸数不是三的倍数的情况下要配平衡重。
由于转子齿轮的周长大, 传动齿轮周长小, 因此形成一个 360°比 280°特殊传动 比, 转子做功时长在传动输出轴上输出时, 便会在 360°旋转范围内均匀分两次, 每 次约 120°时长输出, 所以 1 缸, 2 缸的发动机动力输出并不均匀, 需要平衡重加以 平衡,那么在 3缸时能保证每时每刻都有两个缸做功动力输出均匀,所以不需要平衡, 因此说在非三缸或缸数不是三的倍数的情况下要设置平衡重, 以解决做功输出不连 续、 不均匀及振动的问题, 因为本发明传动输出的 360°周期中, 一个缸分两次间隔 输出约 120°左右的动力, 所以要做这样的平衡。
如图 H - l, 在传动输出轴 8上配两个对称布置的平衡重 1 12 ; 或如图 1 1 -2, 在飞 轮 41上配两个对称布置的平衡重 1 12以达到使动力输出达到平衡。
如 12- 1所示, 在进气口 10和排气口 1 1 内各安装有一个废气涡轮增压器 1 14, 两 个废气涡轮增压器 1 14之间连接有连杆。
如图 12- 1, 自然吸气可变压缩比技术。 就是给缸体设定一个最大的压缩比, 如 使用柴油的压缩比是 18比 1 ,以柴油压缩比为基准,设定发动机压缩比是是 18比 1, 此时发动机使用柴油没有任何问题。缸体 6内的两个转子扇形活塞 17a和 1 7b靠在一 起形成燃烧室 1 5时, 缸体 6与两个转子 l a和 l b之间, 形成了最大压缩室, 具有总 进气量, 最大压缩比是 18比 1。 在缸体 6的进气压缩区域缸体壁的中段开孔, 孔上 安装进气泄压阀 1 13。 在缸体壁上通过幵启进气泄压阀, 如进气后放掉多余的空气, 那么这时发动机的压缩比将减小, 可以是 10比 1, 也就是压缩比从 18比 1减小到 10 比 1 , 可以使用汽油为动力了。 压缩比的大小可以通过进气泄压阀 1 13幵启大小来调 节, 也可以在缸体壁上可以设置多个进气泄压阀 1 13, 用到哪个压缩值, 就幵启哪个 进气泄压阀。通过开启进气泄压阀的大小或进气泄压阀的多少, 形成压缩比也可以是 多个。
当带进气增压技术的方案, 如使用废气涡轮增压器 1 14 , 采用进气增压, 使总进 气量远大于所要采用的压缩比值气压,由进气泄压阀 1 13将超过所需气压的多余的空 气排出, 这种方案发动机通常状况下设定的压缩比可以是任何一个压缩比, 如 18比 1, 或 10比 1'等。 进气增压方式也可采用机械增压, 或两种增压方式合并使用。
如 12-2所示的智能可变压缩比, 可以由电子处理器综合采集各类信息, 经处理 后得出一个最佳方案例如电子处理器, 用于接收并处理车、 船或机械运行工况信息, 发动机工况信息, 燃料信息, 进气或进气增压信息, 缸体内压缩比信息, 进而选定燃 料, 选定压缩比, 选定点火方式, 选定增压器工作方式, 然后再传达到执行单元, 使 可变压缩比效果最优。
本发明的双转子发动机能够灵活采用多种燃料,可以同时釆用点燃和压燃工作方 式, 首次做到大扭距和大功率之间的灵活切换, 有效地提高发动机的工作效率, 并减 少燃料消耗。
如图 13所示, 为发动机的转子控制系统和传动系统加个外壳 1 15 , 内充润滑油, 为转子控制机构和传动机构润滑和降温。
如图 14所示本发明双转子发动机增加一个进气口 10和一排气口 1 1而形成压缩 机、 泵机的实施例: 缸体、 控制机构、 传动机构与前述双转子发动机相同, 只是同一 个缸体有两个进气口 10和两排气口 1 1 , 两个进气口 10和两排气口 1 1互相间隔并呈 中心对称布置,双转子将缸体切割成两个吸气室和两个压缩室,只有吸、压两个行程。 工业实用性
综上所述, 本发明实现了进气、 压缩、 做功、 排气发动机工作四个冲程并行工作, 效 率提升四倍, 发动机体积小、 重量轻、 动力和功率强, 为混合动力应用中的发动机和电池 腾出的很大重量和空间。 模块化程度高, 装配灵活能有效减少生产设备投入。 本发明通过 双转子、 转子控制机构、 传动机构的相互协同作用, 本发明的双转子发动机解决了双转子 工作状态控制, 特别是实现了转子的正时控制, 将双转子的动力高可靠性地整合到一个传 动输出轴上匀速顺畅地输出。 使这种发动机能够真正运转, 并有了实用的价值。
通过以上较佳具体实施例的详述, 是希望能更加清楚描述本发明的特征与精神, 而并 非以上述所披露的较佳具体实施例来对本发明的范围加以限制。 相反地, 其目的是希望能 于本发明的保护范围内涵盖各种改变及具有等同性的安排。 因此, 本发明的保护范围应该 根据上述的说明作最宽广的解释, 以致使其涵盖所有可能的改变以及具有等同性的安排。

Claims

权 利 要 求
1 .一种双转子发动机, 包括缸体组件、 传动输出机构、 转子控制机构以及润滑系 统, 缸体组件包括基座、 固定安装在基座上的管形缸体、 安装在所述管形缸体两端的 前端盖和后端盖、穿过所述管形缸体且两端可转动安装在所述基座的中心支撑轴, 以 及第一转子和第二转子; 其中所述前端盖和后端盖上各自设有一个转子颈孔; 每个所 述转子包括内圆柱缸体、与该内圆柱缸体一体的转子颈和对称固定连接在内圆柱缸体 上的两个扇形活塞, 两个转子固定安装在所述中心支撑轴上, 两个转子颈各自伸出相 应的转子颈孔, 两个转子的 4个扇形活塞呈交叉布置, 每个扇形活塞的两侧各自设有 一个凹陷, 相邻的两个扇形活塞的相邻凹陷形成燃烧室, 所述燃烧室在朝向所述缸体 方向具有缺口; 其特征在于:
所述传动输出机构, 包括与所述中心支撑轴平行安装的传动输出轴、 安装在所述 两个转子颈上的第一转子齿轮和第二转子齿轮、安装在所述传动输出轴上的第一传动 齿轮的第二传动齿轮, 其中第一转子齿轮与第一传动齿轮啮合配合, 第二转子齿轮与 第二传动齿轮啮合配合;
所述第一转子齿轮、第二转子齿轮上各自在圆周方向设有两个对称布置的缺齿部 分, 所述缺齿部分的长度、 形状与转子齿轮与所述传动齿轮啮合的部分相同, 以保证 在第一转子齿轮、第二转子齿轮在锁止情况下不干涉第一传动齿轮和第二传动齿轮的 运转; 所述第一转子齿轮、 第二转子齿轮上的两段有齿部分的齿数相同, 并且位于两 段有齿部分的起始位置的齿形完全相同, 以保证传动的精确性;
所述转子控制机构, 用于控制两个转子间歇转动及停止, 并控制转动时间及停止 时间, 以保证匀速顺畅输出动力。
2. 根据权利要求 1所述的双转子发动机, 其特征在于, 所述扇形活塞的扇形角 在 35°-45°之间。
3 . 根据权利要求 2所述的双转子发动机, 其特征在于, 所述扇形活塞的扇形角 为 40°。
4. 根据权利要求 1所述的双转子发动机, 其特征在于, 在每个所述扇形活塞两 侧面靠近所述内圆柱缸体的根部具有减震降噪面, 相邻两个减震降噪面能够接触配 合。
5. 根据权利要求 1所述的双 子发动机, 其特征在于, 所述两个转子的两个内 圆柱缸体之间设有密封件, 所述扇形活塞与所述缸体之间设有密封件。
6. 根据权利要求 1所述的双转子发动机, 其特征在于, 所述燃烧室形状为一头 大一头小的卵形。
7. 根据权利要求 1所述的双转子发动机, 其特征在于, 所述转子齿轮是圆柱直 齿轮。
8. 根据权利要求 1所述的双转子发动机, 其特征在于, 所述中心支撑轴呈管状, 具有中心管道 96, 并在安装有所述转子位置设置喷射孔 97, 两个转子内分别设有孔 道 94, 缸体壁上连通有出油管道 93, 缸体 6和圆盘形前端盖 5a、 后端盖 5b上分别 设有多道管道, 所述中心管道、 各个孔道和管道互想连通。
9. 根据权利要求 1所述的双转子发动机, 其特征在于, 所述转子齿轮是圆柱斜 齿轮, 在每个转子齿轮的圆柱基体一端向外延伸有凸环, 该凸环的外圆周面位于转子 齿轮的齿根圆位置,在所述凸环的外圆周面上中心对称设有两个齿高等于转子齿轮齿 高的转子齿轮定位直齿,所述两个转子齿轮定位直齿分别设置在靠近两个缺齿部分位 置; 所述传动齿轮在其圆柱基体的一端向外延伸有凸环,该凸环的外圆周面位于传动 齿轮的齿根圆位置,凸环上设有一个齿高等于所述传动齿轮的齿高的传动齿轮定位直 齿, 当第一转子处于正时解除锁止状态时, 第一转子齿轮上的其中一个转子齿轮定位 直齿与第一传动齿轮上的传动齿轮定位直齿紧挨着,第一转子齿轮与第二转子齿轮上 的相邻两个转子齿轮定位直齿之间最小角度等于扇形活塞的扇形角,两个传动齿轮上 的两个传动齿轮定位直齿之间的安装角度为 180°。
10. 根据权利要求 1所述的双转子发动机, 其特征在于, 所述转子控制机构包括 相对于所述缸体固定安装并设有若干对滑轮的控制器支架、两个扇形控制轮、两个制 动颈以及两个往复件, 所述控制器支架上安装有若干对滑轮;
所述两个扇形控制轮均安装在所述传动输出轴上, 并分别位于两个传动齿轮外 侧, 两个扇形控制轮之间的安装夹角为 180° ;
所述扇形控制轮, 包括安装到所述传动输出轴的内圆柱部、 设置在该内圆柱部的 扇形部, 所述扇形部的外圆弧面为顶起支撑弧面; 所述扇形部的一部分从其后侧面向 外延伸形成扇形后伸翼; 所述扇形后伸翼的厚度小于所述扇形部的厚度, 所述扇形后 伸翼的一个表面与扇形部的一个表面位于同一平面,另一个表面低于所述扇形部的另 一个表面, 从而在扇形后伸翼上方形成了用于防止动转干涉的后伸翼口;
所述制动颈包括设置于所述转子颈端部并与其一体的内圆环和对称设置在该内 圆环上的两个制动凸, 在同一平面的两个制动凸的对角线间的夹角范围 在 10°-50°范围之间; 所述内圆环与制动凸的上、 下表面分别位于同一平面内, 所述内 圆环的部分外圆周面及邻接的两个制动凸的侧面共同形成了 C形制动槽; 所述往复件包括本体, 设置在所述本体上与控制器支架上的滑轮配合工作的导 轨、 设置在本体一侧的与转子颈上的 C形制动槽配合工作的 C形制动卡、 设置在本 体一侧的另一侧的矩形块, 所述矩形块上设有正时解除顶起台, 所述正时解除顶起台 的底面与所述矩形块位于同一平面上, 其顶面低于矩形块的顶面, 因而在所述正时解 除顶起台的顶面与矩形块之间形成了防止动转干涉的后正时缺口;
所述正时解除顶起台的外侧下面为斜面或弧形面,正时解除顶起台的外侧上面为 顶起弧面, 该顶起弧面与所述扇形控制轮的顶起支撑弧面形状吻合, 所述斜面和顶起 弧面分别延伸至矩形块的外侧面。
1 1 . 根据权利要求 10所述的双转子发动机, 其特征在于, 所述两个制动凸的对 角线间的夹角 ZP 为 40°。
12. 根据权利要求 10所述的双转子发动机, 其特征在于, 所述扇形控制轮的扇 形部的一部分从其后侧面向外延伸而形成扇形前伸翼,该扇形前伸翼的前端部设有导 向凸条: 所述扇形前伸翼与所述扇形后伸翼分布在扇形部的两侧, 并且错开布置; 所 述扇形前伸翼的厚度小于所述扇形部的厚度,扇形前伸翼的一个表面与扇形部的一个 表面位于同一平面, 另一个表面低于扇形部的另一个表面, 从而在所述扇形前伸翼与 扇形部之间形成了防止运转干涉的前伸翼口。
13. 根据权利要求 10、 1 1或 12所述的双转子发动机, 其特征在于, 所述往复件 的本体是矩形板, 所述 C 形制动卡固定在所述矩形块的一端, 且所述矩形块固定在 所述矩形板在另一端; C形制动卡的 C形开口及所述正时解除顶起台的顶起弧面均朝 向外侧。
14. 根据权利要求 10、 1 1或 12所述的双转子发动机, 其特征在于, 所述往复件 的本体是矩形框, 所述 c 形制动卡和所述矩形块分别固定在所述矩形框的两个宽边 上, 所述 C形制动卡的 C形幵口及所述正时解除顶起台的顶起弧面均朝向内侧。
1 5. 根据权利要求 10、 1 1或 12所述的双转子发动机, 其特征在于, 还包括与所 述传动输出轴平行安装的控制器轴和安装于该控制器轴上的控制器齿轮,所述其中一 个扇形控制轮安装在该控制器轴上,所述控制器齿轮与其中一个相应的传动齿轮啮合 配合, 所述其中一个往复件安装在相应的一个转子的制动颈和所述扇形控制轮之间。
16. 根据权利要求 1所述的双转子发动机, 其特征在于, 所述转子控制机构包括 相对于所述缸体固定安装并设有若干对滑轮的控制器支架、平行于所述传动输出轴的 两根控制器齿轮轴、安装在其中一根控制器齿轮轴前部的第一控制齿轮和第一蝴蝶结 形控制轮、 安装在另一根控制器齿轮轴后部的第二控制齿轮和第一蝴蝶结形控制轮, 以及由两个蝴蝶结形控制轮控制往复移动的往复件、安装在第一转子颈上的第一转子 控制齿轮、安装在第二转子颈上的第二转子控制齿轮, 其中所述第一控制齿轮与第一 转子控制齿轮相啮合, 第二控制齿轮与第二转子控制齿轮相啮合;
所述往复件上设有呈中心对称的两个矩形块和两个正时解除顶起台,所述正时解 除顶起台的底面与所述矩形块位于同一平面上, 其顶面低于矩形块的顶面, 因而在所 述正时解除顶起台的顶面与矩形块之间形成了防止动转干涉的后正时缺口;所述正时 解除顶起台的外侧下面为斜面或弧形面, 正时解除顶起台的外侧上面为顶起弧面, 所 述斜面和顶起弧面分别延伸至矩形块的外侧面;
所述蝴蝶结形控制轮为一个具有两个表面、两个长面和两个宽面的矩形体, 矩形 体表面上的对角线间的夹角 ZP1的范围在 10°-50°之间; 所述矩形体的两个宽面具有 与往复件的正时解除顶起台的顶起弧面吻合的圆弧顶起面,所述矩形体的每个长面由 与其中一个圆弧顶起面连接的平面、与该平面平滑过渡连接并凹向所述矩形体内的弧 面和连接该弧面和圆弧顶起面的斜面, 当第一蝴蝶结形控制轮被锁止时, 所述往复件 的斜面和第一蝴蝶结形控制轮的斜面贴合在一起,往复框的顶起弧面和第一蝴蝶结形 控制轮的弧面贴合在一起。
17. 根据权利要求 16所述的双转子发动机, 其特征在于, 所述蝴蝶结形控制轮 还包括呈中心对称布置的两个前伸翼,所述前伸翼由蝴蝶结形控制轮的矩形体从其斜 面向外延伸而形成, 该前伸翼的厚度小于所述矩形体的厚度, 前伸翼的一表面与矩形 体的, 前伸翼的另一表面低于矩形体的另一表面, 前伸翼的前端部设有导向凸条, 所 述前伸翼和后伸翼分别位于所述矩形体长面的两侧, 并错幵布置呈中心对称。
18. 根据权利要求 16或 17所述的双转子发动机, 其特征在于, 所述往复件为矩 形框, 所述两个矩形块为所述矩形框的宽边, 所述正时解除顶起台的顶起弧面朝向矩 形框内。
19. 根据权利要求 16或 17所述的双转子发动机, 其特征在于, 所述往复件为矩 形块, 所述正时解除顶起台的顶起弧面朝向矩形块外。
20. 根据权利要求 1所述的双转子发动机, 其特征在于, 还包括转子反转阻挡装 置, 该转子反转阻挡装置包括与所述传动输出轴平行的凸轮轴、 摆动从动件和弹簧, 其中所述凸轮轴上安装有凸轮齿轮和盘形凸轮, 凸轮齿轮与所述传动齿轮啮合; 所述 摆动从动件包括摆动杆和设置在该摆动杆一端的与所述制动颈的制动凸配合工作的 L形翘起的三角头, 所述三角头具有立面和斜面; 所述弹簧将所述三角头压紧到制动 凸上。
21 . 根据权利要求 1所述的双转子发动机, 其特征在于, 还包括转子反转阻挡装 置, 其中每个所述转子的扇形活塞具有至少一个径向孔, 所述缸体上对应每个径向孔 位置设有一个三角槽, 所述转子反转阻挡装置包括放置在所述径向孔内有销子和弹 簧, 其中所述销子头部呈三角形或楔形, 在朝向转子反转方向具有立面, 在朝向缸体 的一面具有斜面或圆弧面。
22. 根据权利要求 1所述的双转子发动机, 其特征在于, 在所述传动输出轴或者 在安装在传动输出轴的飞轮上设置两个对称布置的平衡重。
23. 根据权利要求 1所述的双转子发动机, 其特征在于, 在所述缸体的进气压缩 区域或缸体壁的中段开设至少一个通孔, 每个所述通孔内安装一个进气泄压阀。
24. 根据权利要求 1所述的双转子发动机, 其特征在于, 还包括电子处理器, 用 于接收并处理车、 船或机械运行工况信息, 发动机工况信息, 燃料信息, 进气或进气 增压信息, 缸体内压缩比信息, 进而选定燃料, 选定压缩比, 选定点火方式, 选定增 压器工作方式, 然后再传达到执行单元, 以提高可变压缩比效果。
25. 根据权利要求 1所述的双转子发动机, 其特征在于, 在所述双转子发动机外 设有外壳, 外壳内充装润滑油, 为转子控制机构和传动机构润滑和降温。
26. 根据权利要求 1所述的双转子发动机, 其特征在于, 在所述缸体上另设有一 个进气口和一个排气口, 这样缸体上共有两个进气口和两个排气口, 互相间隔并呈中 心对称布置。
27. 根据权利要求 16所述的双转子发动机, 其特征在于, 矩形体表面上的对角 线间的夹角 Z P 1的范围在 40°。
28. 根据权利要求 17所述的双转子发动机, 其特征在于, 所述前伸翼和后伸翼 的扇形角均为 30 ° 。
PCT/CN2009/000589 2008-05-26 2009-05-26 双转子发动机 WO2009143707A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011510806A JP2011521168A (ja) 2008-05-26 2009-05-26 デユアルローターエンジン
CN2009801189446A CN101970800B (zh) 2008-05-26 2009-05-26 双转子发动机
US12/994,552 US8578908B2 (en) 2008-05-26 2009-05-26 Dual-rotor engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200810018293.0 2008-05-26
CN200810018292.6 2008-05-26
CNA2008100182926A CN101592072A (zh) 2008-05-26 2008-05-26 双转子受控交替运转发动机
CNA2008100182930A CN101592073A (zh) 2008-05-26 2008-05-26 双转子受控交替运转发动机的可变压缩比技术

Publications (1)

Publication Number Publication Date
WO2009143707A1 true WO2009143707A1 (zh) 2009-12-03

Family

ID=41376573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000589 WO2009143707A1 (zh) 2008-05-26 2009-05-26 双转子发动机

Country Status (4)

Country Link
US (1) US8578908B2 (zh)
JP (1) JP2011521168A (zh)
CN (1) CN101970800B (zh)
WO (1) WO2009143707A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536371A (ja) 2007-08-21 2010-12-02 ノダリティ,インコーポレイテッド 診断方法、予後および治療方法
CN102678288B (zh) * 2012-05-25 2017-04-26 胡建华 球形双环转子内燃机
TWM454038U (zh) * 2012-12-11 2013-05-21 Rui-An Cai 具二電機轉子作半圈式上下往復旋轉之功輸出裝置
CN103615311B (zh) * 2013-11-13 2016-06-29 何时立 一种转子发动机
US20160363113A1 (en) * 2015-06-09 2016-12-15 Zheng Huang Friction-free Rotary Piston Scissor Action Motor / Hot Air Energy Generator
JP6654430B2 (ja) * 2015-12-28 2020-02-26 株式会社デンソーテン 噴射装置および噴射システム
EP3510248A4 (en) * 2017-04-20 2020-05-20 Istanbul Teknik Universitesi INTERNAL COMBUSTION ENGINE HAVING A ROTATING PISTON AND A UNIDIRECTIONAL BEARING
JP7159934B2 (ja) * 2019-03-25 2022-10-25 株式会社豊田自動織機 内燃機関
JP7156128B2 (ja) * 2019-03-27 2022-10-19 株式会社豊田自動織機 エンジン装置、およびエンジン装置の制御方法
JP7188290B2 (ja) * 2019-06-24 2022-12-13 株式会社豊田自動織機 シール構造
CN114645775A (zh) * 2022-03-18 2022-06-21 北京理工大学 一种旋转对置活塞发动机双轴支撑装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2007771A (en) * 1977-11-10 1979-05-23 Griffenthal Pty Ltd Rotary positive-displacement fluid-machines
US5069604A (en) * 1989-06-01 1991-12-03 Al Sabih Adel K Radial piston rotary device and drive mechanism
US5224847A (en) * 1992-01-31 1993-07-06 Mikio Kurisu Rotary engine
CN1414214A (zh) * 2001-10-26 2003-04-30 张长春 自平衡的转子发动机
US20040261758A1 (en) * 2003-06-30 2004-12-30 Fong Chun Hing Alternative-step appliance rotary piston engine
CN1564906A (zh) * 2002-07-01 2005-01-12 方骏兴 轮步旋转活塞式发动机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB167480A (en) * 1920-08-03 1922-10-12 Camille Van Pee Improvements in revolving machines or turbines
US2053017A (en) * 1932-10-22 1936-09-01 Babel Raymond Alexandre Internal combustion engine with reciprocating blades
US2046989A (en) * 1934-06-09 1936-07-07 William J Winter Rotary internal combustion engine
US3299867A (en) * 1964-10-22 1967-01-24 Winters Vane type internal combustion engines
US3381669A (en) * 1966-10-31 1968-05-07 Tschudi Engine Corp Rotary internal combustion engine
US3820516A (en) * 1971-07-15 1974-06-28 C Paleologos Rotating internal combustion engine
US4010716A (en) * 1974-07-12 1977-03-08 Karlis Minka Rotary engine
JPS5162213A (en) * 1974-11-27 1976-05-29 Saburo Shirayanagi Rootarii enjin
US3974801A (en) * 1975-04-03 1976-08-17 Brown Jesse C Oscillating piston internal combustion engine
JPS5535114A (en) * 1978-08-31 1980-03-12 Koichi Tanaka Coaxial rotating piston engine
JPS55164729A (en) * 1979-12-08 1980-12-22 Tokyo Denki Sangyo Kk Rotary engine
JPS57168022A (en) * 1981-04-08 1982-10-16 Takeshi Kitaoka Rotary engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2007771A (en) * 1977-11-10 1979-05-23 Griffenthal Pty Ltd Rotary positive-displacement fluid-machines
US5069604A (en) * 1989-06-01 1991-12-03 Al Sabih Adel K Radial piston rotary device and drive mechanism
US5224847A (en) * 1992-01-31 1993-07-06 Mikio Kurisu Rotary engine
CN1414214A (zh) * 2001-10-26 2003-04-30 张长春 自平衡的转子发动机
CN1564906A (zh) * 2002-07-01 2005-01-12 方骏兴 轮步旋转活塞式发动机
US20040261758A1 (en) * 2003-06-30 2004-12-30 Fong Chun Hing Alternative-step appliance rotary piston engine

Also Published As

Publication number Publication date
US20110162617A1 (en) 2011-07-07
JP2011521168A (ja) 2011-07-21
CN101970800A (zh) 2011-02-09
CN101970800B (zh) 2012-08-29
US8578908B2 (en) 2013-11-12

Similar Documents

Publication Publication Date Title
WO2009143707A1 (zh) 双转子发动机
CN101636558B (zh) 分循环可变排量火花点火转子发动机
EP3070289B1 (en) Rotary engine
EP2653694B1 (en) Rotary engine and rotor unit thereof
WO2018171452A1 (zh) 一种凸轮转子内燃发动机动力系统
JP6364689B2 (ja) 内燃エンジン
WO2013086947A1 (zh) 往复式转子发动机
CN102322338B (zh) 双转子旋转活塞发动机
CN110671195B (zh) 一种缸套活塞转子复合式发动机
WO2013152730A1 (zh) 转子压缩机、转子发动机及转子汽轮机
WO2020015575A1 (zh) 一种多缸发动机系统
CN110500177A (zh) 一种双转子同程内燃机
CN1478991A (zh) 转子发动机
KR20110003396A (ko) 감람형 회전식 엔진
CN203515795U (zh) 一种转子发动机
CA2496051C (en) Positive displacement rotary device and method of use
CN208778093U (zh) 一种转子往复式发动机
US20160153348A1 (en) Fixed-rail rotor pump and fixed-rail rotor pump combined supercharging internal-combustion engine
CN113803157B (zh) 一种双转子发动机
CN212054899U (zh) 一种转塞式能量转换器
CN115210458B (zh) 具有三角形气缸的多缸旋转发动机
CN113236420B (zh) 一种可变压缩比的活塞
JPH08177511A (ja) カム式エンジン
TWI582301B (zh) 活塞差速回轉引擎
CN1094477A (zh) 曲线转子发动机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118944.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09753425

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510806

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12994552

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09753425

Country of ref document: EP

Kind code of ref document: A1