WO2013086947A1 - 往复式转子发动机 - Google Patents

往复式转子发动机 Download PDF

Info

Publication number
WO2013086947A1
WO2013086947A1 PCT/CN2012/086153 CN2012086153W WO2013086947A1 WO 2013086947 A1 WO2013086947 A1 WO 2013086947A1 CN 2012086153 W CN2012086153 W CN 2012086153W WO 2013086947 A1 WO2013086947 A1 WO 2013086947A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
sliding block
sliding
work unit
shaft
Prior art date
Application number
PCT/CN2012/086153
Other languages
English (en)
French (fr)
Inventor
齐永军
Original Assignee
Qi Yongjun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qi Yongjun filed Critical Qi Yongjun
Publication of WO2013086947A1 publication Critical patent/WO2013086947A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/14Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F01C1/16Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor
    • F04C2250/201Geometry of the rotor conical shape

Definitions

  • the present invention relates to a rotary engine, and more particularly to a reciprocating rotary engine utilizing a rotor coaxial transmission power shaft. Background technique
  • a rotor-type heat engine is a type of engine that directly converts the expansion force of a gas into a driving torque that drives the rotation of a power shaft. Compared with the most commonly used reciprocating piston engine, the rotor engine cancels useless linear motion, and thus friction With less energy loss, it can convert thermal energy into mechanical energy more efficiently, and the parts run less smoothly, which has great application advantages.
  • a working device using a rotor-driven power shaft in a practical stage such as a triangular piston rotary rotor engine
  • the gas expansion pressure acts on the side of the rotor that is eccentrically disposed with the power shaft, causing the rotor to rotate, and the triangular rotor passes.
  • a gear having a large number of teeth and having a small number of teeth with a center-centered ring gear which is fixed on the power shaft centered on the center of the power shaft, generates a tangential force for rotating the power shaft, and drives the power shaft to rotate. While the center of the triangular rotor revolves around the center of the power shaft, the triangular rotor itself rotates around its center.
  • the main disadvantage of this kind of engine work unit is that the rotor can't transmit the power shaft coaxially, and additional eccentric vibration will occur during the operation. At the same time, the eccentric motion of the rotor causes a huge impact on the area of the cylinder during work. This area is subject to severe wear and tear, and the imbalance of wear greatly reduces the service life of the engine.
  • the work unit refers to the core structure that converts thermal energy into mechanical energy.
  • the area of the triangular rotor subjected to the inflation gas pressure during gas work. As the gas gradually decreases in temperature during the expansion work, the pressure gradually decreases, so the force acting on the rotor is gradually reduced, and the force of the expanding gas acting on the rotor is decomposed into a driving power shaft. Force and one pointing to the axis of the power shaft
  • a reciprocating rotary engine includes a gas working unit, the working unit includes a rotor, a cylinder and a sliding plug; the rotor main body portion is a screw shape, and a cavity surrounded by the inner wall surface of the cylinder is the same as the rotor a shaft, the cylinder is provided with a sliding slot, the sliding plug Positioned in the chute and the thread groove of the rotor, the sliding plug is used to block the passage of the working gas, and the sliding plug slides along the sliding groove and the thread groove to cooperate with the rotation of the rotor;
  • the rotor is disposed coaxially with the power shaft, and the rotor drives the power shaft through a one-way bearing.
  • the working unit includes an A end and a B end, and the A end of the rotor communicates with the thread groove between the sliding plugs to work as a working gas.
  • the screw top surface of the rotor is in sealing contact with the inner wall surface of the cylinder.
  • the main body portion of the rotor has a conical screw shape.
  • the sliding plug is provided with a diagonal connecting through hole for canceling the pressure of the expanding gas received by the sliding plug in the two regions in which the through hole communicates.
  • the sliding plug is a cross-shaped cross-shaped structure, and the sliding plug includes a connecting shaft, a first sliding block, a second sliding block, a third sliding block, and a fourth sliding block.
  • a sliding block, a second sliding block, a third sliding block, and a fourth sliding block are respectively fixed on the connecting shaft, and the first sliding block and the third sliding block are in the same a second sliding block and the fourth sliding block are in the same plane;
  • the diagonal connecting through hole is open on the connecting shaft, and includes a first diagonal connecting through hole and a second Connecting the through hole diagonally;
  • the first diagonal connecting through hole communicates with a space defined by the first sliding block and the second sliding block, and the third sliding block and the fourth sliding plug a space enclosed by the block, the second corner connecting through hole communicating with a space defined by the first sliding block and the fourth sliding block, and the second sliding block and the third sliding block
  • the first sliding block is installed in the sliding slot, and the second sliding block, the third sliding block and the fourth sliding block are installed
  • each work unit group includes two work units mirrored to each other, the work unit includes an A end and a B end, and the B end rigid connection of the two work unit rotors
  • the B ends of the cylinder block are closed to each other, and the corresponding work unit groups respectively drive two 4 ⁇ power shafts, and the two 4 ⁇ power shafts jointly drive the output shaft through the shaft transmission mechanism; the corresponding work unit group passes The rotor linkage works in conjunction.
  • the corresponding working unit groups are connected to each other through a lubricating oil passage.
  • a piston ring is disposed on the thread crest surface of the rotor, and the piston ring is in sealing contact with the inner wall surface of the cylinder.
  • a working gas is generated in the thread groove of the rotor near the A end.
  • Figure 1 is a plan view of a gas work unit in the present invention
  • Figure 2 is a cross-sectional view taken along line B_B of Figure 1 of the present invention.
  • Figure 3 is a perspective cutaway view of the engine gas work unit of the present invention.
  • Figure 4 is a front view of the cylinder block of the present invention.
  • Figure 5 is a perspective view of the cylinder block of the present invention.
  • Figure 6 is a front view of the rotor of the present invention
  • Figure 7 is a perspective view of the rotor of the present invention
  • Figure 8 is a front view of the slider of the present invention.
  • Figure 9 is a left side view of the slider of the present invention.
  • Figure 10 is a plan view of the slider of the present invention.
  • Figure 1 1 is a perspective view of the slider of the present invention
  • Figure 12 is a simplified structural view of the internal combustion engine of the present invention.
  • Figure 13 is a perspective cutaway view of Figure 12 of the present invention.
  • Figure 14 is a simplified structural view of a steam engine in the present invention.
  • the gas working unit functions as a core structure for converting thermal energy of the expanding gas into mechanical energy, and only the expanding gas (or called work gas) is introduced into the thread between one end of the working unit and the sliding plug.
  • the expanded gas can be better (more energy efficient) to drive the rotor to achieve energy conversion.
  • one end of the inflation gas is referred to as the A end, and the other end corresponding to the A end. Called the B end (if the rotor of the work unit is a cylindrical screw, either end can be used as A End).
  • the working unit can directly communicate with the combustion chamber, and the expansion gas generated in the combustion chamber can be introduced into the thread groove between the end of the working unit A and the sliding plug, or can be integrated at the A end.
  • the combustion chamber as a steam engine, passes the expansion steam into the thread groove between the end of the work unit A and the spool, so that the work unit can perform work.
  • the work unit includes a rotor 2, a cylinder block 1 and a spool 5, and the rotor 2 is disposed in a cavity surrounded by an inner wall surface of the cylinder block 1, and the rotor 2 is coaxially disposed with the power shaft 4 and
  • the top surface of the thread 16 of the rotor 2 is in sealing contact with the inner wall surface of the cylinder 1, and the cavity enclosed by the inner wall surface of the cylinder 1 is coaxial with the rotor, so that the rotor 2 can be wound around its own axis.
  • the top surface of the thread 16 is rotated against the inner wall surface of the cylinder 1 in the cylinder 1, and the working gas is confined in the passage formed by the thread groove 17 and the inner wall of the cylinder 1.
  • the cylinder block 1 is provided with a chute 7, and the inner wall of the chute 7 is connected to the inner wall of the cylinder block 1, so that the chute 7 communicates with the cavity surrounded by the inner wall surface of the cylinder block 1.
  • the spool 5 is placed in the thread groove 17 of the rotor 2, slides along the chute 7 and the thread groove 17, and blocks the inner wall of the cylinder 1 from the passage formed by the thread groove 17, thereby blocking the passage of the inflation gas in the thread groove 17. Acting, and by sliding fit the rotation of the rotor 2.
  • the inner wall surface of the cylinder block 1 is in sealing contact with the top surface of the thread 16 of the rotor, and the rotor 2 is freely rotatable about its own axis.
  • the piston ring is in sealing contact with the inner wall surface of the cylinder.
  • the chute 7 is disposed on the cylinder block 1, and the longitudinal centerline of the chute 7 and the axis of the power shaft 4 are in a plane, which causes the sliding locus of the spool 5 to be in the same plane as the axis of the rotor 2.
  • the chute 7 is longitudinal in the cylinder block 1 (from the A end to the B end or B end of the work unit)
  • the main function of the setting to the A end is to restrain the longitudinal movement of the sliding plug 5 along the cylinder so that the sliding plug 5 can cooperate with the rotation of the rotor 2 and function to block the inflation gas.
  • the chute 7 determines the trajectory of the sliding plug 5, and the trajectory of the chute 7 may not be in a plane or in a curved state with the axis of the rotor 2, but the optimized manner is that the trajectory is in the same plane as the axis of the rotor 2 and Straight line status.
  • the rotor 2 since the rotor 2 has a conical screw shape, only the expansion gas is introduced into the end of the rotor unit having a smaller cross section of the working unit, so that the work unit is better (more energy-efficient), that is, the end is The A end of the work unit.
  • An end cover 3 is disposed at the A end of the cylinder block 1.
  • the end cover 3 is provided with an air inlet 13 and an exhaust port 14 (the air inlet 13 and the exhaust port 14 may also be combined into one intake and exhaust port).
  • the end cover 3 has a shaft hole in the middle thereof, and a sleeve 15 rigidly connected to the rotor 2 protrudes from the shaft hole, and the shaft hole and the sleeve 15 are in sealing contact, and the output gear 25 is fixedly fixed on the sleeve 15.
  • the rotor 2 transmits the power shaft 4 through a transmission one-way bearing 6 (or a similar device such as a flywheel).
  • the power shaft 4 passes through the one-way bearing 6 and the rotor 2, and the rotor is fixed in the cylinder 1. Inside the cavity enclosed by the wall. Since the one-way bearing 6 is provided, the rotor 2 transmits the power shaft 4 in the same direction.
  • the function of the single bearing 6 is that when the rotor 2 rotates in a certain direction, the rotor 2 drives the one-way bearing 6 to drive the power shaft 4, and when the rotor 2 rotates in the opposite direction, the single bearing 6 Without driving the power shaft 4, the rotor 2 is idling, such as the working principle of the bicycle flywheel.
  • the end cap 3 can also be integrated with the cylinder block 1 and is integrally cast (for example, the end cap 3 and the cylinder block 1 are separately designed, we also understand the end cap 3 as a part of the cylinder block 1),
  • the power shaft 4 can also be directly passed through the shaft hole, and the power shaft 4 and the shaft hole are in sealing contact, so that the sleeve 15 can be omitted.
  • the main portion of the rotor 2 has a conical screw shape
  • the convex portion is a threaded tooth 16
  • the portion where ⁇ goes down is a threaded groove 17
  • the helical thread 16 and the threaded groove 17 extend straight to
  • the inner cavity of the cylinder 1 is in the shape of a truncated cone, so as to conform to the shape of the rotor 2, so that the top surface of the thread 16 of the rotor 2 can be in sealing contact with the inner wall surface of the cylinder 1, and can be in the cylinder 1 around its own axis. Free rotation inside.
  • the outer shape of the rotor 2 may also be designed as a cylindrical screw shape, and the cavity surrounded by the inner wall surface of the corresponding cylinder 1 is cylindrical.
  • the main function of the spool 5 is to block the passage of the inflation gas in the thread groove 17, and it is preferable to make the sliding trajectory of the spool 5 in the same plane as the axis of the rotor 2, and design it as a cross shape in which the two plates perpendicularly intersect each other.
  • the structure has the outer edge sealed with the groove wall of the thread groove 17, the bottom of the groove, the inner wall of the cylinder 2 and the inner wall of the sliding groove 7, and the passage formed by the inner wall of the cylinder 1 and the thread groove is blocked into four regions, in order to offset the slippage.
  • the plug 5 is subjected to the pressure of the expanding gas in the region communicating with each other, and the two regions of the cross-diagonal diagonal of the plug 5 communicate with each other through the communicating structure, and the sliding plug 5 constitutes four portions of the boundary of the two communicating regions to be effectively stressed.
  • the areas are equal, and such a structure causes the combined force of the pressure of the expanding gas in the region where the plug 5 communicates with each other to be equal and opposite in direction, cancel each other out.
  • the optimized manner is shown in Figures 8-11.
  • the shape of the sliding plug 5 is two plate-shaped cross-shaped structures, and the structure thereof comprises: a connecting shaft 18, a first sliding block 19, a second sliding block 20, and a first The third sliding block 21, the fourth sliding block 22, the first sliding block 19, the second sliding block 20, the third sliding block 21, and the fourth sliding block 22 are respectively fixed on the connecting shaft, the first sliding The plug block and the third plug block are in the same plane, the second plug block and the fourth plug block are in the same plane; the first diagonal connecting through hole 23 and the second pair are opened on the connecting shaft
  • the space, the second corner connecting through hole 24 communicates with the space surrounded by the first sliding block 19 and the fourth sliding block 22 and the space surrounded by the second sliding block 20 and the third sliding block 21.
  • the first sliding block 19 is installed in the sliding slot 7, the second sliding block, the third sliding block and the fourth sliding block are installed in the thread groove 17, and the second sliding block 20 and the third sliding block are installed.
  • 21 and the outer wall of the fourth sliding block 22 are in sealing contact with the groove wall of the thread groove 17, and the outer wall of the first sliding block 19 is in sealing contact with the inner wall of the sliding groove 7, and the inner wall of the cylinder 1 and the channel formed by the screw groove 17 are formed.
  • the barrier is divided into four regions; the first diagonal connecting through hole 23 and the second diagonal connecting through hole 24 communicate the two regions of the cross shape, and the four portions of the boundary of the two communicating regions of the sliding plug 5 are effective.
  • the force receiving areas are equal, and such a structure causes the combined force of the pressure of the expanding gas in the region where the plugs 5 communicate with each other (the two regions in which the first diagonal through holes communicate) to be equal and opposite in direction, cancel each other out.
  • the slider 5 can also be designed in other shapes as long as it can block the passage of inflation gas in the thread groove.
  • a part of the embodiment of the present invention is used as an internal combustion engine, and the working unit of the working unit is: the combustion chamber communicates with the working unit A end through the inlet and exhaust ports on the cylinder 1, or the combustion unit A has a combustion chamber integrated therein, or The air is directly combusted in the partial screw groove 17 of the rotor 2 near the A end (in this way, the partial thread groove of the rotor near the A end is regarded as a combustion chamber, and the auxiliary structure of the combustion chamber can refer to the combustion chamber of the internal combustion engine in the prior art.
  • the setting is made such that a part of the thread groove of the working unit A end serves as a combustion chamber to operate smoothly, and the rotor 2 is driven to rotate, and the rotor 2 drives the one-way bearing 6 to transmit the power shaft 4 to output power.
  • the power stroke expansion stroke
  • the exhaust valve of the combustion chamber opens, the rotor 2 rotates in the reverse direction, and the spool 5 is rotated from the B end of the rotor 2 to the A
  • the end slides, and the gas that completes the work in the thread groove 17 passes through the intake and exhaust ports or is directly discharged into the combustion chamber and is discharged through the combustion chamber (if the air is directly And the fuel is burned in the thread groove 17 of the A end of the rotor 2, then the air enters the thread groove 17 through the air inlet 13, and the gas for completing the work is discharged through the exhaust port 14, and the rotor 2 drives the one-
  • the one-way bearing 6 is idling, and does not transmit the power shaft 4.
  • the exhaust valve of the combustion chamber is closed, the intake valve is opened, and the rotor 2 is rotated forward again, so that the spool 5 is terminated by the A end of the rotor 2.
  • the combustion chamber completes the intake stroke under the action of the negative pressure.
  • the intake and exhaust valves of the combustion chamber are closed, and the rotor 2 is rotated in the reverse direction to drive the spool 5 to the rotor.
  • the B end of 2 slides toward the A end, and the gas is compressed into the combustion chamber to complete the gas pressure stroke. After the gas pressure stroke ends, the gas in the combustion chamber expands and starts the next work stroke.
  • a part of the embodiment of the present invention is operated as a steam engine, and the operation unit of the working unit is: driving the inflation gas through the air inlet 13 of the cylinder 1 into the thread groove 17 between the end of the working unit A and the spool 5, thereby driving The rotor 2 rotates, and the rotor 2 drives the one-way bearing 6 to drive the power shaft 4 to output power.
  • the spool 5 slides to the B end of the rotor 2, the power stroke (expansion stroke) ends, the intake port 13 closes, the exhaust port 14 opens, the rotor 2 rotates in the reverse direction, and the spool 5 is rotated from the B end of the rotor 2 to the A end.
  • the gas for completing the work in the thread groove 17 is discharged through the exhaust port 14 on the cylinder 1, and the rotor 2 drives the one-way bearing 6 to rotate in the reverse direction, and the one-way bearing 6 idles without causing a transmission effect on the power shaft 4.
  • the exhaust port 14 is closed, the intake port 13 is opened, and the inflation gas enters to start the next work stroke.
  • the working unit of any engine must have a passage for gas in and out.
  • an expanding gas is generated in the combustion chamber, and the cylinder 1 of the working unit must have a connecting inflation gas.
  • this channel can be the above-mentioned intake and exhaust port, and the gas enters and exits between the work unit and the combustion chamber through the intake and exhaust ports.
  • the combustion chamber is integrally connected with the thread groove of the A end of the work unit.
  • the work unit is connected to the intake gas of the inflation gas through the intake port 13 of the cylinder block 1, and the gas after the work is discharged through the exhaust port 14.
  • the present invention is a partial embodiment of the internal combustion engine.
  • the combustion chamber is connected to the end of the work unit A, and the inlet and exhaust ports of the work unit (the inlet and exhaust ports may be one port) communicate with the combustion chamber, and the thread groove 17 between the A end of the work unit rotor 2 and the spool 5 is connected and expanded.
  • the gas, the thread groove 17 between the B end of the rotor 2 and the spool 5 is filled with a cooling lubricant.
  • the structure of the internal combustion engine includes two corresponding work unit groups 12 of the same transmission direction, and each work unit group 12 includes two work units mirrored and connected to each other, and the cylinders 1 of the B ends of the two work units are closed.
  • the rotor 2 is rigidly connected in a mirror image manner.
  • the power unit group 12 is connected with a shaft transmission mechanism 8 and a rotor linkage mechanism 10, and the shaft transmission mechanism 8 is used for the transmission output shaft 11 to output the power, and the linkage mechanism 10 is used for realizing the linkage and mutual cooperation of the four work unit groups 12.
  • the mirror image means that one side of the axis of the vertical rotor 4 of the work unit is a symmetry plane, and the other work unit is in a plane symmetrical state.
  • the four work unit groups 12 are arranged in such a manner that two power unit groups 12 are respectively mounted on the two power shafts 4, and the power unit groups 12 on the two power shafts 4 are mutually coupled by the shaft transmission mechanism 8.
  • the corresponding couplings together drive the output shaft 1 1 .
  • the rotors 2 of the two work unit groups 12 on the same power shaft 4 are rigidly connected together by a bushing 15.
  • a shaft transmission mechanism 8 is disposed between the two power unit groups 12 corresponding to each other on the two power shafts 4, and the shaft transmission mechanism 8 includes: an output driving gear 25, an output driving gear 26, and an output driven gear 27,
  • the output driving gear 25 and the output driving gear 26 are respectively fixed on the two power shafts 4, the output driven gear 27 is fixed on the output shaft 1 1 , and the output driving gear 25, the output driven gear 27 and the output driving gear 26 are sequentially engaged.
  • the output driven gear 27 is driven by the output drive gear 25 and the output drive gear 26.
  • the function of the shaft transmission mechanism 8 is to enable the rotor to drive the output shaft 1 1.
  • other transmission modes and transmission mechanisms can be designed.
  • a rotor linkage mechanism 10 is disposed between the work unit groups 12 on the two power shafts 4, and the sleeves 15 on the two power shafts 4 on the middle two work unit A ends are connected to each other.
  • the structure of the rotor linkage mechanism 10 includes : The linkage drive gear 28, the linkage drive gear 29, the linkage driven gear 30 and the linkage driven gear 31, the linkage drive gear 28 and the linkage drive gear 29 are respectively fixed on the shafts of the two work units A connected to each power shaft.
  • a gear shaft 32 is fixed on the outer wall of the cylinder block 1 of the two work unit groups 12 on the same power shaft 4, the gear shaft 32 is provided with a bearing, and the interlocking driven gear 30 and the interlocking driven gear 31 are respectively mounted.
  • the linkage drive gear 28 meshes with the adjacent linkage driven gear 30 through the gear, the linkage drive gear 28 and the remote linkage driven gear 31 are driven by the belt, and the drive gear 29 and the adjacent linkage driven gear 31 are interlocked.
  • the linked driving gear 29 and the remote interlocking driven gear 30 are driven by the belt.
  • the purpose of this is to reverse the direction of rotation of the rotor 2 on the two power shafts 4 by the linkage mechanism 10.
  • the corresponding power unit group 12 drives a total of two power shafts 4 as described above, and the two power shafts 4 jointly drive the output shafts 1 through the shaft transmission mechanism 8, and the output shaft 11 is driven by the one-way bearing 6 Rotate in the same direction.
  • the rotor 2 of the upper and lower working units may not be provided with the sleeve 15, and the sleeve 15 does not protrude from the shaft hole;
  • the rotor 2 of the work unit is connected to the sleeve 15, and the sleeve 15 projects from the shaft hole.
  • This setting is for the rotors 2 of the two work unit groups 12 on the same power shaft 4 to be coupled together, and to facilitate the fastening of the linked drive gears 28 and the linkage drive gears 29.
  • the present invention is a partial embodiment of the steam engine, and the structure includes two corresponding working unit groups 12 having the same transmission direction.
  • the shaft unit 8 and the lubricating oil passage 9 are connected between the working unit groups 12.
  • the rotor linkage mechanism 10 the shaft transmission mechanism 8 is used for outputting power to the output shaft 11, and the linkage mechanism 10 is used for realizing linkage and mutual cooperation of the two work unit groups 12.
  • the cylinder end of the work unit A or the end cover thereof is provided with an air inlet 13 and an exhaust port 14.
  • the lubricating oil passage 9, the structure of the rotor interlocking mechanism 10, and the structure of the embodiment of the present invention as the internal combustion engine are similar in Figs. 12 and 13, and of course, the lubricating oil passage can be eliminated if it can be lubricated with grease.
  • the structure of the shaft transmission mechanism 8 includes: two output driving gears 25, two output driving gears 26 and two output driven gears 27, and a set of two sides of the end cover 3 on both sides of the working unit group 12, and each group
  • the intermediate output driving gear 25 and the output driving gear 26 are respectively fixed on the outer ends of the two working units on both sides of the power shaft 4, and the output driven gear 27 is fixed on the output shaft 1 1 , and the output driving gear 25 and the output driven gear 27 are output.
  • the output driving gear 26 is sequentially engaged, and is transmitted through the output driving gear 25 and the output driving gear 26
  • the output gear 27 is output.
  • a rotor linkage mechanism 10 is disposed between the work unit groups 12 on the two power shafts 4, and is located on the shaft sleeve 15 on the same side of the power unit 4 on the same power shaft 4 (here, the shaft is only disposed on one side of the power unit group).
  • the sleeve 15 and the linkage mechanism 10 may be provided on both sides of the work unit group 12), and the structure of the rotor linkage mechanism 10 includes: a linkage drive gear 28, a linkage drive gear 29, a linkage driven gear 30, and a linkage follower
  • the gear 31, the linkage driving gear 28 and the linkage driving gear 29 are respectively fixed on the bushing 15 of the power unit A end on each power shaft, and the gear shaft of the cylinder block 1 of each power unit group 12 on each power shaft 4 is fixed with a gear shaft.
  • the gear shaft 32 is provided with a bearing, the linkage driven gear 30 and the linkage driven gear 31 are respectively mounted on the two bearings; the linkage driving gear 28 and the adjacent linkage driven gear 30 are meshed by the gear, and the driving gear 28 is interlocked and away
  • the linkage driven gear 31 is driven by the belt, and the linkage driving gear 29 meshes with the adjacent linkage driven gear 31 through the gear, and the active gear is linked.
  • the linkage between the wheel 29 and the remote drive gear 30 is transmitted through the belt. The purpose of this is also to reverse the direction of rotation of the rotors on the two power shafts through the linkage mechanism.
  • a reciprocating rotary engine has a rotor 2 coaxially rotated with a power shaft 4, and can coaxially transmit an output shaft 1 1 , and a screw-shaped rotor 2 has a weight distributed in a radial direction, and the rotor 2 The operation process hardly produces vibration and the engine runs smoothly.
  • the contact surface of the rotor 2 with the cylinder 1 is coaxial with the rotor 2, so that the wear of the cylinder 1 is balanced when the rotor 2 rotates.
  • the gas pressure of an object is equal to the product of the gas pressure and the area of the object.
  • the pressure of the expanding gas is constant, increasing the force receiving area of the working component can increase the force.
  • the torque is equal to the rotation of the shaft. Tangential force and the distance from the force to the axis Dynamic torque.
  • the force receiving area of the pressure of the expanding gas of the working component ie, the rotor 2
  • the rotation of the rotating shaft may be increased.
  • N the torque
  • F the tangential force that the expanding gas acts on the rotor 2 to rotate the rotor 2
  • L the distance from the tangential force to the axis of the rotor 2
  • k a constant
  • P the pressure of the expanding gas
  • S the effective force receiving area of the expanded gas of the rotor.
  • the minimum value of P can be It is very small, that is, the exhaust pressure can be small, so that the purpose of reducing the exhaust pressure is achieved, and the cascade utilization of the gas energy is realized.
  • a gas working unit of a reciprocating rotary engine includes a rotor 2 having a conical screw shape and a cylinder 1 and a sliding plug 5 matched thereto, and a screw portion 16 of the main portion of the rotor 2
  • the wall of the cylinder block 1 is in sealing contact, and the rotor 2 is freely rotatable in a cavity surrounded by the inner wall surface of the cylinder block 1 around its own axis, and the A end of the working unit communicates with the inflation gas.
  • Such a structure allows the inflation gas to expand only along the thread groove 17. Since the groove wall of the thread groove 17 is a slope, the expansion gas acts on the thread groove 17 to generate a tangential force for rotating the rotor 2 about the axis.
  • the rotor 2 is placed in the thread groove 17 to perform work.
  • a longitudinal sliding groove 7 is arranged on the cylinder block 1, and the sliding plug 5 is slid along the threaded groove 17 and the sliding groove 7, so that the sliding plug 5 can be slidably engaged with the rotor 2 without axial movement of the rotor 2. Turn.
  • the slider 5 is designed as two plates a cross-shaped structure perpendicularly intersecting each other, such that the outer edge thereof is in sealing contact with the groove wall of the thread groove 17, the bottom of the groove, the inner wall of the cylinder 1, and the inner wall of the sliding groove 7, and the passage formed by the inner wall of the cylinder 1 and the screw groove 17 is blocked as
  • the four areas, the two areas of the diagonal, communicate with each other, and the four parts of the boundary of the two plug-in areas of the sliding plug 5 are equally effective.
  • This structure makes the air pressures in the two opposite corners of the sliding plug 5 equal, and the pressure of the expanding gas can simultaneously act on the four portions of the boundary of the two regions of the sliding plug 5, so that the pressure of the expanding gas of the sliding plug 5 is equal.
  • the tapered screw-shaped rotor 1 has a surface area of a groove having a small cross section (A end) to a large end (B end), and a distance from the axis gradually increases, and the torque is also at the same air pressure. Increasingly, such a structure allows the expanding gas whose pressure is gradually reduced to generate a sufficient torque to perform work, thereby achieving the purpose of utilizing the energy cascade of the expanding gas.
  • variable-capacity heat engines used worldwide cannot use the energy generated by fuel in cascade, and only a small part of them are used in the process of using energy. Most of the energy is wasted as waste heat because the lower pressure inflation gas does not produce enough torque to do the work.
  • the inventive idea is to change the way in which thermal energy is utilized so that lower pressure gases can also produce sufficient torque to work, so that most of the energy of the fuel can be effectively utilized.
  • each of the work unit groups 12 includes two work units that are mirror images of each other.
  • the rotor 2 is rigidly connected in a mirrored manner.
  • the direction of the axial force generated by making the transmission direction the same in the expansion stroke is reversed, thereby offsetting the axial force.
  • the slide 5 is returned to the original position after the gas is completed, and the slide 5 needs to be moved backward along its trajectory, since the slide 5 is pushed by the rotor 2. In conjunction with the rotation of the rotor 2, this requires the rotor 2 to rotate in reverse after the end of the power stroke.
  • some embodiments of the present invention provide two corresponding work unit groups 12, and the two corresponding work unit groups 12 can be linked by the rotor linkage mechanism 10.
  • a working unit group 12 performs an expansion stroke
  • the spool 5 is slid from the A end of the rotor to the B end
  • the rotor 2 of the other working unit group 12 correspondingly rotates to perform an exhaust stroke or a compression stroke. 5 is pushed from the B end of the rotor to the A end of the rotor.
  • the sliding plug 5 of the other working unit group 12 reaches the end of the rotor A for the expansion stroke, the opposite direction of the rotor of the working unit group 12 corresponding thereto is driven.
  • the two corresponding working unit groups 12 alternately perform the expansion stroke, so that the rotor 2 alternately performs forward and reverse reciprocating rotations, thereby pushing the sliding plug 5 to reciprocally slide between the B end and the A end of the rotor, so that the working unit is smooth It works. Since the rotor 2 needs to be reversely rotated, it cannot be transmitted to the power shaft 4 during this process, so the one-way bearing 6 is provided to cause the rotor to drive the power shaft 4.
  • the function of the one-way bearing 6 is that the rotor 2 transmits the power shaft 4 when it rotates in a certain direction, and does not transmit to the power shaft 4 during the reverse rotation, and performs idling, similar to the working principle of the bicycle flywheel.
  • Lubricating oil is injected into the thread groove 17 between the end of the rotor having a larger cross section (B end) and the spool 5, so that the corresponding two working unit groups 12 communicate with each other through the lubricating oil passage 9, so that the lubricating oil can be
  • the two corresponding working unit groups 12 reciprocately flow to lubricate and cool the working unit.
  • some embodiments of the present invention drive the corresponding work unit groups 12 respectively.
  • the two power shafts 4 are moved, and the two shaft power shafts 4 are commonly driven by the shaft transmission mechanism 8 to rotate the output shaft 11 so that the output shafts 1 1 rotate in the same direction.
  • the corresponding work unit group 12 alternately transmits the power shaft 4 through the one-way bearing 6, and the two power shafts 4 alternately drive the output shaft 11, so that the output shaft 11 outputs power externally.
  • Some embodiments of the present invention operate as an internal combustion engine: In Fig. 13, the expansion gas expands along the thread groove 17 in the work unit, is blocked by the spool 5, and the pressure acts on the groove wall of the thread groove 17 to drive the rotor 2 to rotate to drive the power shaft. 4 rotation to do work.
  • the sliding plug 5 When a working unit group 12 performs an expansion stroke, the sliding plug 5 is slid along the chute from the A end of the working unit to the B end, and the rotor 2 of the other working unit group 12 coaxial with it rotates in the same direction to push the sliding plug 5 It is also slid from the A end of the work unit to the B end to perform the intake stroke, and the rotor 2 of the two work unit groups 12 on the other power shaft 4 is reversely rotated by the linkage mechanism 10 to push the slide 5
  • the B end of the work unit is slid to the A end, and the exhaust and compression strokes are respectively performed.
  • the embodiment of the present invention as an internal combustion engine is not limited to only four work unit groups 12, and more work unit groups may be superimposed on the two power shafts 4 for the purpose of enhancing power. 12.
  • the embodiment of the present invention is not limited to only two work unit groups 12 as a steam engine, and more work unit groups 12 may be superimposed on the two power shafts 4 for the purpose of enhancing power.
  • the sliding plug 5 which is one of the moving parts, is a cross-shaped cross-shaped structure, and the expansion force of the gas can simultaneously act on the two spaces communicating diagonally, and constitutes ten
  • the effective force areas of the four parts of the glyph are equal, so that the pressure of the expanding gas in each part of the sliding plug 5 is equal and cancels each other, and the overall force is balanced, and no additional friction is generated by the expansion force and other parts in the working unit.
  • the pressure of gas expansion only acts on the rotor 2 that performs work externally, thereby ensuring a higher internal efficiency of the work unit.
  • the rotor body portion described above refers to a portion of the rotor converting energy (converting thermal energy of the expanding gas into mechanical energy).
  • the sealing contact refers to a contact manner in which the contact surface abuts against each other when contacting each other and can prevent the passage of the fluid during relative movement (part of the present invention)
  • the piston ring or a device similar in function is in sealing contact with the inner wall surface of the cylinder, the function of the piston ring and the existing engine
  • the piston rings function the same in technology.
  • a screw is a mechanical structure that transmits motion or power using its own thread (axial extension of the thread), and the shape of the screw means that its appearance is like a screw.
  • a conical screw refers to a screw whose outer diameter gradually increases in a certain direction of the axis, and a conical screw shape refers to a shape such as a conical screw.
  • the inner wall surface of the cylinder refers to the wall surface of the cylinder which is in sealing contact with the top surface of the main body portion 16 of the rotor 2.
  • the corresponding area refers to the area where the force is canceled by the gas pressure, and the effective force area refers to the projected area on the plane perpendicular to the direction of the combined force of the expanding gas. Stroke refers to a process in the four processes of inhalation, compression, expansion, and exhaust.
  • the corresponding work unit group 12 refers to a work unit group at the same side position on the two power shafts.
  • the rotor rotates coaxially with the power shaft, the operation is smooth, and the energy of the fuel can be used in cascade, so that the fuel utilization rate is improved.

Abstract

一种往复式转子发动机包括做功单元(12),做功单元包括转子(2)、缸体(1)和滑塞(5),转子主体部分为螺杆状,缸体内壁面围成的型腔与转子同轴,缸体上设置有滑槽(7),滑塞置放于该滑槽和转子的螺纹槽(17)内,用于阻挡气体通过,且滑塞沿滑槽和螺纹槽滑动以配合转子的转动,转子和动力轴(4)同轴布置,转子通过单向轴承向动力轴传动。该往复式转子发动机运转平稳,燃料利用率高。

Description

往复式转子发动机 技术领域
本发明涉及一种转子发动机, 尤其是一种利用转子同轴传动动 力轴的往复式转子发动机。 背景技术
转子式热力发动机是指将气体的膨胀力直接转化为驱动动力 轴转动的驱动扭矩的一类发动机, 相对于最常用的往复式活塞式发 动机来说, 转子发动机取消了无用的直线运动, 因而摩擦和能量损 失少, 能更高效的将热能转化为机械能, 而且零部件少运行平稳, 具有较大应用优势。
目前公知的处于实用阶段的利用转子传动动力轴的做功装置 如三角活塞旋转式转子发动机, 其做功原理是: 气体膨胀压力作用 在与动力轴偏心安置的转子的侧面, 使转子转动, 三角转子通过齿 数较多的以其中心为中心的内齿圈传动齿数较少的以动力轴中心 为中心固定在动力轴上的齿轮产生一个使动力轴转动的切线力, 驱 动动力轴转动。 三角转子的中心绕动力轴中心公转的同时, 三角转 子本身又绕其中心自转。 此种发动机做功单元存在的主要缺点是, 转子不能同轴传动动力轴, 运转过程中会产生额外的偏心震动, 同 时转子偏心运动的方式使得其在做功时缸体的一个区域受到巨大 的冲击, 造成这个区域磨损剧烈, 磨损的不平衡极大的降低了发动 机的使用寿命。
另外, 此类发动机做功单元 (做功单元是指将热能转化为机械 能的核心结构) 气体做功过程中三角转子受膨胀气体压力的面积几 乎不变, 由于气体在膨胀做功过程中随着温度逐渐降低, 压强逐渐 减小, 所以作用于转子上的力也逐渐减小, 并且膨胀气体作用于转 子上的力分解为一个驱动动力轴转动的力和一个指向动力轴轴线
切线力大幅减小, 而切线力相对于转轴中线的距离不变, 所以驱动 动力轴转动的力矩也大幅减小, 当力矩减小到不足以維持动力轴转 动必要的扭矩时, 气体结束做功被排放到环境中, 此时气体的温度 还很高, 压强仍高于外界环境气压数倍。 其缺点还在于: 气体膨胀 做功的后期, 驱使动力轴转动的力矩大幅减小, 不能使压强较低的 气体产生足够的扭矩继续做功, 不能将燃料的能量进行梯级利用, 所以仅有少量的热能被转化为机械能, 大量的热能被作为余热排放 到了环境中, 发动机排气温度和排气压强较高, 造成燃料利用率不 高的现象。 发明内容
为解决现有发动机所存在的问题, 本发明的目的是提供一种转 子与动力轴同轴转动, 可同轴传动动力轴, 且转子对缸体磨损平衡 的往复式转子发动机。
其次, 本发明的目的还在于提供一种能将燃料的能量进行梯级 利用, 燃料利用率很高的往复式转子发动机。
技术方案如下:
一种往复式转子发动机, 包括气体做功单元, 所述做功单元包 括转子、 缸体和滑塞; 所述转子主体部分为螺杆状, 所述缸体内壁 面围成的型腔与所述转子同轴, 所述缸体上设置有滑槽, 所述滑塞 放置于所述滑槽和所述转子的螺紋槽内, 所述滑塞用于阻挡做功气 体通过, 所述滑塞沿所述滑槽和所述螺紋槽滑动以配合所述转子的 转动; 所述转子与动力轴同轴安置, 所述转子通过单向轴承传动所 述动力轴。
进一步: 所述做功单元包括 A端和 B端, 所述转子的 A端与 所述滑塞之间的螺紋槽连通做功气体。
进一步: 所述转子的螺故牙顶面与所述缸体内壁面密封接触。 进一步: 所述转子的主体部分为锥形螺杆状。
进一步: 所述滑塞设置有对角连接通孔, 所述对角连接通孔用 于抵消所述滑塞在所述通孔相连通的两个区域中受到的膨胀气体 的压力。
进一步: 所述滑塞为对角相通的十字形结构, 所述滑塞包括连 接轴、 第一滑塞块、 第二滑塞块、 第三滑塞块、 第四滑塞块, 所述 第一滑塞块、 第二滑塞块、 第三滑塞块、 第四滑塞块分别固定在所 述连接轴上, 所述第一滑塞块和所述第三滑塞块处在同一个平面, 所述第二滑塞块和所述第四滑塞块处在同在一个平面; 所述对角连 接通孔开在所述连接轴上, 包括第一对角连接通孔和第二对角连接 通孔; 所述第一对角连接通孔连通所述第一滑塞块和所述第二滑塞 块围成的空间与所述第三滑塞块和所述第四滑塞块围成的空间, 所 述第二角连接通孔连通所述第一滑塞块和所述第四滑塞块围成的 空间与所述第二滑塞块和所述第三滑塞块围成的空间; 所述第一滑 塞块安装在所述滑槽内, 所述第二滑塞块、 第三滑塞块和第四滑塞 块安装在所述螺紋槽内; 所述第二滑塞块、 第三滑塞块和第四滑塞 块的外缘与所述螺故槽的槽壁密封接触, 所述第一滑塞块的外壁与 所述滑槽内壁密封接触; 所述滑塞在所述对角连接通孔连通的两个 区域中所受膨胀气体的有效受力面积相等。
进一步: 包括至少两个相对应的做功单元组, 每个做功单元组 包括两个彼此镜像的做功单元, 所述做功单元包括 A端和 B端, 所 述两个做功单元转子的 B端刚性连接、 缸体的 B端相互闭合, 所述 相对应的做功单元组分别驱动两 4艮动力轴, 所述两 4艮动力轴通过轴 传动机构共同传动输出轴; 所述相对应的做功单元组通过转子联动 相配合工作。
进一步: 所述相对应的做功单元组通过润滑油通道彼此相连 通。
进一步: 所述转子的螺紋牙顶面上设置有活塞环, 所述活塞环 与所述缸体内壁面密封接触。
进一步: 所述转子靠近 A端的螺紋槽中产生做功气体。
技术效果包括:
1、 运转平稳。 2、 转子对缸体的磨损均衡。 3、 做功单元内效 率较高。 4、 可实现对热能的梯级利用, 提高了燃料的利用率。 附图概述
图 1 为本发明中气体做功单元的俯视图;
图 2为本发明中图 1的 B_B向剖视图;
图 3为本发明中发动机气体做功单元的立体剖切图;
图 4为本发明中缸体主视图;
图 5为本发明中缸体立体图;
图 6为本发明中转子主视图; 图 7为本发明中转子立体图;
图 8为本发明中滑塞主视图;
图 9为本发明中滑塞左视图;
图 10为本发明中滑塞俯视图;
图 1 1 为本发明中滑塞轴测图;
图 12为本发明中内燃机的简易构造图;
图 13为本发明中图 12的立体剖切图;
图 14为本发明中作为蒸汽机的简易构造图。
图中: 1、 缸体 2、 转子 3、 端盖 4、 动力轴 5、 滑塞 6、 单向轴承 7、 滑槽 8、 轴传动机构 9、 润滑油通道 10、 转子 联动机构 11、 输出轴 12、 做功单元组 13、 进气口 14、 排 气口 15、 轴套 16螺紋牙 17、 螺紋槽 18、 连接轴 19、 第 一滑塞块 20、 第二滑塞块 21、 第三滑塞块 22、 第四滑塞块 23、 第一对角连接通孔 24、 第二对角连接通孔 25、 输出主动齿 轮 26、 输出主动齿轮 27、 输出从动齿轮 28、 联动主动齿轮 29、 联动主动齿轮 30、 联动从动齿轮 31、 联动从动齿轮 32、 齿轮轴 本发明的较佳实施方式
本发明的部分实施例中, 气体做功单元作为将膨胀气体的热能 转化为机械能的核心结构, 只有将膨胀气体 (或者称为做功气体) 通入到做功单元的某一端与滑塞之间的螺紋槽内才会使膨胀气体 能更好的 (更节能的) 驱使转子转动实现能量转换, 本发明的部分 实施例中将通入膨胀气体的一端称为 A 端, 与 A 端相对应的另一 端称为 B端 (如做功单元的转子为柱形螺杆状则任一端都可作为 A 端) 。 本发明的部分实施例如作为内燃机, 其做功单元可以直接连 通燃烧室,将燃烧室中产生的膨胀气体通入到做功单元 A端与滑塞 之间的螺紋槽内, 也可以在 A端集成一个燃烧室, 如作为蒸汽机, 则是将膨胀蒸汽通入到做功单元 A端与滑塞之间的螺紋槽内,使做 功单元实现做功。
下面结合附图和优选实施例, 对本发明部分实施例的技术方案 作进一步的详细描述。 如图 1 ~3所示, 做功单元包括转子 2、 缸体 1和滑塞 5, 转子 2设置在缸体 1的内壁面所围成的型腔内, 转子 2 与动力轴 4 同轴安置并呈锥形螺杆状, 转子 2的螺紋牙 16的顶面 与缸体 1 内壁面密封接触, 且所述缸体 1 内壁面所围成的型腔与转 子 同轴,这样转子 2可以绕自身轴线使螺紋牙 16顶面紧贴缸体 1 内壁面在缸体 1 内旋转, 将做功气体局限在螺紋槽 17 与缸体 1 内 壁所构成的通道内。 缸体 1上设置有滑槽 7, 滑槽 7的内壁和缸体 1 的内壁连接, 使滑槽 7和缸体 1 内壁面所围成的型腔相通。 滑塞 5放置于转子 2的螺紋槽 17 内, 沿滑槽 7和螺紋槽 17滑动, 并将 缸体 1 内壁与螺紋槽 17所构成的通道隔断, 起到阻挡螺紋槽 17 内 膨胀气体通过的作用, 并通过滑动配合转子 2的转动。
如图 4和 5所示, 缸体 1 的内壁面与转子的螺紋牙 16顶面密 封接触, 并可使转子 2在其内绕自身轴线自由转动。 当然, 在本发 明的部分实施例中转子 2 的螺紋牙 16 顶面上如果设置有活塞环, 则由活塞环与缸体内壁面密封接触。 滑槽 7设置在缸体 1上, 且滑 槽 7纵向中线和动力轴 4轴线在一个平面上, 这就使滑塞 5的滑动 轨迹与转子 2轴线处于同一平面。
滑槽 7在缸体 1 上是纵向 (由做功单元的 A端到 B端或 B端 到 A端) 设置的, 其主要作用是为了约束滑塞 5沿缸体纵向运动, 以使滑塞 5可以配合转子 2的转动, 并起到阻挡膨胀气体的作用。 滑槽 7决定滑塞 5的运动轨迹, 滑槽 7的运动轨迹可以和转子 2的 轴线不在一个平面上或呈曲线状态, 但是优化的方式是所述轨迹与 转子 2的轴线在同一平面并呈直线状态。
在本优选实施例中, 由于转子 2为锥形螺杆状, 只有将膨胀气 体通入到做功单元转子截面较小的那一端才能使做功单元更好 (更 节能) 的实现做功, 即这一端为做功单元的 A 端。 在缸体 1 的 A 端设置有端盖 3, 端盖 3上设置有进气口 13、 排气口 14 (也可以将 进气口 13、 排气口 14合并为一个进排气口) , 端盖 3 中部开有轴 孔, 与转子 2刚性连接的轴套 15从轴孔伸出, 轴孔和轴套 15密封 接触, 轴套 15上固定输出主动齿轮 25。 转子 2通过传动单向轴承 6 (或者采用飞轮等功能类似的装置) 传动动力轴 4, 本优选实施例 中动力轴 4穿过单向轴承 6与转子 2, 将转子 固定在缸体 1的内 壁面所围成的型腔内。 由于设置有单向轴承 6, 转子 2沿同一方向 传动动力轴 4。
本发明的部分实施例中, 单项轴承 6的作用在于, 当转子 2向 某一方向旋转时, 转子 2 带动单向轴承 6传动动力轴 4, 当转子 2 向相反的方向转动时, 单项轴承 6不传动动力轴 4, 转子 2进行空 转, 如自行车飞轮的工作原理。
当然, 端盖 3也可以和缸体 1为一体结构, 采用一体浇铸成型 (如端盖 3与缸体 1是分体设计的, 我们也将端盖 3理解为缸体 1 的一部分) , 本发明的部分实施例中也可以采用动力轴 4直接穿过 轴孔, 动力轴 4和轴孔密封接触, 这样可以省去轴套 15。 如图 6和 7所示, 转子 2的主体部分为锥形螺杆状, 凸起部分 为螺紋牙 16, ω下去的部分为螺紋槽 17, 螺旋状的螺紋牙 16和螺 紋槽 17—直延伸到转子 2的底部, 缸体 1 内腔为锥台形, 以和转 子 2形状相适应, 使转子 2的螺紋牙 16顶面可以和缸体 1 内壁面 密封接触, 并可绕自身轴线在缸体 1 内 自由旋转。
另外, 本发明的部分实施例中转子 2的外形也可以设计为柱状 螺杆形, 相应的缸体 1 内壁面围成的型腔为圆柱形。
滑塞 5 的主要作用是阻挡螺紋槽 17 内的膨胀气体通过, 最好 使滑塞 5的滑动轨迹与转子 2轴线处于同一平面, 并将其设计为两 块板状物彼此垂直相交的十字形结构, 使其外缘与螺紋槽 17 的槽 壁、 槽底、 缸体 2内壁及滑槽 7 内壁密封接触, 将缸体 1 内壁与螺 紋槽所构成的通道阻隔为四个区域, 为了抵消滑塞 5在彼此相通的 区域内所受膨胀气体压力, 滑塞 5十字形对角的两个区域通过连通 结构两两相通, 并使滑塞 5构成两个相通区域边界的四个部分有效 受力面积相等, 这样的结构使滑塞 5在彼此相通的区域内所受膨胀 气体压力的合力相等且方向相反, 彼此相互抵消。
优化的方式如图 8~ 11 所示, 滑塞 5 的外形为两块板状物十字 交叉形结构, 其结构包括: 连接轴 18、 第一滑塞块 19、 第二滑塞 块 20、 第三滑塞块 21、 第四滑塞块 22, 第一滑塞块 19、 第二滑塞 块 20、 第三滑塞块 21、 第四滑塞块 22分别固定在连接轴上, 第一 滑塞块和第三滑塞块处在同一个平面, 第二滑塞块和第四滑塞块处 在同在一个平面; 在连接轴上开有第一对角连接通孔 23 和第二对 角连接通孔 24, 其中, 第一对角连接通孔 23连通第一滑塞块 19和 第二滑塞块 20 围成的空间与第三滑塞块 21 和第四滑塞块 22 围成 的空间, 第二角连接通孔 24 连通第一滑塞块 19 和第四滑塞块 22 围成的空间与第二滑塞块 20和第三滑塞块 21 围成的空间。 第一滑 塞块 19安装在滑槽 7 内, 第二滑塞块、 第三滑塞块和第四滑塞块 安装在螺紋槽 17 内, 并且第二滑塞块 20、 第三滑塞块 21和第四滑 塞块 22的外壁与螺紋槽 17 的槽壁密封接触, 第一滑塞块 19的外 壁与滑槽 7 内壁密封接触, 将缸体 1 内壁与螺故槽 17所构成的通 道阻隔为四个区域; 通过第一对角连接通孔 23 和第二对角连接通 孔 24使十字交叉形的两个区域相通, 并使滑塞 5 构成两个相通区 域边界的四个部分有效受力面积相等, 这样的结构使滑塞 5在彼此 相通的区域(第一对角通孔连通的两个区域)内所受膨胀气体压力的 合力相等且方向相反, 彼此相互抵消。
当然, 滑塞 5也可以设计为其它形状, 只要能起到阻挡螺紋槽 内膨胀气体通过的作用即可。
将本发明的部分实施例作为内燃机, 其做功单元的运转方式 为: 燃烧室通过缸体 1上的进排气口与做功单元 A端相连通, 或做 功单元 A端集成有燃烧室, 或者, 空气直接和燃料在转子 2靠近 A 端的部分螺故槽 17 内燃烧 (这种方式则将转子靠近 A端的部分螺 紋槽视为燃烧室, 燃烧室的辅助结构可以参考现有技术当中内燃机 的燃烧室进行设置, 以使做功单元 A端的部分螺紋槽充当燃烧室可 顺利工作 ) , 驱使转子 2转动, 转子 2 带动单向轴承 6传动动力 轴 4输出动力。 当滑塞 5 由转子 2的 A端滑动到转子的 B端, 做功 行程 (膨胀行程) 结束, 燃烧室的排气门开启, 转子 2反向旋转, 滑塞 5 由转子 2的 B端向 A端滑动, 螺紋槽 17 内完成做功的气体 通过进排气口或直接排入燃烧室, 并经燃烧室排出 (如果空气直接 和燃料在转子 2 的 A端的螺紋槽 17 内燃烧, 则空气通过进气口 13 进入螺紋槽 17 内, 完成做功的气体通过排气口 14排出) , 此时转 子 2带动单向轴承 6反向旋转, 单向轴承 6空转, 不对动力轴 4产 生传动作用。当滑塞 5由转子 2的 B端滑动到 A端完成排气行程后, 燃烧室的排气门关闭, 进气门开启, 转子 2又正向旋转, 使滑塞 5 由转子 2的 A端滑动到 B端,燃烧室在负压的作用下完成进气行程, 进气行程结束后, 燃烧室的进气门和排气门均关闭, 转子 2再反向 旋转, 驱使滑塞 5 由转子 2的 B端向 A端滑动, 将气体压缩到燃烧 室内完成压气行程, 压气行程结束后, 燃烧室内的气体燃烧膨胀开 始下一个做功行程。
将本发明的部分实施例作为蒸汽机其做功单元的运转方式为: 将膨胀气体通过缸体 1上的进气口 13通入到做功单元 A端与滑塞 5之间的螺紋槽 17 内, 驱使转子 2转动, 转子 2带动单向轴承 6传 动动力轴 4输出动力。当滑塞 5滑动到转子 2的 B端,做功行程(膨 胀行程) 结束, 进气口 13关闭, 排气口 14开启, 转子 2反向旋转, 滑塞 5 由转子 2的 B端向 A端滑动, 螺紋槽 17 内完成做功的气体 通过缸体 1 上的排气口 14被排出, 此时转子 2带动单向轴承 6反 向旋转, 单向轴承 6空转, 不对动力轴 4产生传动作用。 当滑塞 5 由转子 2的 B端滑动到 A端完成排气行程后, 排气口 14关闭, 进 气口 13开启, 膨胀气体进入开始下一个做功行程。
公知的, 任何发动机的做功单元都必须有气体进出的通道, 在 本发明的部分实施例中, 如作为内燃机, 膨胀气体产生于燃烧室, 其做功单元的缸体 1上必定有连通膨胀气体的通道, 这个通道可以 为上述进排气口, 做功单元与燃烧室之间通过进排气口进出气体, 与外界则通过燃烧室的进气门、 排气门进出气体, 也可以直接将燃 烧室集成在缸体 1 的 A端 (缸体 A端的部分螺紋槽充当燃烧室也 是缸体 A端集成燃烧室的一种实施方式) , 使燃烧室与做功单元的 A端的螺紋槽呈一体相通的结构。 如本发明的部分实施例作为蒸汽 机, 其做功单元则是通过缸体 1上的进气口 13连通膨胀气体进气, 通过排气口 14排出做功后的气体。
如图 12和图 13所示, 为本发明作为内燃机的部分实施例。 选 用燃烧室连通做功单元 A端的方式, 做功单元的进排气口 (进排气 口可以为一个口) 连通燃烧室, 做功单元转子 2的 A端与滑塞 5之 间的螺紋槽 17连通膨胀气体, 转子 2的 B端与滑塞 5之间的螺紋 槽 17 内加注有冷却润滑油。 内燃机的结构包括两两相对应的四个 传动方向相同的做功单元组 12, 每个做功单元组 12包括两个彼此 镜像且连接在一起的做功单元,两个做功单元 B端的缸体 1相闭合, 转子 2按镜像方式刚性连接。 做功单元组 12之间连接有轴传动机 构 8和转子联动机构 10, 轴传动机构 8 用于传动输出轴 11输出动 力, 联动机构 10用于实现四个做功单元组 12的联动和互相配合工 作。 本发明中, 镜像是指以做功单元末端垂直转子 4轴线的某个面 为对称面, 另一个做功单元与其呈面对称状态。
本优选实施例中, 四个做功单元组 12 的排列方式为: 两根动 力轴 4上分别安装两个做功单元组 12, 两根动力轴 4上的做功单元 组 12通过轴传动机构 8彼此相对应的联接在一起共同传动输出轴 1 1。 同一根动力轴 4上的两个做功单元组 12的转子 2通过轴套 15 刚性连接在一起。
两根动力轴 4上相对应的两个做功单元组 12的缸体 B端通过 润滑油通道 9彼此相连通, B端及润滑油通道 9中盛放有润滑油。 两根动力轴 4上彼此相对应的两个做功单元组 12之间分别设 置有轴传动机构 8, 轴传动机构 8的结构包括: 输出主动齿轮 25、 输出主动齿轮 26和输出从动齿轮 27,输出主动齿轮 25和输出主动 齿轮 26分别固定在两根动力轴 4上, 输出从动齿轮 27 固定在输出 轴 1 1 上, 输出主动齿轮 25、 输出从动齿轮 27和输出主动齿轮 26 依次啮合, 通过输出主动齿轮 25和输出主动齿轮 26传动输出从动 齿轮 27。
当然, 轴传动机构 8的作用是使转子可以传动输出轴 1 1, 只要 能实现上述目的, 设计为其它的传动方式及传动机构也可以。
两根动力轴 4上的做功单元组 12之间设置有转子联动机构 10, 位于两根动力轴 4上中间两个做功单元 A端的轴套 15彼此相连接 的部位, 转子联动机构 10的结构包括: 联动主动齿轮 28、 联动主 动齿轮 29、 联动从动齿轮 30和联动从动齿轮 31, 联动主动齿轮 28 和联动主动齿轮 29分别固定在每根动力轴上两个做功单元 A端相 连接的轴套 15上, 在同一根动力轴 4上两个做功单元组 12的缸体 1 的外壁上固定有齿轮轴 32, 齿轮轴 32设置有轴承, 联动从动齿 轮 30和联动从动齿轮 31分别安装在两个轴承上;联动主动齿轮 28 与靠近的联动从动齿轮 30通过齿轮啮合, 联动主动齿轮 28与远离 的联动从动齿轮 31通过皮带传动, 联动主动齿轮 29与靠近的联动 从动齿轮 31通过齿轮啮合, 联动主动齿轮 29与远离的联动从动齿 轮 30通过皮带传动。 这样做的目的是为了通过联动机构 10使两根 动力轴 4上的转子 2的转动方向相反。 当然, 只要能实现上述目的, 设计为其它联动机构或联动方式也可以。 如上所述相对应的做功单元组 12共驱动两根动力轴 4,并通过 轴传动机构 8使两根动力轴 4共同传动输出轴 1 1,并通过单向轴承 6的传动使输出轴 11 沿同一方向旋转。
本优选应用实例中, 按照图 12、 图 13所示的位置关系, 上面 和下面的四个做功单元的转子 2可不设置轴套 15, 轴套 15也不从 轴孔伸出; 而中间的四个做功单元的转子 2连接有轴套 15, 并且轴 套 15 从轴孔伸出。 这个设置是为了使同一根动力轴 4上的两个做 功单元组 12 的转子 2连接在一起相联动, 以及便于将联动主动齿 轮 28、 联动主动齿轮 29固定。
如图 14 所示, 为本发明作为蒸汽机的部分实施例, 其结构包 括相对应的两个传动方向相同的做功单元组 12, 做功单元组 12之 间连接有轴传动机构 8、 润滑油通道 9和转子联动机构 10, 轴传动 机构 8 用于输出动力给输出轴 11, 联动机构 10用于实现两个做功 单元组 12联动和互相配合工作。 做功单元 A端的缸体或其端盖上 开有进气口 13、 排气口 14。
润滑油通道 9、转子联动机构 10的结构和图 12和图 13 中将本 发明作为内燃机的实施例的结构类似, 当然, 如果能以油脂润滑则 可以取消润滑油通道。
轴传动机构 8的结构包括: 两个输出主动齿轮 25、 两个输出主 动齿轮 26和两个输出从动齿轮 27,做功单元组 12两侧的端盖 3两 侧各设置一组, 并且每组中输出主动齿轮 25和输出主动齿轮 26分 别固定在动力轴 4 上两侧两个做功单元的外端, 输出从动齿轮 27 固定在输出轴 1 1上, 输出主动齿轮 25、 输出从动齿轮 27和输出主 动齿轮 26依次啮合, 通过输出主动齿轮 25和输出主动齿轮 26传 动输出从动齿轮 27。
两根动力轴 4上的做功单元组 12之间设置有转子联动机构 10, 位于两根动力轴 4上同侧做功单元 A端的轴套 15的部位 (这里仅 在做功单元组的一侧设置轴套 15和联动机构 10, 当然在做功单元 组 12的两侧都可以设置上述机构), 转子联动机构 10的结构包括: 联动主动齿轮 28、 联动主动齿轮 29、 联动从动齿轮 30和联动从动 齿轮 31,联动主动齿轮 28和联动主动齿轮 29分别固定在每根动力 轴上做功单元 A端的轴套 15上,每根动力轴 4上做功单元组 12的 缸体 1 的外壁上固定有齿轮轴 32, 齿轮轴 32设置有轴承, 联动从 动齿轮 30和联动从动齿轮 31分别安装在两个轴承上; 联动主动齿 轮 28 与靠近的联动从动齿轮 30 通过齿轮啮合, 联动主动齿轮 28 与远离的联动从动齿轮 31通过皮带传动, 联动主动齿轮 29与靠近 的联动从动齿轮 31通过齿轮啮合, 联动主动齿轮 29与远离的联动 从动齿轮 30 通过皮带传动。 这样做的目的也是为了通过联动机构 使两根动力轴上的转子的转动方向相反。
本发明的部分实施例所提供的往复式转子发动机, 其转子 2与 动力轴 4同轴转动, 可同轴传动输出轴 1 1, 且螺杆状的转子 2其重 量在径向上分布均衡, 转子 2的运转过程几乎不产生震动, 发动机 运转平稳。 其次, 转子 2与缸体 1的接触面与转子 2同轴, 所以转 子 2转动时对缸体 1的磨损平衡。
我们知道, 物体所受气体压力等于气体压强与物体受力面积的 乘积, 当膨胀气体的压强不变时, 增大做功部件的受力面积可以增 大其受力, 另外, 扭矩等于使轴转动的切线力与这个力到轴中线距 动的扭矩。 为了使燃料燃烧所产生的能量得到梯级利用, 在膨胀气 体压力逐渐减小的过程中, 可以通过逐渐增大做功部件 (即转子 2) 受膨胀气体压力的受力面积, 以及增大驱使转轴转动的切线力与转 轴 (即动力轴 4) 中线之间的距离来得到足够的扭矩, 使较低压强 的气体能够产生足够大的扭矩做功, 从而提高燃料的利用率。 用数 学公式来表示: N=FL=kPSL 式中 N为扭矩, F为膨胀气体作用 于转子 2上产生的使转子 2旋转的切线力, L为切线力到转子 2轴 线的距离, k为常数, P为膨胀气体的压强, S为转子受膨胀气体的 有效受力面积。 从上述公式可以看出, 因为 SL 的积不断增大, 所 以 N不会随着 P的减小而线性减小, 当驱动动力轴 4转动的最小扭 矩 N的值恒定时, P的最小值可以很小, 也就是排气压强可以很小, 这样就达到了降低排气压强的目的, 实现了对燃气能量的梯级利 用。
本发明的部分实施例所提供的往复式转子发动机其气体做功 单元包括主体为锥形螺杆状的转子 2以及与之配套的缸体 1和滑塞 5, 转子 2主体部分的螺故牙 16与缸体 1壁面密封接触, 且转子 2 可绕自身轴线在缸体 1 内壁面围成的型腔内 自由旋转, 做功单元的 A 端连通膨胀气体。 这样的结构使得膨胀气体只能沿螺紋槽 17 膨 胀, 由于螺紋槽 17的槽壁是一个斜面, 膨胀气体作用于螺紋槽 17 上就会产生一个使转子 2 绕轴线转动的切线力。 在螺紋槽 17 中置 转子 2做功的作用。 在缸体 1上设置一个纵向的滑槽 7, 并使滑塞 5沿螺紋槽 17和滑槽 7滑动,可以使滑塞 5在转子 2不发生轴向移 动的情况下通过滑动配合转子 2的转动。 滑塞 5设计为两块板状物 彼此垂直相交的十字形结构, 使其外缘与螺紋槽 17 槽壁、 槽底、 缸体 1 内壁及滑槽 7 内壁密封接触, 将缸体 1 内壁与螺故槽 17所 构成的通道阻隔为四个区域, 对角的两个区域两两相通, 并使滑塞 5 构成两个相通区域边界的四个部分有效受力面积相等。 这种结构 使得滑塞 5对角的两个区域内气压相等, 膨胀气体的压力能同时作 用于滑塞 5构成这两个区域边界的四个部分上, 使滑塞 5受膨胀气 体压力大小相等、 方向相反, 彼此相互抵消, 从而使滑塞 5总体上 受力平衡, 不因受膨胀力与做功单元其他部件产生额外的摩擦力, 消除了做功单元内不必要的磨损, 提高了做功单元的内效率。 而锥 形螺杆状的转子 1 由截面小的一端 (A端) 到截面大的一端 (B端) 螺紋槽 17 的槽壁的表面积以及离轴线的距离逐渐增大, 在相同的 气压下力矩也逐渐增大, 这样的结构可以使作用于其上的压强逐渐 减小的膨胀气体能够产生足够大的扭矩做功, 从而可以实现将膨胀 气体的能量梯级利用的目的。
在热机产生的一百多年间, 世界范围内使用的所有类型的变容 式热机均不能够将燃料所产生的能量进行梯级利用, 在使用能源的 过程中仅利用了其中的一小部分, 而将大部分的能源以余热的方式 浪费掉了, 其原因就在于不能使较低压力的膨胀气体产生足够的扭 矩做功。 本发明的创造性在于改变了热能的利用方式, 使较低压力 的气体也能产生足够的扭矩做功, 从而使燃料大部分的能量能够得 到有效利用。
气体的膨胀力作用于转子 2上还会产生一个轴向力, 为此本发 明的部分实施例提供的方案是使每个做功单元组 12 包括两个彼此 镜像的做功单元, 这两个做功单元的转子 2按镜像方式刚性连接, 使其在膨胀行程中传动方向相同而产生的轴向力方向相反, 以此来 抵消轴向力。 为了使气体做功单元有效的运转起来, 就要使滑塞 5 在气体完成做功后回到原来的位置, 也就需要使滑塞 5沿其轨迹反 向运动, 由于滑塞 5是由转子 2推动配合转子 2的旋转而运动的, 这就需要转子 2在做功行程结束后反向旋转。 为了实现这一目的, 本发明的部分实施例设置了两个相对应的做功单元组 12,两个相对 应的做功单元组 12可以通过转子联动机构 10相联动。 当一个做功 单元组 12进行膨胀行程时, 滑塞 5 由转子的 A端滑动到 B端, 与 之相对应的另一个做功单元组 12 的转子 2联动旋转进行排气行程 或压缩行程将滑塞 5 由转子的 B端推到转子的 A端,当另一个做功 单元组 12的滑塞 5到达转子 A端进行膨胀行程时, 又会带动前述 与之相对应的做功单元组 12 的转子反方向旋转, 将滑塞 5 推动到 转子的 A端。 两个相对应的做功单元组 12交替进行膨胀行程, 使 其转子 2交替进行正向和反向往复旋转, 从而推动滑塞 5在转子的 B端和 A端之间往复滑动, 使做功单元平稳的运转起来。 由于转子 2需要反向旋转, 在此过程中不能与动力轴 4发生传动作用, 所以 设置单向轴承 6来使转子传动动力轴 4。 单向轴承 6的作用在于, 转子 2沿某一方向旋转的时候传动动力轴 4, 而在反向旋转的时候 不与动力轴 4发生传动作用, 进行空转, 类似于自行车飞轮的工作 原理。 在转子截面较大的一端 (B 端) 与滑塞 5 之间的螺紋槽 17 内加注润滑油, 使相对应的两个做功单元组 12 通过润滑油通道 9 彼此相通, 可以使润滑油在两个相对应的做功单元组 12 中往复流 动, 对做功单元起到润滑和冷却的作用。为了使发动机的结构合理、 布局紧凑, 本发明的部分实施例使相对应的做功单元组 12 分别驱 动两 4艮动力轴 4, 并通过轴传动机构 8使两 4艮动力轴 4共同传动输 出轴 11, 使输出轴 1 1 沿同一方向旋转。 这样, 相对应的做功单元 组 12通过单向轴承 6交替传动动力轴 4,两根动力轴 4交替传动输 出轴 11, 使输出轴 1 1对外输出动力。
本发明的部分实施例作为内燃机的运行方式: 图 13 中, 做功 单元中膨胀气体沿螺紋槽 17膨胀, 被滑塞 5 阻挡, 压力作用于螺 紋槽 17 的槽壁上驱使转子 2转动带动动力轴 4旋转做功。 当一个 做功单元组 12进行膨胀行程时, 其滑塞 5 沿滑槽由做功单元的 A 端滑动到 B端, 与其同轴的另一个做功单元组 12的转子 2 同向转 动, 推动滑塞 5也由做功单元的 A端滑动到 B端, 进行吸气行程, 而另一根动力轴 4上的两个做功单元组 12的转子 2在联动机构 10 的作用下反向旋转, 推动滑塞 5由做功单元的 B端滑动到 A端, 分 别进行排气和压缩行程。 当另一根动力轴 4上的做功单元组 12结 束压缩行程进行膨胀行程时, 所有转子 2均向上一行程旋转方向的 反向旋转, 使所有做功单元组 12 按照排气、 吸气、 压缩、 膨胀的 顺序依次进行下一个行程, 与往复式四冲程发动机类似, 四个做功 单元组 12 依次交替进行膨胀、 排气、 吸气、 压缩四个行程。 在发 动机的运转过程中, 做功单元的转子 2不断进行正向和反向往复旋 转, 并通过单向轴承 6传动动力轴 4使其沿固定的方向转动。 两根 动力轴 4通过轴传动机构 8共同传动输出轴 11,使其沿同一方向旋 转输出动力。 与此同时, 冷却润滑油通过润滑油通道 9在相对应的 做功单元组中往复流动, 起到冷却和润滑做功单元的作用。
当然, 本发明作为内燃机的实施例不只限定为四个做功单元组 12, 为了增强动力也可以在两根动力轴 4上叠加更多的做功单元组 12。
本发明的部分实施例作为蒸汽机时包括两个相对应的做功单 元组 12, 依次交替进行膨胀、 排气两个行程, 其运转方式与上述内 燃机的方式类似, 具体为: 当一个做功单元组 12进行膨胀行程时, 其滑塞 5沿滑槽由转子 2截面较小的一端滑动到转子 2截面较大的 一端, 而另一根动力轴 4上的做功单元组 12的转子 2在联动机构 10的作用下反向旋转,推动滑塞 5 由转子 2截面较大的一端滑动到 转子 2截面较小的一端, 进行排气行程。 当另一根动力轴 4上的做 功单元组 12结束排气行程进行膨胀行程时, 所有转子 2均向上一 行程旋转方向的反向旋转, 使两个做功单元组 12 按照排气、 膨胀 的顺序交替进行下一个行程。
同样, 本发明的实施例作为蒸汽机不只限定为两个做功单元组 12, 为了增强动力也可以在两根动力轴 4上叠加更多的做功单元组 12。
使本发明所述发动机有效运转的关键在于, 作为运动部件之一 的滑塞 5为对角相通的十字形结构, 气体的膨胀力能同时作用于对 角相通的两个空间内, 且构成十字形的四个部分有效受力面积相 等, 使得滑塞 5各部分所受膨胀气体的压力相等且相互抵消, 总体 受力平衡, 不因受膨胀力与做功单元中的其他部分产生额外的摩 擦, 气体膨胀的压力仅对对外做功的转子 2发生作用, 从而确保了 做功单元较高的内效率。
以上所述转子主体部分是指转子转化能量 (将膨胀气体的热能 转化为机械能) 的部分。 所述密封接触是指相互接触时接触面紧贴 对方并能在相对运动时阻止流体通过的接触方式 (在本发明的部分 实施例中, 转子的螺紋牙顶面上如果设置有活塞环或功能类似的装 置, 则由活塞环或与其功能类似的装置与缸体内壁面密封接触, 所 述活塞环的功能与现有发动机技术中活塞环的功能相同) 。 螺杆是 指利用本身的螺紋 (螺紋轴向延伸) 传递运动或动力的机械结构, 螺杆状是指其外观形状如螺杆。 锥形螺杆是指螺紋外径沿轴线某一 方向逐渐增大的螺杆, 锥形螺杆状是指其外形如锥形螺杆。 缸体内 壁面是指与转子 2主体部分螺故牙 16 顶面密封接触的缸体壁面。 对应的区域是指受气体压力时受力相互抵消的区域, 有效受力面积 是指在垂直所受膨胀气体合力方向的平面上的投影面积。 行程是指 吸气、 压缩、 膨胀、 排气四个过程中的某一过程。 所述相对应的做 功单元组 12是指两根动力轴上同侧位置的做功单元组。
以上对本发明所提供的往复式转子发动机的部分实施例进行 了详细介绍, 本文中应用了具体个例对本发明的原理及实施方式进 行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其 核心思想; 同时, 对于本领域的一般技术人员, 依据本发明的部分 实施例的思想, 在具体实施方式和应用范围上均会有改变之处, 例 如构成做功单元组的两个做功单元可以是转子 A 端刚性连接彼此 镜像安置的方式, 这也在本发明的范围之内, 综上所述, 本发明书 内容不应理解为对本发明的限制。 工业实用性
本发明往复式转子发动机中, 转子与动力轴同轴转动, 所以运 转平稳, 并且能将燃料的能量进行梯级利用, 所以提高了燃料利用 率。

Claims

权 利 要 求 书
1、 一种往复式转子发动机, 包括做功单元, 其特征在于, 所述做功 单元包括转子、 缸体和滑塞; 所述转子主体部分为螺杆状, 所述缸体内壁面 围成的型腔与所述转子同轴, 所述缸体上设置有滑槽, 所述滑塞放置于所述 滑槽和所述转子的螺紋槽内, 所述滑塞用于阻挡做功气体通过, 所述滑塞沿 所述滑槽和所述螺紋槽滑动以配合所述转子的转动; 所述转子与动力轴同轴 安置, 所述转子通过单向轴承传动所述动力轴。
2、 根据权利要求 1 所述的往复式转子发动机, 其特征在于, 所述做 功单元包括 A端和 B端, 所述转子的 A端与所述滑塞之间的螺紋槽连通做 功气体。
3、 根据权利要求 1 所述的往复式转子发动机, 其特征在于, 所述转 子的螺紋牙顶面与所述缸体内壁面密封接触。
4、 根据权利要求 1 所述的往复式转子发动机, 其特征在于, 所述转 子的主体部分为锥形螺杆状。
5、 根据权利要求 1 所述的往复式转子发动机, 其特征在于: 所述滑 塞设置有对角连接通孔, 所述对角连接通孔用于抵消所述滑塞在所述通孔相 连通的两个区域中受到的膨胀气体的压力。
6、 根据权利要求 5 所述的往复式转子发动机, 其特征在于: 所述滑 塞为对角相通的十字形结构, 所述滑塞包括连接轴、 第一滑塞块、 第二滑塞 块、 第三滑塞块和第四滑塞块, 所述第一滑塞块、 第二滑塞块、 第三滑塞块 和第四滑塞块分别固定在所述连接轴上, 所述第一滑塞块和所述第三滑塞块 处在同一个平面, 所述第二滑塞块和所述第四滑塞块处在同在一个平面; 所 述对角连接通孔开在所述连接轴上, 包括第一对角连接通孔和第二对角连接 通孔; 所述第一对角连接通孔连通所述第一滑塞块和所述第二滑塞块围成的 空间与所述第三滑塞块和所述第四滑塞块围成的空间, 所述第二角连接通孔 连通所述第一滑塞块和所述第四滑塞块围成的空间与所述第二滑塞块和所述 第三滑塞块围成的空间; 所述第一滑塞块安装在所述滑槽内, 所述第二滑塞 块、 第三滑塞块和第四滑塞块安装在所述螺紋槽内; 所述第二滑塞块、 第三 滑塞块和第四滑塞块的外缘与所述螺紋槽的槽壁密封接触, 所述第一滑塞块 的外壁与所述滑槽内壁密封接触; 所述滑塞在所述对角连接通孔连通的两个 区域中所受膨胀气体的有效受力面积相等。
7、 根据权利要求 1至 6任一项所述的往复式转子发动机, 其特征在 于, 包括至少两个相对应的做功单元组, 每个做功单元组包括两个彼此镜像 的做功单元, 所述做功单元包括 A端和 B端, 所述两个做功单元转子的 B 端刚性连接、 缸体的 B端相互闭合, 所述相对应的做功单元组分别驱动两根 动力轴, 所述两根动力轴通过轴传动机构共同传动输出轴; 所述相对应的做 功单元组通过转子联动机构相联动, 所述联动机构用于实现所述相对应的做 功单元组的互相配合工作。
8、 根据权利要求 7 所述的往复式转子发动机, 其特征在于: 所述相 对应的做功单元组通过润滑油通道彼此相连通。
9、 根据权利要求 7 所述的往复式转子发动机, 其特征在于: 所述转 子的螺紋牙顶面上设置有活塞环, 所述活塞环与所述缸体内壁面密封接触。
10、 根据权利要求 2所述的往复式转子发动机, 其特征在于: 所述转 子靠近 A端的螺紋槽中产生做功气体。
PCT/CN2012/086153 2011-12-12 2012-12-07 往复式转子发动机 WO2013086947A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110410860 CN102588088A (zh) 2011-12-12 2011-12-12 螺纹转子发动机
CN201110410860.9 2011-12-12

Publications (1)

Publication Number Publication Date
WO2013086947A1 true WO2013086947A1 (zh) 2013-06-20

Family

ID=46477230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086153 WO2013086947A1 (zh) 2011-12-12 2012-12-07 往复式转子发动机

Country Status (2)

Country Link
CN (2) CN102588088A (zh)
WO (1) WO2013086947A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588088A (zh) * 2011-12-12 2012-07-18 齐永军 螺纹转子发动机
CN103195484A (zh) * 2012-11-22 2013-07-10 袁丽君 新型汽轮机
CN104018885B (zh) * 2014-06-21 2015-06-10 吉首大学 螺旋线蒸汽马达及其锅炉供水装置
CN104005845B (zh) * 2014-06-21 2016-06-01 吉首大学 螺旋线无曲轴转子发动机
CN105888733A (zh) * 2014-09-11 2016-08-24 田珉 一种流体驱动的旋动装置
CN105464712A (zh) * 2014-09-12 2016-04-06 君能控股有限公司 根据压力原理操作的螺旋涡轮
CN104747239A (zh) * 2015-04-01 2015-07-01 南京航空航天大学 复合单螺杆膨胀机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103715A (zh) * 1987-05-23 1988-12-14 刘士源 转子发动机
CN1078767A (zh) * 1993-05-15 1993-11-24 谭波 滑塞式转子发动机
CN101576021A (zh) * 2009-06-11 2009-11-11 胡巍 一种螺旋式推力发动机
CN102588088A (zh) * 2011-12-12 2012-07-18 齐永军 螺纹转子发动机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151743A (ja) * 1995-02-22 1997-06-10 Teruo Toritsuka 同心円制御ベーン機構
US6178869B1 (en) * 1999-05-21 2001-01-30 Lars Gunnar Westman Piston machine
WO2005026498A1 (fr) * 2003-09-15 2005-03-24 Vyacheslav Ivanovich Kovalenko Moteur a combustion interne rotatif
GB0713755D0 (en) * 2007-07-16 2007-08-22 Mcdonald Kenneth An engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103715A (zh) * 1987-05-23 1988-12-14 刘士源 转子发动机
CN1078767A (zh) * 1993-05-15 1993-11-24 谭波 滑塞式转子发动机
CN101576021A (zh) * 2009-06-11 2009-11-11 胡巍 一种螺旋式推力发动机
CN102588088A (zh) * 2011-12-12 2012-07-18 齐永军 螺纹转子发动机

Also Published As

Publication number Publication date
CN102588088A (zh) 2012-07-18
CN103016142A (zh) 2013-04-03
CN103016142B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2013086947A1 (zh) 往复式转子发动机
US8210151B2 (en) Volume expansion rotary piston machine
RU2577912C2 (ru) Роторный двигатель и его роторный узел
JP2005330963A (ja) シリンダータイプロータリー動力伝達装置
US6539913B1 (en) Rotary internal combustion engine
US11078834B2 (en) Rotary valve continuous flow expansible chamber dynamic and positive displacement rotary devices
US11098588B2 (en) Circulating piston engine having a rotary valve assembly
JP2013527355A (ja) バランス型回転可変吸気カットオフバルブ及び第1の膨張に背圧のない第2の膨張を具えた回転ピストン蒸気エンジン
WO2016095757A1 (zh) 旋转活塞式工作机
WO2009146626A1 (zh) 多能源直轴混合动力发动机
CN103615311A (zh) 一种转子发动机
WO2013152730A1 (zh) 转子压缩机、转子发动机及转子汽轮机
WO2009135381A1 (zh) 橄榄形转子发动机
CN113374573B (zh) 周流式涡轮机
CN103233782B (zh) 旋塞式旋转压缩膨胀机构
WO2005111464A1 (ja) シリンダータイプロータリー動力伝達装置
RU159483U1 (ru) Двигатель внутреннего сгорания "нормас". вариант - хв - 89
WO2004088110A1 (fr) Moteur rotatif avec rotors a deplacement alterne
TWI441980B (zh) 旋轉引擎
CN102678288A (zh) 球形双环转子内燃机
JP6894981B2 (ja) 可変容積室デバイス
US20120160209A1 (en) Turbine having cooperating and counter-rotating rotors in a same plane
CN216198457U (zh) 步进式3缸双转子内燃机
CN110892136B (zh) 可变容积腔室装置
CN109899154B (zh) 双转子发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12857152

Country of ref document: EP

Kind code of ref document: A1