WO2009135381A1 - 橄榄形转子发动机 - Google Patents

橄榄形转子发动机 Download PDF

Info

Publication number
WO2009135381A1
WO2009135381A1 PCT/CN2009/000477 CN2009000477W WO2009135381A1 WO 2009135381 A1 WO2009135381 A1 WO 2009135381A1 CN 2009000477 W CN2009000477 W CN 2009000477W WO 2009135381 A1 WO2009135381 A1 WO 2009135381A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
olive
crankshaft
center
shaped
Prior art date
Application number
PCT/CN2009/000477
Other languages
English (en)
French (fr)
Inventor
华峰
Original Assignee
Hua Feng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hua Feng filed Critical Hua Feng
Priority to US12/991,123 priority Critical patent/US20110126795A1/en
Priority to EP09741656A priority patent/EP2305950A1/en
Priority to JP2011507775A priority patent/JP2011520060A/ja
Publication of WO2009135381A1 publication Critical patent/WO2009135381A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/22Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C17/00Arrangements for drive of co-operating members, e.g. for rotary piston and casing
    • F01C17/02Arrangements for drive of co-operating members, e.g. for rotary piston and casing of toothed-gearing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/008Driving elements, brakes, couplings, transmissions specially adapted for rotary or oscillating-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts

Definitions

  • This invention relates to internal combustion engines, and more particularly to an olive rotor engine.
  • the engine commonly used in automobiles is a piston reciprocating engine, which relies on fuel to burn in the combustion chamber to push the piston to reciprocate linear motion, and then the connecting rod and the crankshaft convert the reciprocating motion of the piston into the rotary motion of the crankshaft, thereby driving the transmission mechanism.
  • the drive output has a large reciprocating inertia, a complicated structure, and a large volume.
  • the German engineer Wankel invented the rotor engine, which directly converts the heat energy released by the combustion of the fuel and air into the mechanical energy that drives the rotation of the rotor, and then the rotor drives the spindle to power the output, canceling the straight line.
  • the same power of the rotor engine is relatively simple in structure, small in size, light in weight, and low in vibration and noise. Even so, the rotor engine has not been widely used since its invention, because the shape of the combustion chamber in the rotor engine is not conducive to the complete combustion of the fuel, the flame propagation path is longer, thus the fuel consumption of the fuel is increased; With the ignition type, the compression ignition type cannot be used, so the diesel oil cannot be used. In addition, the output torque of the rotary engine is small, and the rotor engine is structurally required to lubricate, cool, and seal the engine. Therefore, the manufacturing process requires The higher the above reasons lead to the widespread promotion and application of the rotor engine.
  • the content of the invention is to overcome the above-mentioned defects of the existing piston engine and the rotary engine, and proposes a novel olive rotor engine which has a simple structure, small volume, light weight, stable operation during operation, and low vibration generated.
  • the output torque is significantly improved, and the fuel can be fully burned, the fuel is widely used, and the mechanical wear is small.
  • an olive-shaped rotor engine comprising a crankshaft, a casing and a triangular rotor
  • the casing cavity is olive-shaped
  • the end faces are respectively provided with end caps
  • the triangular rotor is arranged in the olive-shaped cavity
  • the cavity curve is an equal-arc arc corresponding to the circular arc surface of the triangular rotor, wherein the axis of the crankshaft main shaft coincides with the center of the cavity, and the rotor and the crankshaft are connected by a connecting handle, and the cylinder on the connecting handle is a rotor connection.
  • the shaft is disposed in the center hole of the rotor, and its axis coincides with the center line of the rotor.
  • the rotor connecting shaft is sleeved on the crank pin through the eccentric hole thereof, and the gear set is arranged on the connecting body of the rotor connecting shaft near the crankshaft, and the gear set is controlled
  • the transmission mechanism for rotating the handle, the crankshaft rotates the connecting handle by the gear set during the rotation, so that the movement track of the center of the connecting shaft of the connecting handle is fusiform.
  • crank radius of the crankshaft is R
  • the distance between the rotor connecting shaft and the crankpin axis is V R
  • the shuttle motion trajectory is the center distance of + 3 ⁇ 4?
  • the gear set is composed of the following gears, and the connecting body on one side of the rotor connecting shaft is fixedly connected with the handle gear, the gear sleeve is sleeved on the crank pin, and is coaxial with the crank pin, and a gear is fixed on the housing.
  • the gear sleeve is sleeved on the main shaft of the crankshaft, and its center coincides with the center of rotation of the crankshaft.
  • the rotating shafts of the two coaxial interposing wheels are disposed on the crank gear carrier and mesh with the fixed gears of the casing and the connecting gears, respectively.
  • the casing is provided with two sets of air inlets and air outlets, which are symmetrically arranged on a circular arc surface near the tips of the olive-shaped cavity, wherein the air outlet is close to the olive-shaped tip, the air inlet and the outlet
  • the position of the ports can also be interchanged.
  • the combustion chamber is located at the air outlet or the air inlet, and its shape is determined by the type of combustion in the combustion chamber.
  • the volume of the combustion chamber determines the compression ratio of the engine, and the spark plug or the fuel is opened on the side according to the requirements of different fuels. Port.
  • the inner surface of the olive-shaped casing is provided with a groove near the combustion chamber, and the groove is an air venting passage, and the squish passage may be a single channel or a plurality of channels, and the rotor is turned
  • the squish chamber formed during the movement is connected to the combustion chamber through the squish passage.
  • a groove is arranged in the middle of the two arcuate surfaces of the olive-shaped housing cavity, and a sealing strip is arranged in the groove, the sealing strip is closely attached to the rotor through the spring piece in the groove, and the sealing strip is double-circular to one side of the triangular rotor.
  • the arc surface and the two arc surfaces are respectively matched with the large radius arc curve and the small radius arc curve of the rotor, and the end faces of the rotor are provided with triangular arc sealing strips, which are arranged in the grooves near the edge of the end surface of the rotor, A spring piece is arranged in the groove to make the sealing strip close to the casing end cover.
  • the end cover and the side facing the rotor can be inlaid with a ceramic piece, which has good heat insulation and can reduce heat loss during the rotation of the rotor.
  • a balance plate is attached to the connecting handle for the overall balance of the rotor engine.
  • the arc surface of the triangular rotor is a closed arc formed by three 60° large radius arcs and three 60° small radius arcs, and the olive shell cavity is composed of two 120° A closed arc formed by the tangential arc of a large radius arc and two small radius arcs of 60°.
  • small radius r (0. 5 ⁇ 3) R
  • large radius R' 2(3 + V3)i? + r .
  • the beneficial effects of the invention are:
  • the engine is small in size and light in weight, and the output torque is large under the same working volume, the acceleration performance is good, and the running noise is small.
  • the structure is simple, the running parts are less, and the work is stable;
  • the shape of the combustion chamber of the present invention enables the fuel in the working chamber to be fully burned, and Diesel is used as the fuel;
  • the rotational speed of the crankshaft in the present invention is relatively lower than that of the crankshaft in the triangular rotor engine, so that the loss of the components in the engine can be reduced, and the requirements for lubrication and sealing of the engine are reduced;
  • the engine's torque output is relatively large at high speeds and low speeds, which overcomes the shortcomings of the torque output of the triangular rotor at low speeds, saving fuel usage.
  • Figure 1 is a schematic view showing the structure of an olive-shaped rotor engine
  • Figure 2 is a schematic structural view of a crankshaft
  • Figure 3 is a schematic view showing the structure of the connecting handle
  • Figure 4 is a view of a shuttle motion path of the axis of the rotor connecting shaft
  • Figure 5 is a contour view of the rotor
  • Figure 6 is an outline view of an olive-shaped casing
  • Figure 7 is a schematic view showing the overall structure of the engine
  • Figure 8 is a shape of a first double vortex combustor
  • Figure 9 is a view showing the shape of a second double vortex combustor
  • Figure 10 is a view of the shape of a single vortex combustor
  • Figure 11 is the shape of a turbulent combustion chamber
  • Figure 12 is a schematic view showing the structure of the first double vortex combustor in an operating state
  • Figure 13 is a schematic view showing the structure of a gas distribution in the present invention
  • Figure 14 is a schematic view showing the structure of a rotor arc seal and a curved surface lubrication in the present invention
  • Figure 15 is a schematic view showing the structure of the rotor end face sealing and lubrication in the present invention.
  • Figure 16 is a schematic view showing the operation of the rotor center at the top dead center
  • Figure 17 is a schematic view showing the operation of inhaling in the upper working chamber and burning in the lower working chamber;
  • Figure 18 is a schematic view showing the operation of the rotor center at the bottom dead center and the lower working chamber
  • Figure 19 is a schematic view showing the work of burning in the upper working chamber and working in the lower working chamber;
  • Figure 20 is a schematic view showing the operation of the rotor center at the top dead center and the upper working chamber
  • Figure 21 is a schematic view showing the work of the upper working chamber and the lower working chamber
  • Figure 22 is a schematic view showing the operation of the rotor center at the bottom dead center
  • Figure 23 is a schematic view showing the operation of the upper working chamber exhaust and the lower working chamber.
  • This embodiment is a two-rotor engine, which has a compact structure and stable operation, and is equivalent to a piston reciprocating four-cylinder engine.
  • the crankshaft structure is shown in Fig. 2.
  • the engine includes a crankshaft 3, a housing 1, a connecting handle 4, a gear set, and a triangular rotor 2.
  • the cavity of the casing 1 is olive-shaped, and the end faces are respectively provided with end caps.
  • the triangular rotor 2 is disposed in the cavity, and the cavity curve is an equal-arc arc corresponding to the circular arc surface of the triangular rotor.
  • the engine mainly controls the rotor center to move in a shuttle-shaped path through a running mechanism composed of a crankshaft 3, a connecting handle 4 and a gear set.
  • the contact of the inner wall of the olive-shaped housing with the outer edge of the rotor defines the rotation of the rotor 2.
  • the space inside the housing is divided to achieve continuous changes in the space of the two working chambers.
  • the two working chambers are provided with an air inlet, an air outlet and a combustion chamber which are arranged on an arc surface near the tips of the olive shell. Under the synergy of the valve train controlling the gas pottery, the two working chambers respectively realize the basic working process of the internal combustion engine.
  • crankshaft 3 is disposed in the center of the cavity of the olive-shaped housing, i.e., its axis coincides with the centerline of the cavity.
  • the connecting handle 4 is a connecting member of the rotor 2 and the crankshaft 3, the cylindrical body of which is a rotor connecting shaft 41, which is disposed in the center hole of the rotor 2, and whose axis coincides with the center line of the rotor.
  • the rotor connecting shaft 41 is sleeved on the crank pin 32 through its eccentric hole 43.
  • the radius of the crankshaft is R, and the eccentric distance between the axis of the rotor connecting shaft 41 and the crank pin 32 is on the connecting body 42 on the side of the rotor connecting shaft 41.
  • the gear set is set, the gear set is a transmission mechanism for controlling the rotation of the connecting handle 4, and the crankshaft main shaft 31 rotates the connecting handle 4 by the gear set during the rotation, so that the movement track of the axis of the rotor connecting shaft 41 of the connecting handle 4 is fusiform, that is, The motion trajectory is the center of the circle The intersection of the two circles intersects as shown in Figure 4.
  • the gear set described above is composed of the following four gears: a gear fixed on the connecting handle 4, that is, a connecting shank gear 51, which is sleeved on the crank pin 32 and coaxial with the crank pin 32; a gear fixed on the casing 1 is a casing a fixed gear 54 which is sleeved on the crankshaft main shaft 31 and coaxial with the crankshaft main shaft 31; coaxially engaged with the connecting shank gear 51 and the housing fixed gear 54 respectively
  • the intermediate wheels 52 and 53 have their rotating shafts 55 disposed on the carrier 56.
  • the housing fixed gear 54 and the intermediate wheel 53 are ordinary circular gears, and the transmission ratio is 2.
  • the intermediate wheel 52 and the connecting shank gear 51 are shaped gears, and the transmission ratio thereof is
  • the rotation angle of the line OA of the crank pin center 0 2 and the center 0 of the crankshaft with respect to the longitudinal direction of the casing is a, and the center of the rotor connection shaft 0 3 is opposite to the line of the center of the crank pin 0 2 .
  • the angle of the line o 2 is ⁇
  • the relationship between the two angles is:
  • the inner surface curve of the olive-shaped casing 1 is a closed curve of two large radius arcs with a central angle of 120° and two small radius arcs with a central angle of 60°. And since the curve corresponds to the outer surface of the rotor 2, its small radius and large radius are respectively equal to the small radius and the large radius of the triangular rotor 2.
  • the housing of the entire engine is composed of a housing 6 at the front and rear ends and a rotor engine for setting the rotor engine.
  • the olive-shaped casing 1 is composed. Torque output devices are respectively disposed in the housings 6 at the front and rear ends.
  • the end faces 17 of the olive-shaped housing 1 are respectively provided with end caps 17, and the end caps 17 are provided with end caps 171 for arranging the crankshaft 3.
  • the end cover 17 and the side facing the rotor are inlaid with a ceramic sheet 172 which is wear-resistant, has a long service life, and has good heat insulation and reduces heat loss.
  • the end caps 17 of the adjacent two olive-shaped casings 1 are hollow, for providing the water tank 8, and a water tank 8 is also provided between the casing 6 at the front and rear ends and the end cover 17 of the casing.
  • the coolant circulates in the water tank 8 to cool the engine.
  • the triangular rotor 2 divides the casing 1 into two working chambers, each of which is provided with an air inlet 11 and an air outlet 12.
  • the air inlet 11 and the air outlet 12 are close to the tip end of the olive shell, and the air outlet 12 is provided with a combustion chamber 13.
  • the inner surface of the rotor shell is provided with a groove near the combustion chamber 13, and the groove is an air passage. 14.
  • the rotor forms a squish chamber in the interior of the housing, and the gas in the squeezing chamber is forced into the squish passage 14 and into the combustion chamber 13.
  • the combustion may be vortex combustion, turbulent combustion or mixed combustion, wherein the vortex combustion combustion chamber may be a double vortex chamber or a single vortex chamber.
  • the combustion chamber 13 adopts a double vortex chamber, that is, the combustion chamber 13 has two tangential circular spaces, and an intermediate squish passage 14 is opened at the tangent, and the passage and the air inlet are provided.
  • the rotor 2 forms a squish chamber in the inner cavity of the casing during the stroke of the compressed gas, and the compressed gas is forced into the combustion chamber 13 through the intermediate squish passage 14, in the intermediate squish passage 14
  • the gas forms a gas flow under the action of the pressure difference, and the gas stream enters the combustion chamber 13 to generate a vortex.
  • the combustion chamber 13 employs a double vortex chamber
  • the squish passage 14 of the combustion chamber 13 is a double side squish passage, i.e., both sides of the combustion chamber 13 are provided with squish passages 14.
  • the combustion chamber 13 adopts a single vortex chamber, that is, only one circular space is used, and the squish passage 14 of the combustion chamber 13 is a single-side squish passage, that is, a squeezing gas is provided on one side of the combustion chamber 13. Channel 14.
  • the vortex can be generated after the gas enters the combustion chamber 13 through the above-mentioned squish passage 14.
  • the combustion chamber 13 in Fig. 11 is a turbulent combustion chamber, and the gas is turbulent after passing through the squish passage 14 and entering the combustion chamber 13 through a plurality of small holes in the upper surface of the combustion chamber 13.
  • the engine can be operated by changing the volume of the combustion chamber and increasing or decreasing the components used.
  • the igniting plug should be correspondingly increased in the combustion chamber 13; when using diesel as the fuel, it is necessary to An oil injection device is added to the combustion chamber 13.
  • the fuel injection device may be disposed near the connection port of the squish passage 14 and the combustion chamber 13, or may be disposed on the inner wall of the combustion chamber 13.
  • the valve train 9 of the engine is shown in Fig. 13, and its structure and working principle are basically the same as those of the piston engine.
  • the balance of the engine consists of two parts.
  • the engine is a two-rotor engine. As shown in Fig. 2, a double rotor is arranged on the crankshaft 3. Therefore, the crankshaft has two crank pins, and the direction angles of the two crank pins are 180°, thus achieving the balance of the crankshaft; in addition, a balance plate is arranged on the connecting handles of the two rotors, and the angle between the balance plates on the two connecting handles is 180°, and the whole engine is realized by the above two methods. balance.
  • the seal of the triangular rotor is divided into a curved surface seal and an end surface seal, wherein the curved surface seal is as shown in FIG. 14 , and two grooves are respectively disposed in the middle of the two arc surfaces of the olive shell 1 cavity, and the grooves are respectively provided in the grooves.
  • Sealing strip 16 which passes through the groove
  • the inner spring piece is in close contact with the rotor 2
  • the sealing strip 16 is a double arc sealing strip, that is, the sealing strip 16 is formed by two circular arc surfaces facing one side of the triangular rotor, and the two circular arc surfaces respectively have a small radius arc and a large radius circle of the rotor.
  • the arcs are fitted to each other to achieve a curved surface seal of the rotor.
  • the two end faces of the rotor 2 are provided with grooves along the edges thereof, and the spring piece and the end face sealing strip 21 are fixed in the groove, and the end face sealing strip 21 is a triangular arc bar, which is closely attached to the leaf piece by the spring piece.
  • the end face seal of the rotor 2 is achieved. Since the weather strip 16 is disposed on the housing, it is possible to remove and clean the sealing strip directly from the groove of the housing without disassembling the engine.
  • the cooling system of the engine is as shown in FIG. 7 and FIG. 15, and a water tank 8 is respectively disposed between the casing 6 at the front and rear ends of the engine and the casing end cover 17 and between the end covers 17 of the adjacent two casings.
  • the two parts of the water tank are connected by the water tank hole 15 in the olive-shaped casing 1, and then the water temperature cooling device and the water tank 8 are connected by a pipe to realize the circulation flow of the cooling liquid, thereby cooling the engine and realizing the circulation of the cooling liquid. use.
  • the oil tank is disposed in the casing 6 at the front and rear ends, and the lubricating oil in the oil tank is lubricated to the end surface of the rotor 2 through the hole 171 in the end cover, and also functions to cool the rotor.
  • the rotor 2 In order to reduce the friction between the outer surface of the rotor 1 and the cavity arc surface and the casing end cover 17, the rotor 2 needs to be lubricated, and the lubrication includes rotor arc lubrication and Lubrication of the rotor end face.
  • the rotor arc surface lubrication is as shown in Fig. 15.
  • the inlet and outlet ports 10 are arranged between the two grooves in the middle portion of the olive shell cavity, so that the lubricating oil can be sprayed to the arc surface of the rotor 2 in a small amount at a timing to realize the rotor.
  • Lubrication of the arc surface, and the inlet and outlet port 10 also plays a role of heat dissipation.
  • the lubrication of the rotor end face is lubricated by the lubricating oil in the oil reservoir in the front and rear housings 6 .
  • the space inside the casing 1 is always divided into two parts, that is, the upper and lower working chambers are formed.
  • the rotor 2 rotates continuously, a continuous change in the volume of the two working chambers is achieved.
  • Two sets of air inlets 11, air outlets 12 and combustion chambers 13 are arranged on the circular arc surface of the olive-shaped tip of the casing 1, and the air inlets 11 and the air outlets are completed under the action of the valve train 9 to control the air valves.
  • the opening and closing of 12, and the basic working process of the internal combustion engine are realized in the two working chambers respectively.
  • the working process of the rotor engine is described as follows: First, as shown in Fig.
  • the center of the rotor 2 is at the top dead center 0, at which time the upper working chamber 18 has the smallest volume, and the air outlet 12 is just closed, that is, the exhausting process is just completed.
  • the lower working chamber 19 has the largest volume, and the air inlet 11 is just closed, that is, just after the air intake process is completed, the rotor 2 has two faces that fit the inner surface of the casing; as the rotor 2 rotates, as shown in FIG.
  • the air inlet 11 of the upper working chamber 18 is opened, and the rotor 2 is rotated around its apex C and the center along the shuttle-shaped trajectory as shown, compressing the gas of the lower working chamber 19, that is, completing the lower working chamber 19
  • the compression action at the same time, the air inlet 11 of the upper working chamber 18 is opened to start the air intake action, and the rotor 2 always has a face that fits with the inner surface of the casing 1 during the rotation; as shown in Fig. 18, when the rotor 2 When the center is at the bottom dead center 0', the volume of the lower working chamber 19 is the smallest, and the combustion operation is completed in the lower working chamber 19, the air inlet 11 of the upper working chamber 18 is closed, and the volume is maximized.
  • lower working chamber 19 during the combustion process produces tremendous pressure at the boost pressure, the rotor 2 continues to rotate about its vertices A, such as As shown in Fig. 19, the lower working chamber 19 performs a work operation, and the rotor 2 rotates while compressing the gas of the upper working chamber 18, that is, the upper working chamber 18 performs a compression operation until the center of the rotor is turned to the top dead center 0; 20, when the center of the rotor is rotated to the top dead center 0, the volume of the upper working chamber 18 is compressed to a minimum, the compressed fuel is ignited, the combustion action is completed, and a large pressure is generated, and then the rotor 2 is continuously rotated; As shown in Fig.
  • the rotor 2 is rotated about its apex B, that is, the upper working chamber 18 completes the work of the work, while the air outlet 12 of the lower working chamber 19 is opened to start the exhausting operation; when the center of the rotor 2 is rotated to the bottom dead center 0'
  • the upper working chamber 18 is completed, the exhaust of the lower working chamber 19 is finished, and the air outlet is closed; as shown in Fig. 23, the rotor 2 continues to rotate around the vertex C, and the air inlet of the lower working chamber 19 11 is opened, the intake operation is performed, and the air outlet 12 of the upper working chamber 18 is opened to perform the exhausting operation, and the rotor will continue to operate according to the above process.
  • the air outlet 12 in the figure is near the tip end of the olive casing.
  • the position ' of the air outlet 12 and the air inlet 11' can be interchanged, i.e., the air inlet 11 is located near the tip end of the olive-shaped housing.
  • the performance of the engine is better when the air inlet 11 is located near the tip end of the olive casing and the combustion chamber is placed at the bottom of the air outlet.
  • gear train structure described above can also be realized by providing other gear structures such as an externally-cut gear, and the transmission ratio between the gears is not limited to the numerical values listed in the embodiment, as long as it can perform the same function.
  • the engine can be arranged in series with a multi-rotor engine to make the output of the engine smoother.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Transmission Devices (AREA)
  • Hydraulic Motors (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

橄榄形转子发动机 技术领域
本发明涉及内燃发动机, 尤其是一种橄榄形转子发动机。
背景技术
目前汽车中普遍采用的发动机为活塞往复式发动机, 该发动机依靠燃料在燃烧室内燃烧 推动活塞进行往复直线运动, 再由连杆和曲轴将活塞的往复运动转化为曲轴的旋转运动, 进 而带动传动机构驱动输出, 其往复惯性大、 结构复杂、 体积较大。 对此 20世纪 50年代德国 工程师汪克尔发明了转子发动机, 其通过将燃料和空气燃烧膨胀后释放出的热能直接转化为 推动转子转动的机械能, 再由转子带动主轴将动力输出, 取消了直线运动, 因此同样功率的 转子发动机结构相对简单, 体积较小, 重量轻, 而且振动和噪音较低。 即便如此, 转子发动 机自发明以来, 却一直没有得到广泛的应用, 原因在于转子发动机中燃烧室的形状不利于燃 料的完全燃烧, 火焰传播路径较长, 因此使得燃油油耗增加; 而且转子发动机只能用点燃式, 不能用压燃式, 因此不能釆用柴油; 另外转子发动机的输出扭矩较小, 并且转子发动机在结 构上对发动机润滑、 冷却、 密封也提出了相当高的要求, 因此制作工艺要求比较高, 以上原 因导致了转子发动机不能广泛的推广应用。
发明内容
本发明的内容在于克服现有的活塞式发动机和转子发动机存在的上述缺陷, 提出了一种 新型的橄榄形转子发动机, 其结构简单, 体积小, 重量轻, 工作时运转平稳, 产生的振动小, 输出扭矩明显提高, 并且能够使燃料充分燃烧, 使用燃料广泛, 机械磨损小。
本发明是采用以下的技术方案实现的: 一种橄榄形转子发动机, 包括曲轴、 壳体和三角 形转子, 壳体型腔为橄榄形, 两端面分别设有端盖, 三角形转子设置在橄榄形型腔内, 型腔 曲线是与三角形转子圆弧面相对应的等幅圆弧, 其中, 曲轴主轴的轴线与型腔中心重合, 转 子与曲轴之间通过连接柄连接, 连接柄上的圆柱体为转子连接轴, 设置在转子中心孔内, 且 其轴线与转子中心线重合, 转子连接轴通过其偏心孔套在曲柄销上, 转子连接轴靠近曲轴一 侧的连接体上设置齿轮组, 齿轮组是控制连接柄旋转的传动机构, 曲轴在旋转过程中由齿轮 组带动连接柄旋转, 使连接柄的转子连接轴中心的运动轨迹呈梭形。
设曲轴的曲柄半径为 R, 则转子连接轴与曲柄销轴线之间的距离为 V R,梭形运动轨迹为 圆心距为 + ¾?, 且半径均为 20L + V¾ ?的两个圆相交的弧线。
设曲柄销中心与曲轴主轴中心的连线相对与壳体长轴方向的转角为 α, 转子连接轴中心 与曲柄销中心的连线相对与曲柄销中心与曲轴主轴中心的连线的转角为 β, 两角度之间的关 系为:
当 0 °
当 180
Figure imgf000004_0001
本发明中, 所述的齿轮组由以下齿轮构成, 转子连接轴一侧的连接体上固定连接柄齿轮, 该齿轮套在曲柄销上, 且与曲柄销同轴, 壳体上固定一齿轮, 该齿轮套在曲轴主轴上, 其中 心与曲轴旋转中心重合, 两同轴介轮的旋转轴设置在曲轴齿轮架上, 且分别与壳体固定齿轮 和连接抦齿轮相啮合。
根据上述角度关系, 并通过齿轮组中相互啮合的齿轮的传动比, 所述的曲轴与连接柄之 间呈反向旋转, 且连接柄与曲轴的转速比为-
Figure imgf000004_0002
因 a周期是 180 ° , 当 180 ° < a ^360° 时, 将 a— 180 ° 代入上式即可, 其中壳体固定齿轮 和介轮的传动比可以为 2, 此时介轮与连接柄齿轮的传动比则为
Figure imgf000004_0003
所述的壳体上设有两套进气口和出气口, 其对称的设置在橄榄形型腔两尖端附近的圆弧 面上, 其中出气口靠近橄榄形的尖部, 进气口与出气口的位置也可以互换。 燃烧室设在出气 口处或者进气口处, 其形状由燃烧室中的燃烧种类决定, 燃烧室的容积大小确定发动机的压 缩比, 根据不同燃料的要求在其侧面开有火花塞口或者喷油器口。 所述的橄榄形壳体内表面 靠近燃烧室处设有凹槽, 该凹槽为挤气通道, 挤气通道可以为单道, 也可以为多道, 转子转 动过程中形成的挤气室通过挤气通道与燃烧室连接。 所述的橄榄形壳体型腔两弧面的中间位 置分别设置沟槽, 沟槽内设有密封条, 密封条通过沟槽内的弹簧片紧贴转子, 密封条朝向三 角形转子的一面为双圆弧面且两圆弧面分别与转子的大半径圆弧曲线和小半径圆弧曲线相贴 合, 转子两端面设有三角形圆弧密封条, 其设置在转子端面边缘附近的沟槽内, 在沟槽内设 有弹簧片使密封条紧贴机壳端盖。 端盖且朝向转子的一侧可以镶嵌陶瓷片, 其隔热性好, 可 以降低转子转动过程中的热损失。 连接柄上固定有平衡板, 用于转子发动机的整体平衡。
所述的三角形转子的弧面是由三条 60° 的大半径圆弧和三条 60° 的小半径圆弧相切形 成的封闭弧线, 所述的橄榄形壳体型腔是由两条 120° 的大半径圆弧和两条 60° 的小半径圆 弧相切形成的封闭弧线。 其中小半径 r= (0. 5〜3) R, 大半径 R' = 2(3 + V3)i? + r 。
本发明的有益效果是: 该发动机体积小, 重量轻, 在同样工作容积的情况下输出扭矩较 大, 加速性能较好, 运转噪声小。 与往复活塞式发动机相比, 其结构简单, 运转部件较少, 工作平稳; 与现有的三角转子发动机相比, 本发明中燃烧室的形状使工作室中的燃料能够得 到充分燃烧, 并且可以采用柴油作为燃料; 另外, 本发明中曲轴的转速相对与三角形转子发 动机中曲轴的转速较低, 因此可以减少发动机中机件的损耗, 同时降低了对发动机润滑、 密 封方面的要求; 最后, 本发动机无论在高转速还是在低转速的情况下, 其扭矩输出均比较大, 克服了三角形转子低转速时扭矩输出较小的缺陷, 节省了燃料的使用量。
附图说明
附图 1为橄榄形转子发动机的结构示意图;
附图 2为曲轴的结构示意图;
附图 3为连接柄的结构示意图;
附图 4为转子连接轴轴线的梭形运动轨迹图;
附图 5为转子外形轮廓图;
附图 6为橄榄形壳体外形轮廓图;
附图 7为发动机的整体结构示意图;
附图 8为第一种双涡流燃烧室的形状;
附图 9为第二种双涡流燃烧室的形状;
附图 10为单涡流燃烧室的形状;
附图 11为紊流燃烧室的形状;
附图 12为第一种双涡流燃烧室处于工作状态时的结构示意图;
附图 13为本发明中配气结构示意图; 附图 14为本发明中转子弧面密封和弧面润滑的结构示意图;
附图 15为本发明中转子端面密封及润滑的结构示意图;
附图 16为转子中心位于上止点时的工作示意图;
附图 17为上工作室吸气、 下工作室燃烧的工作示意图;
附图 18为转子中心位于下止点且下工作室做功的工作示意图;
附图 19为上工作室燃烧、 下工作室做功的工作示意图;
附图 20为转子中心位于上止点且上工作室燃烧的工作示意图;
附图 21为上工作室做功、 下工作室排气的工作示意图;
附图 22为转子中心位于下止点的工作示意图;
附图 23为上工作室排气、 下工作室吸气的工作示意图。
具体实施方式
本实施例为双转子发动机, 其结构紧凑, 运转平稳, 相当于活塞往复式四缸发动机, 其 中曲轴结构如图 2所示。 如图 1所示, 该发动机包括曲轴 3、 壳体 1、 连接柄 4、 齿轮组和三 角形转子 2。其中壳体 1型腔为橄榄形, 两端面分别设有端盖 17, 三角形转子 2设在型腔内, 型腔曲线为与三角形转子圆弧面相对应的等幅圆弧。 本发动机主要是通过曲轴 3、 连接柄 4 和齿轮组组成的运转机构来控制转子中心按梭形轨迹运动。 橄榄形壳体内壁与转子外缘的接 触限定了转子 2的旋转。 转子在壳体内运动工作过程中, 分割壳体内的空间, 实现两个工作 室空间连续变化。 两工作室内均设有进气口、 出气口和燃烧室, 其设置在橄榄形壳体两尖端 附近的圆弧面上。 在配气机构控制气陶的协同作用下, 两个工作室分别实现内燃机的基本工 作过程。
如图所示, 曲轴 3设置于橄榄形壳体的型腔中心, 即其轴线与型腔的中心线重合。 连接 柄 4是转子 2与曲轴 3的连接件, 其圆柱体为转子连接轴 41, 设置在转子 2的中心孔内, 且 其轴线与转子的中心线重合。转子连接轴 41通过其偏心孔 43套在曲柄销 32上,设曲轴的半 径为 R, 则转子连接轴 41与曲柄销 32轴线之间的偏心距为 转子连接轴 41一侧的连接 体 42上设置齿轮组, 齿轮组是控制连接柄 4旋转的传动机构, 曲轴主轴 31在旋转过程中由 齿轮组带动连接柄 4旋转, 使连接柄 4的转子连接轴 41轴线的运动轨迹呈梭形, 即该运动轨 迹为圆心距为
Figure imgf000006_0001
的两个圆相交的弧线, 如图 4所示。
上述的齿轮组由以下四个齿轮组成: 连接柄 4上固定的齿轮即连接柄齿轮 51, 其套在曲 柄销 32上, 且与曲柄销 32同轴; 壳体 1上固定的齿轮即壳体固定齿轮 54, 该齿轮套在曲轴 主轴 31上, 且与曲轴主轴 31同轴; 分别与连接柄齿轮 51和壳体固定齿轮 54相啮合的同轴 介轮 52和 53, 其旋转轴 55设置在齿轮架 56上。 其中壳体固定齿轮 54和介轮 53为普通圆 形齿轮, 其传动比为 2, 介轮 52和连接柄齿轮 51为异形齿轮, 其传动比为
Figure imgf000007_0001
如图 4所示, 设曲柄销中心 02与曲轴主轴中心 0,的连线 OA相对于壳体长轴方向的转角 为 a, 转子连接轴中心 03与曲柄销中心 02的连线 相对于曲柄销中心 02与曲轴主轴中心( 的连线 o2的转角为 β, 两角度之间的关系为:
当 0。
当 180°
Figure imgf000007_0002
根据上述角度关系, 曲轴 3与连接柄 4之间呈反向旋转, 且根据齿轮组的传动比可以得知, 连接柄 4的旋转速度 =曲轴 3的旋转速度 X
Figure imgf000007_0003
Figure imgf000007_0004
当 0° ^180° 时, 适用上述公式; 当 180° < α 360° 时, 将 α—180代入上述公式进 行计算即可。 由上式可以得知, 连接柄 4的旋转速度约是曲轴 3转速的 2倍。
如图 5所示, 三角形转子 2的外表面曲线为三条圆心角为 60° 的大半径圆弧和三条圆心 角为 60° 的小半径圆弧相切而成的封闭曲线,其小半径 r=1.5R,大半径 R' =2(3 + )R + r 。 如图 6所示, 橄榄形壳体 1型腔内表面曲线为两条圆心角为 120° 的大半径圆弧和两条圆心 角为 60° 的小半径圆弧相切而成的封闭曲线, 且由于该曲线与转子 2的外表面相对应, 因此 其小半径和大半径分别等于三角形转子 2的小半径和大半径。
如图 7所示, 整个发动机的壳体由分别位于前后两端的壳体 6和用于设置转子发动机的 橄榄形壳体 1组成。 前后两端的壳体 6内分别设有扭矩输出装置, 橄榄形壳体 1的两端面均 设有端盖 17, 端盖 17上设有端盖中孔 171, 用于设置曲轴 3。 端盖 17且朝向转子的一侧均 镶嵌有陶瓷片 172, 陶瓷片 172耐磨、 使用寿命长, 并且隔热性好, 降低了热损失。 相邻两 橄榄形壳体 1的端盖 17之间呈中空状, 用于设置水槽 8, 另外在前后两端的壳体 6和壳体的 端盖 17之间也设置水槽 8。 冷却液在水槽 8内循环流动, 从而为发动机降温。
三角形转子 2将壳体 1分为两个工作室, 每个工作室均设有进气口 11和出气口 12。 进 气口 11和出气口 12靠近橄榄形壳体的尖端, 并且出气口 12处设有燃烧室 13, 转子壳体的 内表面靠近燃烧室 13处设有凹槽, 该凹槽为挤气通道 14。 转子在转动压缩过程中, 在壳体 内腔形成挤气室, 挤气室内的气体被挤入挤气通道 14, 并进入燃烧室 13中。 根据燃料种类 的不同, 燃烧可以采用涡流燃烧、 紊流燃烧或者混合燃烧方式, 其中涡流燃烧的燃烧室可以 为双涡流室, 也可以为单涡流室。 如图 8和图 12所示, 燃烧室 13采用双涡流室, 即燃烧室 13为两个相切的圆形空间,在相切处开设有一个中间挤气通道 14,该通道与进气口 11连接, 工作时, 转子 2在压缩气体的行程中, 在壳体内腔中形成挤气室, 压缩后的气体通过中间挤 气通道 14被挤入燃烧室 13中, 中间挤气通道 14中的气体在压差的作用下形成气流,气流进 入燃烧室 13后从而产生涡流。如图 9所示, 燃烧室 13采用双涡流室, 该燃烧室 13的挤气通 道 14为双侧边挤气通道, 即燃烧室 13的两侧均设有挤气通道 14。 如图 10所示, 燃烧室 13 采用单涡流室, 即只采用一个圆形空间, 燃烧室 13的挤气通道 14为单侧边挤气通道, 即在 燃烧室 13的一侧设有挤气通道 14。 气体通过上述挤气通道 14进入燃烧室 13后均可以产生 涡流。 图 11中的燃烧室 13为紊流燃烧室, 气体经挤气通道 14并经由燃烧室 13上表面的的 多个小孔进入燃烧室 13后产生紊流。采用不同的燃料时,只要改变燃烧室容积和增减使用的 部件即可实现发动机的工作, 如使用汽油作为燃料时, 燃烧室 13内需相应的增加火化塞; 使 用柴油作为燃料时, 则需要在燃烧室 13内增加喷油装置。 喷油装置可以设置在挤气通道 14 与燃烧室 13的连接口附近, 也可以设置在燃烧室 13的内壁上。 该发动机的配气机构 9如图 13所示, 其结构和工作原理与活塞式发动机基本相同。
该发动机的平衡由两部分组成, 首先该发动机为双转子发动机, 如图 2所示, 在曲轴 3 上设置双转子, 因此该曲轴有两个曲柄销, 且两曲柄销之问的方向角度为 180° , 因此实现 了曲轴的平衡; 另外在两个转子的连接柄上均设置平衡板, 且两连接柄上平衡板之间的方向 角度呈 180° , 通过上述两种方式实现了整个发动机的平衡。
三角形转子的密封分为弧面密封和端面密封,其中弧面密封如图 14所示,在橄榄形壳体 1型腔两弧面的中间位置分别设置两个沟槽,沟槽内均设有密封条 16,该密封条 16通过沟槽 内的弹簧片紧贴转子 2, 密封条 16为双弧密封条, 即密封条 16朝向三角形转子的一面由两 圆弧面组成, 两圆弧面分别与转子的小半径圆弧和大半径圆弧相贴合, 实现了转子的弧面密 封。如图 14所示, 转子 2的两端面且沿其边缘附近设置沟槽, 沟槽内固定弹簧片和端面密封 条 21, 端面密封条 21为三角形圆弧条, 通过弹簧片使其紧贴在端盖 17上, 实现了转子 2的 端面密封。 由于密封条 16设置在壳体上, 因此更换和清洗密封条时直接将其从壳体的沟槽中 取出即可进行, 不需要对发动机进行拆卸。
该发动机的冷却系统如图 7所示和图 15所示,在发动机前后两端的壳体 6内与壳体端盖 17之间和相邻两壳体的端盖 17之间分别设置水槽 8,两部分水槽通过橄榄形壳体 1上的水槽 孔 15连接起来, 然后利用管路连接水温冷却设备和水槽 8, 实现了冷却液的循环流动, 从而 对发动机进行冷却, 同时实现了冷却液的循环使用。 同时前后两端的壳体 6内设置油仓, 油 仓内的润滑油通过端盖中孔 171对转子 2的端面润滑的同时, 也起到了冷却转子的作用。
转子 2在橄榄形壳体 1内转动的过程中, 为了减少转子 1外表面与型腔弧面及壳体端盖 17之间的摩擦, 需要对转子 2进行润滑, 润滑包括转子弧面润滑和转子端面润滑。 其中转子 弧面润滑如图 15所示, 橄榄形壳体型腔中部位置的两沟槽之间设置进出油口 10, 使润滑油 能够定时少量地喷至转子 2的弧面上,实现了对转子弧面的润滑, 同时该进出油口 10也起到 了散热冷却的作用。 转子端面的润滑通过前后两端壳体 6油仓内的润滑油实现润滑。
三角形转子 2在壳体 1内转动时, 始终将壳体 1内的空间分为两部分, 即形成了上、 下 两个工作室。 随着转子 2的不停转动, 实现了两个工作室体积的连续变化。 壳体 1上位于其 橄榄形尖端的圆弧面上设置了两套进气口 11、 出气口 12和燃烧室 13, 在配气机构 9控制气 阀的动作下完成进气口 11和出气口 12的打开和关闭, 并在两个工作室内分别实现了内燃机 的基本工作过程。下面就转子发动机的工作过程描述如下: 首先如图 16所示, 转子 2的中心 位于上止点 0, 此时上工作室 18的体积最小, 其出气口 12刚刚关闭, 即刚完成排气过程, 下工作室 19的体积最大, 其进气口 11刚刚关闭, 即刚完成进气过程, 转子 2有两个面与壳 体内表面贴合; 随着转子 2的转动, 如图 17所示, 上工作室 18的进气口 11打开, 同时转子 2绕其顶点 C且中心沿着如图所示的梭形轨迹转动, 对下工作室 19的气体进行压缩, 即完成 了下工作室 19的压缩动作, 同时上工作室 18的进气口 11打开, 开始进气动作, 转子 2在转 动过程中始终有一个面与壳体 1的内表面相贴合; 如图 18所示, 当转子 2转动至其中心位于 下止点 0' 时, 下工作室 19的体积最小, 此时在下工作室 19中完成燃烧动作, 上工作室 18 的进气口 11关闭, 体积达到最大, 此时转子 2上有两个面与壳体 1的内表面接触; 下工作室 19在燃烧过程中会产生巨大的压力, 在压力的推动作用下, 转子 2绕其顶点 A继续转动, 如 图 19所示, 下工作室 19进行做功动作, 转子 2转动的同时对上工作室 18的气体进行压縮, 即上工作室 18进行压缩动作, 直至转子的中心转至上止点 0; 如图 20所示, 当转子的中心 转动至上止点 0时, 上工作室 18的体积压缩至最小, 被压缩的燃料点燃, 完成燃烧动作, 同 时产生巨大的压力, 然后推动转子 2继续转动; 如图 21所示, 转子 2绕其顶点 B转动, 即上 工作室 18完成了做功动作, 同时下工作室 19的出气口 12打开, 开始排气动作; 当转子 2的 中心转动至下止点 0' 时, 如图 22所示, 上工作室 18做功完毕, 下工作室 19的排气结束, 出气口关闭; 如图 23所示, 转子 2继续绕顶点 C转动, 下工作室 19的进气口 11打开, 进行 进气动作, 同时上工作室 18的出气口 12打开, 进行排气动作, 至此转子将按照上述过程继 续动作。 通过上述过程我们可以看到, 转子中心沿梭形轨迹转动两圈的过程中, 上工作室和 下工作室分别连续完成了进气、压缩、燃烧、做功和排气一个完整的工作过程。转动过程中, 三角形转子 2通过其与曲柄销 33之间的偏心距和齿轮组 5为输出轴 31提供扭矩, 同时曲柄 销 33通过其与输出轴 31之间的偏心距为输出轴 31提供了一定的扭矩,因此提高了输出轴的 输出扭矩。
图中的出气口 12靠近橄榄形壳体的尖端。除此之外, 出气口 12和进气口 11的位置 '可以 互换, 即进气口 11位于靠近橄榄形壳体的尖端处。 当进气口 11位于靠近橄榄形壳体的尖端 处, 并且燃烧室设置于出气口底部时, 发动机的性能较好。
另外所述的齿轮组结构也可以通过设置外切式齿轮等其他齿轮结构实现, 齿轮之间的传 动比也并不限于本实施例中所列举的数值, 只要能起到相同的作用即可。 另外该发动机也可 以设置成多转子发动机串接, 从而使发动机的输出更加平稳。

Claims

1、 一种橄榄形转子发动机, 包括曲轴 (3)、 壳体 (1)和三角形转子 (2), 其中壳体型腔为 橄榄形, 其两端面分别设有端盖 (17), 三角形转子 (2)设置在橄榄形型腔内, 型腔曲线是与三 角形转子 (2)圆弧面相对应的等幅圆弧, 其特征在于: 曲轴主轴 (31)的轴线与型腔中心重合, 转子 (2)与曲轴 (3)之间通过连接柄 (4)连接, 连接柄 (4)上的圆柱体为转子连接轴 (41), 设置 在转子中心孔内, 且其轴线与转子中心线重合, 转子连接轴 (^)通过其偏心孔 (43)套在曲柄 销(32)上,转子连接轴 (41)靠近曲轴一侧的连接体 (42)上设置齿轮组, 曲轴 (3)在旋转过程中 由齿轮组带动连接柄 (4)旋转, 使连接柄 (4)的转子连接轴 (41)中心的运动轨迹呈梭形。
2、 根据权利要求 1所述的橄榄形转子发动机, 其特征在于: 设曲轴的曲柄半径为 R, 则 转子连接轴 (41)与曲柄销 (32)轴线之间的距离为 。
3、 根据权利要求 1所述的橄榄形转子发动机, 其特征在于: 所述的梭形运动轨迹为圆心 距为
Figure imgf000011_0001
的两个圆相交的弧线。
4、根据权利要求 1所述的橄榄形转子发动机, 其特征在于: 曲柄销中心与曲轴主轴中心 的连线相对与壳体长轴方向的转角为 α, 转子连接轴中心与曲柄销中心的连线相对与曲柄销 中心与曲轴主轴中心的连线的转角为 β , 两角度之间的关系为:
Figure imgf000011_0002
5、 根据权利要求 1或 4所述的橄榄形转子发动机, 其特征在于: 所述的曲轴 (3)与连接 柄 (4)之间呈反向旋转。
6、 根据权利要求 1 所述的橄榄形转子发动机, 其特征在于: 所述齿轮组由连接柄齿轮 (51)、壳体固定齿轮 (54)和之间的介轮组成,其中连接柄齿轮 (51)固定在连接柄 (4)的连接件 (42)上, 该齿轮套在曲柄销 (32)上, 且与曲柄销 (32)同轴, 壳体上固定齿轮 (54), 该齿轮套 在曲轴主轴 (31)上, 其中心与曲轴旋转中心重合, 两齿轮通过同轴齿轮介轮连接, 两同轴介 轮的旋转轴 (55)设置在齿轮架 (56)上, 两介轮分别与壳体固定齿轮 (54)和连接柄齿轮 (51)相 啮合。
7、根据权利要求 1所述的橄榄形转子发动机, 其特征在于: 三角形转子的弧面是由三条 60 ° 的大半径圆弧和三条 60 ° 的小半径圆弧相切形成的封闭弧线, 设曲轴的曲柄半径为 R, 则小半径 r= (0. 5〜3) R, 大半径 R ' = 2(3 + V¾i? + r, 所述的橄榄形型腔是由两条 120 ° 的 大半径圆弧和两条 60 ° 的小半径圆弧相切形成的封闭弧线, 其小半径和大半径分别与转子的 小半径和大半径相同。
8、根据权利要求 1所述的橄榄形转子发动机, 其特征在于: 每个转子对应的壳体上均设 有进气口和出气口, 其对称设置在橄榄形壳体型腔两尖端附近的圆弧面上, 出气口(12)靠近 橄榄形型腔的尖部, 燃烧室(13)对应的设在出气口处或者进气口处。
9、根据权利要求 1所述的橄榄形转子发动机, 其特征在于: 所述的橄榄形壳体内表面靠 近燃烧室处设有凹槽, 该凹槽为挤气通道, 转子转动过程中形成的挤气室通过挤气通道与燃 烧室连接。
10、 根据权利要求 1所述的橄榄形转子发动机, 其特征在于: 所述的橄榄形壳体型腔两 弧面的中间位置分别设置沟槽, 沟槽内设置密封条 (16), 密封条(16)通过沟槽内的弹簧片紧 贴转子, 其朝向三角形转子的一面为双圆弧面且分别与转子的大半径圆弧曲线和小半径圆弧 曲线相贴合。
11、 根据权利要求 1所述的橄榄形转子发动机, 其特征在于: 壳体端盖(17)朝向转子的 侧面镶嵌有陶瓷片(172)。
PCT/CN2009/000477 2008-05-07 2009-04-30 橄榄形转子发动机 WO2009135381A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/991,123 US20110126795A1 (en) 2008-05-07 2009-04-30 Olive-shaped rotary engine
EP09741656A EP2305950A1 (en) 2008-05-07 2009-04-30 An olive-shaped rotary engine
JP2011507775A JP2011520060A (ja) 2008-05-07 2009-04-30 オリーブ形ロータリエンジン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810015978.X 2008-05-07
CN200810015978XA CN101576005B (zh) 2008-05-07 2008-05-07 橄榄形转子发动机

Publications (1)

Publication Number Publication Date
WO2009135381A1 true WO2009135381A1 (zh) 2009-11-12

Family

ID=41264418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000477 WO2009135381A1 (zh) 2008-05-07 2009-04-30 橄榄形转子发动机

Country Status (7)

Country Link
US (1) US20110126795A1 (zh)
EP (1) EP2305950A1 (zh)
JP (1) JP2011520060A (zh)
KR (1) KR20110003396A (zh)
CN (1) CN101576005B (zh)
RU (1) RU2010149527A (zh)
WO (1) WO2009135381A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030196A1 (ja) * 2012-08-18 2014-02-27 KISHITAKA Kouhei ロータリーエンジン
CN103343709B (zh) * 2013-06-27 2015-11-25 北京亿派通科技有限公司 受控转子块往复四行程转子发动机
RU2664725C1 (ru) * 2017-05-12 2018-08-22 Михаил Владимирович Давыдов Роторно-поршневой двигатель
US11613995B2 (en) * 2018-12-20 2023-03-28 Pratt & Whitney Canada Corp. Rotary engine with housing having silicon carbide plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3447321A1 (de) * 1984-12-24 1986-07-03 Josef 5000 Köln Pappert Verbesserung am kreiskolbenmotor (wankelmotor)
US5127377A (en) * 1990-12-06 1992-07-07 Yang Chung Chieh Rotary machine with oval piston in triangular chamber
US5305721A (en) * 1989-06-29 1994-04-26 Burtis Wilson A Rotary Wankel type engine
US5399078A (en) * 1991-02-21 1995-03-21 Kuramasu; Yasuo Planetary-motion engine
DE19711972A1 (de) * 1997-03-21 1998-09-24 Jakob Ettner Kreiskolbenbrennkraftmaschine
WO2003016678A1 (en) * 2001-08-15 2003-02-27 Bryan Nigel Victor Parsons Wankel rotary machine
GB2432630A (en) * 2005-11-23 2007-05-30 Paul John Worley Near-adiabatic internal combustion rotary engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5121006A (ja) * 1974-08-10 1976-02-19 Hachiro Michioka Kaitenpisutonkikan
JPS5328810A (en) * 1976-08-28 1978-03-17 Hachirou Michioka Rotary piston engines
JPS5436408A (en) * 1977-08-27 1979-03-17 Hachirou Michioka Rotary piston engine
JPS6334329U (zh) * 1986-08-20 1988-03-05

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3447321A1 (de) * 1984-12-24 1986-07-03 Josef 5000 Köln Pappert Verbesserung am kreiskolbenmotor (wankelmotor)
US5305721A (en) * 1989-06-29 1994-04-26 Burtis Wilson A Rotary Wankel type engine
US5127377A (en) * 1990-12-06 1992-07-07 Yang Chung Chieh Rotary machine with oval piston in triangular chamber
US5399078A (en) * 1991-02-21 1995-03-21 Kuramasu; Yasuo Planetary-motion engine
DE19711972A1 (de) * 1997-03-21 1998-09-24 Jakob Ettner Kreiskolbenbrennkraftmaschine
WO2003016678A1 (en) * 2001-08-15 2003-02-27 Bryan Nigel Victor Parsons Wankel rotary machine
GB2432630A (en) * 2005-11-23 2007-05-30 Paul John Worley Near-adiabatic internal combustion rotary engine

Also Published As

Publication number Publication date
CN101576005B (zh) 2011-04-20
RU2010149527A (ru) 2012-06-20
JP2011520060A (ja) 2011-07-14
KR20110003396A (ko) 2011-01-11
EP2305950A1 (en) 2011-04-06
US20110126795A1 (en) 2011-06-02
CN101576005A (zh) 2009-11-11

Similar Documents

Publication Publication Date Title
JP5619299B2 (ja) ロータリーエンジンおよびそのローターユニット
JP2006521490A (ja) ロータリ羽根モータ
WO2016095757A1 (zh) 旋转活塞式工作机
WO2013086947A1 (zh) 往复式转子发动机
WO2009135381A1 (zh) 橄榄形转子发动机
US8851044B2 (en) Vane-type rotary actuator or an internal combustion machine
CN110500177A (zh) 一种双转子同程内燃机
WO2013152730A1 (zh) 转子压缩机、转子发动机及转子汽轮机
CN111102069A (zh) 插板转子发动机
CN103147851B (zh) 受控转子块四行程转子发动机
CN1975126B (zh) 节能型的转子发动机
RU2411375C2 (ru) Двухтактный двигатель внутреннего сгорания
RU2427716C1 (ru) Роторно-поршневой двигатель внутреннего сгорания
CN100393982C (zh) 橄榄形活塞旋转增压内燃发动机
CN103343709B (zh) 受控转子块往复四行程转子发动机
CN211038824U (zh) 一种双转子同程内燃机
TWI441980B (zh) 旋轉引擎
CN103850783A (zh) 一种转轴式转子发动机
CN108468589A (zh) 一种阀体组件、活塞轴组件及旋转式内燃机
CN208416697U (zh) 一种阀体组件及旋转式内燃机
CN101382083A (zh) 滑片转子发动机
CN113864044A (zh) 一种双转子可变力臂发动机
RU2068106C1 (ru) Способ работы роторного двигателя внутреннего сгорания и устройство для его осуществления
KR200318394Y1 (ko) 로터리엔진
CN112302787A (zh) 一种汽油转子发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09741656

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507775

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2569/MUMNP/2010

Country of ref document: IN

Ref document number: 2009741656

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107027365

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010149527

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12991123

Country of ref document: US