WO2009143654A1 - 醇酸树脂乳液-蜡复合包膜控释肥料及其制备方法 - Google Patents

醇酸树脂乳液-蜡复合包膜控释肥料及其制备方法 Download PDF

Info

Publication number
WO2009143654A1
WO2009143654A1 PCT/CN2008/001063 CN2008001063W WO2009143654A1 WO 2009143654 A1 WO2009143654 A1 WO 2009143654A1 CN 2008001063 W CN2008001063 W CN 2008001063W WO 2009143654 A1 WO2009143654 A1 WO 2009143654A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyd resin
weight
acid
wax
controlled release
Prior art date
Application number
PCT/CN2008/001063
Other languages
English (en)
French (fr)
Inventor
解玉洪
万连步
范玲超
李丽
李广涛
徐淑班
Original Assignee
山东金正大生态工程股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东金正大生态工程股份有限公司 filed Critical 山东金正大生态工程股份有限公司
Priority to PCT/CN2008/001063 priority Critical patent/WO2009143654A1/zh
Publication of WO2009143654A1 publication Critical patent/WO2009143654A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G5/00Fertilisers characterised by their form
    • C05G5/30Layered or coated, e.g. dust-preventing coatings
    • C05G5/38Layered or coated, e.g. dust-preventing coatings layered or coated with wax or resins

Definitions

  • the invention relates to a coated dry control fertilizer, and more particularly to an alkyd resin emulsion-wax composite coated controlled release fertilizer and a preparation method thereof, and belongs to the technical field of materials and fertilizer production. Background technique
  • Coated controlled release fertilizer is the mainstream and development direction of controlled release fertilizer.
  • coated controlled release fertilizers can be divided into two categories: one is inorganic coated controlled release fertilizer, and sulfur coated urea (SCU) is a typical representative.
  • SCU sulfur coated urea
  • Its advantage is low raw material and production cost, and the disadvantage is film material. It is too brittle and has poor controllability of nutrients; the other is polymer-coated controlled release fertilizer, which is a thermosetting tree of the United States, Scotts, and a thermoplastic resin coating of Chisso-Asahi Fertilizer Co., Japan.
  • Controlled-release fertilizers are typical representatives of this type, and such controlled-release fertilizers have received worldwide attention due to their excellent nutrient-controlled release properties.
  • thermoset resin coated controlled release fertilizer products are too costly to be widely used in field crops.
  • thermoplastic resin coated controlled release fertilizers in addition to the higher price of polymer coating agents, another obvious drawback is that a large amount of organic solvents must be used in the fertilizer production process, which not only wastes resources and energy, but also on human health and the environment. Caused a hazard.
  • the external solvent recovery system in the production process can partially reduce the above consumption and harm, in addition to the high input and complicated process, the small amount of organic solvent remaining in the product will gradually volatilize during the storage and use process and pollute the environment. .
  • the residual polymer film is not easily degraded, and the long-term use will cause certain pollution to the soil.
  • aqueous polymers as encapsulants to prepare polymer coated controlled release fertilizers has the advantages of low pollution and low cost.
  • the aqueous polymer coating agent can be classified into two types: a water-dispersible resin and a water-soluble resin.
  • US 4,549,897 first discloses a method for making controlled release fertilizers using natural latex as a coating agent.
  • a literature report using a polyvinylidene chloride aqueous suspension as a fertilizer coating agent has also been reported (see Shavia A et al, Fertilizer Research, 1993, 35: 1 , Tzika M et al, Powder Technology, 2003, 132: 16).
  • the aqueous polymer coating agent mainly has the following three problems: The dissolution of water by the fertilizer in the production process makes the formed polymer film not dense enough, resulting in a decrease in the controlled release property of the fertilizer product; a part of the organic solvent is present in the coating agent; The residual polymer film is difficult to degrade in the soil. Therefore, it is necessary to overcome the above problems in the aqueous polymer coating agent, so as to give full play to the advantages of green polymer coated controlled release fertilizer green and low cost. Summary of the invention
  • the object of the present invention is to provide an environmentally friendly alkyd resin emulsion-wax composite coated controlled release fertilizer, completely eliminating the environmental damage caused by the organic solvent in the traditional polymer coating agent, and effectively preventing the aqueous polymer coating agent from being
  • the dissolution of moisture into the fertilizer during the coating process greatly reduces the cost of the polymeric coating agent, and the residual polymer film after nutrient release is biodegradable in the soil.
  • an alkyd resin emulsion-wax composite coated controlled release fertilizer comprising a fertilizer core and a coating on the outer side of the fertilizer core, characterized in that the coating comprises a wax film, the wax film A polymer film containing an alkyd resin emulsion coating agent and an inorganic layer optionally containing an inorganic powder on the polymer film.
  • the invention also provides a method for preparing the above alkyd resin emulsion-wax composite coated controlled release fertilizer, which comprises first coating a wax on the surface of the fertilizer particle to form a wax film, and then coating the alkyd resin emulsion coating agent into the The surface of the wax film forms a polymer film, and optionally a coating process of coating the inorganic film on the polymer film to form an inorganic layer.
  • the alkyd resin emulsion-wax composite coated controlled release fertilizer of the present invention since the surface of the fertilizer particle is first covered by the hydrophobic layer of the wax, the encapsulation process of the alkyd emulsion coating agent is effectively prevented.
  • the dissolution of the water by the fertilizer eliminates the defects caused by the traditional water-soluble polymer coating agent, and the fertilizer product has better controlled release performance.
  • the alkyd resin emulsion coating agent used in the medium completely eliminates the environmental harm caused by the organic solvent in the conventional polymer coating agent because the medium is water.
  • the alkyd resin emulsion coating agent of the present invention is mainly a natural renewable vegetable oil, which has low dependence on petroleum and low cost; and vegetable oil and fatty acid fragments on the polymer chain. It also imparts excellent biodegradability to the polymer film; since the preparation process is based on small molecular materials, the composition and structure of the film-forming polymer can be adjusted by adjusting the polymerization formula and process to achieve the purpose of accurately regulating the fertilizer and nutrient release of the product. .
  • the polymer coating material contains a functional group capable of initiating association with water molecules, the material also has a certain water retention property.
  • the alkyd resin emulsion-wax composite coated controlled release fertilizer of the present invention further comprises an outermost layer containing an inorganic powder.
  • the inorganic layer containing the inorganic powder as the outermost layer not only has anti-adhesion and anti-wear properties, but also partially functions to regulate nutrient release.
  • the alkyd resin emulsion-wax composite coated controlled release fertilizer of the invention has the advantages of low cost, impact resistance and excellent controlled release property, and has no toxicity, no pollution and polymer residue during production, storage and use.
  • the membrane is biodegradable in the soil.
  • Figure 1 is a schematic cross-sectional view showing an alkyd resin emulsion-wax composite coated controlled release fertilizer prepared in accordance with the present invention.
  • the particles of the controlled release fertilizer product are the fertilizer core, the wax film layer and the polymer film layer from the inside to the outside. detailed description
  • the process for preparing an alkyd resin emulsion-wax composite coated controlled release fertilizer comprises the preparation of an alkyd resin emulsion coating agent and a fertilizer coating.
  • the alkyd resin emulsion coating agent of the invention mainly comprises an alkyd resin prepolymer.
  • an alkyd prepolymer is first prepared, then neutralized with a base, optionally with an emulsifier, optionally with water, and added
  • the polymer emulsion coating agent of the present invention is obtained by a drier.
  • the alkyd resin prepolymer used in the present invention is preferably composed of a vegetable oil and/or a plant-derived fatty acid, a polyhydric alcohol, at least one acid anhydride selected from the group consisting of a c 4 -c 22 synthetic fatty acid, a c 4 -c 22 synthetic fatty acid, A raw material composition of a component of an aromatic acid or an aromatic acid anhydride is obtained by a copolycondensation reaction.
  • the vegetable oil used for preparing the alkyd resin prepolymer is, for example, selected from one or more of a drying oil and a semi-drying oil, and examples thereof include linseed oil, tung oil, dehydrated castor oil, Soybean oil, cottonseed oil, Nasker oil, etc.
  • the plant-derived fatty acid is, for example, selected from one or more of oleic acid, linoleic acid, linolenic acid, tall oil, and rosin.
  • fatty acids such as oleic acid, linoleic acid, linolenic acid and the like are derived from fats and oils
  • these fatty acids can be obtained in situ by alcoholysis of the corresponding fats and oils.
  • the polyol is, for example, selected from one or more of glycerin, trimethylolpropane, pentaerythritol, sorbitol and diethylene glycol, preferably glycerol, trimethylolpropane and pentaerythritol.
  • the c 4 -c 22 synthetic fatty acid and its anhydride are preferably a monobasic or polybasic acid having 4 to 22 , preferably 4 to 12, and an acid anhydride thereof, such as maleic acid, maleic anhydride, fumaric acid, caproic acid.
  • the aromatic acid and its acid liver are preferably selected from the group consisting of aromatic monobasic acids, aromatic dibasic acids, aromatic tribasic acids and anhydrides thereof, and specific examples include benzoic acid, phthalic acid, phthalic anhydride, and
  • the phthalic acid, trimellitic acid, trimellitic anhydride and the like are preferably aromatic dibasic acids, tribasic acids and anhydrides thereof, especially phthalic anhydride, isophthalic acid, trimellitic acid and trimellitic anhydride.
  • the aromatic acid and its anhydride may be unsubstituted or may be selected from one or more selected from the group consisting of c, -c 6 alkyl, dc 6 alkane!
  • dc 6 haloalkyl halogen, nitro substituent substitution.
  • the halogen or halogen is selected from the group consisting of fluorine, chlorine, bromine and iodine.
  • the alkyl moiety of the d-Ce alkyl group and the d-Ce alkane and the C,-C 6 haloalkyl group means a saturated linear chain having 1-6 ⁇ , especially 1-4 ⁇ Branched hydrocarbon group, such as methyl, ethyl, propyl, 1-decylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl , 1-mercaptobutyl, 2-mercaptobutyl, 3-mercaptobutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpent
  • the d-Ce haloalkyl group means a straight-chain or branched saturated hydrocarbon group having 1 to 6 carbon atoms, wherein some or all of these hydrogen atoms may be replaced by the above-mentioned halogen atom, and examples thereof include a chloromethyl group and a bromine group.
  • the dC 6 alkoxy group means a straight-chain or branched saturated hydrocarbon group having 1 to 6 carbon atoms which is bonded via an oxygen atom, and examples thereof include a methoxy group, an ethoxy group, an OCH 2 -C 2 H 5 , an OCH ( CH 3 ) 2 , n-butoxy, OCH(CH 3 )-C 2 H s , OCH 2 -CH(CH 3 ) 2 , OC(CH 3 ) 3 , n-pentyl, 1-methylbutene L&, 2- Methyl butyl ⁇ & , 3-methyl butyl L & 1, 1, 1- dimethyl propyl L &, 1, 2- dimethyl propyl L &, 2, 2- dimethyl - propyl hydrazine, 1-ethyl propyl ⁇ , ⁇ &, 1-methylpentyl, 2-methylpentyl L&, 3-methylpentene
  • the copolycondensation reaction in the present invention can be carried out according to a copolycondensation method known to those skilled in the art.
  • the copolycondensation reaction temperature is, for example, 100 to 280, preferably 140 to 250; and the polymerization reaction time is, for example, 1 to 24 hours, preferably 4 to 12 hours.
  • the end point of the polymerization reaction and the mass of the resulting alkyd resin are controlled by the acid value of the resin.
  • the acid value of the resin means the number of milligrams of KOH (unit: mgKOH/g resin) consumed to neutralize 1 gram of the resin.
  • the acid value of the resin is determined by using an equal volume ratio of ethanol and diethyl ether as a mixed solvent.
  • the inventors have found through research that the acid value of the obtained alkyd resin prepolymer affects the performance of the polymer as a coating agent in the present invention.
  • the polymerization formula is constant, the larger the acid value of the general alkyd prepolymer, the better the hydrophilicity, and the easier it is to form a polymer emulsion, but at the same time the hydrophilicity of the formed coating agent is higher, resulting in higher
  • the controlled release time of controlled release fertilizers becomes shorter.
  • the acid value of the alkyd resin prepolymer used is 10 to 150 mgKOH/g resin, preferably 20 to 120 mgKOH/g resin, more preferably 30 to 80 mgKOH/resin, and most preferably 40 ⁇ . 70 mg KOH / g resin.
  • the composition of the raw material composition for the polymerization reaction can be adjusted to a large range as needed, wherein the amount of vegetable oil and/or plant-derived fatty acid and the molar ratio of hydroxyl groups in the raw material composition system are affected. The acid value of the prepolymer and the viscosity of the system.
  • the vegetable oil and/or plant-derived fatty acid is used in an amount of 30 to 70% by weight, more preferably 40 to 60% by weight based on the total weight of the raw material composition; and the molar ratio of the hydroxyl group to the carboxyl group in the raw material composition system is preferably 0.8- 1.4, more preferably 0.9 to 1.3.
  • the alkyd resin prepolymer may be prepared by an alcoholysis method or a fatty acid method, and the main difference between the two is that the former is based on vegetable oil, and the latter is based on fatty acids derived from vegetable oil.
  • the present invention is preferably an alcoholysis process.
  • the copolycondensation reaction can be carried out in the air or under the protection of an inert gas, preferably in an inert gas, preferably an inert gas.
  • the copolycondensation reaction may be carried out in a solvent or in a molten state, preferably a melt copolycondensation process.
  • the alcoholysis method used in the present invention can be carried out by an alcoholysis method well known to those skilled in the art.
  • a vegetable oil, a polyol and at least one component selected from the group consisting of C 4 -C 22 synthetic fatty acids, anhydrides of c 4 -c 22 synthetic fatty acids, aromatic acids, anhydrides of aromatic acids are added to the kettle.
  • the reaction is carried out at a temperature of 100 to 280 X, preferably 140 250 "C, for 1 to 24 hours, preferably 4 to 12 hours, during which time the water formed in the reaction is removed by a water eliminator. After cooling, an alkyd resin prepolymer is obtained.
  • the vegetable oil, the polyol and the dibasic acid (and/or its anhydride) are first charged into a reaction vessel equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen gas, and the temperature is raised to 160 to 260.
  • the reaction is carried out for 0.5 to 6 hours, preferably 200 to 240 Torr for 2-4 hours.
  • the temperature is lowered to 120 to 200 Torr, and other polybasic acids (and/or their anhydrides) are added, and the reaction is kept for at least 0.5 hours, and the water formed in the reaction is removed in time by a water eliminator.
  • rosin preferably 3 to 10% by weight, based on the total weight of the resin is added at a temperature of 130 to 160, and the reaction is carried out at this temperature for 5 minutes to 2 hours, preferably 10 minutes to 0.5 hours. After cooling, an alkyd prepolymer having a certain acid value is obtained.
  • the fatty acid method used in the present invention can be carried out by a fatty acid method well known to those skilled in the art.
  • the plant-derived fatty acid, polyol and at least one are first a component selected from the group consisting of C 4 -C 22 synthetic fatty acids, acid anhydrides of C 4 -C 22 synthetic fatty acids, aromatic acids, aromatic acid anhydrides, is added to the reaction vessel, and reacted at a temperature of 100 to 280, preferably 140 to 250". 1 to 24 hours, preferably 4 to 12 hours, during which time the water formed in the reaction is removed by a water eliminator. After cooling, an alkyd resin prepolymer is obtained.
  • the plant-derived fatty acid, polyol and dibasic acid (and/or its anhydride) are first added to a reactor equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen gas, and the temperature is raised to 160 ⁇ 260* reaction for 0.5 ⁇ 6 hours, preferably 200 ⁇ 240X for 2 ⁇ 4 hours, and remove the water formed in the reaction with water eliminator, then reduce the temperature to 120 ⁇ 200, add other polyacids (and/or its anhydride) , keep the reaction for at least 0.5 hours, and remove the water generated in the reaction with a water eliminator.
  • rosin preferably 3 to 10% by weight, based on the total weight of the resin is added at a temperature of 130 to 160, and reacted at this temperature for 5 minutes to 2 hours, preferably 10 minutes to 0.5 hours. After cooling, an alkyd prepolymer having a certain acid value is obtained.
  • the preparation of the alkyd resin emulsion coating agent of the invention comprises the following steps:
  • the alkyd prepolymer is neutralized with a base
  • the above alkyd resin prepolymer is heated and melted, and the temperature is controlled at 25 to 120 ° C, preferably 40 to 90. C, more preferably 50 to 80 °C. Then, a base is added to the above alkyd prepolymer under stirring.
  • any of the inorganic bases and organic bases conventionally used for neutralization examples of which include alkali metal hydroxides, alkaline earth metal hydroxides, amines, etc., such as sodium hydroxide, Potassium hydroxide, ammonia, triethylamine, trimethylamine, triethanolamine, morpholine, preferably aqueous ammonia, triethylamine, trimethylamine, sodium hydroxide and potassium hydroxide.
  • the base is preferably used in the form of an aqueous solution.
  • the degree of neutralization is preferably such that the pH of the above alkyd prepolymer system after neutralization is 5 to 10, preferably 7 to 9.
  • an emulsifier is optionally added to the system, preferably an emulsifier or an a mixture of an anionic emulsifier and a nonionic emulsifier.
  • the anionic emulsifier is one or more of all conventional anionic emulsifiers, for example, a fatty acid having an R of ⁇ 8 ⁇ ⁇ 18 alkyl group Sodium RCOONa, sodium alkanoate ROS0 3 Na, sodium alkyl sulfonate RS0 3 Na with sodium RC 6 H 4 S0 3 Na, alkyl diphenyl ether disulfonate, disproportionated rosin and sodium alkylate.
  • the nonionic emulsifier is one or more of all conventional nonionic emulsifiers, such as polyoxyethylene sorbitan fatty acid esters, alkylphenol ethoxylates, alkyl polyoxyethylene ethers. Classes, etc.
  • the amount of the anionic emulsifier is preferably from 0 to 3.0% by weight based on the weight of the alkyd resin, and the amount of the nonionic emulsifier is preferably from 0 to 5.0% by weight.
  • water may be further added to the neutralized alkyd prepolymer system.
  • the temperature is 30 to 95 ° C, preferably 45 to 85, under stirring.
  • Water is added to the alkyd prepolymer system of C, preferably deionized water and distilled water, emulsified uniformly and then cooled to room temperature.
  • An alkyd prepolymer emulsion having a desired solid content can be formulated by adding water as needed.
  • a drier is added to the neutralized alkyd prepolymer system at room temperature, and the mixture is stirred and mixed to obtain a polymer emulsion coating agent.
  • the drier is a drier known to those skilled in the art.
  • the drier comprises a primary drier and, if desired, a drier and/or a drier active.
  • the primary drier may be used alone or in combination with one or more of a drier and/or a drier active.
  • the main drier is, for example, selected from one or more of a cobalt salt and a manganese salt, preferably cobalt naphthenate or manganese naphthenate in an amount of 0.005 to 0.5% by weight based on the weight of the alkyd resin prepolymer in the system. Preferably, it is 0.03 to 0.2% by weight.
  • the drier is, for example, selected from one or more of lead, calcium, zinc, iron, bismuth, and bis salt, preferably a naphthenate, in an amount of from 0 to 0.5 by weight of the alkyd prepolymer in the system. % by weight, preferably 0.01 to 0.5% by weight.
  • the wicking active agent is referred to as "active agent A" in the present invention, which is 38% by weight.
  • active agent A phenanthroline, 22% by weight of ethyl hexanoate and 40% by weight of n-butanol, the amount of which is 0 to 2.0% by weight, preferably 0.05 to 1.0% by weight, based on the weight of the alkyd resin prepolymer, It is preferably 0.1 to 0.8% by weight.
  • the particle size of the latex particles in the polymer emulsion is preferably from 50 nm to 5 ⁇ m, more preferably from 60 nm to 1 ⁇ m, still more preferably from 70 to 300 nm.
  • nano-sized and sub-micron-sized latex particles are preferred, and the advantage is that the emulsion stability is good and the formed polymer film is dense.
  • the polymer emulsion coating agent of the invention preferably has a solid content of 5 to 70% by weight, preferably 10 to 50% % by weight, more preferably 15 to 40% by weight.
  • the viscosity is preferably from 10 to 5,000 mPa ⁇ s, more preferably from 50 to 2,000 mPa ⁇ s, still more preferably from 80 to 500 mPa ⁇ s.
  • the fertilizer core may be any water-soluble fertilizer, for example, a single fertilizer such as nitrogen fertilizer such as urea, phosphate fertilizer such as ammonium phosphate, potassium fertilizer such as potassium sulfate, compound fertilizer of any ratio of NPK, compound fertilizer , and other water-soluble plant nutrients.
  • a single fertilizer such as nitrogen fertilizer such as urea, phosphate fertilizer such as ammonium phosphate, potassium fertilizer such as potassium sulfate, compound fertilizer of any ratio of NPK, compound fertilizer , and other water-soluble plant nutrients.
  • the wax used in the present invention is preferably paraffin wax, modified paraffin wax such as chlorinated paraffin, oxidized paraffin wax, sulfonated paraffin wax, chlorosulfonated paraffin wax, grafted paraffin wax, etc., beeswax, petroleum resin, especially waxy petroleum resin, polyethylene wax , microcrystalline wax and one or more of other water-insoluble solid low molecular organic substances such as stearic acid, various vegetable oils, animal oils and the like. They may be liquid or solid and have a melting or softening point of less than 90, preferably less than 80"C.
  • the inorganic powder is one or more selected from the group consisting of talc, diatomaceous earth, montmorillonite, kaolin, calcium carbonate, bentonite, attapulgite and sepiolite powder, preferably Talc powder, diatomaceous earth and carbonic acid hooks are more preferably micron-sized inorganic powders.
  • the particle size of the inorganic powder is preferably less than 20 microns, more preferably less than 10 microns, and most preferably less than 5 microns. Most preferred are talc, diatomaceous earth or carbonic acid having a particle size of less than 5 microns.
  • the method for preparing the alkyd resin emulsion-wax composite coated controlled release fertilizer of the present invention comprises first applying a wax to a surface of the fertilizer granule to form a wax film, and then coating the alkyd resin emulsion coating agent to the fluidized bed. Forming a polymer film on the surface of the wax film, preferably spraying the alkyd resin emulsion coating agent on the surface of the wax film through a two-flow nozzle, and optionally coating the inorganic powder on the polymer film to form an inorganic layer. Encapsulation process. The coating process is preferably carried out in a boiling or rotary fluidized bed.
  • the encapsulation process of the alkyd resin emulsion-wax composite coated controlled release fertilizer of the present invention can be carried out by a conventional coating method in the art.
  • the temperature in the fluidized bed is preferably 30 to 95".
  • the fertilizer granules are placed in a boiling or rotary drum fluidized bed and preheated, for example preheated to a preferred temperature of 70 to 95.
  • the preheated, preferably preheated, wax of 75-85 is preferably sprayed onto the fertilizer through a two-flow nozzle to form a uniform liquid film on the surface of the fertilizer granule.
  • the smaller the fertilizer granules, the larger the amount of wax used, and the wax weight usually accounts for 0.2 to 5% by weight, preferably 0.5 to 3% by weight, based on the total weight of the coated dry fertilizer.
  • the resin emulsion coating agent preferably preheated, for example, an alkyd emulsion coating agent preheated to at most 80 is uniformly sprayed onto the waxed fertilizer particles by a two-flow nozzle to form a continuous uniform polymer film.
  • the amount of the alkyd resin emulsion coating agent is adjusted according to the size of the fertilizer granules and the requirement for the release rate of the nutrient of the fertilizer. Generally, the weight of the polymer film accounts for 5 to 20% by weight of the total weight of the controlled release fertilizer, based on the dry matter weight. It is preferably 7 to 15% by weight.
  • the inorganic powder is sprayed into a fluidized bed of preferably SC QS , more preferably 70 to 95, to uniformly coat the surface of the fertilizer particles coated with the polymer film to form an inorganic layer.
  • the amount of the inorganic powder is usually from 0 to 10% by weight, preferably from 0.5 to 5% by weight, more preferably from 1 to 3% by weight based on the total weight of the coated controlled release fertilizer.
  • the invention is further described in the following by way of examples, which are merely intended to illustrate the invention and not to limit the invention.
  • the vegetable oils, fatty acids, polyols, polybasic acids, acid anhydrides, driers, waxes and inorganic powders used in the examples are all industrial grade, the base used is a chemically pure reagent, and the water used is deionized water.
  • the nutrient release period of controlled release fertilizers is expressed as the number of days required for controlled release nutrients to start at 25 ° C in still water until 80% of the cumulative nutrient release rate is reached.
  • the specific measurement method is as follows: The controlled release fertilizer is immersed in 7 ° at 25 ° C, the nutrients in the sample are dissolved into the water through the membrane, and the total nitrogen content dissolved by the titration method according to GB/T 8572 is determined according to GB/T. 8573 was determined by ammonium vanadium molybdate colorimetric method, and the dissolved potassium content was determined by flame photometer according to GB/T 8574. The time required for the dissolved nutrients to reach 80% of the total nutrient mass is the nutrient dry release period of the controlled release fertilizer.
  • step (1) Cooling the alkyd prepolymer in step (1) to 20% by weight with stirring Ammonia water makes the pH of the system 7. Then, deionized water was added, stirred and emulsified uniformly, and then cooled to room temperature, and then 2 g of cobalt naphthenate, 1 g of zirconium naphthenate and 1.5 g of the active agent A were separately added and uniformly mixed to obtain an alkyd resin emulsion coating agent.
  • the coating agent has a particle size of 143 nm, a solid content of 35 wt%, and a viscosity of 124 mPa ⁇ s.
  • the obtained alkyd resin emulsion-wax composite coated controlled release fertilizer consisted of 88% urea, 9.2% polymer, 1.4% paraffin and 1.4% diatomaceous earth.
  • the controlled release fertilizer has a nutrient release period of 140 days.
  • 190 g of linseed oil, 210 g of dehydrated castor oil, 223 g of trimethylolpropane and 148 g of phthalic anhydride were placed in a reactor equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen atmosphere, and the temperature was raised to 225.
  • the reaction was carried out at ° C for 2.5 hours.
  • the temperature is lowered to 170 ° C, 64 g of trimellitic acid is added, and the reaction is carried out at this temperature for about 3.5 hours, and the water formed in the reaction is removed in time by a water eliminator.
  • the acid value of the system reaches 55 mg KOH / g resin, the temperature is lowered.
  • 60 g of rosin was added and reacted for 15 minutes.
  • the alkyd prepolymer in the step (1) was cooled to 75, and 20% by weight of aqueous ammonia was added under stirring to adjust the pH of the system to 7.5. Then, deionized water was added, stirred and emulsified uniformly, and then cooled to room temperature, and then 1.8 g of cobalt naphthenate, 1 g of zirconium naphthenate and 1.5 g of the active agent A were separately added and uniformly mixed to obtain an alkyd resin emulsion coating agent.
  • the coating agent has a particle size of 196 nm, a solid content of 35 wt%, and a viscosity of 296 mPa ⁇ s.
  • the composition of the obtained alkyd resin emulsion-wax composite coated controlled release fertilizer was 84.7 % of urea, 11.9% of polymer, 1.7% of paraffin and 1.7% of talc.
  • the nutrient release period of the controlled release fertilizer was 183 days.
  • Example 2 Same as Example 2, except that the urea in Example 2 was replaced by a compound fertilizer of 2 to 4 mm (the compound fertilizer was from Shandong Jinzhengda Ecological Engineering Co., Ltd., with NP 2 0 5 -K 2 0% by weight Count: 15-15-15).
  • the composition of the obtained alkyd resin emulsion-wax composite coated controlled release fertilizer was 84.7 %, the polymer accounted for 11.9%, the paraffin accounted for 1.7%, and the talc powder accounted for 1.7%.
  • the controlled release fertilizer has a nutrient release period of 265 days.
  • the alkyd prepolymer in the step (1) was cooled to 70, and 20% by weight of aqueous ammonia was added under stirring to give a system of ⁇ ⁇ of 7. Then, deionized water was added, stirred and emulsified uniformly, and then cooled to room temperature, and then 2 g of cobalt naphthenate and 2.5 g of active agent were respectively added and uniformly mixed to obtain an alkyd resin emulsion coating agent.
  • the coating agent latex particle size is 154 nm, the solid content is 35% by weight, viscosity It is 158 mPa.S.
  • the composition of the obtained alkyd resin emulsion-wax composite coated controlled release fertilizer was 86.1% of potassium sulfate, 10.3% of the polymer, 1.7% of the wax, and 1.9% of the calcium carbonate.
  • the nutrient release period of the controlled release fertilizer was 151 days.
  • the alkyd prepolymer in the step (1) was cooled to 70, and 20% by weight of aqueous ammonia was added under stirring to adjust the pH of the system to 7. Then add 1.5 g of sodium dodecylbenzene sulfonate and 2 g of octylphenol polyoxyethylene ether, mix and tick, then add deionized water, stir and emulsifie, then cool to room temperature, then add 1 g of naphthenic acid respectively. Cobalt, 1 g of bismuth naphthenate and 1.5 g of active agent mash were uniformly mixed to obtain an alkyd resin emulsion coating agent.
  • the coating agent has a particle size of 72 nm, a solid content of 30% by weight, and a viscosity of 158 mPa ⁇ s.
  • the composition of the obtained alkyd resin emulsion-wax composite coated controlled release fertilizer was 87.7 %, the polymer accounted for 8.4%, the petroleum resin accounted for 1.8%, and the talc powder accounted for 2.1%.
  • the nutrient release period of the controlled release fertilizer was 116 days.
  • the alkyd prepolymer in step (1) was cooled to 20% by weight of aqueous ammonia under stirring to bring the system to a pH of 7. Then, deionized water was added, stirred and emulsified uniformly, and then cooled to room temperature, and then 1.5 g of cobalt naphthenate, 1.5 g of zirconium naphthenate and 1.5 g of active agent A were separately added, and uniformly mixed to obtain an alkyd resin emulsion coating agent.
  • the coating agent has a particle size of 98 nm, a solid content of 35 wt%, and a viscosity of 243 mPa ⁇ s.
  • the composition of the obtained alkyd resin emulsion-wax composite coated controlled release fertilizer was 87.6 %, the polymer accounted for 8.9%, the paraffin accounted for 1.8%, and the diatomaceous earth accounted for 1.7%.
  • the controlled release fertilizer has a nutrient release period of 155 days.
  • Example 6 The same as in Example 6, except that the compound fertilizer of Example 6 was replaced with urea having a particle size of 3 to 4 mils (from Shandong Mingshui Chemical Co., Ltd., 46.4% by weight).
  • the composition of the obtained alkyd resin emulsion-wax composite coated controlled release fertilizer was 87.6% of urea, 8.9% of polymer, 1.8% of paraffin and 1.7% of diatomaceous earth.
  • the nutrient release period of the controlled release fertilizer is 104 days.
  • Example 6 The same as in Example 6, except that diatomaceous earth was not used in the coating, the paraffin was first sprayed on the surface of the fertilizer granules, and then the coating agent was sprayed onto the surface of the waxed fertilizer.
  • the composition of the obtained alkyd resin emulsion-wax composite coated controlled release fertilizer was 89.1%, the compound accounted for 9.1%, and the paraffin accounted for 1.8%.
  • the controlled release fertilizer has a feeding period of 105 days.
  • Example 2 The same as in Example 1, except that the paraffin was sprayed on the surface of the urea without using paraffin, and then the diatomaceous earth was sprayed onto the surface of the fertilizer.
  • the composition of the obtained alkyd resin emulsion controlled release fertilizer is urea
  • the controlled release fertilizer has a mating period of 45 days.

Description

醇酸树脂乳液-蜡复合包膜控释肥料及其制备方法
技术领域
本发明涉及一种包膜控幹肥料, 更具体地, 涉及一种醇酸树脂乳液- 蜡复合包膜控释肥料及其制备方法, 属于材料和肥料生产技术领域。 背景技术
目前化肥在使用过程中流失严重, 这不仅造成资源的巨大浪费, 也给 水源、 土壤和大气带来严重污染。 如何降低施肥量和提高肥料利用率, 是 农业可持续发展中亟待解决的关键问题之一。 开发高效环保的緩控释肥料 是解决这一问题的有效途径。
包膜控释肥料是控释肥料的主流和发展方向。 目前包膜控释肥料可分 为两类: 一类是无机物包膜控释肥料, 其中涂硫尿素(SCU )是其典型代 表, 它的优点是原料及生产成本低, 缺点是膜层材料太脆, 对养分的控释 性能较差; 另一类是聚合物包膜控释肥料, 其中美国 Scotts公司的热固性 树月旨包膜控释肥料以及日本 Chisso-Asahi肥料公司的热塑性树脂包膜控释 肥料是其典型代表, 这类控释肥料因具有优异的养分控释性能而在世界范 围内受到广泛关注。
然而, 热固性树脂包膜控释肥料产品成本过高, 难以在大田作物上推 广应用。 对于热塑性树脂包膜控释肥料而言, 除了聚合物包膜剂价格较高 外, 另一个明显缺陷是肥料生产过程中必须使用大量有机溶剂, 这不仅浪 费资源和能源, 对人身健康和环境也造成了危害。 虽然生产过程中外加溶 剂回收系统可以部分地降低上述消耗和危害, 但除设备一次性投入高和工 艺复杂外, 残留在产品中的少量有机溶剂在储存和使用过程中仍会逐渐挥 发而污染环境。 另夕卜,上述两种聚合物包膜控释肥料在巴料养分释放完后, 聚合物残膜不易降解, 长期使用会对土壤造成一定的污染。
利用水性聚合物作为包膜剂制备聚合物包膜控释肥料具有低污染和低 成本的优点。 水性聚合物包膜剂可分为水分散性树脂和水溶性树脂两类。 US 4,549,897最先公开了利用天然胶乳作为包膜剂制造控释肥料的方法。 也有用聚偏二氯乙烯水悬浮液作为肥料包膜剂的文献报道 (见 Shavia A等, Fertilizer Research, 1993, 35: 1 , Tzika M等, Powder Technology, 2003, 132: 16)。近年来也有以废弃塑料等为主要原料制备水性聚合物包膜控释肥 料的报道, 但是该技术并没有完全消除有机溶剂的危害; 虽然也有以水溶 性树脂作为肥料包膜剂的报道, 但往往需要添加部分有机增溶剂来提高树 脂的水溶性(例如见 CN 1473806A ); 另外包膜剂的固含量也较低, 由于 水的汽化热比较大, 包膜过程能量消耗比较大。
目前水性聚合物包膜剂主要存在以下三个问题: 生产过程中水对肥料 的溶解使形成的聚合物膜不够致密, 从而导致肥料产品控释性能的降低; 包膜剂中存在部分有机溶剂; 聚合物残膜在土壤中难以降解。 因此需要克 服水性聚合物包膜剂存在的上述问题, 以充分发挥水性聚合物包膜控释肥 料绿色环保和低成本的优势。 发明内容
本发明的目的是提供一种环境友好的醇酸树脂乳液-蜡复合包膜控释 肥料, 完全消除传统聚合物包膜剂中有机溶剂对环境造成的危害, 有效阻 止水性聚合物包膜剂在包膜过程中水分对肥料的溶解, 大幅降低聚合物包 膜剂的成本, 养分释放后的聚合物残膜在土壤中可生物降解。
该目的通过一种醇酸树脂乳液-蜡复合包膜控释肥料而实现,该控释肥 料由肥料芯和肥料芯外面的包膜组成, 其特征在于所述包膜包含蜡膜、 该 蜡膜外含醇酸树脂乳液包膜剂的聚合物膜以及任选地在聚合物膜外含无机 粉体的无机层。
本发明还提供一种制备上述醇酸树脂乳液-蜡复合包膜控释肥料的方 法, 包括首先在肥料颗粒表面涂覆蜡形成蜡膜, 然后将醇酸树脂乳液包膜 剂包覆到所述蜡膜表面形成聚合物膜, 以及任选地在聚合物膜上包覆无机 粉体以形成无机层的包膜过程。
对于本发明的醇酸树脂乳液-蜡复合包膜控释肥料, 由于肥料颗粒表面 首先被蜡疏水层所覆盖, 因此有效地阻止了醇酸树脂乳液包膜剂包膜过程 中水分对肥料的溶解,消除了传统水溶性聚合物包膜剂给膜层带来的缺陷, 使肥料产品具有更好的控释性能。
本发明包膜控释肥料中, 所用的醇酸树脂乳液包膜剂由于介质是水, 完全消除了传统聚合物包膜剂中有机溶剂对环境造成的危害。 与其他合成 树脂相比, 由于本发明中的醇酸树脂乳液包膜剂其主要原料为自然界可再 生的植物油, 它对石油的依赖度低, 成本低廉; 同时聚合物链上的植物油 和脂肪酸片段还赋予聚合物膜以优良的生物降解性能; 由于制备过程是从 小分子原料出发, 可以通过调整聚合配方及工艺来调整成膜聚合物的组成 和结构, 以达到精准调控产品肥料养分幹放的目的。 同时由于聚合物包膜 材料中含有能与水分子发生締合作用的官能团, 因此该类材料还兼有一定 的保水性能。
另外, 在本发明进一步优选的实施方案中, 本发明醇酸树脂乳液 -蜡复 合包膜控释肥料还包含含无机粉体的最外层。 在该优选实施方案中, 含无 机粉体的无机层作为最外层不仅可以防粘和抗磨, 也部分地起到调节养分 释放的作用。
本发明的醇酸树脂乳液-蜡复合包膜控释肥料除具有低成本、 抗沖抗磨 和优良的控释性能外, 还具有在生产、 储存和使用过程中无毒无污染以及 聚合物残膜在土壤中可生物降解等优点。 附图说明
图 1是根据本发明制备的醇酸树脂乳液-蜡复合包膜控释肥料的剖面结 构示意图。 控释肥料产品颗粒由内向外依次是肥料芯、 蜡膜层、 聚合物膜 层。 具体实施方式
本发明制备醇酸树脂乳液-蜡复合包膜控释肥料的过程包括醇酸树脂 乳液包膜剂的制备和肥料包膜两部分。 本发明醇酸树脂乳液包膜剂以醇酸 树脂预聚体为主要原料。 在本发明的具体实施方案中, 首先制备出醇酸树 脂预聚体, 然后经用碱中和, 任选地加入乳化剂, 任选地加入水, 和加入 催干剂而得到本发明聚合物乳液包膜剂。
(1) 制备醇酸树脂预聚体
本发明中所用的醇酸树脂预聚体优选由包含植物油和 /或来源于植物 的脂肪酸, 多元醇, 至少一种选自 c4-c22合成脂肪酸、 c4-c22合成脂肪酸 的酸酐、 芳香酸、 芳香酸的酸酐的组分的原料组合物通过共缩聚反应而得 到。
在本发明的优选实施方案中, 制备醇酸树脂预聚体所用的植物油例如 选自干性油和半干性油中的一种或多种, 其实例包括亚麻油、 桐油、 脱水 蓖麻油、 豆油、 棉籽油、 纳斯克尔油等。 所述来源于植物的脂肪酸例如选 自油酸、 亚油酸、 亚麻酸、 妥尔油、 松香中的一种或多种。 由于有些脂肪 酸如油酸、 亚油酸、 亚麻酸等是从油脂得来的, 因此在实际操作中, 这些 脂肪酸可以通过相应油脂的醇解而就地得到。 所述多元醇例如选自甘油、 三羟甲基丙烷、 季戊四醇、 山梨醇和二甘醇中的一种或多种, 优选甘油、 三羟甲基丙烷和季戊四醇。 所述 c4-c22合成脂肪酸及其酸酐优选碳原子数 为 4-22, 优选 4-12的一元酸或多元酸及其酸酐, 例如马来酸、 马来酸酐、 富马酸、 己酸、 癸酸、 己二酸、 癸二酸, 更优选 C4-C22二元酸及其酸酐, 尤其是己二酸、 癸二酸及其酸酐。 所述芳香酸及其酸肝优选选自芳族一元 酸、 芳族二元酸、 芳族三元酸及其酸酐, 具体实例包括苯甲酸、 邻苯二曱 酸、 邻苯二甲酸酐、 间苯二甲酸、 偏苯三酸、 偏苯三酸酐等, 优选芳族二 元酸、 三元酸及其酸酐, 尤其是邻苯二甲酸酐、 间苯二甲酸、 偏苯三酸和 偏苯三酸酐。 所述芳香酸及其酸酐可以是未取代的, 或被一个或多个选自 c,-c6烷基、 d-c6烷!^、 d-c6卤代烷基、 卤素、 硝基的取代基取代。 所述卤或卤素选自氟、 氯、 溴和碘。 所述 d-Ce烷基以及 d-Ce烷 和 C,-C6卤代烷基的烷基结构部分是指具有 1-6个^^子, 尤其是 1-4个^^ 子的饱和直链或支化烃基, 例如甲基、 乙基、 丙基、 1-曱基乙基、 丁基、 1-甲基丙基、 2-甲基丙基、 1,1-二甲基乙基、 戊基、 1-曱基丁基、 2-曱基丁 基、 3-曱基丁基、 2,2-二甲基丙基、 1-乙基丙基、 己基、 1,1-二甲基丙基、 1,2-二甲基丙基、 1-甲基戊基、 2-甲基戊基、 3-曱基戊基、 4-甲基戊基、 1,1- 二甲基丁基、 1,2-二曱基丁基、 1,3-二甲基丁基、 2,2-二甲基丁基、 2,3-二曱 基丁基、 3,3-二曱基丁基、 1-乙基丁基、 2-乙基丁基、 1,1,2-三甲基丙基、 1,2,2- 三甲基丙基、 1-乙基 -1-曱基丙基、 1-乙基 -2-甲基丙基。 所述 d-Ce卤代烷 基指具有 1-6个碳原子的直链或支化饱和烃基, 其中这些基团中的一些或 所有氢原子可以被上述卤原子替换, 其实例包括氯甲基、 溴甲基、 二氯甲 基、 三氯甲基、 氟曱基、 二氟甲基、 三氟甲基、 氯氟甲基、 二氯氟甲基、 氯二氟甲基、 1-氯乙基、 1-淡乙基、 1-氟乙基、 2-氟乙基、 2,2-二氟乙基、 2,2,2-三氟乙基、 2-氯 -2-氟乙基、 2-氯 -2,2-二氟乙基、 2,2-二氯 -2-氟乙基、 2,2,2-三氯乙基、 五氟乙基等。 所述 d-C6烷氧基指经由氧原子连接的具有 1-6 个碳原子的直链或支化饱和烃基, 其实例包括甲氧基、 乙氧基、 OCH2-C2H5、 OCH(CH3)2、正丁氧基、 OCH(CH3)-C2Hs、 OCH2-CH(CH3)2、 OC(CH3)3、 正戊 、 1-甲基丁 L&、 2-甲基丁 ^&、 3-甲基丁 L&、 1,1- 二甲基丙 L&、 1,2-二甲基丙 L &、 2,2-二甲基-丙 Λ、 1-乙基丙 Λ、 正 己^ &、 1-甲基戊 、 2-甲基戊 L&、 3-甲基戊 |i^、 4-甲基戊 L&、 1,1-二 曱基丁氧基、 1,2-二曱基丁氧基、 1,3-二曱基丁氧基、 2,2-二甲基丁氧基、 2,3-二甲基丁氧基、 3,3-二甲基丁氧基、 1-乙基丁氧基、 2-乙基丁氧基、 1,1,2-三曱基丙 、 1,2,2-三甲基丙氧基、 1-乙基 -1-甲基丙氧基、 1-乙基 -2- 甲基丙氧基等。
本发明中的共缩聚反应可以按照本领域技术人员已知的共缩聚方法来 进行。共缩聚反应温度例如为 100〜280 , 优选为 140〜250 ; 聚合反应时 间例如为 1〜24小时, 优选为 4~12小时。 聚合反应终点和所得醇酸树脂的 质量通过树脂的酸值来控制。树脂的酸值是指中和 1克树脂所消耗的 KOH 的毫克数 (单位是 mgKOH/g树脂)。 本发明按照 GB/T2895-1982标准, 以 等体积比的乙醇和乙醚为混合溶剂来测定树脂的酸值。 本发明人经研究发 现, 所得醇酸树脂预聚体的酸值影响该聚合物在本发明中用作包膜剂的性 能。在聚合配方一定时, 一般醇酸树脂预聚体的酸值越大, 其亲水性越好, 越容易形成聚合物乳液, 但同时所形成的包膜剂亲水性也越高, 从而导致 控释肥料的控释时间变短。 在本发明中, 有利的是, 所用醇酸树脂预聚体 的酸值为 10~150 mgKOH/g树脂, 优选 20~120 mgKOH/g树脂, 更优选 30-80 mgKOH/ 树脂, 最优选 40~70 mgKOH/g树脂。 在本发明中, 用于聚合反应的原料组合物的组成可以根据需要在较大 的范围内调节,其中植物油和 /或来源于植物的脂肪酸的用量和原料组合物 体系中羟基与 的摩尔比影响预聚体的酸值以及体系的粘度。 醇酸树脂 预聚体的粘度越大, 在下述包膜剂制备过程中所用助溶剂越多。 优选地, 植物油和 /或来源于植物的脂肪酸的用量占原料组合物总重量的 30~70重量 %, 更优选 40~60重量%; 原料组合物体系中羟基与羧基的摩尔比优选为 0.8-1.4, 更优选 0.9〜1.3。
在本发明中, 所述醇酸树脂预聚体的制备方法可以为醇解法或脂肪酸 法, 二者的主要区别在于前者是以植物油为原料, 而后者是以来源于植物 油的脂肪酸为原料。 本发明优选醇解法。 共缩聚反应可以在空气中或在惰 性气体保护下进行, 优选在惰性气体中, 惰性气体优选为氮气。 共缩聚反 应可以在溶剂中进行, 也可以在熔融状态下进行, 优选熔融共缩聚工艺。
(A) 醇解法
本发明中所用的醇解法可以本领域技术人员所熟知的醇解法进行。 在 优选的实施方案中,将植物油,多元醇和至少一种选自 C4-C22合成脂肪酸、 c4-c22合成脂肪酸的酸酐、 芳香酸、 芳香酸的酸酐的组分加入反应釜中, 在 100~280X, 优选 140 250 "C的温度下反应 1-24小时, 优选 4~12小时, 期间用除水器及时除去反应中生成的水。 降温后得到醇酸树脂预聚体。
在进一步优选的实施方案中, 首先将植物油、 多元醇和二元酸 (和 /或 其酸酐)加入装有搅拌器、 回流冷凝器、 温度计和有氮气保护的反应釜中, 升温到 160〜260 反应 0.5-6小时, 优选 200〜240Ό反应 2-4小时。 然后降 温到 120~200Ό, 加入其他多元酸 (和 /或其酸酐), 保温反应至少 0.5小时, 并用除水器及时除去反应中生成的水。 任选地, 在降温到 130~160 时加 入树脂总重量的 2~20重量%的松香, 优选 3~10重量%, 并在此温度下反 应 5分钟到 2小时, 优选 10分钟到 0.5小时。 降温后得到具有一定酸值的 醇酸树脂预聚体。
(Β) 脂肪酸法
本发明中所用的脂肪酸法可以本领域技术人员所熟知的脂肪酸法进 行。 在优选的实施方案中, 首先将来源于植物的脂肪酸, 多元醇和至少一 种选自 C4-C22合成脂肪酸、 C4-C22合成脂肪酸的酸酐、 芳香酸、 芳香酸的 酸酐的组分加入反应釜中, 在 100~280 , 优选 140〜250" 的温度下反应 1〜24小时, 优选 4〜12小时, 期间用除水器及时除去反应中生成的水。 降 温后得到醇酸树脂预聚体。
在进一步优选的制备方法中, 首先将来源于植物的脂肪酸、 多元醇和 二元酸 (和 /或其酸酐)加入装有搅拌器、 回流冷凝器、 温度计和有氮气保护 的反应釜中, 升温到 160~260* 反应 0.5~6小时, 优选 200~240X反应 2~4 小时, 并用除水器及时除去反应中生成的水, 然后降温到 120~200 , 加 入其他多元酸 (和 /或其酸酐), 保温反应至少 0.5 小时, 并用除水器及时除 去反应中生成的水。任选地,在降温到 130~160 时加入树脂总重量的 2~20 重量%的松香,优选 3~10重量%, 并在此温度下反应 5分钟到 2小时, 优 选 10分钟到 0.5小时。 降温后得到具有一定酸值的醇酸树脂预聚体。
(2) 制备醇酸树脂乳液包膜剂
本发明醇酸树脂乳液包膜剂的制备包括如下步骤:
将醇酸树脂预聚体用碱中和,
任选地加入乳化剂,
任选地加入水, 和
加入催干剂。
在优选的实施方案中, 将上述醇酸树脂预聚体加热熔融, 并将其温度 控制在 25〜: 120 °C, 优选 40〜90。C, 更优选 50~80°C。 然后在搅拌下向上述 醇酸树脂预聚体中加入碱。 用于中和的减 任何常规用于中和的无机碱和 有机碱中的一种或多种,其实例包括碱金属氢氧化物,碱土金属氢氧化物, 胺类等, 如氢氧化钠、 氢氧化钾、 氨水、 三乙胺、 三甲胺、 三乙醇胺、 吗 啉, 优选氨水、 三乙胺、 三甲胺、 氢氧化钠和氢氧化钾。 所述碱优选以水 溶液的形式使用。 中和的程度优选地使中和后上述醇酸树脂预聚体体系的 pH值为 5~10, 优选 7~9。
然后任选地, 向体系中加入乳化剂, 所用乳化剂优选阴离子型乳化剂 或阴离子型乳化剂与非离子型乳化剂的混合物。 所述阴离子型乳化剂为所 有常规阴离子型乳化剂中的一种或多种, 例如 R为 < 8~< 18烷基的脂肪酸 钠 RCOONa、 烷 酸钠 ROS03Na、 烷基磺酸钠 RS03Na以 酸钠 RC6H4S03Na, 烷基联苯醚二磺酸钠, 歧化松香和烷基 酸钠。 所 述非离子型乳化剂为所有常规非离子型乳化剂中的一种或多种, 例如聚氧 乙烯失水山梨醇脂肪酸酯类,烷基酚聚氧乙烯醚类,烷基聚氧乙烯醚类等。 相对于醇酸树脂的重量, 阴离子型乳化剂用量优选为 0〜3.0重量%, 非离 子型乳化剂用量优选为 0~5.0重量%。
如果需要的话,可以在中和后的醇酸树脂预聚体体系中进一步加入水。 例如,在搅拌下向温度为 30〜95°C,优选 45~85。C的醇酸树脂预聚体体系中 加入水, 优选去离子水和蒸馏水, 乳化均匀后冷却到室温。 可根据需要通 过加入水配制成具有所需固含量的醇酸树脂预聚体乳液。
在室温下向中和后的醇酸树脂预聚体体系中加入催干剂, 搅拌混合均 匀后得到聚合物乳液包膜剂。 所述催干剂为本领域技术人员所熟知的催干 剂。 所述催干剂包括主催干剂以及如果需要的话助催干剂和 /或催干活性 剂。 其中主催干剂可以单独使用, 也可以与助催干剂和 /或催干活性剂中的 一种或多种组合使用。所述主催干剂例如选自钴盐和锰盐中的一种或多种, 优选环烷酸钴、 环烷酸锰, 其用量为体系中醇酸树脂预聚体重量的 0.005~0.5重量%, 优选 0.03~0.2重量%。 所述助催干剂例如选自铅、 钙、 锌、 铁、 钡、 倍盐的一种或多种, 优选环烷酸盐, 其用量为体系中醇酸树 脂预聚体重量的 0~0.5重量%, 优选 0.01~0.5重量%。 所述催干活性剂在 本发明中被称为 "活性剂 A" , 它是由 38重量%的。 -二氮杂菲、 22重量 %己酸乙酯和 40重量%的正丁醇混合而成,其用量为醇酸树脂预聚体重量 的 0〜2.0重量%, 优选 0.05〜1.0重量%, 更优选 0.1~0.8重量%。
需要指出, 在醇酸树脂预聚体体系中加入乳化剂和 /或加入水的情况 下, 乳化剂、 水以及催干剂的加入顺序并不重要, 可以在将醇酸树脂预聚 体用緘中和后以任意顺序加入。
在本发明中, 聚合物乳液中乳胶粒粒径优选为 50纳米〜 5微米, 更优 选为 60纳米〜 1微米, 进一步优选为 70~300纳米。 其中纳米级和亚微米级 乳胶粒为优选的, 其优点是乳液稳定性好, 形成的聚合物膜致密。
本发明聚合物乳液包膜剂的固含量优选为 5〜70 重量%, 优选 10~50 重量%, 更优选 15~40 重量%。 粘度优选为 10~5000 mPa.S, 更优选为 50-2000 mPa.S, 进一步优选为 80〜500 mPa.S。
(3)肥料包膜配方和工艺
对本发明而言,肥料芯可以是任何水溶性肥料, 例如可以是单一肥料, 例如氮肥如尿素、 磷肥如磷酸铵、 钾肥如硫酸钾, 也可以是任意氮磷钾比 例的复合肥料、 复混肥料, 以及其他水溶性植物营养成分。
在本发明中所用的蜡优选是石蜡, 改性石蜡如氯化石蜡、 氧化石蜡、 磺化石蜡、 氯磺化石蜡、 接枝石蜡等, 蜂蜡, 石油树脂尤其是蜡质石油树 脂, 聚乙烯蜡, 微晶蜡以及其他非水溶性固体低分子有机物如硬脂酸、 各 种植物油、 动物油等中的一种或几种。 它们可以是液体, 也可以是固体, 其熔点或软化点要低于 90 , 优选低于 80 "C。
在本发明的优选实施方案中, 所述无机粉体选自滑石粉、 硅藻土、 蒙 脱土、 高岭土、 碳酸钙、 膨润土、 凹凸棒土和海泡石粉中的一种或多种, 优选滑石粉、 硅藻土和碳酸钩, 更优选微米级无机粉体。 无机粉体的粒径 优选小于 20微米, 更优选小于 10微米, 最优选小于 5微米。 最优选粒径 小于 5微米的滑石粉、 硅藻土或碳酸 。
制备本发明醇酸树脂乳液-蜡复合包膜控释肥料的方法包括在流化床 中, 首先在肥料颗粒表面涂覆蜡形成蜡膜, 然后将所述醇酸树脂乳液包膜 剂包覆到所述蜡膜表面形成聚合物膜, 优选地将所述醇酸树脂乳液包膜剂 通过双流喷嘴喷涂在蜡膜表面, 以及任选地在聚合物膜上包覆无机粉体以 形成无机层的包膜过程。 所述包膜过程优选在沸腾式或转鼓式流化床中进 行。
本发明醇酸树脂乳液-蜡复合包膜控释肥料的包膜过程可以本领域的 常规包膜方式进行。 流化床内温度优选为 30~95" 。
在进一步优选的实施方案中, 将肥料颗粒放入沸腾式或转鼓式流化床 中, 将其预热, 例如预热到优选温度为 70〜95 。 然后将预热的, 优选预 热到 75~85 的蜡, 优选通过双流喷嘴喷涂在肥料上, 在肥料颗粒表面形 成一层均匀的液膜。 肥料颗粒越小, 蜡的使用量越大, 通常蜡重量占包膜 控幹肥料总重量的 0.2~5重量%,优选 0.5〜3重量%。然后将室温下的醇酸 树脂乳液包膜剂, 优选预热的, 例如预热到至多 80 的醇酸树脂乳液包膜 剂通过双流喷嘴均匀喷涂到涂了蜡的肥料颗粒上, 形成一层连续均匀的聚 合物膜。 醇酸树脂乳液包膜剂的用量根据肥料颗粒的大小和对肥料养分释 放速率的需求来调节, 一般按干物质重量计算, 聚合物膜的重量占控释肥 料总重量的 5~20重量%, 优选 7~15重量%。
如果需要的话,将无机粉体喷撒到优选为 SC QS ,更优选 70〜95 的 流化床内, 使其均匀地包覆在已包覆聚合物膜的肥料颗粒表面, 形成无机 层。 通常无机粉体用量占包膜控释肥料总重量的 0〜10重量%, 优选 0.5~5 重量%, 更优选 1〜3重量%。
实施例
以下通过实施例进一步详细描述本发明, 所述实施例仅在于说明本发 明而决不限制本发明。 实施例中所用的植物油、 脂肪酸、 多元醇、 多元酸、 酸酐、 催干剂、 蜡和无机粉体均为工业级, 所用碱为化学纯试剂, 所用水 为去离子水。
控释肥料的养分释放期用控释养分在 25°C静水中浸提开始至达到 80%的累积养分释放率所需的天数来表示。 具体测定方法如下: 用 25°C的 7 静置浸泡控释肥料, 试料中的养分通过膜溶出到水中, 按 GB/T 8572用 蒸馏后滴定法测定溶出的总氮含量, 按 GB/T 8573用钒钼酸铵比色法测定 溶出的磷含量, 按 GB/T 8574用火焰光度计法测定溶出的钾含量。 溶出养 分达到该养分总质量的 80%时所需的时间即为控释肥料的养分幹放期。 实施例 1
(1) 制备醇酸树脂预聚体
将 480克亚麻油、 236克三羟甲基丙烷和 166克间苯二甲酸加入装有 搅拌器、 回流冷凝器、 温度计和有氮气保护的反应釜中, 升温到 235。C反 应 3.5小时, 然后降温到 175°C, 加入 73克偏苯三酸酐, 在此温度下反应 约 3 小时, 并用除水器及时除去反应中生成的水, 当体系的酸值达到 62 KOH mg/g树脂时, 降温到 150 °C, 加入 49克松香反应 20分钟。
(2) 制备醇酸树脂乳液包膜剂
将步驟 (1)中的醇酸树脂预聚体降温到 在搅拌下加入 20重量% 的氨水,使体系 pH值为 7。 然后加入去离子水,搅拌乳化均匀后冷却到室 温,再分别加入 2克环烷酸钴、 1克环烷酸锆和 1.5克活性剂 A,混合均匀, 得到醇酸树脂乳液包膜剂。 包膜剂乳胶粒粒径为 143 纳米, 固含量为 35 重量%, 粘度为 124 mPa.S。
(3)肥料包膜配方和工艺
将 5公斤粒径为 3~4毫米的尿素(来自山东明水化工有限公司, 以 N 重量%计为 46.4 )装入沸腾式流化床内并加热到约 90*Ό。 将 80克熔点约 为 62 " 的石蜡熔化并预热到 80 X:,然后通过一双流喷嘴将其喷涂到尿素颗 粒上。 15分钟以后, 再将已预热到约 801:的 1.5公斤上述包膜剂从另一双 流喷嘴喷涂到肥料表面, 喷涂速率约为每分钟 35克。 最后将 80克平均粒 径为 3微米的硅藻土均匀喷撒到温度为 80 左右的肥料表面。
以干物质重量计算,所得醇酸树脂乳液-蜡复合包膜控释肥料组成为尿 素占 88 %, 聚合物占 9.2%, 石蜡占 1.4%, 硅藻土占 1.4%。 该控释肥料 的养分释放期为 140,天。
实施例 2
(1) 制备醇酸树脂预聚体
将 190克亚麻油、 210克脱水蓖麻油、 223克三羟甲基丙烷和 148克邻 苯二曱酸酐加入装有搅拌器、 回流冷凝器、 温度计和有氮气保护的反应釜 中, 升温到 225°C反应 2.5小时。 然后降温到 170°C, 加入 64克偏苯三酸, 在此温度下反应约 3.5小时, 并用除水器及时除去反应中生成的水, 当体 系的酸值达到 55 mgKOH/g树脂时, 降温到 160 °C, 加入 60克松香反应 15分钟。
(2) 制备醇酸树脂乳液包膜剂
将步骤 (1)中的醇酸树脂预聚体降温到 75 , 在搅拌下加入 20重量% 的氨水, 使体系 pH值为 7.5。 然后加入去离子水, 搅拌乳化均匀后冷却到 室温, 再分别加入 1.8克环烷酸钴、 1克环烷酸锆和 1.5克活性剂 A, 混合 均匀, 得到醇酸树脂乳液包膜剂。 包膜剂乳胶粒粒径为 196纳米, 固含量 为 35重量%, 粘度为 296 mPa.S。
(3)肥料包膜配方和工艺 将 5公斤粒径为 3~4毫米的尿素(来自山东明水化工有限公司, 以 N 重量%计为 46.4 )装入沸腾式流化床内, 加热到约 90 。 将 100克熔点约 为 54。C的石蜡熔化并预热到 80 X:,然后通过一双流喷嘴将其喷涂到尿素颗 粒上。 15分钟以后,再将已预热到 的 2公斤上述包膜剂从另一双流喷 嘴喷涂到肥料表面, 喷涂速率约为每分钟 40克。最后将 100克平均粒径为 3微米的滑石粉均匀喷撒到温度在 80 X:左右的肥料表面。
以干物质重量计算,所得醇酸树脂乳液-蜡复合包膜控释肥料的组成为 尿素占 84.7 %, 聚合物占 11.9%, 石蜡占 1.7%, 滑石粉占 1.7%。 该控释 肥料的养分释放期为 183天。
实施例 3
同实施例 2, 不同之处在于将实施例 2中的尿素用 2〜4毫米的复合肥 来代替 (复合肥来自山东金正大生态工程股份有限公司, 以 N-P205-K20重 量%计: 15-15-15)。
以干物质重量计算,所得醇酸树脂乳液-蜡复合包膜控释肥料的组成为 复合肥占 84.7 %, 聚合物占 11.9%, 石蜡占 1.7%, 滑石粉占 1.7%。 该控 释肥料的养分释放期为 265天。
实施例 4
(1) 制备醇酸树脂预聚体
将 175克亚麻油、 175克桐油、 95克棉籽油、 215克三羟甲基丙烷、 75克邻苯二甲酸肝和 83克间苯二甲酸加入装有搅拌器、 回流冷凝器、 温 度计和有氮气保护的反应釜中, 升温到 240°C反应 2.5 小时。 然后降温到 180 "C , 加入 48克偏苯三酸, 在此温度下反应约 3小时, 并用除水器及时 除去反应中生成的水, 当体系的酸值达到 48KOH mg/g树脂时, 降温到 160。C, 加入 50克松香反应 20分钟。
(2) 制备醇酸树脂乳液包膜剂
将步骤 (1)中的醇酸树脂预聚体降温到 70 , 在搅拌下加入 20重量% 的氨水,使体系 ρΗ值为 7。 然后加入去离子水,搅拌乳化均匀后冷却到室 温, 再分别加入 2克环烷酸钴和 2.5克活性剂 Α, 混合均匀, 得到醇酸树 脂乳液包膜剂。 包膜剂乳胶粒粒径为 154纳米, 固含量为 35重量%, 粘度 为 158 mPa.S。
(3)肥料包膜配方和工艺
将 5公斤粒径为 3~5毫米的硫酸钾(来自山东金正大生态工程股份有 限公司产, 以 K20重量%计为 50 )装入沸腾式流化床内, 预热到约 90。C。 将 100克熔点约为 63 °C的蜂蜡熔化并预热到 75eC,然后通过一双流喷嘴将 其喷涂到硫酸钾颗粒上。 15分钟以后, 再将已预热到 75。C的 1.7kg上述包 膜剂从另一双流喷嘴喷涂到肥料表面,喷涂速率约为每分钟 40克。最后将 110克平均粒径为 3.5微米的碳酸钙均匀喷撒到温度在 80 左右的肥料表 面。
以干物质重量计算,所得醇酸树脂乳液-蜡复合包膜控释肥料的组成为 硫酸钾占 86.1 %, 聚合物占 10.3%, 蜡占 1.7%, 碳酸钙占 1.9%。 该控释 肥料的养分释放期为 151天。
实施例 5
(1) 制备醇酸树脂预聚体
将 300克桐油、 125克豆油、 112克三羟甲基丙烷、 70克季戊四醇和 162 克间苯二甲酸加入装有搅拌器、 回流冷凝器、 温度计和有氮气保护的 反应釜中, 升温到 235。C反应 3小时。 然后降温到 180°C, 加入 50克偏苯 三酸酐,在此温度下反应约 3小时,并用除水器及时除去反应中生成的水, 当体系的酸值达到 42KOH mg/g树月旨时, 降温到 155°C,加入 52克松香反 应 20分钟。
(2) 制备醇酸树脂乳液包膜剂
将步骤 (1)中的醇酸树脂预聚体降温到 70 , 在搅拌下加入 20重量% 的氨水, 使体系 pH值为 7。 然后加入 1.5克十二烷基苯磺酸钠和 2克辛基 苯酚聚氧乙烯醚, 混合均勾后再加入去离子水, 搅拌乳化均勾后冷却到室 温, 再分别加入 1克环烷酸钴、 1克环烷酸梧和 1.5克活性剂 Α, 混合均匀 后得到醇酸树脂乳液包膜剂。 包膜剂乳胶粒粒径为 72纳米, 固含量为 30 重量%, 粘度为 158 mPa.S。
(3)肥料包膜配方和工艺
将 5公斤粒径为 3〜5毫米的硫酸钾(来自山东金正大生态工程股份有 P艮公司产,以 K20重量%计为 50 )装入沸腾式流化床内,预加热到约 90°C。 将 100克软化点约为 58 °C的石油树脂熔化并预热到 85。C,然后通过一双流 喷嘴将其喷涂到硫酸钾颗粒上。 15分钟以后, 再将已预热到 80 °C的 1.6公 斤上述包膜剂从另一双流喷嘴喷涂到肥料表面, 喷涂速率为每分钟 35克。 料表面。
以干物质重量计算,所得醇酸树脂乳液-蜡复合包膜控释肥料的组成为 硫酸钟占 87.7 %, 聚合物占 8.4%, 石油树脂占 1.8%, 滑石粉占 2.1%。 该控释肥料的养分释放期为 116天。
实施例 6
(1) 制备醇酸树脂预聚体
将 163克亚油酸、 215克亚麻酸、 82克间苯二甲酸、 75克邻苯二甲酸 酐、 和 275克三羟甲基丙烷加入装有搅拌器、 回流冷凝器、 温度计和有氮 气保护的反应釜中, 升温到 240 °C反应 3小时, 并用除水器及时除去反应 中生成的水, 然后降温到 180°C, 加入 68克偏苯三酸酐, 保温反应并用除 水器及时除去反应中生成的水, 约 4小时后体系的酸值达到 55 KOH mg/g 树脂。 降温到 150 °C时加入 60克松香反应 25分钟。
(2) 制备醇酸树脂乳液包膜剂
将步骤 (1)中的醇酸树脂预聚体降温到 在搅拌下加入 20重量% 的氨水,使体系 pH值为 7。 然后加入去离子水,搅拌乳化均匀后冷却到室 温, 再分别加入 1.5克环烷酸钴、 1.5克环烷酸锆和 1.5克活性剂 A, 混合 均匀后得到醇酸树脂乳液包膜剂。 包膜剂乳胶粒粒径为 98纳米, 固含量为 35重量%, 粘度为 243 mPa.S。
(3)肥料包膜配方和工艺
将 5公斤粒径为 2~4毫米的复合肥(来自山东金正大生态工程股份有 限公司, 以 N-P205-K20重量%计: 16-16-16 ) 沸腾式流化床内, 预热 到约 90°C。 将 100克熔点约为 62°C的石蜡熔化并预热到 80'C, 然后通过 一双流喷嘴将其喷涂到复合肥颗粒上。 15分钟以后,再将已预热到约 80°C 的 1.45公斤上述包膜剂从另一双流喷嘴喷涂到肥料表面, 喷涂速率为每分 钟 40克。最后将 100克平均粒径为 3微米的硅藻土均匀喷撒到温度在 80 °C 左右的肥料表面。
以干物质重量计算,所得醇酸树脂乳液-蜡复合包膜控释肥料的组成为 复合肥占 87.6 %, 聚合物占 8.9%, 石蜡占 1.8%, 硅藻土占 1.7%。 该控 释肥料的养分释放期为 155天。
实施例 7
同实施例 6, 不同之处在于将实施例 6中的复合肥用粒径为 3~4亳米 的尿素 (来自山东明水化工有限公司, 以 1 重量%计为 46.4 )来代替。
以干物质重量计算,所得醇酸树脂乳液-蜡复合包膜控释肥料的组成为 尿素占 87.6%, 聚合物占 8,9%, 石蜡占 1.8%, 硅藻土占 1.7%。 该控释肥 料的养分释放期为 104天。
实施例 8
同实施例 6, 不同之处在于在包膜时不使用硅藻土, 首先将石蜡喷涂 在肥料颗粒表面, 然后再将所述包膜剂喷涂到涂蜡的肥料表面。
以干物质重量计算,所得醇酸树脂乳液-蜡复合包膜控释肥料的组成为 复合肥占 89.1 %, 聚合物占 9.1%, 石蜡占 1.8%。 该控释肥料的养^ 放 期为 105天。
比较例 1
同实施例 1, 不同之处在于在包膜时不使用石蜡, 直接将包膜剂喷涂 到尿素表面, 然后再将硅藻土喷撒到肥料表面。
以干物质重量计算, 所得醇酸树脂乳液包膜控释肥料的组成为尿素占
89.2 %, 聚合物占 9.4%, 硅藻土占 1.4%。 该控释肥料的养^ 放期为 45 天。

Claims

权利要求
1. 一种醇酸树脂乳液-蜡复合包膜控释肥料, 其由肥料芯和肥料芯外 面的包膜组成, 其特征在于所述包膜包含蜡膜、 该蜡膜外含醇酸树脂乳液 包膜剂的聚合物膜以及任选地在聚合物膜外含无机粉体的无机层。
2.根据权利要求 1的醇酸树脂乳液-蜡复合包膜控释肥料,其特征在于 所述蜡选自熔点或软化点低于 90 X的石蜡, 改性石蜡, 蜂蜡, 石油树脂, 聚乙烯蜡, 微晶蜡以及其他非水溶性固体低分子有机物中的一种或几种, 优选地所述蜡占包膜控释肥料总重量的 0.2~5重量%,更优选 0.5~3重量%。
3. 根据权利要求 1的醇酸树脂乳液 -蜡复合包膜控释肥料, 其特征在 于按干物质重量计算,聚合物膜占控释肥料总重量的 5~20%,优选 7~15 %。
4.根据权利要求 1的醇酸树脂乳液-蜡复合包膜控释肥料,其特征在于 无机粉体占控释肥料总重量的 0~10重量%, 优选 0.5~5 重量%, 更优选 1-3重量0 /«。
5.根据权利要求 1-4 中任一项所述的醇酸树脂乳液-蜡复合包膜控释 肥料, 其特征在于所述醇酸树脂乳液包膜剂以中和的形式包含醇酸树脂预 聚体。
6.根据权利要求 5的醇酸树脂乳液-蜡复合包膜控释肥料,其中所述醇 酸树脂预聚体的酸值为 10~150 mgKOH/g树脂, 优选 20〜: 120mgKOH/g树 脂, 更优选 30~80 mgKOH/g树脂, 进一步优选 40〜70 mgKOH/g树脂。
7.根据权利要求 5的醇酸树脂乳液-蜡复合包膜控释肥料,其特征在于 所述醇酸树脂乳液包膜剂的固含量为 5~70重量%,优选 10~50重量%, 更 优选 15~40重量%。
8.根据权利要求 5的醇酸树脂乳液-蜡复合包膜控释肥料,其特征在于 所述醇酸树脂乳液包膜剂的粘度为 10~5000mPa.S,优选为 50~2000 mPa.S, 更优选为 80 500 mPa.S。
9.根据权利要求 5的醇酸树脂乳液-蜡复合包膜控释肥料,其特征在于 所述醇酸树脂乳液包膜剂中乳胶粒粒径为 50纳米〜 5微米,优选为 60纳米 〜1微米, 更优选为 70~300纳米。
10.根据权利要求 5的醇酸树脂乳液-蜡复合包膜控释肥料, 其特征在 于所述醇酸树脂乳液预聚体由包含植物油和 /或来源于植物的脂肪酸, 多元 醇, 至少一种选自 c4-c22合成脂肪酸、 c4-c22合成脂肪酸的酸酐、芳香酸、 芳香酸的酸酐的组分的原料组合物通过共缩聚反应而得到,
其中所述植物油和 /或来源于植物的脂肪酸的用量占原料组合物总重 量的 30〜70重量%, 优选 40~60重量。 /o ; 原料组合物中羟基与羧基的摩尔 比为 0.8-1.4, 优选 0.9~1.3。
11.根据权利要求 10的醇酸树脂乳液-蜡复合包膜控释肥料,其中所述 植物油选自干性油和半干性油中的一种或多种, 优选亚麻油、 桐油、 脱水 蓖麻油、 豆油、棉籽油和纳斯克尔油; 所述来源于植物的脂肪酸选自油酸、 亚油酸、 亚麻酸、 妥尔油和松香中的一种或多种; 所述多元醇选自甘油、 三羟曱基丙烷、 季戊四醇、 山梨醇和二甘醇中的一种或多种; 所述 c4-c22 合成脂肪酸及其酸酐选自 c4-c22 —元酸、 多元酸及其酸酐, 优选 c4-c22 二元酸及其酸酐, 尤其是己二酸、 癸二酸及其酸酐; 所述芳香酸及其酸酐 选自芳族一元酸、 芳族二元酸、 芳族三元酸及其酸酐, 尤其是邻苯二甲酸 酐、 间苯二曱酸、 偏苯三酸和偏苯三酸酐。
12.根据权利要求 10的醇酸树脂乳液-蜡复合包膜控释肥料,其中所述 醇酸树脂预聚体的制备方法为醇解法或脂肪酸法, 优选醇解法。
13.根据权利要求 10的醇酸树脂乳液-蜡复合包膜控释肥料,其中所述 共缩聚反应为溶液共缩聚或熔融共缩聚, 优选熔融共缩聚。
14.根据权利要求 10的醇酸树脂乳液-蜡复合包膜控释肥料,其中共缩 聚反应温度为 100〜280* ,优选为 140~250 ; 聚合反应时间为 1~24小时, 优选为 4~12小时。
15.根据权利要求 1-4中任一项所述的醇酸树脂乳液-蜡复合包膜控释 肥料, 其特征在于所述无机粉体选自滑石粉、 硅藻土、 蒙脱土、 高岭土、 碳酸钙、 膨润土、 凹凸棒土和海泡石粉中的一种或多种, 优选滑石粉、 硅 藻土和碳酸钙, 更优选微米级、 优选小于 5微米的无机粉体, 进一步优选 粒径小于 5微米的滑石粉、 硅藻土和碳酸钙。
16. 一种制备权利要求 1-15任一项中的醇酸树脂乳液包膜剂的方法, 其包括如下步骤:
将醇酸树脂预聚体用碱中和,
任选地加入乳化剂,
任选地加入水, 和
加入催干剂。
17.根据权利要求 16的制备醇酸树脂乳液包膜剂的方法, 其中所述碱 为无机碱和有机碱中的一种或多种, 优选碱金属氢氧化物、 碱土金属氢氧 化物和胺类; 更优选氨水、 三乙胺、 三甲胺、 氢氧化钠和氢氧化钾。
18.根据权利要求 16的制备醇酸树脂乳液包膜剂的方法, 所述所述乳 化剂选自阴离子型乳化剂或阴离子型乳化剂与非离子型乳化剂的混合物, 相对于醇酸树脂重量, 阴离子型乳化剂用量优选为 0~3.0重量%, 非离子 型乳化剂用量优选为 0~5.0重量%。
19.根据权利要求 16的制备醇酸树脂乳液包膜剂的方法, 其中所述催 干剂包括主催干剂以及非必要的助催干剂和 /或催干活性剂。
20.根据权利要求 19的制备醇酸树脂乳液包膜剂的方法, 其中所述主 催干剂选自钴盐和锰盐中的一种或多种, 优选环烷酸钴和环烷酸锰, 优选 其用量为醇酸树脂预聚体重量的 0.005~0.5重量%; 所述助催干剂选自铅、 钙、 锌、 铁、 钡、 掊盐中的一种或多种, 其用量为醇酸树脂预聚体重量的 0~0.5重量%, 优选 0.01~0.5重量%; 所述催干活性剂是由 38重量%的 二氮杂菲、 22重量%己酸乙酯和 40重量%的正丁醇混合而成, 其用量为 醇酸树脂预聚体重量的 0〜2.0重量%, 优选 0.05~1.0重量%。
21. —种制备根据权利要求 1~15 的醇酸树脂乳液 -蜡复合包膜控释肥 料的方法, 其包括在流化床中, 优选在沸腾式或转鼓式流化床中, 首先在 肥料颗粒表面涂覆蜡形成蜡膜, 然后再将所述醇酸树脂乳液包膜剂包覆到 所述蜡膜表面而形成聚合物膜, 优选地将所述醇酸树脂乳液包膜剂通过双 流喷嘴喷涂在蜡膜表面, 以及任选地在聚合物膜上包覆无机粉体以形成无 机层的包膜过程。
PCT/CN2008/001063 2008-05-30 2008-05-30 醇酸树脂乳液-蜡复合包膜控释肥料及其制备方法 WO2009143654A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001063 WO2009143654A1 (zh) 2008-05-30 2008-05-30 醇酸树脂乳液-蜡复合包膜控释肥料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001063 WO2009143654A1 (zh) 2008-05-30 2008-05-30 醇酸树脂乳液-蜡复合包膜控释肥料及其制备方法

Publications (1)

Publication Number Publication Date
WO2009143654A1 true WO2009143654A1 (zh) 2009-12-03

Family

ID=41376536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001063 WO2009143654A1 (zh) 2008-05-30 2008-05-30 醇酸树脂乳液-蜡复合包膜控释肥料及其制备方法

Country Status (1)

Country Link
WO (1) WO2009143654A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242090A (zh) * 2013-04-23 2013-08-14 福建达安能源实业有限责任公司 一种环境友好型包膜缓释肥料及其制备方法
CN103351211A (zh) * 2013-06-07 2013-10-16 安徽金阳环保肥业有限公司 冬小麦专用机施控释肥料及其制备方法
CN114031470A (zh) * 2021-12-14 2022-02-11 新洋丰农业科技股份有限公司 一种醇酸树脂控释肥料的制备方法
BE1029554B1 (nl) * 2021-12-07 2023-01-27 Eurochem Antwerpen Biobased meststof coatings met nanodeeltjes
CN116120132A (zh) * 2023-04-13 2023-05-16 山东联欣环保科技有限公司 全生物降解塑料控释肥包衣材料及肥料成型工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315975A (ja) * 1994-05-25 1995-12-05 Central Glass Co Ltd 粒状物質の被覆方法
CN1261869A (zh) * 1998-05-05 2000-08-02 Oms投资公司 受控释放的肥料组合物和它们的制备方法
CN101148497A (zh) * 2007-10-22 2008-03-26 苏州巨峰绝缘材料有限公司 自干型水溶性醇酸树脂及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315975A (ja) * 1994-05-25 1995-12-05 Central Glass Co Ltd 粒状物質の被覆方法
CN1261869A (zh) * 1998-05-05 2000-08-02 Oms投资公司 受控释放的肥料组合物和它们的制备方法
CN101148497A (zh) * 2007-10-22 2008-03-26 苏州巨峰绝缘材料有限公司 自干型水溶性醇酸树脂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAN, JINFANG ET AL.: "Studies on the Technological Process and Effects of the Inorganic Coated Slow/Controlled Release Fertilizer", JOURNAL OH HENAN AGRICULTURAL UNIVERSITY, vol. 37, no. 3, September 2003 (2003-09-01), pages 259 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242090A (zh) * 2013-04-23 2013-08-14 福建达安能源实业有限责任公司 一种环境友好型包膜缓释肥料及其制备方法
CN103351211A (zh) * 2013-06-07 2013-10-16 安徽金阳环保肥业有限公司 冬小麦专用机施控释肥料及其制备方法
BE1029554B1 (nl) * 2021-12-07 2023-01-27 Eurochem Antwerpen Biobased meststof coatings met nanodeeltjes
WO2023104556A1 (en) * 2021-12-07 2023-06-15 Eurochem Antwerpen Biobased fertilizer coatings with nanoparticles
CN114031470A (zh) * 2021-12-14 2022-02-11 新洋丰农业科技股份有限公司 一种醇酸树脂控释肥料的制备方法
CN116120132A (zh) * 2023-04-13 2023-05-16 山东联欣环保科技有限公司 全生物降解塑料控释肥包衣材料及肥料成型工艺

Similar Documents

Publication Publication Date Title
CN101289353B (zh) 醇酸树脂乳液-蜡复合包膜控释肥料及其制备方法
CN101289350B (zh) 水溶性醇酸树脂-蜡复合包膜控释肥料及其制备方法
WO2009143656A1 (zh) 水溶性醇酸树脂-蜡复合包膜控释肥料及其制备方法
WO2009143654A1 (zh) 醇酸树脂乳液-蜡复合包膜控释肥料及其制备方法
WO2009143653A1 (zh) 聚合物乳液包膜剂、包膜控释肥料及其制备方法
Marathe et al. Neem acetylated polyester polyol—Renewable source based smart PU coatings containing quinoline (corrosion inhibitor) encapsulated polyurea microcapsules for enhance anticorrosive property
WO2009143658A1 (zh) 水溶性聚合物包膜剂、包膜控释肥料及其制备方法
US20090318602A1 (en) Use of a biopolymer-based binder for roads, road-related and civil engineering applications
WO1997009367A1 (en) Triglyceride drying oil and alkyd resin derivatives
EP0520456B1 (en) Coating composition and method of coating granular fertilizer with same
CN102224209A (zh) 防污涂料组合物、防污涂膜及基材的防污方法
CN101289351B (zh) 水溶性聚合物包膜剂、包膜控释肥料及其制备方法
JP2014118566A (ja) フランを含むポリエステルeaトナー
WO2009143657A1 (zh) 水溶性醇酸树脂-硫复合包膜控释肥料及其制备方法
CN101289349B (zh) 水溶性醇酸树脂-硫复合包膜控释肥料及其制备方法
WO2009143655A1 (zh) 醇酸树脂乳液-硫复合包膜控释肥料及其制备方法
JP4433533B2 (ja) 被覆粒状肥料及びその製造方法
KR101004241B1 (ko) 폴리에스터 수지 수성 분산체 및 그 제조 방법
JP3456604B2 (ja) 多層被覆粒状肥料
CN101289354B (zh) 醇酸树脂乳液-硫复合包膜控释肥料及其制备方法
CN114292390B (zh) 用于聚氨酯控释肥包膜的高生物质占比聚酯多元醇及其制备方法与应用
CN102585068A (zh) 一种水解聚马来酸酐的制备方法
JP4084548B2 (ja) 生分解性被膜で被覆された粒状肥料
JPH07215789A (ja) 多層被覆粒状肥料及びその製造法
CN101289352B (zh) 聚合物乳液包膜剂、包膜控释肥料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08757388

Country of ref document: EP

Kind code of ref document: A1