WO2009142166A1 - X線診断装置 - Google Patents

X線診断装置 Download PDF

Info

Publication number
WO2009142166A1
WO2009142166A1 PCT/JP2009/059117 JP2009059117W WO2009142166A1 WO 2009142166 A1 WO2009142166 A1 WO 2009142166A1 JP 2009059117 W JP2009059117 W JP 2009059117W WO 2009142166 A1 WO2009142166 A1 WO 2009142166A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
dose
area
subject
direct
Prior art date
Application number
PCT/JP2009/059117
Other languages
English (en)
French (fr)
Inventor
雄二 小田
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2010513008A priority Critical patent/JP5602014B2/ja
Publication of WO2009142166A1 publication Critical patent/WO2009142166A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/588Setting distance between source unit and detector unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • A61B6/544Control of apparatus or devices for radiation diagnosis involving control of exposure dependent on patient size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/589Setting distance between source unit and patient

Definitions

  • the present invention relates to an X-ray diagnostic apparatus that displays an X-ray image based on a transmitted X-ray signal detected by irradiating a subject with X-rays, and in particular, to determine the exposure area dose of a subject without using a dosimeter.
  • the present invention relates to an X-ray diagnostic apparatus used for indirect imaging that can be obtained with high accuracy.
  • This exposure area dose measurement has been conventionally performed by attaching a dosimeter to an X-ray diagnostic apparatus.
  • a blank area direct line area
  • the exposure area dose obtained by the dosimeter is used as it is. It may be inappropriate to use as.
  • a radiation imaging apparatus or the like has been proposed in which such problems are solved and the exposure area dose can be appropriately acquired (see, for example, Patent Document 1).
  • an area calculation means for calculating one of an area of an irradiation region, an area of the subject region, and an area of a blank region in a radiographic image obtained by radiographing the subject, and a radiation generator
  • the subject is irradiated based on the acquisition means for acquiring the effective dose irradiated from the irradiation area, the area of the subject area, the area of the subject area or the area of the blank area, and the effective dose.
  • the exposure area dose corresponding to the area of the subject area obtained by subtracting the blank area area from the irradiation area area is obtained. ing.
  • the irradiation area dose is equal to the exposure area dose.
  • the dosimeter When configured to acquire the effective dose emitted from the radiation generator using the exit dosimeter as in the above conventional example, the dosimeter is not only expensive, but the exit dosimeter is X-ray diagnosed. There is a problem that the device needs to be changed to be attached to the device. In particular, in a mobile X-ray diagnostic apparatus, the weight balance of the radiation generator may be disrupted by the weight of the dosimeter. Further, in the above conventional example, instead of the exit dosimeter, a predicted value of the irradiation area dose obtained based on the exposure conditions (tube current, tube voltage, exposure time, etc.) of the radiation generator may be used. Has been.
  • the exposure area dose to the human body is calculated based on the direct X-ray dose in the unexposed area, there is a problem that the exposed area dose cannot be obtained unless the unexposed area occurs. And even if there is a background area, even if the background area area is subtracted from the irradiation area area, the pixel value of the background area changes depending on the distance between the X-ray source and the X-ray detector, so in the first place, It is not possible to accurately recognize which pixel value region is an unclear region.
  • the present invention has been made in view of such circumstances, and does not use a dosimeter, and regardless of whether a blank region (direct line region) occurs or not, a highly accurate exposure area dose can be obtained.
  • An object is to provide an X-ray diagnostic apparatus that can be obtained.
  • An X-ray diagnostic apparatus of the present invention includes an X-ray source that irradiates X-rays, an X-ray detector that is disposed opposite to the X-ray source, detects transmitted X-rays of a subject, and outputs the detected data as image data;
  • the apparatus further comprises a histogram creating means, a direct X-ray dose calculating means, a subject image area calculating means, and an area dose calculating means.
  • the histogram creation means creates a histogram of pixel values in the image data output from the X-ray detector.
  • the direct X-ray dose calculation means is detected by the X-ray detector based on the irradiation X-ray dose of the X-ray source specified by the X-ray irradiation conditions and the distance from the X-ray source to the X-ray detector. Calculate the pixel value corresponding to the direct X-ray dose.
  • the subject image area calculating means calculates the area of the subject area in the image data based on the histogram created by the histogram creating means and the pixel value calculated by the direct X-ray dose calculating means.
  • the area dose calculation means calculates the exposure area dose of the subject based on the irradiation X-ray dose, the area of the subject image region, and the distance (SID) from the X-ray source to the X-ray detector.
  • the surface of the X-ray detector is directly calculated based on the irradiation X-ray dose determined by the X-ray irradiation conditions and the distance from the X-ray source to the X-ray detector.
  • the pixel value corresponding to the direct X-ray dose that should be reached can be determined. Therefore, if the pixel value corresponding to the direct X-ray dose is used as a reference, it is possible to accurately determine which pixel value range in the histogram is the direct line region. Accordingly, for example, the area of the subject image region can be accurately obtained by subtracting the line region directly from the X-ray irradiation image region.
  • the area dose calculation means will multiply the area of the subject image area by the direct X-ray dose at the distance (SID) from the X-ray source to the X-ray detector to obtain the exposure area dose. It can be calculated.
  • the entire X-ray irradiation image area is the area of the subject image area, but the direct X-ray dose on the surface of the X-ray detector is accurately obtained by calculation. Therefore, the exposure area dose can be accurately obtained by multiplying the area of the subject image region by the direct X-ray dose.
  • the distance (SID) from the X-ray source to the X-ray detector can be measured manually by the operator or measured (calculated) by the device.
  • the measurement by the operator may be performed using, for example, a measure.
  • measurement by equipment is performed by counting the number of steps from the reference position of a drive source (such as a step motor) that moves the support means of the X-ray source or X-ray detector. be able to.
  • the SID may be obtained by directly measuring the distance from the X-ray source to the X-ray detector, or by calculating the distance (FSD) from the X-ray source to the subject and the body thickness, and adding the body thickness to the FSD. May be.
  • FSD FSD
  • body thickness For the measurement of FSD and body thickness, manual measurement by the operator and measurement by equipment can be used.
  • FSD may be measured by an ultrasonic distance meter or the like.
  • the body thickness can also be obtained using a feature value of a histogram of pixel values in image data.
  • the subject image area calculating means may correct the area of the subject image region of the subject in consideration of the body thickness of the subject.
  • the area dose calculation means calculates the exposure area dose of the subject based on the irradiation X-ray dose, the corrected area of the subject image region, and the distance from the X-ray source to the subject. For example, the projected area of the subject calculated by removing the direct line region from the X-ray irradiation region is multiplied by a smaller coefficient for a subject with a thicker body (thicker), and the result of multiplication is multiplied by the exposure area. (Area of subject image region after correction). By adding such correction, the calculation accuracy of the exposure area dose is improved.
  • FSD calculation means for calculating the distance from the X-ray source to the subject may be provided.
  • the FSD calculating means obtains the body thickness of the subject based on the histogram feature value created by the histogram creating means, and subtracts the body thickness from the distance from the X-ray source to the X-ray detector. Find the distance from the X-ray source to the subject.
  • FSD can also be calculated by subtracting the body thickness from the SID. Can be sought.
  • the direct X-ray dose in the FSD can be accurately determined from the X-ray source irradiation X-ray dose, and the corrected area of the subject image area taking into account the direct X-ray dose and the above-mentioned body thickness. Thus, an accurate exposure area dose can be obtained.
  • the distance from the focal point of the X-ray source to the X-ray detector may be obtained by adding the body thickness of the subject and the distance from the X-ray source to the subject. good.
  • the SID can be obtained from the body thickness of the subject and the FSD without directly measuring the SID.
  • the direct X-ray dose calculating means is detected by the X-ray detector without passing through the subject from the direct X-ray dose to be detected by the X-ray detector and the sensitivity of the X-ray detector to the X-ray dose.
  • a pixel value corresponding to the direct X-ray dose may be obtained.
  • the subject image area calculating means may determine a threshold value for determining a direct line region in the image data based on the pixel value. In this way, since the direct line area in the image data can be clearly identified, the calculation accuracy of the area of the subject image area is improved, thereby improving the detection accuracy of the exposure area dose of the subject. To do.
  • the absorption X-ray dose of the grid arranged on the back surface of the subject, or the absorption X-ray dose of the additional filter mounted close to the X-ray source Correction means for subtracting at least one of them may be provided. In this way, a more accurate exposure area dose can be obtained. Since the absorbed X-ray dose of the grid and additional filter is known in advance, it is sufficient to input those known amounts. However, the known amount is stored in advance in the storage means, and the value is read when used. May be.
  • the X-ray diagnostic apparatus of the present invention multiplies the direct X-ray dose on the surface of the X-ray detector obtained by taking into account the distance from the X-ray source to the X-ray detector by the area of the subject image region of the subject. It is possible to obtain a highly accurate exposure area dose without using a dosimeter and with or without a blank region (direct line region).
  • FIG. 1 is a block diagram showing a configuration of an X-ray diagnostic apparatus according to Embodiment 1 of the present invention. It is explanatory drawing which shows one of the methods of calculating
  • FIG. 5 is a block diagram showing a configuration of an X-ray diagnostic apparatus according to Embodiment 2 of the present invention. It is a flowchart which shows an example of the calculation process of the exposure area dose. 12 is a flowchart showing an example of a process for calculating an exposed area dose according to a modification of Example 2.
  • FIG. 4 is a schematic explanatory diagram illustrating a situation in which X-rays irradiated from an X-ray source pass through a subject and reach an X-ray detector.
  • SID Distance from X-ray focus to X-ray detector.
  • FSD Distance from the X-ray focus to the skin surface of the subject. It may simply be the distance from the X-ray focal point to the subject.
  • Body thickness The thickness of the subject in the X-ray optical axis direction at the time of imaging.
  • Exposure area Area of the subject surface irradiated with X.
  • Direct X-ray dose The dose per unit area that reaches a predetermined distance from the X-ray focal point without passing through the subject.
  • Subject exposure area dose (exposure area x FSD direct x-ray dose), almost the same as (subject image area x SID direct x-ray dose).
  • Subject image region A region where X-rays pass through the subject and reach the X-ray detector. That is, the area occupied by the subject in the image data.
  • Subject image area The area of the subject image region.
  • Direct ray region A region where X-rays do not pass through the subject and reach the X-ray detector directly. That is, in the image data, an area within the irradiated image area and not the subject image area
  • Irradiated image area An area that is not shielded by the X-ray diaphragm in the image data. That is, the sum of the subject image area and the direct line area.
  • FIG. 1 is a block system diagram showing the basic configuration of the X-ray diagnostic apparatus.
  • This X-ray diagnostic device is a mobile type X-ray diagnostic device for round trips, and its basic configuration is as follows: X-ray source 1, X-ray detector 2, histogram creation means 3, FSD and body thickness SID calculation means 4A, correction means 5, direct X-ray dose calculation means 6, subject image area calculation means 7, area dose calculation means 8, and display means 9 are provided.
  • the X-ray source 1 includes an X-ray tube (not shown) that irradiates the subject with X-rays.
  • an X-ray diaphragm (not shown) for limiting irradiation of the X-ray irradiated from the X-ray tube to the subject is provided.
  • the X-ray detector 2 is disposed facing the X-ray source 1 via a subject (not shown) and detects X-rays transmitted through the subject as image data.
  • an IP imaging plate
  • FPD flat panel detector
  • Histogram creation means 3 creates a histogram of pixel values in the image data detected by the X-ray detector 2. Typically, a histogram indicating the relationship between the pixel value and its frequency is used as this histogram, but a cumulative histogram indicating the cumulative frequency of pixel values that are less than or equal to a certain pixel value may be used. Usually, since it is difficult to directly measure SID with a mobile round-trip X-ray diagnostic apparatus, FSD is measured by, for example, an ultrasonic distance meter.
  • the SID can be calculated by inputting the FSD to the SID calculation means 4A and adding the body thickness.
  • Body thickness can be determined by one of the following methods. In this example, actual measurement by a measure is selected.
  • Measurement with a measure Measure the body thickness by applying a measure parallel to the X-ray optical axis on the side of the subject.
  • the length of the hypotenuse Lx reaching the X-ray detector 2 from the X-ray source 1 through the contour of the subject P is measured with a measure.
  • SID FSD + body thickness t
  • Lx 2 (FSD + t) 2 + Ls 2 . Therefore, the body thickness t can be obtained by calculating using the FSD obtained by the ultrasonic distance meter and Ls obtained from the image data.
  • the position of the optical axis of the X-ray on the X-ray detector 2 is usually the intersection of diagonal lines of the irradiated image area.
  • the correlation between the feature value (for example, the average value) of the histogram of the pixel value in the image data and the body thickness is measured.
  • the correlation calculation formula or table is prepared in the storage means. Then, a feature amount can be obtained from a histogram of actually captured image data, and a body thickness corresponding to the feature amount can be obtained with reference to the correlation.
  • the feature quantity of the histogram correlated with the body thickness include an average value, a median value of the histogram, a mode value (mode), a maximum value, a minimum value, and the like.
  • the correction means 5 is arranged on the back surface of the subject to absorb the absorbed X-ray dose of the grid that removes scattered rays and the absorbed X-ray dose of the additional filter that is mounted close to the X-ray source 1 and removes soft rays. Subtract (correct) the X-ray dose from 1.
  • the direct X-ray dose calculation means 6 calculates the direct X-ray dose to reach the surface of the X-ray detector 2 based on the irradiation X-ray dose and SID obtained from the X-ray irradiation conditions (tube voltage and tube current time product) and its The pixel value corresponding to the direct X-ray dose is obtained.
  • the irradiation X-ray dose at a unit distance and unit area is calculated from the X-ray irradiation conditions, and if the SID is known, the direct X-ray dose on the surface of the X-ray detector can be obtained by using this irradiation X-ray dose. Specifically, it is as follows.
  • DX D * (L1 * L1) / (L2 * L2) -DF-DG (1)
  • DX Direct X-ray dose on the surface of X-ray detector 2
  • D X-ray dose per unit area at unit distance from the X-ray focus
  • L1 Unit distance from which D was obtained
  • L2 SID DF: Absorbed X-ray dose of additional filter
  • DG Absorbed X-ray dose of grid
  • pixel value corresponding directly to X-ray dose from the direct X-ray dose to reach the surface of X-ray detector 2 and the sensitivity of the pixel of X-ray detector Is required is as follows.
  • C DX * K (2)
  • C pixel value K: sensitivity to X-ray of the X-ray detector 2
  • the sensitivity K is expressed by COUNT / ( ⁇ Gy / Frame). Normally, the numerical value 1 is assigned to Frame and it is read as an image, so the sensitivity is COUNT / ⁇ Gy. By multiplying this coefficient by DX, the pixel value C corresponding directly to the X-ray dose can be obtained.
  • the subject image area calculating means 7 determines a threshold value for distinguishing the direct line area from the X-ray irradiation image area on the basis of the pixel value obtained by the direct X-ray dose calculating means 6. This threshold value may be determined directly by the X-ray dose calculation means 6 instead of the subject image area calculation means 7.
  • the subject image area calculating unit 7 determines that the region having a pixel value equal to or greater than the threshold is a direct line region from the histogram created by the histogram creating unit 3, and determines the direct line region from the X-ray irradiation image region.
  • the subject image area of the subject is obtained by subtraction.
  • a region having a pixel value less than the threshold may be used as the subject image area.
  • the area dose calculation means 8 calculates the exposure area dose of the subject based on the direct X dose calculated by the direct X dose calculation means 6 and the subject image area calculated by the subject image area calculation means 7. To do.
  • FIG. 3 is a photographed image of the human head.
  • the white part 11 is the part where the X-ray is blocked by the X-ray aperture
  • the black part 12 is the part where the direct X-ray line is incident (direct line area)
  • the gray part 13 is the X-ray image that is transmitted through the head. (Subject image region).
  • the white portion 11 where the X-ray is blocked by the X-ray stop corresponds to a portion where the dose is 0 or close to 0 and the pixel value of the histogram is 0 or close to 0.
  • the black portion 12 where X-rays are directly incident corresponds to a portion where the pixel value of the histogram is the maximum value or close to the maximum value.
  • the black portion 12 is recognized as a direct line region based on the threshold value determined by the subject image area calculating unit 7 using a pixel value corresponding to the direct X-ray dose obtained by the direct X-ray calculating unit 6.
  • the subject image region corresponds to a portion between both broken lines 14 and 15. Therefore, in this histogram, the X-ray region can be directly recognized by applying the above-mentioned threshold value determined by the subject image area calculation means 7 to the upper threshold value (broken line 15). That is, the area of the direct line area obtained from the histogram and the upper threshold is subtracted from the area of the irradiated image area obtained from the open / closed state of the X-ray diaphragm (corresponding to the sum of the black portion 12 and the gray portion 13), and the subject image The area can be calculated. By multiplying the subject image area thus obtained by the X-ray dose directly in the SID, the exposure area dose can be calculated and displayed on the display means 9.
  • the more accurate exposure area dose is obtained by the product of the exposure area of the subject and the direct X-ray dose in the FSD.
  • the exposure area is the product of the subject image area and the direct X-ray dose in the SID. Looking for dose.
  • a considerably accurate exposure area dose can be obtained based on the subject image area excluding the direct line region accurately.
  • FSD calculation means 4B is provided instead of the SID calculation means 4A in the first embodiment.
  • the FSD calculating means 4B first obtains information on the body thickness, and calculates the FSD by subtracting the body thickness from the SID.
  • the method for obtaining the body thickness may be performed in the same manner as in the first embodiment. In this example, “(3) Calculation using histogram” is selected.
  • the FSD may be measured with an ultrasonic distance meter.
  • the SID is a stationary type in this embodiment
  • the X-ray source and the X-ray detector are mechanically connected via a support mechanism that can be driven by the motor.
  • X-ray diagnostic equipment can recognize from the number.
  • an X-ray detector a combination of I.I. (image intensifier) and a TV camera can be used in addition to IP and FPD.
  • the functions of the direct X-ray dose calculation means 6 and the subject image area calculation means 7 are the same as those in the first embodiment.
  • the area dose calculation means 8 calculates the exposure area dose of the subject based on the direct X-ray dose in the FSD and the subject image area calculated by the subject image area calculation means 7.
  • image data obtained from the X-ray detector 2 is subjected to histogram processing by the histogram creation means 3 to create a histogram of pixel values (step S100), and the data is the subject image area calculation means 7 and the FSD calculation means 4B. Is output.
  • the X-ray absorption amount of the SID and grid is directly input to the X-ray dose calculation means 6 (steps S101 and S102). Further, the irradiation X-ray dose obtained from the X-ray irradiation conditions (tube voltage and tube current time product) is directly input to the X-ray dose calculation means 6 (step S103). Further, the SID is also input to the FSD calculation means 4B. In the FSD calculation means 4B, the body thickness is acquired by “(3) calculation using the histogram”, and the FSD is obtained by subtracting the body thickness from the SID (step S104). The obtained FSD is input to the area dose calculation means 8.
  • the direct X-ray calculation means 6 calculates a pixel value corresponding to the direct X-ray dose that should reach the surface of the FPD from the SID, the irradiation X-ray dose, and the X-ray absorption amount of the grid (additional filter) (step S105). ).
  • a threshold value is determined based on the pixel value corresponding to the direct X-ray dose, and a pixel value equal to or greater than the threshold value is determined as a direct line region.
  • the subject image area calculating means 7 calculates the subject image area by subtracting the direct line region from the irradiation image region obtained from the open / closed state of the X-ray diaphragm (step S106).
  • the exposed area of the subject can be calculated. This correction may be performed by the subject image area calculation means 7.
  • the direct X-ray dose in the FSD is obtained based on the irradiation X-ray dose determined based on the X-ray irradiation conditions and the FSD calculated by the FSD calculation means 4 (step S108).
  • This calculation is performed by the area dose calculation means 8, but may be directly performed by the X dose calculation means 6 by causing the X dose calculation means 6 to directly recognize the FSD.
  • the area dose calculation means 8 calculates the exposure area dose by multiplying the exposure area of the subject by the direct X-ray dose in the FSD (step S109).
  • the exposure area dose can be obtained with higher accuracy by multiplying the exposure area of the subject instead of the subject image area by the direct X-ray dose in the FSD.
  • the FSD may be a value measured with an ultrasonic distance meter or a measure
  • the body thickness may be a value measured with a measure.
  • the creation of the histogram (step S200) is the same as in FIG. 6, but the SID is not directly acquired by the X-ray dose calculation means 6, but the FSD and body thickness, and the X-ray absorption amount of the grid
  • the irradiation X-ray dose is directly input to the X-ray dose calculation means 6 (steps S201, 202, 203, 204).
  • the SID is obtained by adding the body thickness to the FSD by the direct X-ray dose calculation means 6, and the direct X-ray dose at the SID is calculated from the X-ray absorption amount and irradiation X-ray dose of the SID and the grid (step S205).
  • the direct X-ray dose in the FSD is calculated directly from the FSD and the irradiation X-ray dose by the X-ray calculation means 6 or the area dose calculation means 8 (step S206).
  • the subject image area and the subject exposure area are calculated (steps S207 and 208) to obtain the exposure area dose (step S209).
  • the correlation between the feature value (for example, average value) of the histogram of pixel values in the image data and the body thickness may not be obtained in advance.
  • the X-ray diagnostic apparatus of this embodiment may be either a mobile type or a stationary type. Also in this embodiment, the configuration of the X-ray diagnostic apparatus is basically common to Embodiments 1 and 2, and the following description will be focused on differences from Embodiments 1 and 2.
  • FIG. 8 schematically shows a situation in which the X-rays irradiated from the X-ray source 1 pass through the subject P and reach the X-ray detector 2.
  • X-rays are not irradiated as parallel lines, but are irradiated onto the subject P as X-ray weights C that spread radially. Therefore, the subject image area calculated in the first and second embodiments is not the projection area SR corresponding to the actual body width of the subject P, but the projection indicated by the solid subject P and the X-ray weight C.
  • the area SS That is, the projection area SS> the projection area SR.
  • projection area SF is further increased. As a result, projection area SF> projection area SS> projection area SR.
  • the accurate exposure area can be obtained by correcting the subject image area according to the body thickness.
  • the subject image area (see Examples 1 and 2) calculated based on the image data of the X-ray detector may be multiplied by a coefficient so that the area after multiplication approaches the projection area SR.
  • This coefficient is obtained in advance from the geometrical relationship between the body thickness and the X-ray weight corresponding to the SID, and the correlation between the projected area SR and the projected area SS, SR by the X-ray weight is obtained. What is necessary is just to set so that it may become a small value, so that a big test subject is large.
  • the multiplication of the coefficient may be performed by the subject image area calculation unit 7 or may be performed by the exposure area dose calculation unit 8.
  • the X-ray diagnostic apparatus since the body thickness is not recognized by the X-ray diagnostic apparatus, in order to correct the subject image area, the X-ray diagnostic apparatus recognizes the body thickness by actually measuring the body thickness. Just keep it.
  • SID SID
  • FSD body thickness
  • the mobile X-ray diagnostic apparatus for round trips is shown in the first embodiment, it may be a mobile X-ray diagnostic apparatus for surgery.
  • the X-ray diagnostic apparatus of the present invention can be suitably used as an X-ray diagnostic apparatus used in the medical field regardless of whether it is a mobile type or a stationary type.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 X線を照射するX線源と、このX線源と対向して配置され、被検体の透過X線を検出して画像データとして出力するX線検出器とを備えるX線診断装置であって、  前記X線検出器から出力される画像データにおける画素値のヒストグラムを作成するヒストグラム作成手段と、X線の照射条件で規定されるX線源の照射X線量及び前記X線源から前記X線検出器までの距離に基づいて、前記X線検出器で検出されるべき直接X線量に対応する画素値を計算する直接X線量計算手段と、前記ヒストグラム作成手段によって作成されたヒストグラム及び前記直接X線量計算手段によって計算された画素値に基づいて、画像データ中に占める被検体領域の面積を算出する被検体画像面積算出手段と、前記照射X線量、前記被検体画像領域の面積、及び前記X線源からX線検出器までの距離に基づいて、被検体の被曝面積線量を演算する面積線量演算手段を備える。

Description

X線診断装置
 本発明は、被検体にX線を照射して検出される透過X線信号に基づいてX線画像を表示するX線診断装置に関し、特に、線量計を用いることなく被検体の被曝面積線量を精度よく求めることができる間接撮影用等として使用されるX線診断装置に関する。
 医療診断で使用されるX線診断装置では、被検体にX線を照射するため、近年では、被検体の被曝線量を管理することの重要性が認識されるようになった。そのため、被検体がどれだけ被曝しているかを確認するために、被検体毎の被曝面積線量が管理されている。
 この被曝面積線量の計測は、従来では、線量計をX線診断装置に装着することにより行われていた。しかし、実際の撮影では、X線の照射画像領域内であっても人体が存在しない素抜け領域(直接線領域)が存在する場合があり、線量計により求めた被曝面積線量をそのまま被曝面積線量として用いるのは不適切なことがある。そこで、このような問題点を解消して、被曝面積線量を適切に取得できるようにした放射線撮影装置等が提案されている(例えば特許文献1参照)。
 この例では、被検体を放射線撮影して得られた放射線画像における、照射領域の面積と、被検体領域の面積及び素抜け領域の面積の何れか一方を算出する面積算出手段と、放射線発生装置から照射された実効線量を取得する取得手段と、前記照射領域面積と、被検体領域の面積及び素抜け領域の面積の何れか一方と、前記実効線量とに基づいて、前記被検体に照射された放射線量としての被曝面積線量を算出する線量算出手段とを備えている。その取得手段に、出口線量計を用いた例が記載されている。この場合、基本的には、出口線量計によって取得した照射面積線量に基づいて、照射領域面積から素抜け領域面積を減
算して得られる被検体領域の面積に対応する被曝面積線量を求めるようにしている。また、素抜け領域がない場合には、照射面積線量が被曝面積線量に等しいとしている。
特開2004-69441号公報
 上記従来例のように、出口線量計を用いて放射線発生装置から照射された実効線量を取得するように構成した場合、その線量計が高価であるだけでなく、その出口線量計をX線診断装置に取り付けるために、装置の変更が必要とされるという問題がある。特に、移動型のX線診断装置では、線量計の重量により放射線発生装置の重量バランスが崩れることもあった。また、上記従来例では、出口線量計に代えて、放射線発生装置の曝射条件(管電流、管電圧、曝射時間等)に基づいて求めた照射面積線量の予測値を用いてもよいとされている。しかし、その場合は、素抜け領域における直接X線量に基づいて、人体への被曝面積線量を計算するため、素抜け領域が発生しなければ、被曝面積線量を求めることができないという問題がある。そして、素抜け領域が存在して、照射領域面積から素抜け領域面積を減算するにしても、素抜け領域の画素値は、X線源とX線検出器との距離によって変わるため、そもそも、どの画素値の領域が素抜け領域かを正確に認識することができない。
 本発明は、このような事情に鑑みてなされたもので、線量計を用いることなく、また、素抜け領域(直接線領域)が発生するか否かを問わず、精度の高い被曝面積線量を求めることができるX線診断装置を提供することを目的とする。
 本発明のX線診断装置は、X線を照射するX線源と、このX線源と対向して配置され、被検体の透過X線を検出して画像データとして出力するX線検出器とを備えるX線診断装置であって、さらにヒストグラム作成手段と、直接X線量計算手段と、被検体画像面積算出手段と、面積線量演算手段とを備えることを特徴とする。ヒストグラム作成手段は、前記X線検出器から出力される画像データにおける画素値のヒストグラムを作成する。直接X線量計算手段は、X線の照射条件で規定されるX線源の照射X線量及び前記X線源から前記X線検出器までの距離に基づいて、前記X線検出器で検出されるべき直接X線量に対応する画素値を計算する。被検体画像面積算出手段は、前記ヒストグラム作成手段によって作成されたヒストグラム及び前記直接X線量計算手段によって計算された画素値に基づいて、画像データ中に占める被検体領域の面積を算出する。面積線量演算手段は、前記照射X線量と前記被検体画像領域の面積、及び前記X線源から前記X線検出器までの距離(SID)に基づいて、被検体の被曝面積線量を演算する。
 このような構成によれば、直接X線量計算手段により、X線の照射条件により求められる照射X線量と、X線源から前記X線検出器までの距離に基づいて、X線検出器の表面に到達すべき直接X線量に対応する画素値を求めることができる。そのため、この直接X線量に対応する画素値を基準とすれば、ヒストグラムにおけるどの画素値の範囲が直接線領域かを的確に決定することができる。それに伴い、例えば、X線の照射画像領域から直接線領域を減算することで、被検体画像領域の面積も正確に求めることができる。正確な被検体画像領域の面積が算出できれば、面積線量演算手段により、X線源からX線検出器までの距離(SID)における直接X線量を被検体画像領域の面積に乗じて被曝面積線量を演算することができる。さらに、撮影画像中に直接線領域がない場合、X線の照射画像領域の全てが被検体画像領域の面積となるが、X線検出器の表面における直接X線量が演算で正確に求められているため、この被検体画像領域の面積に前記直接X線量を乗じて被曝面積線量を精度よく求めることができる。
 X線源からX線検出器までの距離(SID)は、術者の手作業による計測と、機器による計測(演算)とがある。術者による計測は、例えばメジャー等を用いて行えばよい。機器による計測は、据置き型のX線診断装置では、X線源やX線検出器の支持手段を移動させる駆動源(ステップモータなど)の基準位置からの歩進数をカウントすること等によって行うことができる。SIDは、X線源からX線検出器の距離を直接計測しても良いし、X線源から被検体までの距離(FSD)と体厚を求め、FSDに体厚を加算することによって求めてもよい。FSD及び体厚の計測も、術者の手作業による計測と、機器による計測とが利用できる。また、移動型のX線診断装置では、超音波距離計等によってFSDを計測してもよい。特に、体厚は、後述するように、画像データにおける画素値のヒストグラムの特徴量を用いて求めることもできる。
 本発明X線診断装置において、前記被検体画像面積算出手段は、前記被検体の体厚を勘案して、被検体の被検体画像領域の面積を補正するようにしてもよい。その場合、前記面積線量演算手段は、照射X線量、前記補正後の被検体画像領域の面積、及びX線源から被検体までの距離に基づいて、被検体の被曝面積線量を演算する。例えば、X線の照射領域から直接線領域を除去して演算した被検体の投影面積に対して、体厚が厚い(太めの)被検体ほど小さな係数を乗算して、その乗算結果を被曝面積(補正後の被検体画像領域の面積)とすることが挙げられる。このような補正を加味することにより、被曝面積線量の演算精度が向上する。
 さらに、本発明X線診断装置において、前記X線源から被検体までの距離を演算するFSD演算手段を設けても良い。このFSD演算手段は、前記ヒストグラム作成手段によって作成されたヒストグラムの特徴量に基づいて被検体の体厚を求め、前記X線源から前記X線検出器までの距離から体厚を減算することでX線源から被検体までの距離を求める。
 これにより、メジャーなどによる実測を行わなくても画像データを利用して被検体の体厚を求めることができ、さらにSIDを入力又は既知としておけば、SIDから体厚を減算することでFSDも求めることができる。そして、FSDがわかれば、X線源の照射X線量とからFSDにおける直接X線量を的確に求めることができ、この直接X線量と上述した体厚を勘案した補正後の被検体画像領域の面積とから正確な被曝面積線量を求めることができる。
 また、本発明X線診断装置において、前記X線源の焦点からX線検出器までの距離は、前記被検体の体厚と前記X線源から被検体までの距離を加算して求めても良い。この構成によれば、直接SIDを計測しなくても、被検体の体厚とFSDからSIDを求めることができる。
 前記直接X線量計算手段は、前記X線検出器で検出されるべき直接X線量と、前記X線検出器のX線量に対する感度とから被検体を透過せずにX線検出器で検出されるべき直接X線量に対応する画素値を求めてもよい。そして、前記被検体画像面積算出手段が前記画素値に基づいて、画像データ中の直接線領域を判別するための閾値を決定するようにしてもよい。このようにすれば、画像データ中の直接線領域を明確に判別することができるため、被検体画像領域の面積の算出精度が向上し、これにより、被検体の被曝面積線量の検出精度も向上する。
 さらに、本発明X線診断装置には、前記照射X線量から、被検体の背面に配置されるグリッドの吸収X線量、又は前記X線源に近接させて装着される付加フィルタの吸収X線量の少なくとも一方を減算する補正手段を設けてもよい。このようにすれば、より精度の高い被曝面積線量を得ることができる。尚、グリッドや付加フィルタの吸収X線量は予め既知であるから、それらの既知量を入力すればよいが、予め記憶手段に既知量を記憶させておいて、使用する際に、その値を読み出してもよい。
 本発明のX線診断装置は、X線源からX線検出器までの距離を勘案して求めたX線検出器表面の直接X線量に、被検体の被検体画像領域の面積を乗じることによって、線量計を用いることなく、また、素抜け領域(直接線領域)の有無を問わず、精度の高い被曝面積線量を求めることができる。
本発明の実施例1に係るX線診断装置の構成を示すブロック図である。 同装置による体厚を求める手法の一つを示す説明図である。 同装置による頭部撮影画像である。 同画素値のヒストグラムである。 本発明の実施例2に係るX線診断装置の構成を示すブロック図である。 同被曝面積線量の演算過程の一例を示すフローチャートである。 実施例2の変形例に係る被曝面積線量の演算過程の一例を示すフローチャートである。 X線源から照射されたX線が被検体を透過してX線検出器に到達する状況を示す模式説明図である。
 以下に、本発明の実施の形態に係るX線診断装置について図面を参照しつつ詳細に説明する。以下の各実施例の説明に用いる用語の意義は次の通りである。
 SID:X線焦点からX線検出器までの距離。 
 FSD:X線焦点から被検体の皮膚表面までの距離。単にX線焦点から被検体までの距離ということがある。 
 体厚:撮影時のX線光軸方向の被検体の厚み。 
 被曝面積:Xが照射された被検体表面の面積。 
 直接X線量:被検体を透過せずに、X線焦点から所定の距離に到達する単位面積当たりの線量。 
 被検体の被曝面積線量:(被曝面積×FSDの直接X線量)であり、(被検体画像面積×SIDの直接X線量)にほぼ同じ。 
 被検体画像領域:X線が被検体を透過してX線検出器上に到達した領域。つまり、画像データにおいて、被検体が占める領域。 
 被検体画像面積:被検体画像領域の面積。 
 直接線領域:X線が被検体を透過せず、直接X線検出器に到達した領域。つまり、画像データにおいて、照射画像領域内で、かつ被検体画像領域でない領域 
 照射画像領域:画像データにおいて、X線絞りで遮蔽されていない領域。つまり、被検体画像領域と直接線領域の和。
 図1は、X線診断装置の基本的な構成を示すブロック系統図である。このX線診断装置は、移動型の回診用X線診断装置で、その基本的な構成として、X線源1と、X線検出器2と、ヒストグラム作成手段3と、FSDと体厚からSIDを求めるためのSID算出手段4Aと、補正手段5と、直接X線量計算手段6と、被検体画像面積算出手段7と、面積線量演算手段8と、表示手段9とを備えている。
 X線源1は、被検体にX線を照射するX線管球(図示省略)を備える。このX線管球の前部には、X線管球から照射されるX線の被検体への照射を制限するX線絞り(図示省略)が設けられている。X線検出器2は、X線源1との間に被検体(図示省略)を介して対向して配置され、被検体を透過したX線を画像データとして検出するもので、例えばCR(コンピューテッドラジオグラフィ)装置のIP(イメージングプレート)やFPD(フラットパネルディテクタ)等を用いることができる。
 ヒストグラム作成手段3は、X線検出器2で検出した画像データにおける画素値のヒストグラムを作成する。このヒストグラムには、代表的には、画素値とその頻度との関係を示すヒストグラムが用いられるが、ある画素値以下となる画素値の累積度数を示す累積ヒストグラムを用いてもよい。通常、移動型の回診用X線診断装置では、直接SIDを正確に測定することが困難であるため、例えば超音波距離計などによってFSDを測定する。
 従って、そのFSDをSID算出手段4Aに入力し、体厚を加算することにより、SIDを算出することができる。
 体厚は、次のいずれかの手法により求めることができる。本例では、メジャーによる実測を選択している。
 (1)メジャーによる実測
 被検体の側方にてX線光軸と平行にメジャーを当てて体厚を実測する。
 (2)X線の斜辺の実測と演算
 図2に示すように、X線源1から被検体Pの輪郭を経てX線検出器2に達する斜辺Lxの長さをメジャーで実測する。ここで、SID=FSD+体厚tで、Lx2=(FSD+t)2+Ls2である。従って、超音波距離計で求めたFSDと、画像データから求めたLsとを用いて演算することで体厚tを求めることができる。X線検出器2上におけるX線の光軸の位置は、通常、照射画像領域の対角線の交点となる。
 (3)ヒストグラムを利用した演算
 予め体厚の異なる被検体(又は被検体の模擬試料)について、画像データにおける画素値のヒストグラムの特徴量(例えば平均値)と体厚との相関関係を撮影部位ごとに求めておき、この相関関係の計算式又はテーブルを記憶手段に用意しておく。そして、実際に撮影された画像データのヒストグラムから特徴量を求め、この特徴量に対応する体厚を、前記相関関係を参照して求めることができる。体厚に相関するヒストグラムの特徴量としては、平均値の他、ヒストグラムの中央値(メディアン)、最頻値(モード)、最大値、最小値等も挙げられる。
 補正手段5は、被検体の背面に配置されて散乱線を除去するグリッドの吸収X線量及びX線源1に近接させて装着されて軟線を除去する付加フィルタの吸収X線量を、X線源1から照射されるX線量から減算(補正)する。
 直接X線量計算手段6は、X線の照射条件(管電圧や管電流時間積)により求められる照射X線量とSIDに基づいて、X線検出器2の表面に到達すべき直接X線量及びその直接X線量に対応する画素値を求める。つまり、X線の照射条件から単位距離・単位面積における照射X線量が演算され、SIDがわかれば、この照射X線量を用いることで、X線検出器表面における直接X線量が求められる。具体的には、次の通りである。
   DX=D*(L1*L1)/(L2*L2)-DF-DG・・・・・・・・(1)
    ここに、DX:X線検出器2の表面の直接X線量
        D:X線焦点からの単位距離における単位面積当たりのX線量
        L1:Dを求めた単位距離
        L2:SID
        DF:付加フィルタの吸収X線量
        DG:グリッドの吸収X線量
 そして、X線検出器2の表面に到達すべき直接X線量と、X線検出器の画素の感度から直接X線量に対応する画素値が求められる。具体的には、次の通りである。
     C=DX*K・・・・・・・・・・・・・・・・・・・・・・(2)
      ここに、C:画素値
          K:X線検出器2のX線に対する感度
 感度Kは、COUNT/(μGy/Frame)で表される。通常Frameには数値1が代入され、画像と読み替えられるため、感度はCOUNT/μGyとなる。この係数にDXを乗じることにより、直接X線量に対応した画素値Cを求めることができる。
 次に、被検体画像面積算出手段7は、直接X線量計算手段6で求められた画素値を基準として、X線の照射画像領域から直接線領域を区別するための閾値を決定する。この閾値の決定は、被検体画像面積算出手段7の代わりに直接X線量計算手段6が行っても良い。
 そして、被検体画像面積算出手段7は、ヒストグラム作成手段3によって作成されたヒストグラムから、該閾値以上の画素値である領域を直接線領域と判断し、X線の照射画像領域から直接線領域を減算することで被検体の被検体画像面積を求める。或いは、閾値未満の画素値の領域を被検体画像面積としても良い。
 面積線量演算手段8は、直接X線量計算手段6によって算出された直接X線量、及び、被検体画像面積算出手段7によって算出された被検体画像面積に基づいて、被検体の被曝面積線量を演算する。
 以上のX線診断装置で、X線検出器2としてFPDを用いた装置の撮影形態について説明する。図3は、人体の頭部の撮影画像である。図中、白い部分11はX線絞りによってX線が遮蔽された部分、黒い部分12はX線の直接線が入射した部分(直接線領域)、グレー部分13は頭部を透過したX線画像(被検体画像領域)である。このように、頭部等を撮影すると、X線が人体を透過することなく直接FPDに入射して黒い部分12が形成されることになる。このような頭部画像をヒストグラム処理すると、図4に示すようなヒストグラムが得られる。このヒストグラムにおいて、X線絞りによってX線が遮蔽された白い部分11は、線量が0もしくは0に近く、ヒストグラムの画素値が0もしくは0に近い部分に該当する。直接X線が入射した黒い部分12は、ヒストグラムの画素値が最大値もしくは最大値に近い部分に該当する。黒い部分12は、直接X線量計算手段6によって求められた直接X線量に対応する画素値を利用し、被検体画像面積算出手段7が決定した閾値に基づいて直接線領域として認識される。
 上記のようなヒストグラムでは、被検体画像領域は、両破線14,15の間の部分に該当する。従って、このヒストグラムにおいて、上限側閾値(破線15)に、被検体画像面積算出手段7が決定した上述の閾値を適用することで、直接X線領域の認識を行うことができる。つまり、ヒストグラムと上限側閾値により求めた直接線領域の面積を、X線絞りの開閉状態から求めた照射画像領域の面積(黒い部分12とグレー部分13の合計に相当)から減じて被検体画像面積を算出することができる。このようにして求めた被検体画像面積に、SIDにおける直接X線量を乗じることによって、被曝面積線量を演算し、これを表示手段9に表示することができる。
 なお、より正確な被曝面積線量は、被検体の被曝面積とFSDにおける直接X線量との積により求められるが、この実施例では、被検体画像面積とSIDにおける直接X線量との積で被曝面積線量を求めている。但し、その場合であっても、直接線領域を正確に除外した被検体画像面積に基づいて相当程度正確な被曝面積線量を求めることができる。
 次に、据置き型の本発明X線診断装置を図5~図7に基づいて説明する。以下の説明では、主として実施例1との相違点を説明する。本実施例では、図5に示すように、実施例1におけるSID算出手段4Aの代わりにFSD算出手段4Bを設けている。FSD算出手段4Bは、まず体厚の情報を得て、SIDから体厚を減算することによってFSDを求める。その体厚を得る手法は、実施例1の場合と同様に行えばよい。本例では、「(3)ヒストグラムを利用した演算」を選択している。もちろん、FSDを超音波距離計で計測しても良い。また、SIDは、本実施例の場合、据置き型であるから、X線源とX線検出器とがモータで駆動可能な支持機構を介して機械的に連結されているため、モータの回転数からX線診断装置が認識することができる。その他、本実施例では、X線検出器として、IPやFPDの他、I.I.(イメージインテンシファイヤ)とTVカメラの組み合わせも利用可能である。直接X線量計算手段6及び被検体画像面積算出手段7の機能は、実施例1と同様である。一方、面積線量演算手段8は、FSDにおける直接X線量と、被検体画像面積算出手段7によって算出された被検体画像面積に基づいて、被検体の被曝面積線量を演算する。
 次に、図5を参照しながら図6に示すフローチャートに基づいて、本X線診断装置による被曝面積線量の演算過程の一例について説明する。まず、X線検出器2から得た画像データを、ヒストグラム作成手段3によってヒストグラム処理し、画素値のヒストグラムを作成し(ステップS100)、そのデータが被検体画像面積算出手段7、FSD算出手段4Bへ出力される。
 次いで、SIDとグリッド(付加フィルタ)のX線吸収量が直接X線量計算手段6に入力される(ステップS101、102)。また、X線の照射条件(管電圧や管電流時間積)により求められる照射X線量が直接X線量計算手段6に入力される(ステップS103)。さらに、SIDは、FSD算出手段4Bにも入力される。FSD算出手段4Bでは、「(3)ヒストグラムを利用した演算」により体厚が取得され、SIDから体厚を減算することでFSDが求められる(ステップS104)。求められたFSDは面積線量演算手段8に入力される。
 一方、直接X線計算手段6では、SIDと照射X線量及びグリッド(付加フィルタ)のX線吸収量よりFPDの表面に到達すべき直接X線量に対応した画素値の計算が行われる(ステップS105)。
 続いて、この直接X線量に対応した画素値を基準として閾値を決定し、該閾値以上の画素値を直接線領域と判断する。そして、被検体画像面積算出手段7により、この直接線領域を、X線絞りの開閉状態から求めた照射画像領域から減じて被検体画像面積を算出する(ステップS106)。
 次に、得られた被検体画像面積を、体厚を勘案して補正し、被検体の被曝面積を求める(ステップS107)。つまり、被検体の被曝面積は図2の距離LFに対応し、SIDとFSD及び被検体画像面積(図2の距離Lsに対応)がわかっており、Ls/SID=LF/FSDであるため、被検体の被曝面積を演算することができる。この補正は、被検体画像面積算出手段7により行えばよい。
 さらに、X線の照射条件により求めた照射X線量と、FSD算出手段4によって求めたFSDとに基づいて、FSDにおける直接X線量が求められる(ステップS108)。この計算は、面積線量演算手段8で行われるが、FSDを直接X線量計算手段6に認識させることで、直接X線量計算手段6で行ってもよい。
 そして、面積線量演算手段8において、被検体の被曝面積とFSDにおける直接X線量とを乗じて被曝面積線量を求める(ステップS109)。
 本実施例によれば、被検体画像面積ではなく、被検体の被曝面積にFSDにおける直接X線量を乗じることで、より一層高精度に被曝面積線量を求めることができる。特に、体厚を「(3)ヒストグラムを利用した演算」により求めることで、SID、FSD、体厚のいずれも実測する必要がなく、X線診断装置内の演算処理により全ての距離を求めることができる。
 なお、本実施例の変形例として、図7に示すように、FSDを超音波距離計やメジャー等で計測した値とし、体厚をメジャー等で計測した値としてもよい。その場合、ヒストグラムの作成(ステップS200)は、図6の場合と共通であるが、SIDを直接X線量計算手段6が取得するのではなく、FSDと体厚、並びにグリッドのX線吸収量と照射X線量を直接X線量計算手段6に入力しておく(ステップS201、202、203、204)。そして、直接X線量計算手段6でFSDに体厚を加算することでSIDを求め、さらにSIDとグリッドのX線吸収量及び照射X線量からSIDにおける直接X線量を演算する(ステップS205)。一方、FSDにおける直接X線量は、FSDと照射X線量から直接X線演算手段6又は面積線量演算手段8により演算される(ステップS206)。
 そして、以下図6の場合と同様に、被検体画像面積の算出、被検体の被曝面積の算出を行って(ステップS207、208)、被曝面積線量を求めればよい(ステップS209)。この変形例によれば、画像データにおける画素値のヒストグラムの特徴量(例えば平均値)と体厚との相関関係を予め求めておかなくてもよい。
 次に、体厚に応じて被曝面積線量を補正する手法を用いた本発明X線診断装置について、図8に基づいて説明する。本実施例のX線診断装置は、移動型であっても据置き型であってもいずれでもよい。本実施例においてもX線診断装置の構成は基本的に実施例1、2に共通しており、以下の説明は、実施例1、2との相違点を中心に行う。
 図8は、X線源1から照射されたX線が被検体Pを透過してX線検出器2に到達する状況を模式的に示している。この図から明らかなように、X線は平行線として照射されるのではなく、放射状に広がるX線錘Cとして被検体Pに照射される。そのため、実施例1、2で算出している被検体画像面積は、被検体Pの実際の体幅に応じた投影面積SRではなく、実線の被検体PとX線錘Cとで示される投影面積SSとなる。つまり、投影面積SS>投影面積SRとなる。さらに、破線の被検体PとX線錘Cとで示されるように、体幅が同じであっても体厚が大きい場合、その投影面積SFはさらに大きくなる。その結果、投影面積SF>投影面積SS>投影面積SRとなる。
 そこで、例えば、体幅に応じた投影面積SRを適正な被検体の被曝面積と仮定すると、体厚に応じて被検体画像面積を補正することで、正確な被曝面積を求められることがわかる。例えば、X線検出器の画像データを基に演算された被検体画像面積(実施例1,2参照)に対して係数を乗じ、乗算後の面積が投影面積SRに近づくようにすればよい。この係数は、予めSIDに応じた体厚とX線錘の幾何学的関係から投影面積SRとX線錘による投影面積SS、SRとの相関関係を求めておき、その相関関係から体厚の大きい被検体ほど小さな値となるように設定すればよい。この係数の乗算は、被検体画像面積算出手段7で行っても良いし、被曝面積線量演算手段8で行っても良い。
 上述の実施例1では、体厚をX線診断装置が認識していないため、上記の被検体画像面積の補正を行うには、体厚を実測するなどして、X線診断装置に認識させておけばよい。また、上述の実施例2では、Ls/SID=LF/FSD(図2参照)を利用して被検体画像面積の補正を行ったが、図8の手法により補正を行ってもよい。
 本発明は、上記の実施例に限定されるわけではなく、種々の変更が可能である。例えば、SID、FSD、及び体厚については、種々の求め方が可能であり、例えば以下のような求め方がある。(1)SIDはメジャー等で実測し、体厚はヒストグラムの特徴量から演算し、FSDは、SIDから体厚を減算することにより求める。(2)SID、FSDは実測し、体厚は、SIDからFSDを減算することにより求める。(3)FSD、体厚は実測し、SIDはFSDに体厚を加算することにより求める。(4)SID、FSD、及び体厚の全てを実測する。
 また、実施例1では回診用移動型X線診断装置を示したが、手術用移動型X線診断装置であってもよい。
 本発明のX線診断装置は、移動型、据置き型を問わず、医療分野で利用されるX線診断装置として好適に利用できる。
 1 X線源、2 X線検出器、3 ヒストグラム作成手段、4A SID算出手段、4B FSD算出手段、5 補正手段、6 直接X線量計算手段、7 被検体画像面積算出手段、8 面積線量演算手段、9 表示手段、11 白い部分、12 黒い部分、13 グレー部分、14,15 破線、C X線錘、SR、SS、SF 投影面積

Claims (6)

  1.  X線を照射するX線源と、このX線源と対向して配置され、被検体の透過X線を検出して画像データとして出力するX線検出器とを備えるX線診断装置であって、
     前記X線検出器から出力される画像データにおける画素値のヒストグラムを作成するヒストグラム作成手段と、X線の照射条件で規定されるX線源の照射X線量及び前記X線源から前記X線検出器までの距離に基づいて、前記X線検出器で検出されるべき直接X線量に対応する画素値を計算する直接X線量計算手段と、前記ヒストグラム作成手段によって作成されたヒストグラム及び前記直接X線量計算手段によって計算された画素値に基づいて、画像データ中に占める被検体領域の面積を算出する被検体画像面積算出手段と、前記照射X線量、前記被検体画像領域の面積、及び前記X線源からX線検出器までの距離に基づいて、被検体の被曝面積線量を演算する面積線量演算手段とを備えたことを特徴とするX線診断装置。
  2.  前記被検体画像面積算出手段は、前記被検体の体厚を勘案して被検体画像領域の面積を補正し、
     前記面積線量演算手段は、照射X線量、前記補正後の被検体画像領域の面積、及びX線源から被検体までの距離に基づいて、被検体の被曝面積線量を演算することを特徴とする請求項1に記載のX線診断装置。
  3.  前記X線源から被検体までの距離を演算するFSD演算手段を備え、
     このFSD演算手段は、前記ヒストグラム作成手段によって作成されたヒストグラムの特徴量に基づいて被検体の体厚を求め、前記X線源から前記X線検出器までの距離から体厚を減算することでX線源から被検体までの距離を求めることを特徴とする請求項1に記載のX線診断装置。
  4.  前記直接X線量計算手段は、前記被検体の体厚と前記X線源から被検体までの距離を加算して前記X線源からX線検出器までの距離を求めることを特徴とする請求項1に記載のX線診断装置。
  5.  前記直接X線量計算手段は、前記X線検出器で検出されるべき直接X線量と、前記X線検出器のX線量に対する感度とから被検体を透過せずにX線検出器で検出されるべき直接X線量に対応する画素値を求め、
     前記被検体画像面積算出手段は、前記画素値に基づいて、画像データ中の直接X線領域を判別するための閾値を決定することを特徴とする請求項1に記載のX線診断装置。
  6.  前記照射X線量から、被検体の背面に配置されるグリッドの吸収X線量、又は前記X線源に近接させて装着される付加フィルタの吸収X線量の少なくとも一方を減算する補正手段を設けたことを特徴とする請求項1に記載のX線診断装置。
PCT/JP2009/059117 2008-05-22 2009-05-18 X線診断装置 WO2009142166A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010513008A JP5602014B2 (ja) 2008-05-22 2009-05-18 X線診断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-134554 2008-05-22
JP2008134554 2008-05-22

Publications (1)

Publication Number Publication Date
WO2009142166A1 true WO2009142166A1 (ja) 2009-11-26

Family

ID=41340099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059117 WO2009142166A1 (ja) 2008-05-22 2009-05-18 X線診断装置

Country Status (2)

Country Link
JP (1) JP5602014B2 (ja)
WO (1) WO2009142166A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136102A (ja) * 2009-12-29 2011-07-14 Shimadzu Corp 放射線撮像装置
JP2011245290A (ja) * 2010-05-24 2011-12-08 General Electric Co <Ge> 追尾特徴付き掌中型x線システム・インタフェイス
WO2013011914A1 (ja) * 2011-07-19 2013-01-24 株式会社 日立メディコ X線画像診断装置及びx線発生装置の制御方法
JP2015043959A (ja) * 2013-07-31 2015-03-12 富士フイルム株式会社 放射線画像解析装置および方法並びにプログラム
JP2017051871A (ja) * 2013-07-31 2017-03-16 富士フイルム株式会社 放射線画像解析装置および方法並びにプログラム
US9750477B2 (en) 2011-09-27 2017-09-05 Fujifilm Corporation Radiation imaging system and operating method thereof, and radiation image detecting device
JP2017164626A (ja) * 2017-07-03 2017-09-21 東芝メディカルシステムズ株式会社 医用画像処理装置、x線診断装置およびx線コンピュータ断層撮影装置
WO2018056563A1 (ko) * 2016-09-20 2018-03-29 주식회사 포스콤 카메라를 구비하는 x선 촬영 장치
US10231688B2 (en) 2014-09-30 2019-03-19 Fujifilm Corporation Radiation image analysis device, method, and program
JP2019166157A (ja) * 2018-03-23 2019-10-03 富士フイルム株式会社 画像処理装置、放射線画像撮影システム、画像処理方法、及び画像処理プログラム
JP2020092774A (ja) * 2018-12-11 2020-06-18 キヤノン株式会社 画像処理装置、画像処理方法およびプログラムに関するものである。
JP2020130691A (ja) * 2019-02-21 2020-08-31 コニカミノルタ株式会社 画像処理装置及びプログラム
JP2020530797A (ja) * 2017-08-14 2020-10-29 レイセオン カンパニー 腫瘍検出のための減算アルゴリズム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6283875B2 (ja) 2013-09-05 2018-02-28 キヤノンメディカルシステムズ株式会社 医用画像処理装置、x線診断装置およびx線コンピュータ断層撮影装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241842A (ja) * 1991-01-16 1992-08-28 Konica Corp 放射線画像読取装置
JPH0866389A (ja) * 1994-08-30 1996-03-12 Toshiba Corp X線診断装置
JPH11272851A (ja) * 1998-03-25 1999-10-08 Canon Inc 放射線デジタル画像処理システム
JP2004069441A (ja) * 2002-08-05 2004-03-04 Canon Inc 被曝面積線量計測方法及び装置、吸収面積線量計測方法及び装置、プログラム、記憶媒体、並びに放射線撮影装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241842A (ja) * 1991-01-16 1992-08-28 Konica Corp 放射線画像読取装置
JPH0866389A (ja) * 1994-08-30 1996-03-12 Toshiba Corp X線診断装置
JPH11272851A (ja) * 1998-03-25 1999-10-08 Canon Inc 放射線デジタル画像処理システム
JP2004069441A (ja) * 2002-08-05 2004-03-04 Canon Inc 被曝面積線量計測方法及び装置、吸収面積線量計測方法及び装置、プログラム、記憶媒体、並びに放射線撮影装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSURU NAKATA ET AL.: "Nansen Jokyo Filter ga Menseki Senryochi ni Oyobosu Eikyo ni Tsuite", HOSHASEN BOGO BUNKAKAI KAISHI, vol. 24, 13 April 2007 (2007-04-13), pages 40 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136102A (ja) * 2009-12-29 2011-07-14 Shimadzu Corp 放射線撮像装置
JP2011245290A (ja) * 2010-05-24 2011-12-08 General Electric Co <Ge> 追尾特徴付き掌中型x線システム・インタフェイス
US9655587B2 (en) 2010-05-24 2017-05-23 General Electric Company Handheld X-ray system interface with tracking feature
WO2013011914A1 (ja) * 2011-07-19 2013-01-24 株式会社 日立メディコ X線画像診断装置及びx線発生装置の制御方法
CN103747734A (zh) * 2011-07-19 2014-04-23 株式会社日立医疗器械 X射线图像诊断装置及x射线发生装置的控制方法
JPWO2013011914A1 (ja) * 2011-07-19 2015-02-23 株式会社日立メディコ X線画像診断装置及びx線発生装置の制御方法
US9750477B2 (en) 2011-09-27 2017-09-05 Fujifilm Corporation Radiation imaging system and operating method thereof, and radiation image detecting device
JP2015043959A (ja) * 2013-07-31 2015-03-12 富士フイルム株式会社 放射線画像解析装置および方法並びにプログラム
JP2017051871A (ja) * 2013-07-31 2017-03-16 富士フイルム株式会社 放射線画像解析装置および方法並びにプログラム
US10235766B2 (en) 2013-07-31 2019-03-19 Fujifilm Corporation Radiographic image analysis device and method, and storage medium having stored therein program
US9886765B2 (en) 2013-07-31 2018-02-06 Fujifilm Corporation Radiographic image analysis device and method, and storage medium having stored therein program
US10231688B2 (en) 2014-09-30 2019-03-19 Fujifilm Corporation Radiation image analysis device, method, and program
WO2018056563A1 (ko) * 2016-09-20 2018-03-29 주식회사 포스콤 카메라를 구비하는 x선 촬영 장치
JP2017164626A (ja) * 2017-07-03 2017-09-21 東芝メディカルシステムズ株式会社 医用画像処理装置、x線診断装置およびx線コンピュータ断層撮影装置
JP2020530797A (ja) * 2017-08-14 2020-10-29 レイセオン カンパニー 腫瘍検出のための減算アルゴリズム
JP7019028B2 (ja) 2017-08-14 2022-02-14 レイセオン カンパニー 腫瘍検出のための減算アルゴリズム
JP2019166157A (ja) * 2018-03-23 2019-10-03 富士フイルム株式会社 画像処理装置、放射線画像撮影システム、画像処理方法、及び画像処理プログラム
US10987078B2 (en) 2018-03-23 2021-04-27 Fujifilm Corporation Image processing apparatus, radiography system, image processing method, and image processing program
JP2020092774A (ja) * 2018-12-11 2020-06-18 キヤノン株式会社 画像処理装置、画像処理方法およびプログラムに関するものである。
CN111297382A (zh) * 2018-12-11 2020-06-19 佳能株式会社 图像处理装置,图像处理方法和存储介质
JP7190344B2 (ja) 2018-12-11 2022-12-15 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
CN111297382B (zh) * 2018-12-11 2023-10-24 佳能株式会社 图像处理装置,图像处理方法和存储介质
JP2020130691A (ja) * 2019-02-21 2020-08-31 コニカミノルタ株式会社 画像処理装置及びプログラム
US11399793B2 (en) 2019-02-21 2022-08-02 Konica Minolta, Inc. Image processing apparatus and storage medium
JP7159905B2 (ja) 2019-02-21 2022-10-25 コニカミノルタ株式会社 画像処理装置、プログラム及び放射線科情報システム

Also Published As

Publication number Publication date
JP5602014B2 (ja) 2014-10-08
JPWO2009142166A1 (ja) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5602014B2 (ja) X線診断装置
EP1420618B1 (en) X-Ray imaging apparatus
US8523434B2 (en) Image processing apparatus and image processing method for removing residual image
US20090180590A1 (en) X-ray image apparatus and method of imaging an object under examination
JP6363573B2 (ja) 線源画像面間距離取得装置、方法およびプログラム、並びに放射線画像処理装置、方法およびプログラム
JP2011245117A (ja) X線画像診断装置
JP2009285356A (ja) 医療用撮影システム、画像処理装置、画像処理方法、およびプログラム
Andria et al. Dose optimization in chest radiography: System and model characterization via experimental investigation
JP6339684B2 (ja) フォトンカウンティングct装置および推定被ばく量算出方法
JP2006334046A (ja) X線撮影装置及び撮影方法
JP6458540B2 (ja) 放射線画像撮影システム、放射線画像撮影装置および体厚の推定方法
JPH0614911A (ja) X線診断方法及びその装置
JP2009142497A (ja) X線診断装置
JP2013223691A (ja) X線診断装置及び制御プログラム
JP2008206560A (ja) 骨塩量測定装置
JP2006300826A (ja) 核医学診断システム
JP2014030438A (ja) 放射線画像検出装置、放射線撮影装置、及び放射線撮影システム
JP2020514776A (ja) 放射線医学システムによって投与された放射線量を推定する方法
EP1879021A2 (en) Phase contrast radiography with a microfocus tube providing X-rays having an average energy between 10 and 20 keV
KR101677172B1 (ko) 방사선 디텍터와 이를 포함하는 방사선 촬영장치, 그 자동노출제어방법 및 방사선 촬영방법
JP7397636B2 (ja) 放射線撮像システム、方法及びプログラム
Lyra et al. Presentation of digital radiographic systems and the quality control procedures that currently followed by various organizations worldwide
JP5062312B2 (ja) X線透視装置
KR101239133B1 (ko) 의료용 방사선 촬영을 위한 디지털 팬텀, 디지털 팬텀을 이용한 의료 영상 처리 방법 및 시스템
JP5268248B2 (ja) ディジタル及びコンピューティッド・ラジオグラフィ画像についての適応画像処理及び表示法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010513008

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750528

Country of ref document: EP

Kind code of ref document: A1