WO2009139053A1 - 金属担持触媒の製造方法 - Google Patents

金属担持触媒の製造方法 Download PDF

Info

Publication number
WO2009139053A1
WO2009139053A1 PCT/JP2008/058828 JP2008058828W WO2009139053A1 WO 2009139053 A1 WO2009139053 A1 WO 2009139053A1 JP 2008058828 W JP2008058828 W JP 2008058828W WO 2009139053 A1 WO2009139053 A1 WO 2009139053A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
molding
catalyst
producing
catalyst component
Prior art date
Application number
PCT/JP2008/058828
Other languages
English (en)
French (fr)
Inventor
慎一 井上
幸隆 和田
昭博 武藤
竹夫 新国
健雄 小野
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Priority to PCT/JP2008/058828 priority Critical patent/WO2009139053A1/ja
Publication of WO2009139053A1 publication Critical patent/WO2009139053A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing

Definitions

  • the present invention relates to a method for producing a metal-supported catalyst useful as a hydrotreating catalyst, and more particularly, to produce a metal-supported catalyst capable of easily producing an ultra-deep desulfurization catalyst for light oil as much as possible with low energy consumption and low pollution. Regarding the method.
  • a metal-supported catalyst which is a hydrotreating catalyst that can be used as a desulfurization catalyst for light oil or the like, generally neutralizes or hydrolyzes a compound containing aluminum, precipitates aluminum hydroxide, and cleans and removes impurities. Thereafter, drying, pulverization or spray drying is performed to obtain a dry powder. Water is added to the dry powder and kneaded thoroughly while adjusting the water content. Manufactured by impregnating a catalyst component solution in which various compounds such as molybdenum, tungsten, cobalt, nickel, phosphorus and boron are impregnated into an alumina carrier obtained by molding, drying and firing the kneaded product, followed by drying and firing. .
  • FIG. 2 is a flowchart showing a typical example of the production process in the conventional method for producing a metal-supported catalyst.
  • hydrate particles are synthesized from a hydrate particle synthesis raw material such as an aluminum raw material (synthesis step), thoroughly washed (washing step), filtered and dehydrated (filter dehydration step), and then dried and ground or sprayed By drying (first drying / pulverization / spray drying step), a dry powder of hydrate particle xerogel is obtained.
  • This dry powder is sufficiently kneaded (mixing step) while adding moisture and the like to adjust the moisture content, then molded into a predetermined shape (molding step), dried (second drying step), and fired (first And a catalyst carrier for supporting metal is produced.
  • the catalyst component is separately dissolved in water or aqueous ammonia to prepare a catalyst component solution (contact solution) for impregnation (catalyst component dissolution step).
  • the catalyst carrier solution is impregnated into the catalyst carrier (impregnation supporting step), dried (third drying step), and calcined (second calcining step) to produce the target metal supported catalyst.
  • ammonium molybdate, ammonium tungstate, cobalt nitrate, cobalt chloride, nickel nitrate, nickel chloride, etc. are used as catalyst components or when these are made into ammoniacal solutions, they are discharged by drying and firing operations.
  • the exhaust gas contains components with a large environmental load such as ammonium chloride, ammonia, nitrogen oxides, and the exhaust gas treatment is subjected to a large load.
  • a large amount of water used is discharged as exhaust gas through the drying process over a plurality of times (three times in the example shown in FIG. 2), and the amount of water used corresponding to that amount is also increased. Reduction is also desired.
  • Catalytic Society “2.3.5 Heavy Oil Desulfurization Catalyst”, “Catalyst Course Volume 5 (Engineering Edition 1) Catalyst Design”, edited by Kodansha Scientific, published by Kodansha Corporation, December 10, 1985, p. 62-64 Zude Chemie Catalysts Co., Ltd., “Catalyst production flow”, general catalog, December 2001, page 1 Petroleum Industry Revitalization Center, 1999 New Energy Industrial Technology Development Organization commissioned “Technology Development Result Report on Oil Refining Pollutant Reduction”, March 2000, p. 249, FIG.
  • the present invention provides a simple method for producing a metal-supported catalyst that reduces the consumption of energy while reducing the amount of water used with low pollution while maintaining the quality as a hydrotreating catalyst, and has a lower environmental impact than conventional ones.
  • the purpose is to provide.
  • the inventors of the present invention use a raw material with a low environmental load while maintaining the performance of an ultra-deep desulfurization catalyst for light oil, and disperse an easy method for industrial production and catalyst components at high concentration.
  • the present invention has been completed by adopting a method for causing the energy consumption and changing or omitting a process of consuming a large amount of energy.
  • the method for producing a metal-supported catalyst of the present invention synthesizes hydrate particles that serve as a carrier for a metal-supported catalyst (A) , Washing the obtained hydrate particles with water (B1); and The obtained gel-like hydrate particles are dehydrated so as to have a water content required for molding in (D) molding step (B2), Contacting the catalyst component with the dehydrated hydrate particle gel and supporting the catalyst component (C), (D) a molding step in which the hydrate particle gel supporting the catalyst component is directly molded into a predetermined shape to obtain a molded product; (E) a drying step of drying the obtained molded product; Including, and When the catalyst component is used in the (C) contact support step, it is used without being brought into a dissolved state.
  • the first drying step for producing a dry powder (referred to as “first drying / The crushing / spray drying process ”) is no longer required and energy usage is greatly reduced. Further, a step of sufficiently kneading while adjusting the water content by adding water or the like to the dry powder (the “kneading step” in the example of FIG. 2) is not required, and no additional water is required and the manufacturing process is simplified. .
  • the degree of dehydration in the dehydration step is sufficient until the water content required for molding in (D) molding step is sufficient, so by appropriately selecting a molding that can be molded at a low moisture content.
  • the amount of water to be dried in the drying step (corresponding to the second drying step in the example of FIG. 2) is also greatly reduced, and the energy used can be reduced.
  • the catalyst component is used in the (C) contact support process without dissolving the catalyst component in the solution, (D2) in the dehydration process in advance so that the water content required for molding in the molding process is obtained.
  • the operation can be performed up to the molding step (D) without dehydration and water supply with the combined water content. That is, since the wastewater with a large environmental load is not discharged out of the system, this is a method for producing a metal-supported catalyst with a low environmental load. Further, (D) a method for producing a metal-supported catalyst in which the work process is simplified because the dehydration process before the molding process can be omitted.
  • the point of the present invention is that the water content at the stage after the (B2) dehydration step is adjusted to be equal to the water content required for molding in the (D) molding step.
  • the equal amount of water means that the balance in the long term is equal, and the degree of fluctuation within the error range of industrial measurement in the short term is included in the concept of “equal”.
  • a certain amount of moisture is brought in from the reagent of the catalyst component, or the amount of moisture can be strictly changed in addition to measurement errors due to evaporation or other loss due to the progress of the work process. , Meaning the same in a category that allows such variation.
  • the water content can be adjusted in advance in the (B2) dehydration step so that the moisture content required for molding in the (D) molding step can be obtained at the stage of the (D) molding step. It is an important point, and after allowing fluctuations in the amount of water to achieve its purpose, (B2) the water content after the dehydration step becomes (D) the water content required for molding in the molding step. adjust.
  • the hydrate particles synthesized in the synthesis step (A) include titania, alumina, and a mixture or composite of titania and alumina (in the present invention, simply referred to as “titania / alumina”). And hydrate particles selected from the group consisting of.
  • at least one compound selected from the group consisting of titanium or aluminum hydroxide, chloride, sulfate compound and sodium salt compound reacts with the selected compound to hydrate.
  • a combination with at least one selected from the group consisting of sodium hydroxide, hydrochloric acid, and sulfuric acid that generates product particles can be given as a preferred example of the present invention. Titanium and aluminum metal alkoxides, nitrates, and the like can also be used, but there is a concern about the release of environmental pollutants, which is not preferable in terms of increasing the load of a purification facility for treating them.
  • the water content required for molding in the stage of (D) molding step is preferably in the range of 25 to 75% by mass. If the moisture content is within this range, a large amount of molded products can be easily formed using a generally industrial molding machine such as a piston-type extruder, a screw-type extruder, a disk pelleter, or a tableting machine. Can be manufactured.
  • examples of the catalyst component used in the (C1) contact supporting step include those containing molybdenum (Mo) or tungsten (W) and cobalt (Co) and / or nickel (Ni).
  • Mo molybdenum
  • W tungsten
  • Co cobalt
  • Ni nickel
  • P phosphorus
  • B boron
  • the method for producing a metal-supported catalyst of the present invention energy consumed for drying and heating can be reduced and the amount of water used can be reduced. Furthermore, since it is not necessary to discharge a component with a large environmental load as exhaust gas or waste liquid outside the system, the environmental load can be reduced, and the manufacturing process can be simplified and the manufacturing can be simplified.
  • FIG. 1 is a flowchart showing the production steps of the method for producing a metal-supported catalyst of the present invention.
  • the production method of the present invention comprises (A) a synthesis step, (B1) a washing step, (B2) a dehydration step, (C) a contact support step, and (D) a molding step using a hydrate particle synthesis raw material and a catalyst component as raw materials. And (E) a drying step, and (F) a firing step as necessary. The operations of these steps are performed in the order of this flow.
  • each process will be described in detail.
  • the synthesis step is a step of synthesizing hydrate particles that serve as a carrier for a metal-supported catalyst.
  • the hydrate particles synthesized in this step may be any oxide precursor that has not yet been calcined and can ultimately become a catalyst metal support.
  • amorphous aluminum hydroxide pseudo Aluminum hydroxide containing hydrous oxides such as boehmite, boehmite, dibsite, bayerite, nordonstoneite; titanium hydroxide containing amorphous titanium hydroxide, alpha titanate, beta titanate, gamma titanate, anatase, etc.
  • “composite” refers to the coprecipitation of alumina and titania hydrate particles, the alumina hydrate particles coated with titania hydrate particles, or vice versa. It refers to one that is laminated alternately.
  • titanium hydroxide, titanium chloride, titanium sulfate, aluminum hydroxide, aluminum chloride examples include aluminum sulfate, sodium aluminate and sodium hydroxide, hydrochloric acid, and sulfuric acid.
  • titanium hydroxide and aluminum hydroxide are oxide precursors (hydrate particles) as they are, and only water is released by firing.
  • other acidic substances and alkaline substances produce oxide precursors by the neutralization reaction between them, but the by-product salts are sodium chloride (salt) or sodium sulfate (bottle glass), It is a very safe substance even when released.
  • the method for producing oxide precursors (hydrate particles) using these raw materials is not particularly limited, and the usual continuous addition method, hydrothermal synthesis method, pH swing method, sol-gel method, uniform precipitation Laws can be adopted.
  • the synthesis conditions in this step are not particularly limited and are not particularly limited and are conventionally known conditions in various synthesis methods.
  • the washing step is a step of washing the hydrate particles obtained in the synthesis step (A) with water.
  • the hydrate particles obtained in the synthesis process are mixed with by-produced salts, unreacted raw materials, and other impurities. The In practice, washing is performed until the by-produced salts are removed to a predetermined amount or less.
  • “amount” when referring to “water content” or “absolute amount of water” means an amount (mass basis) with respect to the hydrate particles.
  • the “water content” (including the water content that is the basis for calculating the “water content”) is 400 ° C. (in the case of titania) or 500 ° C. (alumina and (In the case of titania / alumina), it is the amount of reduction when calcined for 3 hours (that is, the amount of water volatilized by heating, in other words, the amount obtained by subtracting the amount of solid content remaining after heating from the mass before heating). is there. Therefore, the moisture defined in the present invention includes free water contained in the gel structure of the hydrate particle gel and structural water such as hydroxyl groups and crystal water constituting the hydrate particles.
  • the specific water content of the hydrate particle gel is an amount that provides the water content required for molding in the molding step (D) when a catalyst component is added in the (C1) contact support step described later. It is easily determined from the amount of catalyst component added and the moisture content required for molding. These will be described in (C1) contact carrying step and (D) molding step. At this time, the water content of the hydrate particle gel is preferably in the range of about 25 to 75% by mass in order to adjust the water content required for molding in the (D) molding step.
  • the contact supporting step is a step of supporting the catalyst component by bringing the catalyst component solution into contact with the dehydrated hydrate particle gel.
  • the catalyst component used in this step is preferably one containing molybdenum (Mo) or tungsten (W), cobalt (Co) and / or nickel (Ni), and phosphorus (P) and / or boron (B). More preferably, those containing Molybdenum (Mo) and tungsten (W) are main components having hydrogenation ability, and cobalt (Co) and nickel (Ni) are promoter components for increasing the hydrogenation ability. Further, phosphorus (P) and boron (B) are components for adjusting the acidity of the catalyst.
  • the amount of molybdenum (Mo) or tungsten (W) is preferably in the range of 15% by mass to 35% by mass on the oxide basis, and the composition of cobalt (Co) and / or nickel (Ni).
  • the amount is preferably in the range of 1% to 10% by weight.
  • phosphorus (P) and / or boron (B) is contained, these amounts are preferably in the range of 1% by mass to 10% by mass.
  • the reason why the catalyst component is highly dispersed in the metal-supported catalyst is that the catalyst component is dispersed and dissolved in free water contained in the gel structure at a high concentration, and the catalyst dissolved in a high concentration. This is because the components are not dried or calcined and are ion-exchanged with hydroxyl groups of hydrate particles, which are present in large quantities, so that they are highly concentrated and highly dispersed.
  • the apparatus used in this step is an apparatus suitable for kneading or kneading, such as a twin-screw kneader, a pressure kneader, a high torque stirrer, a V-type kneader, a horizontal / vertical / roll kneader, a Pag mill , Banbury mixer, Mahler, crusher, gear compounder, etc.
  • the temperature is from room temperature to 100 ° C. and the contact time is about 30 minutes to 10 hours.
  • the molding step is a step of obtaining a molded product by molding the hydrate particle gel carrying the catalyst component obtained after the (C) contact carrying step into a predetermined shape.
  • a commonly used piston type molding machine, screw type molding machine, disk pelleter, etc. can be used without problems, and an appropriate shape according to the intended use of the finally obtained metal-supported catalyst, for example, Usually, it is formed into a cylindrical shape, a three-leaf shape, a four-leaf shape, a cylindrical shape, a honeycomb shape, or the like.
  • the moisture content required for molding cannot be generally stated depending on the molding machine to be used and its conditions, the composition of the hydrate particle gel carrying the catalyst component, the size and shape of the particles, the molding machine to be used, etc.
  • the range is preferably from 25 to 75% by mass. Further, it is more preferably in the range of 60 to 75% by mass for the piston type molding machine, more preferably in the range of 55 to 75% by mass for the screw type molding machine, and 25 to 60% by mass for the disk pelleter. A range is preferable. If this moisture content exceeds the upper limit of 75% by mass, molding becomes difficult due to the large moisture content or the thixotropic properties of the gel.
  • a drying process is a process of drying the molding obtained by the (D) molding process.
  • the target metal-supported catalyst may be obtained by drying in this step as the final step, or the operation of the (F) firing step may be performed as the next step.
  • the drying step is the final step, since the support and the added catalyst component are not converted to the oxide state, the support is changed to the oxide state in the actual hydrotreating reactor. The component is converted to a sulfide state and exhibits hydroprocessing performance.
  • a general drying furnace or firing furnace may be used for drying in this step. Moreover, if heating is not advanced to the extent to which it calcinates, even if it uses a calcination furnace, the metal carrying
  • a baking process is a process of baking the molded article after drying following the (E) drying process.
  • the calcination step is the final step, the support and catalyst components are in a stable oxide state, so the catalyst strength is high, and in addition, there is no outflow of moisture in the actual hydrotreatment. Is easy. Furthermore, the hydrotreating activity of the catalyst may increase.
  • a general firing furnace may be used for the firing in this step.
  • heating may be continued as it is to perform the operation of this process. That is, when this step is included, there is no problem even if this step is a series of operations that cannot be clearly distinguished from the (E) drying step.
  • this step is carried out under the same operation and conditions as those in a general metal-supported catalyst production.
  • a titania-based catalyst it is calcined at a temperature range of 300 to 500 ° C. for about 4 hours to 30 minutes. do it.
  • the firing may be performed at a temperature range of 400 to 600 ° C. for about 4 to 30 minutes.
  • the metal-supported catalyst according to the production method of the present invention can be produced by sequentially and appropriately performing the operations of the above steps.
  • the features of the present invention are compared with a catalyst production method using a conventional kneading method, the following can be said. 1.
  • the catalyst component is supported by ion exchange with the hydroxyl group of hydrate particles that have not been heat-treated such as drying or firing (in a normal kneading method, the dissolved catalyst component is mixed with the dried hydrate particle powder) Only distributed by.) 2.
  • the moisture content required for the molding process is adjusted in the dehydration process (B2), which is the process before contacting the catalyst components (in the usual kneading method, the operation of adding moisture in the kneading process immediately before molding)
  • the moisture content is adjusted according to the operation to be removed.
  • Example 1 [Preparation of titanium tetrachloride aqueous solution raw material] 10.5 kg of 99.9% by mass of titanium tetrachloride (TiCl 4 ) was gradually added to water cooled with ice to prepare 21 liters of an aqueous titanium tetrachloride solution having a titanium oxide equivalent concentration of 210 g / liter.
  • the obtained hydrosol was filtered to obtain an unwashed filter cake.
  • a washing operation for well dispersing and filtering the unwashed filter cake in 25 liters of water was performed three times to obtain washed titanium hydrate particle hydrogel. These series of operations to obtain a hydrogel are repeated four more times (above, (B1) washing step), the water content is adjusted in the final filtration operation, and the washed titanium hydrate particle hydrogel is placed in a pressure filter, Further dehydration was performed at a pressure of 0.2 MPa to obtain about 9 kg of final washed titanium hydrate particle hydrogel ((B2) dehydration step).
  • the solid content concentration of this hydrogel after baking at 400 ° C. for 3 hours was 37.3% by mass.
  • the molding cake was molded into a 1.5 mm cylindrical shape using a piston-type extrusion molding machine ((D) molding process). Then, it was dried at 120 ° C. for 12 hours ((E) drying step), and then calcined at 400 ° C. for 3 hours ((F) firing step) to obtain a titania-based metal-supported catalyst T1 for hydrotreatment.
  • Example 2 During the process operation of Example 1, in [Catalyst Component Contact Support], 108.8 g of 12-molybdophosphoric acid n-hydrate, 48.8 g of cobalt acetate, and purity were added (molybdenum oxide, phosphoric acid, cobalt carbonate, boric acid). Except having replaced with 14.2 g of 85 mass% phosphoric acid, all performed the same operation as Example 1, and obtained the titania-type metal carrying
  • Example 3 [Preparation of aluminum chloride aqueous solution raw material] 2900 g of aluminum chloride (AlCl 3 .6H 2 O) was dissolved in water to prepare 6 liters of a 483 g / liter aluminum chloride aqueous solution.
  • the obtained hydrosol was filtered to obtain an unwashed filter cake. Washing operation to disperse and filter this unwashed filter cake well in 30 liters of water is performed three times (above, (B1) washing step), and the washed alumina hydrate particle hydrogel obtained in the last filtration operation is pressurized.
  • the water content was adjusted by putting in a filter and further dehydrating at a pressure of 0.1 MPa to obtain about 3.5 kg of hydrogel of washed alumina hydrate particles.
  • This hydrogel had a solid concentration of 26.5% by mass after baking at 500 ° C. for 3 hours ((B2) dehydration step).
  • Example 1 [Molding / Drying] In [Molding / Drying] of Example 1, the same operation as in Example 1 was performed except that the calcination temperature was changed to 500 ° C., to obtain an alumina-based metal supported catalyst A1 for hydrotreatment. The same data as in Example 1 is summarized in Table 1 for the alumina-based metal-supported catalyst A1 of Example 3 obtained as described above.
  • Example 4 The washed alumina hydrate particle hydrogel having a solid content concentration of 26.5% by mass obtained in Example 3 was further dehydrated at a pressure of 3 MPa to obtain a hydrogel having a solid content concentration of 63.0% by mass. Replace 475 g of this hydrogel with a 5-liter universal mixing stirrer manufactured by Dalton Co., Ltd., and put it in an automatic mortar made by Nippon Ceramics Co., Ltd. The same operation as in Example 3 was carried out except that FINE-DISC-PELLETER was used to form a 1.5 mm cylindrical shape, to obtain an alumina-based metal-supported catalyst A2 for hydrotreatment. The same data as in Example 1 is summarized in Table 1 for the alumina-based metal-supported catalyst A2 of Example 4 obtained as described above.
  • a high-quality metal-supported catalyst exhibiting good hydrodesulfurization activity can be saved by energy saving and drainage by dehydration for molding. Therefore, it can be produced by a simple method that is extremely low pollution, uses less water, and can suppress the environmental load.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

 金属担持触媒の担体となる水和物粒子を合成する(A)合成工程と、これを水洗する(B1)洗浄工程と、ゲル状の水和物粒子を、(D)成形工程で成形に求められる水分含有量となるように脱水する(B2)脱水工程と、触媒成分を接触させてこれを担持させる(C)接触担持工程と、直接所定の形状に成形する(D)成形工程と、乾燥する(E)乾燥工程と、を含み、かつ、前記触媒成分を(C)接触担持工程に供する際に溶解状態にすることなく用いることで、水素化処理触媒としての品質を維持しつつ、エネルギーの消費が削減され、低公害で使用水量をも削減し、環境負荷の小さな金属担持触媒の簡易な製造方法を提供する。

Description

金属担持触媒の製造方法
 本発明は、水素化処理触媒として有用な金属担持触媒の製造方法に関し、詳しくは、軽油の超深度脱硫触媒を可能な限り省エネルギー、低公害でかつ簡易に製造することができる金属担持触媒の製造方法に関する。
 軽油等の脱硫触媒として利用可能な水素化処理触媒である金属担持触媒は、一般に、アルミニウムを含む化合物を中和または加水分解し、水酸化アルミニウムを沈殿させ、不純物を洗浄除去脱水する。その後、乾燥、粉砕あるいは噴霧乾燥し乾燥粉末を得る。この乾燥粉末に水を加え含水量を調整しながら十分に混練する。その混練物を成形、乾燥、焼成して得たアルミナ担体に、モリブデン、タングステン、コバルト、ニッケル、リン、ホウ素などの各種化合物を溶解した触媒成分溶液を含浸し、乾燥・焼成して製造される。これらの触媒製造過程では、塩化アンモニウム、硫酸アンモニウム、アンモニア、窒素酸化物のような環境に対して負荷のかかる物質が、排水あるいは排ガスとして放出される。加えて、担体や触媒の乾燥・焼成工程では、エネルギーが大量に消費される。
 図2は、従来の金属担持触媒の製造方法における製造工程の代表的な一例を示すフロー図である。まず、アルミニウム原料等の水和物粒子合成原料から水和物粒子を合成し(合成工程)、これを十分に洗浄し(洗浄工程)、ろ過脱水(ろ過脱水工程)後、乾燥および粉砕あるいは噴霧乾燥する(第一乾燥・粉砕/噴霧乾燥工程)ことで、水和物粒子キセロゲルの乾燥粉末が得られる。この乾燥粉末に水分等を添加し含水率を調整しながら、十分に混練し(混練工程)た後に、所定の形状に成形(成形工程)後、乾燥(第二乾燥工程)、焼成(第一焼成工程)し、金属担持用の触媒担体が製造される。
 一方、触媒成分は、別途水やアンモニア水等に溶解されて含浸用の触媒成分溶液(接触溶液)が調製される(触媒成分溶解工程)。この触媒成分溶液を前記触媒担体に含浸し(含浸担持工程)た後、乾燥し(第三乾燥工程)、焼成する(第二焼成工程)ことにより目的の金属担持触媒が製造される。
 このように従来の製造方法においては、水和物粒子合成原料に塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、四塩化チタン、硫酸チタンをアンモニア、水酸化ナトリウムなどで中和する組み合わせで使用した場合には排水中に塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、硝酸ナトリウムなどが排出される。また、乾燥および焼成操作を複数回実施しており、大量にエネルギーが使用されている。
 加えて、触媒成分にモリブデン酸アンモニウム、タングステン酸アンモニウム、硝酸コバルト、塩化コバルト、硝酸ニッケル、塩化ニッケルなどを用いた場合やこれらをアンモニア性溶液にした場合には、乾燥および焼成操作によって排出される排ガス中には、塩化アンモニウム、アンモニア、窒素酸化物等の環境負荷の大きな成分が含まれており、排ガス処理に大きな負荷が掛かっている。
 また、複数回(図2に示される例においては3回)にわたる乾燥工程により多くの使用水が系外に排ガスとして放出され、それに見合った給水量が必要になることから使用水量も多くなっており、その削減も望まれる。
触媒学会編、「2.3.5 重質油脱硫触媒」、"触媒講座第5巻(工学編1)触媒設計"、講談社サイエンティフィク編集、株式会社講談社発行、1985年12月10日、p.62-64 ズードケミー触媒株式会社編、「触媒製造フロー」、総合カタログ、2001年12月、見開き1頁目 財団法人石油産業活性化センター、平成11年度新エネルギー産業技術総合開発機構委託「石油精製汚染物質低減等技術開発成果報告書」、平成12年3月、p.249、図2
 したがって本発明は、水素化処理触媒としての品質を維持しつつ、エネルギーの消費が削減され、低公害で使用水量をも削減し、従来よりも環境負荷の小さな金属担持触媒の簡易な製造方法を提供することを目的とする。
 本発明者らは、軽油の超深度脱硫触媒の性能を維持しつつ、環境に対して負荷の少ない原料を使用し、工業的に製造するための容易な方法や触媒成分を高濃度に高分散させる方法を採用し、かつ、エネルギーを大量に消費する工程を変更または省くことによって本発明を完成した。
 すなわち、本発明の金属担持触媒の製造方法(以下、単に「本発明の製造方法」という場合がある。)は、金属担持触媒の担体となる水和物粒子を合成する(A)合成工程と、
 得られた水和物粒子を水洗する(B1)洗浄工程と、
 得られたゲル状の水和物粒子を、(D)成形工程で成形に求められる水分含有量となるように脱水する(B2)脱水工程と、
 脱水された水和物粒子ゲルに触媒成分を接触させてこれを担持させる(C)接触担持工程と、
 前記触媒成分を担持した水和物粒子ゲルを直接所定の形状に成形して成形物を得る(D)成形工程と、
 得られた成形物を乾燥する(E)乾燥工程と、
を含み、かつ、
 前記触媒成分を(C)接触担持工程に供する際に、溶解状態にすること無く用いることを特徴とする。
 本発明によれば、触媒成分を担持した水和物粒子のゲル状物を乾燥せずに直接成形するので、乾燥粉末を製造する第一乾燥工程(図2の例で言う「第一乾燥・粉砕/噴霧乾燥工程」)が不要になり、大幅にエネルギーの使用が削減される。また、乾燥粉末に水等を添加し含水率を調整しながら、十分に混練する工程(図2の例で言う「混練工程」)も不要となり添加水が必要無くなると共に製造工程が簡素化される。加えて(B2)脱水工程において脱水する程度が、(D)成形工程で成形に求められる水分含有量になるまでで足りるので、低含水率で成形可能な形式の成形を適切に選択することで、乾燥工程(図2の例においては第二乾燥工程に相当)で乾燥すべき水分量も大幅に削減され、使用するエネルギーを削減することができる。
 また、本発明においては、触媒成分を溶液に溶解すること無く(C)接触担持工程に供するため、(D)成形工程で成形に求められる水分含有量となるように(B2)脱水工程で予め合わせておいた水分含有量のまま、脱水も給水もすること無く(D)成形工程まで操作を行うことができる。すなわち環境負荷の大きな排水が系外に排出されることが無いため、環境負荷の少ない金属担持触媒の製造方法である。
 また、(D)成形工程の前の脱水工程を省くことができるため、作業工程が簡素化された金属担持触媒の製造方法である。
 このように、(B2)脱水工程後の段階での水分含有量が、(D)成形工程で成形に求められる水分含有量と等しくなるように調整することが本発明のポイントであるが、両水分量が等しいとは、長期間での収支が等しいと言うことで、短期間での工業的な計測の誤差範囲で変動する程度は「等しい」の概念に含まれる。その他、触媒成分の試薬からある程度の水分量が持ち込まれたり、作業工程の進行による蒸発やその他のロス等によって計測誤差以外にも厳密には水分量の変動が生じ得るが、上記「等しい」は、そのような変動を許容する範疇での同一を意味するものである。
 すなわち本発明は、(D)成形工程の段階で、(D)成形工程で成形に求められる水分含有率になるように、(B2)脱水工程において、予め水分含有量を調整しておくことが重要なポイントであり、その目的を達成するための水分量の変動を許容した上で(B2)脱水工程後の水分含有量を(D)成形工程で成形に求められる水分含有量となるように調整する。
 したがって、例えば、(B2)脱水工程終了後における水分含有量が、(D)成形工程で成形に求められる水分含有量の範囲から僅かに(例えば±5%程度の範囲内で)外れていても、実際に(D)成形工程の段階で成形に求められる水分含有率の範囲に含まれていれば、本発明の技術的範囲に属するものである。
 本発明においては、(E)乾燥工程に引き続き、乾燥後の成形物を焼成する(F)焼成工程を含むことも好ましい。これは、焼成することにより、金属担持触媒の、水素化処理触媒としての品質向上を図ることができる場合もあるからである。
 本発明において、(A)合成工程で合成される水和物粒子としては、チタニア、アルミナ、および、チタニアとアルミナとを混合あるいは複合化したもの(本発明において、単に「チタニア・アルミナ」と称する。)からなる群より選ばれるいずれかの水和物粒子であることが例示される。また、その合成原料としては、チタニウムまたはアルミニウムの水酸化物、塩化物、硫酸塩化合物およびナトリウム塩化合物からなる群より選ばれる少なくともいずれかの化合物と、該選ばれた化合物と反応して水和物粒子を生成させる水酸化ナトリウム、塩酸および硫酸からなる群より選ばれる少なくともいずれかとの組み合わせを本発明の好ましい例として挙げることができる。チタンやアルミニウムの金属アルコキシド類、硝酸塩類等も使用することができるが、環境汚染物質の放出の懸念があり、それを処理するための浄化施設の負荷が増す点では好ましくない。
 本発明において、(D)成形工程に供する段階で成形に求められる水分含有率としては、25~75質量%の範囲であることが好ましい。かかる水分含有率の範囲であれば、ピストン型押出成形機、スクリュー型押出成形機、ディスクペレッター、打錠成形機など通常工業的に用いられる成形機を使用して容易に大量の成形物を製造することができる。
 本発明において、(C1)接触担持工程に供する触媒成分としては、モリブデン(Mo)またはタングステン(W)と、コバルト(Co)および/またはニッケル(Ni)と、を含むものが挙げられ、またさらにリン(P)および/またはホウ素(B)を含むものが挙げることができる。
 本発明において、(C1)接触担持工程に供する具体的な触媒成分化合物として好ましくは、
 三酸化モリブデン、モリブドリン酸、モリブデン酸、三酸化タングステン、タングステン酸およびタングストリン酸からなる群より選ばれる少なくともいずれかの化合物と、
 酸化コバルト、炭酸コバルト、塩基性炭酸コバルト、水酸化コバルト、蓚酸コバルト、クエン酸コバルト、酢酸コバルト、酸化ニッケル、炭酸ニッケル、塩基性炭酸ニッケル、水酸化ニッケル、蓚酸ニッケル、クエン酸ニッケル、酢酸ニッケルおよびオキシ水酸化ニッケルからなる群より選ばれる少なくともいずれかの化合物と、
を含むものが挙げられ、さらにリン酸および/またはホウ酸を含むものも挙げることができる。
 本発明の金属担持触媒の製造方法によれば、乾燥や加熱に消費されるエネルギーを削減することができると共に使用水量も削減される。さらに、環境負荷の大きな成分を排ガス乃至排液として系外に排出しなくても済むため、環境負荷を低減することができ、かつ、製造工程を簡素化したために簡易に製造することができる。
本発明の金属担持触媒製造方法の製造工程を示すフロー図である。 従来の金属担持触媒製造方法の製造工程を示すフロー図である。
 以下、本発明を図面に則して詳細に説明する。
 図1は、本発明の金属担持触媒の製造方法の製造工程を示すフロー図である。本発明の製造方法は、水和物粒子合成原料および触媒成分を原料として、(A)合成工程、(B1)洗浄工程、(B2)脱水工程、(C)接触担持工程、(D)成形工程および(E)乾燥工程、並びに必要に応じて(F)焼成工程の各工程により成り立っている。これら工程の操作はこのフロー順に為される。
 以下、各工程毎に詳細に説明する。
<(A)合成工程>
 (A)合成工程は、金属担持触媒の担体となる水和物粒子を合成する工程である。本工程で合成される水和物粒子とは、焼成前の酸化物前駆体であって、最終的に触媒金属の担体になり得るものであればよく、例えば、無定形の水酸化アルミニウム、擬ベーマイト、ベーマイト、ジブサイト、バイヤライト、ノルドンストンライト等の含水酸化物を含む水酸化アルミニウム;無定形の水酸化チタン、αチタン酸、βチタン酸、γチタン酸、アナターゼなどを含む水酸化チタン;アルミナ水和物粒子とチタニア水和物粒子とが混合あるいは複合化した含水酸化物等が挙げられる。ここでいう「複合化」とは、アルミナとチタニアの水和物粒子を共沈させたものや、アルミナ水和物粒子にチタニア水和物粒子をコーティング(積層)したものまたはその逆のものあるいは交互に積層したもの等をいう。
 チタニア、アルミナおよびチタニア・アルミナからなる群より選ばれるいずれかの水和物粒子を合成する場合の好ましい合成原料としては、例えば、水酸化チタン、塩化チタン、硫酸チタン、水酸化アルミニウム、塩化アルミニウム、硫酸アルミニウム、アルミン酸ナトリウムおよび水酸化ナトリウム、塩酸、硫酸が挙げられる。これらのうち、水酸化チタンおよび水酸化アルミニウムはそのまま酸化物前駆体(水和物粒子)であり、焼成により水のみが放出される。また、他の酸性物質とアルカリ性物質は、両者の中和反応によって酸化物前駆体が生成されるが、副生される塩類は塩化ナトリウム(食塩)あるいは硫酸ナトリウム(ぼう硝)であり、環境に放出されても非常に安全な物質である。
 本工程において、これらの原料を用いて酸化物前駆体(水和物粒子)を製造する方法は特に制限は無く、通常の連続添加法、水熱合成法、pHスイング法、ゾルゲル法、均一沈殿法などを採用することができる。
 本工程の合成条件としては、各種合成法における従来公知の条件で問題なく、特に制限されるものではない。
<(B1)洗浄工程>
 (B1)洗浄工程は、(A)合成工程で得られた水和物粒子を水洗する工程である。(A)合成工程で得られた水和物粒子は、副生した塩類や未反応の原料、その他の不純物が混在しており、まず、本工程でこれを水洗して取り除く洗浄操作が為される。実際には、副生した塩類が所定量以下に除去されまで洗浄が行われる。
 本工程の洗浄操作としては、小規模なバッチ操作としては、具体的には(A)合成工程で得られた水和物粒子を一旦ろ過して、これに過剰の水を添加して必要に応じて攪拌し、再度ろ過して脱水する操作を繰り返す方法が挙げられる。
 また、工業的な本工程の連続洗浄操作としては、オリバーフィルター、ベルトフィルター、ディスクフィルター、ドラムフィルター、遠心ろ過機、真空ろ過器、加圧ろ過器(フィルタープレス)等各種形式のものを適宜使用して実施することができる。なかでも加圧ろ過機は、洗浄と水分量を調整する脱水の操作とを連続して行えるので本発明においては特に好ましい。
<(B2)脱水工程>
 本発明においては、(B1)洗浄工程の後に、(D)成形工程で成形に求められる水分含有量となるように前記水和物粒子ゲルを脱水する(B2)脱水工程の操作が為される。本工程の操作は、(B1)洗浄工程で用いた装置と同様の物を使用することも可能であるが、加圧ろ過機が水分量の調整機能の面で特に好ましい。
 ところで、本工程で要求されるのは、(D)成形工程で成形に求められる前記水和物粒子ゲルの水分含有量であって、水分含有率ではない。すなわち、(D)成形工程で成形に求められる前記水和物粒子ゲルの水分含有率となるような水分の絶対量にすることが、本工程では要求される。つまり、後述する(C1)接触担持工程において触媒成分が添加されるため、(D)成形工程で成形する際には触媒成分の増加量分だけ水分含有率が変化するので、それを踏まえた水分含有量にするのである。
 なお、本発明において、「水分含有量」や「水分の絶対量」と言うときの「量」は、前記水和物粒子に対する量(質量基準)を意味するものとする。また、本発明において、「水分含有量」(「水分含有率」を計算する上で基となる水分含有量を含む。)は、空気中で400℃(チタニアの場合)または500℃(アルミナおよびチタニア・アルミナの場合)にて3時間焼成した時の減少量(すなわち、加熱によって揮発した水分の量、言い換えれば加熱前の質量から加熱により残った固形分量を差し引いた量を意味する。)である。従って、本発明で定義される水分には、水和物粒子ゲルのゲル構造に包蔵されている自由水および水和物粒子を構成している水酸基や結晶水のような構造水が含まれる。
 具体的な前記水和物粒子ゲルの水分含有量は、後述する(C1)接触担持工程において触媒成分を添加した場合に、(D)成形工程で成形に求められる水分含有率になる量であり、触媒成分の添加量および成形に求められる水分含有率から簡単に求められる。これらについては(C1)接触担持工程および(D)成形工程において説明する。
 このとき、前記水和物粒子ゲルの水分含有率としては、(D)成形工程で成形に求められる水分含有量に調整するために、約25~75質量%の範囲であることが好ましい。
<(C)接触担持工程>
 (C)接触担持工程は、脱水された水和物粒子ゲルに触媒成分溶液を接触させることで触媒成分を担持させる工程である。
 本工程に供する触媒成分としては、モリブデン(Mo)またはタングステン(W)と、コバルト(Co)および/またはニッケル(Ni)と、を含むものが好ましく、リン(P)および/またはホウ素(B)を含むものがさらに好ましい。モリブデン(Mo)およびタングステン(W)は水素化能を有する主成分であり、コバルト(Co)およびニッケル(Ni)はその水素化能を高めるための助触媒成分である。また、リン(P)およびホウ素(B)は触媒の酸性度を調整する成分である。
 触媒成分の組成としては、酸化物基準で、モリブデン(Mo)またはタングステン(W)の量が15質量%~35質量%の範囲が好ましく、また、コバルト(Co)および/またはニッケル(Ni)の量が1質量%~10質量%の範囲が好ましい。リン(P)および/またはホウ素(B)を含む場合には、これらの量が1質量%~10質量%の範囲が好ましい。
 これらの触媒成分は、化合物の状態で、あるいは金属の状態で用いられる。具体的に好ましい化合物乃至単体は以下の通りである。
・モリブデン(Mo):モリブデン単体、酸化モリブデン、モリブドリン酸、モリブデン酸
・タングステン(W):タングステン単体、酸化タングステン、タングステン酸、タングストリン酸
・コバルト(Co):コバルト単体、酸化コバルト、炭酸コバルト、塩基性炭酸コバルト、水酸化コバルト、蓚酸コバルト、クエン酸コバルト、酢酸コバルト
・ニッケル(Ni):ニッケル単体、酸化ニッケル、炭酸ニッケル、塩基性炭酸ニッケル、水酸化ニッケル、蓚酸ニッケル、クエン酸ニッケル、酢酸ニッケル、オキシ水酸化ニッケル
・リン(P):無水リン酸、リン酸、メタリン酸、ピロリン酸
・ホウ素(B):無水ホウ酸、ホウ酸、メタホウ酸
 これら触媒成分を前記水和物粒子ゲルに添加し接触させるには、本発明においては、そのまま溶解状態にすることなく直接添加する。従って、(D)成形工程で成形に求められる水分含有量の前記水和物粒子ゲルに乾燥状態の触媒成分を添加するのみなので、水分量が制限された状態での接触担持となり、捏ねるような状態で攪拌混合、すなわち混練あるいは捏和する(なお、この段階で前記水和物粒子ゲルの水分含有率は(D)成形工程で成形に求められる程度のものとなっている)。
 本発明において、金属担持触媒に触媒成分が高濃度に高分散される理由は、触媒成分がゲル構造に包蔵されている自由水に高濃度に分散・溶解すること、および高濃度に溶解した触媒成分が乾燥あるいは焼成処理されていないために多く存在する水和物粒子の水酸基とイオン交換することによって高濃度・高分散することによる。
 そのため、本工程に供する装置としては、混練あるいは捏和に適した装置、例えば二軸混練器、加圧ニーダー、高トルク攪拌機、V型混練機、水平・垂直・ロール捏和機、パッグ・ミル、バンバリーミキサー、マーラー、擂潰機、ギヤー・コンパウンダー等を挙げることができる。
 本発明における本工程のその他の条件としては、温度は常温から100℃以下で、接触時間は30分~10時間程度である。
<(D)成形工程>
 (D)成形工程は、(C)接触担持工程後に得られた前記触媒成分を担持した水和物粒子ゲルを所定の形状に成形して成形物を得る工程である。
 本工程において成形には、通常用いられるピストン型成形機、スクリュー型成形機、ディスクペレッターなどが問題なく使用可能であり、最終的に得られる金属担持触媒の使用目的に合わせ適切な形状、例えば、通常は円柱形、三つ葉形、四つ葉形、円筒形、ハニカム形などに成形される。
 成形に求められる水分含有率としては、用いる成形機やその条件、前記触媒成分を担持した水和物粒子ゲルの組成、粒子の大きさや形状および使用する成形機などにより一概には言えないが、25~75質量%の範囲であることが好ましい。また、ピストン型成形機では60~75質量%の範囲であることがより好ましく、スクリュー型成形機では55~75質量%の範囲であることがより好ましく、ディスクペレッターでは25~60質量%の範囲であることが好ましい。この水分含有率が上限の75質量%を上回ると、水分量が多いため或いはゲルのチキソトロピー性のため成形が困難になる。一方、下限の25質量%を下回ると、成形に多くのエネルギーを消費し生産性の劣る打錠成形機(タブレットマシン)などを使用する必要があり、それぞれ好ましくない。
 その他、本工程の条件としては、一般的な金属担持触媒製造における成形工程と同様の操作や条件で行えば問題ない。
<(E)乾燥工程>
 (E)乾燥工程は、(D)成形工程で得られた成形物を乾燥する工程である。本工程の乾燥を最終工程として目的の金属担持触媒を得てもよいし、次工程として(F)焼成工程の操作を行っても構わない。(E)乾燥工程を最終工程とする場合には、担体および添加した触媒成分が酸化物状態に変換されていないので、実際の水素化処理反応器の中で担体は酸化物の状態へ、触媒成分は硫化物の状態へ変換されて水素化処理性能を発揮する。
 本工程の乾燥には、一般的な乾燥炉や焼成炉を用いればよい。また、焼成する程度まで加熱を進行させなければ、焼成炉を用いても(F)焼成工程を経ない((E)乾燥工程を最終工程とする)金属担持触媒を製造することができる。
 本工程は、一般的な金属担持触媒製造における乾燥工程と同様の操作や条件で行えば問題ないが、例えば工業的には、120~200℃の温度範囲で15時間~30分程度熱風乾燥すればよい。
<(F)焼成工程>
 (F)焼成工程は、(E)乾燥工程に引き続き、乾燥後の成形物を焼成する工程である。(F)焼成工程を最終工程とする場合には、担体および触媒成分が安定化された酸化物状態になっているので触媒強度が大きく、加えて実際の水素化処理で水分の流出も無く取り扱いが容易である。さらに、触媒の水素化処理活性が大きくなることもある。
 本工程の焼成には、一般的な焼成炉を用いればよい。なお、(E)乾燥工程で焼成炉を用いた場合には、そのまま加熱を続けて本工程の操作とすればよい。すなわち、本工程を含む場合には、本工程が(E)乾燥工程と明確に区別できない一連の操作であっても何ら問題無い。
 本工程は、一般的な金属担持触媒製造における焼成工程と同様の操作や条件で行えば問題ないが、例えば、チタニア系触媒の場合、300~500℃の温度範囲で4時間~30分間程度焼成すればよい。また、アルミナ系触媒およびアルミナ・チタニア系触媒の場合は400~600℃の温度範囲で4時間~30分間程度焼成すればよい。
 以上の各工程の操作を順次かつ適宜施すことによって、本発明の製造方法による金属担持触媒を製造することができる。
 本発明の特徴を通常の混練法による触媒製造法と比較すると、以下のことを言うことができる。
1.触媒成分を乾燥や焼成等の熱処理をしていない水和物粒子の水酸基とのイオン交換により担持すること(通常の混練法では溶解した触媒成分を乾燥した水和物粒子の粉末に混ぜる混練操作によって分散さているのみである。)
2.成形工程に求められる水分含有率の調整を、触媒成分を接触させる前の工程である(B2)脱水工程で行っていること(通常の混練法では成形する直前の混練工程で水分を加える操作か除く操作かによって水分含有率を調整している。)
 以下、実施例を挙げて本発明をより具体的に説明する。
<実施例1>
〔四塩化チタン水溶液原料の調製〕
 99.9質量%の四塩化チタン(TiCl)10.5kgを氷で冷却した水中に徐々に添加し、酸化チタン換算濃度210g/リットルの四塩化チタン水溶液を21リットル調製した。
〔水酸化ナトリウム水溶液原料の調製〕
 99.8質量%の水酸化ナトリウム9.3kgを水に溶解し、422g/リットルの水酸化ナトリウム水溶液を22リットル調製した。
〔チタン水和物粒子の合成と洗浄・脱水〕
 フッ素樹脂コーティングした35リットルの加熱・攪拌機付き容器に60℃の温水20リットルを入れ、攪拌しながら前記四塩化チタン水溶液を0.75リットル添加し5分間保持した。続いて前記水酸化ナトリウム水溶液を0.75リットル添加し、pH値をチタン水和物粒子の沈殿領域である7にした。その後、温度を60℃に保ちながら5分間保持した。さらに、前記四塩化チタン水溶液と前記水酸化ナトリウム水溶液を同量添加し、温度を保ちながら5分間保持する同様の操作をもう1回繰り返し、担体原料となるチタン水和物粒子のヒドロゾルを得た((A)合成工程)。
 得られたヒドロゾルをろ過し、未洗浄ろ過ケーキを得た。この未洗浄ろ過ケーキを25リットルの水に良く分散・ろ過する洗浄操作を3回行い、洗浄チタン水和物粒子のヒドロゲルを得た。ヒドロゲルを得るこれら一連の操作をさらに4回繰り返し(以上、(B1)洗浄工程)、最後のろ過操作において水分含有量を調整して、洗浄チタン水和物粒子ヒドロゲルを加圧ろ過器に入れ、0.2MPaの圧力で更に脱水して、最終的な洗浄チタン水和物粒子ヒドロゲルを約9kg得た((B2)脱水工程)。このヒドロゲルの400℃、3時間焼成後の固形分濃度は37.3質量%であった。
〔触媒成分の接触担持〕
 〔チタン水和物粒子の合成と洗浄・脱水〕の工程で得られたヒドロゲル800gを(株)ダルトン製の容量5リットルの万能混合攪拌機に入れ、これに酸化モリブデン95.4g、純度85質量%のリン酸13.8g、酸化コバルトの純度63質量%の炭酸コバルト23.6g、硼酸15.1gを加え、公転51rpm、自転83rpmの条件で4時間混練して、触媒成分担持チタン水和物粒子ゲル(以下、「成形用ケーキ」と云う。)を得た。
〔成形・乾燥〕
 成形用ケーキをピストン型の押し出し成形機を用い、1.5mmの円柱状に成形した((D)成形工程)。その後、120℃にて12時間乾燥し((E)乾燥工程)、その後400℃にて3時間焼成し((F)焼成工程)て水素化処理用のチタニア系金属担持触媒T1を得た。
 以上のようにして得られた実施例1のチタニア系金属担持触媒T1の比表面積および細孔容積、並びに各工程における各種条件、脱水工程の水和物粒子ゲルの水分含有率、接触担持工程の触媒成分添加量、成形用ケーキの量、成形用ケーキの水分含有率、乾燥、焼成条件などのデータを末に提示する表1にまとめて示す。また、後述する方法による軽油脱硫活性評価も行っており、当該表1にはその結果も併せて記載している。
<実施例2>
 実施例1の工程操作中、〔触媒成分の接触担持〕において、添加試薬(酸化モリブデン、リン酸、炭酸コバルト、硼酸)を12モリブドリン酸n水和物108.8g、酢酸コバルト48.8g、純度85質量%のリン酸14.2gに代えたこと以外は、全て実施例1と同様の操作を行い、水素化処理用のチタニア系金属担持触媒T2を得た。
 以上のようにして得られた実施例2のチタニア系金属担持触媒T2について、実施例1と同様のデータを表1にまとめて示す。
<実施例3>
〔塩化アルミニウム水溶液原料の調製〕
 塩化アルミニウム(AlCl・6HO)2900gを水に溶解し、483g/リットルの塩化アルミニウム水溶液を6リットル調製した。
〔水酸化ナトリウム水溶液原料の調製〕
 水酸化ナトリウム1602gを水に溶解し、243g/リットルの水酸化ナトリウム水溶液を6.6リットル調製した。
〔アルミナ水和物粒子の合成と洗浄・脱水〕
 フッ素樹脂コーティングした35リットルの加熱・攪拌機付き容器に90℃の温水20リットルを入れ、加熱・攪拌しながら前記塩化アルミニウム水溶液を1.5リットル添加し5分間保持した。続いて前記水酸化ナトリウム水溶液を1.55リットル添加し、pH値をアルミナ水和物粒子の沈殿領域である9にし、温度を80℃以上に保ちながら5分間保持した。更に、前記塩化アルミニウム水溶液1.5リットルと前記水酸化ナトリウム水溶液1.5リットルを添加し、温度を80℃以上に保ちながら5分間保持する同様の操作を3回繰り返し、担体原料となるアルミナ水和物粒子のヒドロゾルを得た((A)合成工程)。
 得られたヒドロゾルをろ過し、未洗浄ろ過ケーキを得た。この未洗浄ろ過ケーキを30リットルの水に良く分散・ろ過する洗浄操作を3回行い(以上、(B1)洗浄工程)、最後のろ過操作で得られた洗浄アルミナ水和物粒子ヒドロゲルを加圧ろ過器に入れ、0.1MPaの圧力で更に脱水することで水分含有量を調整して、洗浄アルミナ水和物粒子のヒドロゲル約3.5kgを得た。このヒドロゲルの500℃、3時間焼成後の固形分濃度は26.5質量%であった((B2)脱水工程)。
〔触媒成分の接触担持〕
 〔アルミナ水和物粒子の合成と洗浄・脱水〕の工程で得られたヒドロゲル1130gを(株)ダルトン製の容量5リットルの万能混合攪拌機に入れ、これに酸化モリブデン131.8g、純度85質量%のリン酸15.3g、酸化コバルトの純度63質量%の炭酸コバルト32.6g、硼酸16.7gを加え、公転51rpm、自転83rpmの条件で4時間混練して、触媒成分担持チタン水和物粒子ゲル(成形用ケーキ)を得た。
〔成形・乾燥〕
 実施例1の〔成形・乾燥〕において、焼成温度を500℃に変えたこと以外は実施例1と同様の操作を行い、水素化処理用のアルミナ系金属担持触媒A1を得た。
 以上のようにして得られた実施例3のアルミナ系金属担持触媒A1について、実施例1と同様のデータを表1にまとめて示す。
<実施例4>
 実施例3で得られた固形分濃度26.5質量%の洗浄アルミナ水和物粒子ヒドロゲルを3MPaの圧力で更に脱水し、固形分濃度が63.0質量%のヒドロゲルを得た。このヒドロゲル475gを(株)ダルトン製の容量5リットルの万能混合攪拌機に換えて、日陶科学(株)製の自動乳鉢に入れ、6時間擂潰し、成形用ケーキを不二パウダル(株)製のFINE-DISC-PELLETERを用い、1.5mmの円柱状に成形したこと以外は実施例3と同様の操作を行い、水素化処理用のアルミナ系金属担持触媒A2を得た。
 以上のようにして得られた実施例4のアルミナ系金属担持触媒A2について、実施例1と同様のデータを表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
<軽油脱硫活性評価>
 各実施例において製造した水素化処理用触媒について、その性能を評価すべく、以下の軽油脱硫活性評価試験を行った。結果は各実施例の表に既に記載したとおりである。
 硫黄分11539質量ppm、比重(15/4℃)0.85の中東産軽油を原料として、反応温度350(℃)、反応圧力(水素分圧)5(MPa)、液空間速度1.5(1/hr)、水素/油比250(Nl/l)の反応条件で、141時間反応させた後の水素化脱硫活性で評価した。脱硫反応を1.2次として反応速度定数を求めた。
<結果の考察>
 以上の結果より、本発明の例示的態様である実施例1~4のいずれにおいても、良好な水素化脱硫活性を示す高品質な金属担持触媒を、省エネルギーで、かつ成形のための脱水による排水も無いことから極めて低公害で、さらに使用水量も少なく環境負荷を抑制し得る簡便な方法で、製造することができた。

Claims (9)

  1.  金属担持触媒の担体となる水和物粒子を合成する(A)合成工程と、
     得られた水和物粒子を水洗する(B1)洗浄工程と、
     得られたゲル状の水和物粒子を、(D)成形工程で成形に求められる水分含有量となるように脱水する(B2)脱水工程と、
     脱水された水和物粒子ゲルに触媒成分を接触させてこれを担持させる(C)接触担持工程と、
     前記触媒成分を担持した水和物粒子ゲルを直接所定の形状に成形して成形物を得る(D)成形工程と、
     得られた成形物を乾燥する(E)乾燥工程と、
    を含み、かつ、
     前記触媒成分を(C)接触担持工程に供する際に、溶解状態にすること無く用いることを特徴とする金属担持触媒の製造方法。
  2.  (E)乾燥工程に引き続き、乾燥後の成形物を焼成する(F)焼成工程を含むことを特徴とする請求項1に記載の金属担持触媒の製造方法。
  3.  (A)合成工程で合成される水和物粒子が、チタニア、アルミナおよびチタニア・アルミナからなる群より選ばれるいずれかの水和物粒子であることを特徴とする請求項1または2に記載の金属担持触媒の製造方法。
  4.  (A)合成工程で合成される水和物粒子の合成原料が、チタニウムまたはアルミニウムの水酸化物、塩化物、硫酸塩化合物およびナトリウム塩化合物からなる群より選ばれる少なくともいずれかの化合物と、該選ばれた化合物と反応して水和物粒子を生成させる水酸化ナトリウム、塩酸および硫酸からなる群より選ばれる少なくともいずれかとの組み合わせのいずれかであることを特徴とする請求項3に記載の金属担持触媒の製造方法。
  5.  (D)成形工程に供する段階で成形に求められる水分含有率が、25~75質量%の範囲であることを特徴とする請求項1~4のいずれかに記載の金属担持触媒の製造方法。
  6.  (C)接触担持工程に供する触媒成分が、モリブデンまたはタングステンと、コバルトおよび/またはニッケルと、を含むことを特徴とする請求項1~5のいずれかに記載の金属担持触媒の製造方法。
  7.  (C)接触担持工程に供する触媒成分が、さらにリンおよび/またはホウ素を含むことを特徴とする請求項6に記載の金属担持触媒の製造方法。
  8.  (C)接触担持工程に供する触媒成分が、
     三酸化モリブデン、モリブドリン酸、モリブデン酸、三酸化タングステン、タングステン酸およびタングストリン酸からなる群より選ばれる少なくともいずれかの化合物と、
     酸化コバルト、炭酸コバルト、塩基性炭酸コバルト、水酸化コバルト、蓚酸コバルト、クエン酸コバルト、酢酸コバルト、酸化ニッケル、炭酸ニッケル、塩基性炭酸ニッケル、水酸化ニッケル、蓚酸ニッケル、クエン酸ニッケル、酢酸ニッケルおよびオキシ水酸化ニッケルからなる群より選ばれる少なくともいずれかの化合物と、
    を含むことを特徴とする請求項6に記載の金属担持触媒の製造方法。
  9.  (C)接触担持工程に供する触媒成分が、さらにリン酸および/または硼酸からなることを特徴とする請求項8に記載の金属担持触媒の製造方法。
PCT/JP2008/058828 2008-05-14 2008-05-14 金属担持触媒の製造方法 WO2009139053A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058828 WO2009139053A1 (ja) 2008-05-14 2008-05-14 金属担持触媒の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/058828 WO2009139053A1 (ja) 2008-05-14 2008-05-14 金属担持触媒の製造方法

Publications (1)

Publication Number Publication Date
WO2009139053A1 true WO2009139053A1 (ja) 2009-11-19

Family

ID=41318436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/058828 WO2009139053A1 (ja) 2008-05-14 2008-05-14 金属担持触媒の製造方法

Country Status (1)

Country Link
WO (1) WO2009139053A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962165A (zh) * 2013-01-30 2014-08-06 中国石油天然气股份有限公司 一种过渡金属磷化物加氢催化剂及其制备方法
CN114990608A (zh) * 2022-05-05 2022-09-02 同济大学 一种亚纳米厚度的NiCoP二维超薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941262B1 (ja) * 1970-12-25 1974-11-08
JP2003040689A (ja) * 2001-07-27 2003-02-13 Chiyoda Corp 高純度多孔質酸化チタン及びその製造方法
JP2003135969A (ja) * 2001-10-31 2003-05-13 Chiyoda Corp 炭化水素油の水素化処理用触媒及びその製造方法並びにこれを用いた水素化精製方法
JP2005324195A (ja) * 2005-06-17 2005-11-24 Chiyoda Corp 水素化処理用多孔質4族金属酸化物及び水素化処理方法
JP2005336053A (ja) * 2005-06-17 2005-12-08 Chiyoda Corp 多孔質チタニア
JP2006346631A (ja) * 2005-06-17 2006-12-28 Chiyoda Corp 炭化水素の水素化処理用触媒組成物及びその製造方法並びに炭化水素の水素化精製法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941262B1 (ja) * 1970-12-25 1974-11-08
JP2003040689A (ja) * 2001-07-27 2003-02-13 Chiyoda Corp 高純度多孔質酸化チタン及びその製造方法
JP2003135969A (ja) * 2001-10-31 2003-05-13 Chiyoda Corp 炭化水素油の水素化処理用触媒及びその製造方法並びにこれを用いた水素化精製方法
JP2005324195A (ja) * 2005-06-17 2005-11-24 Chiyoda Corp 水素化処理用多孔質4族金属酸化物及び水素化処理方法
JP2005336053A (ja) * 2005-06-17 2005-12-08 Chiyoda Corp 多孔質チタニア
JP2006346631A (ja) * 2005-06-17 2006-12-28 Chiyoda Corp 炭化水素の水素化処理用触媒組成物及びその製造方法並びに炭化水素の水素化精製法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962165A (zh) * 2013-01-30 2014-08-06 中国石油天然气股份有限公司 一种过渡金属磷化物加氢催化剂及其制备方法
CN114990608A (zh) * 2022-05-05 2022-09-02 同济大学 一种亚纳米厚度的NiCoP二维超薄膜及其制备方法
CN114990608B (zh) * 2022-05-05 2023-08-15 同济大学 一种亚纳米厚度的NiCoP二维超薄膜及其制备方法

Similar Documents

Publication Publication Date Title
US7943115B2 (en) Porous 4 group metal oxide and method for preparation thereof
US3287280A (en) Hydrodesulfurization catalyst and process for preparing the same
EP2772308B1 (en) Hydrogenation catalyst and method for producing same
US5021392A (en) High porosity titania-zirconia catalyst support prepared by a process
CN102049265A (zh) 一种加氢处理催化剂及其制备方法
JP6600912B2 (ja) 重質炭化水素油の水素化処理触媒及び重質炭化水素油の水素化処理触媒の製造方法
CN106179381B (zh) 加氢精制催化剂的制法
CN106179386B (zh) 加氢精制催化剂的制备方法
CN106179474B (zh) 一种加氢精制催化剂及其制法
EA020644B1 (ru) Полиметаллический катализатор для гидропереработки и способ его получения
JP2008212798A (ja) アルミナ担体及びそれを用いた水素化脱金属触媒並びにそれらの製造方法
JP2011072928A (ja) 炭化水素油の水素化脱硫触媒およびその製造方法
WO2020135714A1 (zh) 一种拟薄水铝石、其制造方法及其应用
WO2009139053A1 (ja) 金属担持触媒の製造方法
JP6916021B2 (ja) 炭化水素油の水素化脱硫触媒及び水素化脱硫触媒の製造方法
RU2623432C1 (ru) Способ приготовления носителя для катализатора гидроочистки нефтяных фракций
JP4928245B2 (ja) 金属担持触媒の製造方法
CN106179377B (zh) 一种加氢精制催化剂组合物的制备方法
CN106179384B (zh) 一种加氢精制催化剂的制法
KR100641694B1 (ko) 탈질촉매 압출성형용 티타니아 제조방법
US5021385A (en) Catalyst comprising a titania-zirconia support and supported catalyst prepared by a process
CN106179383B (zh) 加氢处理催化剂的制备方法
JP4934417B2 (ja) 金属担持触媒の製造方法
CN114618511B (zh) 重油加氢脱硫催化剂和重油加氢处理方法
JP2016007552A (ja) 炭化水素油の水素化脱硫触媒、その製造方法、および水素化脱硫方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08752699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08752699

Country of ref document: EP

Kind code of ref document: A1