WO2009133737A1 - エンジンの燃料噴射制御装置 - Google Patents

エンジンの燃料噴射制御装置 Download PDF

Info

Publication number
WO2009133737A1
WO2009133737A1 PCT/JP2009/055792 JP2009055792W WO2009133737A1 WO 2009133737 A1 WO2009133737 A1 WO 2009133737A1 JP 2009055792 W JP2009055792 W JP 2009055792W WO 2009133737 A1 WO2009133737 A1 WO 2009133737A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
amount
correction amount
engine
cylinder
Prior art date
Application number
PCT/JP2009/055792
Other languages
English (en)
French (fr)
Inventor
有祐 平谷
太 中野
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN2009801149684A priority Critical patent/CN102016277B/zh
Priority to US12/989,709 priority patent/US8596245B2/en
Priority to EP09738674.2A priority patent/EP2290212B1/en
Priority to AU2009241109A priority patent/AU2009241109B2/en
Publication of WO2009133737A1 publication Critical patent/WO2009133737A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention has a plurality of cylinders, and performs fuel injection control for an engine that performs main injection and sub-injection performed before or after the main injection in each cycle for each cylinder. It relates to the device.
  • a difference in fuel injection amount may occur between cylinders due to individual differences in fuel injection devices (injectors) provided in each cylinder, aging deterioration, or the like. is there.
  • the difference in the fuel injection amount between the cylinders appears as fluctuations in the engine rotation speed at which the engine rotation speed when combustion is performed in each cylinder varies from cylinder to cylinder.
  • the fuel injection quantity between cylinders can be reduced by increasing or decreasing the fuel injection quantity for each cylinder in accordance with fluctuations in engine rotation speed between cylinders. Correction is performed (see Patent Document 1).
  • the basic injection amount of main injection and the basic injection amount of sub-injection (pilot injection, post injection) depending on the operating state of the engine And calculating an inter-cylinder correction amount for increasing / decreasing the fuel injection amount in each cylinder according to the deviation of the engine rotation speed detected between the cylinders, (Correction A) By distributing the inter-cylinder correction amount of each cylinder to the main injection and the sub-injection according to the main injection amount and the basic injection amount of the sub-injection, the fuel injection amount (main injection, sub-injection between the cylinders) ), Or (Correction B) By correcting the inter-cylinder correction amount of each cylinder to the basic injection amount of the main injection, the fuel injection amount (only main injection) is corrected between the cylinders.
  • the fuel injection amount of the pilot injection greatly increases or decreases due to the inter-cylinder correction when pilot injection is performed in order to reduce combustion noise in the middle / high load region of the engine.
  • the effect of reducing combustion noise by pilot injection is greatly affected, which may increase combustion noise or deteriorate exhaust gas performance.
  • the inter-cylinder correction is performed as in the above-described correction B
  • post injection is performed for regeneration (catalyst activation) of the diesel particulate removing device (post-processing device) in the low load region of the engine
  • the cylinder The fuel injection amount of the main injection is greatly reduced by the interval correction, the combustion in the main injection ends before starting the post injection, the combustion in the post injection is misfired, and the regeneration of the aftertreatment device (activation of the catalyst) It may not be possible to increase the temperature to the required temperature.
  • an object of the present invention is to prevent a sudden change in the fuel injection amount of each of the main injection and the sub-injection due to the correction between cylinders, thereby preventing an increase in combustion noise and a deterioration in exhaust gas performance, and post-processing.
  • An object of the present invention is to provide a fuel injection control device for an engine that can prevent a decrease in temperature rise performance of the device.
  • the present invention has a plurality of cylinders, and in each cycle, the main injection and the sub-injection performed before or after the main injection are performed for each cylinder.
  • the cylinder-to-cylinder correction amount calculation means to calculate, and the above-mentioned cylinder-to-cylinder correction amount are increased only for the first divided cylinder correction amount for increasing or decreasing the main injection and sub-injection basic injection amounts, and the main injection basic injection amount.
  • the inter-cylinder correction amount dividing means for dividing the correction amount into the second divided cylinder correction amount for correction, and the first divided inter-cylinder correction amount according to the main injection amount and the basic injection amount of the sub injection, First correction means for distributing to the sub-injection, and second correction means for adding the second inter-cylinder correction amount to the basic injection amount of the main injection amount are provided.
  • a ratio changing means for changing the ratio of the correction amount between the first divided cylinders and the correction amount between the divided second cylinders according to the operating state of the engine.
  • the ratio changing means decreases the ratio of the correction amount between the first divided cylinders in the correction amount between the cylinders, and corrects the correction between the second divided cylinders in the correction amount between the cylinders.
  • the ratio between the correction amount between the first divided cylinders and the correction amount between the second divided cylinders may be changed so that the ratio of the amount increases.
  • the sub-injection may be a relatively small amount of pilot injection that is performed prior to the main injection in order to suppress rapid initial combustion due to a relatively large amount of main injection.
  • an aftertreatment device having a catalyst disposed in the exhaust passage of the engine is provided, and the sub-injection is performed after the main injection so as to increase the temperature of the exhaust gas and activate the catalyst of the aftertreatment device.
  • Post injection may be used.
  • the present invention by suppressing the sudden change in the fuel injection amount of each of the main injection and the sub-injection due to the correction between the cylinders, it is possible to prevent an increase in combustion noise and a deterioration in exhaust gas performance, and It exhibits an excellent effect that the temperature rise performance can be prevented from being lowered.
  • FIG. 1 is a block diagram showing an embodiment of an engine fuel injection control apparatus according to the present invention.
  • FIGS. 2A and 2B are time charts showing final injection amounts of main injection and sub-injection.
  • FIG. 1 is a block diagram showing an embodiment of an engine fuel injection control apparatus according to the present invention.
  • the engine of the present embodiment is a multi-cylinder diesel engine having a plurality of cylinders
  • the fuel injection control device 1 performs a fuel injection by a fuel injection device (injector) in one cycle, the main injection
  • a multi-stage fuel injection mode is performed for each cylinder divided into a plurality of times of sub-injection (pilot injection) performed prior to injection and sub-injection (post-injection) performed after main injection (FIG. 2). reference).
  • a relatively small amount of pilot injection performed prior to the main injection suppresses rapid initial combustion and rapid increase in in-cylinder pressure due to a relatively large amount of main injection, thereby suppressing NOx generation and combustion noise.
  • the post-injection performed after the main injection can raise the temperature of the exhaust gas and sufficiently activate the catalyst of the aftertreatment device.
  • the fuel injection control device 1 includes an engine operation state detection unit 2 that detects an operation state of the engine based on an engine speed, an accelerator opening, and the like, and an engine operation detected by the engine operation state detection unit 2.
  • the main basic injection amount calculating means 3 for calculating the basic injection amount of the main injection according to the state, and each sub-injection (pilot injection, post-injection) according to the engine operating state detected by the engine operating state detecting means 2
  • Sub-basic injection amount calculation means 4 for calculating the basic injection amount of the engine, and an inter-cylinder correction amount for increasing / decreasing the fuel injection amount in each cylinder according to the deviation of the engine speed between the cylinders.
  • Inter-cylinder correction amount calculation means 5 is provided.
  • the fuel injection control device 1 is configured so that the inter-cylinder correction amount calculation unit 5 calculates the inter-cylinder correction amount between the first divided cylinders for increasing / decreasing the basic injection amount of the main injection and the sub injection.
  • the inter-cylinder correction amount dividing means 6 that divides the correction amount into the second divided cylinder correction amount for increasing / decreasing only the basic injection amount of the main injection, and the first division divided by the inter-cylinder correction amount dividing means 6
  • the first correction means 7 that distributes the correction amount between cylinders to the main injection and the sub injection according to the main injection amount and the basic injection amount of the sub injection, and the second divided cylinder divided by the inter-cylinder correction amount dividing means 6
  • a second correction means 8 for adding the correction amount to the basic injection amount of the main injection amount.
  • the first correction means 7 has a correction coefficient calculation means 9 for calculating a correction coefficient based on the basic injection amounts of the main injection and each sub-injection and the first inter-cylinder correction amount. Specifically, the correction coefficient calculation means 9 divides the sum of the basic injection amount of the main injection and each sub-injection and the correction amount between the first divided cylinders by the sum of the basic injection amount of the main injection and each sub-injection. The correction coefficient is calculated. The first correction means 7 multiplies the basic injection amount of the main injection by a correction coefficient and multiplies the basic injection amount of each sub-injection by the correction coefficient so as to correct the increase / decrease in the basic injection amount of the main injection and the sub-injection. It has become.
  • the fuel injection control device 1 sets the ratio between the first divided cylinder correction amount and the second divided cylinder correction amount in accordance with the engine operating state detected by the engine operating state detecting means 2.
  • a ratio changing means 10 for changing is provided.
  • the ratio changing unit 10 includes a transition coefficient calculating unit 11 that calculates a transition coefficient used when the inter-cylinder correction amount is divided into the first divided cylinder correction amount and the second divided cylinder correction amount. ing.
  • the ratio of the correction amount between the first divided cylinders in the inter-cylinder correction amount of each cylinder decreases and the transition coefficient occupies the inter-cylinder correction amount of each cylinder.
  • the ratio of the correction amount between the second divided cylinders is set to be large.
  • the ratio changing means 10 is configured to change the ratio between the first divided cylinder correction amount and the second divided cylinder correction amount in accordance with the transition coefficient.
  • the final injection amount of the main injection depends on the basic injection amount of the main injection
  • the correction amount between the first divided cylinders depends on the basic injection amounts of the main injection and the sub injection. It is obtained by adding the distributed correction amount and the correction amount between the second divided cylinders, and the final injection amount of the sub injection is the basic injection amount of the sub injection, and the correction amount between the first divided cylinders is the main injection and the sub injection. This is determined by adding the correction amount distributed according to the basic injection amount.
  • the main basic injection amount calculation means The basic injection amount of the main injection calculated by 3 is determined as it is as the final injection amount of the main injection, and the basic injection amount of the sub injection calculated by the sub basic injection amount calculation means 4 is determined as it is as the final injection amount of the sub injection. .
  • the ratio of the correction amount between the first divided cylinders in the correction amount between the cylinders of each cylinder is reduced by the above transition coefficient (the ratio of the correction amount between the second divided cylinders is increased), Since the correction amount of the basic injection amount of the sub-injection is smaller than that in the low load region, the fuel injection amount of the pilot injection does not greatly increase or decrease due to the inter-cylinder correction, and the effect of reducing the combustion noise by the pilot injection Therefore, it is possible to avoid the increase in combustion noise or the deterioration of exhaust gas performance.
  • the inter-cylinder correction amount is not divided into the first divided cylinder correction amount and the second divided cylinder correction amount, and all the inter-cylinder correction amounts are set according to the main injection amount and the basic injection amount of the sub injection. And the correction amount of the basic injection amount of the sub-injection is smaller than that in the case of distributing to the sub-injection.
  • the ratio of the correction amount between the first divided cylinders in the correction amount between the cylinders of each cylinder increases due to the above transition coefficient (the ratio of the correction amount between the second divided cylinders decreases)
  • the correction amount of the basic injection amount of the main injection is smaller than that in the middle / high load region, the fuel injection amount of the main injection is not greatly reduced by the correction between the cylinders, and before the post injection is started.
  • the inter-cylinder correction amount is not divided into the first sub-cylinder correction amount and the second sub-cylinder correction amount. The correction amount of the basic injection amount of injection becomes small.
  • the fuel injection of each of the main injection and the sub injection by the correction between the cylinders can be suppressed, and an increase in combustion noise and deterioration in exhaust gas performance can be prevented, and a decrease in temperature rise performance of the aftertreatment device can be prevented.

Abstract

 気筒間補正による、燃焼音の増大や排ガス性能の悪化を防止すると共に、ディーゼル微粒子除去装置の昇温性能低下を防止する。  各気筒間のエンジン回転速度の偏差に応じて、各気筒における燃料噴射量を増減補正する気筒間補正量を各気筒毎に算出する気筒間補正量算出手段5と、気筒間補正量を、メイン噴射及びサブ噴射の基本噴射量を増減補正するための第一分割気筒間補正量とメイン噴射の基本噴射量のみを増減補正するための第二分割気筒間補正量とに分割する気筒間補正量分割手段6と、第一分割気筒間補正量を、メイン噴射量及びサブ噴射の基本噴射量に応じて、メイン噴射及びサブ噴射に分配する第一補正手段7と、第二分割気筒間補正量を、メイン噴射量の基本噴射量に加算する第二補正手段8とを備える。

Description

エンジンの燃料噴射制御装置
 本発明は、複数の気筒を有し、1サイクル中で、メイン噴射、及び、そのメイン噴射の前に行われ或いはメイン噴射の後に行われるサブ噴射を各気筒毎に実施するエンジンの燃料噴射制御装置に関するものである。
 複数の気筒を有するディーゼルエンジン等のエンジン(多気筒エンジン)においては、各気筒に設けられる燃料噴射装置(インジェクタ)の個体差や経年劣化等によって、気筒間で燃料噴射量に差が生じることがある。この気筒間の燃料噴射量の差は、各気筒で燃焼が行われたときのエンジン回転速度が気筒毎に異なるエンジン回転速度の変動となって現れる。
 上記のような、気筒間で生じるエンジン回転速度の変動を抑制するために、気筒間のエンジン回転速度の変動に応じて気筒毎に燃料噴射量を増減させることにより、気筒間で燃料噴射量の補正を行っている(特許文献1等参照)。
 例えば、1サイクル中で多段噴射(メイン噴射、サブ噴射)を実施する場合には、エンジンの運転状態に応じて、メイン噴射の基本噴射量及びサブ噴射(パイロット噴射、ポスト噴射)の基本噴射量をそれぞれ算出すると共に、各気筒間において検出されるエンジン回転速度の偏差に応じて、各気筒における燃料噴射量を増減補正する気筒間補正量を各気筒毎に算出し、
 (補正A)各気筒の気筒間補正量を、メイン噴射量及びサブ噴射の基本噴射量に応じて、メイン噴射及びサブ噴射に分配することで、気筒間で燃料噴射量(メイン噴射、サブ噴射)の補正を行い、或いは、
 (補正B)各気筒の気筒間補正量を全てメイン噴射の基本噴射量に加えることで、気筒間で燃料噴射量(メイン噴射のみ)の補正を行っている。
特開2001-349243号公報
 上記の補正Aのように気筒間補正を行った場合、エンジンの中・高負荷領域で燃焼音低減のためにパイロット噴射を行ったときに、気筒間補正によりパイロット噴射の燃料噴射量が大きく増減し、パイロット噴射による燃焼音低減の効果が大きく影響を受け、燃焼音の増大或いは排ガス性能の悪化を招いてしまうことがある。
 上記の補正Bのように気筒間補正を行った場合、エンジンの低負荷領域でディーゼル微粒子除去装置(後処理装置)の再生(触媒の活性化)のためにポスト噴射を行ったときに、気筒間補正によりメイン噴射の燃料噴射量が大きく減少し、ポスト噴射を開始する前にメイン噴射での燃焼が終了し、ポスト噴射での燃焼が失火し、後処理装置の再生(触媒の活性化)に必要な温度まで高めることができないことがある。
 そこで、本発明の目的は、気筒間補正によってメイン噴射及びサブ噴射の各噴射の燃料噴射量が急変することを抑制することで、燃焼音の増大や排ガス性能の悪化を防止すると共に、後処理装置の昇温性能低下を防止することができるエンジンの燃料噴射制御装置を提供することにある。
 上記目的を達成するために、本発明は、複数の気筒を有し、1サイクル中で、メイン噴射、及び、メイン噴射の前に行われ或いはメイン噴射の後に行われるサブ噴射を上記各気筒毎に実施するエンジンの燃料噴射制御装置であって、上記エンジンの運転状態に応じて、メイン噴射の基本噴射量を算出するメイン基本噴射量算出手段と、上記エンジンの運転状態に応じて、サブ噴射の基本噴射量を算出するサブ基本噴射量算出手段と、上記各気筒間のエンジン回転速度の偏差に応じて、上記各気筒における燃料噴射量を増減補正する気筒間補正量を上記各気筒毎に算出する気筒間補正量算出手段と、上記気筒間補正量を、メイン噴射及びサブ噴射の基本噴射量を増減補正するための第一分割気筒間補正量と、メイン噴射の基本噴射量のみを増減補正するための第二分割気筒間補正量とに分割する気筒間補正量分割手段と、上記第一分割気筒間補正量を、メイン噴射量及びサブ噴射の基本噴射量に応じて、メイン噴射及びサブ噴射に分配する第一補正手段と、上記第二分割気筒間補正量を、メイン噴射量の基本噴射量に加算する第二補正手段と、を備えたものである。
 ここで、上記第一分割気筒間補正量と上記分割第二気筒間補正量との割合を上記エンジンの運転状態に応じて変化させる割合変化手段を備えても良い。
 また、上記割合変化手段は、上記エンジンの負荷が高くなるに従い、上記気筒間補正量に占める第一分割気筒間補正量の割合が小さくなり、上記気筒間補正量に占める第二分割気筒間補正量の割合が大きくなるように、上記第一分割気筒間補正量と上記第二分割気筒間補正量との割合を変化させるものであっても良い。
 また、上記サブ噴射が、比較的多量のメイン噴射による急激な初期燃焼を抑制すべく、メイン噴射に先立って行われる比較的少量のパイロット噴射であっても良い。
 また、エンジンの排気通路に配設された触媒を有する後処理装置を備え、上記サブ噴射が、排気ガスの温度を高めて上記後処理装置の触媒を活性化させるべく、上記メイン噴射の後に行われるポスト噴射であっても良い。
 本発明によれば、気筒間補正によってメイン噴射及びサブ噴射の各噴射の燃料噴射量が急変することを抑制することで、燃焼音の増大や排ガス性能の悪化を防止すると共に、後処理装置の昇温性能低下を防止することができるという優れた効果を発揮するものである。
図1は、本発明に係るエンジンの燃料噴射制御装置の一実施形態を示すブロック図である。 図2(a)及び(b)は、メイン噴射及びサブ噴射の各噴射の最終噴射量を示すタイムチャート図である。
符号の説明
 1 燃料噴射制御装置
 2 エンジン運転状態検出手段
 3 メイン基本噴射量算出手段
 4 サブ基本噴射量算出手段
 5 気筒間補正量算出手段
 6 気筒間補正量分割手段
 7 第一補正手段
 8 第二補正手段
 9 補正係数算出手段
 10 割合変化手段
 11 遷移係数算出手段
 以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
 図1は、本発明に係るエンジンの燃料噴射制御装置の一実施形態を示すブロック図である。
 本実施形態のエンジンは複数の気筒を有する多気筒ディーゼルエンジンであり、本実施形態に係る燃料噴射制御装置1は、燃料噴射装置(インジェクタ)による燃料噴射を1サイクル中で、メイン噴射と、メイン噴射に先立って行われるサブ噴射(パイロット噴射)と、メイン噴射の後に行われるサブ噴射(ポスト噴射)とで複数回に分けて各気筒毎に行う多段燃料噴射モードを有している(図2参照)。メイン噴射に先立って行われる比較的少量のパイロット噴射により、比較的多量のメイン噴射による急激な初期燃焼及び筒内圧力の急増が抑制され、NOxの発生が抑制されると共に燃焼騒音が低減される。また、メイン噴射の後に行われるポスト噴射により、排気ガスの温度を高めて、後処理装置の触媒を十分に活性化させることができる。
 本実施形態に係る燃料噴射制御装置1は、エンジンの回転速度やアクセル開度等に基づきエンジンの運転状態を検出するエンジン運転状態検出手段2と、エンジン運転状態検出手段2で検出したエンジンの運転状態に応じて、メイン噴射の基本噴射量を算出するメイン基本噴射量算出手段3と、エンジン運転状態検出手段2で検出したエンジンの運転状態に応じて、各サブ噴射(パイロット噴射、ポスト噴射)の基本噴射量を算出するサブ基本噴射量算出手段4と、各気筒間のエンジン回転速度の偏差に応じて、各気筒における燃料噴射量を増減補正する気筒間補正量を各気筒毎に算出する気筒間補正量算出手段5とを備えている。
 また、本実施形態に係る燃料噴射制御装置1は、気筒間補正量算出手段5が算出した気筒間補正量を、メイン噴射及びサブ噴射の基本噴射量を増減補正するための第一分割気筒間補正量と、メイン噴射の基本噴射量のみを増減補正するための第二分割気筒間補正量とに分割する気筒間補正量分割手段6と、気筒間補正量分割手段6で分割した第一分割気筒間補正量を、メイン噴射量及びサブ噴射の基本噴射量に応じて、メイン噴射及びサブ噴射に分配する第一補正手段7と、気筒間補正量分割手段6で分割した第二分割気筒間補正量を、メイン噴射量の基本噴射量に加算する第二補正手段8とを備えている。
 本実施形態では、第一補正手段7は、メイン噴射及び各サブ噴射の基本噴射量と、第一分割気筒間補正量とにより補正係数を算出する補正係数算出手段9を有している。詳しくは、補正係数算出手段9は、メイン噴射及び各サブ噴射の基本噴射量と第一分割気筒間補正量との和を、メイン噴射及び各サブ噴射の基本噴射量との和で除算して、補正係数を算出するようになっている。第一補正手段7は、メイン噴射の基本噴射量に補正係数を乗ずると共に、各サブ噴射の基本噴射量に補正係数を乗ずることで、メイン噴射及びサブ噴射の基本噴射量を増減補正するようになっている。
 また、本実施形態に係る燃料噴射制御装置1は、エンジン運転状態検出手段2で検出したエンジンの運転状態に応じて、第一分割気筒間補正量と第二分割気筒間補正量との割合を変化させる割合変化手段10を備えている。本実施形態では、割合変化手段10は、気筒間補正量を第一分割気筒間補正量と第二分割気筒間補正量とに分割する際に用いる遷移係数を算出する遷移係数算出手段11を備えている。本実施形態では、上記の遷移係数は、エンジンの負荷が高くなるに従い、各気筒の気筒間補正量に占める第一分割気筒間補正量の割合が小さくなり、各気筒の気筒間補正量に占める第二分割気筒間補正量の割合が大きくなるように設定されている。割合変化手段10は、上記の遷移係数に応じて、第一分割気筒間補正量と第二分割気筒間補正量との割合を変化させるようになっている。
 以上の構成からなる本実施形態の作用を説明する。
 図2(a)及び(b)に示すように、メイン噴射の最終噴射量は、メイン噴射の基本噴射量に、第一分割気筒間補正量をメイン噴射及びサブ噴射の基本噴射量に応じて分配した補正量と第二分割気筒間補正量とを加算することで求められ、サブ噴射の最終噴射量は、サブ噴射の基本噴射量に、第一分割気筒間補正量をメイン噴射及びサブ噴射の基本噴射量に応じて分配した補正量を加算することで決定される。
 なお、各気筒間のエンジン回転速度の偏差が各気筒における燃料噴射量の補正を必要とするほど大きくない場合には、気筒間での燃料噴射量の補正は行われず、メイン基本噴射量算出手段3が算出したメイン噴射の基本噴射量がそのままメイン噴射の最終噴射量として決定され、サブ基本噴射量算出手段4が算出したサブ噴射の基本噴射量がそのままサブ噴射の最終噴射量として決定される。
 エンジンの中・高負荷領域では、上記の遷移係数によって各気筒の気筒間補正量に占める第一分割気筒間補正量の割合が小さくなり(第二分割気筒間補正量の割合が大きくなり)、サブ噴射の基本噴射量の補正量が低負荷領域である場合と比較して小さくなるので、気筒間補正によりパイロット噴射の燃料噴射量が大きく増減することはなく、パイロット噴射による燃焼音低減の効果が悪影響を受けることはないので、燃焼音の増大或いは排ガス性能の悪化を招くことを回避することができる。また、気筒間補正量を第一分割気筒間補正量と第二分割気筒間補正量とに分割することなく、気筒間補正量を全てメイン噴射量及びサブ噴射の基本噴射量に応じてメイン噴射及びサブ噴射に分配した場合に比べて、サブ噴射の基本噴射量の補正量は小さくなる。
 他方、エンジンの低負荷領域では、上記の遷移係数によって各気筒の気筒間補正量に占める第一分割気筒間補正量の割合が大きくなり(第二分割気筒間補正量の割合が小さくなり)、メイン噴射の基本噴射量の補正量が中・高負荷領域である場合と比較して小さくなるので、気筒間補正によりメイン噴射の燃料噴射量が大きく減少することはなく、ポスト噴射を開始する前にメイン噴射での燃焼が終了することによるポスト噴射での燃焼の失火を防止できるので、後処理装置の再生(触媒の活性化)に必要な温度まで高めることができる。また、気筒間補正量を第一分割気筒間補正量と第二分割気筒間補正量とに分割することなく、気筒間補正量を全てメイン噴射の基本噴射量に加算した場合に比べて、メイン噴射の基本噴射量の補正量は小さくなる。
 また、上記の遷移係数に応じて第一分割気筒間補正量と第二分割気筒間補正量との割合を適切に変化させることにより、気筒間補正によってメイン噴射及びサブ噴射の各噴射の燃料噴射量が急変することを抑制することができ、燃焼音の増大や排ガス性能の悪化を防止すると共に、後処理装置の昇温性能低下を防止することが可能となる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず他の様々な実施形態を採ることが可能である。

Claims (5)

  1.  複数の気筒を有し、1サイクル中で、メイン噴射、及び、メイン噴射の前に行われ或いはメイン噴射の後に行われるサブ噴射を上記各気筒毎に実施するエンジンの燃料噴射制御装置であって、
     上記エンジンの運転状態に応じて、メイン噴射の基本噴射量を算出するメイン基本噴射量算出手段と、
     上記エンジンの運転状態に応じて、サブ噴射の基本噴射量を算出するサブ基本噴射量算出手段と、
     上記各気筒間のエンジン回転速度の偏差に応じて、上記各気筒における燃料噴射量を増減補正する気筒間補正量を上記各気筒毎に算出する気筒間補正量算出手段と、
     上記気筒間補正量を、メイン噴射及びサブ噴射の基本噴射量を増減補正するための第一分割気筒間補正量と、メイン噴射の基本噴射量のみを増減補正するための第二分割気筒間補正量とに分割する気筒間補正量分割手段と、
     上記第一分割気筒間補正量を、メイン噴射量及びサブ噴射の基本噴射量に応じて、メイン噴射及びサブ噴射に分配する第一補正手段と、
     上記第二分割気筒間補正量を、メイン噴射量の基本噴射量に加算する第二補正手段と、 を備えたことを特徴とするエンジンの燃料噴射制御装置。
  2.  上記第一分割気筒間補正量と上記第二分割気筒間補正量との割合を上記エンジンの運転状態に応じて変化させる割合変化手段を備える請求項1に記載のエンジンの燃料噴射制御装置。
  3.  上記割合変化手段は、上記エンジンの負荷が高くなるに従い、上記気筒間補正量に占める第一分割気筒間補正量の割合が小さくなり、上記気筒間補正量に占める第二分割気筒間補正量の割合が大きくなるように、上記第一分割気筒間補正量と上記第二分割気筒間補正量との割合を変化させる請求項2に記載のエンジンの燃料噴射制御装置。
  4.  上記サブ噴射が、比較的多量のメイン噴射による急激な初期燃焼を抑制すべく、メイン噴射に先立って行われる比較的少量のパイロット噴射である請求項1から3のいずれかに記載のエンジンの燃料噴射制御装置。
  5.  エンジンの排気通路に配設された触媒を有する後処理装置を備え、
     上記サブ噴射が、排気ガスの温度を高めて上記後処理装置の触媒を活性化させるべく、上記メイン噴射の後に行われるポスト噴射である請求項1から3のいずれかに記載のエンジンの燃料噴射制御装置。
PCT/JP2009/055792 2008-04-28 2009-03-24 エンジンの燃料噴射制御装置 WO2009133737A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801149684A CN102016277B (zh) 2008-04-28 2009-03-24 发动机的燃料喷射控制装置
US12/989,709 US8596245B2 (en) 2008-04-28 2009-03-24 Fuel injection control device of engine
EP09738674.2A EP2290212B1 (en) 2008-04-28 2009-03-24 Fuel injection controller of engine
AU2009241109A AU2009241109B2 (en) 2008-04-28 2009-03-24 Fuel injection controller of engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-116948 2008-04-28
JP2008116948A JP5245517B2 (ja) 2008-04-28 2008-04-28 エンジンの燃料噴射制御装置

Publications (1)

Publication Number Publication Date
WO2009133737A1 true WO2009133737A1 (ja) 2009-11-05

Family

ID=41254960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055792 WO2009133737A1 (ja) 2008-04-28 2009-03-24 エンジンの燃料噴射制御装置

Country Status (6)

Country Link
US (1) US8596245B2 (ja)
EP (1) EP2290212B1 (ja)
JP (1) JP5245517B2 (ja)
CN (1) CN102016277B (ja)
AU (1) AU2009241109B2 (ja)
WO (1) WO2009133737A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202121A1 (de) * 2014-02-06 2015-08-06 Robert Bosch Gmbh Verfahren zur Bestimmung von Kraftstoffmengen bei einer Direkteinspritzung eines Kraftfahrzeugs
JP6307971B2 (ja) * 2014-03-27 2018-04-11 株式会社デンソー 燃料噴射制御装置
JP6269442B2 (ja) * 2014-10-30 2018-01-31 トヨタ自動車株式会社 内燃機関
JP6098613B2 (ja) * 2014-10-30 2017-03-22 トヨタ自動車株式会社 内燃機関
US10774771B2 (en) * 2016-03-04 2020-09-15 Ge Global Sourcing Llc Engine control system for reducing particulate matter
WO2019163477A1 (ja) * 2018-02-26 2019-08-29 日立オートモティブシステムズ株式会社 燃料噴射制御装置、燃料噴射制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763104A (ja) * 1993-08-23 1995-03-07 Nippondenso Co Ltd 燃料噴射制御装置
JP2001349243A (ja) 2000-06-07 2001-12-21 Isuzu Motors Ltd エンジンの燃料噴射制御装置
JP2003027995A (ja) * 2001-07-13 2003-01-29 Mazda Motor Corp ディーゼルエンジンの制御装置及び制御方法
JP2005248739A (ja) * 2004-03-02 2005-09-15 Denso Corp 噴射量学習制御装置
JP2007170246A (ja) * 2005-12-21 2007-07-05 Denso Corp 多気筒エンジンの燃料噴射制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720787B1 (fr) * 1994-06-06 1996-07-26 Renault Vehicules Ind Procédé et dispositif de détermination des paramètres spécifiques des injecteurs d'un moteur à combustion, notamment d'un moteur diesel à pré-injection.
DE60022918T2 (de) * 1999-01-13 2006-07-20 Delphi Technologies, Inc., Troy Steuerungsverfahren für eine selbstzündende Brennkraftmaschine
JP2003056389A (ja) * 2001-08-10 2003-02-26 Bosch Automotive Systems Corp 燃料噴射量制御方法及び装置
JP4089244B2 (ja) * 2002-03-01 2008-05-28 株式会社デンソー 内燃機関用噴射量制御装置
JP3966096B2 (ja) * 2002-06-20 2007-08-29 株式会社デンソー 内燃機関用噴射量制御装置
JP4333536B2 (ja) * 2004-09-14 2009-09-16 株式会社デンソー ディーゼルエンジン制御システム
JP4289280B2 (ja) * 2004-11-01 2009-07-01 株式会社デンソー 噴射量学習制御装置
DE102005001887B3 (de) * 2005-01-14 2006-07-06 Siemens Ag Verfahren zur Vergrößerung des Regelbereichs für die Gleichstellung von Einspritzmengenunterschieden
JP4899791B2 (ja) * 2006-10-30 2012-03-21 株式会社デンソー 燃料噴射制御装置及び燃料供給系の診断方法
JP4428405B2 (ja) * 2007-06-12 2010-03-10 株式会社デンソー 燃料噴射制御装置及びエンジン制御システム
DE102008042933B4 (de) * 2008-10-17 2016-06-16 Hyundai Motor Company Verfahren und Vorrichtung zum Dosieren von in einen Brennraum eines Verbrennungsmotors einzuspritzendem Kraftstoff

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763104A (ja) * 1993-08-23 1995-03-07 Nippondenso Co Ltd 燃料噴射制御装置
JP2001349243A (ja) 2000-06-07 2001-12-21 Isuzu Motors Ltd エンジンの燃料噴射制御装置
JP2003027995A (ja) * 2001-07-13 2003-01-29 Mazda Motor Corp ディーゼルエンジンの制御装置及び制御方法
JP2005248739A (ja) * 2004-03-02 2005-09-15 Denso Corp 噴射量学習制御装置
JP2007170246A (ja) * 2005-12-21 2007-07-05 Denso Corp 多気筒エンジンの燃料噴射制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2290212A4 *

Also Published As

Publication number Publication date
CN102016277B (zh) 2013-08-28
EP2290212B1 (en) 2018-08-08
EP2290212A4 (en) 2015-10-14
JP2009264314A (ja) 2009-11-12
EP2290212A1 (en) 2011-03-02
AU2009241109B2 (en) 2012-08-23
JP5245517B2 (ja) 2013-07-24
US8596245B2 (en) 2013-12-03
US20110040474A1 (en) 2011-02-17
CN102016277A (zh) 2011-04-13
AU2009241109A1 (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5660215B2 (ja) 内燃機関の制御装置
JP4315218B2 (ja) 燃料噴射制御装置
JP5245517B2 (ja) エンジンの燃料噴射制御装置
CN108252815B (zh) 用于内燃发动机的控制装置
JP4681511B2 (ja) エンジンの失火時出力あるいは負荷制限運転方法及びその装置
JP6156293B2 (ja) 内燃機関の燃料噴射制御装置
JP6309474B2 (ja) 内燃機関の空燃比制御装置
JP5040588B2 (ja) 燃料噴射システム
CN107917003B (zh) 一种发动机运转平稳性的控制方法
JP5741408B2 (ja) 内燃機関の制御装置
JP5692130B2 (ja) 内燃機関制御装置
JP4232710B2 (ja) 水素添加内燃機関の制御装置
JP2010077860A (ja) 内燃機関の空燃比制御装置
JP2013117203A (ja) 内燃機関の制御装置
JP2015010489A (ja) 内燃機関の制御装置
JP4510704B2 (ja) 内燃機関の燃料噴射制御装置
JP5260770B2 (ja) エンジンの制御装置
JP2007170198A (ja) 内燃機関のトルク制御装置
JP2021195869A (ja) エンジンの制御装置
JP2011085064A (ja) 内燃機関の燃料噴射制御装置
JP6046370B2 (ja) エンジンの制御装置
JP2011220274A (ja) 内燃機関の異常検出装置
JP2006046075A (ja) 水素添加内燃機関の制御装置
JP2008240554A (ja) ディーゼルエンジンの燃料噴射制御装置
JP2017115775A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114968.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12989709

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009738674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009241109

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009241109

Country of ref document: AU

Date of ref document: 20090324

Kind code of ref document: A