WO2009128531A1 - 湿式紡糸装置および湿式紡糸方法 - Google Patents

湿式紡糸装置および湿式紡糸方法 Download PDF

Info

Publication number
WO2009128531A1
WO2009128531A1 PCT/JP2009/057761 JP2009057761W WO2009128531A1 WO 2009128531 A1 WO2009128531 A1 WO 2009128531A1 JP 2009057761 W JP2009057761 W JP 2009057761W WO 2009128531 A1 WO2009128531 A1 WO 2009128531A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinning
yarn
liquid
coagulating
coagulating liquid
Prior art date
Application number
PCT/JP2009/057761
Other languages
English (en)
French (fr)
Inventor
池田 勝彦
稲田 浩成
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to EP09732071.7A priority Critical patent/EP2267198B1/en
Priority to JP2009519736A priority patent/JP5005031B2/ja
Priority to MX2010011413A priority patent/MX2010011413A/es
Priority to EP17172163.2A priority patent/EP3243938B1/en
Priority to US12/988,203 priority patent/US8529237B2/en
Priority to CN2009801133243A priority patent/CN102007235B/zh
Publication of WO2009128531A1 publication Critical patent/WO2009128531A1/ja
Priority to US13/946,466 priority patent/US9234301B2/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods

Definitions

  • the present invention relates to a wet spinning apparatus and a wet spinning method.
  • This application claims priority based on Japanese Patent Application No. 2008-108972 filed in Japan on April 18, 2008, the contents of which are incorporated herein by reference.
  • the wet spinning apparatus is an apparatus that discharges a spinning stock solution prepared by dissolving an organic polymer in a solvent into a coagulating liquid from a nozzle and solidifies it into a fibrous form. With this wet spinning device, acrylic fiber, polyvinyl alcohol fiber, and other acrylic fibers are produced.
  • the wet spinning apparatus generally includes a spinning tub in which a coagulating liquid is stored, a nozzle set at one end of the spinning tub, and a pulling roll set at the other end.
  • the discharged spinning solution is coagulated with a coagulating liquid to form a coagulated yarn, and then the coagulated yarn is pulled out of the spinning tub by a pulling roll.
  • the coagulation liquid is discharged into a spinning tub from a coagulation liquid ejection port disposed on the back side of the nozzle, and is allowed to flow in the running direction of the coagulation thread while coagulating the coagulation thread, It flows out from the spinning bath outlet disposed at the other end of the spinning bath to the coagulating liquid recovery unit.
  • the fiber solidified in the spinning bath (coagulated yarn) is separated from the coagulated liquid and washed, and then sent to subsequent processes such as chemical treatment, drying, and heat treatment.
  • the speed at which the coagulated yarn is taken up and spun is generally set faster than the average flow rate of the coagulating liquid supplied into the spinning bath. Therefore, the coagulating liquid flowing in the vicinity of the coagulated yarn is attracted to the coagulated yarn and accompanied, and is caused to flow in the take-up direction at a speed close to the spinning speed (hereinafter referred to as “associated flow”).
  • associated flow a speed close to the spinning speed
  • a phenomenon occurs in which the coagulated liquid flows backward from the downstream side to the upstream side to supplement the accompanying flow. In this way, in the spinning tub, the flow in the opposite direction of the accompanying flow and the reverse flow is generated adjacent to each other at the same time. Residence was occurring.
  • the yarn waste (nesting) that has broken the single yarn due to poor coagulation of the spinning dope floats in the spinning tub, and the thread waste pool comes into contact with the coagulated yarn. It may cause deterioration of quality and performance.
  • the spinning speed is increased to improve productivity, the turbulent flow of the coagulation liquid becomes more prominent, and the coagulated yarn is shaken in the spinning tub, causing fineness spots and single yarn breakage. It was an obstacle to production.
  • a wet-spinning apparatus for example, Patent Document 1 in which rectifying plates are provided on both sides of the coagulated yarn to divide the coagulated yarn along the traveling direction of the coagulated yarn.
  • Patent Document 1 A wet-spinning apparatus in which rectifying plates are provided on both sides of the coagulated yarn to divide the coagulated yarn along the traveling direction of the coagulated yarn.
  • the flow of the coagulating liquid can be prevented from being disturbed by the current plate.
  • the flow rate of the coagulating liquid in the outflow portion of the coagulating liquid in the spinning bath becomes too fast, and the coagulated yarn (tow) may be disturbed.
  • a coagulating liquid partitioning side plate for partitioning the coagulating liquid is provided between the coagulating yarn and the wall surface of the spinning tub parallel to the traveling direction of the coagulating yarn, and the coagulating liquid is extracted from the coagulating liquid partitioning side plate.
  • a wet spinning apparatus in which holes (openings) are formed is shown (for example, Patent Documents 2 to 4).
  • the inside of the spinning tub is divided into an inner tub in which the coagulated yarn on the inner side of the coagulating liquid partition side plate runs, and an outer tub on both sides thereof, and the accompanying flow generated in the spinning tub is inside. Control is performed so that the tank flows downstream and the reverse flow flows upstream through the outer tank.
  • the concentration and temperature of the coagulating liquid in the spinning tub are made uniform, and also caused by single yarn breakage or stagnation caused by the turbulent flow of the coagulating liquid. It is an object of the present invention to provide a wet spinning apparatus and a wet spinning method that can suppress the generation of floating yarn waste (nest), produce high-quality fibers, and can cope with high-speed spinning (high-speed take-up). .
  • the wet spinning device of the present invention is a wet spinning device that coagulates and spins a spinning dope into a coagulated yarn, and the cross-sectional area gradually decreases from one end to the other end in a spinning tub that stores the coagulating solution.
  • a coagulating bath part for coagulating the spinning dope, and a yarn running part for running the coagulated yarn having a cross-sectional area gradually increasing from one end to the other end. is there.
  • the wet spinning method of the present invention is a method of spinning synthetic fiber using the wet spinning apparatus, wherein the coagulating liquid flow velocity V (m at the connecting portion between the coagulating bath part and the yarn running part. / Min) is a wet spinning method in which the running yarn tow speed v (m / min) is 0.5 times or more and 1.5 times or less.
  • the wet spinning device of the present invention makes the concentration and temperature of the coagulating liquid in the spinning tub uniform by controlling the flow of the coagulating liquid in the spinning tub, and single yarn breakage caused by the turbulent flow of the coagulating liquid, It is possible to suppress the generation of yarn waste (nesting) that is generated due to staying and floats, and to manufacture fibers of good quality.
  • the flow of the coagulation liquid can be made uniform, it can cope with high-speed spinning (high-speed take-up).
  • the wet spinning device of the present invention it is possible to obtain a fiber of good quality in which single yarn breakage and lint (nest) adhesion are suppressed. Moreover, since it can respond also to high-speed spinning (high-speed take-up), a fiber can be manufactured with high productivity.
  • FIG. 2 is a sectional view taken along line XX of the wet spinning device of FIG.
  • FIG. 2 is a cross-sectional view taken along line YY of the wet spinning apparatus of FIG. It is the figure which showed the spinning tub exit of the other end surface of the spinning tub of the wet spinning apparatus of FIG.
  • FIG. 2 is the top view which showed schematic structure of the other embodiment example of the wet spinning apparatus of this invention. It is the top view which showed schematic structure of the other embodiment example of the wet spinning apparatus of this invention.
  • FIG. 3 is a plan view showing a schematic configuration of a wet spinning apparatus of Comparative Example 1.
  • FIG. 6 is a plan view showing a schematic configuration of a wet spinning apparatus of Comparative Example 2. It is the figure which showed the side shape of the baffle plate of the wet spinning apparatus of the comparative example 2.
  • FIG. 6 is a plan view showing a schematic configuration of a wet spinning apparatus of Comparative Example 3.
  • the wet spinning apparatus 1 includes a spinning tub 2 that stores the coagulating liquid C, and a coagulating liquid that is disposed on the downstream side (right side in FIG. 1) of the spinning tub 2 and flows out of the spinning tub 2. And a coagulating liquid recovery unit 3 for recovering C.
  • the spinning bath 2 includes a coagulation bath portion 2a that solidifies the spinning dope to form a coagulated yarn 13, a yarn running portion 2b on which the coagulated yarn 13 runs, and a coagulation bath portion 2a and a yarn running portion 2b. Is provided with a connecting portion 2c.
  • the spinning tub 2 is formed so that the liquid level CU of the coagulating liquid C and the bottom surface CB of the spinning tub 2 are substantially parallel.
  • a nozzle 5 that discharges the spinning raw solution toward the other end (downstream end) and a coagulating liquid C 2 from the upstream side of the nozzle 5 are ejected to one end (upstream end) of the spinning tub 2.
  • Two coagulating liquid ejection ports 4a and 4b are arranged (FIG. 1).
  • the nozzle 5 is not particularly limited as long as it is a nozzle that can discharge the spinning solution into the coagulating liquid C of the spinning tub 2, and examples thereof include a cylindrical nozzle.
  • a stock solution supply pipe 11 is connected to the back surface 51 (upstream surface; hereinafter referred to as nozzle back surface 51) of the nozzle 5.
  • the spinning solution is circulated from the stock solution supply pipe 11 through the nozzle back surface 51 to the nozzle 5.
  • a spout gold 52 is provided on the discharge surface (downstream surface) of the nozzle 5.
  • the spinning spout 52 is provided with a large number of fine discharge holes (not shown) for discharging a spinning stock solution that is solidified in the spinning tub 2 to become the coagulated yarn 13 (fibers) into the spinning tub 2. Yes.
  • the shape and number of the fine discharge holes are not particularly limited, and can be selected according to the production of the target synthetic fiber.
  • the distance L3 (liquid depth) from the liquid surface CU of the spinning tub 2 to the bottom surface CB of the spinning tub 2 is preferably in the range of 1.2 to 2 times the nozzle height z (mm).
  • z Nozzle height (mm) If the liquid depth (L3) is 1.2 times z or more, the coagulating liquid C is sufficiently supplied in the vicinity of the discharge surface of the nozzle 5 to suppress the turbulent flow and stagnation of the coagulating liquid C in the vicinity of the nozzle 5. Becomes easier. In particular, it becomes easy to suppress the turbulent flow caused by the spiral caused by the insufficient supply of the coagulating liquid, which is likely to occur at the liquid level CU near the upper portion of the nozzle 5.
  • the coagulation liquid C stays at a position away from the coagulated yarn 13, and a single yarn breaks at the liquid surface CU near the upper portion of the nozzle 5 at that portion. It is easy to prevent the lint (nesting) from floating, and the subsequent washing and stretching steps can be performed stably.
  • the liquid depth (L3) is preferably within the above range from the viewpoint that the effect of preventing the backflow of the coagulating liquid C is high.
  • the coagulating liquid ejection ports 4 a and 4 b are arranged on the upstream side of the nozzle 5 so that the ejection direction of each coagulating liquid C to be ejected is substantially parallel to the traveling direction of the coagulated yarn 13.
  • the surface of the coagulating liquid ejection ports 4a and 4b on the nozzle 5 side is provided with a number of fine ejection holes (not shown), and the coagulating liquid C is ejected downstream from these micro ejection holes.
  • the coagulating liquid ejection ports 4 a and 4 b are arranged at intervals so that the width of the coagulating liquid ejection port 4 a and the coagulating liquid ejection port 4 b (FIG. 1) is substantially the same as the width of the nozzle 5. It is installed. As a result, the coagulated liquid C ejected from the coagulated liquid ejection ports 4 a and 4 b collides with the back surface of the nozzle 5 (nozzle back surface 51) and coagulates around the coagulated yarn 13 immediately after being discharged from the nozzle 5. It is possible to suppress the disturbance of the flow of the liquid C.
  • the coagulating liquid ejection port 4 a in the present embodiment is provided so as to be in contact with the spinning tub side plate 21 that forms the side surface along the longitudinal direction of the spinning tub 2, and the coagulating liquid ejection port 4 b is provided on the spinning tub 2. It is provided in contact with another spinning tub side plate 22 that forms the side surface in the longitudinal direction. Further, an auxiliary plate 12 is provided between the coagulating liquid ejection port 4a and the coagulating liquid ejection port 4b. The auxiliary plate 12 does not have a fine ejection hole for ejecting the coagulating liquid C.
  • the tank wall surface in the short direction on the upstream side of the spinning tub 2 is formed by the coagulating liquid ejection ports 4 a and 4 b and the auxiliary plate 12 so that the coagulating liquid C can be stored in the spinning tub 2. It has become.
  • the other end of the spinning tub 2 is provided with a pulling roll 10 for pulling up the coagulated yarn 13 from the spinning tub 2, and a spinning tub outlet 15 is provided on the downstream side thereof.
  • the shape of the pulling roll 10 may be any shape as long as it can pull the coagulated yarn 13 from the spinning tub 2, and examples thereof include a roller shape as shown in FIG. 2A.
  • the nozzle 5 and the pulling roll 10 are arranged so that the center of the discharge surface of the nozzle 5 and the position of the coagulated yarn winding surface 30 of the pulling roll 10 are the center positions in the vertical direction of the liquid depth of the spinning tub 2. (FIG. 2A).
  • the take-up tension of the coagulated yarn 13 applied to the discharge surface of the nozzle 5 can be made uniform from the center portion to the outer peripheral portion of the coagulated yarn 13, and the single yarn resulting from excessive take-up tension generated locally. Cutting can be reduced as much as possible. This also provides an effect that the coagulated yarn 13 is easily solidified uniformly.
  • the spinning dope is solidified by the coagulating liquid C to become a coagulated yarn 13, and further sent downstream.
  • the solidified yarn 13 travels along the central axis C1 from the upstream side to the downstream side of the wet spinning apparatus 1.
  • the central axis C1 passes through the center of the discharge surface of the nozzle 5 and the center position in the vertical direction in the liquid depth of the coagulating liquid in the spinning tub 2, and the liquid surface CU and the bottom surface CB in the longitudinal direction of the spinning tub 2 It is an axis extending so as to be parallel.
  • the take-up roll 10 is turned around in the direction of arrow F while the coagulated yarn 13 is wound around the coagulated yarn winding surface 30 of the pulling roll 10 passing through the central axis C1, and is taken up outside the wet spinning apparatus 1. It is to be picked up by a device (not shown).
  • the spinning tub 2 includes two rectifying plates 14 a and 14 b formed from one end to the other end in the spinning tub 2.
  • the spinning tub 2 is divided into an inner tub 23 for running the coagulated yarn 13 and two outer tubs 24 formed on both sides of the inner tub 23 by the rectifying plates 14 a and 14 b.
  • the rectifying plate 14 a is formed so that one end thereof is in contact with the vicinity of the contact portion between the spinning tub side plate 21 and the coagulating liquid outlet 4 a and the other end is in contact with the spinning tub outlet 15.
  • the rectifying plate 14b is formed so that one end thereof is in contact with the vicinity of the contact portion between the spinning tub side plate 22 and the coagulating liquid ejection port 4b and the other end is in contact with the spinning tub outlet 15.
  • the rectifying plates 14a, 14b are gradually reduced after the cross-sectional area formed by the interval between the rectifying plates 14a, 14b is gradually reduced from one end (upstream side) to the other end (downstream side) of the spinning bath 2. It is formed to be large.
  • the cross-sectional area referred to in the present invention refers to the cross-sectional area of the portion filled with the coagulating liquid in the cross-sectional area of the spinning tub 2.
  • the coagulation bath length of the nozzle 5 immersed in the coagulation bath portion (L1; the distance between the junction of the nozzle cap 52 and the connection portion) is narrow, and the gap between the nozzle 5 and the current plate is narrow when the coagulation bath length (L1) is short.
  • the coagulating liquid flow rate exceeds the take-up speed of the coagulated yarn, yarn breakage occurs due to the turbulent flow of the spinning bath and the spinning bath flow, and if the coagulation bath length (L1) is long, there is a gap between the nozzle 5 and the current plate. The gap becomes wider and the expected rectification effect cannot be obtained. Therefore, the coagulation bath length (L1) indicates the liquid flow of the coagulation liquid C ejected from the coagulation liquid ejection ports 4a and 4b and the liquid flow of the coagulation liquid C that is accompanied by the coagulation yarn generated on the nozzle surface.
  • the optimum length can be appropriately selected according to the size of the nozzle 5, the production amount, and the take-up speed so that it can be controlled.
  • the width (L2) at the connecting portion formed by the distance between the rectifying plates 14a and 14b is preferably as small as possible so as not to contact the traveling solidified yarn 13.
  • the width (L2) at the connecting portion with respect to the traveling solidified yarn 13 is preferably set to be the same as or slightly wider than the traveling solidified yarn.
  • the length (L4) at the connecting portion formed by the distance between the rectifying plates 14a and 14b is preferably 40 mm to 160 mm. If the length of L4 is within this range, it becomes possible to prevent backflow and stagnation at the connecting portion, and it can be set within this range as appropriate depending on the production amount and take-up speed.
  • the ratio (S1 / S2) between the maximum cross-sectional area S1 of the coagulation bath part and the cross-sectional area S2 of the connection part is in the range of 1.5 to 5, the coagulating liquid C flows back to the vicinity of the nozzle 5 Thus, it is easy to prevent the turbulent flow of the entire flow of the coagulating liquid C in the spinning bath 2 and the increase in bath liquid resistance, the maximum value S3 of the cross-sectional area of the yarn running portion, and the cross-sectional area S2 of the connecting portion If the ratio (S3 / S2) is in the range of 1.5 or more and 5.5 or less, the coagulating liquid after being used for coagulation is returned to the vicinity of the nozzle 5 as a return flow, causing backflow or stagnation.
  • the minimum value of the cross-sectional area is set as the cross-sectional area S2 of the connecting portion.
  • the coagulating liquid C is not returned to the vicinity of the nozzle 5 as a backward flow as in the conventional wet spinning apparatus, but all flows out from the outlet hole 30 to the coagulating liquid collecting unit 3, while the coagulating liquid C is As the line 2 moves from the upstream side to the downstream side, it flows without causing backflow or stagnation while expanding in the direction perpendicular to the direction in which the solidified yarn 13 travels. Further, the surface of the rectifying plates 14a and 14b on the side of the coagulated yarn 13 is formed as smoothly as possible in order to prevent single yarn breakage that occurs when the coagulated yarn 13 contacts the rectifying plates 14a and 14b. Etc. are preferably not present.
  • the rectifying plates 14a and 14b are made of a stainless steel plate subjected to hard chrome plating or coated with a material having a small friction coefficient such as a fluororesin.
  • the height of the rectifying plates 14 a and 14 b is set to be higher than the liquid level CU of the coagulating liquid in the spinning tub 2.
  • the rectifying plates 14a and 14b are plates that do not have openings. When there is an opening in the current plate, single thread breakage generated from the nozzle, or yarn waste (nesting) that is generated and stagnated due to staying clogs the opening, making stable production difficult. 13 reattaches to the product, and the quality and performance of the product deteriorates.
  • the method for discharging the spinning bath solution out of the system at the spinning bath outlet 15 is provided with a plurality of outlet holes 30 in which horizontal rectangular holes as shown in FIG. Examples thereof include a method of discharging the coagulating liquid C from the entire spinning tub outlet 15 substantially uniformly and a method of discharging the coagulating liquid C by overflowing from the upper part of the spinning tub. In this case, it is necessary to provide an inclined plate that prevents the coagulating liquid from flowing backward or staying in the vicinity of the spinning bath outlet 15 (see FIG. 2B).
  • a stock solution for spinning is supplied from a stock solution supply device (not shown) to the stock solution supply pipe 11, and the spinning stock solution is sent from the stock solution supply pipe 11 to the nozzle 5 through the nozzle back surface 51 (FIG. 2A).
  • the spinning dope is discharged into the coagulation liquid C from the spout gold 52 on the discharge surface of the nozzle 5 and coagulated in the coagulation bath 2a to become the coagulated yarn 13.
  • the coagulated yarn 13 coagulated in the coagulation bath unit 2a travels in the yarn traveling unit 2b and is changed in direction by a pulling roll 10 set at the other end of the yarn traveling unit 2b. Is taken up by a take-up device (not shown) and sent to the subsequent cleaning / stretching process.
  • the coagulating liquid C travels from the numerous fine ejection holes (not shown) provided on the nozzle 5 side surface of the coagulating liquid ejection ports 4a and 4b toward the downstream side of the spinning tub 2 and the coagulated yarn 13 travels. It is discharged so as to be substantially parallel to the direction. As a result, the liquid resistance between the coagulated yarn 13 and the coagulated liquid C can be reduced as much as possible, and uniform solidification can be achieved by suppressing the running fluctuation of the coagulated yarn 13 due to the disturbance of the flow of the coagulated liquid C.
  • the ejection amount of the coagulating liquid C is such that the flow velocity V (m / min) at the connecting portion (point X in FIG. 1) is 0.5 to 1.5 times the running yarn tow speed v (m / min). It is preferable to make it discharge so that it may become the range of this, and to make it discharge
  • X point connection portion If the flow velocity V (m / min) at the junction X (FIG. 1) is 0.5 times or more of the running yarn tow speed v (m / min), the coagulating liquid C is in the vicinity of the nozzle 5.
  • an arrow without a symbol indicates a convection direction of the coagulating liquid C.
  • the coagulating liquid C ejected from the coagulating liquid ejection ports 4a and 4b is upstream in the spinning tub 2 due to the accompanying flow generated when the coagulated yarn 13 travels by being taken up by a take-up device (not shown). It flows from the side toward the downstream side.
  • the coagulating liquid C in the coagulating bath portion 2a is disturbed as much as possible near the nozzle 5 as the cross-sectional area of the coagulating bath portion 2a gradually decreases from one end to the other end by the rectifying plates 14a and 14b. It is supplied without causing flow.
  • the coagulated liquid C supplied to the vicinity of the nozzle 5 is sucked into the coagulated yarn 13 substantially uniformly and then gradually squeezed into the spinning tub 2 as the coagulated yarn 13 travels toward the pulling roll 10. Is issued.
  • the cross-sectional area of the yarn traveling portion 2b is caused by the rectifying plates 14a and 14b in the accompanying flow of the coagulating liquid C squeezed from the coagulated yarn 13 in the yarn traveling portion 2b and the coagulating liquid C generated by the traveling of the coagulated yarn 13.
  • As it gradually increases from one end to the other end it flows toward the spinning tub outlet 15 while spreading in the short direction of the spinning tub 2 without causing turbulence.
  • the coagulating liquid C flows out from the plurality of outlet holes 30 to the coagulating liquid recovery unit 3 substantially evenly.
  • the coagulating liquid C ejected from the coagulating liquid ejection ports 4a and 4b is not used as a return flow in the vicinity of the nozzle 5 after being used for coagulation, and then returned to the outlet as in the conventional wet spinning apparatus. It flows out from the hole 30 to the coagulation liquid recovery part 3. During that time, the coagulating liquid C flows in the spinning tub 2 from the upstream side to the downstream side without spreading back or staying while spreading in the direction perpendicular to the direction in which the coagulated yarn 13 travels. .
  • the coagulation liquid C discharged from the coagulation liquid recovery unit 3 to the outside of the wet spinning apparatus 1 is recovered by a recovery tank (not shown), and then coagulated according to the spinning conditions by adding DI (deionized) water. The concentration is adjusted, and the mixture is again circulated to the coagulating liquid ejection ports 4a and 4b by a pump (not shown).
  • the wet spinning apparatus and the wet spinning method of the present invention described above control the flow of the coagulating liquid in the spinning tub, thereby making the concentration and temperature of the coagulating liquid uniform in the spinning tub, and the turbulent flow of the coagulating liquid. It is possible to suppress the generation of floating yarn waste (nesting) caused by single yarn breakage or stagnation caused by the above, and it is possible to manufacture fibers of good quality. In addition, since the flow of the coagulation liquid can be made uniform, it can cope with high-speed spinning (high-speed take-up).
  • the spinning bath 2 has a cross-sectional area gradually decreasing from one end to the other end, and a cross-sectional area gradually increasing from one end to the other end. It is considered that the formation of the yarn traveling portion 2b is a factor. Thereby, since the coagulating liquid C flows while spreading in the short direction of the spinning tub 2 as it goes downstream in the yarn traveling section 2b, it is possible to suppress backflow and stagnation caused by the accompanying flow, The flow rate at the other end of the coagulating liquid C can be prevented from becoming too high and the tow (coagulated yarn) can be prevented from being disturbed.
  • the flow rate of the coagulating liquid is fast, A speed difference is generated, thereby preventing the coagulating liquid flowing from the yarn traveling part (2b) to the downstream side from flowing back to the coagulating bath part (2a) via the connecting part (2c).
  • backflow and stagnation can be suppressed without returning the coagulating liquid C to the vicinity of the nozzle 5 as a return flow, so that the concentration and temperature of the coagulating liquid C in the vicinity of the nozzle 5 vary. Can be suppressed, and the coagulation liquid replacement efficiency can be improved.
  • the baffle plate which has an opening is not required, it can suppress that yarn waste (nest) is caught in an opening and adheres to a coagulated yarn.
  • the coagulating liquid ejection ports 4 a and 4 b are provided so that the ejected coagulating liquid C does not collide with the nozzle back surface 51.
  • the liquid resistance between the coagulated yarn 13 and the coagulated liquid C can be reduced as much as possible, and the running fluctuation of the coagulated yarn 13 due to the disturbance of the flow of the coagulated liquid C can be prevented.
  • the coagulation process immediately after the spinning solution is discharged has a great influence on the quality and performance of the spun fiber. By suppressing turbulence as much as possible, fiber adhesion, single yarn breakage, fineness irregularities, and abnormal fibers are suppressed. Can be suppressed.
  • the wet spinning device of the present invention changes the shape of the rectifying plates 14a and 14b by changing the shape of the rectifying plates 14a and 14b even if the accompanying flow rate is increased by increasing the spinning speed in order to improve productivity.
  • the flow of the coagulating liquid C can be easily controlled uniformly in a certain direction from the upstream side to the downstream side. Therefore, it is possible to stably produce fibers of good quality even in high-speed spinning (high-speed take-up).
  • a fiber of good quality in which single yarn breakage and yarn waste (nest) adhesion are suppressed can be obtained by using the above-described wet spinning apparatus. Moreover, since it can respond also to high-speed spinning (high-speed take-up), a fiber can be manufactured with high productivity.
  • this is because the coagulating liquid is supplied with a flow velocity V (m / min) at the connecting portion (point X in FIG. 1) and a running yarn tow speed v (m / min) of 0. It is thought that this is because it is possible to effectively suppress the backflow and retention of the coagulation liquid by discharging in a range of 5 times to 1.5 times.
  • the wet spinning device of the present invention is not limited to the wet spinning device illustrated in FIGS.
  • the rectifying plate does not have to be formed up to the other end of the spinning tub 2 (the spinning tub outlet 15) as long as the backflow and retention of the coagulating liquid can be suppressed, as shown in FIG.
  • the wet spinning device 6 may be such that the rectifying plates 14a and 14b are in contact with the spinning tub side plates 21 and 22 in the middle portion of the yarn traveling portion 2b.
  • the rectifying plate is not limited to two as in the wet spinning apparatus 1, and may be, for example, a single rectifying plate including a bottom plate and side plates rising from both ends of the bottom plate.
  • a coagulation bath portion 2a whose cross-sectional area gradually decreases from one end portion to the other end portion, and a yarn traveling portion 2b whose cross-sectional area gradually increases from one end portion toward the other end portion. If it can be formed, as shown in FIG. 7, the coagulation bath portion 2 a and the yarn traveling portion 2 b are adjusted by adjusting the distance between the spinning tub side plates 21 and 22 of the spinning tub 2 without using the rectifying plates 14 a and 14 b. It may be a wet spinning apparatus in which is formed. However, since the existing wet spinning device can be used and the shape of the coagulation bath portion 2a and the yarn traveling portion 2b can be easily adjusted according to the spinning conditions, a rectifying plate is used as in the wet spinning device 1. It is preferable to use it.
  • Example 1 In the wet spinning apparatus 1 illustrated in FIGS. 1 to 5, L1 is 90 mm, L2 is 90 mm, L3 is 195 mm (a distance 1.5 times z), L4 is 80 mm, and the maximum cross-sectional area of the coagulation bath portion is 26520 mm. 2. Using a wet spinning apparatus in which the maximum cross-sectional area of the yarn running portion is 26520 mm 2 and the cross-sectional area of the connecting portion is 17550 mm 2 , the flow velocity at point X in the connecting portion is 7.2 m / min (0.9 of v) The coagulating liquid C was adjusted so that the speed was doubled.
  • the wet spinning device 1 discharges the spinning stock solution A through a spinning outlet gold 52 having a pore number of 24,000 and a pore diameter of 45 ⁇ m into a coagulating liquid C composed of a dimethylacetamide aqueous solution having a concentration of 60 mass% and a temperature of 35 ° C. did.
  • the coagulated yarn 13 coagulated with the coagulation liquid C was taken up at a speed 0.27 times the discharge linear speed of the spinning dope.
  • this fiber (coagulated yarn) was stretched 5 times at the same time as washing with water, and led to the first oil bath of aminosilicone-based oil prepared to 1.5% by mass.
  • This fiber was dried with a hot roll, and dry heat secondary stretching between hot rolls was performed 2.0 times. Thereafter, the moisture content of the fibers was adjusted with a touch roll, and carbon fiber precursor fibers having a single fiber fineness of 1.2 dtex were collected with a winder.
  • Examples 2 to 5 In the wet spinning apparatus 1 illustrated in FIG. 2B, Tables 1 and 2 show the maximum cross-sectional area (S1) of the coagulation bath part, the maximum cross-sectional area (S3) of the yarn running part, and the cross-sectional area (S2) of the connection part.
  • S1 maximum cross-sectional area
  • S3 maximum cross-sectional area
  • S2 cross-sectional area
  • a carbon fiber precursor fiber was obtained in the same manner as in Example 1 except that the procedure was changed as described above.
  • Example 6 In the wet spinning apparatus 1 illustrated in FIGS.
  • L1 is 110 mm
  • L2 is 145 mm
  • L3 is 252 mm (1.8 times z)
  • the maximum cross-sectional area of the coagulation bath portion is 60480 mm 2
  • the yarn running portion The wet flow spinning device with a maximum cross-sectional area of 36540 mm 2 and a cross-sectional area of the connection part of 60480 mm 2 , the flow velocity at the point X in the connection part was 9.6 m / min (1.2 times the speed of v)
  • the coagulation liquid C was adjusted as follows.
  • the wet spinning apparatus 1 discharges the spinning stock solution A through a spinning nozzle 52 having a pore number of 24,000 and a pore diameter of 45 ⁇ m into a coagulating liquid C composed of a dimethylacetamide aqueous solution having a concentration of 60 mass% and a temperature of 35 ° C. did.
  • the coagulated yarn 13 coagulated with the coagulation liquid C was taken up at a speed 0.27 times the discharge linear speed of the spinning dope.
  • Example 7 A carbon fiber precursor fiber was obtained in the same manner as in Example 1 except that the wet spinning apparatus shown in FIG. 6 was used.
  • Example 8 and 9 Carbon fiber precursor fibers were obtained in the same manner as in Example 1 except that L4 was changed as shown in Tables 1 and 2 in the wet spinning apparatus 1 illustrated in FIGS.
  • Example 10 A carbon fiber precursor fiber was obtained in the same manner as in Example 1 except that L3 was changed to 299 mm (2.3 times z) in the wet spinning apparatus 1 illustrated in FIGS.
  • Example 1 A carbon fiber precursor fiber was obtained in the same manner as in Example 1 except that the wet spinning apparatus shown in FIG. 8 was used.
  • Comparative Example 2 A carbon fiber precursor fiber was obtained in the same manner as in Example 1 except that the wet spinning apparatus shown in FIG. 9 was used.
  • Comparative Example 3 A carbon fiber precursor fiber was obtained in the same manner as in Example 1 except that the wet spinning apparatus shown in FIG. 11 was used.
  • Comparative Example 4 In the wet spinning apparatus 1 illustrated in FIG. 1 to FIG. 5, except that the flow rate of the coagulation liquid C at the joint X point in the connection portion is 3.2 m / min (speed 0.4 times v). In the same manner as in No. 1, a carbon fiber precursor fiber was obtained.
  • Tables 1 and 2 show the maximum cross-sectional area (S1) of the coagulation bath part, the maximum cross-sectional area (S3) of the yarn running part, and the cross-sectional area (S2) of the connection part.
  • S1 maximum cross-sectional area
  • S3 maximum cross-sectional area
  • S2 cross-sectional area
  • a carbon fiber precursor fiber was obtained in the same manner as in Example 1 except that the procedure was changed as described above.
  • the evaluation in the examples and comparative examples are the coagulating liquid flow situation in the spinning bath, the presence or absence of the staying portion, the evaluation of the concentration and temperature, the fiber cross-sectional shape in the obtained carbon fiber precursor fiber, the number of bonded yarns between single yarns
  • the evaluation was made by evaluating the take-up breaking ratio.
  • the wound carbon fiber precursor fiber is cut to about 5 mm, dispersed in 100 mL of water, stirred at 100 rpm for 1 minute, filtered through black filter paper, and the number of single yarn fibers adhered is determined. It was measured.
  • Example 7 Although a partial backflow and stay were seen in the spinning tub 2, the density
  • the obtained carbon fiber precursor fiber was confirmed to contain yarn waste (nesting), and the overall evaluation was poor.
  • Comparative Example 3 since the cross-sectional area of the spinning bath is constant, the flow of the coagulating liquid C becomes non-uniform, and the concentration and temperature of the coagulating liquid C become non-uniform. A fiber was obtained and the overall evaluation was poor.
  • Comparative Example 4 the wet spinning apparatus 1 of the present invention is used, but the flow rate of the coagulating liquid C is non-uniform because the flow rate of the coagulating liquid C is slow at the junction X of the coagulating bath part and the yarn traveling part.
  • Example 5 the wet spinning device 1 of the present invention is used, but the flow rate of the coagulating liquid C at the junction point X between the coagulating bath portion and the yarn running portion is increased, so that the accompanying flow generated around the nozzle Due to the influence of this, single yarn breakage occurred, and the concentration and temperature of the coagulation liquid C were measured, but stable spinning was impossible and a carbon fiber precursor fiber sample for evaluation could not be obtained. The overall evaluation was poor.
  • Example 11 the wet spinning device 1 of the present invention is used.
  • Example 12 the wet spinning device 1 of the present invention is used, but the yarn traveling section cross-sectional area (S3) is too narrow with respect to the connecting section cross-sectional area (S2).
  • Example 13 the wet spinning device 1 of the present invention is used. However, since the cross-sectional area (S3) of the yarn running portion is too wide, the flow of the coagulating liquid C is not around the coagulating bath portion and the yarn running portion. Since it became uniform and thereby the concentration and temperature of the coagulating liquid C became non-uniform, a carbon fiber precursor fiber having poor quality was obtained.
  • Example 14 the wet spinning apparatus 1 of the present invention is used. However, since the cross-sectional area (S1) of the coagulation bath is too narrow, the flow rate of the coagulation liquid C becomes slightly faster than the coagulation thread take-up speed. Since the flow of water became non-uniform and the concentration and temperature of the coagulation liquid C became non-uniform, carbon fiber precursor fibers with poor quality were obtained, and the overall evaluation was good.
  • the wet spinning apparatus 1 of the present invention is used. However, since the cross-sectional area (S1) of the coagulation bath is wider than the cross-sectional area (S2) of the connection, the area around the coagulation bath and the yarn running part is around. Since the flow of the coagulation liquid C became non-uniform, and the concentration and temperature of the coagulation liquid C became non-uniform, carbon fiber precursor fibers having poor quality were obtained, and the overall evaluation was good.
  • the wet spinning apparatus and wet spinning method of the present invention can be used suitably for wet spinning of various synthetic fibers such as carbon fibers because the synthetic fiber having excellent quality can be produced by controlling the flow of the coagulating liquid in the spinning bath. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

 紡浴槽内での凝固液の流れを制御することで良好な品質の繊維を製造することができ、高速紡糸(高速引取り)にも対応できる湿式紡糸装置および湿式紡糸方法を目的とする。紡浴槽(2)の一端部に、紡糸原液を吐出するノズル(5)および凝固液(C)を吐出する凝固液噴出し口(4a)、(4b)、他端部に凝固糸条(13)を引き上げる引き上げロール(10)および凝固液(C)が流出する凝固液回収部(3)が設けられ、紡浴槽(2)が、断面積が一端部から他端部に向かって徐々に小さくなっている、紡糸原液を凝固させる凝固浴部(2a)と、断面積が一端部から他端部に向かって徐々に大きくなっている、凝固糸条(13)が走行する糸条走行部(2b)とを有している湿式紡糸装置(1)。

Description

湿式紡糸装置および湿式紡糸方法
 本発明は、湿式紡糸装置および湿式紡糸方法に関する。
 本願は、2008年4月18日に、日本に出願された特願2008-108972号に基づき優先権を主張し、その内容をここに援用する。
 湿式紡糸装置は、有機系高分子重合体を溶媒に溶解して調製した紡糸原液を、ノズルから凝固液中に吐出して繊維状に固化させる装置である。この湿式紡糸装置により、アクリル繊維、ポリビニルアルコール繊維、その他アクリル系繊維などが製造される。
 湿式紡糸装置は、一般的に、凝固液が貯留される紡浴槽と、前記紡浴槽内の一端部に沈設されたノズルおよび他端部に沈設された引き上げロールとを備えており、前記ノズルから吐出された紡糸原液が凝固液により凝固されることで凝固糸条とされた後、前記凝固糸条が引き上げロールにより紡浴槽外に引き取られるようになっている。前記凝固液は、前記ノズルの背面側に配設された凝固液噴出し口から紡浴槽内に吐出され、前記凝固糸条を凝固させつつ前記凝固糸条の走行方向へと流されていき、紡浴槽の他端部に配設された紡浴槽出口より凝固液回収部へと流出される。前記紡浴槽内で固化された繊維(凝固糸条)は、凝固液から分離されて洗浄された後、薬液処理、乾燥、熱処理等の後工程へと送られる。
 前記凝固糸条を引き取り紡糸する速度は、一般に紡浴槽内に供給される凝固液の平均流速よりも速く設定される。そのため、凝固糸条の近傍を流れる凝固液は凝固糸条に引き寄せられて随伴され、紡糸速度に近い速さで引き取り方向へと流される(以下、これを「随伴流」という)。そして、紡浴槽内の前記凝固糸条から離れた底壁や側壁付近では、随伴流を補うために凝固液が下流側から上流側へと逆流する現象が起こる。このように、紡浴槽内では随伴流と逆流との相反する方向の流れが同時に隣接して発生するため、それらが相互に干渉し合って凝固液の流れが不規則となり、局所的に渦や滞留が発生していた。
 紡浴槽内でこのような渦や滞留が発生すると、紡糸原液の凝固不良により単糸切れした糸屑(ネスト)が紡浴槽内に浮遊し、糸屑溜りが凝固糸条に接触して製品の品質・性能の低下を引き起こすことがあった。また、生産性を向上させるために紡糸速度を上げると、凝固液の乱流がより顕著になり、凝固糸条が紡浴槽内で揺さぶられて繊度斑や単糸切れなどを引き起こすため、安定した生産の妨げとなっていた。
 そのため、上記問題を解決するために、以下の湿式紡糸装置が示されている。
 凝固糸条の両側に、凝固糸条の走行方向に沿って仕切る整流板を設けた湿式紡糸装置(例えば、特許文献1)。この湿式紡糸装置では、整流板により凝固液の流れが乱れることを抑制することができる。
 しかし、このような湿式紡糸装置では、紡浴槽の凝固液の流出部分における凝固液の流速が速くなりすぎて凝固糸条(トウ)に乱れが生じることがあった。
 そこで、凝固糸条と、紡浴槽の前記凝固糸条の走行方向に並行する壁面との間に、凝固液を仕切る凝固液仕切り側板(整流板)を設け、前記凝固液仕切り側板に凝固液抜き出し穴(開口)が形成された湿式紡糸装置が示されている(例えば、特許文献2~4)。この湿式紡糸装置では、紡浴槽内が、凝固液仕切り側板の内側の凝固糸条が走行する内槽と、その両側の外槽とに分けられており、紡浴槽内で発生する随伴流が内槽を下流側へ流れ、逆流が外槽を上流側へ流れるように制御される。また、内槽から外槽に向かって前記開口から凝固液を流出させることにより内槽の凝固液の流速が速くなりすぎることを抑制できる。
特開昭62-33814号公報 特開平9-67714号公報 特実昭41-18091号公報 特開平11-229227号公報
 しかし、特許文献2および3のような湿式紡糸装置では、整流板に設けられた開口に凝固糸条から生じたネストが詰まり、そのネストが凝固糸条に再付着することで製品の品質・性能が低下することがあった。
 また、特許文献1、2および4のような湿式紡糸装置では、発生した逆流液を整流板の外側からノズル近傍に復流させて新たに供給される凝固液と混合させるため、ノズル近傍において、凝固液の乱流や、凝固液の濃度斑・温度斑が発生して凝固糸条の単糸切れなどを生じさせることがあった。
 以上のような理由から、紡浴槽内の凝固液の流れを制御して、品質・性能に優れた合成繊維が得られる湿式紡糸装置が望まれている。
 そこで本発明では、紡浴槽内での凝固液の流れを制御することで前記紡浴槽内における凝固液の濃度・温度を均一化し、また凝固液の乱流によって生じる単糸切れや、滞留によって発生して浮遊する糸屑(ネスト)の生成を抑制して、良好な品質の繊維を製造することができ、高速紡糸(高速引取り)にも対応できる湿式紡糸装置および湿式紡糸方法を目的とする。
 本発明の湿式紡糸装置は、紡糸原液を凝固させ凝固糸条にして紡糸する湿式紡糸装置において、凝固液を貯留する紡浴槽に、断面積が一端部から他端部に向かって徐々に小さくなっている前記紡糸原液を凝固させる凝固浴部と、断面積が一端部から他端部に向かって徐々に大きくなっている前記凝固糸条が走行する糸条走行部とが設けられている装置である。
 また、本発明の湿式紡糸方法は、前記湿式紡糸装置を用いて合成繊維を紡糸する方法であって、前記凝固浴部と前記糸条走行部との接続部での凝固液の流速V(m/min)を、走行糸条トウ速度v(m/min)の0.5倍以上1.5倍以下とする湿式紡糸方法である。
 本発明の湿式紡糸装置は、紡浴槽内での凝固液の流れを制御することで前記紡浴槽内における凝固液の濃度・温度を均一化し、また凝固液の乱流によって生じる単糸切れや、滞留によって発生し浮遊する糸屑(ネスト)の生成を抑制して、良好な品質の繊維を製造することができる。また、凝固液の流れを均一にできるため、高速紡糸(高速引取り)にも対応できる。
 また、本発明の湿式紡糸装置によれば、単糸切れや糸屑(ネスト)の付着が抑えられた良好な品質の繊維が得られる。また、高速紡糸(高速引取り)にも対応できるため高い生産性で繊維を製造できる。
本発明の湿式紡糸装置の一実施形態例の概略構成を示した平面図である。 図1の湿式紡糸装置を示した側面図である。 図1の湿式紡糸装置において傾斜板を示した側面図である。 図1の湿式紡糸装置のX-X線における断面図である。 図1の湿式紡糸装置のY-Y線における断面図である。 図1の湿式紡糸装置の紡浴槽の他端面の紡浴槽出口を示した図である。 本発明の湿式紡糸装置の他の実施形態例の概略構成を示した平面図である。 本発明の湿式紡糸装置の他の実施形態例の概略構成を示した平面図である。 比較例1の湿式紡糸装置の概略構成を示した平面図である。 比較例2の湿式紡糸装置の概略構成を示した平面図である。 比較例2の湿式紡糸装置の整流板の側面形状を示した図である。 比較例3の湿式紡糸装置の概略構成を示した平面図である。
 1 湿式紡糸装置 2 紡浴槽 2a 凝固浴部 2b 糸条走行部 2c 接続部 3 凝固液回収部 4a、4b 凝固液噴出し口 5 ノズル 10 引き上げロール 13 凝固糸条 14a、14b 整流板 51 ノズル背面 C 凝固液 S1 凝固浴部の最大断面積 S2 接続部断面積 S3 糸状走行部の最大断面積
[湿式紡糸装置]
 本発明の湿式紡糸装置の実施形態の一例について、図1~5に基づいて詳細に説明する。
 湿式紡糸装置1は、図1に示すように、凝固液Cを貯留する紡浴槽2と、紡浴槽2の下流側(図1における右側)に配設され、紡浴槽2から流出された凝固液Cを回収する凝固液回収部3とを備えている。紡浴槽2には、紡糸原液を凝固させて凝固糸条13とする凝固浴部2aと、凝固糸条13が走行する糸条走行部2bと、凝固浴部2aと糸条走行部2bの間に接続部2cが設けられている。また、紡浴槽2は、図2Aに示すように、凝固液Cの液面CUと紡浴槽2の底面CBとが略平行になるように形成されている。
 紡浴槽2の一端部(上流側の端部)には、紡糸原液を他端部(下流側の端部)に向けて吐出するノズル5と、ノズル5の上流側から凝固液Cを噴き出す2つの凝固液噴出し口4a、4bとが配設されている(図1)。
 ノズル5は、紡浴槽2の凝固液C内に紡糸原液を吐出することのできるノズルであれば特に限定はなく、例えば、円柱形状のノズルが挙げられる。
 ノズル5の背面51(上流側の面。以下、ノズル背面51という。)には、原液供給管11が接続されている。これにより、原液供給管11からノズル背面51を通じて、紡糸原液がノズル5に流通されるようになっている。
 ノズル5の吐出面(下流側の面)には、紡出口金52が備えられている。紡出口金52は、その面に、紡浴槽2内で凝固されて凝固糸条13(繊維)となる紡糸原液を紡浴槽2内へと吐出する多数の微細吐出孔(不図示)を備えている。微細吐出孔の形状および数は特に限定はなく、目的の合成繊維の製造に応じて選択できる。
 また、紡浴槽2の液面CUと紡浴槽2の底面CBまでの距離L3(液深)はノズル高さz(mm)の1.2倍以上2倍以下の範囲にあることが好ましい。
 L3:液深(mm), z:ノズル高さ(mm)
 液深(L3)がzの1.2倍以上であれば、ノズル5の吐出面近傍に凝固液Cが充分に供給され、ノズル5近傍での凝固液Cの乱流や滞留を抑制することが容易になる。特にノズル5の上部付近の液面CUで発生しやすい、凝固液の供給不足から生じる渦巻きによる乱流を抑えることが容易になる。
 液深(L3)がzの2倍以下であれば、凝固糸条13から離れた位置で凝固液Cの滞留が発生し、その部分でノズル5の上部付近の液面CUにおいて単糸切れした糸屑(ネスト)が浮遊することを防ぎやすく、その後の洗浄・延伸工程が安定して行いやすくなる。液深(L3)は、凝固液Cの逆流を防止する効果が高い点から、前記範囲内にすることが好ましい。
 凝固液噴出し口4a、4bは、ノズル5の上流側に、噴き出されるそれぞれの凝固液Cの噴き出し方向が凝固糸条13の走行方向と略平行になるように配設されている。凝固液噴出し口4a、4bのノズル5側の面には多数の微細噴出孔(不図示)が備えられており、これらの微細噴出孔から凝固液Cが下流側へと噴き出される。
 また、凝固液噴出し口4a、4bは、凝固液噴出し口4aと凝固液噴出し口4bの幅(図1)がノズル5の幅と略同一寸法となるように、間隔を開けて配設されている。これにより、凝固液噴出し口4a、4bから噴き出された凝固液Cがノズル5の背面(ノズル背面51)に衝突して、ノズル5から吐出された直後の凝固糸条13の周囲で凝固液Cの流れが乱れることを抑制することができる。
 また、本実施形態における凝固液噴出し口4aは、紡浴槽2の長手方向に沿った側面を形成する紡浴槽側板21に接するように設けられ、凝固液噴出し口4bは、紡浴槽2の長手方向の側面を形成するもう一つの紡浴槽側板22に接するように設けられている。また、凝固液噴出し口4aと凝固液噴出し口4bの間には補助板12が設けられている。補助板12は、凝固液Cを噴き出す微細噴出孔を有していない。
 このように、凝固液噴出し口4a、4bおよび補助板12で、紡浴槽2の上流側の短手方向の槽壁面が形成されており、紡浴槽2内に凝固液Cが貯留できるようになっている。
 紡浴槽2の他端部には、紡浴槽2から凝固糸条13を引き上げる引き上げロール10が設けられており、その下流側に紡浴槽出口15が設けられている。引き上げロール10の形状は、凝固糸条13を紡浴槽2から引き上げることができるものであればよく、例えば、図2Aに示すようなローラー形状が挙げられる。
 ノズル5および引き上げロール10は、ノズル5の吐出面の中心と、引き上げロール10の凝固糸条巻き回し面30の位置とが、紡浴槽2の液深の上下方向の中心位置になるように配設される(図2A)。これにより、ノズル5の吐出面に掛かる凝固糸条13の引き取り張力を、凝固糸条13の中心部から外周部まで均等にすることができ、局所的に生じる過剰な引き取り張力に起因する単糸切れを極力低減することができる。また、これにより凝固糸条13が均一に凝固化されやすくなる効果も得られる。
 紡糸原液は紡浴槽2内へ吐出された直後に凝固液Cにより凝固されて凝固糸条13となり、さらに下流側へと送られる。このとき、凝固糸条13は、湿式紡糸装置1の上流側から下流側へと中心軸C1に沿うように走行する。ここで、中心軸C1は、ノズル5の吐出面の中心、および紡浴槽2の凝固液の液深における上下方向の中心位置を通って、紡浴槽2の長手方向に液面CUおよび底面CBと平行となるように延びる軸である。
 そして、中心軸C1を通る引き上げロール10の凝固糸条巻き回し面30で凝固糸条13が巻き回されながら矢印Fの向きに方向転換され、湿式紡糸装置1の外部に配設される引取り装置(不図示)によって引き取られるようになっている。
 また、紡浴槽2は、図1に示すように、紡浴槽2内の一端部から他端部にわたって形成される2つの整流板14a、14bを備えている。本実施形態では、整流板14a、14bにより、紡浴槽2が凝固糸条13を走行させる内槽23と、内槽23の両側に形成される2つの外槽24とに分けられている。
 整流板14aは、その一端が紡浴槽側板21と凝固液噴出し口4aとの当接部付近に接し、他端が紡浴槽出口15に接するように形成されている。整流板14bも同様に、その一端が紡浴槽側板22と凝固液噴出し口4bとの当接部付近に接し、他端が紡浴槽出口15に接するように形成されている。
 整流板14a、14bは、整流板14a、14bの間隔により形成される断面積が紡浴槽2の一端部(上流側)から他端部(下流側)に向かって徐々に小さくされた後、徐々に大きくなるように形成されている。本願発明でいう、断面積とは、紡浴槽2の断面積の内、凝固液で満たされている部分の断面積のことをさす。
 凝固浴部に浸漬させるノズル5の凝固浴長(L1;ノズル口金52と接続部との接合点との距離)は、凝固浴長(L1)が短いとノズル5と整流板との隙間が狭くなり、凝固液の流速が凝固糸条の引き取り速度以上となり、紡浴液の乱流や紡浴液流による糸切れが生じ、凝固浴長(L1)が長いとノズル5と整流板間との隙間が広くなり、期待される整流効果が得られなくなる。
 よって、凝固浴長(L1)は凝固液噴出し口4a、4bから噴出された凝固液Cの液流とノズル面に発生する凝固糸条に引き寄せられて随伴される凝固液Cの液流を制御することが可能となる様に、ノズル5の大きさ,生産量,引き取り速度によって適宜最適長を選択することができる。これにより、ノズル面における凝固液の置換効率が良くなり、均一な凝固が可能となる。
 整流板14a、14bの間隔により形成される接続部における幅(L2)は、走行する凝固糸条13に接触しない程度に極力小さくすることが好ましい。走行する凝固糸条13に対して接続部における幅(L2)は、走行する凝固糸条に対して、同じか、もしくはわずかに広く設定する事が好ましい。走行する凝固糸条13に対して接続部における幅(L2)が狭い場合、整流板との接触により凝固糸条が損傷し、糸切れの原因となり、また走行する凝固糸条13に対して接続部における幅(L2)が広い場合、走行する凝固糸条13と整流板14a,14bとの間で逆流や滞留が生じる為、好ましくない。
 整流板14a、14bの間隔により形成される接続部における長さ(L4)は、40mmから160mmであることが好ましい。L4の長さがこの範囲にあれば、接続部における逆流や滞留を防ぐことが可能となり、生産量や引き取り速度によって、適宜この範囲内で設定することが出来る。
 凝固浴部の断面積の最大値S1と、接続部の断面積S2との比(S1/S2)が、1.5以上5以下の範囲であれば、凝固液Cがノズル5近傍へと逆流して、紡浴槽2内における凝固液Cの流れ全体の乱流や浴液抵抗の増大を引き起こすことを防ぎやすく、糸条走行部の断面積の最大値S3と、接続部の断面積S2との比(S3/S2)が、1.5以上5.5以下の範囲であれば、凝固に使用された後の凝固液が、ノズル5の近傍に復流として戻され、逆流や滞留を引き起こすことを防ぐことができ、さらに、ノズル5より発生する単糸切れや、滞留によって発生し浮遊する糸屑(ネスト)が、凝固糸条13に再付着し、製品の品質・性能が低下することを防ぐことが可能となる。なお、接続部において、断面積が変化する場合は、前記断面積の最小値を接続部の断面積S2とする。
すなわち、凝固液Cは従来の湿式紡糸装置のようにノズル5の近傍に復流として戻されることなく、全て出口孔30から凝固液回収部3へと流出され、その間凝固液Cは、紡浴槽2内を上流側から下流側に行くに従って、凝固糸条13が走行する方向に対して垂直方向に拡がっていきながら逆流や滞留を起こすことなく流れていく。
 また、整流板14a、14bの凝固糸条13側の面は、凝固糸条13が万一整流板14a、14bに接触した場合に起こる単糸切れを防止するため、極力平滑に形成し、突起等を存在させないことが好ましい。また、整流板14a、14bには、ハードクロムメッキを施したステンレス板を用いたり、フッ素樹脂などの摩擦係数の小さい材料をコーティングしたりすることがより好ましい。
 整流板14a、14bの高さは、紡浴槽2の凝固液の液面CUよりも高くなるようにする。
 整流板14a、14bは、開口を有さない板である。整流板に開口がある場合、ノズルより発生する単糸切れや、滞留によって発生し浮遊する糸屑(ネスト)が、開口部に詰まり、安定生産が困難となったり、またそのネストが凝固糸条13に再付着したりして、製品の品質・性能が低下する。
 紡浴槽出口15における紡浴液の系外への排出方法は、図5に示すような横型矩形孔が上下方向に均等に形成されている出口孔30が複数備えられて排出板を介して、凝固液Cを紡浴槽出口15全体から略均等に排出する方法や凝固液Cを紡浴槽の上部よりオーバーフローさせて排出させる方法などが挙げられる。この場合、紡浴槽出口15付近での凝固液の逆流や滞留を防止するような、傾斜板を設けることが必要となる(図2B参照)。
(湿式紡糸方法)
 以下、本実施形態の湿式紡糸装置1を用いて合成繊維を紡糸する方法について説明する。
 まず、原液供給装置(不図示)から原液供給管11に紡糸原液が供給され、前記紡糸原液が原液供給管11からノズル背面51を介してノズル5へと送られる(図2A)。ついで、紡糸原液がノズル5の吐出面の紡出口金52から凝固液C内へと吐出され、凝固浴部2aで凝固されて凝固糸条13となる。
 凝固浴部2aにおいて凝固された凝固糸条13は、糸条走行部2b内を走行し、糸条走行部2bの他端部に沈設された引き上げロール10により方向転換され、湿式紡糸装置1外部へと送られて引取り装置(不図示)により引き取られ、その後の洗浄・延伸工程へと送られる。
 凝固液Cは、凝固液噴出し口4a、4bのノズル5側の面に備えられる多数の微細噴出孔(不図示)から、紡浴槽2の下流側に向かって、かつ凝固糸条13の走行方向と略平行になるように吐出される。これにより、凝固糸条13と凝固液Cとの液抵抗を極力小さくすることができ、凝固液Cの流れの乱れによる凝固糸条13の走行揺れを抑制することにより均一な凝固化が行える。
 凝固液Cの噴出量は、接続部(図1:X点)での流速V(m/min)を、走行糸条トウ速度v(m/min)の0.5倍以上1.5倍以下の範囲となるように吐出させ、前記凝固液回収部へ排出させることが好ましい。
  V:X点における流速(m/min)
  v:引取速度(m/min)
  X点:接続部
 接合点X(図1)の流速V(m/min)が、走行糸条トウ速度v(m/min)の0.5倍以上であれば、凝固液Cがノズル5近傍へと逆流して、紡浴槽2内における凝固液Cの流れ全体の乱流や浴液抵抗の増大を引き起こすことを防ぎやすく、また1.5倍以下とすれば、走行する凝固糸条13と凝固液Cの随伴流の流速とのバランスが崩れて凝固液Cの流れに乱流が発生して、凝固糸条13の接着や単糸切れが生じることを防ぎやすい。
 図1において符号を付していない矢印は、凝固液Cの対流方向を示している。凝固液噴出し口4a、4bから噴き出される凝固液Cは、凝固糸条13が引取り装置(不図示)により引き取られて走行する際に発生する随伴流に伴い、紡浴槽2内の上流側から下流側へ向かって流されていく。
 凝固浴部2aにおける凝固液Cは、整流板14a、14bにより凝固浴部2aの断面積が一端部から他端部に向かって徐々に小さくなっているのに伴って、ノズル5近傍に極力乱流を起こすことなく供給されるようになっている。
 ノズル5近傍に供給された凝固液Cは、凝固糸条13に略均一に吸入された後、凝固糸条13が引き上げロール10に向かって走行されていくに従って徐々に紡浴槽2内へと搾り出される。
 糸条走行部2bにおける凝固糸条13から搾り出された凝固液Cおよび凝固糸条13の走行によって生じる凝固液Cの随伴流は、整流板14a、14bにより糸条走行部2bの断面積が一端部から他端部に向かって徐々に大きくなっているのに伴って、乱流を起こすことなく紡浴槽2の短手方向に拡がっていきながら、紡浴槽出口15へと流れていく。ついで、紡浴槽出口15において、複数の出口孔30から略均等に凝固液Cが凝固液回収部3へと流出される。
 すなわち、凝固液噴出し口4a、4bから噴き出された凝固液Cは、凝固に使用された後に、従来の湿式紡糸装置のようにノズル5の近傍に復流として戻されることなく、全て出口孔30から凝固液回収部3へと流出される。またその間、凝固液Cは、紡浴槽2内を上流側から下流側に行くに従って、凝固糸条13が走行する方向に対して垂直方向に拡がっていきながら逆流や滞留を起こすことなく流れていく。
 凝固液回収部3から湿式紡糸装置1の外部へと排出された凝固液Cは、回収タンク(図示せず)により回収された後、DI(脱イオン)水の添加により紡糸条件に適した凝固濃度に調整されて、再びポンプ(図示せず)により凝固液噴出し口4a、4bへと循環される。
 以上説明した本発明の湿式紡糸装置および湿式紡糸方法は、紡浴槽内での凝固液の流れを制御することで、紡浴槽内における凝固液の濃度・温度を均一化し、また凝固液の乱流によって生じる単糸切れや滞留によって発生して浮遊する糸屑(ネスト)の生成を抑制して、良好な品質の繊維を製造することができる。また、凝固液の流れを均一にできるため、高速紡糸(高速引取り)にも対応できる。
 これは、紡浴槽2に、断面積が一端部から他端部に向かって徐々に小さくなっている凝固浴部2aと、断面積が一端部から他端部に向かって徐々に大きくなっている糸条走行部2bを形成していることが要因であると考えられる。これにより、糸条走行部2bにおいて下流側に行くに従って、凝固液Cが紡浴槽2の短手方向に拡がりながら流れていくため、随伴流が起因となる逆流や滞留を抑えることができ、また凝固液Cの他端部における流速が速くなりすぎてトウ(凝固糸条)が乱れることを抑制でき、さらに、接続部では、凝固液の流速が早く、糸条走行部の凝固液の流速と速度差が生じ、これにより接続部(2c)を介して、糸条走行部(2b)から下流側へと流れる凝固液が凝固浴部(2a)へ逆流することを防ぐことが可能となる。また、従来の湿式紡糸装置とは異なり、凝固液Cをノズル5の近傍に復流として戻さなくても逆流や滞留を抑えることができるため、ノズル5近傍における凝固液Cの濃度および温度に斑が生じることを抑えることができ、また凝固液置換効率を向上させることもできる。
 また、本発明の湿式紡糸装置では、開口を有する整流板を必要としないため、開口に糸屑(ネスト)が引っ掛かって凝固糸条に付着することを抑えることができる。
 また、噴き出された凝固液Cがノズル背面51に衝突しないように凝固液噴出し口4a、4bが配設されていることも好ましい。これにより、凝固糸条13と凝固液Cとの液抵抗を極力小さくすることができ、凝固液Cの流れの乱れによる凝固糸条13の走行揺れを防止できる。
 紡糸原液が吐出された直後の凝固過程は、紡糸される繊維の品質・性能に非常に大きく影響するため、極力乱流を抑制することにより、繊維の接着や単糸切れ、繊度斑や異常繊維の発生を抑制できる。
 また、本発明の湿式紡糸装置は、生産性を向上させるために紡糸速度を上げることにより随伴流量が増大した場合であっても、整流板14a、14bの形状を変えて凝固浴部2aと糸条走行部2bの長さおよび幅を調節することで、容易に凝固液Cの流れを上流側から下流側へと一定方向へ均一に制御することができる。そのため、高速紡糸(高速引取り)においても良好な品質の繊維を安定して製造できる。
 また、本発明の湿式紡糸方法は、前述の湿式紡糸装置を用いることにより、単糸切れや糸屑(ネスト)の付着が抑えられた良好な品質の繊維が得られる。また、高速紡糸(高速引取り)にも対応できるため高い生産性で繊維を製造できる。
 これは、前述の湿式紡糸装置の効果に加え、凝固液を、接続部(図1:X点)での流速V(m/min)を、走行糸条トウ速度v(m/min)の0.5倍以上1.5倍以下の範囲となるように吐出させることにより、凝固液の逆流や滞留を効果的に抑制できるためであると考えられる。
 尚、本発明の湿式紡糸装置は、図1~5に例示した湿式紡糸装置には限定されない。例えば、整流板は、凝固液の逆流および滞留を抑制できる範囲であれば紡浴槽2の他端部(紡浴槽出口15)まで形成されている形態でなくてもよく、図6に示すように、糸条走行部2bの中間部分で整流板14a、14bが紡浴槽側板21、22に接するような湿式紡糸装置6であってもよい。
 また、整流板は、湿式紡糸装置1のように2枚には限定されず、例えば、底板と前記底板の両端部から立ち上がる側板とからなる1枚の整流板であってもよい。
 また、断面積が一端部から他端部に向かって徐々に小さくなっている凝固浴部2aと、断面積が一端部から他端部に向かって徐々に大きくなっている糸条走行部2bを形成することができれば、図7に示すように、整流板14a、14bを用いずに、紡浴槽2の紡浴槽側板21、22の間隔を調節することにより凝固浴部2a、糸条走行部2bを形成した湿式紡糸装置であってもよい。ただし、既存の湿式紡糸装置を用いることができる点、紡糸条件によって凝固浴部2a、糸条走行部2bの形状を調節することが容易である点から、湿式紡糸装置1のように整流板を用いる方が好ましい。
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
[紡糸原液の調製]
 アクリロニトリル、アクリルアミド、およびメタクリル酸を、過硫酸アンモニウム-亜硫酸水素アンモニウムおよび硫酸鉄の存在下、水系懸濁重合により共重合し、アクリロニトリル単位/アクリルアミド/メタクリル酸単位=96/3/1(質量%比)からなるアクリロニトリル系重合体を得た。このアクリロニトリル系重合体をジメチルアセトアミドに溶解して21質量%の紡糸原液Aを調製した。
[実施例1]
 図1~図5に例示した湿式紡糸装置1において、L1を90mm、L2を90mm、L3を195mm(zの1.5倍の距離)、L4を80mmとして、凝固浴部の最大断面積を26520mm,糸条走行部の最大断面積を26520mm,接続部の断面積を17550mmとした湿式紡糸装置を用いて、接続部におけるX点における流速を7.2m/min(vの0.9倍の速度)となる様に凝固液Cを調整した。
 前記湿式紡糸装置1により、紡糸原液Aを孔数24,000、孔径45μmの紡出口金52を通して、濃度60質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固液C中へ吐出して湿式紡糸した。凝固液Cにより凝固された凝固糸条13は、紡糸原液の吐出線速度の0.27倍の速度で引き取った。
 使用した紡糸口金装置は、ノズル幅:x=80mm(図3),ノズル厚さ:y=50(図1),ノズル高さ:z=130mm(図1)であった。
 ついで、この繊維(凝固糸条)に対して、水洗と同時に5倍の延伸を行い、1.5質量%に調製したアミノシリコン系油剤の第一油浴槽に導き第一油剤を付与した後、この繊維を熱ロールにより乾燥し、熱ロール間による乾熱二次延伸を2.0倍行った。その後、タッチロールにて繊維の水分率を調整し、単繊維繊度1.2dtexの炭素繊維前駆体繊維をワインダーで捲き採った。
[実施例2~5]
 図2Bに例示した湿式紡糸装置1において、凝固浴部の最大断面積(S1),糸条走行部の最大断面積(S3),接続部の断面積(S2)を表1、2に示した通りに変更した以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
[実施例6]
 図1~図5に例示した湿式紡糸装置1において、L1を110mm,L2を145mm,L3を252mm(zの1.8倍)として、凝固浴部の最大断面積を60480mm,糸条走行部の最大断面積を36540mm,接続部の断面積を60480mm,とした湿式紡糸装置を用いて、接続部におけるX点における流速を9.6m/min(vの1.2倍の速度)となる様に凝固液Cを調整した。前記湿式紡糸装置1により、紡糸原液Aを孔数24,000、孔径45μmの紡出口金52を通して、濃度60質量%、温度35℃のジメチルアセトアミド水溶液からなる凝固液C中へ吐出して湿式紡糸した。凝固液Cにより凝固された凝固糸条13は、紡糸原液の吐出線速度の0.27倍の速度で引き取った。
 使用した紡糸口金装置は、x=140mm,y=70,z=140mmの大きさであった。
 引き続き、前記繊維(凝固糸条)に対して、水洗と同時に5倍の延伸を行い、1.5質量%に調製したアミノシリコン系油剤の第一油浴槽に導き、第一油剤を付与した後、この繊維を熱ロールにより乾燥し、熱ロール間で2.0倍の乾熱二次延伸を行った。さらに、タッチロールにて繊維の水分率を調整し、単繊維繊度1.2dtexの炭素繊維前駆体繊維をワインダーで捲き採った。
[実施例7]
 図6に示す湿式紡糸装置を用いた以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
[実施例8,9]
 図1~図5に例示した湿式紡糸装置1において、L4を表1、2に示した通りに変更した以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
[実施例10]
 図1~図5に例示した湿式紡糸装置1において、L3を299mm(zの2.3倍)とした以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
[比較例1]
 図8に示す湿式紡糸装置を用いた以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
[比較例2]
 図9に示す湿式紡糸装置を用いた以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
[比較例3]
 図11に示す湿式紡糸装置を用いた以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
[比較例4]
 図1~図5に例示した湿式紡糸装置1において、接続部における接合X点における凝固液Cの流速を、3.2m/min(vの0.4倍の速度)とした以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
[比較例5]
 図1~図5に例示した湿式紡糸装置1において、接続部における接合X点における凝固液Cの流速を、14.4m/min(vの1.8倍の速度)とした以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
[実施例11]
 図1~図5に例示した湿式紡糸装置1において、凝固浴部の最大断面積(S1)を54600mm,糸条走行部の最大断面積(S3)を54600mm,接続部の断面積(S2)を9750mmとした以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
[比較例6、実施例12~15]
 図2Bに例示した湿式紡糸装置1において、凝固浴部の最大断面積(S1),糸条走行部の最大断面積(S3),接続部の断面積(S2)を表1、2に示した通りに変更した以外は、実施例1と同様にして炭素繊維前駆体繊維を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[評価方法]
 実施例および比較例における評価は、紡浴槽中における凝固液流動状況、滞留部の有無、濃度・温度の評価、および得られた炭素繊維前駆体繊維における繊維断面形状、単糸間の接着糸本数、引取り破断倍率の評価により行った。
(凝固液流動状況)
 紡浴槽2内にDI水をスポイトで滴下し、その流動状況を目視にて確認した。
(滞留部有無)
 紡浴槽2内の滞留状況を目視にて確認した。
(濃度・温度の測定)
 紡出口金52の面の3箇所(図3におけるa、b、c)、凝固浴部2aの一端部の液面CU付近(図2Aにおけるd)、糸条走行部2bの他端部の液面CU付近(図2Aにおけるe)の各箇所において凝固液Cをスポイトで5ml採取し、屈折計(京都電子工業株式会社製、製品名:RA-520)を用いて濃度を測定した。また、温度についても同様の箇所を水銀温度計で測定した。
(繊維断面形状)
 内径1mmの塩化ビニル樹脂製のチューブ内に得られた炭素繊維前駆体繊維を通した後、これをナイフで輪切りにして試料を準備した。ついで、前記試料を炭素繊維前駆体繊維の繊維断面が上を向くようにしてSEM試料台に接着し、さらにAuを約10nmの厚さにスパッタリングしてから、走査型電子顕微鏡(PHILIPS社製、製品名:XL20)により、加速電圧7.00kV、作動距離31mmの条件で繊維断面を観察し、単繊維の繊維断面の長径および短径を測定し、長径/短径の比率を求めた。また変動率(CV値)は長径/短径の測定をn=400で測定し、変動率CVを算出した。
(接着糸本数)
 単糸間接着の判定は、巻き取った炭素繊維前駆体繊維を約5mmにカットし100mLの水中に分散させ、100rpmで1分間攪拌後、黒色濾紙にて濾過し、単糸繊維の接着個数を測定した。
(引取り破断倍率)
 凝固糸条の引き取り速度を、紡糸原液の吐出線速度の0.45倍とする条件を標準引き取り速度とする。そして紡糸原液の吐出線速度を変えることなく凝固糸条の引き取り速度を上げていき、ノズルの吐出面において凝固糸条が破断したときの凝固糸条の引き取り速度を破断引き取り速度とする。これら標準引き取り速度および破断引き取り速度から、下記式により引取り破断倍率を算出した。
(引取り破断倍率)=(破断引き取り速度)/(標準引き取り速度)
 実施例および比較例における評価結果を表3、4に示す。ただし、表3、4における濃度および温度は、濃度60質量%、温度35℃を基準としたものを示している。
(総合評価)
 凝固液流動状況、滞留部有無、濃度・温度の測定、繊維断面形状、接着糸本数、引取り破断倍率、整流板へのネストの引っ掛かり量の評価結果を総合的に判断して、次の基準に従って、評価した。
 ○:非常に良い、△:良好、×:不良
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3、4に示すように、本発明の湿式紡糸装置1を用いた実施例1から6では、紡浴槽2内における凝固液Cの濃度および温度が均一化されており、また、凝固液の逆流や滞留も見られなかった。また、整流板に糸屑(ネスト)が付着することもなく、良好な品質の炭素繊維前駆体繊維が安定して得られた。総合評価は非常に良好であった。
 また、実施例7では、紡浴槽2内において一部逆流や滞留が見られたものの、凝固液Cの濃度および温度が均一化されており、整流板に糸屑(ネスト)が付着することもなく、良好な品質の炭素繊維前駆体繊維が安定して得られた。総合評価は非常に良好であった。
 一方、実施例8から10では、接続部の長さL4,ノズルサイズ(x,y,z)に対するL3(液深),凝固浴部の装置仕様が不適切である為、ノズル面における濃度,温度が不均一となり、凝固液の置換効率が悪くなる。また、目視による凝固液流も乱流や滞留など不均一となったが、総合評価は良好であった。
 比較例1では紡浴槽2の他端部における凝固液Cの流速が速くなりすぎて、トウ(凝固糸条)を引き上げロール(10)で引き上げる際に、凝固液(C)の随伴流により、トウ(凝固糸条)の乱れ及び単糸切れが生じ、凝固液Cの濃度および温度を測定を実施したが、安定した紡糸が不可能であり、評価用サンプルが得られなかった。総合評価は不良であった。
 比較例2では、整流板14a、14bに形成された開口25にノズル(5)より破断した糸屑(ネスト)が引っ掛かり、開口25が糸屑で閉塞され、安定生産が困難であった。また、得られた炭素繊維前駆体繊維には糸屑(ネスト)の混入が確認され、総合評価は不良であった。
 比較例3では紡浴槽の断面積が一定であるため、凝固液Cの流れが不均一になり、それにより凝固液Cの濃度および温度も不均一になることから、品質の劣る炭素繊維前駆体繊維が得られ、総合評価は不良であった。
 比較例4では本発明の湿式紡糸装置1を用いているが、凝固浴部と糸条走行部の接合点X点に於ける凝固液Cの流速が遅いため、凝固液Cの流れが不均一になり、それにより凝固液Cの濃度および温度も不均一になることから、品質の劣る炭素繊維前駆体繊維が得られ、総合評価は不良であった。
 比較例5では本発明の湿式紡糸装置1を用いているが、凝固浴部と糸条走行部の接合点X点に於ける凝固液Cの流速が速くなるため、ノズル周辺に発生する随伴流の影響により、単糸切れが生じ凝固液Cの濃度および温度を測定を実施したが、安定した紡糸が不可能であり、評価用炭素繊維前駆体繊維サンプルが得られなかった。総合評価は不良であった。
 実施例11では本発明の湿式紡糸装置1を用いているが、凝固浴部断面積(S1)と糸条走行部断面積(S3)が接続部断面積(S2)に対して広いため、凝固浴部周辺及び糸条走行部周辺において、凝固液Cの流れが不均一になり、それにより凝固液Cの濃度および温度も不均一になることから、品質の劣る炭素繊維前駆体繊維が得られ、総合評価は良好であった。
 比較例6では本発明の湿式紡糸装置1を用いているが、接続部断面積(S2)に対して糸条走行部断面積(S3)が狭くなりすぎている為、紡浴槽2の他端部における凝固液Cの流速が速くなりすぎて、トウ(凝固糸条)を引き上げロール(10)で引き上げる際に、凝固液(C)の随伴流により、トウ(凝固糸条)の乱れ及び単糸切れが生じ、凝固液Cの濃度および温度を測定を実施したが、安定した紡糸が不可能であり、評価用サンプルが得られなかった。総合評価は不良であった。
 実施例12では本発明の湿式紡糸装置1を用いているが、接続部断面積(S2)に対して糸条走行部断面積(S3)が狭くなりすぎている為、紡浴槽2の他端部における凝固液Cの流速がやや速くなり、トウ(凝固糸条)を引き上げロール(10)で引き上げる際に、凝固液(C)の随伴流により、トウ(凝固糸条)の乱れが生じ、凝固液Cの濃度および温度も不均一になることから、品質の劣る炭素繊維前駆体繊維が得られ、総合評価は良好であった。
 実施例13では本発明の湿式紡糸装置1を用いているが、糸条走行部断面積(S3)が広すぎるため、凝固浴部周辺及び糸条走行部周辺において、凝固液Cの流れが不均一になり、それにより凝固液Cの濃度および温度も不均一になることから、品質の劣る炭素繊維前駆体繊維が得られた。
 実施例14では本発明の湿式紡糸装置1を用いているが、凝固浴部断面積(S1)が狭すぎるため、凝固糸引取り速度に対して凝固液Cの流速がやや速くなり、凝固液Cの流れが不均一になり、凝固液Cの濃度および温度も不均一になることから、品質の劣る炭素繊維前駆体繊維が得られ、総合評価は良好であった。
 実施例15では本発明の湿式紡糸装置1を用いているが、凝固浴部断面積(S1)が接続部断面積(S2)に対して広いため、凝固浴部周辺及び糸条走行部周辺において、凝固液Cの流れが不均一になり、それにより凝固液Cの濃度および温度も不均一になることから、品質の劣る炭素繊維前駆体繊維が得られ、総合評価は良好であった。
 本発明の湿式紡糸装置および湿式紡糸方法は、紡浴槽内における凝固液の流れを制御して品質の優れた合成繊維を製造できることから、炭素繊維などの様々な合成繊維の湿式紡糸に好適に使用できる。

Claims (5)

  1.  紡糸原液を凝固させ凝固糸条にして紡糸する湿式紡糸装置において、凝固液を貯留する紡浴槽に、断面積が一端部から他端部に向かって徐々に小さくなっている、前記紡糸原液を凝固させる凝固浴部と、断面積が一端部から他端部に向かって徐々に大きくなっている、前記凝固糸条が走行する糸条走行部とが設けられている湿式紡糸装置。
  2.  凝固浴部の断面積の最大値S1と、凝固浴部と糸条走行部との接続部の断面積S2との比(S1/S2)が、1.5以上5以下であり、糸条走行部の断面積の最大値S3と、前記接続部の断面積S2との比(S3/S2)が、1.5以上5.5以下である請求項1記載の湿式紡糸装置。
  3.  前記接続部の長さが、40mm以上160mm以下である請求項1または2に記載のある湿式紡糸装置。
  4.  前記凝固浴部と前記接続部と前記糸条走行部の側面及び底面に開口を有さない請求項1~3のいずれかに記載の湿式紡糸装置。
  5.  請求項1~4に記載の湿式紡糸装置を用いて合成繊維を紡糸する方法であって、
    前記接続部での凝固液の流速V(m/min)を、走行糸条トウ速度v(m/min)の0.5倍以上1.5倍以下とする湿式紡糸方法。 
PCT/JP2009/057761 2008-04-18 2009-04-17 湿式紡糸装置および湿式紡糸方法 WO2009128531A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09732071.7A EP2267198B1 (en) 2008-04-18 2009-04-17 Wet type spinning machine, and wet type spinning method
JP2009519736A JP5005031B2 (ja) 2008-04-18 2009-04-17 湿式紡糸方法
MX2010011413A MX2010011413A (es) 2008-04-18 2009-04-17 Maquina de hilado de tipo humedo y metodo de hilado de tipo humedo.
EP17172163.2A EP3243938B1 (en) 2008-04-18 2009-04-17 Wet spinning apparatus and method for wet spinning
US12/988,203 US8529237B2 (en) 2008-04-18 2009-04-17 Wet spinning apparatus
CN2009801133243A CN102007235B (zh) 2008-04-18 2009-04-17 湿式纺丝装置及湿式纺丝方法
US13/946,466 US9234301B2 (en) 2008-04-18 2013-07-19 Method for wet spinning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-108972 2008-04-18
JP2008108972 2008-04-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/988,203 A-371-Of-International US8529237B2 (en) 2008-04-18 2009-04-17 Wet spinning apparatus
US13/946,466 Division US9234301B2 (en) 2008-04-18 2013-07-19 Method for wet spinning

Publications (1)

Publication Number Publication Date
WO2009128531A1 true WO2009128531A1 (ja) 2009-10-22

Family

ID=41199218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057761 WO2009128531A1 (ja) 2008-04-18 2009-04-17 湿式紡糸装置および湿式紡糸方法

Country Status (10)

Country Link
US (2) US8529237B2 (ja)
EP (2) EP2267198B1 (ja)
JP (1) JP5005031B2 (ja)
KR (1) KR101216901B1 (ja)
CN (1) CN102007235B (ja)
HU (2) HUE033520T2 (ja)
MX (1) MX2010011413A (ja)
TR (1) TR201901085T4 (ja)
TW (1) TWI379022B (ja)
WO (1) WO2009128531A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838858A (zh) * 2010-05-26 2010-09-22 安庆安纳特种纤维有限公司 密集型腈纶纤维成型机
CN108707990A (zh) * 2018-08-17 2018-10-26 安徽和邦纺织科技有限公司 一种同步生产多种纤维的实验教学设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2719801A1 (de) * 2012-10-10 2014-04-16 Aurotec GmbH Spinnbad und Verfahren zur Verfestigung eines Formkörpers
CZ306448B6 (cs) 2015-11-06 2017-01-25 Vysoké Učení Technické V Brně Polymerní vlákno a způsob jeho výroby
US9896618B2 (en) 2015-11-19 2018-02-20 Schlumberger Technology Corporation Method of making rod-shaped particles for use as proppant and anti-flowback additive
US10557079B2 (en) 2016-07-22 2020-02-11 Schlumberger Technology Corporation Method of making rod-shaped particles for use as proppant and anti-flowback additive
WO2023172644A1 (en) * 2022-03-08 2023-09-14 Simulate, Inc. Fiber-spun, chicken-like, food products and methods for manufacturing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291413A (ja) * 1996-04-22 1997-11-11 Mitsubishi Rayon Co Ltd 表面フィブリル化繊維及びそれから得られるフィブリル含有分割繊維、並びにそれらの製造方法
JPH11229227A (ja) * 1998-02-13 1999-08-24 Kanegafuchi Chem Ind Co Ltd 湿式紡糸の整流装置
JP2006336152A (ja) * 2005-06-02 2006-12-14 Teijin Techno Products Ltd 乾湿式紡糸装置
JP2006342451A (ja) * 2005-06-08 2006-12-21 Teijin Techno Products Ltd 乾湿式紡糸方法及びその装置
JP2008108972A (ja) 2006-10-26 2008-05-08 Nec Corp 有機薄膜トランジスタ及びその製造方法
JP2008202189A (ja) * 2007-02-22 2008-09-04 Mitsubishi Rayon Co Ltd 湿式紡糸装置及び湿式紡糸方法
JP2008202188A (ja) * 2007-02-22 2008-09-04 Mitsubishi Rayon Co Ltd 湿式紡糸装置及び湿式紡糸方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793396A (en) * 1954-03-10 1957-05-28 American Viscose Corp Tube-trough spinning apparatus
BE542542A (ja) 1955-01-11
JPS4118091Y1 (ja) 1964-10-07 1966-08-23
JPS5930718A (ja) 1982-08-09 1984-02-18 Mitsubishi Chem Ind Ltd 硝酸アンモニウム粉粒体組成物
JPS6233814A (ja) 1985-08-02 1987-02-13 Toray Ind Inc 湿式紡糸装置
JP3483070B2 (ja) 1995-08-30 2004-01-06 日本エクスラン工業株式会社 湿式紡糸装置
RU2156839C2 (ru) * 1996-03-06 2000-09-27 Мицубиси Рэйон Ко., Лтд. Волокна фибрилловой системы (варианты), формованное изделие, способ изготовления волокон фибрилловой системы, прядильная фильера для изготовления волокон фибрилловой системы

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09291413A (ja) * 1996-04-22 1997-11-11 Mitsubishi Rayon Co Ltd 表面フィブリル化繊維及びそれから得られるフィブリル含有分割繊維、並びにそれらの製造方法
JPH11229227A (ja) * 1998-02-13 1999-08-24 Kanegafuchi Chem Ind Co Ltd 湿式紡糸の整流装置
JP2006336152A (ja) * 2005-06-02 2006-12-14 Teijin Techno Products Ltd 乾湿式紡糸装置
JP2006342451A (ja) * 2005-06-08 2006-12-21 Teijin Techno Products Ltd 乾湿式紡糸方法及びその装置
JP2008108972A (ja) 2006-10-26 2008-05-08 Nec Corp 有機薄膜トランジスタ及びその製造方法
JP2008202189A (ja) * 2007-02-22 2008-09-04 Mitsubishi Rayon Co Ltd 湿式紡糸装置及び湿式紡糸方法
JP2008202188A (ja) * 2007-02-22 2008-09-04 Mitsubishi Rayon Co Ltd 湿式紡糸装置及び湿式紡糸方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2267198A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838858A (zh) * 2010-05-26 2010-09-22 安庆安纳特种纤维有限公司 密集型腈纶纤维成型机
CN108707990A (zh) * 2018-08-17 2018-10-26 安徽和邦纺织科技有限公司 一种同步生产多种纤维的实验教学设备

Also Published As

Publication number Publication date
TW201002883A (en) 2010-01-16
KR20100126577A (ko) 2010-12-01
EP2267198A1 (en) 2010-12-29
EP3243938A1 (en) 2017-11-15
HUE033520T2 (en) 2017-12-28
TR201901085T4 (tr) 2019-02-21
US20110109008A1 (en) 2011-05-12
TWI379022B (en) 2012-12-11
MX2010011413A (es) 2011-03-15
EP2267198B1 (en) 2017-05-31
EP3243938B1 (en) 2018-12-19
US9234301B2 (en) 2016-01-12
JP5005031B2 (ja) 2012-08-22
JPWO2009128531A1 (ja) 2011-08-04
KR101216901B1 (ko) 2012-12-28
US8529237B2 (en) 2013-09-10
HUE041961T2 (hu) 2019-06-28
US20130300013A1 (en) 2013-11-14
EP2267198A4 (en) 2011-06-29
CN102007235A (zh) 2011-04-06
CN102007235B (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5005031B2 (ja) 湿式紡糸方法
JP4730306B2 (ja) 繊維束の製造方法
JP4856566B2 (ja) 湿式紡糸装置及び湿式紡糸方法
JP5001673B2 (ja) 湿式紡糸装置及び湿式紡糸方法
JP5692238B2 (ja) 合成繊維の製造方法及び乾湿式紡糸装置
US2243116A (en) Apparatus for use in manufacturing artificial filaments
JP4593370B2 (ja) 乾湿式紡糸装置
JP2015040360A (ja) 湿式紡糸装置及び繊維の製造方法
JP4992501B2 (ja) アクリル系繊維束の製造方法
JP3483070B2 (ja) 湿式紡糸装置
JP5900031B2 (ja) アクリル繊維の製造方法及びその製造装置
JP2009179924A (ja) 乾湿式紡糸装置
JP5441275B2 (ja) 複数の高強度、高モジュラス芳香族ポリアミドフィラメントの製造方法
EP3951030A1 (en) Acrylonitrile-based fiber bundle manufacturing method
JP2005220508A (ja) 湿式紡糸方法及びそのための装置
JPS59228013A (ja) ビスコ−スレ−ヨンの流浴紡糸方法
JP2009235643A (ja) 矩形紡糸口金および矩形紡糸口金を用いた合成繊維の製造方法
JP2009263805A (ja) 矩形紡糸口金および矩形紡糸口金を用いた合成繊維の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980113324.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009519736

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09732071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/011413

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009732071

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009732071

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107024153

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12988203

Country of ref document: US